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Abstract

Distributed real-time computer based systems are very complex and intrinsi-

cally diÆcult to specify and implement correctly; in part this is caused by the

overwhelming number of possible interactions between system components,

but especially by a lack of adequate methods and tools to deal with this com-

plexity. This thesis proposes new speci�cation and testing techniques.

We propose a real-time speci�cation language which facilitates modular spec-

i�cation and programming of reusable components. A speci�cation consists of

a set of concurrent untimed components which describes the functional behav-

ior of the system, and a set of constraint patterns which describes and enforces

the timing and synchronization constraints among components.

We propose new techniques for automated black box conformance testing of

real-time systems against densely timed speci�cations. A test generator tool

examines a speci�cation of the desired system behavior and generates the nec-

essary test cases. A main problem is to construct a reasonably small test suite

that can be executed within allotted resources, while having a high likelihood

of detecting unknown errors. Our goal has been to treat the time dimension

of this problem thoroughly.

Based on a determinizable class of timed automata, Event Recording Au-

tomata, we show how to systematically and automatically generate tests in

accordance with Hennessy's classical testing theory lifted to include timed

traces. We select test cases from a coarse grained state space partitioning of

the speci�cation, and cover each partition with at least one test case, possibly

selecting extreme clock values. In a partition, the system behavior remains

the same independently of the actual clock values.

We employ the eÆcient symbolic constraint solving techniques originally devel-

oped for model checking of real-time systems to compute the reachable parts

of these equivalence classes, to synthesize the timed tests, and to guarantee

a coverage of the equivalence class partitioning. We have implemented our

techniques in the RTCAT test case generation tool.

Through a series of examples we demonstrate how Event Recording Automata

can specify untrivial and practically relevant timing behavior. Despite being

theoretically less expressive than timed automata, it has proven suÆciently

expressive for our examples, but sometimes causing minor inconveniences.

Applying RTCAT to generate tests from these speci�cations, including the

Philips Audio Protocol, resulted in encouragingly small test suites.

We conclude that our approach is feasible and deserves further work, but also

that it should be generalized and allow timing uncertainty and modeling of

the environment. Some implementation improvements are also necessary.
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Dansk Resum�e

Distribuerede tidstro computer baserede systemer er notorisk komplekse og

sv�re at udvikle korrekt. En v�sentlig �arsag hertil er den enorme og uover-

skuelige m�nge af mulige interaktioner imellem samtidige komponenter. Der

mangler metoder og v�rkt�jer til h�andtering af denne kompleksitet. Denne

afhandling foresl�ar nye teknikker til speci�kation og test af tidstro systemer.

Det f�rste bidrag er et speci�kationssprog, der forbedrer mulighederne for

at konstruere genbrugelige speci�kationer og programkomponenter. En s�adan

speci�kation best�ar af et antal samtidige komponenter, som beskriver syste-

mets logiske adf�rd, og en m�ngde restriktorer, der gennemtvinger de tids-

og synkroniseringskrav, der skal holde imellem komponenterne.

Afhandlingens hovedbidrag er nye teknikker til automatiseret konformitetstest

med fokus p�a test af tidskrav. Et test genereringsv�rkt�j analyserer en given

tidsautomat speci�kation af den �nskede systemadf�rd og genererer automa-

tisk de n�dvendige tests. Et v�sentligt problem er at generere en passende

m�ngde af tests, der kan udf�res inden for de ressourcer, der er afsat til af-

testning, men som har stor sandsynlighed for at detektere ukendte fejl.

Afhandlingen viser, hvorledes det er muligt automatisk og systematisk at ge-

nerere tests fra en determinis�erbar klasse af tidsautomater kaldet Event Recor-

ding Automata. Testene er udledt fra Hennessy's klassiske testteori, som er

udvidet til at omfatte tid. Udv�lgelse af tests sker p�a baggrund af en grov-

kornet inddeling af speci�kationens tilstandsrum. Speci�kationens adf�rd i

hver del er identisk uanset speci�kke urv�rdier. Hver del af tilstandsrummet

d�kkes med mindst en test, og potentielt ved valg af ekstreme urv�rdier.

Til beregning af speci�kationens opn�aelige tilstande og til udledning af tests

anvendes nye e�ektive teknikker til symbolsk l�sning og repr�ssentation af de

line�re uligheder over urene, som forekommer i speci�kationen. Disse teknikker

er oprindligt udviklet til formel bevisf�relse af tidstro systemer vha. model-

checking. Teknikkerne er implementeret i testgenereringsv�rkt�jet RTCAT.

Ved speci�kation af en r�kke eksempler har det vist sig, at Event Recording

Automata er egnede til speci�kation af utrivielle og praktisk relevante tids-

krav. Selv om udtrykskraften af denne automat model teoretisk set er mindre

end generelle tidsautomater, har den v�ret tilstr�kkelig, dog sommetider med

visse komplikationer. M�ngden af tests generereret af RTCAT v�rkt�jet for

disse speci�kationer, inklusive en Philips Audio Protokol, er kun moderat stor,

hvilket er lovende for anvendeligheden af teknikkerne p�a st�rre systemer.

Det konkluderes, at de foresl�aede teknikker er potentielt anvendelige og b�r

videreudvikles. De b�r genereraliseres og muligg�re speci�kation af tidsusik-

kerhed og omgivelsesantagelser. Visse implementationsaspekter b�r forbedres.
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Chapter 1

Introduction

\The biggest problem at the moment is the timing between the

electronics in the star camera that determines the satellite's ori-

entation in space, and the satellite's main computer. This implies

that the orientation of the satellite is not accurately known when

it measures the magnetic �eld.

According to Lars T��ner-Clausen from the Danish Meteorologic

Institute, the time stamp on the data from the star camera occa-

sionally leaps 1 second. Therefore, the recorded time of a measured

datum may be up to 50 seconds wrong. So far, the technicians have

been unable to locate the cause of the error in the satellite, and the

hope is therefore that the error can be corrected by post processing

the data on earth."

The above excerpt is translated from the Danish technical weekly \Ingeni�ren"

[86]. The news story concerns the Danish �rsted satellite whose purpose is

to make accurate and detailed measurements of the earth's magnetic �eld.

Although the error is not fatal, it degrades the value of the satellite if not

corrected.

Unfortunately, similar reports of malfunctioning computer based systems are

rather commonly reported in the technical news.

Another, widely cited case, is the Therac-25 therapeutic radiation machine

in which software malfunctions caused patients to be exposed to massive ra-

diation overdoses resulting in deaths and injuries of several patients in the

period of 1985{87 [69]. One kind of errors, among Therac-25's horribly many,

is described by the Tylor incidents where unanticipated operator behavior led

to wrong radiation type. Through a computer console the operator keyed in

1



2 CHAPTER 1. INTRODUCTION

the treatment parameters such as length, strength, and type of therapy (elec-

tron vs. x-ray radiation). The machine would then prepare for the treatment

by changing its physical setup, including positioning of bending magnets that

would take 8 seconds. The normal treatment was x-ray radiation, so when oc-

casionally electron radiation was required, the operator sometimes routinely

set it to x-rays. The Therac-25 user interface permitted editing of the treat-

ment parameters while the machine was changing its setup. When the operator

recognized his mistake and was fast enough to change the treatment parame-

ters before this setup was completed, the machine would fail to recognize the

change from x-ray radiation to the more benign electron radiation. When the

operator later prompted the machine to start the treatment, it would emit a

large x-ray dose despite the user interface indicating electrons. Lack of sys-

tematic testing and other poor software engineering practices is stated to be

a major contribution to the faulty behavior of Therac-25 [69].

The problem with faulty computer systems is even bigger because newspapers

only report on such spectacular cases.

1.1 Distributed Real-Time Systems

The �rsted satellite is an example of a large class of computer based systems

that are distributed and that must operate according to real-time constraints.

Other examples are numerous: control and monitoring of factory plants, auto-

matic train control systems, anti break/spin systems for cars, etc. A distributed

system consists of multiple concurrent communicating components. It is well

known that the communication protocols, which describe the exact rules for

how the components can and should communicate, are very complex and in-

trinsically diÆcult to specify and implement correctly. One reason for this, as

the �rsted, Therac-25, and other cases illustrate, is that the possible inter-

actions between system components internally, and between the system and

its environment, is incomprehensible even for few and small systems. Also,

the lack of global state and accurate global time caused by distribution of

the components to several independent processors plays an important role.

In addition, processors may fail independently, which adds a wealth of fault

tolerance problems and opportunities.

The components not only communicate internally, but also interact with ex-

ternal environment or human operators. The external environment consists

of the physical equipment that is monitored and controlled by the computer

system. The system can query the state of the environment through analogue

sensors and analog-to-digital converters, and a�ect the equipment via actua-

tors and digital-to-analogue converters. This model is depicted in Figure 1.1.
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Control SystemEnvironment

sensors

actuators

Figure 1.1. Model of a distributed real-time system.

The physical laws governing the environment induces a set real-time con-

straints which the control system must obey in order to achieve satisfactory

or safe operation. Thus, a real-time system must not only produce the correct

result or make the correct reaction to a stimuli, but must also produce the

result or reaction at the correct time instant; neither too early nor too late.

In other words, a timely reaction is just as important as the kind of reaction.

These real-time requirements add a further layer of complexity to the already

complex distributed systems. Their real-time properties must the speci�ed,

implemented, and validated.

Distributed real-time systems remain among the most challenging class of

systems to develop correctly. The challenge arises in part from the inherent

complexity in these systems, but in particular from the lack of adequate meth-

ods and tools to deal with this complexity. This applies to most development

activities, including speci�cation, design and implementation.

This thesis is concerned with the development of correct distributed real-time

systems, in particular with their speci�cation and test. We believe that the

following items should be ingredients in a sound and e�ective systems devel-

opment method:

� Methods should be rooted in formal methods. Formal methods not only

support more stringent development, but, more importantly, permit de-

velopment of sophisticated tools that can assist the developers in man-

aging complex systems.

� Testing should be fully automatic. We propose fully automated testing

from a formal speci�cation as a way of improving correctness.

� Components should be reusable. New systems should to the widest

possible extend be constructed by composing existing and previously

tested components. This avoids unnecessary re-development and re-

testing.

Section 1.2 introduces testing, and Section 1.3 introduces our thesis.
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1.2 Testing

In the following we introduce testing, and discuss how it is presently being

used, and why it needs to be improved. We also relate it to other validation

strategies such as formal veri�cation.

1.2.1 Testing in Context

In essence, testing consists of executing a program or system with the inten-

tion of �nding undiscovered errors in the system. As much as about a third

of the total development time is spent on testing, and therefore constitutes

a signi�cant portion of the cost of the product. As discussed in the follow-

ing, testing is performed throughout the product development cycle, and for

various purposes.

Programmers usually test their own modules to check their correctness during

development. Programmers also participate in the various integration tests

also performed during the product development. Customers participate in the

�nal acceptance test, where the goal is to determine whether the product sat-

is�es the requirements listed in the original development contract negotiated

between the customers and the software house.

Many companies employ dedicated test engineerers that exclusively focus on

writing test cases and/or executing these. Some even use dedicated test de-

partments that tests the products developed by another development depart-

ment. The test departments may further be isolated (in clean rooms) from the

developers in order to minimize 'contamination' of the test team by prejudices,

presuppositions, and internal knowledge, that could biase tests.

Frequently, the products from di�erent, and sometimes competing, compa-

nies must interoperate. To ensure this, standardization committees develop

common standard speci�cations which must be adhered to by all vendors. A

compliant product must pass a standard test suite also developed by the stan-

dardization committee. Typical examples of this are found in the found in the

telecommunications world where standardization committees like ITU (Inter-

national Telecommunication Union) and ISO (International Organization for

Standardization) develop and manage communication protocol standards and

corresponding standard test suites. For example, before a new mobile phone is

mass produced, a sample must be sent to an accredited testing site that tests

the product for protocol conformance and interoperability with the equipment

used by mobile network providers.

Finally, safety critical systems must undergo extremely thorough testing, and

the test results must convince public safety boards that the systems are suÆ-

ciently safe, e.g., the United States Federal Aviation Administration, FAA.
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Despite of the many man-hours and resources that are spent on testing, and

despite the many errors found and corrected, signi�cant errors remain. Be-

cause testing is the most dominating validation activity used by industry to-

day, there is an urgent need for improving its e�ectiveness, both with respect

to the use of time and resources, and the number of uncovered errors. A

potential solution that is being examined by researchers is to formalize test-

ing, and to provide tools that automates test case generation and execution.

This approach has experienced some level of success: Formal speci�cation

and automatic test generation are being applied in practice [19, 72, 80, 98],

and commercial test generations tools are emerging [59, 82]. However, little

research deals systematically with the special needs of real-time systems.

1.2.2 Automated Testing

The type of testing examined in this thesis is conformance testing. The goal

is to check by means of testing whether the behavior of the implementation

under test conforms to a speci�cation. The implementation under test is

viewed as a black box whose internal structure and behavior is unknown to the

tester. In general, only its interface to the external world is known. Exactly

when a implementation conforms to a speci�cation is de�ned by a formal

implementation relation. There are several possible de�nitions, and we shall

return to these throughout the thesis.

In conventional manual conformance testing the programmer or test engineer

is responsible for constructing and executing test cases, see Figure 1.2.

He typically scrutinizes the speci�cation given as informal prose, and identi�es

a set of test purposes. A test purpose is a speci�c goal or action deemed

necessary to test. For example, in a communications protocol, a typical test

purpose is to check that a connection can be established. In a steam boiler

controller, a test purpose could be to check that the steam valve opens when

the pressure in a water tank reaches a given threshold. For each test purpose,

the test engineerer constructs at least one test that checks for that purpose.

A collection of tests that concerns the same speci�cation is called a test suite.

The �nal step is to construct a program that implements the test, and to

execute it.

In its simplest form, a test case is a sequence of input events, expected outputs,

and a pass/fail verdict for each step of the sequence. The system passes a test

if its execution reaches a state with a pass verdict. A test consists of three

sub-sequences: A preamble brings the implementation to a state where the

test purpose can be examined. Then follows the central sequence for the test

purpose. A postamble brings the system to a known (or safe idle) state.
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Figure 1.2. Manual testing (a), and fully automatic testing (b).

It is important to realize that the test engineerer is responsible for two critical

steps: identifying what should be tested, and constructing the sequences. He

performs two levels of test selection. One is identifying and selecting the test

purposes to be tested. The other is the selection of the speci�c sequences

needed for each purpose. It is not diÆcult to imagine that subtle scenarios are

overlooked, or that the preamble contains errors or are too simple. Further,

constructing test sequences is a time consuming and often tedious job.

Fully automatic testing is the extreme opposition to manual testing. The vi-

sion is to automatize testing completely, as illustrated by the schematics in

Figure 1.2b. A test case generation tool takes as input a formal speci�ca-

tion of the required behavior and systematically generates all relevant tests.

Because exhaustive testing is impractical, it must select the most important

ones for execution. A test execution tool takes the produced test cases as in-

put, interprets them, and exercises the implementation under test accordingly

and writes the test results to a log �le. Additionally, the test execution tool

may generate diagnostic information that can help the system developers in

locating the cause of a detected discrepancy.

Between the completely manual testing and fully automatic testing approaches

outlined above, there is plenty of room for various degrees of automatization

and engineerer (expert user) intervention.
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1.2.3 Test Selection

Even modest sized systems are so large that it is generally impossible to test

them exhaustively, i.e., under all possible sequences of inputs. It is therefore

necessary to select and execute only a subset of these. The goal of this pro-

cedure, known as test selection, is to �nd the 'best' test suite that can be

executed within the allotted time frame and resources. A good test suite is

usually one that has a high probability of �nding so far unknown errors, or of

�nding the most serious errors. Rather than stimulating the system at ran-

dom, it may prove better to systematically check as many truly di�erent parts

of the system as possible.

To make this point clear, consider the 'maxPositive' function speci�ed and

implemented in Figure 1.3. The function returns the maximum positive value

of two arbitrary integers, x and y. If both arguments are less than zero the

function is to return zero. Obviously, this function cannot be tested with all

possible pairs of integers as inputs. A systematic strategy for dealing with

this problem is to partition the input variables into input domains, i.e., sets of

inputs that the program is expected to treat \identically" (e.g., pass through

the same program path), and choose only a few representatives from each

domain.

In the 'maxPositive' example there are four domains, one for each of the four

cases in the speci�cation. The resulting domains, tabulated in Table 1.4, are

described as inequations of x and y. Test input data can be derived from the

inequations that de�ne each domain. Thus, at least four test cases should be

generated, but usually several interior and extreme values are chosen.

domain condition expected output

1 x < 0 ^ x > y 0

2 y < 0 ^ x � y 0

3 x � 0 ^ x > y x

4 y � 0 ^ x � y y

Table 1.4. Domains for the maxPositive speci�cation.

Returning our attention to real-time systems, it should be clear that the imple-

mentation cannot be stimulated at all possible time instances with all possible

input actions. Thus, we are faced with a choice of when to stimulate the sys-

tem. This choice need not be arbitrary, but can and should be made based on

some notion of speci�cation partitioning. This thesis will analyze the values

of clocks in real-time speci�cations, and partition them, and use this as basis

for time instance selection.
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maxPositive(x; y) =def max(0;max(x; y))

max =def

�
x; if x > y

y; otherwize

int MaxPositive(int x,y) f

int max;

if (x > y)

max=x;

else

max=y;

if (max<0) //x < 0 ^ y < 0

max=0;

return max;

g

(a) (b)

Figure 1.3. Speci�cation of the maxPositive function (a), and

C-program implementation (b) ?

1.2.4 Testing and Veri�cation

A legitimate concern is whether testing will ever be an e�ective validation

technique. It is well known that testing can only prove the presence of errors,

not their absence. A proof would require exhaustive testing which is only

possible for small systems, and under a particular set of assumptions. It

therefore appears futile and irrational to exercise the system more or less at

random. It would be much better to prove that the system behaves correct

under all possible conditions!

This rationale has dominated the formal methods research community, and

most researches focus on proving system correctness, i.e., on veri�cation. The

major bene�t from this priority is that veri�cation technology has matured

signi�cantly. EÆcient algorithms and data structures have been developed

to an extend that permits veri�cation of systems of industrial relevance. One

kind of veri�cation technology ismodel checking where a (fully) automatic tool

examines whether the states of a behavioral description of a system satis�es a

given property. Another approach is theorem proving where a proof assistant

tool helps the system developer to prove that the system has a given property.

The downside is that testing has been treated somewhat stepmotherly: It

is viewed an academically unsound activity carried out by pragmatic people

who are not true believers in formal methods. Testing technology has therefore

been unable to keep up with the veri�cation technology. Fortunately, many

of the developed veri�cation techniques also seem applicable to testing, as we

shall try to demonstrate in this thesis.



1.2. TESTING 9

From the preceding discussion one might get the impression that one should de-

cide on using either testing or veri�cation as the prefered validation technique.

However, in our view testing and veri�cation are complementary techniques

solving di�erent problems. Therefore both should be used. The relation be-

tween di�erent validation techniques and the (idealized) phases of software

development is shown in Figure 1.5. Based on this observation we propose a

development methodology where formal veri�cation and testing are integral

and complementary activities.

� inspection

� review

� walk through

� model checking

� theorem proving

� testing

� monitoring

Informal speci�cation

(natural language)

Formal Speci�cation

(logical properties)

(state machines)

Implementation

(c-code+OS+hardware)

Design

Figure 1.5. Testing and veri�cation are complementary tech-

niques (inspired by Rushby [95]).

The system analysts capture the informal requirements by interviewing cus-

tomers, users, and domain experts about the requirements and expectations

they have to the system. The formal requirements can then be formulated as

logical properties or propositions. Completeness and soundness are achieved

by reviews, inspections, and walk troughs.

The analysis and design activities result in an abstract model of the system to

be implemented: its components, the behavior of these components, and their

interaction. The central parts of the model can be speci�ed in detail using

a formal behavioral description language such as state machines or process

algebra. Model checking can then be used to ensure that this formal model

satis�es the desired properties.

Finally, the programmers take over and implement the design using a par-

ticular programming language, operating system, and hardware components.

Automatic code generation from the formal model can be used in special cases.

However, with the current state of the art, system construction is largely an

informal step carried out by humans. Therefore, the �nal physical system may
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be faulty even if its design is correct. It should also be mentioned here that

many public safety boards require extensive testing of safety critical systems.

It is insuÆcient, although important, to show that the design is correct: It

must be demonstrated that the actual physical system is safe. However, the

(veri�ed) design or speci�cation can now be used as a basis for generating test

cases.

An interesting but open question is whether it ever will be possible to for-

malize and automatize the implementation process entirely such that imple-

mentations can be veri�ed. This would require faithful formal models of the

operating system and hardware components, formal semantics of programming

languages, veri�ed compilers, and translators from the design speci�cation. At

least, the resulting model will be so large that it cannot be veri�ed with the

technology available in the near future.

The fundamental goal of testing, which cannot be done by model checking,

is to check if an actual running physical system of which we have incomplete

knowledge conforms to a speci�cation.

1.3 The Thesis

Having presented the problem domain and motivated our work, this section

introduces our contributions. We outline the main problems that should be

solved, and present our approach to this. We summarize our contributions

and present the structure of the remainder of the thesis.

1.3.1 Speci�cation of Real-Time Systems

The starting point for automatic testing of real-time system, and indeed for

most automated tool support for their analysis, is a clear and unambiguous

speci�cation of the systems desired behavior. Such speci�cations tend to be

complex and non-trivial to write. The particular speci�cation language used,

and the methodology used to derive speci�cations, is therefore of great im-

portance. It should be possible to specify systems with a reasonable e�ort.

Further, the generated tests or other analysis results will only be as good as

the speci�cations on which they are based. Therefore, the correctness of these

models is therefore also a concern.

Speci�cation languages are presently given as somewhat low level and math-

ematically oriented formalisms such as state machines or automata speci�ca-

tions, or as lengthy process algebraic expressions. However, in the long run, as

speci�cations grow in size and complexity, it becomes increasingly important
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how to give and manage them. In particular we believe that making modular

and reusable speci�cations becomes essential.

It is our thesis that reuse of speci�cations and implementations can be fa-

cilitated by a component based approach that separates speci�cation of time

constraints and functional behavior.

We propose a real-time speci�cation and modeling language in which a spec-

i�cation consists of two parts. The �rst part is a set of concurrent untimed

components describing the functional behavior of the system. The second part

is a set of constraint patterns describing and enforcing the timing and synchro-

nization constraints that should exist between components. Both components

and constraint patterns are reusable. This enables key properties to be easily

maintained in one system and re-established in future ones.

Another issue is how to derive the implementation from a speci�cation. In

some cases, it may be possible to execute a speci�cation directly with little or

no extra programming e�ort. We show how this sometimes is feasible from

our modular speci�cations for soft real-time systems.

1.3.2 Testing of Real-Time Systems

While a signi�cant body of research exist on languages, theories, algorithms

and tools for automatic testing of untimed systems, relatively little work deals

explicitly with real-time systems. It is the aim of this thesis to develop tech-

niques for automatically generating test cases for real-time systems.

The emphasis on real-time implies that the entire automatic testing setup

must be extended to accommodate real-time. The speci�cation language must

permit speci�cation of real-time constrains, and must be suited for the type

of analysis required for generating test cases. The underlying testing theory

which deals with observation of events, the precise de�nition of conformance,

and the necessary structure of the test cases etc. must be revised and be

extended to include real-time. Test cases would no longer only be sequences

of inputs and expected outputs, but would also need to include when input is

to be delivered and when output is expected. Because it is generally impossible

to test the system exhaustively, test selection becomes even more imperative.

E�ective algorithms and tools for generating and selecting timed test cases

must therefore be devised. E�ective here means ability to handle systems

with a size of practical relevance. Finally, the execution of real-time test cases

must also be changed such that it precisely exercises the implementation at the

time instances dictated by the test case. This requires special care, particular

in a distributed system where clocks cannot be perfectly synchronized.
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In the following we describe our approach to each of these challenges. We

propose timed automata as speci�cation language. This automata based for-

malism is very expressive, and has become a popular modeling language for

real-time systems. In essence, a timed automata is a classical state machine

augmented with clocks, enabling conditions on actions, and resets of clocks

when actions occur.

We employ a testing theory that is a timed extension of Hennessy's classical

testing theory [75]. In this theory, two systems are deemed equivalent if no test

case exist that one system passes, but the other fails. The theory also de�nes

the exact structure of the test cases required to determine testing equivalence.

We address the important test selection issue by proposing a coarse grained

state space partitioning of the speci�cation. In each partition the speci�cation

behaves the same independently of the actual clock values. This approach

is related to the domain test selection strategy commonly employed in the

testing of sequential programs [116]. Our basic hypothesis is that it is more

important to systematically test many di�erent situations as represented by

the partitions, than it is to blindly select time instances within the same narrow

part of the state space.

To represent the state space of the speci�cation and to compute the reachable

parts of the state partitions, we propose to employ the symbolic techniques

that has resulted from the last decade's research in veri�cation of real-time

systems; in particular we have the UppAal approach [119, 13, 64] in mind.

This tool performs reachability analysis to prove bounded liveness properties

of a collection of concurrent time automata. It has been successfully applied

to veri�cation of industrially relevant systems. Because test case generation

also involves exploration of the state space, the data structures and algorithms

behind this success could potentially also prove advantageous to testing.

It is our thesis that the symbolic techniques developed for reachability analysis

of real-time systems also can be used to generate test suites, and that appli-

cation thereof results in a practical technique for systematic and automatic

testing of real-time systems.

We evaluate this thesis through the construction of a prototype tool that im-

plements our ideas. The tool will be applied to a number of speci�cations.

Our evaluation also includes thoughts on the speci�cation language, the algo-

rithms, the number and kinds of generated tests. The many and important

practical problems of executing tests, in particular on a distributed system

shall not be our main concern here.
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1.3.3 Contributions

The following summarizes our main contributions:

1. We propose a set of basic algorithms for testing of untimed communi-

cating state machines, and implement these algorithms in a test case

generator.

2. We propose a framework for selecting real-time test cases. The frame-

work is based on a partitioning of the state space. We make several

instantiations of this framework, and choose one for further study.

3. We design algorithms that generate tests using the above state space

partitioning. The proposed algorithms are applicable to a restricted,

but determinizable, class of timed automata termed event recording au-

tomata.

4. The test generation algorithms are implemented in a tool capable of

generating test cases automatically from an event recording automata

speci�cation.

5. We show how our approach can be applied to generate test cases from a

set of practically relevant speci�cations.

6. Our �nal contribution concerns reuse of program components operating

under real-time constraints. We propose a speci�cation language that

supports reuse through separate and modular speci�cation of functional

behavior and time constraints.

1.3.4 Structure of the Thesis

The remainder of the thesis is organized as follows.

In Chapter 2 we present the testing fundamentals necessary to understand

our approach. We lay down the classical untimed testing theory. Also, to

understand how a test generation tool could operate, we study test generation

algorithms in the simpler untimed setup before addressing the much more

challenging real-time case. This work results in a test case generation tool for

untimed communicating state machines.

Chapter 3 introduces the real-time dimension. We propose a speci�cation

language based on timed automata, and de�ne its semantics as a timed labeled

transition system. We show how to derive tests from such a timed transition

system. This approach is however unideal because it gives no guidance for

systematically choosing the time instance where the implementation should be
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tested. We also present a framework for test selection based on partitioning

the state space of the speci�cation.

Our main contribution is contained in Chapter 4 where we describe our sym-

bolic approach to selection and generation of test cases. We present our pro-

totype tool and describe the relevant implementation details.

In Chapter 5 we apply our tool to a set of small cases and one larger, and

evaluate the applicability of our approach. We relate and compare our work to

other research in the �eld of automated test generation in Chapter 6. Finally,

Chapter 7 concludes and discuss topics for future work.

To give a natural 
ow of topics in the thesis, our contribution regarding reuse

of real-time components is contained in Appendix A.



Chapter 2

Untimed Testing

The goal of this chapter is to lay down the fundamental de�nitions and test

generation techniques before addressing the more general and challenging real-

time case. We apply the techniques to an automata based speci�cation lan-

guage termed communicating state machines. However, this particular choice

is not essential for the goal of this chapter since the essential de�nitions and

algorithms are stated in terms of the underlying semantic model, labeled tran-

sition systems, which applies to a large family of languages. Speci�cation and

semantics of concurrent systems is discussed in Section 2.1.

An important issue is to de�ne exactly when a system is a correct implementa-

tion of a speci�cation, and when it is not. The adopted testing theory de�nes

this by a formal relation between two labeled transitions system. The de�ni-

tion of this, the so called implementation relation, also depends on the type of

observations that the tester assumes can be made about the implementation,

and these must be stated explicitly. Because implementations are concurrent

and non-deterministic, it is especially important that the theory checks that

the deadlock properties of the implementation comply with those of the spec-

i�cation. Non-determinism also requires a delicate assumption to be made

about the execution of tests to achieve exhaustiveness. However, we postpone

the general discussion of observations and non-determinism until Chapter 6.

The testing theory is presented in Section 2.2.

Given a well de�ned testing theory, the next issue becomes how to auto-

matically generate tests which can be used to determine whether the imple-

mentation is correct. This involves de�ning precisely which tests should be

generated, and �nding good algorithms and data structures. We develop and

present two techniques in Section 2.3. The �rst is based on a direct interpre-

tation of the speci�cation, and the second is based on a data structure called

a success graph.

15
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The success graph has several nice properties for automatic test generation,

but is potentially costly to construct. To study how this data structure can be

implemented, and to evaluate its cost, we have implemented it in an prototype

tool described in Section 2.4. Finally, Section 2.5 discuss the advantages and

disadvantages of the success graph, and the lessons learned.

2.1 Speci�cation of Concurrent Systems

One broadly distinguishes between two di�erent speci�cation language para-

digms, the logical languages, and the behavioral description languages. Log-

ical languages such as temporal logics specify the requirements by a set of

properties that should always or eventually hold. Behavioral languages such

as process algebras and state machines specify requirements by a model that

de�nes how the system changes state depending on current state and event.

According to the system development methodology outlined in Section 1.2.4,

tests should be derived from an abstract model of the system under test, and

henceforth, we shall focus on behavioral languages.

2.1.1 Communicating State Machines

We propose an automata based speci�cation language, Communicating State

Machines, or Lcsm for short. In the forthcoming Chapter 3 we shall propose a

generalized timed version, timed automata, that has become popular for spec-

ifying real-time systems. We �rst present Lcsm informally here, and postpone

the formal semantics until Section 2.1.3.

We use a graphical notation of state machines. A state machine is a directed

graph whose nodes represent the di�erent locations the machine can occupy,

and whose edges represent the possible transitions between locations.

An edge is labeled with one of three kinds of actions: The machine can perform

an internal action where it internally changes from one location to another.

It can also enable an observable action to permit synchronization with the

environment. Finally, two state machines can synchronize on complementary

actions without involving the environment. When a synchronization occurs,

both state machines change location. A pair of actions with the same name,

but one suÆxed with an exclamation mark, and the other with a question

mark, indicates complementary actions which may synchronize. Although

there is no semantic di�erence the exclamation mark typically indicates output

and the question mark input1.

1In languages with value passing they designate actual and formal parameters.
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A speci�cation consist of a network of state machines. A network represents

a collection of concurrently executing and synchronously communicating ma-

chines. The concurrent execution is based on an interleaving semantics. A

state machine may also access a number of shared integer variables. Its tran-

sitions can be guarded by a predicate over these variables such that a false

guard disables the transition. When an action is executed, the variables can

be updated using assignment expressions. Other �nite discrete variable types

could be permitted for convenience, but are adequately modeled by integeres.

A �nal feature is committed locations. If a machine enters a committed loca-

tion, the next action performed by the network must be an action leaving that

location, i.e., committed states must be left immediately. Committed locations

are useful for modeling atomic sequences of actions, e.g., atomic broadcast or

multi-way synchronization. We use the term location of an automaton to refer

to the node that it currently occupies, and reserve the term state to denote a

semantic state con�guration consisting of locations and variable values.
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Figure 2.1. Speci�cation of a communication protocol.

The example shown in Figure 2.1 demonstrates the most important features

of Lcsm. The example is a model of a simple stop and wait transport layer

communication protocol with bounded retransmission. The purpose is to es-

tablish reliable communication. The network consists of four machines; a

sender (Sender), a receiver (Receiver), and two machines modeling the com-

munication media: MediaSR models the communication of data from sender

to receiver, and MediaRS the communication of acknowledgments from the

receiver to the sender. Table 2.2 summarizes the actions used by the protocol.
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Action Description

u send data from upper layer

u ack ack to upper layer: data has been received

u nack failure indication to upper layer: data unacknowledged

u rcv data to upper layer

timeOut give up wait for acknowledgment

m send data to media from sender

m rcv data from media to receiver

m ack ack from receiver to media

s ack ack from media to sender

Table 2.2. Protocol actions.

The con�guration box in Figure 2.1 declares the network of state machines

(the system line), the actions used for communication internally (the chan

line) and externally (the observable line), and the used integer variables (the

int line). We use the AutoGraph [92] developed at INRIA, France, to edit

state machine networks; AutoGraph is a graph editing tool with a graphical

user interface. The protocol speci�cation presented here can be fed to the

automatic test generation tool to be presented later in Section 2.4.

Because the media may drop data packets and acknowledgments, the sender

is prepared to time out and attempt retransmission three times. If the data is

still unacknowledged, the protocol gives up and signals error to the user. The

number of transmission attempts is modeled using an integer variable (sent),

and by guarding the m send and u nack edges appropriately.

A �nal aspect of the speci�cation worth pointing out is the modeling of time-

outs. Because Lcsm is untimed, it does not permit speci�cation of concrete

timeout values. Instead, the possibility of timeouts is modeled by the ob-

servable timeOut action. The resulting model can be viewed as an over-

approximation of the real protocol behavior since the timeout action is always

enabled after a message has been sent, not only after a certain delay. An alter-

native is the timeout statement in the Promela protocol speci�cation language

[53] which only executes when no other statements are possible. This can thus

be seen as an under approximation. However, such approximations are not

always possible or suÆcient. We therefore need a speci�cation formalism with

explicit timing.

2.1.2 Labeled Transition Systems

We use labeled transition systems (LTS) as the underlying semantic model.

Sometimes it is also convenient to give small speci�cations directly as LTSs.
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De�nition 2.3 Labeled Transition System (Llts):

An LTS is a 4-tuple hS; s0; Act� ;�!i, where

1. S is the set of states,

2. s0 2 S is the initial state,

3. Act is the set of observable actions, and Act� = Act [ f�g the actions

including the distinguished internal action � ,

4. �!� S �Act� � S is the transition relation.

5. We assume that Act is equipped with a mapping�: Act 7! Act such that

for all actions ��a = a. �a is said to be the complementary action of a.

�

Intuitively, S represents the possible states of a computation. An edge from

state s to s
0 labeled with action � 2 Act� represents that s0 is a state that

can result by executing action � in state s. Some convenient notation is

summarized in De�nition 2.4.

De�nition 2.4 LTS notation. Let a 2 Act and � 2 Act� :
Notation De�nition

s
�
�! s

0 (s; �; s0) 2�!

s
�
�! 9s

0
: s

�
�! s

0

s
�
�! s

0
9s1; s2 : : : sn: s

�1
�! s1

�2
�! s2 � � �

�n
��! sn and sn = s

0
;

where � = �1 � : : : � �n

s
�
�! 9s

0
: s

�
�! s

0

�
�!

�

the re
exive and transitive closure of
�
�!

s
�
=) s

0
s = s

0 or s
�
�!

�

s
0

s
a
=) s

0
9s1; s2: s

�
=) s1

a
�! s2

�
=) s

0

s
�
=) s

0
9s1; s2 : : : sn: s

a1
=) s1

a2
=) s2 � � �

an
=) sn and sn = s

0
;

where � = a1 � : : : � an

s
�
=) 9s

0
: s

�
=) s

0

sort(s) fa 2 Act j s
a
=)g

Tr(s) f� 2 Act
�
j s

�
=)g

Tr(S) Tr (s0)

s after � fs
0
j s

�
=) s

0
g

S after � s0 after �

�

We shall furthermore use a set of CCS [74] inspired operators on LTSs to

enable their construction using algebraic notation, see De�nition 2.5.
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De�nition 2.5 Construction of LTSs:

Let S1 = hS1; s01; Act1;�!1i 2 Llts, S2 = hS2; s02; Act2;�!2i 2 Llts, a 2 Act,

and � 2 Act� .

1. The LTS nil =hfs0g; so; f�g; ;i

2. The action pre�x �;S1 = hS1 [ fs
0
g; s

0
; Act1 [ f�g;�!1 [ fs

0
�
�! s01gi;

s
0
62 S1.

3. The summation S1 + S2 = hS1 [ S2 [ fs
0
g; s

0
; Act1 [Act2;

�!1 [ �!2 [fs
0
�
�! s

00
j s01

�
�!1 s

00
_ s02

�
�!2 s

00
g i; s

0
62 S1 [ S2

4. The parallel composition S1 k S2 = hS1 � S2; (s01; s02); Act1 [ Act2;�!i

where the transition relation �! is de�ned as:

s1
�
�! s

0

1

(s1; s2)
�
�! (s01; s2)

s2
�
�! s

0

2

(s1; s2)
�
�! (s1; s

0

2)

s1
a
�! s

0

1 s2
�a
�! s

0

2

(s1; s2)
�
�! (s01; s

0

2)

�

An LTS is deterministic i� s 6
�
�! for any s, and whenever s

a
�! s

0 and s
a
�! s

00

then s
0 = s

00. Thus, in a deterministic LTS, the execution of an action in

a given state results in a unique successor state; in a non-deterministic LTS

there may be several such successor states. Figure 2.6 illustrates the di�erence

between deterministic and non-deterministic LTSs.
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Figure 2.6. A deterministic (a) and a non-deterministic (b) la-

beled transition system.

2.1.3 Semantics of Communicating State Machines

Next we provide the de�nitions for a network of communicating state ma-

chines. The formal structure of a state machine over a set of variables V and

actions A is given in De�nition 2.7. The formal semantics given as an LTS

follows in De�nition 2.8.
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De�nition 2.7 State machine:

1. The guards G(V ) over a set of integer variables V is generated by the

syntax g ::= 
 j g ^ g where 
 is a constraint of the form v � c with

�2 f�; <;=; >;�g and c an integer constant, and v 2 V .

2. R(V ) is the set of variable assignments of the following forms:

v := v
0
op c; or v := c;, where op 2 f+;�; �g; and v; v

0
2 V .

3. A state machine M over actions A� and integer variables V is a tuple

hN; l0; E;NC i where

(a) N is a (�nite) set of locations,

(b) l0 is the initial location,

(c) NC � N the set of committed locations, and

(d) E � N �G(V )�A� � 2R(V )
�N is the set of edges where G(X)

is the set guards, and R(X) is the set of assignments. We write

l
g;a;r
���! l

0 if hl; g; a; r; l0i 2 E to represent a transition from location

l to location l
0 with guard g, action a, and set of assignments r.

(e) Let a denote the complement of action a 2 A such that a! = a?

and a? = a!.

�

A network of communicating state machinesM = (M1 k � � � k Mn) is a collec-

tion of machinesM1 : : :Mn operating concurrently. The actions are classi�ed

in two categories. The network synchronizes with the environment via a set of

distinguished observable actions O � A, and can synchronize internally only

via the hidden actions A�O. That is, no internal communication is permit-

ted over observable actions. Because we o�er no explicit restriction operator,

this distinction allows a simple means of hiding the required actions from the

environment.

Semantically, the state of a network is modeled by a state con�guration: h�l; �vi.

The location vector �l is a vector of locations that represent the joint control

location of the network; li is the location of machine Mi. We write �l[l0
i
=li]

to denote the vector where the ith element of �l has been replaced by l
0

i
. The

second component �v represents the current variable valuation. Let �v(v) denote

the value of variable v, r(�v) the valuation resulting by simultaneously updating

�v with the assignments in r, and �nally, g(�v) the outcome of evaluating guard

g in variable valuation �v. In the initial state h�l0; �0i all machines are in their

respective initial location, and all variables are zero. Let NCi
be the set of

committed locations for machine Mi.
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De�nition 2.8 Transition rules for Lcsm:

li
g;a;r
���! l

0

i
g(�v) a 2 O [ f�g

h�l; �vi
a
�! h�l[l0

i
=li]; r(�v)i

;8k 2 [1; n]: if lk 2 NC
k
then i = k

li
g1;a;r1
����! l

0

i
lj

g2;�a;r2
����! l

0

j
(g1 ^ g2)(�v) i 6= j a 2 A�O

h�l; �vi
�
�! h�l[l0

i
=li; l

0

j
=lj ]; (r1 [ r2)(�v)i

;

8k 2 [1; n]: if lk 2 NC
k
then k = i _ k = j

�

The transition rules are de�ned in De�nition 2.8. The �rst rule concerns ob-

servable and internal actions. The second rule de�nes internal synchronization

between to automata. In both cases, the side condition ensures that when an

automaton is in a committed location, a transition away from this location

will be taken next.

2.2 Testing Theory for Non-deterministic Systems

In this section we review the theory underlying our testing approach. We

adopt the classical testing methodology developed by de Nicola and Hennessy

in [75, 49]. Their proposal states that a speci�cation and an implementation

are to be considered equivalent if no external observer can distinguish between

them by performing \button" pressing experiments, i.e., if they pass exactly

the same tests. Moreover, their work also characterizes the precise kind of

tests needed to determine whether two systems are testing equivalent. This

is obviously of great importance for automatic testing. These ideas and their

application to conformance testing of communication protocols were further

developed by Brinksma [21]. Our presentation of the testing theory and its

de�nitions is derived from [75, 49].

2.2.1 Goals and Assumptions

Systematic and well founded test generation presumes a formalized imple-

mentation relation implements which de�nes when a system is a correct

implementation of the speci�cation. It also presumes a de�nition of tests, and

a relation passes which de�nes when a system passes a test. The goal of

(automated) testing is to construct a suite of tests � from the speci�cation S

such that the correctness of the implementation I can be determined precisely

from the results of executing these tests:

I implements S i� 8T 2 �: I passes T
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This requirement has two implications. The test suite should reject all incor-

rect implementations (soundness), and it should never reject correct imple-

mentations (completeness). These de�nitions of soundness and completeness,

stated formally in De�nition 2.9, are inspired by the work by Peleska and

Siegel in [81] that is based on a proof theoretic view on testing, i.e, testing is

viewed as a (very) special proof technique. In this setting, soundness means

that no false conclusions about the relationship between implementations and

speci�cations can be deduced. Completeness means that all true conclusions

can be deduced.

De�nition 2.9 Soundness and completeness of test suites:

1. � is sound i� I :implements S implies 9T 2 �: I :passes T

2. � is complete i� I implements S implies 8T 2 �: I passes T

3. � is exhaustive i� � is sound and complete.

�

Exhaustive testing is normally infeasible because a huge number of tests are

required. One therefore risks concluding that an implementation is correct,

when it is not. The passing of a test suite should consequently be interpreted

more cautiously: No evidence of errors were found.

The goal of the remainder of this section is to formalize the implements

and passes relations. However, these de�nitions hinges on a set of basic

assumptions:

1. The speci�cation is given as an LTS.

2. The implementation can be described by an LTS.

3. The observable actions of the implementation are known.

4. The implementation under test and its environment (and tester) use

synchronous rendezvous style communication.

5. The speci�cation and implementation has a �nite number of states.

6. The speci�cation converges strongly, i.e., it has no in�nite sequences of

� actions.

We argue for each in turn. 1) The semantics of most speci�cation languages

can be expressed as LTSs. It therefore suÆces to develop the theory for this

basic language. 2) To formulate the implementation relation as a mathemat-

ical relation between two formal objects it is necessary to assume that the
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implementation can be described as an LTS. It is important to note that we

only assume existence of such an LTS model, not explicit knowledge of one,

i.e., the implementation remains unknown. This assumption is refered to as

the test hypothesis [111]. 3) Knowing the observable actions of the implemen-

tation is necessary to claim or prove algorithms to be sound and complete,

even in theory. 4) The necessary theory is well established for synchronously

communicating systems. Further, other styles can be modeled with reasonable

e�ort. 5) In�nite state systems causes algorithmic problems that are best dis-

regarded at �rst. 6) The convergence assumption is not strictly necessary as

the presented theory can be extended to also handle divergence, but absence

thereof eases the technical presentation.

2.2.2 Tests and Test Execution

Tests can be modeled by using an extended type of LTSs where each state has

been assigned a pass or a fail verdict. Intuitively, if the execution of a test

stops in a state with a fail verdict, the implementation will be declared to fail

that test, and is consequently considered incorrect.

De�nition 2.10 Test LTS (Ltlts):

A test T is an extended LTS hS; s0; Act� ;�!;Vi, where S is the set of states,

s0 the initial state, Act� the set of actions, �! the transition relation|all as

previously de�ned in De�nition 2.3, and V is the verdict assignment function:

V : S 7! fpass; failg.

�

In situations where the test has a speci�c purpose, it is common to introduce

a third test verdict inconc to indicate that the test did not fail, but also

did not reveal the desired behavior. This distinction is necessary because non-

determinism may cause the implementation to take an execution path di�erent

from the one required to observe the test purpose.

The execution of a test against the implementation can be modeled by putting

the tester in parallel with the implementation in place of its environment, and

let the composed system evolve via synchronous communication as de�ned for

LTSs in De�nition 2.5 (4). The success of a test can now be de�ned as the

composed system's ability to drive the tester to one of the designated success

states.

Non-determinism, either internally in the environment or the implementation,

or in the resolution of their synchronization actions, makes several di�erent

computations from the same start con�guration possible. Thus, the same

test may be both successful and unsuccessful in di�erent computations, see

De�nition 2.11.
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De�nition 2.11 Computation:

A con�guration of a system T k I composed of a test T and implementation

I is a pair of states (st; si) such that st is a state in the test, and si a state in

the implementation.

1. A computation is a maximal sequence of test con�gurations:

(st0; si0)
�
�! (st1; si1)

�
�! (st2; si2)

�
�! � � � (stk; sik)

�
�! � � � .

2. A con�guration is deadlocked if it cannot be extended, i.e., there is some

n with (stn; sin) 6
�
�!.

3. A sequence of con�gurations is maximal if it is in�nite, or there is some

deadlocked terminal con�guration.

4. A computation is successful if there exists some stk such that k � n and

V(stk) = pass.

5. Let Comp(T k I) denote the set of possible computations from the initial

con�guration (st0; si0).

�

This observation turns out to be important in both theory and in practice. It

a�ects our de�nition of the implementation relation (whether all or only one

computation should report success). Our observational power in the practical

execution of a test is reduced because a single execution only reveals one com-

putation. The implications of this will be further discussed in Section 6.1.1.

2.2.3 Implementation Relations

The relation between a speci�cation and the implementation is either an equiv-

alence or a preorder. An equivalence requires that the implementation has

exactly the behavior required by the speci�cation. In many cases an equiva-

lence is more than what is desired, and the comparison should be based on a

preorder instead. A preorder intuitively requires that the implementation has

at least the behavior required by the speci�cation.

The basic idea in Hennessy's testing theory is to compare systems based on

the tests they pass: Two systems are regarded as equivalent if no experimenter

can distinguish them by executing tests. Hennessy's testing equivalence thus

requires that the speci�cation and implementation exactly passes the same

tests. Similarly, the testing preorder requires that the implementation passes

at least the same tests as the speci�cation.

Because some computations of a test may yield success and some may not,

there are two possible de�nitions of passing a test. One is that an implemen-
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tation passes a test if the possible executions may report success, i.e., only one

of the possible computations is required to report success. The other choice

is that an implementation passes a test if the possible executions must report

success, i.e., all computations are required to report success. The may, must,

and testing preorder is stated formally in De�nition 2.12.

De�nition 2.12 The Testing Preorder vte:

1. S must T i� 8� 2 Comp(T k S): � is successful.

2. S may T i� 9� 2 Comp(T k S): � is successful.

3. S vmust I i� 8T 2 Ltlts: S must T implies I must T

4. S vmay I i� 8T 2 Ltlts: S may T implies I may T

5. S vte I i� S vmust I and S vmay I

�

Testing equivalence can be obtained as S =te I i� S vte I and I vte S.

Unfortunately, the above de�nition of the testing preorder vte does not pro-

vide a practical means of testing an implementation: One must consider all

possible tests that can be formulated as test LTSs. To enable direct com-

parison and automatic generation of tests, an alternative characterization is

required. It has been proven that it suÆces to consider properties in the two

small logical languages Lmust and Lmay given in De�nition 2.13.

De�nition 2.13 May and Must Properties:

1. Lmust =def fafter � must A j � 2 Act
�
; A � Actg

2. S j= after � must A i� 8s 2 S after �: 9a 2 A: s
a
=)

3. Lmay =def fcan � j � 2 Act
�
g

4. S j= can � i� � 2 Tr(S)

�

A must property requires that if the system can perform the trace �, then

no matter what state it has entered thereafter, it can also engage in one

of the actions in A. Consequently, the system is not permitted to refuse

synchronization with all of the actions in A. A system not satisfying the

property could possibly deadlock when o�ered synchronization only with the

actions in A. We refer to the set of actions A as a must set. Lmust thus
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characterizes systems based on their deadlock properties. Observe the special

case after � must ; that can only be satis�ed by a system, if its set of

reachable states after � is empty, and in consequence, if the system cannot

perform the trace �. A may property requires that the system is possibly able

to execute the trace �. In non-deterministic systems, it may not always be

possible to execute the entire trace.

An implementation can be rendered incorrect by �nding a may or must prop-

erty satis�ed by the speci�cation, but not by the implementation, as captured

by Proposition 2.14.

Proposition 2.14 Alternative Characterization [75]:

1. S vmust I i� 8� 2 Act
�
;8A � Act:

S j= after � must A implies I j= after � must A

2. S vmay I i� 8� 2 Act
�
: S j= can � implies I j= can �

i� Tr (S) � Tr(I)

proof: See [75]. �

It is, as will be shown in Section 2.2.5, possible to transform a must (or may)

property t into a test T (t) such that an LTS must (or may) pass that test i�

it satis�es the property:

S must T (t) i� S j= t; t 2 Lmust, and

S may T (t) i� S j= t; t 2 Lmay

The main practical implication of the alternative characterization is that, in

order to decide the testing preorder, it is only necessary to use and gener-

ate certain �xed structured testers, namely those corresponding to the logical

properties. This transformation and the structure of tests are given in Sec-

tion 2.2.5.

A further relation called conf (De�nition 2.15) proposed by Brinksma [21] is

commonly used in the �eld of protocol conformance testing. It is similar to

the must preorder except that it only considers must properties with traces in

the speci�cation.
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De�nition 2.15 Conformance:

1. I conf S i� 8� 2 Tr(S);8A � Act:

S j= after � must A implies I j= after � must A

�

We compare and discuss the merits and the strengths and weaknesses of the

di�erent preorders in the following Section 2.2.4.

2.2.4 Interpretation of Implementation Relations

The preceeding section introduced four choices of preorders for comparison of

speci�cations and implementations: The must preorder vmust, the may pre-

order vmay, the testing preorder vte, and the conformance preorder conf .

This means that for the same speci�cation di�erent implementations could

be accepted depending on the actual choice of implementation relation. This

choice is not only of academic or theoretical interest, but has severe practical

implications. It is therefore important to understand the di�erences between

these relations and their relative merits. The following exempli�es and char-

acterizes the preorders.

Figure 2.16 gives a spe�cication and a set of possible implementations. S3 can

optionally do an a. I1, that necessarily performs an a, is accepted by all four

preorders. Conversely, S3 would be a non-conforming implementation of the

speci�cation I1 because a is necessary in I1 but only optional in S3.
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(a) S3 vmust I1

(b) S3 vmay I1

(c) I3 conf S1

(d) S3 6conf I1

(e) I2 conf S3

(f) S3 vmust I2

(g) S3 6vmay I2

(h) I3 conf I1

(i) I1 6vmust I3

(j) I1 vmay I3

Figure 2.16. Comparison of preorders.
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Implementation I2 is a deadlocked implementation, which can do absolutely

nothing. Because a is only optional, I2 is accepted by the conformance and

must preorder. However, it is not accepted by the may preorder, because the

a possible in the speci�cation should also be possible in the implementation;

therefore S3 6vmay I2 and S3 6vte I2.

I1 can be interpreted as a speci�cation requiring an a. The implementation

I3 does two consecutive a's. Thus, we can say that the implementation has

an extended functionality or behavior compared to the speci�cation. Such ex-

tended behavior is permitted by conf andvmay, but not by the must preorder:

I1 j= after a � a must ;;but I3 6j= after a � a must ;

The may preorder ensures that the behavior in the speci�cation is also in

the implementation. However, it also allows the implementation to have

unspeci�ed deadlocks, and is therefore rarely used alone when testing non-

deterministic systems.

The conf relation permits such extended functionality, but the must preorder

does not. One would think that extended behavior is positive, and should

always be permitted. Therefore, conf should suÆce. conf also has the ad-

vantage over the must preorder that only the traces in the speci�cations must

be considered, and consequently, fewer tests need to be executed. However,

the next series of examples demonstrates that acceptance of extended func-

tionality depends on the application.
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Figure 2.17. The pros and cons of extended behavior.

First compare the vending machine speci�cations S1 and S2 previously given

in Figure 2.6. The speci�cation S1 requires that an implementation after

accepting a coin enables the environment to choose between tea and co�ee.

S2 would be a faulty implementation using either the conformance or the

must preorder, because it chooses internally whether to enable tea or co�ee.

S1 and S2 are distinguishable by the property after coin must fcof g that S1
satis�es, but S2 does not.
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I4 from Figure 2.17 is a deterministic alternative that does not have the same

problem as S2. However, it is able to sell hot chocolate in addition to tea and

co�ee. If the goal is to ensure that we can buy co�ee or tea, thus using the

conformance relation, we can safely accept I4 as an implementation. However,

if the vending machine o�ered alcoholic drinks instead of hot chocolate or

splashed co�ee on the 
oor when no coins and cups have been inserted, we

might be more reluctant to accept it. The must preorder does not permit such

added behavior, as demonstrated by the property after coin � choc must ;

that S1 satis�es, but not I4.

For some applications it may even be disastrous to accept extended behavior.

The mutual exclusion property speci�ed by S4 requires that the critical sec-

tion is entered and exited in strict sequence. I5 is a faulty implementation

because it permits two processes to enter the critical section simultaneously.

I5 conf S4, but S4 6vmust I5.

It is useful to observe that the testing preorder can be obtained by combining

conf with two trace inclusions, as captured by Proposition 2.18.

Proposition 2.18 Decomposition of the Testing Preorder:

1. S vmust I implies Tr(I) � Tr (S)

2. S vmay I implies Tr(S) � Tr(I)

3. S vte I i� I conf S ^ Tr(I) � Tr(S) ^ Tr(S) � Tr(I)

Proof:

1 and 2 is shown in [75], and 3 is shown in [111]. �

Following Peleska [79] each component of the testing preorder contributes with

di�erent aspects of system correctness:

� Checking that the implementation does not have extra unspeci�ed be-

havior (Tr (I) � Tr(S)) corresponds to checking the safety of the imple-

mentation.

� Checking that the implementation has all the behavior of the speci�-

cation (Tr(S) � Tr(I)) corresponds to checking the robustness of the

implementation. The term robustness is used here because the imple-

mentation responds the way required by the speci�cation to rare and

unexpected environment behaviors. In alternative wording, this aspect

checks the liveness of the implementation with respect to the speci�ca-

tion.
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� Checking conformance (I conf S) corresponds to checking that all ex-

plicit requirements of the speci�cation are satis�ed, i.e., requirements

coverage. The mandatory behavior of the speci�cation is thus imple-

mented.

Hence, if all these aspects must be checked, the testing preorder should be

used.

2.2.5 Test Languages

The translation of may and must properties to test LTSs is relatively straight-

forward. However, for technical reasons a slight rede�nition of successful com-

putations will be necessary to permit deterministic tests with state based

verdicts. In Hennessy's presentation [75, 49] of the theory, testers are non-

deterministic and may spontaneously abort test execution and 
ag success by

executing a special success action !. However, in a practical setting this is

disadvantageous|it is preferable to attempt as much communication as pos-

sible, and therefore test as much behavior as possible, before 
agging success

or failure, and thus priority should be given to further synchronizations.

A (�nite) computation (st0; si0)
�
�! (st1; si1)

�
�! � � �

�
�! (stn; sin) is suc-

cessful i� V(stn) = pass.

Similarly, a test fails if its execution deadlocks in a state with a fail verdict.

The change should also be seen in the light that testing in practice involves

observation of only �nite length synchronization sequences|one cannot wait

inde�nitely for the outcome.

The main idea in the translation of a must property after � must A is illus-

trated in Figure 2.19a. First, the tester tries to perform the trace b1 �: : :�bn and

then to o�er the actions in fa1; : : : ; ang. If the system refuses these actions,

the tester remains deadlocked in a fail state. For clarity, Figure 2.19b shows

the tester for the special case where A = ;. Satisfaction of this property im-

plies that the system cannot perform the trace b1 � : : : � bn. The tester therefore

enters a fail state after having performed the last action bn in the trace.

The translation of a may property consist of a sequence of actions with all

states labeled with fail (or inconclusive) verdicts except the last successful

state: To satisfy the may property, there must exist at least one computation

that is able to drive the tester to its terminal state, thus executing all actions

in the trace. Provided that the purpose of this test is to show the existence of

the trace, it is more natural to use inconclusive verdicts along the trace. This

is shown in Figure 2.19c.
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Figure 2.19. The Hennessy testers with state based verdicts.

The translations are given in De�nition 2.20. Some examples are depicted in

Figure 2.21.

De�nition 2.20 Translation of test properties to test LTSs:

1. Let t = after b1 � b2 : : : bn must A 2 Lmust (Figure 2.19a and 2.19b).

(a) T (t) = hfs1 : : : sn+1g [ fsa j a 2 Ag; s1;�!;Vi.

(b) V(si) = V(sa) = pass if 1 � i � n. V(sn+1) = fail.

(c) The transitions �! are de�ned as:

8i 2 1 : : : n: si
bi
�! si+1.

8a 2 A: sn+1
a
�! sa

2. Let t = can b1 � b2 : : : bn 2 Lmay (Figure 2.19c.)

(a) T (t) = hfs1 : : : sn+1g; s1;�!;Vi.

(b) V(si) = inconc if 1 � i � n. V(sn+1) = pass.

(c) The transitions �! are de�ned as:

8i 2 1 : : : n: si
bi
�! si+1.

�
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We �nally remark that several of these basic tests can be composed into a single

more complex test that tests for several properties at once. Consider a must

test after � must A. There is normally no reason to stop test execution when

one of the actions a in A has been executed. It is better to continue execution

with a test that exploits the fact that the implementation has already executed

the trace � � a. Figure 2.22 illustrates a composed test.

In practice, this composition is extremely important because it reduces the

number of tests to be executed. Also, it reduces the number of re-executions

of the same test, because the trace most recently executed is reused when a

test requiring that trace as pre�x follows immediately. The required pre�x

trace may not be accepted by a non-deterministic implementation after it has

been reset.
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Figure 2.21. Example tests.

Not all properties can be composed because they require incompatible verdicts

in intersecting states. We shall not give the exact composition rules here, but

note that when composition is possible, the verdict assignment to intersecting

states must be done carefully to ensure that success of the composed test

implies success of all properties visited along the path to the success state.
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Figure 2.22. Composition of tests. A composite test (a), and the

tested properties (b).
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2.3 Test Generation

Given the formalized testing setup presented in the preceding sections, the next

question is how to automate test generation. This includes identifying the tests

to be generated and developing data structures and algorithms for their actual

construction. Tests can be generated either by interpreting the transition rules

of the speci�cation directly, or by transforming the speci�cation to a data

structure better suited for test generation. We describe the direct approach

in Section 2.3.2 and the proposed success graph data structure thereafter in

Section 2.3.3.

2.3.1 Relevant Hennessy Testers

Although the class of Hennessy testers �xed the structure of the necessary

tests, they are still in�nitely many. To make the setup operational, it is nec-

essary to narrow the class of tests further. Only tests that contributes with

new knowledge about the implementation relation should be considered for

execution. A �rst implication of this requirement is that only tests that the

speci�cation itself passes should be executed; only then must the implemen-

tation also pass them. A second implication is that it is futile to execute

tests that are doomed to fail because their failure are implied by other tests.

These observations results in the reduced, but still suÆcient, class of relevant

Hennessy testers in De�nition 2.23.

De�nition 2.23 The relevant Hennessy testers:

1. If � 2 Tr(S) and S j= after � must A then T (after � must A) is a

relevant must test.

2. If � 2 Tr(S) and � � a 62 Tr(S) then T (after � � a must ;) is a relevant

must test.

3. If � 2 Tr(S) then T (can �) is a relevant may test.

�

2.3.2 A Direct Test Generation Algorithm

A starting point for developing algorithms for test generation is to inspect the

steps needed to �nd a may or must property of a speci�cation. To construct

must properties it will frequently be convenient with the additional notation

summarized in De�nition 2.24 for operating on sets of states.
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De�nition 2.24 Operations on sets of states:

Let S = hS; s0; Act;�!i 2 Llts and B � S.

1. B after � =def

S
s2B

s after �

2. Sort(B) =def

S
s2B

sort(s)

3. B must A i� 8s 2 B: 9a 2 A: s
a
=)

4. St(B) =def fs 2 B j s 6
�
�!g

�

The following steps compute a must property after � must A satis�ed by a

speci�cation:

1. �nd a trace � 2 Tr (S)

2. compute the possible states after �: B = S after �

3. �nd a set of actions A such that B must A

Similarly, can � �a properties can be found by concatenating � with an action

a in the sort B of the states reachable after �. after � � a must ; properties

can be found by choosing an action a not in the sort after �. Thus, tests can

be found by inspecting the actions that must be accepted in the reachable

states B after a given trace, the set of actions that can be accepted, and the

actions that must be refused, as captured by De�nition 2.25.

De�nition 2.25 Must, can, and refusal sets:

1. Must(B) =def fA � Act j B must Ag

2. Can(B) =def Sort(B)

3. Ref(B) =def fa 2 Act j 8s 2 B: s 6
a
=)g = Act� Sort(B)

�

It is possible to reduce the number of must sets to be executed after a given

trace. One reduction is to only choose the minimal must sets, see De�ni-

tion 2.26. The result is a signi�cant reduction of number of generated tests.

The reduction does not weaken the testing strength of the test suite since it

follows from the de�nition of satisfaction of a must property that a 'smaller'

must property logically implies satisfaction of a 'larger' one:

S j= after � must A ^ A � A
0 implies S j= after � must A0
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De�nition 2.26 Minimal must sets:

Let M be a set of must sets.

1. A is a minimal element in M i� :9A
0
2M:A

0
� A.

2. min�(M) = fA 2M j A is minimalg

�

A second reduction is possible by noting that the actions that the speci�cation

must do, it also can do. Therefore, if an action is observed as part of a must set,

there is no need to also observe it using a separate may test, and consequently,

the Can(B) actions can be reduced by removing the actions observed in a

Must(B) test. It should be noted that it is insuÆcient to merely ensure that

an action is included in a must test; the test execution system must ensure

that it is observed during execution.

So far we have only considered how to produce one property. Our testing

theory requires that all relevant properties are contained in some generated

test. Whether or not one decides to execute all tests is a matter of test

selection which logically is the next phase of test generation. An algorithm

that constructs and composes all relevant and reduced tests is outlined in

Algorithm 2.27.

Algorithm 2.27 Generation of a test:

Let S 2 Llts, B � S be a subset of states, and T 2 Ltlts.

TestGen(S) =def TestGen(S after �)

TestGen(B) =def

1. Compute M = min�(Must(B)), C = Sort(B) �
S
A2M

A, and

R = Act� Sort(B)

2. Construct one of

(a) TA =
X
a2A

a; Ta; A 2M; V(TA) = fail

(b) TA =
X
a2A

a; Ta; A = C;V(TA) = inconc

(c) TA =
X
a2A

a;nil ; A = R;V(TA) = pass;V(TA after a) = fail

(d) TA = nil ; V(TA) = pass; if Sort(B) = ;

3. Construct a Ta in case (2a) or (2b) by calling TestGen(B after a)
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The algorithm recursively constructs a tree structured test that tests for sev-

eral properties. If the implementation accepts one of the must actions o�ered

by the test, execution continues with a sub test for the possible states reached

after synchronization with the action. The algorithm composes a branch (sum-

mation of actions) at the current level with tests constructed from the set of

states reachable after each of the actions in the summation. The verdict of

the branch is assigned appropriately depending on the property tested.

Case 2a generates a branch in the test corresponding to the actions in a min-

imized must set. One of these actions must be accepted. Otherwise, the fail

verdict must be given. We adopt the notation V(T ) to assign the verdict to

the initial state in T .

To ensure that all actions after a given trace can be observed, and to ensure

that all traces in the speci�cation are covered, case 2b generates a test branch

containing the actions that are enabled in the current state but not contained

in a minimal must set. Because it may not be possible to observe these actions

in all executions, a inconc verdict is given.

Case 2c generates a branch containing actions not enabled in the current state,

and that must be refused by the implementation. The verdict is thus pass if

it deadlocks in the state before the o�ered action, and fail thereafter.

Case 2d covers the situation where no further actions are possible. This ensures

that (possible) traces ends in a success state. This rule can also be applied to

terminate test generation when a suÆciently long test has been generated.

Compared to all possible may and must properties satis�ed by the speci�-

cation the algorithm only generates a subset of these. The �rst reduction,

implied by our de�nition of relevant tests, is that absence of extended behav-

ior is checked by refusing the disabled action in the speci�cation after a trace

in the speci�cation, and not after all traces. By assuming synchronous com-

munication, and by observing that the behavior is not extended by one step,

it can be concluded that the implementation has no extended behavior. Hence

this reduction is safe. The second reduction is the minimization of must sets

that discards logically implied properties. However, the reduction may also

discard some actions that the algorithm instead observes as part of the may

properties. The third and �nal reduction is that actions used in a minimized

must property is not included in the can actions. For this reduction to be safe,

as previously stated, it is necessary to require that every action in a must set

will be observed during possibly repeated test execution.

Exhaustive test generation can be achieved by using all possible choices in

steps 2 and 3, and by ensuring that every edge of each test is executed. The

latter requirement ensures that every property is executed.
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A problem with the algorithm is its lack of termination criterion. Obviously

the algorithm can be terminated when a speci�c trace length is reached. But

this is unsatisfactory because it neither produces an exhaustive test suite nor

relates to a good coverage criterion of the speci�cation.

An interesting question is therefore whether the trace length of the testers

needs to be in�nite in order to decide the implementation relation, or whether

an upper bound exists. Under some restrictive assumptions such a bound can

in fact be established. See the discussion about checking experiments in Sec-

tion 6.1.3. From a theoretical perspective, this bound is the ideal termination

criterion. From a practical perspective, one might be concerned about the

assumptions this result requires, and whether the bound is so high for large

speci�cations that test selection becomes necessary.

2.3.3 Success Graphs

An alternative data structure that provides further insights in the practice

and theory of generating tests is the success graph de�ned in De�nition 2.28.

Once constructed, it has several advantages over the direct algorithm. These

are summarized in Section 2.5.

De�nition 2.28 Success Graph:

Let S = hS; s0; Act� ;�!i. The success graph SG(S) for S is an extended LTS

SG(S) = Sd = hSd; s0d; Act;�!d;M;C;Ri satisfying:

1. Sd is deterministic.

2. Tr(S) = Tr(Sd). That is, S and Sd are trace equivalent.

3. (a) M(Sd after �) = min�(Must(S after �)) is called the success set

for state Sd after �, and contains the minimized set of must sets

(see De�nition 2.26) holding after �.

(b) C(Sd after �) = Sort(Sd after �) �
S
A2M(S

d
after �) A, is the

reduced enabled actions after �, and

(c) R(Sd after �) = Act � Sort(Sd after �) is the actions that must

be refused after �.
�

We use the term success graph because a communication attempt with a set

of actions from M must be successful; speci�cally when A 2 M(s0d after �)

then no matter how the system S performs the trace � a synchronization with

some action in A is possible. To avoid ambiguity we shall refer to states in the

speci�cation LTS as 'states' and to states in the success graph as branches. A

branch represents a branching point where a test would branch out.
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Success graphs are similar to Hennessy's acceptance graphs, except that success

graphs label branches with must sets, whereas acceptance graphs label them

with acceptance sets [32]. An acceptance set is the set of actions possible from

a stable state, i.e., the acceptance sets of S after � equals fsort(s0) j s0 2

S after � ^ s
0
6
�
�!g.
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Figure 2.29. A labeled transition system (a), the corresponding

success graph (depicts must sets only) (b).

An example of a speci�cation and its success graph is shown in Figure 2.29.

Construction of the success graph is conceptually easy. The main idea is to

view a non-deterministic LTS not as occupying one state at a time, but as

occupying the set of states reachable after having performed a given trace.

From this set of states, the deadlock properties, M , C and R, of the original

LTS after that trace can be infered.

If two sets of states are identical, they share the same deadlock properties

and possible future behaviors, even if they were reached by di�erent traces.

To capture the deadlock properties of a non-deterministic LTS, it therefore

suÆces to construct a deterministic LTS whose nodes are sets of states, and

whose transitions represents the possibility of performing an action from one

set of states and thereby occupying a (possibly) di�erent set of states. The

deterministic property of a success graph makes construction of test cases

straightforward since the deadlock properties and the verdicts holding after a

given trace are unique and directly available from the unique node reached by

executing the trace in the success graph.

Such a trace equivalent deterministic LTS can be computed using an algo-

rithm essentially identical with the determinization algorithms well known

from automata theory [70]. The inductive de�nition of determinization in

De�nition 2.30 nearly gives an implementable algorithm.
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De�nition 2.30 Determinization of LTSs:

Let S = hS; s0; Act� ;�!i. Sd = hSd; s0d; Act;�!d;M;C;Ri is deterministic and

trace equivalent to S if

The states Sd � 2S and transitions �!d are de�ned inductively as

(a) s0d = S after � 2 Sd

(b) if B 2 Sd ^ a 2 Sort(B) then B
0 = B after a 2 Sd and B

a
�!d B

0

�

A transitionB
a
�!d B

0 represents the following: B is the set of states reached af-

ter a given trace, and B0 is all states that can be reached from B by performing

an a action followed by a sequence of � actions. Exactly which speci�c state is

reached is unknown because of the uncertainty arising from non-determinism.

To make the de�nition implementable, the induction rule must be applied

systematically to ensure that all reachable states and transitions are added. A

termination check is also needed. These steps can be done as follows: starting

from the initial branch s0d transitions are added either depth �rst or breadth

�rst by applying the induction rule for all actions in the sort of the current

branch. Before a new branch B
0 is added, it is checked whether there already

exists a B 2 Sd equal to B
0. If such a branch exists, it is unnecessary to

explore the target branch further since all transitions and branches reachable

from that either have been or will be added, depending on traversal order. Our

test tool presented in Section 2.4 implements an instance of this algorithm.

It is important to note that the transformation of a non-deterministic �nite

automata to a deterministic one is known to be PSPACE-complete [32]. It is

therefore questionable whether it will be possible to create the entire success

graph for very large speci�cations. The problem arises because the branches

in the determinized graph consists of subsets of states of the non-deterministic

LTS.

The success graph contains the information necessary to generate tests, and it

is relatively straightforward to traverse it, combine its must, may, and refusal

properties, and output the tests. In fact, Algorithm 2.27 can be used essen-

tially without modi�cation: It should be executed on the success graph rather

than the LTS. An algorithm using the success graph is easier to implement and

is potentially faster, but su�ers from the potentially expensive constructing of

the complete success graph.
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2.3.4 Test Selection and Coverage

A speci�cation usually contains a huge number of relevant may and must

properties, and it is generally infeasible to generate and execute them all. It

is therefore necessary to select only a small subset of the possible tests. The

general aim of test selection is to produce a test suite that has a high likelihood

of detecting non-conformance, but at the same time has a cost (e.g., number of

tests, total execution time) that lies within the resources allocated to testing,

cf. Brinksma et al. [22].

A test selection criterion (or coverage criterion) is a rule describing what

behavior or requirements should be tested. In general, test selection cannot

be done solely on the basis of the speci�cation but requires some external

knowledge.

One kind of external knowledge is test purposes which are speci�c objectives

or requirements that the developer has declared important to test. At least

one test is (automatically) generated per purpose. With fault model based test

selection, only tests that may detect certain speci�c implementation errors are

generated2. One could also aim at covering the speci�cation or implementation

structurally by requiring transition or statement coverage. Further, the input

domains of a system can be partitioned into equivalence classes in which the

system is expected to behave identically, and then select at least one input for

each such class.

Coverage is a metric of completeness with respect to a test selection criterion

[12], e.g., what fraction of the test objectives have been tested. Such a quanti-

�ed metric can be used in several ways. One use is to compare the strengths of

test suites: if the cost of two test suites are comparable, the suite with highest

coverage is preferable. Another use is to evaluate how much e�ort has been

put into testing so far, and how much more resources need to be allocated to

achieve a required level of coverage. Further, it can be used to indicate how

many errors that might remain in the implementation under test. For these

reasons, explicit selection and coverage metrics are required in any professional

engineering approach to testing.

Because the number of test cases that can be generated is enormous and even

in�nite, it is usually ineÆcient to generate all possible test cases and then

select the required subset. In our view, a good test generation tool applies

the test selection criterion constructively during test generation to obtain a

2Although test purposes and faults are two sides of the same coin, we �nd it useful

to distinguish them such that a test purpose means a manually stated, abstract, speci�-

cation dependent property, and such that a fault model means implementation errors like

(syntactical) mutations of a speci�cation, e.g., transfer faults in �nite state machines, see

Section 6.1.3.
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covering test suite. It should also minimize the amount of redundancy in the

test suite with respect to the selection criterion to reduce its cost.

We shall not propose detailed coverage criteria here, except to observe that

the success graph constitute a semantic model of the speci�cation, namely its

may and must properties, and that a set of potentially important criteria can

be formulated as coverage of the success graph, e.g., when all edges (or nodes)

combined with the properties contained in the nodes have been used in some

test at least once. A remaining challenge is to devise traversal algorithms

that minimize the size of the generated test suites. Other criteria for untimed

concurrent systems are proposed by Taylor in [110]. We return to test selection

in Section 3.3 where we propose a speci�c set of coverage criteria for timed

systems.

2.4 A Test Generation Tool: TestGen

Based on the testing theory outlined in the previous section, we have developed

a prototype tool that assists in the generation of tests from Lcsm speci�cations.

In Section 2.4.2 we present the concrete combined determinization and reach-

ability algorithm implemented by TestGen. Then follows a few examples

demonstrating the capabilities of the tool in Sections 2.4.5 to 2.4.7.

2.4.1 Tool Features

Given a Lcsm speci�cation TestGen uses reachability analysis to construct

the success graph. Its essential features are:

� Construction of the success graph.

� Detection and handling of diverging speci�cations.

� Optional termination when a maximum observable trace depth has been

reached.

� On-the-
y generation of the state space.

� Output of the success graph in 'dot'-format.

The state space of the speci�cation is constructed on-the-
y. Using on-the-
y

techniques has the advantage of only spending memory and time for exploring

the state space that will actually be needed to construct the potentially partial

success graph.
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Dot [62] is a tool capable of performing automatic graph layout and generating

postscript �les thereof. That is, the output of TestGen can be fed to Dot

to produce illustrations of the success graph. As previously mentioned, the

AutoGraph tool [92] is used to draw the input to TestGen.

TestGen is implemented as approximately 15K lines of C++ code. The

implementation is based on code from a timed automata simulator part of an

old version of the UppAal toolkit [65]. The existing AutoGraph �le format

parser could thus be readily reused, and the abstract interpreter was easy to

down grade to an untimed version.

The purpose of the prototype implementation is to gain concrete insights into

the realization of the fundamental algorithms outlined in Section 2.3 before

addressing the more challenging real-time case.

Not all facilities required in a fully functioning test generation tool are present

in the prototype. In particular, traversal of the success graph and generation

of concrete tests are not implemented. Test selection beyond limiting the

trace depth is also not implemented. Further, the implemented algorithms

are based rather directly on the formal de�nitions, which from a algorithmic

point of view may not be optimal. Similarly, not much time has been spent

on implementation level optimization to reduce time and space consumption.

2.4.2 Construction of the Success Graph

The implementation constructs two LTSs, the reachable transition graph and

the success graph. To construct the reachability graph on-the-
y, the state

exploration procedure is invoked from within the success graph construction

algorithm as this progresses branch by branch.

A state is represented the same way as it were in the semantics, namely as

a location vector and variable valuation pair: h�l; �vi. In addition, it contains

a number of 
ags that is used when the reachability graph is traversed. The

transition rules de�ned in De�nition 2.8 are used to compute the successor

states from a given state. The branches contain sets of states as previously

discussed, edges to its successors, and the minimized must sets.

In Algorithm 2.31 we present some abstract code that attempts to mirror

the order in which the actual C++ code implements the abstract test gen-

eration algorithms previously de�ned. The algorithm consists of four proce-

dures. Reach(B) computes the states reachable via a sequence of � actions

or one observable action. The next two procedures are provided to emphasize

the separation of reachability analysis and construction of the success graph.

After�(B) returns the set of states reachable via a sequence of � actions that
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has just been computed by Reach(B). Similarly, After(B; a) returns the set

of states reachable from B via an a action.

The main procedure SG(B) constructs the transitions from the partial branch

B. First, B must be fully constructed by adding the � reachable states. The

algorithm then checks if an identical branch with the same set of states already

has been constructed. If a matching branch exists, no further exploration of

this B is necessary. As an aside, it should be noted that the previously added

transitions with B as destination is modi�ed to point to the matching state in

order to \close" the graph. If no matching state existed, B is added to the set

of branches, and the transitions with B as source are then constructed. This

procedure continues recursively depth �rst.

The must sets M(B) for branch B can be computed as soon as B is fully con-

structed, or as is currently implemented, in separate iteration of the branches

when determinization has terminated.
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Algorithm 2.31 Computation of Success Graph:

input: A network of communicating state machines M with initial state s0 = h�l0; �0i
output: The corresponding success graph hSd; s0d; Act;�!d;M;C;Ri.

Let hS; s0; Act� ;�!i be the LTS to be constructed from M
global variables:

sd =�!d=�!= ;;S = fs0g

Reach(B) =def for s 2 B do

whenever s
a
�! s

0 ^ s
0 62 S //one observable step

S := S [ fs0g
B� = ;

whenever s
�
�! s

0 ^ s
0 62 S //one � step

S := S [ fs0g; B� := B� [ fs
0g

Reach(B� ) //depth �rst traversal

After�(B) =def Reach(B) //invoke reachability
collect B� = fs0 j 9s 2 B: s =) s

0g
return B� //closure of � 's

After(B; a) =def return fs
0 j 9s 2 B: s

a
�! s

0g

SG(var B) =def B := After�(B) //states after ��

if B 62 Sd then //unconstructed state
Sd := Sd [ fBg
for a 2 Sort(B) do //states after an a

Ba := After(B; a)

add B
a
�!d Ba //new transition

SG(Ba) //depth �rst

M(B) =def See Section 2.4.4

C(B) =def See De�nition 2.28

R(B) =def See De�nition 2.28

init =def SG(fs0g)

The reached states are stored in the set S which is expanded as the state

space is constructed. Whenever a state is constructed, it is checked whether

an identical state already is in S and therefore has been reached from another

state. Further exploration is thus unnecessary. Because this check is done

frequently it is essential that it can be done fast. S is therefore implemented

as a hash table where the hash key is computed from the location vector of

the state; variable values are not used in the prototype.
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Similarly, a hash table is used to hold constructed branches. The set of states

in a branch is represented as a quick sorted array of pointers to states. Two

branches are equal if their sorted arrays are identical. The hash key is currenty

computed by combining the hash key from the �rst and last state of the branch.

2.4.3 Divergency Check

It is possible to write Lcsm speci�cations that do not strongly converge. Test-

Gen is able to detect and correctly handle speci�cations that diverge through

� loops, i.e., it has a state s such that s
�
�!

�

s.

Detection of divergence is necessary for two reasons. First, the correctness of

our algorithm for computing must sets depends on convergence, and second,

divergence in the speci�cation is likely to be unintended. If a speci�cation

diverges, the implementation is permitted to compute internally inde�nitely

without being required to accept inputs or deliver outputs. If a branch B

contains diverging states, it can in principle execute the internal actions in-

de�nitely without accepting external communications, and it is therefore our

view, that it can have no must sets. We therefore set M(B) = ;. Moreover, it

is highly questionable if such behavior is at all acceptable. The tool therefore

outputs a warning if it �nds any � cycles.

TestGen detects divergence by invoking a cycle detection algorithm on the

reachability graph when a new sub graph has been added by the Reach func-

tion. Diverging states are marked with a 
ag to avoid rechecking states that

has already been checked.

2.4.4 Construction of Must Sets

One way to compute the must sets is to simply enumerate all subsets of ob-

servable actions and then check if each subset is a must set. However, this

procedure is obviously ineÆcient for large sets of observable actions. Instead

the minimal success set should be computed from the states contained in the

branch.

Let B denote the set of states in a branch. The �rst observation is that only

stable states can contribute with actions to a must set. An unstable state can

always decide to perform an internal transition to another state, and hence

refuse the must set. The same argument can be made to the destination state.

By our assumption of strong convergence the argument stop at a stable state,

which then must be able to engage in one of the actions of the must set. If a

stable state of B can perform no actions (its sort is empty) the speci�cation
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contains a deadlock after the trace leading to B, and the success set of B is

consequently empty. The second observation is that if a set of actions is to

be a must set for B it must contain at least one action from the sort of each

stable state.

Our algorithm starts by constructing the must setsM0
i
for each stable state si.

This equals a must set for each observable action in si, i.e., M
0
i
= ffag j a 2

sort(si)g. A must set over two stable states can now be computed by uniting

a must set from each state. All must sets are found by forming all such pairs

M
1
j
=M

0
2j ./ M

0
2j+1; j 2 0 : : : i=2, where X ./ Y =def fx [ y j x 2 X; y 2 Y g.

The must set over four states (level 2) can be computed from the must sets of

level 1: M2
k
= M

1
2k ./ M

1
2k+1; k 2 0 : : : j=2. This is now continued recursively

until one set remains Mn, which terminates the algorithm. Mn then contains

must sets over all the stable states in B. When the number of elements at a

given level is odd, the unpaired element is moved to the next level.

A minimal must set can now be computed by minimizing Mn. However, it is

much more eÆcient to minimize the must sets computed at each level before

joining them, because fewest possible elements must then be joined. That is,

min�(M1 ./ M2) = min�(min�(M1) ./ min�(M2)).

The costly operations in the algorithm are the joining and minimization op-

erations which both are quadratic in the number of actions in the sets.

2.4.5 Example: Peterson's Mutual Exclusion Algorithm

Figure 2.32a shows the mutual exclusion property speci�ed using Peterson's

algorithm [106]. The con�guration box de�nes the structure of the system.

In this case, two processes p1 and p2 sharing three integer variables, in0, in1,

and k, and o�ering the observable actions in! and out? to the environment.

In Peterson's algorithm each process Pi announces its interest to enter the

critical section by raising a 
ag ini. If two or more processes are interested

simultaneously, the protocol uses a turn variable k to resolve the con
ict. A

process graciously gives the turn to the other process. A process may enter

the critical section if no other processes have declared their interests, or if the

turn variable declares that process as a winner.

The success graph generated by TestGen is shown in Figure 2.32b. Each

rectangle corresponds to a branch in the success graph. The initial state

has been bold faced. Each rectangle contains the must sets for that state. As

expected, the success graph shows that the legal behavior consists of sequences

of strictly alternating in! and out? actions.
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Figure 2.32. Communicating State Machine version of Peterson's

mutual exclusion algorithm (a), and its success graph (b).

2.4.6 Example: The Alternating Bit Protocol

Figure 2.34 depicts the speci�cation of a system communicating using the al-

ternating bit protocol. The sender and receiver communicate via the same

lossy communication medium as in Figure 2.1, so messages may be lost. The

basic principle is to stamp messages with a one bit sequence number. When

a protocol entity sends a message (either a data or an acknowledgment) with

sequence number b, the next message it receives should be :b. If the sequence

number is not as expected, the protocol entity concludes that a message has

been lost, and retransmits. The protocol actions are summarized in Table 2.33.

Action Description

u snd data from upper layer: data to be sent

u rcv data to upper layer: data has been received

m sendb data to media from sender with seq. nr. b 2 f0; 1g

r sendb data from media to receiver

m ackb ack from receiver to media

s ackb ack from media to sender

Table 2.33. Alternating bit protocol actions.

The generated success graph is depicted in Figure 2.35. An example of inter-

esting protocol behavior is the trace u snd � u snd � u rcv. After the �rst two
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Figure 2.34. Speci�cation of a protocol using alternating bits.
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send actions, the u rcv action is mandatory at the receiver. It would at a �rst

glance seem illogical that reception is guaranteed when the two protocol enti-

ties communicate via a media without delivery guarantees. The explanation is

however logical: First note that the second send is only a possibility since the

success set is empty. But if the second send succeeds, the sender must have

received an acknowledgment with correct sequence number from the receiver

earlier. Otherwise it could not have entered location s4. This implies that

the receiver successfully received the data. Therefore, the receiver entity must

also be able to deliver it to the upper layer.

{u_snd!}

u_snd!

{u_rcv?}

u_rcv?

{u_rcv?}

u_rcv? u_snd!u_snd!

u_snd! u_rcv?

u_snd!u_rcv?

Figure 2.35. Success graph for the protocol using alternating

bits.

Real-life protocol speci�cations are usually considerable more complex than

this example, but with only slightly more complex protocols systematicmanual

test generation becomes overwhelming.

Finally, observe that the above model does not use timeouts to trigger re-

transmission. This means that not all protocol behaviors usually found in a

alternating bit protocol implementation are re
ected by the success graph.

Only 26 states were reachable. If explicit observable timeout transitions were

added from location s2 to s1, and from location s6 to s5, the state space would

increase to 168 states, and the success graph would contain 37 branches, and

would thus be too large to show here. The success graph for the protocol

presented in Figure 2.1 �rst in this chapter contains 37 branches, and is also

to large to present here.
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2.4.7 Size Matters

The next examples do not demonstrate new functionality of TestGen per se.

They are used to provide some rudimentary performance �gures when the tool

is subjected to larger models. These �gures give insight into the behavior of

the implemented algorithms, and can point out some of their limitations.

Interesting �gures include the size of the state space, the size of the success

graph, and the time and space used to construct it. The size of the success

graph is interesting because it gives an indirect measure of the number of

tests that need to be executed. Because the implemented algorithms have a

high degree of complexity, the actual time and space consumption should be

monitored, because these easily become bottlenecks.

We have designed two extreme speci�cations, parServer and nonSense. par-

Server models a simple cluster computing system consisting of a number of

parallel servers and an interface to clients. A job o�ered by the environment is

accepted by the interface (requestHandler process) when a free server exists.

It forwards the job non-deterministally to one of the free server processes.

The server, able to process one job at a time, receives the job, computes the

result, and forwards it to the interface (replyHandler process) which agains

formulates a reply to the environment.

An easy but e�ective way of increasing the size of the model is to add more

server components. A parServer with n servers is denoted parServern. Fig-

ure 2.36 depicts parServer3.

The nonSense speci�cation shown in Figure 2.37 contrasts the parServer. non-

Sense uses almost exclusively observable actions that are triggered by the envi-

ronment, and relatively little internal communication, whereas parServer has

few observable actions, but a substantial amount of internal communication.

The experiment measures the number of branches in the success graph, the

number of reachable states, the execution time to construct the success graph,

and the memory consumption as function of the number of replicated compo-

nents n. The platform used in the experiment is a Sun Ultra-250 workstation

running Solaris 5.7. The machine is equiped with 1 GB RAM and 2�400 MHz

CPU's. No extra compiler optimizations was done on the code.

The measured values are summarized in Table 2.38. Although one should be

very careful in drawing general conclusions from a simple and small experiment

like this, we believe that the following observations can be made:

� As should normally be expected, the reachable state space grows expo-

nentially with the number of parallel components (the state explosion

problem).
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Figure 2.36. parServer3 speci�cation.
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Figure 2.37. nonSense2 speci�cation.
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parServern

n 3 6 7 8 9 10

Reachable States 208 15808 64256 259328 1042432 4180992

Branches 13 34 43 53 64 76

Memory (MB) 49 56 69 118 328 1165

Execution Time (s) 0.3 7 34 160 790 22608

nonSensen

n 1 2 3 4

Reachable States 12 144 1728 20736

Branches 6 151 1156 4906

Memory (MB) 50 53 58 285

Execution Time (s) 0.3 1 42 2318

Table 2.38. Results of the measurements.

� In both cases the number of branches is considerable smaller than the

number of reachable states. This is caused by the collapsing of � transi-

tions. This �nding is consistent with [32].

� The growth of the success graph should also be expected to be expo-

nential. This is however only con�rmed by the nonSense speci�cation.

Although there exists known automata with n locations that expand to

the full set of 2n locations when determinized [93], they appear rather

pathological. These observations indicate that determinization will be

feasible in many practical cases.

� It seems diÆcult to predict the number of branches in the success graph

from either the number of parallel components or the size of the state

space. The parServer has a large state space but a very small success

graph. In contrast, nonSense produces a large success graph from a

moderately sized state space. Thus, the size of the success graph seems

to depend on the mix of internal and observable actions, and on how

'malicious' the non-determinism is.

� The tool uses a lot of memory. This is not only used to store the state

space, but especially the branches. Recall that a branch contains a set

of pointers to reachable states. This direct representation appears to be

very memory demanding.

� The number of parallel components for which TestGen can construct

the full success graph is somewhat limited. Both speci�cations were

extreme in their own way, and one could hope that realistic speci�cations

are better behaved.
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As previously pointed out, the implemented algorithms are quite naive. Signif-

icantly better algorithms for computation of success graph like data structures

have been developed in the context of model checking with re�nement rela-

tions similar to the testing preorder, e.g, failures divergence re�nement [93, 94].

These algorithms reduce the number of states contained in the branches, and

are sometimes able to reduce and determinize each component before combin-

ing them to the global success graph. Some care is required to preserve the

information needed to compute must sets and divergence information.

We would �nally like to stress that constructing very large success graphs

is not a goal by itself. In the end, the success graph must be traversed to

construct tests that are to be executed. It is usually the case that the number

of tests that can be executed in practice is much less than the number that

can be generated from a large success graph, even when the tests are executed

automatically.

2.5 Summary

In this chapter, we have examined how tests can be generated for untimed

systems. Our behavioral speci�cation language specify system behavior by a

network of concurrent �nite state machines communicating synchronously on

complementary actions and sharing integer variables. Formally based testing

requires a precise de�nition of the implementation relation, tests, and test

execution. In our work these are based on Hennessy's classical testing theory

that characterizes systems based on the tests, modeled as labeled transition

systems (LTS), they may and must pass. We showed during our discussion

of the possible implementation relations that the choice is not arbitrary and

depends on the application.

Based on a LTS semantics of the communicating state machine languages

and the formalized implementation relation, we have proposed two algorithms

for generating tests, one based on a direct interpretation of the LTS, and

one based on the success graph of the speci�cation. The success graph is a

condensed version of the speci�cation containing the information necessary for

test generation.

The main advantage of the direct interpretation is that it avoids the state

explosion problem by only requiring storage of the set of states that the spec-

i�cation could possibly occupy after the pre�x trace of the test generated so

far. Thus, very large speci�cation can be handled.

However, we believe that the success graph approach is generally advantageous

for the following reasons:
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1. Once constructed, tests can be generated from the success graph by an

easy graph traversal.

2. A test can be constructed very fast in an online fashion (as it is being

executed). This is potentially important when a stress test is performed

where events must be o�ered as fast as possible. The direct approach

has the overhead of computing and collecting the reachable states after

each step, and computing the associated must, can and refusal action

sets. Alternatively, very long tests must be generated and written to a

�le o� line.

3. It allows the formulation of a coverage criterion based on a semantic

model of the speci�cation, namely its may and must properties.

4. Systematically generating di�erent tests becomes easier by keeping track

of which properties have been generated and which have hitherto not

been included in some test.

The potential disadvantages are the size of the resulting graph, and the space

and time used to construct it. Thus, the space explosion problem may become

a limiting factor.

The two algorithms can be viewed as two extreme approaches: The direct

interpretation uses no helping data structure at all, and the success graph is

the ideal data structure. Other data structures between these extremes are

possible, such as performing only � reduction but no determinization, either

from the composed system or componentwise. These approaches then form

di�erent compromises between space and time usage early in the process versus

the amount of computation and e�ort needed to construct tests later in the

process.

We have implemented a prototype test generator that constructs the success

graphs for communicating state machine speci�cations. Our experiences indi-

cate that the success graph can be feasibly constructed in its entirety in many

cases, but also that it can become unmanageable in certain cases when the

speci�cation is very large, or when the internal non-determinism cannot be

reduced. The implemented naive algorithms should also be improved.

Turning the attention towards real-time systems, it can be noted that the

success graph data structure cannot be re-used as is. It does not include the

necessary timing information, and, since the state space of a real-time system

is in�nite, a �nite success graph cannot be constructed using existing data

structures and algorithms. The next chapters address the problem of gener-

ating tests from real-time speci�cations with the additional goal of �nding a

�nite data structure similar to success graphs.
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Chapter 3

Timed Testing

The previous chapter introduced the necessary ingredients in a setup for au-

tomated test generation: a speci�cation language, an implementation relation

and corresponding test notation language, an algorithm for test generation,

and a strategy for selecting the test case to be executed. The introduction of

time requires a revision of these ingredients.

During the last decade the timed automata model due to Alur and Dill [9]

has become popular for specifying real-time systems, and we adopt this as our

timed speci�cation language. A timed automaton adds clock variables to an

ordinary state machine, and provides conditions on the enabling of its transi-

tions. Timed automata are introduced and formally de�ned in Section 3.1.

Our implementation relation is based on a timed version of the Hennessy

tests developed in the untimed setting. A timed test describes at what time

instances the actions in the test must be o�ered and observed. A timed test can

also be expressed as a timed automaton that deadlocks in a fail labeled location

when the test is not passed. Real-time tests are introduced in Section 3.2.

A test generation algorithm is given in Section 3.3. This generates relevant

timed tests based on a direct interpretation of the speci�cation. However,

we �nd this algorithm imperfect because the generated tests cannot easily

be related to a coverage criterion of the speci�cation. Selection of the tests

to be produced is an even more pertinent issue when time is added because

there is an enormous number of possible time instances that could be relevant

to examine. To deal with this problem, we propose to partition the state

space of the speci�cation, and cover each of these. Such a partitioning can be

done in numerous ways, and therefore Section 3.4 proposes a framework for

partitioning and covering the state space of the speci�cation.

57
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Furthermore, it would be advantageous to use a data structure similar to the

success graph used in the untimed case to support test generation. However,

because of the in�nite state space of timed systems, the success graph cannot

be directly re-used. The goal of succeeding Chapter 4 will be to employ the

selected criterion to generate timed tests using an appropriate data structure,

and a symbolic analysis technique. Ideally, coverage according to the chosen

criterion should follow by covering the support data structure.

Finally, Section 3.5 summarizes this chapter.

3.1 Timed Automata

The timed automata model, originally proposed by Alur and Dill in [8, 9], has

become a popular formalism in the model checking community for specifying

and modeling real-time systems. A considerable amount of work has been

done on both their theoretical properties and on tools for their analysis.

Timed automata augment the automata well known from the study of formal

languages with a set of (dense) clock variables which are used to express en-

abling conditions on the transitions in the automaton. Timed automata is not

a single well de�ned model, but is rather a family of models sharing the idea

of automata, clock variables, and enabling conditions. The variations di�er

in their expressiveness, decidability properties, and, from a practical point of

view the important aspects of how easy systems can be modeled, and how

eÆciently they can be analyzed.

3.1.1 Informal Description of Timed Automata

We de�ne a timed automata variant based on the communicating state ma-

chines model de�ned in Section 2.1.1. The model consists of a set of con-

currently executing timed automata sharing a set of clocks. This model is

designed to be general and expressive but still analyzable. However, it will be

necessary to restrict the model depending on how tests are to be derived. We

�rst describe the model informally, and then its formal syntax and semantics.

We use the term locations to denote nodes in the automaton, and reserve

the term states to denote semantic automata con�gurations consisting of a

location vector combined with a clock valuation.

Clock values are modeled by the set of positive reals R�0 . A clock can be

viewed as a piecewise continuous function of time with the derivative one. As

time passes, the values of all clocks increase by the same amount. When an

action is executed, clock assignments may cause discrete jumps in the clock

values.
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An edge in a timed automaton is labeled with three pieces of information g,

a, and r. The enabling condition or guard g is the conditions over clocks that

must be satis�ed before the action a is enabled. When action a is executed, the

set of clock assignments in r are simultaneously executed. The execution of an

action is instantaneous, i.e., takes no time. Locations are further labeled with

invariant conditions which states under which clock conditions the automata

may remain in that location. It must change location before the invariant

condition becomes false.

Actions are classi�ed as either observable or hidden. Only observable actions

are visible to the environment, and only synchronizations on hidden actions

are permitted within the network. Moreover, actions are further classi�ed

as urgent or non-urgent. Intuitively, whenever two automata are ready to

synchronize over urgent actions, the synchronization takes place immediately.

In contrast, it is unpredictable when synchronization on non-urgent actions

take place, i.e., time may pass even if they both are enabled. Invariants can

be used to give an upper bound on this synchronization delay.

At the syntactic level, a non-urgent � action is speci�ed by an edge without

action labeling. There is no syntactic construction for the urgent variant

since this can always be achieved by synchronizing with an auxiliary � server

automaton that is always prepared to synchronize over a dedicated urgent

action.
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Figure 3.1. Timed automata model of a transmission protocol.
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A timed automata variant of the communication protocol speci�ed in Sec-

tion 2.1.1 is shown in Figure 3.1. It uses the same actions as the original

speci�cation; these are listed in Table 2.2. In addition, it uses three clocks.

One is used by the sender to time out waiting for an acknowledgment, and

two are used by the transmission medium (one in each direction) to express

the permitted transmission delay.

The sender waits in location s2 for 20 time units for an acknowledgment.

If no acknowledgment is received within this time bound, the sender makes

an internal transition to location s1 to initiate retransmission. The invariant

condition on location s2 and guard on the time out edge ensures that the sender

moves away precisely when the 20 time units have elapsed. Transmission from

sender to receiver takes between 2 and 5 time units. Transmission in the

reverse direction is slightly slower.

3.1.2 Dense Time Semantics of Timed Automata

The semantics of a network of timed automata can be given as an in�nite state

timed LTS, see De�nition 3.2. The progress of time can be modeled by adding

a set of special delay actions f"(d) j d 2 R�0g to the set of actions. Execution

of a delay action "(d) represents the passage of d time units, where d is a �nite

positive real-valued number. By adopting the two-phase functioning principle

[76] we observe system execution by alternating between observing a set of

instantaneous actions and observing a delay.
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De�nition 3.2 Timed Labeled Transition System:

An timed LTS is a 4 tuple hS; s0; Act�";�!i, where

1. S is the set of states,

2. s0 2 S is the initial state,

3. Act is the observable actions, and Act�" = Act [ f�g [ f"(d) j d 2 R�0g

the actions including the internal action � and delay actions "(d).

4. �!� S � Act�" � S is the transition relation satisfying the following

consistency constraints:

Time Determinism: Whenever s
"(d)
��! s

0 and s
"(d)
��! s

00 then s
0 = s

00.

Time Additivity: 8s; s
00
2 S: 9s

0
2 S: s

"(d1)
���! s

0
"(d2)
���! s

00 i�

s
"(d1+d2)
�����! s

00

Null delay: 8s; s
0
2 S: s

"(0)
��! s

0 i� s = s
0

5. We assume that Act is equipped with a mapping�: Act 7! Act such that

for all actions ��a = a. �a is said to be the complementary action of a.

6. We lift the notation given in De�nition 2.4 for LTS to apply to timed

LTS, with the notable addition:

s
"(d)
==) s

0 i� s0
a1
�! s1

a2
�! : : :

an
�! sn such that sn = s

0,

8i 2 [1; n]: ai = � _ ai = "(d), and d =
P
fdi j ai = "(di)g.

�

Next we provide the formal de�nitions for our variant of timed automata. The

formal structure of a timed automaton over a set of clocks X and actions A is

given in De�nition 3.3. The formal semantics of a network of timed automaton

is given as a timed LTS in De�nition 3.4.
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De�nition 3.3 Timed automaton:

1. The guards G(X) over a set of clocks X is generated by the syntax

g ::= 
 j g^g where 
 is a constraint of the form x1 � c or x1�x2 � c with

�2 f�; <;=; >;�g, c a non-negative integer constant, and x1; x2 2 X.

2. R(X) is the set of clock assignments of the form x := c;.

3. A timed automaton M over actions A� and clocks X is a tuple

hN; l0; I; Ei where

(a) N is a (�nite) set of locations,

(b) l0 2 N is the initial location,

(c) I : l 7! G(X) is the location invariants,

(d) E � N �G(X)�A� � 2R(X)
�N is the set of edges where G(X)

is the set of guards, and R(X) is the set of assignment operations.

We write l
g;a;r
���! l

0 if hl; g; a; r; l0i 2 E to represent a transition from

location l to location l
0 with guard g, action a, and assignments

r � R(X).

(e) Let a denote the complementary action of action a 2 A such that

a! = a? and a? = a!.

�

A network of timed automata M = (M1 k � � � k Mn) is a collection of con-

current timed automata. Let Lta be the class of timed automata networks.

The network synchronizes with the environment via a set of distinguished ob-

servable actions O � A. The network can synchronize internally only via

the hidden actions A � O. That is, no internal communication is permitted

over external, observable actions. As we o�er no explicit restriction operation,

this distinction allows a simple means of hiding the required actions from the

environment. U � A is the set of urgent actions.

Semantically, a state of a network is modeled by a con�guration h�l; �ui. The

�rst component, the location vector �l, is a vector of locations that represent

the joint control location of the network; li is the location of automaton Mi.

We write �l[l0
i
=li] to denote the vector where the ith element of �l has been

replaced by l0
i
. The second component �u 2 R

jXj

�0 is the current clock valuation.

Let �u(x) denote the value of clock x, r(�u) the clock valuation identical to �u

except for �u(xi) which equals ci for all xi := ci 2 r, and let �u + d denote

the clock valuation where all clocks are advanced by d time units. Let g(�u)

denote the evaluation of guard g given clock valuation �u. The invariant of a

location vector is the conjunction of the invariants of the individual locations,
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i.e., I(�l) =
V

1�i�n I(li). The evaluation of a location vector invariant with

clock valuation �u is written I(�l)(�u). The initial state of the network is h�l0; �0i,

where �l0 is the vector of initial locations, and �0 is the clock valuation with all

clocks being zero.

We allow both urgent and non-urgent actions. Therefore, there will implicitly

be two variants of the internal � action. No syntax is given for urgent internal

actions, but it arises as the result of synchronization on urgent actions. When

we need to distinguish, �u denotes the urgent variant, and �n the non-urgent

variant. � denotes either.

Our interpretation of network of timed automata is given by De�nition 3.4.

The �rst transition rule concerns internal or observable actions of a single

automaton. When the guard of the action evaluates to true, the action is

enabled, and the e�ect of its execution is an updated location vector and clock

valuation. The location invariant in the target state must also be satis�ed. The

second rule states that two automata may synchronize over complementary

hidden actions when both guards are true. The e�ect is a new state where

both automata have changed locations, and where both sets of resets have been

applied. Again, the invariant in the target location must also be satis�ed.

De�nition 3.4 Transition rules for networks of timed automata:
li

g;a;r
���! l

0

i
g(�u) I(�l0)(�u0) a 2 O [ f�ng

h�l; �ui
a
�! h�l0; �u0i

;where �l0 = �l[l0
i
=li]; �u

0= r(�u)

li
g1;a;r1
����! l

0

i
lj

g2;�a;r2
����! l

0

j
(g1 ^ g2)(�u) I(�l0)(�u0) i 6= j

h�l; �ui
� 0

�! hl
0
; �u0i

; where

a 2 A�O; �
0 = �u if a 2 U ; �

0 = �n if a 62 U ; �l
0 = �l[l0

i
=li; l

0

j
=lj ]; �u

0 = (r1[r2)(�u)

8d
0
< d: (h�l; �u+ d

0
i 6

�u
�! I(�l)(�u+ d))

h�l; �ui
"(d)
��! h�l; �u+ di

�

The progress condition in the third rule describes how the network behaves

with respect to time. Time may progress by some amount d if the invariant

remains true, and if no synchronization on hidden urgent actions are possible

in the interim. Thus, the network must change location when an urgent syn-

chronization becomes possible, or when the location invariant becomes false.

It would be trivial to also permit shared integer variables and their usage in

guards like it was done in the communicating state machine model in Sec-

tion 2.1.1. Likewise, committed locations could be included. Not including

these into the semantic description enables a more convenient notation.
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We say that a timed automata network is progressive if all reachable states

either can let time pass, or perform a �nite sequence of internal actions to

one that can. In essence, this prevents an invariant condition from blocking

progress of time until the environment synchronizes on an observable action.

A network is Zeno-free if for any bounded time interval, the network can only

perform a �nite number of actions.

It is also valuable to observe that there are two sources of non-determinism in

the given semantics. The �rst source, action non-determinism, results from a

choice between two actions, i.e, s
�
�! s

0 or s
�
�! s

00. The second source, timing

uncertainty, results from a choice between executing an action or letting time

pass, i.e., s
�n
�! s

0 or s
"(d)
��! s

00. Timing uncertainty is useful where the duration

of an operation is unknown or only known within a bound. This cannot be

accurately modeled in timed automata variants with only urgent actions.

3.1.3 Discrete versus Dense Time

The two dominating models of time are the dense time model, where clock

valuations are drawn from a dense domain such as positive reals, and the

discrete time model, where clock valuations are drawn from the set of positive

integers. A discrete time interpretation of Lta can easiliy be obtained by using

only the timed action "(1) in De�nition 3.4.

There are two main advantages of the discrete time model. First, it accurately

models most digital systems. Secondly, the state space of discrete time sys-

tem is �nite, and can consequently be analysed using the same state space

exploration techniques as in the untimed case. A minor complication is that

clock values may sometimes progress towards in�nity. Obtaining a �nite state

space therefore requires the observation that for each clock x, there is a largest

constant cx that is relevant for the enabling conditions involving x. The values

of x exceeding cx can therefore be equalized with the designated symbol 1.

We use the dense model for the following reasons: First and foremost, it is the

most general and the most realistic model of physical time. Secondly, when

the resolution of the discrete clock is very high, it may be more appropriate

to view it as being dense. For example, if the processor clock on a 500 MHz

PC were used as time base for measuring mili-second range durations (500.000

clock tics per mili-second), the time domain is for all practical purposes dense.

Finally, the test selection techniques to be developed which are mandatory in

dense time generation, could also bene�t discrete time models.

The main problem is that the state space cannot be represented and explored

explicitly. Instead, in�nite sets of states must be represented symbolically.
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3.2 Timed Must Tests

In this section we propose the class of timed may and must properties as a

reasonable way of characterizing the behavior of real-time speci�cations and

implementations. Our starting point will be Hennessy's may and must prop-

erties de�ned in Section 2.2 which we shall lift to include time. The properties

will now include timed traces consisting of observable actions and a labeling

with the absolute or relative time at which they occur.

Because the LTS of a timed automaton with dense clocks has an in�nite num-

ber of states, it is in generally preferable to describe tests as timed automata

as well. We therefore construct testing automata that test for the satisfaction

of timed may or must properties. We de�ne an implementation relation based

on the ability to pass timed may and must tests, and o�er an interpretation

of the resulting preorder.

3.2.1 Assumptions

We shall assume the following:

1. The speci�cation is given as an network of timed automata, and the

implementation can be described by some network of timed automata.

Both are progressive and Zeno-free.

2. The observable actions that the implementation uses to communicate

with its environment are known.

3. The implementation under test communicates with its environment using

urgent and synchronous rendezvous style communication, i.e., O � U .

4. The speci�cation converges strongly, i.e., an in�nite sequence of � actions

is never possible.

Note in particular assumption 3 which has a signi�cant bearing on how ob-

servations can and should be made. This assumption is made for two reasons.

First, we �nd it most intuitive that two ready components synchronize imme-

diately; the desired uncertainty about when a component becomes ready can

still be expressed using non-urgent internal and hidden actions. Secondly, the

progressivity assumption requires that the environment and the system always

permit time to progress. This implies that they cannot use invariant conditions

to stop time, and thereby force the other component to produce an awaited

action. However, without invariant conditions, there is no upper bound on the

synchronization delay on non-urgent actions. E�ectively, the synchronization
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delay over non-urgent actions between the system and its environment cannot

be bounded, and may not even take place. Thus, this communication mode

used externally does not appear to be very important. On the other hand, it

is still very convenient internally in the speci�cation.

3.2.2 The Implementation Relation

The timed may and must properties are de�ned in De�nition 3.5. The set of

observable actions and delays is denoted by O" = O [ f"(d) j d 2 R�0g.

De�nition 3.5 Timed must properties:

Let S 2 Lta.

1. Ltmust =def fafter � must A j � 2 O
�

" ; A � Og

2. S j= after � must A i� 8s 2 S after �: 9a 2 A: s
a
=) ^

(s 6
a
�! implies s 6

"(d)
��!)

3. Ltmay =def fcan � j � 2 O
�

"g

4. S j= can � i� � 2 Tr (S)

�

A timed must property requires that the system after having performed the

timed trace � is ready in to engage in a synchronization with one of the actions

in A. The synchronization is required at the time instant reached after the

trace: The system is not permitted to wait and then become ready later. This

means that, if the system in a given state is unable to accept an a action in

must set A, then time is not permitted to pass. The system may however

execute an internal action to a state that is able to accept an action in the

must set. Similarly, a timed may property requires that the system is able to

perform the corresponding timed trace.

It can be argued that it is impossible to test these properties in practice

because it cannot be ensured that an action is enabled in precisely the required

moment. However, it is our belief that a synchronization in a small interval

around the time instant is suÆcient in most practical situations. The absolute

size of the interval naturally depends on the magnitude of the delays in the

trace, of the required precision, and also of the precision of the physical timers

in the test system.

Our proposed timed may and must implementation relations, formally de�ned

in De�nition 3.6, require that every timed must (may) property satis�ed by

the speci�cation, is also satis�ed by the implementation. Or equivalently, that

every test automaton corresponding to a timed must (may) property that the

speci�cation must (may) pass, the implementation must (may) also pass.
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De�nition 3.6 Timed must preorder:

Let S;I 2 Lta.

1. S vtmust I i� 8� 2 O";8A � O:

S j= after � must A implies I j= after � must A

2. S vtmay I i� 8� 2 O
�

" : S j= can � implies I j= can �

3. S vtte I i� S vtmust I ^ S vtmay I

�

3.2.3 Test Automata

A test automaton is a timed automaton whose locations have been labeled

with either a pass, inconc, or fail verdict, i.e., V : N 7! ffail; inconc;passg

is the verdict assignment function.

Test execution is modeled by a parallel composition of the tester and the

implementation using urgent communication. The semantics of this parallel

composition was given in De�nition 3.4 with the twist that observable actions

now become internalized.

De�nition 3.7 Timed computations:

Let T k I denote the parallel composition of a test T and implementation I.

A test con�guration in the composed system is a pair of states (st; si) such

that st is a state in the test, and si a state in the implementation.

1. A timed computation is a maximal sequence of con�gurations:

(st0; si0)
"(d1)
���! (st1; si1)

�
�! (st2; si2)

"(d2)
���! � � � (stk; sik)

�
�!

(stk+1; sik+1)
"(d

k+1)
�����!� � �

2. A test con�guration is deadlocked if no further synchronizations are pos-

sible, i.e., there is some n such that for all k > n: (stk; sik) 6
�
�!.

3. A computation is successful if there exists some h�l; �uitk such that V(�l) =

pass.

�

To obtain a more practical testing language using deterministic test automata

with state based verdicts we, analogous to the untimed case in Section 2.2.5,

rede�ne a successful computation to mean a computation that deadlocks in a

location with a pass verdict. Similarly, a computation fails if it deadlocks in

a fail location.
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The structure of a test automaton T (t) for checking a timed must property

t is illustrated in Figure 3.8a, and the automaton for a may test is shown in

Figure 3.8b. The required timed trace is enforced by using a clock x that is

reset with every action, and used in guards of the form x = d, where d is the

delay after which the action is to be enabled.

er pass
c inconc
s fail

er

er

er

er

s

erer

?

?

?

�
��	

@
@@R

x = d1; b1; x := 0

x = d2; b2; x := 0

x = dn; bn; x := 0

x = dn+1; a1 x = dn+1; an

x := 0 x := 0

rr

: : :

c

c

c

c

c

er

?

?

?

?

x = d1; b1; x := 0

x = d2; b2; x := 0

x = d3; b3; x := 0

x = dn; bn; x := 0

after "(d1):b1:"(d2):b2: : :bn:"(dn+1) must A can "(d1):b1:"(d2):b2: : :"(dn):bn

(a) (b)

Figure 3.8. Structure of timed test automata. Must test (a), and

may test (b).

3.2.4 Interpretation

This section exempli�es how the timed may and must preorders discriminate

systems based on their timing behavior. Consider the series of small timed

automata depicted in Figure 3.9.

S1 is able to do an a at all times. I1 is able to do an a at all times between

one and two time units from the start, but is not able to do anything outside

this interval. S2 can possibly perform an a at all times, but is de�nitely ready

after two time units (note the non-urgent � action and the invariant condition

in location l1). I2 is only ready after two time units. A comparison yields the

following relations:
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a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!

a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!
x>=1x>=1x>=1x>=1x>=1x>=1x>=1x>=1x>=1x>=1x>=1x>=1x>=1x>=1x>=1x>=1x>=1
x<=2x<=2x<=2x<=2x<=2x<=2x<=2x<=2x<=2x<=2x<=2x<=2x<=2x<=2x<=2x<=2x<=2

a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!

a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!
x>=2x>=2x>=2x>=2x>=2x>=2x>=2x>=2x>=2x>=2x>=2x>=2x>=2x>=2x>=2x>=2x>=2

l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1

l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2 l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2

l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1

l3l3l3l3l3l3l3l3l3l3l3l3l3l3l3l3l3

l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2

l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1
   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)   (x<=2)

l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2l2

l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1l1

I2I2I2I2I2I2I2I2I2I2I2I2I2I2I2I2I2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2S2I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1I1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1S1

Figure 3.9. Example timed automata.

Relation Distinguishing property

S1 6vtmust I1 after "(1
2
) must fag

after "(212 ) must fag

I1 6vtmust S1 after "(12 ) � a must ;

after "(212 ) � a must ;

I1 vtmay S1

S2 6vtmay I2 can "(12 ) � a

S2 vtmust I2

I2 6vtmust S2 after "(12 ) must ;

S2 vtte S1

Thus, the timed must preorder requires that at all times when the speci�cation

(must) have some actions enabled (or disabled) the implementation must also

have them enabled (or disabled). Similarly, the may preorder requires that all

traces that are possible in the speci�cation also are possible in the implemen-

tation. These requirements may be too strong in some cases. Consider for

example the relation S2 6vtmay I2. One could think of S2 as a speci�cation of

a communication medium with a transmission delay of at most two time units.

This requirement is satis�ed by I2 which is rejected by the may preorder. Be-

cause S2 is faster than I2, we may consider using S2 as an implementation of

I2. However this is rejected by the must preorder because S2 (being faster)

contains extended functionality that, as discussed in Section 2.2.4, may not

be safe.

This observation suggests that the implementation relation should be chosen

with great care. More signi�cantly, it questions what timed preorder should

be used in practice. Although the preorders de�ned here are obvious gener-
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alizations of the untimed testing preorders, many others could be suggested,

e.g., time abstracted and faster-than relations. The speci�c choice depends

on the application and the goal of testing. We discuss other proposed timed

preorders in Section 6.2.1.

3.3 Timed Test Generation

One approach to timed testing is to generalize the direct untimed algorithm.

Algorithm 3.11 gives such a procedure which is nearly identical to the untimed

algorithm presented in Algorithm 2.27, except for the choice of delay in step 1.

This delay decides when the tester should attempt to synchronize with the

implementation. Like the untimed algorithm, the timed version uses three

reduced sets of actions characterizing respectively the communications that

must succeed (must sets), communications that possibly succeeds (can sets),

and communications that must not succeed (refusals) after a give trace. These

are de�ned in De�nition 3.10.

De�nition 3.10 Timed must, can, and refusal sets:

Let B be a set of states.

1. B must A i� 8s 2 B after �: 9a 2 A: s
a
=) ^ (s 6

a
�! implies s 6

"(d)
��!)

2. Must(B) =def fA � O j B must Ag

3. Can(B) =def fa 2 O j 9s 2 B: s
a
=)g = Sort(B)

4. Ref(B) =def fa 2 O j 8s 2 B: s 6
a
=)g = O � Sort(B)

�

Note that we abuse the notation for the summation and pre�x of labeled

transition systems earlier de�ned in Section 2.1.2 and use it to construct test

automata. We justify this by observing that a test automata can be viewed

as an LTS with edges labeled with triples (g; a; r) consisting of a guard, an

action, and a set of clock resets. Also, we use the notation V(T ) to assign the

verdict to the initial state in T .

It is important to realize that it is non-trivial to compute the sets of states

B after "(d) and B after a with a dense time interpretation. The timing

uncertainty arising from non-urgent actions causes these sets to be in�nite,

and can therefore not be computed directly by applying the semantic tran-

sition rules for timed automata. Instead they can by computed by symbolic

execution using a non-trivial application of the symbolic methods that will be

given in Section 4.3. Section 4.3.7 shows how to compute these sets.
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Algorithm 3.11 Generation of a timed test:

Let B range over sets of states.

input: S 2 Lta
output: A test case T 2 Ltta

init: TestGen(S after �)

TestGen(B) =def

1. Choose some delay d 2 R�0

2. Compute B0 = B after "(d)

3. Compute M = min�(Must(B0)), C = Sort(B0) �
S
A2M

A, and

R = O � Sort(B0)

4. Construct one of

(a) TA =
X
a2A

(x = d; a; x := 0); Ta; A 2M; V(TA) = fail

(b) TA =
X
a2A

(x = d; a; x := 0); Ta; A = C; V(TA) = inconc

(c) TA =
X
a2A

(x = d; a; x := 0);nil ; A = R; V(TA) = pass;

V(TA after (x = d; a; x := 0)) = fail

(d) TA = nil ; V(TA) = pass; if Sort(B0) = ;

5. Construct a Ta in case (4a) or (4b) by calling TestGen(B0 after a)

Another problem of the algorithm is that it does not provide a strategy for

choosing delays. Some possibilities are:

Random Sampling: The delay between two synchronization attempts are

chosen randomly, or according to some speci�c probability distribution.

All Delays: All possible delays are chosen. This is clearly possible for discrete

time interpretations, and it may even be feasible if the number of time

instances to be checked is reasonably small. Handling dense time in

this way is more problematic. One would expect this to be impossible

because there is an in�nite number of delays to choose from, but recent

research [105] has shown that under certain assumptions only a �nite

number of tests is required to achieve exhaustive testing. It is therefore

possible, at least in principle, to choose a suÆciently small delay to cover
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all relevant synchronization times. We shall discuss the foundation of

this observation in Section 6.2.

Minimum Delays: When a tester applies this strategy, it o�ers the actions

as fast as possible, i.e., the tester only delays when this is required by

the speci�cation, or when this is required to enable an untested edge or

action. This strategy will stress the implementation and thereby check

whether it is fast enough under di�erent input sequences.

Periodic Sampling: A �xed delay is chosen every time. The tester can

therefore be viewed as a process that periodically samples the behavior

of the implementation. A big advantage of periodic sampling is that it

suggests a method of incremental testing. Initially, a very coarse sam-

pling period is chosen. When a suÆcient number of tests with suÆcient

duration have been executed successfully, a smaller interval can be tried.

The sampling interval can be re�ned for as long as there are resources

available for testing. Further, it may be possible to �nd a strategy for

adjusting the sampling frequency dynamically such that e.g., a higher

frequence is chosen when many things happen in the speci�cation or

implementation in a short amount of time.

However, we believe that these strategies are imperfect because tests are se-

lected in an ad hoc fashion, and not systematically from a coverage criterion.

The resulting coverage can only be measured, and by generating a lot of test

one may hope to obtain suÆcient coverage, but this is likely to include a lot

of redundancy.

3.4 State Based Selection

It is infeasible to generate and execute a test suite that covers every timed

may and must property satis�ed by the speci�cation. It is therefore necessary

to select only a small subset of the possible tests. This selection should be

based on a coverage criterion. In the following we shall propose to base this

selection on certain properties of the reachable states.

3.4.1 State Space Partitioning

Intuitively, we shall say that a state has been covered if some observations of

the system's behavior have been made in that state. We shall also say that

a set of states are covered if at least one of them is, and if the states enjoys

a common property that makes us believe that only one needs to be tested.
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The hypothesis is that it is more important to test inequivalent states than it

is to test equivalent states multiple times.

A test selection strategy can now be formed by inspecting the states of the

speci�cation and only make observations of one or a few representatives from

each set of equivalent states.

Formally, we propose to partition the state space and ensure that the gener-

ated test suite contains a set of tests that makes the required observations of

a representative from each partition. There are many possible ways of parti-

tioning the same state space, and we therefore propose a common framework

that captures our notion of state based selection.

Non-determinism makes it is impossible to predict and control which state the

speci�cation occupies after having performed a given trace. We therefore �nd

it convenient to view the system state not as a single state, but as the set

of possible states the speci�cation can occupy after having performed a given

trace. In consequence, a partition Q � 2S becomes a set of sets of possible

states. A state partitioning Q is a set of partitions, see Figure 3.12.

B� (set of states)

h�l0; �0i

�

Q2

Q3

(a set of sets of states)

Q1

Q (set of partitions)

2S

Figure 3.12. State Space Partitioning

Let the triple ShQ;Obsi denote that speci�cation S is covered such that the

observations in Obs are made in each partition in Q of the speci�cation.

Let � 2 O�

" be a timed trace, and let B� = S after � denote the set of states

reachable in the speci�cation after �. We assume that tests consists of (or

can be decomposed to) a trace followed by an observation, and we let � Æ o

denote such a test. We further assume a relation S j= � Æ o that determines

if observation o 2 Obs can be made in the states reached after �, i.e., if the

speci�cation passes the test corresponding to � Æ o.



74 CHAPTER 3. TIMED TESTING

De�nition 3.13 Speci�cation coverage:
� covers ShQ;Obsi i� 8Q 2 Q:

(a) 9� Æ o 2 �: B� 2 Q ^

(b) 8o
0
2 fo

00
2 Obs j S j= � Æ o

00
g: 9� Æ o

0
2 �

�

The coverage criterion in De�nition 3.13 requires that a) the test suite contains

a trace leading to all (reachable) partitions Q 2 Q, and b) that the test suite

contains a test for each relevant observation of Obs in the representative states

after the chosen trace �. Because the criterion only requires one trace per

partition, the state partitioning also equalizes all traces whose destination

states are contained in the same partition.

Instantiations of the framework must de�ne the desired partitioning Q, the

desired observations Obs, and the Æ and j= relations.

3.4.2 Instantiations

We shall now instantiate the framework, and propose a number of selection

strategies by varying the coarseness of the state partitioning. If fact, they

form a subsumption hierarchy where the coverage of the �ner partitioning im-

plies coverage of the coarser ones. The given instances and their subsumption

relation are:

Region Partitioning �

Stable Edge Set Partitioning �

Edge Set Partitioning �

Action Partitioning

Let S = hN; l0; I; Ei be a timed automaton. We use properties of the following

type as observations: after � must A, can a, and after a must ;. Let O be

the set of all such observations over the set of observable actions O. This is a

natural class of observations given the timed may and must preorders de�ned

in Section 3.2. The decomposition of tests to traces and observations is done

as follows:

� Æ after � must A = after � must A

� Æ after a must ; = after � � a must ;

� Æ can a = can � � a

This direct correspondence between the pairs �Æo and tests allows us to adopt

the satisfaction of timed may and must properties from De�nition 3.5 as the

de�nition of j= in the selection framework.
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Region Partitioning

A region is a symbolic representation of a set of clock valuations, or formally,

an equivalence class on clock valuations induced by the equivalence relation

de�ned in De�nition 3.14. The region concept was proposed by Alur and Dill

in [9, 7] as a vehicle for studying decision procedures for timed automata, and

has also been applied to model checking.

De�nition 3.14 Region Equivalence [9]:

Let X be a set of clocks, and let �u; �u0 be clock valuations. Two clock valuations

are region equivalent, written �u
:
=� �u

0, i� 8x; y 2 X

1. b�u(x)c = b�u0(x)c or �u(x) > cx and �u0(x) > cx

2. if �u(x) � cx and �u(y) � cy then

(frac(�u(x)) � frac(�u(y)) i� frac(�u0(x)) � frac(�u0(y)))

3. if �u(x) � cx then (frac(�u(x)) = 0 i� frac(�u0(x)) = 0)

�

A clock value is divided into two parts, the integral part b�u(x)c, and the

fractional part frac(�u(x)). The integral part is the largest integer not larger

than �u(x). Two clock valuations are equivalent if the clocks agree on their

integral parts, and if all fractional parts are 0 or if they have the same ordering

on the fractional parts. A clock can be assigned the designated value1 when

it exceeds the �xed constant cx. Beyond cx the precise value of x is irrelevant

with respect to the evaluation of the guards in the automaton. cx equals the

largest constant used in guards on x when the only assignments to x are x := 0.

2

1 2

1

x

y

Figure 3.15. The regions (boldfaced line segments, corner points,

and interior triangles) induced by two clocks x; y and maximum

domains cx = 2 and cy = 1. There are 28 regions in this example.
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Figure 3.15 visualizes the region concept. The key observation is that no guard

(de�ned from the syntax in De�nition 3.3) can distinguish between two clock

valuations in the same region. A timed automaton can therefore be analyzed

by picking a single representative clock valuation from each region. A region

state is a pair consisting of a location vector and a region. The reachable state

space of a timed automaton can be computed from the initial region state,

and by recursively computing its successor regions.

The number of regions in a timed automata with jXj clocks is bounded by

jXj! � 2jXj
� �x2X(2cx + 2). It can thus be noted that the number of regions

depends exponentially on both the number of clocks and the clock constants.

The number of region states is bounded by multiplying the number of regions

with the number of locations.

Region coverage is de�ned in De�nition 3.16. Because of non-determinism,

the possible states after a trace will in general belong to a set of region states.

De�nition 3.16 Region Coverage ShQ;Obsi:

Let hl; �ui be a state, and let �(�u) be the region containing �u. The region state

of hl; �ui, written �(hl; �ui) is the pair hl; �(�u)i. The region states of a set of

states B, denoted �(B) = f�(hl; �ui) j hl; �ui 2 Bg. Similarly, let �(S) be all

region states of the speci�cation.

1. Obs = O

2. QR = fB� j 9� 2 Tr(S): �(B�) = Rg

3. Q = fQR j R � �(S); QR 6= ;g

�

Stable Edge Set Coverage

The stable edge set coverage in De�nition 3.17 regards two sets of states as

identical if they consists of the same locations and enable precisely the same

set of edges. The idea behind this partitioning is primarily to capture di�er-

ent deadlock properties. When the set of enabled edges change, the enabled

and disabled actions also potentially change, and so do the actions that must

be accepted and refused. A secondary motivation is that when the enabled

edges change because time progresses, some timer would have expired in the

implementation, and therefore the possible states it can occupy has changed,

and they should be tested by their own test case.
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De�nition 3.17 Stable Edge Set Coverage ShQ;Obsi:

Let E(B) = fl
g;a;r
���! l

0
2 E j 9hl; �ui 2 B: g(�u)g, and L(B) = fl j 9hl; �ui 2 Bg.

1. Obs = O

2. QE0;L = fB� j 9� 2 Tr(S): E(B�) = E
0
^ L(B�) = Lg

3. Q = fQE0;L j E
0
� E; L � N; QE0;L 6= ;g

�

The de�nition also requires that the same set of locations are reached. This

condition ensures that the situations, where no actions are enabled in the

speci�cation, will be tested for all location con�gurations, i.e., that the im-

plementation also has no actions enabled. Checking this is important for the

timed must preorder.

Edge Coverage

In the edge coverage criterion in De�nition 3.18, there is a partition for each

edge; sets of states are considered equivalent if they enable the same edge. This

partitioning is motivated by white box testing of sequential programs, where

the goal is a structural coverage of the program such that every statement

is executed at least once. Edge coverage ensures a structural coverage of the

speci�cation.

De�nition 3.18 Edge Coverage ShQ;Obsi:

Let enabled(e;B) be a predicate that is true if B enables the edge e =l
g;a;r
���! l

0,

i.e., if 9hl; �ui 2 B: g(�u)

1. Obs = O

2. Qe = fB� j 9� 2 Tr(S): enabled (e;B�)g

3. Q = fQe j e 2 E; Qe 6= ;g

�

Action Coverage

The �nal partitioning we shall propose here, see De�nition 3.19, has the rather

modest goal of ensuring that the test suite will have the ability to observe ev-

ery observable action. In connectivity testing [46], systems are viewed as a

composition of hardware and embedded software that both are assumed to be

correct, i.e., has been proven or veri�ed. Implementation faults then consists
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of missing connections between software actions and the external system inter-

face. Thus, if every action is observed it can be concluded that no connections

are missing.

De�nition 3.19 Action Coverage ShQ;Obsi:

1. Obs = O

2. Qa = fB� j 9� 2 Tr(S): 9hl; �ui 2 B�: hl; �ui
a
�!g

3. Q = fQa j a 2 O; Qa 6= ;g

�

3.4.3 Choice of Coverage Criterion

A coverage criterion can be used in two ways. One is as a posteriori metric

of what has been covered after test execution. Our goal has been an a priori

application to assist test generation. In this situation, there are two main fac-

tors that in
uence the choice of coverage metric. One factor is the type and

amount of required observations. The �ner partitions the higher error detec-

tion power, but also the more tests and higher cost. The second main factor

is the computer resources (CPU time and memory) it will take to construct

a test suite with the desired coverage, and related, the diÆculty with which

algorithms can be devised and implemented in tools.

We choose to examine stable edge set coverage further for the following reasons:

� Region partitioning is too �ne grained for most practical speci�cations.

It results in too many tests, and is expensive to compute in terms of

space and time.

� Action coverage only requires observation of each action, and therefore

essentially ignores timing and deadlock situations. For real-time black-

box conformance testing this is insuÆcient.

� The term stable edge set suggests that the system is in a stable state in

which it enables and disables no new actions. When the edge set of the

speci�cation changes by passage of time (thereby enabling or disabling

actions) or execution of internal actions, it indicates that a timeout could

have occurred in an implementation, and that it therefore should be

checked that the implementation ends up in state that conforms to the

speci�cation.
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� All representatives in such a partition are equivalent with respect to our

observation set O : For any equivalent B�, B�0 then also 8o 2 O : B� j= o

i� B�0 j= o. See also Proposition 4.9 in Section 4.2.2. Stable edge

set partitioning is therefore a good match for the timed may and must

properties. Edge coverage does not have this property.

3.5 Summary

This chapter instantiated the ingredients in a formally based approach to

testing. We de�ned our speci�cation language timed automata formally as a

dense timed LTS. timed automata can be viewed as the communicating state

machine model proposed in Chapter 2 extended with shared clock variables.

No proposals for implementation relations for dense timed system exist. We

therefore de�ned a modest timed generalization of Hennessy's may and must

preorders, and used this as a basis for our test generation algorithm. Our

discussion on the interpretation of the implementation relation showed that

the exact variant should be chosen with great care.

We stated an algorithm based on a direct interpretation of the timed automata

speci�cation. This algorithm avoids the state explosion problem, but has the

serious disadvantage that it does not enable one to systematically select test

cases from a selection criterion. To aid test selection we proposed to partition

the spate space and cover each partition with a speci�c set of test cases. We ex-

amined four speci�c partitioning strategies, the region-, stable edge set-, edge-,

and action-partitioning, and argued that stable edge set partitioning formed

a good compromise between testing thoroughness and cost, and matched the

needs of the timed must preorder perfectly.

Given a speci�cation language, a test language, and a notion of coverage, the

problem of developing algorithms for generating the required test suite can

be addressed. In the next chapter we show how a stable edge set covering

test suite can be generated for a restricted class of timed automata. This will

be achieved by constructing a partition graph and generating tests from this.

Once constructed, it becomes easier to generate tests and obtain the desired

coverage. The resulting graph can be viewed as a timed version of the success

graph.
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Chapter 4

Symbolic Test Generation

This chapter develops a technique for automatically generating and selecting

timed Hennessy tests. Timed Hennessy tests has the potential of detecting

important timing and deadlock faults of the implementation. The technique

constructs a graph of partitions based on the stable edge set partitioning,

and then employs a symbolic constraint solving technique to compute the

reachable parts of the partition graph. From this graph, a covering test suite

can be obtained.

We demonstrate our technique on a a restricted class of timed automata, called

event recording automata, which will be de�ned in Section 4.1. The technique

is applicable to deterministic timed automata as well. The unrestricted timed

automata model presented in the previous chapter turns out to be problematic

to analyze for both principal and technical reasons. The principal problems

are caused by undecidability of language inclusion, and more importantly by

the fact that timed automata cannot be determinized, and are not closed un-

der complement. The technical problems are related to computing the desired

partitions and their reachable parts, and speci�cally, representing and manip-

ulating unions of concave sets of clock valuations, and maintaining a common

time base when di�erent clocks were reset along non-deterministic choices.

Section 4.2 shows how to construct the partition graph for event recording

automata, and proposes a test generation algorithm based thereon. The sym-

bolic techniques applied in the algorithm are derived from model checking of

real-time systems by means of reachability analysis. These techniques o�er

a tool box of eÆcient algorithms and compact data structures for represent-

ing and manipulating convex sets of clock valuations. Their de�nition and

application to the partition graph is presented in Section 4.3. To ensure ter-

mination of the reachability analysis, we employ the notion of extrapolated

symbolic states in Section 4.4. In the same vein, we propose a set of pragmatic

81
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termination criteria that can be used to limit the size of the reachability graph

when this cannot be entirely constructed.

The above algorithm generates individual tests, one for each partition. These

can be composed to obtain fewer tests. Section 4.5 outlines a procedure for

composing timed tests from the reachability graph.

We have implemented these algorithms in a prototype tool, called RTCAT.

Section 4.6 presentsits facilities, and some implementation remarks. Finally,

Section 4.7 concludes this chapter.

4.1 Event Recording Automata

Two important undecidability results from the theoretical work on timed lan-

guages described by timed automata are that 1) a non-deterministic timed

automaton cannot be converted into a deterministic (trace) equivalent timed

automaton, and 2) trace (language) inclusion between two non-deterministic

timed automata is undecidable [10, 118]. Thus, unlike the untimed case, de-

terministic and non-deterministic automata are not equally expressive. The

Event Recording Automata model (ERA) was proposed by Alur, Fix, and

Henzinger in [10] as a determinizable subclass of timed automata that enjoys

both properties. On the other hand, surprisingly, reachability is decidable for

timed automata.

Further, it is known that timed automata allowing internal actions accept

more languages than timed automata without [114], and consequently, edges

with internal actions cannot in general be removed, in contrast to the untimed

case. Speci�cally, edges with an internal action that resets clocks and that lies

on a cycle cannot be removed [114].

Although our concern here is to derive �nite length tests, and not directly to

decide language inclusion between two explicitly given timed automata, we

have seen in Chapter 2 that determinization and removal of internal actions

plays a central role in untimed test generation algorithms for non-deterministic

speci�cations. This property allowed us to construct a �nite success graph

from which it was easy to systematically generate tests, and thereby obtain a

coverage of the deadlock properties of the speci�cation.

To obtain a similar data structure for timed systems, we have decided to steer

clear of these potential problems and apply our ideas to ERA. A further bene�t

is that the required symbolic analysis is reasonably simple for this model.

ERA thus turn out to be an excellent vehicle for developing our techniques.

We comment in Chapter 5 on the impact their restrictions might have on the

practical applicability of our techniques.
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4.1.1 De�nition of Event Recording Automata

Like a timed automaton, an ERA has a set of clocks that can be used in guards

on actions and be reset when an action is taken. In ERA however, a unique

clock is associated with each action. Whenever an action is executed, the

associated clock is automatically reset. No additional resets are permitted.

Thus, unlike ordinary timed automata where clocks can be assigned to at

will, ERA maintains a strict correspondence between actions and clocks. This

ensures that the environment is in control over which clocks are reset, and this

in turn gives the determinizability property [10]. The event clock xa associated

with action a, thus records the amount of time passed since the last occurrence

of a. The formal de�nition is given in De�nition 4.1.

De�nition 4.1 Event Recording Automata:

An ERA speci�cation is a network of timed automata as de�ned in De�ni-

tions 3.3 and 3.4 with the following restrictions:

1. For each action a there is an associated clock xa, called the event clock

of a. Thus, the set of clocks is X = fxa j a 2 Ag.

2. The clock xa is automatically reset when action a is executed. Thus,

every edge labeled with action a is also implicitly labeled with the as-

signment xa := 0. No further clock assignments are permitted.

3. All actions are observable and urgent. This implies that neither inter-

nal actions (� labeled edges), nor internal synchronizations between the

individual automata in the network is permitted. That is, A = O = U .

Note that the original de�nition of ERA does not distinguish between

urgent and non-urgent actions. ERA was developed with the purpose

of studying timed languages, and not directly with modeling and test-

ing of real-time systems. Therefore it was less important to distinguish

whether a trace or an action can de�nitely, or only possibly occur. But

for testing this distinction is essential.

4. No location invariants is permitted, i.e., for all locations l, I(l) = tt .
�

Our test generator also allows shared integer variables, but for simplicity we

omit their description in our presentation. Semantically, the integer variables

will be treated as part of the control location. Integers can be used in guards,

and can be assigned during a transition. Let i; j range over integer variables.

We permit guards on integers of the forms i � c and i�j � c. We permit simple

integer assignments of the forms i := c and i := j op c with op being addition,

subtraction, multiplication, or division. See also the formal description of

communicating state machines with integer variables in Section 2.1.3.
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Although the parallel composition in the ERA model is very restricted, the

automata need not operate completely independent: they share clocks and in-

teger variables. Therefore, an action in one automaton may enable or disable

actions in the others via assignments of shared integers and resets of shared

clocks. Even this restricted parallel composition is very useful; it allows conve-

nient speci�cation of systems that should be understood as nearly independent

concurrent components, and most required synchronizations can be achieved

using shared integers.
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Figure 4.2. ERA speci�cation of a co�ee vending machine.

Figure 4.2 shows an example of a small ERA. It models a co�ee vending

machine built for impatient users such as busy researchers. When the user

has inserted a coin (coin), he must press the give button (give) to indicate

his eagerness to get a drink. If he is very eager, he presses give soon after

inserting the coin, and the vending machine outputs thin co�ee (thinCof);

apparently, there is insuÆcient time to brew good co�ee. If he waits more

than four time units, he is certain to get good co�ee (cof). If he presses give

after exactly four time units, the outcome is non-deterministic. Note that

clock resets are performed automatically, and are therefore implicit in ERA

models.
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4.1.2 Determinization of Event Recording Automata

An essential feature of ERA models is that they can be determinized. In a

deterministic automaton the choice of the next edge to be taken is uniquely

determined by the automaton's current location, the input action, and the

time the input event is o�ered.

The determinization procedure for ERA is given by [10], and is a conceptually

simple extension of the subset construction used in the untimed case, only

now the guards must be taken into account. We explain the technique in the

following.

The initial location of the deterministic ERA is L0 = f�l0g. Assume now that

the deterministic automaton occupies the locations L. Let Ea denote the

set of edges starting in L, and labeled with action a. For every non-empty

subset E0

a of Ea, the deterministic automaton contains an edge from L to the

target locations of E0

a, labeled with action a and guard g. The guard g is

constructed by conjuncting the guards in E
0

a, and by conjuncting the result

with the conjunction of the negated guards in Ea � E
0

a. As a result, the

guards of a edges from the same location L in the deterministic automaton

are mutually exclusive, and the successor location is uniquely determined by

the action, and the time it occurs.

r

r

r

r

r

l1

l2

l3

l5

l4

a; ga1

a; ga2 c; gc

b; gb

��
��

��*

HHHHHHj -

-

r

r

r

r

r

r

fl1g

fl2g

fl2; l3g

fl3g

fl5g

fl4g

-
@
@
@
@
@
@R

�
�
�
�
�
��

-

�
�
�
�
�
��

@
@
@
@
@
@R

-

a; ga2 ^ :ga1

a; ga1 ^ :ga2

a; ga1^ ga2

b; gb

c; gc
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b; gb

(a) (b)

Figure 4.3. Illustration of the determinization principle. Non-

deterministic ERA (a), and equivalent deterministic ERA (b).

Figure 4.3 shows the determinization principle. Observe how the a transitions

from l1 are sorted such that either both are enabled, or only one of them is.
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Determinization of the co�ee machine from Figure 4.2 yields the deterministic

co�ee machine illustrated in Figure 4.4.

Because the same clock is reset along every a edge, a state of the determinized

automaton can be represented by a pair consisting of a set of locations and

a single clock valuation: hL; �ui. In an unrestricted timed automata, it would

have to be represented by a set of con�gurations: fh�l1; �u1i; h�l2; �u2i; : : : ; h�ln; �unig.
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Figure 4.4. Determinized co�ee vending machine.

4.2 Test Generation from Event Recording Automata

In this section we introduce our techniques for generating tests from ERA.

The techniques will be presented top down. An overall algorithm speci�es the

main steps involved in generating a test case, and then follows a description

of each step in further detail. The �rst main step is to compute the stable

edge set partitions for ERA. This step is described later in this section. The

remaining steps of the algorithm, which involve application of the symbolic

reachability techniques, are described in succeeding sections in this chapter.

4.2.1 Overall Algorithm

Algorithm 4.5 presents the main steps of our generation procedure. According

to our coverage strategy, it must be ensured that every reachable partition is

tested by executing some pre�x trace leading to the partition, followed by the

required observations thereof.
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Algorithm 4.5 Overall Test Case Generation Algorithm:

input: ERA speci�cation S.

output: A covering set of relevant timed Hennessy properties.

1. Compute Sp = Stable Edge Set Partition Graph(S).

2. Compute Sr = Reachability(Sp).

3. Label every [L; z=p] 2 Sr with the sets M , C, R.

4. Tested := ;

5. Traverse Sr. For each [L; z=p] in Sr:

if 6 9z0: [L; z0=p] 2 Tested then

Tested := Tested [ f[L; z=p]g, and enumerate tests:

(a) Choose h�l; �ui 2 [L; z=p]

(b) Compute a concrete trace � from h�l0; �0i to h�l; �ui.

(c) Make Test Cases:

if A 2M([L; p]) then after � must A is a relevant test.

if a 2 C([L; p]) then can � � a is a relevant test.

if a 2 R([L; p]) then after � � a must ; is a relevant test.

The result of step 1 is a graph that we refer to as the partition graph. Its

nodes contain partitions, and its edges are labeled with an observable action.

An edge represents the possibility of executing an action in a state in the

source partition, waiting some amount of time, and thereby entering a state

in the target partition. The partitioning algorithm implicitly determinizes the

speci�cation such that the partition graph is a deterministic representation

of the state space. A partition will be represented by a pair [L; p], where L

is a set of location vectors in the determinized automaton, and p is boolean

combination of the inequations describing the clock constraints that must hold

for that partition, or equivalently, the set of clock valuations satisfying the

constraints. A partition [L; p] is thus the set of states fh�l; �ui j �l 2 L; �u 2 pg.

Step 2 performs symbolic reachability analysis of the partition graph. This is

done for two reasons. First, computing the reachable partitions and reachable

parts thereof, gives the states that can be chosen for testing, and to which a

trace exists. Also, to compute this trace some of the nodes in the partition
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graph may need to be traversed a number of times. Second, the reachability

analysis gives a termination criterion; when no further states can be reached,

test generation can be stopped because all reachable partitions in the speci�-

cation have been covered. Steps 1 and 2 could be interleaved such that only

the reachable parts of the partition graph are constructed. However, we con-

sider this to be an implementation technique that should not be described in

this abstract overall algorithm.

The result of step 2 is a symbolic reachability graph representing the symbolic

execution of the speci�cation and the resulting reachable state space. Nodes

in this graph consists of symbolic states [L; z=p] where L is a set of location

vectors, and where z is a constraint characterizing a set of reachable clock

vectors also in p. Speci�cally, z is a subset of the states contained in partition

p. The edges are labeled with the observable action linking two symbolic

states.

The nodes in the reachability graph are labeled with three pieces of information

in step 3: The minimized set of must sets M holding in that symbolic state,

the possible actions C in the state not contained inM , and the actions R that

must be refused.

Step 4 initializes an empty set that contains the symbolic states from which

tests have be generated so far.

Step 5 contains the generation process itself. Note that the same partition may

be traversed many times during forward reachability analysis. The coverage

criterion only requires that tests are generated from one point of the partition.

Algorithm 4.5 therefore only generates test for the �rst symbolic state that

reaches a given partition, and uses the set Tested to ignore subsequent passes

over the same partition. This ensures that all the may, must, and refusal

properties are only generated once per partition, and thus reduces the number

of produced test cases. Other strategies such as testing all reached symbolic

states, or only testing certain designated locations deemed critical by the user,

can easily be implemented.

If a particular point in the symbolic state is of interest, such as an extreme

value, this must be computed (step 5a). When a point has been chosen, a

concrete trace leading to it from the initial state is computed (step 5b). This

involves back propagation of the constraints characterizing the test point (or

partition, if no particular point is required) back along the symbolic path used

to reach the partition, and then choosing the speci�c delays in the timed trace.

Finally, in step 5c, a test case can be generated for each of the may, must, and

refusal properties holding in that symbolic state, and can �nally be output as

a test automaton in whatever output format is desired.
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It should be noted that the above algorithm generates individual timed Hen-

nessy properties. In general, it is desirable to compose several of these prop-

erties into fewer more complex test cases in the form of trees, as indicated in

Section 2.2.5. To facilitate test composition, the traversal and construction of

test cases in step 5 should be done di�erently. A procedure will be proposed

in Section 4.5. Furthermore, it should be noted that steps 1 and 2 can be

interleaved. Because not all partitions may be reachable, interleaving its con-

struction with reachability analysis could result in a smaller graph and less

memory use during its construction.

4.2.2 State Partitioning

According to our coverage criterion, there should at least be one test point

for each partition as de�ned by the same edges being enabled. The �rst step

is therefore to compute the constraints that characterize each such partition.

Because we need to take care of potential non-determinism, the partition con-

straints are computed from a set of location vectors rather than a single vec-

tor. For such set of locations the constraints that precisely characterizes the

enabledness of a given subset (and only these) of outgoing edges can be com-

puted. This is done formally in De�nition 4.6 (1), where the constraints are

computed by conjuncting the guards that must be enabled and by conjuncting

the negated guards of edges that must be disabled.

De�nition 4.6 State partitioning P (L):

Let L be a set of location vectors, E(L) the set of edges starting in a location

vector in L, E a set of edges, and �(E) = fg j �l
g;a
��! �l0 2 Eg. Recall from De�-

nition 3.3 that G(X) denotes the set of possible guards that can be generated

using conjunctions of bounds on di�erences of clocks in X.

1. P (L) = fPE j E 2 2E(L)
g; where PE =

^
g2�(E)

g ^

^
g2�(E(L)�E)

:g

PE , expressed as a disjunction of conjunctions of clock inequations only,

such that
W
i

V
j

ij () PE , is said to be on disjunctive normal form.

Recall that a guard is a conjunction of bounds on clock di�erences, 
.

Therefore, PE on disjunctive normal form can be written as
W
i
gi. Let

DNF(PE) = fg j g 2 G(X)g such that
W
g2DNF(PE)

() PE .

2. Pdnf(L) =
[

PE2P (L)

DNF(PE)

�
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The resulting partitions su�er from two serious drawbacks both caused by

the use of negation of guards that are themselves conjunctions of simple con-

straints as de�ned in De�nition 3.3. First, we would like the partitions to

form contiguous convex polyhedra in the jXj-dimensional space such that it

is possible to delay �u inside p without encountering a change in the set of

enabled edges. That is, for any �u 2 p there is a delay d such that for all d0 < d

it holds that �u + d 2 p, and for all d0 � d it holds that �u + d
0
62 p. This can

be ensured by allowing only convex polyhedra, which in turn can be obtained

using conjunction only. Second, if the partitions form convex polyhedra, the

existing eÆcient techniques for forward and backward reachability analysis

can be reused.

We therefore use the slightly �ner, but convex partitions, de�ned in De�ni-

tion 4.6 (2) where each partition is described using only conjunction. This is

easily accomplished by rewriting the original constraints PE to their disjunc-

tive normal form, and by treating each disjunct as its own partition.

We can view the state space of the speci�cation as a graph of partitions.

Speci�cally, a partition can be represented by the pair [L; p], where L is a set

of locations, and p is the constraints characterizing its set of enabled edges.

A node in this graph contains a partition. An edge between two nodes are

labeled with an observable action, and represents the possibility of executing

an action in a state in the source node, waiting some amount of time, and

thereby entering a state in the target node. The partition graph is de�ned

formally in De�nition 4.7.

De�nition 4.7 Partition Graph:

The nodes and edges are de�ned inductively as:

1. The set f[L0; p] j L0 = f�l0g and p 2 Pdnf(L0)g are nodes.

2. if [L; p] is a node, so is [La; pa], and [L; p]
a
�! [La; pa] is an edge, where

La = f�l0 j 9�l 2 L: �l
g;a
��! �l0 ^ (g ^ p 6= ;)g, and pa 2 Pdnf(La).

�

The graph is constructed by starting from an existing node [L; p] (initially

the partitions of the initial location), and then for each enabled action a, by

computing the set of locations La that can be entered by executing the a action

from the partition. Then the partitions pa of location La can be computed

according to De�nition 4.6 (2). Every [La; pa] is then an a successor of [L; p].

It should be noted that only partitions whose constraints have solutions need

to be represented. Further, not all may be reachable from the initial state.

The partition graph for the co�ee machine is depicted in Figure 4.8.
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Figure 4.8. Partition graph for the co�ee machine.
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Proposition 4.9 states some further properties about our partitioning. First,

by construction it holds that the edges enabled in the partition [L; p] are the

same for all concrete states in that partition. Therefore all concrete states of a

partition satisfy exactly the same 'single action' tests (Hennessy test without

a preceding trace). This property con�rms that the partition graph represents

di�erent deadlock situations, which was part of the original motivation for

choosing it. Second, the partition graph gives a deterministic representation

of the state space.

Proposition 4.9 Partition properties.:

1. Single Action Tests. 8hL; �ui; hL; �vi 2 [L; p]:

(a) hL; �ui j= after � must A i� hL; �vi j= after � must A

(b) hL; �ui j= after a must ; i� hL; �vi j= after a must ;

(c) hL; �ui j= can a i� hL; �vi j= can a

2. Determinism: 8hL; �ui 2 [L; p]:

hL; �ui
a
�! hL

0
; �u0i and hL; �ui

a
�! hL

00
; �u00i implies hL0; �u0i = hL

00
; �u00i

Argument:

1. follows from the absence of � actions and non-urgent actions, and from

the construction of p which ensures that every state has exactly the same

enabled and disabled transitions. Only the enabled transitions, and not the

clock values, a�ect which single action tests are satis�ed.

2. follows because 1) from a given set of locations L every subset of edges with

the same action a (and only these edges) are formed, 2) the target location

La is constructed to contain all locations that can be entered by executing an

a action from any source location in L, and 3) the same clock xa is reset on

all a edges. Because the partitioning forms the subsets of all edges, it is �ner

than the one resulting from the determinization algorithm of ERA, which only

requires subsets of all edges labeled with the same action [10]. �

Each partition [L; p] can now be decorated with the action setsM;C;R de�ned

in De�nition 4.10 as needed by Algorithm 4.5.
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De�nition 4.10 Decorated Partitions:

De�ne Must([L; p]) = fA j 9hL; �ui 2 [L; p]: hL; �ui j= after � must Ag

Sort([L; p]) = fa j 9hL; �ui 2 [L; p]: hL; �ui
a
�!g

1. M([L; p]) = min�Must[L; p].

2. C([L; p]) = Sort([L; p])�
S
A2M([L;p])A.

3. R([L; p]) = O � Sort([L; p]).

�

The reader should observe the (intended) similarity between the partition

graph and the untimed success graph de�ned in Section 2.3. In the timed

case, we are further challenged by the problem of computing 1) the reachable

partitions, 2) the reachable parts of these partitions (no all clock valuations

of a partition are reachable from the initial state), and 3) the speci�c timed

traces needed to generate test cases. These problems are addressed in the

following section.

4.3 Symbolic Techniques

The reachable parts of the partitions must be computed before concrete test

cases can be generated. Given the reachable parts, the desired test points can

be chosen, and timed traces leading to the chosen test points can be synthe-

sized. Also, a symbolic representation of the state space is needed for the ter-

mination of Algorithm 4.5. The algorithm stops when all reachable partitions

have been reached and tested. The required computations consist of solving

linear inequalities on clocks. The computations can be done eÆciently using

the so-called zone technique developed for model checking of timed automata

[38, 18, 120, 119, 13, 64]. Speci�cally, we shall employ similar techniques as

those developed for the UppAal tool [119, 13, 64].

4.3.1 Zones

A zone is a conjunction of linear inequalities on clock variables. The solution

set of a zone is the set of all clock valuations that satis�es its constraints. A

zone will for example be used to describe the solutions to a guard.
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De�nition 4.11 Zones:

Let X = fx1 : : : xng be a set of clocks. A zone z over clocks inX is a constraint

system consisting of conjunctions of clock constraints of the following forms:

fxi � xj � cij j i; j � ng [ fai � xig [ fxi � big; where �2 f<;�g,

cij ; ai; bi are integers including1, and xi; xj 2 X.

�

Intuitively, ai is a lower bound on clock i, bi an upper bound, and cij a

maximum di�erence of two clocks i; j. The needed symbolic computations

rely on the tool box of operations on zones de�ned in De�nition 4.12. We

postpone their implementation until Section 4.3.2.

De�nition 4.12 Operations on zones:

1. z" =def f�u+ d j 9d 2 R�0 ; �u 2 zg. z" contains the future of z, i.e., the

clock valuations that can be reached from z by delaying.

2. z# =def f�u j 9d 2 R�0 ; �u + d 2 zg. z
# contains the past of z, i.e., the

clock valuations that can reach z by delaying.

3. zxi:=0 =def f�u[xi 7! 0] j �u 2 zg. zxi:=0 is obtained by resetting the clock

xi in all clock valuations in z.

4. border (z; xi) =def f�u 2 z j �u(xi) = 0g. The border of a zone z on clock

xi is the subset of z where xi equals zero.

5. free(z; xi) =def f�u[xi 7! d] j �u 2 z; d 2 R�0g. Free unconstrains the

upper and lower bounds on the clock xi, that is, xi is allowed to assume

any value.

6. z1 ^ z2 =def z1 \ z2 gives the intersection of two zones, i.e., the clock

valuation where the constraints of both zones are satis�ed.

7. z1 � z2 is a predicate that determines whether one zone is fully contained

in another, i.e., z1 is implied by z2.

8. z = ; is a predicate that determines whether the zone is empty. A zone

is empty when its inequalities are unsatis�able.

�

Perceived graphically, a zone forms a convex polyhedra in the n-dimensional

space. The zone operations are depicted graphically in Figure 4.13.

Zones are closed under all the above operations. Thus, applying any of these

operators on a zone results in a set of clock valuations describable by a zone.
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Figure 4.13. Operations on zones.

4.3.2 Di�erence Bound Matrixes

Zones can be repressented eÆciently by the di�erence bound matrix (DBM)

data structure. DBMs were �rst applied to represent clock di�erences by Dill

in [38]. A DBM represents clock di�erence constraints of the form xi�xj � cij

by a (n + 1) � (n + 1) matrix such that cij equals matrix element (i; j), and

where n is the number of clocks.

To represent constraints of the form xi � c, DBMs use a special zero clock 0

that has the constant value 0. Thus, xi � ci is represented as xi � 0 � ci.

Note that lower bound constraints of the form xi � xj � cij are rewritten as

xj�xi � �cij to �t into a DBM. Similarly, xi � ci is rewritten as 0�xi � �ci.
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Also each matrix element encodes whether the comparator is strict or not, i.e,

< vs. �. Figure 4.14(a) shows an example of a DBM.

In general, several DBMs can represent the same constraint system. Closer

inspection of z from Figure 4.14(a) reveals an implicit constraint on the upper

bound of x1 caused by the upper bound on the clock di�erences between x1

and x2, and the bound on x2. Thereby, x1 � 7. A DBM where all implicit

constraints have been resolved such that for all xi�xj � cij, cij is the tightest

bound possible such that the DBM represents the same solutions, is canonical.

Two DBMs represents the same solution set i� the DBMs in canonical form

are identical. The canonical DBM for z is shown in Figure 4.14(b).

The canonical representation of a DBM can be computed by an all pairs short-

est path algorithm. This is the most expensive DBM operation; it has a cubic

complexity in the number of clocks. The algorithms for checking the inclusion

and emptyness of zones assume that the DBMs are represented in their canon-

ical forms. Implementation of other zone operators are described in [14, 120].

0 x1 x2

0 � �5 0

x1 1 � 4

x2 3 1 �

0 x1 x2

0 � �5 �1

x1 7 � 4

x2 3 �2 �

(a) (b)

Figure 4.14. DBM representation of the constraint

z = x1 � x2 � 4 ^ x2 � 3 ^ x1 � 5 (a), and the DBM on canon-

ical form (b).

4.3.3 Forward Reachability

We next describe how to compute the reachable subsets of the partitions.

We introduce the notion of a symbolic reachability graph which represents the

computations that a partition of the partitioned ERA can perform.

A symbolic state, written [L; z=p], represents a reachable part of partition

[L; p]. Let z be a zone of reachable clock valuations, and let z � p. The

notation z=p denotes that z is a reachable fraction of p. Similarly, a symbolic

transition does not represent a single transition but rather a whole set of

possible transitions. We shall write [L; z=p]
a
=) [L0; z0=p0] if z0 contains all

clock valuations in the partition p
0 reachable from the states hL; �ui, �u 2 z

by performing an a action followed by some delay. This relation is de�ned

formally in De�nition 4.15.
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De�nition 4.15 Symbolic Transitions:

[L; z=p]
a
=) [L0; z0=p0] i� [L; p]

a
�! [L0; p0] and

z
0 = f�u0 j 9�u 2 z: 9d 2 R�0 : hL; �ui

a�"(d)
���! hL

0
; �u0i ^ �u0 2 p

0
g; and z

0
6= ;

�

The target zone of a symbolic transition can easily be computed using the

equation: z0 = (zxa:=0)
"
^ p

0, and our de�ned operators on zones. First, zxa:=0

yields the clock valuations of z after the a action is executed, and consequently

after a's event clock is reset. Second, the application of the future operator

yields all states reachable after the a action by letting time pass, and �nally

the subset of p0 reachable from z is computed by conjuncting with the p
0

constraint. This procedure is illustrated graphically in Figur 4.16.

�����
�����
�����
�����

�����
�����
�����
�����

z

L

a

xa
L
0

p
0

xb xb

xa

z2

z
0

z1

z1 = zxa:=0

z2 = z
"

1

z
0 = z2 ^ p

0

Figure 4.16. Illustration of [L; z=p]
a
=) [L0; z0=p0].

Forward reachability analysis starts in the initial state, and iteratively com-

putes the symbolic states that can be reached in one step from an existing

symbolic state. This traversal can either be done depth �rst or breadth �rst.

When a new symbolic state is contained in one previously reached, it can be

concluded that no further states can be reached from it, and therefore, that it

needs no further exploration. This procedure is repeated while new symbolic

states are found.

Forward reachability analysis follows the direction of edges in the speci�cation.

The opposite, backward reachability analysis, starts from some desirable or
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undesirable symbolic state by following the edges in the opposite direction,

and stopping when the initial state is found.

An algorithm inspired by Petterson, Daniels, and Yi [119, 83] for forward

reachability analysis of the partition graph is formulated in Algorithm 4.17.

Algorithm 4.17 Forward reachability computation:

passed := ;

waiting := f[L0; z0=p] j z0 = �0" ^ p; p 2 Pdnf(L0); L0 = f�l0g g

while(waiting 6= ;)

waiting := waiting� f[L; z=p]g

if 6 9[L; z0=p] 2 passed: z � z
0

passed := passed [ f[L; z=p]g

whenever [L; z=p]
a
=) [L0; z0=p0]

waiting := waiting [ f[L0; z0=p0]g

The algorithm maintains two sets of symbolic states: The passed list contains

the symbolic states already explored. The waiting list contains the states that

still are to be explored. If the waiting list is accessed using a stack discipline,

the state space is traversed depth �rst; if it is accessed using a queue discipline,

the state space is traversed breadth �rst.

There are two technical remarks to be made about the algorithm. Because

of the structure of the partition graph, the algorithm is started, not in the

initial state [Lo;
�0], but in the symbolic states that the initial state can reach

by only delaying. The second comment regards termination. As we discuss in

Section 4.4 subset inclusion as used by the algorithm is not always suÆcient

to ensure termination. The passed symbolic states need to contain certain

extrapolated states. We also discuss possible strategies when the speci�cation

becomes too large for a complete reachability analysis.

When the algorithm terminates, the passed list contains the reachable state

space. A partition [L; p] is reachable if there exists some [L; z=p] in the passed

list. The reachable states of a partition equals the union of all such z's.

When the algorithm traverses the state space breadth �rst, it also computes

the shortest (not necessarily the fastest) traces leading to each partition:

When the partition [L; p] is encountered for the �rst time by a symbolic state

[Ln; zn=p], the symbolic transitions taken by the algorithm from the initial

location constitute a shortest trace to the partition. Using the shortest trace

in a test case will help reducing the size of the test suite.
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4.3.4 Back Propagation of Constraints

Given a symbolic trace, the next step is to compute a sample concrete trace

leading from the initial state to the target partition, or to the desired subset

thereof. To do this, we compute a symbolic state that contains the subset of

states that all lead to the �nal state. To illustrate the need for strengthening,

consider the speci�cation in Figure 4.18 in which the terminal state s3 can

only be reached if the b action is taken before 7 time units after the �rst a

action.

s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0
Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7Xa<=7
a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!

Figure 4.18. Strengthening zones.

From the de�nition of symbolic transitions it follows that if [L; z=p]
a
=) [L0; z0=p0]

then some of the states in [L; z=p] can reach z0, but not necessarily all of them.

We introduce a strengthened symbolic state, written [L; y=z=p], where y now is

the subset of z which all will reach the desired states. We call y a strengthened

zone of z. De�nition 4.19 formally states the required relation between two

strengthened symbolic states in a trace.

De�nition 4.19 Strengthened zones:

[L; y=z=p]
a
=) [L0; y0=z0=p0] i� [L; z=p]

a
=) [L0; z0=p0] and

y = f�u 2 z j 9d 2 R�0 :hL; �ui
a�"(d)
���! hL

0
; �u0i ^ �u0 2 y

0
g

�

A strengthened zone y can be computed essentially using the same techniques

that would be used in backward reachability analysis:

y = free(xa; border (xa; y
0#)) ^ z

The steps for strengthening zone z to reach y0 = z
0 in Figure 4.16 are illustrated

in Figure 4.20. First, application of the past operator to y
0 gives the set of

clock valuations that can reach y
0 by delaying. Second, the border operation

extracts the subset thereof where the clock xa is zero, that is, the values just

after the a action which implicitly assigns zero to xa. Third, freeing xa in

this set gives the clock valuations just before the clock assignment that can

reach y
0 by performing an a action and then delaying some. Finally, y can be

computed as the intersection of the freed zone and z.

To reach the terminal zone or a subset y thereof, back propagation must be

performed starting from the terminal zone and back towards the initial state.
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Figure 4.20. Backward propagation of constraints.

4.3.5 Timed Trace Computation

The �nal step in the computation of a single test case is to compute a spe-

ci�c trace with concrete delays from a symbolic trace. This can be done by

either going forwards or backwards in the strengthened trace. We elaborate

on the forward approach because this will also be used in the test composition

algorithm outlined in Section 4.5.

When a speci�c clock valuation in one zone has been chosen, the possible

delays from that to the next zone in the trace can be computed. The speci�c

delay can then be chosen according to a selection strategy. Given a �xed

delay, the reached clock valuation in the successor zone can be computed.

The procedure is started in the initial state hL0;
�0i, and proceeds until the

�nal state of the trace is reached.

Let �u be chosen in y, and suppose that [L; y=z=p]
a
=) [L0; y0=z0=p0]. The set of

clock valuations in y0 that are reachable from the state hL; �ui can be computed

as a forward reachability step: y00 = (�uxa:=0)
"
^ y

0.

Now observe that y00 is a line segment, and that �xing a delay implies �xing a

point on this line segment. The possible delays D are directly available as the

upper and lower bound on clock xa in the canonical DBM of y00 because xa
was reset when a was taken. Assume that the delay d1 2 D is chosen. Then

the selected point �u0 in y
00 can be computed as: y00 ^ xa = d1.

The speci�c delay can be chosen freely in the range D. We introduce the selec-

tion function D(D), which chooses a delay according to a reasonable strategy.
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There are three immediate strategies for D:

1. Choose the smallest delay d 2 D. This checks the promptness of the

implementation by executing the succeeding action at the earliest time

possible in the current trajectory.

2. Choose the delay (possibly stochastically) to be in the middle of D. This

checks the persistence of the implementation, i.e., that the succeeding

action can be executed in the interior of the line segment.

3. Choose the delay to be the largest delay in D. This tests the patience

of the system, i.e., that the succeeding action is also executable at the

latest required time.

Of the above strategies, it seems most important to check the promptness of

the system as this checks for missed deadline errors, which are common in

real-time systems. But also the patience may be important, because this may

detect errors where a timer times out prematurely.

4.3.6 Extreme Value Selection

The experiences from testing of sequential programs [12] suggest that many

bugs are found near the extreme values of the input domains, and therefore

that testing should focus around these. This may well also be the case for

real-time systems. We here suggest that extreme real-time inputs can be

interpreted as extreme clock valuations in the reached symbolic states. Algo-

rithm 4.5 is able to compute a trace leading to any reached (subset) of clock

valuations, including extreme values.

In our setup we can de�ne two types of extreme values, local and global ex-

tremes. The global extremes are de�ned by the reached extreme values of

the partitions, whereas local extremes are de�ned by a single reached zone (a

subset of a partition). Because an partition may be passed several times by a

symbolic state, these two notions do not coincide.

One could de�ne precisely what constitutes an extreme value in several ways,

but we do not pursue this here. Figure 4.21 shows some possible candidates

for the extreme values of a zone. The information required to compute such

extreme values is directly available from its canonical DBM representation.

There is no similar direct method of computing the global extremes with the

DBM representation. One must compute all reached local extremes and select

those that constitute global extremes.
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x2

x1

Figure 4.21. Candidates for local extreme values.

4.3.7 Symbolic Execution of Unrestricted Timed Automata

This subsection is devoted to a problem unrelated to analysis of ERA, but

related to the problem of implementing the direct test generation lgorithm

(Algorithm 3.11), outlined in Section 3.3 for unrestricted timed automata.

That algorithm assumes two operations; one to compute the reachable states

after a delay, and one to compute the reachable states after an action. It was

stated that this potentially in�nite set of states could be computed the using

the symbolic reachability techniques just presented. In this subsection, we

substantiate this claim by formulating Algorithm 4.22, which computes these

sets.

One restriction to timed automata will be convenient: Only true guards will be

permitted on urgent hidden actions. This restriction ensures that an urgent �u
action is possible for all clock valuations in a location vector, or not possible

at all in that location vector. Without this restriction we would need an

(unpleasant) set-di�erence operator on zones to subtract the subset of states

that cannot be reached because time may not pass when an urgent �u is

possible.

The following notation is needed. Let the present state of the network be

represented by a set of symbolic states Z = f[�l1; z1] : : : [�ln; zn]g. Let xt be

an auxiliary timer not used in the automata, which will be reset after every

observable action, thus recording the amount of time passed since then. Divide

Z into two subsets Znu from which no symbolic state can perform an urgent �u
action, and Zu from which all symbolic states can perform an urgent �u action

(they may also be able to perform a non-urgent �). Let r(z), free(r; z), and

border (r; z) be the assignment, free, and border operations de�ned on zones

generalized to sets of assignments. De�ne pre(r; z) =def free(r; border (r; z
#)).
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Finally, let
g;�;r
���!y be a shorthand for

g;�;r
���! when the � action arises from an

explicit � labeled edge, or for
g1^g2;�;r1[r2
��������! when the � action arises from a

synchronization between some li
g1;a;r1
����! l

0

i
and lj

g2;�a;r2
����! l

0

j
.

Algorithm 4.22 Symbolic execution of timed automata:
after(Z; d) =def afternu (Znu; d)

S
afteru (Zu; d)

afternu(Znu; d) =def f[�l; z0] j [�l; z] 2 Znu; z
0 = (z" ^ I(�l) ^ xt = d); z0 6= ;gS

after(Z 0
; d); where

Z
0 = f[�l0; z00] j 9[�l; z] 2 Znu:

�l
g;�;r
���!y

�l0;

z
00 = r(z" ^ I(�l) ^ xt � d ^ g ^ pre(r; I(�l0))); z00 6= ;g

afteru(Zu; d) =def f[�l0; z0] j [�l; z] 2 Zu;
�l0 = �l ^ z

0 = (z ^ xt = d); z0 6= ;gS
after(Z 0

; d);where

Z
0 = f[�l0; z00] j 9[�l; z] 2 Zu:

�l
g;�;r
���!y

�l0;

z
00 = r(z ^ g ^ xt � d ^ pre(r; I(�l0))); z00 6= ;g

after(Z; a) =def f[�l0; z0] j 9[�l; z] 2 Z: 9�l
g;a;r
���! �l0;

z
0 = (r0(z ^ g ^ pre(r; I(�l0)))); z0 6= ;g;

r
0 = r [ fxt := 0g

Intuitively, we need to accumulate an amount of d time units across
�
�!

�

and
"(e)
��! transitions. The function after(Z; d) recursively follows � actions, and

collects all states that can be reached after d time units.

The function afternu(Znu; d) collects the symbolic states that can be reached

by letting time pass with less than d time units, or reached after executing a

non-urgent action. Similarly, afteru(Znu; d) collects the symbolic states that

can be reached after having executed an (urgent or non-urgent) internal action

without letting time pass. Letting time pass is not permitted when an internal

action is enabled.

The function after(Z; a) computes all symbolic states that can be reached

from a symbolic state in Z by executing an a action.

Finally, we remark that computing the satisfaction of the Z after "(d) must A

predicate is also rather involved. We say that a state h�l; �ui is pseudo stable if

it allows time to pass, i.e., if h�l; �ui
"(d)
��! for some d. It is not pseudo stable if it

has an enabled urgent � action, or if it is positioned at the boundary of an in-

variant condition. All such pseudo stable symbolic states in Z 0 = Z after "(d)

must be able to perform one of the (urgent) actions in A. Both extracting
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the pseudo stable parts of symbolic states, and checking if a symbolic state is

covered by some a 2 A involves negation of guards (or alternatively set dif-

ference operation) and conjuncting these to the symbolic states. As we have

seen, this results in non-convex sets, or requires a representation as several

convex zones.

4.4 Termination

This section further comments on the termination of the test case generation

algorithm, and in particular on the forward reachability algorithm presented

in Algorithm 4.17, because this implicitly terminates both the overall test case

generation algorithm and the test composition algorithm. The �rst comment

is of a technical nature concerning termination of the forward reachability

analysis which is not guaranteed in the presented version of Algorithm 4.17.

The second comment is about pragmatic approaches to handling large spec-

i�cations. One problem is that memory and time limitations may prohibit

complete symbolically analysis. Another is that the resulting test suite may

be too large to be executed within the given time resources.

4.4.1 Termination of Forward Reachability

The forward reachability algorithm in Algorithm 4.17 stops further exploration

when it �nds a previously visited symbolic state containing the current one.

It is possible to construct ERA models, like timed automata in general, that

exhibits a diverging behavior of its clock values. An example is shown in

Figure 4.23. The value of clock xa in location s1 increases by one each time

a b action is executed. Therefore, the reachability algorithm will never �nd

an existing state in the passed list that contains the new value of xa, and

consequently never terminate.

b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!
Xb=1Xb=1Xb=1Xb=1Xb=1Xb=1Xb=1Xb=1Xb=1Xb=1Xb=1Xb=1Xb=1Xb=1Xb=1Xb=1Xb=1

a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!
Xa=0Xa=0Xa=0Xa=0Xa=0Xa=0Xa=0Xa=0Xa=0Xa=0Xa=0Xa=0Xa=0Xa=0Xa=0Xa=0Xa=0

s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0

Figure 4.23. Diverging speci�cation.

When the symbolic reachability techniques are used for model checking, this

problem is solved by extrapolating clock values from the reached states such

that termination will be ensured. We apply this technique, but also comment

on its implications on testing.
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The essential observation is that the precise value of a clock is irrelevant when

it exceeds a certain maximum value Cm. Larger values will not enable or

disable further guards. This observation is also applied to achieve a �nite

representation of a discrete time semantics in Section 3.1.3, and in the �nite

region graph representation de�ned in Section 3.4.2. In ERA, it suÆces to

choose Cm larger than the largest constant used in its guards.

Intuitively, the extrapolation of a zone is the zone where all upper bounds larger

that Cm has been removed, and where all lower bounds has been replaced by

Cm, see De�nition 4.24 and Figure 4.25. For further information see [83, 35].

De�nition 4.24 Extrapolation [83]:

Let z =
V
ij
xi � xj � cij denote the constraints of a DBM in its canonical

form, and let z0 =
V
ij
xi � xj � c

0

ij
denote the extrapolated zone, where

c
0

ij
=

8<
:

1; if cij > Cm

�Cm; if cij < �Cm

cij otherwize
�
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Figure 4.25. A zone z (a), and extrapolated zone z0 (b).

However, for testing it is important to observe that the extrapolated zone con-

tains information that is not necessarily reachable. This implies that not all

clock valuations in an extrapolated zone are valid for test selection. To avoid

this problem, we propose the simple solution of storing the passed list in the

reachability analysis as extrapolated zones, but storing the constructed reach-

ability graph using only zones with exact information. Only the reachability

graph is traversed during test generation.

This solution ensures that all reachable partitions will be reached by a portion

of clock valuations, and guarantees termination (unless a discrete variable is
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unbounded), but at a cost of storing each symbolic state more than once (twice

if the entire reachability graph is stored at the same time).

Moreover, because the extrapolated information helps terminating loops at

which clock values diverge, the stored exact information will not contain all

extreme values of the speci�cation that are in fact reachable by unfolding such

loops. This means that certain reachable states are unavailable for test selec-

tion. It is unknown what practical consequences this limitation has on error

detection, but we expect them not to be severe, because the partition is tested

by other values. Further, the test generation algorithm can be modi�ed to

unfold loops a number of times, and thereby reach additional extreme values.

4.4.2 Pragmatic Termination Criteria

We shall here propose a few pragmatic strategies for handling speci�cations

whose reachability or partition graphs are too large to be completely com-

puted, stored, or tested.

Limit trace length: Construction of the graph is terminated when its depth

exceeds the maximum desired value.

Random Exploration: At each node, only a randomly chosen set of its suc-

cessor nodes will be constructed. The construction is continued until

the desired number of nodes is constructed, or a space or time limit is

reached.

Bit-State Hashing: With bit-state hashing, a node is deemed previously

reached if it hashes to the same hash table entry as another node. The

nodes of the graph are stored in a hash table of lengthN . A hash function

computes a hash key hi for each node which is then stored in the table at

entry hi mod N . Without bit-state hashing, con
icts could be resolved

using open hashing such that con
icting entries are stored in a chained

list. With bit-state hashing however, only the �rst encountered node

will be stored. When a second node is encountered, it is disregarded,

and no further exploration is done from it. If the contents of the node is

no longer needed, the hash entry can be implemented using only one bit

per node, which thus gives a very compact representation. N would be

chosen close to the available memory, or to the maximum desired state

space.

The bit-state hashing technique was popularized by the Spin model checker

by Holzman [54]. He also gives a detailed account of its properties, and also
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outlines other partial search methods. It is believed to result in a better

(under) approximation of the state space than random exploration, which

has a tendency of con�ning itself to small parts of the state space. In our

partition graph, hash keys can be computed from a combination of control

location vector and integer variable values. In the reachability graph, it can

be based on an identi�cation number of the concave or convex parititions.

4.5 Composing Tests

The overall test generation algorithm given in Algorithm 4.5 has the disadvan-

tage of generating a test case per must, can, and refusal property per symbolic

state to be tested. Because the execution of the generated test suite can be a

bottleneck, it is important to reduce its size, while maintaining coverage. The

size of a test suite can be measured by the number of tests cases it contains,

and their combined total length.

In addition, composing tests reduces the number of inconclusive verdicts expe-

rienced during test execution, and hence reduces the number of re-executions

of the same test case.

It is possible to reduce the size of the test suite generated by Algorithm 4.5

by not repeating tests that have been generated as part of the trace leading

to a symbolic state. Also, a test case should in case of non-determinism be

constructed as a tree as indicated in Figure 2.22, such that test execution can

be continued from all outcomes of a non-deterministic choice, provided the

chosen branch is uncovered by a previous test. We propose an algorithm that

constructs tree structured tests and attempts to reduce the test suite size.

4.5.1 Composition Algorithm

Because the exact algorithm is somewhat involved we shall here only outline

the principles of how it works. The input to the algorithm is a spanning

tree of the reachability graph, speci�cally the tree obtained during forward

reachability analysis. In this so-called reachability tree, the leafs are either

symbolic states from where no actions are possible, or symbolic states at which

the search was terminated because the state was contained in one previously

reached, or because one of the alternative termination strategies outlined in

Section 4.4 was activated.



108 CHAPTER 4. SYMBOLIC TEST GENERATION

Algorithm 4.26 Composition of timed tests:

input: reachability tree.

output: A covering set of timed tests.

construct �rst test tree

while (more test trees) f

while (more splits) f

back propagate constraints

generate timed trace tree

output test case

make new split

g

mutate test tree

g

The algorithm is outlined in Algorithm 4.26. It operates on a structure called

a test tree, which is a subtree of the reachability tree, and which also forms

the structure of the generated test. Each node is labeled with one of the must,

can, or refusal properties for that node, i.e., a set of actions A 2 M , A = C,

or A = R. For each action a in A, there is an a labeled edge leading to a node

which will contain the sub test to be executed after a. If the node represents

a refusal (A = R), there are no such sub tests, and consequently no outgoing

edges. The verdict of the test in a given node depends on the chosen property.

This procedure is in spirit identical to the construction of a test case in the

untimed case in Algorithm 2.27, except it is now executed in the reachability

tree. Given such a test tree, the algorithm propagates constraints back from

the leafs, instantiates the tree by selecting a speci�c \trace tree" leading to

the leafs, and outputs it in a suitable format. The algorithm then mutates the

test tree such that a new test can be generated. This procedure is continued

until all required properties are contained in some test case, and such that the

reachability graph is covered as required.

The back propagation and test tree mutation steps require some further com-

ments contained in the following Sections 4.5.2 and 4.5.3.
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4.5.2 Back Propagation in the Test Tree

Because we shall need to compute a symbolic trace tree that will lead to

all leaf nodes, we �rst back propagate constraints from the leafs such that a

strengthened zones in the tree represents the states that will lead to the leafs of

its sub trees. This can be done using the technique given in Section 4.3.4. The

trace tree can then be computed using the timed trace generation algorithm

given in Section 4.3.5.

Assume that a symbolic state has two transitions, a and b, as shown in Fig-

ure 4.27: [L; y0=z=p]
a
=) [La; ya=za=pa] and [L; y00=z=p]

b
=) [Lb; yb=zb=pb].
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Figure 4.27. Entire zone z does not reach both zone ya and yb,

but zone y = y
0
^ y

00 does. both

y
0 contains the clock valuations that will reach the leafs of subtree a, and y

00

contains the clock valuations that will reach the leafs of subtree b. The clock

valuation y that will reach the leafs of both subtrees is hence the intersection

of y0 and y
00: y = y

0
^ y

00.

However, back propagation in a tree poses a problem because, in a given

symbolic state, there may not be a common set of clock valuation that are

able to reach the leafs of all its sub trees, i.e., y may be empty. When this

happens, the single tests joined by the tree cannot be composed.

We propose to handle this problem by splitting the test tree by temporarily

detaching the subtrees that caused a split. This is illustrated in Figure 4.28(a).

After the test has been generated, the previously detached subtrees are reat-

tached, but the subtrees now completed are detached, see Figure 4.28(b). In

principle, the reattached nodes could cause a new split; splitting of a test tree

can therefore happen a number of times.
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(a) (b)

(3)
(3)

(1)

(2)

Figure 4.28. Splitting a test tree. A reachability tree with a

chosen test tree with two subtrees (1) and (2) cut o� (a), and the

test tree after reattachment (3) (b).

4.5.3 Mutation of Test Trees

To compose as much behavior as possible, the test tree is constructed to be

maximal at any given time: either its leafs are leafs in the reachability tree,

or they are parents to completed nodes. A node is completed when either

� all the nodes of its subtree are completed, and if it has been decided to

generate tests for the node, then all the node's M , C, R propeties are

contained in some generated test, or if

� all the nodes of its subtree are completed, and it is decided not to gen-

erate tests from this node.

When a test has been generated for the current test tree, the idea is to mutate

all of its leaf nodes simultaneously whereby a new test tree is obtained, with

as many modi�cations of the original as possible.

There are two options for mutating a node, which are depicted in Figure 4.29:

� replace a completed a labeled subtree with a new unexplored a labeled

sub tree of the reachability tree. This involves selecting and constructing

a new sub test tree, or

� mutate its property by choosing a new set of M , C or R actions. To

ensure maximality, this possibly involves adding a new unexplored sub-

tree, because a new action was enabled, and possibly removing a sub

tree because an action was disabled.

The implementation of these rules must ensure that all sub trees of the reach-

ability tree are included in a test tree at some point in time, and that all its
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(a) (b) (c)

C = ;; R = fcg

aa b

C = ;; R = fcg

M = fa; bg,

b

M = fa; bg,

aa a a b

M = fa; bg,

C = ;; R = fcg

Figure 4.29. Mutating a test tree. A reachability tree (dashed

lines) with superimposed test tree (solid lines) (a), mutation by

changing property at the black node (b), and mutation by changing

subtree (c).

nodes are completed after termination. It should also be noted that this algo-

rithm, like the overall Algorithm 4.5, skips symbolic states for which tests has

already been generated. We propose to generate tests from a symbolic state

the �rst time its partition is encountered during the reachability analysis, using

either breadth �rst or depth �rst traversals as desired.

4.6 Implementation

We have implemented our approach and algorithms in a prototype tool called

RTCAT. The purpose of the prototype is to evaluate our approach with respect

to implementability, and the number and type of generated tests.

4.6.1 Facilities

RTCAT inputs an ERA speci�cation inAutoGraph format [92]. A speci�ca-

tion may consist of several ERA operating in parallel, and communicating via

shared clocks and integer variables, but no internal synchronization is allowed

as stated in Section 4.1. RTCAT performs partitioning, symbolic reachability

analysis, and outputs a covering test suite to a �le in dot format [62]. Other

features include:

Termination: By default, the entire partition and reachability graphs are

constructed. Reachability terminates using subset inclusion with ex-

trapolation. Construction of both graphs can also be terminated by

specifying a trace depth, using bit-state hashing, or both.
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Construction Order: Both breadth �rst and depth �rst construction of

the partition and reachability graphs are implemented. Tests are gen-

erated for a node the �rst time its (convex) partition is passed during

reachability graph construction.

Test Structure: Tests can be constructed either as individual timed Hen-

nessy tests (Algorithm 4.5) or as test trees using the principles outlined

in Section 4.5. To reduce the number of inconclusive verdicts at the

intermediate steps in an individually generated test, a sub test with the

strongest property containing the outgoing action is generated. Suppose

that the property to be generated is after a1 � a2 � a3 � � � � � an must A,

and that it holds that after a1 � a2 mustfa3; bg, then the generated test

will compose both properties. Thus, the verdict after a1 � a2 becomes

fail rather than pass or inconc. No sub test after b will be generated

in an individually generated test.

Trace Generation: Timed traces can be generated using prompt, interior,

or patience selection as described in Section 4.3.5.

The tool contains a builtin test case checker to assist tool development and

debugging. When enabled, it executes the generated tests against the speci�-

cation. The speci�cation must pass the tests generated from it. Little e�ort

has been put into optimizing the tool, neither with respect to time nor memory

consumption. No extreme value selection is currently implemented.

RTCAT is implemented in C++ and occupies about 22K lines of code. The

implementation is based on code from a simulator for timed automata (part

of an old version of the UppAal toolkit [65]). Its AutoGraph �le format

parser was reused with some minor modi�cations to accommodate the ERA

syntax. Also the DBM implementation from the simulator was reused with

some added operations for extrapolation and clock scaling.

4.6.2 Tool Options

The tool is invoked by the command RTCAT options atg-filename on the

command line interface. The implemented options are summarized in Ta-

ble 4.30.

4.6.3 Implementation Remarks

In this section, we make a few �nal but important implementation level re-

marks of the prototype.
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option meaning

-o �lename Write test cases to the �le named �lename.

-I Write partition graph to �le named

.initial.�lename.

-F dotn Write test cases with extra state information,

0 � n � 4.

-T Generate individual test properties, not composed

trees.

-C Do not include refusals in generated tests.

-BFr Construct reachability graph breadth �rst. Default is

depth �rst.

-BFd Construct partition graph breadth �rst. Default is

depth �rst.

-d n Limit trace depth to n.

-b n Employ bit-state hashing in reachability graph con-

struction using n hash table entries.

-n n Employ bit-state hashing in partition graph construc-

tion using n hash table entries.

-Sd use delay selection d: P=prompt, I=interior,

L=persistent.

-V Enable test case validator.

Table 4.30. Tool options.

Tool Architecture

The prototype operates in four distinct phases, i.e., the preceding must be

completed before a new is started:

1. parsing and initialization

2. partition graph construction

3. reachability graph construction

4. test tree mutation and test output

This architecture was expected to be the easiest to construct and maintain

during prototype implementation. An alternative architecture would be 'lazy'

evaluation where the earlier phases are called on demand by the test tree

generator. The lazy approach would have the advantage of only constructing

the needed parts of the potentially large partition and reachability graphs. It
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would also make test cases available for execution immediately, and would be

able to generate some test cases for larger systems that cannot be fully stored

or analyzed.

Clock Scaling

A technical problem occurs in the computation of concrete traces, and in the

selection of test points. Because clocks are drawn from a dense time domain, a

selected clock valuation would therefore require a representation as a rational

number. It is convenient to use the existing implemented zone operations and

DBM data structure also for this purpose. However, this implementation op-

erates on integers, and a direct reuse thus requires that the selected valuations

are integral. Our implemented selection algorithms therefore prefer to choose

the integral clock valuation nearest to the desired rational valuation.

However, not all zones contain integral valuations. One solution would be to

use a 
oating point implementation of zones. But because 
oating points, as

represented in computers, cannot be stored and manipulated entirely accu-

rately, we have chosen a di�erent approach. When needed, we instead change

the time scale by multiplying the involved zones by a constant factor, and

choose an integral valuation in the scaled zone. This scaling may be needed

several times, and can be done for as long as no clock value exceeds the max-

imum allowed integer. We thereby accommodate many rationals.

Clock Reduction

A further issue is the number of clocks implicitly de�ned by ERA: One clock

per action. This would for must speci�cations result in ineÆcient storage and

manipulation of the zones, and could become a signi�cant limiting factor when

generating tests from untrivial speci�cations.

Although there is a declared clock for each action, only few of them are usually

used in guards, and few are consequently relevant for the symbolic analysis.

The prototype represents only such active clocks in the DBMs. The current

trace generation algorithm measures delays by the clock of the action last

executed. The remaining inactive clocks therefore map to the same auxiliary

clock. It may be possible to reduce the number of clocks further by employing

more sophisticated clock reduction algorithms proposed for model checkers,

cf. [36].



4.6. IMPLEMENTATION 115

4.6.4 Example of Generated Test Cases

RTCAT generates the 16 test cases shown in Figures 4.31 and 4.32 for the

co�ee vending machine speci�ed in Figure 4.2. The tool options were set to

generate composed tests, and to use interior selection.

Xcoin=0
Act

Xcoin=100
coin!

Xcoin=100
coin!

Xgive=0
Act

Xcoin=2
give!

Xcoin=100
coin!

Xcoin=2
give!

XthinCof=100
Act

Xgive=101
thinCof?

Xcoin=100
coin!

Xgive=101
coin?,
give?,
cof?,

thinCof!,
coin!,
give!,
cof!

Xcoin=2
give!

Xcoin=2
coin?,
cof?,

thinCof?,
coin!,
give?,
cof!,

thinCof!

Xcoin=100
coin!

Xcoin=100
coin!

Xgive=0
Act

Xcoin=105
give!

Xcoin=100
coin!

Xcoin=105
give!

Xcof=100
Act

Xgive=102
cof?

Xcoin=100
coin!

Xgive=102
coin?,
give?,
cof!,

thinCof?,
coin!,
give!,

thinCof!

Xcoin=105
give!

Figure 4.31. Test cases for the co�ee machine in Figure 4.2.

Filled states are fail states, and un�lled states are pass states.

Diamonds indicate a list of actions to be refused at the time indi-

cated at the top of the list. Act is an acronym for all actions.
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Xcoin=105
coin?,
cof?,

thinCof?,
coin!,
give?,
cof!,

thinCof!

Xcoin=100
coin!

Xcoin=100
coin!

Xgive=0
Act

Xcoin=4
give!

Xcoin=100
coin!

Xcoin=4
give!

Xgive=1
thinCof?

Xcoin=100
coin!

Xgive=1
coin?,
give?,
cof?,

thinCof!,
coin!,
give!,
cof!

Xcoin=4
give!

Xcoin=100
coin!

Xcoin=4
give!

Xgive=102
thinCof?

Xgive=102
cof?

Xcoin=100
coin!

Xgive=102
coin?,
give?,
cof!,

thinCof!,
coin!,
give!

Xcoin=4
give!

Xcoin=4
coin?,
cof?,

thinCof?,
coin!,
give?,
cof!,

thinCof!

Xcoin=100
coin!

Xcoin=100
give?,
cof?,

thinCof?,
coin?,
give!,
cof!,

thinCof!

Figure 4.32. Test cases for the co�ee machine (continued).
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4.7 Summary

This chapter contains a detailed description of our symbolic test generation

techniques. We apply our techniques on a restricted but determinizable class

of timed automata, ERA. This involves computing the stable edge set par-

titions of the speci�cation and performing symbolic reachability analysis on

the partition graph. Dense timed systems must be analyzed and represented

symbolically. For this purpose we use zones which represent in�nite convex

sets of clock valuations, and which can be manipulated eÆciently. From the

reachable parts of the partition graph, test cases can be generated relatively

easily by using the symbolic techniques to compute a speci�c timed trace to

any given target state chosen to be tested. The RTCAT tool implements our

technique. Its features include breadth- and depth-�rst construction orders,

various partial search methods, test composition, and prompt, persistent, and

patient selection of time instances.

In the next chapter we evaluate the usefulness and feasibility of the techniques

by applying them to a series of example speci�cations.
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Chapter 5

Evaluation

In this chapter we evaluate our proposed techniques to determine their appli-

cability and limitations, and give our preliminary experiences using RTCAT

to generate tests. The starting point of the evaluation will be a collection of

ERA speci�cation examples contained in Section 5.1.

In Section 5.2 we report on the performance of our tool when applied to

the sample speci�cations. The primary aspect to evaluate is the number of

generated tests. This will indicate whether our selection strategy produces a

reasonable number of tests, and what its limits are. The secondary aspect is

the space and time used to generate them. We examine several con�gurations

of the tool to determine the e�ect of traversal orders and test composition.

We use \testing setup" as a common term for the ingredients in an automatic

testing method. It includes a speci�cation language, an implementation rela-

tion, a test case language, and an overall test selection strategy. We evaluate

these aspects in Section 5.3.

We outline in Section 5.4 our experiences of using and implementing symbolic

methods for test generation, and �nally, Section 5.5 summarizes the chapter.

5.1 Event Recording Automata Speci�cations

This section contains a couple of small toy like examples, and one larger spec-

i�cation: an attempt at specifying the Philips Audio Protocol.

119
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5.1.1 Pedestrian Crossing

The ERA shown in Figure 5.1 is a speci�cation of a controller for a pedestrian

crossing at a busy road. The pedestrians face a traÆc light that signals when

they are permitted to walk. The cars face a similar signal. The signal is

normally red for pedestrians and green for cars. For simplicity we have omitted

a yellow light. When a pedestrian wish to cross the road, he makes a request on

a button placed on a pole by the curb. The controller uses the �ve observable

actions summarized in Table 5.2.

req?req?req?req?req?req?req?req?req?req?req?req?req?req?req?req?req?
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Figure 5.1. ERA for a pedestrian crossing light controller.

Action Description

req a pedestrian has made a request

car gr change light for cars to green

car rd change light for cars to red

ped gr change light for pedestrians to green

ped rd change light for pedestrians to red

Table 5.2. Pedestrian crossing actions.

The controller must implement the following informal time requirements:

� The light is green for cars for at least 30 seconds to permit suÆcient cars

to cross the intersection, even if pedestrians have requested passage.
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� When the light switches there must be a period of 5 second red-time in

both directions: 1) After the car signal has switched to red, 5 seconds

must elapse before pedestrians are given a green light. This delay al-

lows cars to clear the intersection before pedestrians may start walking.

Similarly, 2) after switching the pedestrian signal to red, the controller

must allow 5 seconds before switching the car signal to green. This delay

allows pedestrians to clear the crossing.

� The car signal must turn back to green after 20 seconds, if no new

pedestrians request passage.

� If new pedestrians arrive and request passage while their signal is green,

the green time can be extended with an additional 20 seconds. It can be

extended at most three times in succession.

The speci�cation assumes that the light signals react to the commands from

the controller as soon as they are given. Also note that we have made no

explicit assumptions about the frequency of requests, but they must be ignored

(refused) by the controller when no request action is enabled.

5.1.2 Token Passing Protocol

The model presented in Figure 5.3 is a speci�cation of a simple token ring

network. A station is permitted to send only when it holds a token; it may

hold the token for at most 100 time units per turn. A station receives the

token from the network via the GTi action, releases it using the RTi action,

and sends messages using the sendi action, where i is the ID of the station.
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Figure 5.3. Token passing system with three stations.
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A station need not hold the token for the entire time slot, but may release it

immediately (has nothing to send), or before the time slot expires (has no fur-

ther pending messages). We have modeled this decision as a non-deterministic

choice. The ring behavior of the network is achieved by a shared integer vari-

able th that indicates the current token holder. The speci�cation assumes

that the transmission medium is able to accept messages at any time.

5.1.3 Philips Audio Protocol

The Philips Audio Protocol is a dedicated protocol for exchanging control

information between audio/visual consumer electronic units. Consequently,

the protocol must be simple and cheap to implement. The data is Manchester

encoded, and transmitted on a shared bus implemented as a single wire. There

are two interesting aspects of this protocol. One is that a certain tolerance is

permitted on the timing of events to compensate for drift of hardware clocks

and CPU contention. Philips permits a �5% tolerance on all the timing, while

still being able to decode the transmitted signal correctly. The second aspect

is that the collisions of messages on the bus must be detected. The protocol

was �rst studied by Bosscher et al. in [17]. It was here proven formally that the

signals can be correctly decoded if tolerances are less than 1
17 . The protocol

has since been studied numerous times in the context of model checking.

The goal of generating tests for the protocol is to compute a test suite that can

be used to determine if a given audio component implements the Manchester

encoding and collision detection correctly, and within the allowed tolerances.

Bus

Sender Receiver

dn

in1 empty coll out0 endout1in0

VUPup isUp

Figure 5.4. Overview of the Philips audio protocol.

As shown in Figure 5.4, a station is equipped with a module for encoding and

transmitting data on the bus, and a module for receiving and decoding the

data. The sender obtains the bit stream to be transmitted via three actions:

in0, in1, and empty, respectively representing a zero-bit, a one-bit, and an

end of message delimiter. The sender Manchester encodes these bits, and uses

the actions up and dn to drive the bus voltage high and low respectively.
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The bus works as a logical or, so whenever a station drives the bus high, the

bus will be high even if other stations previously has set it low. A sender

can detect collisions by checking that the bus is indeed low when the sender

is sending a low. The isUp action is used for this purpose. If a collision is

detected, the upper protocol layer is informed via the coll action.

The receiver informs the upper layer of the decoded bits via the out1, out0,

and end actions. Philips uses rising edge triggering to decode the electrical

signal. A rising edge is indicated to the receiver by the VUP action. To decode

the signal using only rising edge triggering as required by Philips, messages

must start with a logical one, and be odd in length.

01 0 1 1 0

Manchester

encoding

Bit stream 0

Figure 5.5. Manchester encoding of the bit stream 1000110.

Using Manchester encoding, the time axis is divided into equal sized bit slots.

In every bit slot one bit can be sent. A bit slot is further halved into two

intervals. A logical zero is represented by a low voltage on the wire during the

�rst interval of a bit slot, a rising edge at half the bit slot, and high voltage

during the last interval. A logical one is represented by a high during the �rst

interval, followed by falling edge, and a low through the last half [109]. The

Manchester encoding is illustrated in Figure 5.5.

A bit slot in the Philips protocol is 888�s long. In the modeling we use quarters

of bit slots, denoted q, equaling 222�s. The basic constants used in the model,

and the derived tolerance levels are summarized in Table 5.6.

We present two versions of the sender, one with only the basic Manchester

encoding, and one also including collision detection. The basic version is

shown in Figure 5.7. The basic operating principle is that the sender inputs

a new bit while encoding the current bit, i.e., it has read a bit ahead. The

important states are labeled SXtoY, where X represents the bit currently being

generated, and Y the bit to be generated next. Observe that whenever X and

Y di�er, the sender waits twice the normal duration before changing the status

of the wire.

The receiver in Figure 5.8 is triggered by rising edges. The important states

are LO and L1. The receiver is in LO when the last received bit was a zero,

and in L1 when the last bit was a one. According to [13] the model is a direct

translation of the decoding algorithm described in the Philips documentation.
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Figure 5.7. The sender ERA without collision detection.
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Figure 5.8. The receiver ERA.



126 CHAPTER 5. EVALUATION

Symbol Value Meaning

q 2220 one quarter of a bit slot (220�s)

d 200 Detection 'just' before up (20�s)

g 220 'Around' 25% and 75% of the bit-slot (22�s)

w 80000 Station Silence (8ms)

t 0.05 Tolerance (5%)

A1min 2000 q-g

A1max 2440 q+g

A2min 6440 3q-g

A2max 6880 3q+g

Q2 4440 2q

Q2minD 4018 2q(1-t)-d

Q2min 4218 2q(1-t)

Q2max 4662 2q(1+t)

Q3min 6327 3q(1-t)

Q3max 6993 3q(1+t)

Q4minD 8236 4q(1-t)-d

Q4min 8436 4q(1-t)

Q4max 9324 4q(t+t)

Q5min 10545 5q(1-t)

Q5max 11655 5q(1+t)

Q7min 14763 7q(1-t)

Q7max 16317 7q(1+t)

Q9min 18981 9q(1-t)

Q9max 20979 9q(1+t)

Table 5.6. Constants used in the ERA speci�cation of the Philips

audio protocol.

As stated, a sender can detect a collision by checking if the wire is high when it

is itself sending a low. According to Phillips the bus only needs to be sampled

'around' three speci�c time points, namely after a quarter of a bit slot after

starting a low signal, again after three quarters (if still transmitting a low as in

the one-to-zero transition), and 'just' before setting the bus high. The sender

augmented with collision detection is depicted in Figure 5.9.

We note the following about our modeling:

� To function correctly the sender assumes that the medium is ready to

perform the up and dn actions as soon as they are enabled by the sender.

� In our modeling of collision detection, the sender is required to be able

to synchronize with the isUp action at all instances in the �g interval.
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Figure 5.9. The sender ERA with collision detection.
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This is probably not what the Philips engineerers have in mind. Rather,

they intend to sample the bus at some point in this interval. However,

this cannot be readily modeled in the current ERA language.

� The modeling presented here is inspired by the UppAalmodel described

in [13]. The receiver could almost be directly translated from the timed

automata model, but the sender had to be reformulated, see Section 5.3.1

fur further discussions on this.

� The tolerances are modeled by permitting the upper protocol layer to

deliver the next bit to be transmitted at some point in the \window of

opportunity". The sender is therefore required to accept bits at any time

within the tolerance interval. One way the sender can implement this

communication is to perform an Ada-like rendezvous call to the upper

protocol layer (bit stream generator), but the called object may defer

the acceptance of the call within the tolerances.

Our model was derived from another timed automata model designed to

verify that the protocol decodes a signal correctly despite timing toler-

ances and collisions. The interfaces to the components (sender/receiver)

in an actual implementation may therefore not correspond to the inter-

face used in this model. In consequence, the generated test cases may

not be executable against that implementation.

5.2 Number of Generated Tests

In this section we shall evaluate the number of tests generated by RTCAT

from the speci�cations presented in Section 5.1. An important goal is to bring

down the size of the generated test suite.

We shall �rst evaluate what impact test composition and construction order of

the reachability graph might have on the number of generated tests. We shall

do this on basis of the pedestrian crossing and the Philips sender and receiver

speci�cations. We shall also evaluate what impact larger speci�cations could

have on the number of generated tests, and on the time and space consumed

by RTCAT. This will be evaluated using upscaled versions of the token passing

protocol.

5.2.1 Composition and Construction Order

Table 5.10 shows a series of measured parameters for three speci�cations: The

pedestrian crossing (Figure 5.1), the Philips receiver module (Figure 5.8), and
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the Philips sender module with collision detection (Figure 5.9). The parame-

ters measured are the number of reached (convex) partitions, the amount of

time and memory RTCAT used to generate and output the test cases to a �le,

the number of reached symbolic states, the number of generated tests, and the

total length of these tests.

The length of a test case is computed as the number of edges occuring in the

test tree, counting refusal nodes as a single edge only. Other de�nitions are

possible, such as the depth of the tree, but because the test trees should be

covered when executed, we consider the chosen metric to be more reasonable.

Observe that it is sometimes necessary to minimize the actual time it takes to

execute the test suite. For example, when the same test suite is to be executed

against several product items, the time spent on testing each product instance

should be minimized. This is not our main concern here. The fastest test suite

is not necessarily obtained using the shortest test suite.

PedX Philips (R) Philips (S)

Reached Partitions 19 60 47

Time (s) 5 2 2

Memory (MB) 5 5 5

Breadth First

Symbolic States 77 71 97

C-Number of Tests 30 97 68

C-Total Length 151 527 393

I-Number of Tests 39 118 85

I-Total Length 188 614 467

Depth First

Symbolic States 247 85 98

C-Number of Tests 26 86 67

C-Total Length 595 1619 487

I-Number of Tests 39 118 85

I-Total Length 676 2103 587

Table 5.10. Experimental results from generating tests from

sample speci�cations, and with di�erent tool con�gurations.

C=composed test, I=individually generated test.

There is a total of four possible combinations of construction order and test

composition, all included in Table 5.10. The number of reached partitions is

the same in all four combinations, as it should be. The tabulated time and

memory usage �gures are the maximum values observed for the four con�g-

urations. The most time consuming con�gurations were the ones involving
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depth �rst construction. From an applicability point of view, these di�erences

are insigni�cant. All test suites were generated in a matter of few seconds and

used about 5Mb of memory.

More importantly, observe that the test suite size in all combinations is quite

manageable, and constitute test suites that could easily be executed in prac-

tise. One may even worry whether they contain too few tests. There is thus a

large margin allowing for more test points per partition, or longer tests.

Next compare the e�ect of construction order. The construction order may

in
uence the number and length of tests because tests will only be generated

for the �rst symbolic state reaching a partition during reachability analysis.

Our results show that depth �rst construction generates slightly fewer tests

than breadth �rst, but also considerably longer test suites. Thus, when the

goal is to minimize the time needed to execute the test suites, breadth �rst

construction is clearly preferable (assuming that the average delay between

events is the same). When the goal is to check the behavior of the implemen-

tation after longer sequences of events, but still ensuring coverage, depth �rst

generation is preferable.

Next compare the e�ect on composing tests versus generating them individ-

ually. Composing tests consistently results in both fewer, and also shorter

test suites. However, the obtained reductions are only in the range of 10-25%

that, although signi�cant, is less than hoped. A possible explanation for this

is that these speci�cations contain only little non-determinism (in fact, only

the Philips receiver is). Therefore, the test composition algorithm is only able

to mutate the test case at its single leaf. The reduction therefore only avoids

sub-traces of already generated tests.

5.2.2 Scalability

To examine how RTCAT behaves when the size of the speci�cations increase,

we have benchmarked its behavior against the token passing protocol illus-

trated in Figure 5.3 with an increasing number of stations.

The results contained in Table 5.11 indicates a problem, not with the number of

partitions or the number of generated tests, but with how reachability analysis

is performed, and with the number of symbolic states needed to terminate.

Observe that the number of symbolic states used to represent the state space

increases dramatically as the number of stations increase. At the same time

neither the number of partitions nor the number of tests increases at the same

rate. In this example, the bottleneck is our reachability analysis, and not the

number of generated tests.
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Stations 1 3 5 7 8 50 100

Symbolic States 14 191 3584 15427 52976 62 125

Reached Partitions 6 18 30 42 48 30 60

Number of Tests 11 31 51 71 81 51 101

Total Length 22 126 310 574 736 310 1120

Time (s) 1 2 35 541 4050 1 3

Memory (MB) 5 5 11 39 136 5 5

Table 5.11. Experimental results of scalability experiment. The

tool is con�gured to compose tests, and to use breadth �rst con-

struction. The columns labeled 50 and 100 refer to a modi�ed token

passing system using only one clock.

Primarily caused by high memory consumption, but also by lack of speed, the

tool is consequently incapable of generating a guaranteed covering test suite for

systems with more than eight stations using breadth �rst reachability analysis.

There is a number of explanations for this behavior:

1. The reachability analysis is done on the level of (convex) partitions. This

means that when performing forward reachability, the symbolic succes-

sors for each such partition is computed. In contrast, typical model

checkers uses coarser states, and typically only adds one symbolic state

whenever a new control vector is visited. Because our partitioning is

�ner, our symbolic states are smaller, and more symbolic states are

therefore needed.

2. Not only the number of stations increase in this example, but because

every station has its own clock to measure the token holding time, so does

the number of clocks. For an eight station system there are nine active

clocks (one for each GTi action, and one shared by all other actions).

We believe that the number of clocks and the relatively small symbolic

states makes it diÆcult for the tool to �nd a symbolic state in the passed

list fully containing the current one, and in consequence, the tool is

forced to unfold each state a number of times before concluding that

no further partitions are reachable. If we reduce the number of active

clocks in the speci�cation by using the same GT action in all stations,

the required number of states drops dramatically, although there are

still many compared to the number of partitions. The clock reduced

versions with respectively �ve and ten stations are labeled 50 and 100 in

Table 5.11.



132 CHAPTER 5. EVALUATION

3. The extreme amount of memory is used to store more than the passed

list. Both the passed list and an explicit test graph is build. A node

in the test graph contains, in addition to a symbolic state, various book

keeping information such as lists of the (single step) must, can, and

refusal properties holding in that state, and a DBM for back propagated

constraints, etc. In fact, every symbolic state is stored twice, once in the

passed list, and once in the test graph. The rationale for this design is

that 1) the symbolic states in the passed list may contain extrapolated

information which cannot be used in test time point selection, and 2) our

design is made such that only the part of the test tree needed for each

test case (or closely related test cases) currently being generated need

to be stored. However, because our prototype, for the ease of making

modi�cations to the code, operates in distinct phases, this option is

not utilized, and we experience the penalty of constructing the full test

graph.

4. The long execution times are primarily caused by the problems outlined

in points 1 and 2. Because a large number of symbolic states are instanti-

ated per partition, and because members of the same (concave) partition

hash to the same entry in the hash table implementing the passed list,

there is consequently many collisions. This again means that much time

is spent on checking inclusion between a new symbolic state, and all the

states in the same entry.

5. Depth �rst construction is more memory eÆcient than breadth �rst con-

struction in this case; it about halves the number of symbolic states, and

is therefore faster and uses less memory. However, as previously noted,

the test suites become much longer; up to ten times as long in this case.

Whereas the number of tests generally equals the number of reached partitions

multiplied by the total number of must, may, and refusal properties in each

partition, it is more diÆcult to predict how the number of partitions increase

with speci�cation size, for example measured by its the number of edges or

parallel components. In this example, the number of partitions apparently

grows linearly with the number of stations. This well behavedness should

only be expected with similar speci�cations where only one of the parallel

components is active at a time, and where the guards are simple. In general,

an exponential growth should be expected.
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5.3 Testing Setup

The main ingredients in our testing \set up" is the speci�cation language,

the test language, and the test selection strategy. These will be evaluated in

turn. We also discuss an hitherto untouched aspect of test generation, namely

environment modeling.

5.3.1 Event Recording Automata

The following sums up our experiences using the ERA formalism as a speci-

�cation language. We originally decided to use ERA because it constitute a

simple and a clean subset of timed automata, and not the least, a determiniz-

able subset. However, these bene�ts come at a cost. First, the restrictions

could reduce the convenience of timed automata; convenience meaning that

the required behavior can be expressed with a reasonable e�ort and elegance.

Second, the restrictions could imply a loss of expressiveness, i.e., it becomes

impossible to express requirements that are expressible in the unrestricted

language.

On the theoretical expressiveness, it was shown by Fix et al. in [10] that

ERA are a strict subclass of timed automata. This means that there are

timed languages that can be accepted by a timed automaton that cannot

be accepted by an ERA. Not even all deterministic timed automata can be

expressed as a trace equivalent ERA. Thus, ERA are less expressive than

timed automata. On the other hand the same paper shows that the timed

transition system model by Henzinger et al. [51] can be transformed into a

(trace) equivalent ERA model, and thereby obtaining the result that language

inclusion is decidable for timed transition systems. This indicates that ERA is

at least as expressive as another well established speci�cation language. The

transitions in a timed transition system are labeled with an action, and an

upper and lower time bound. A transition is enabled when the time elapsed

after the source location of the transition was entered is between the lower

and upper bound.

We have shown through a series of examples how ERA can be used to specify

interesting and practically relevant properties. Recall that the main restric-

tion in ERA is that clocks are tied to observable actions, and that the corre-

sponding event clock is reset automatically when the action occurs. When the

speci�cation can be expressed as a single automaton, this restriction is in our

experience only a minor inconvenience. We have been able to work around

this restriction by adding extra states or extra action names:
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� Frequently we wish to measure the time elapsed after a location is en-

tered. However, the location might be entered by di�erent observable

actions. In timed automata one would simply reset the same clock along

all entry actions. In ERA this is impossible. Instead, the single location

must be replaced by several locations (one for each entry action) such

that the proceeding behavior can refer to the correct event clock. Alter-

natively, integer variables can encode which of a set of clocks to use in

guards.

� Sometimes we wish to measure the time elapsed since the �rst occurrence

of an action, but not wanting the event clock to be reset on succeeding

occurrences. A simple work around is to use several names, and thus

more clocks, for the same real action.

� When an ERA model is being developed, it is frequently convenient to

use � actions. Because ERA do not allow internal actions, these must

be eliminated later. Our experience suggest that this is often possible

by syntactically rewriting the speci�cation.

� ERA models tend to use more clocks than timed automata models. At

the syntactic level, there is a clock for each observable action. Because

the number of clocks a�ects the complexity of the symbolic analysis, the

execution time and space consumption of the generator may increase to

an impractical level. However, all clocks will rarely be used in guards,

and therefore their values are irrelevant to the analysis, and can conse-

quently be eliminated. Even when these obviously inactive clocks are

eliminated, an ERA model typically uses more clocks compared to a

manual timed automata speci�cation. We expect that the clock reduc-

tion algorithms that have been developed in model checkers can be used

to reduce this potential problem to a manageable level.

We have also identi�ed a set of more serious limitations, which makes us

hesitate in accepting ERA as the ideal speci�cation language:

No Internal Actions: We have seen that � actions can be used in the con-

struction of a model if they can be eliminated afterwards. The lack of

� actions implies that an ERA cannot autonomously change state. It

can only advance from one state to another by synchronizing with the

environment. This means that an ERA cannot express a situation where

an action is required to recur inde�nitely without also requiring synchro-

nization with the environment in the interim. An example is the square

wave generator timed automaton shown in Figure 5.12. The state of the

wave (high or low) is indicated by the automaton by its preparedness
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Figure 5.12. Timed automaton speci�cation of a square wave

generator.

to synchronize on a high respectively low action. This can only be ex-

pressed as an ERA if the number of squares that should be generated

between two synchronizations are bounded by a �nite number.

We expect there to be practical cases where such autonomous behavior

is required.

No Internal Communication: The basic ERA language consists of a sin-

gle automaton without � actions. This means that a network of con-

current and communicating automata cannot easily be expressed in the

basic ERA language: When synchronization is possible on several ac-

tions, one pair is chosen non-deterministically; this implies that it also

becomes non-deterministic which event clock is reset. The environment

is then no longer in control of which clock is reset, which is otherwise a

profound property of ERA.

This limitation has a profound impact on the development methodology

envisioned in Section 1.2.4. The idea was that tests should be generated

from a quite concrete model (a set of communicating concurrent compo-

nents) of the system under test. If ERA are to be used, test generation

should start from a more abstract level where the required observable

behavior is speci�ed, but where the system has not been decomposed

into components. Sometimes it is possible to manually perform the re-

quired abstraction by systematically removing the internal actions and

synchronizations among components.

Alternatively, or supplementary, each component could be tested sepa-

rately. It is also possible to use ERA to specify only certain aspects or
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properties of a system. If such a property model contains enough behav-

ioral information, the generated sequences will still constitute a relevant

test for the system.

No Timing Uncertainty: In our interpretation of ERA, it is not possible

to specify that an action must become enabled at some time point in an

interval, but that the implementation is free to choose which.

A workaround that some times is applicable is to use a non-deterministic

choice between an edge that enables the action early, and between one

that enables it later. This will at least produce the correct verdicts of

the generated test cases. However, if many time requirements are of

this form, the large number of required extra states and edges makes

the workaround impractical. This will also result in a large number of

inconclusive verdicts at test execution time, because the event did not

occur at the expected time instant.

In our work we have assumed synchronous and fully symmetrical com-

munication, but a distinction between inputs and outputs further clar-

i�es the issue. Often, the environment is in control of when to supply

the inputs to the system, whereas the system decides when to produce

outputs. We �nd our communication model most reasonable for input

actions because the system is expected to accept them at any time when

the action is enabled. The nature of outputs is normally di�erent. The

readiness of the system dictates when outputs are delivered, and it does

not generally appear reasonable to require this after a single speci�c

delay, but rather before a certain amount of time has expired. Thus,

whether an output is delivered or not, and when it is delivered is not

controllable by the tester.

We believe that there are a signi�cant number of applications in which

the present strict timing mode is appropriate, e.g, in the area of strictly

timed embedded controllers. On the other hand, for example in com-

munication protocols, one can rarely require a message to be delivered

after a speci�c delay, but only within certain bounds. In general, timing

uncertainty is needed.

The simplicity of the ERA language, and its ease of analysis, made it an

excellent vehicle for exploring our ideas. However, we also conclude that the

basic ERA lacks some convenience and expressiveness.

There are two possible strategies for generalizing the speci�cation language.

The �rst strategy is to extend the ERA model with the needed facilities,

while still trying to preserve its ease of analysis with respect to the particular

analysis our test generator needs to perform. One could imagine that a slightly
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extended ERA language could be used as an assembler language into which

a more convenient user visible speci�cation language could be compiled. The

second approach is to generalize our symbolic algorithms to handle a larger

subset of timed automata. Further work is needed to determine what approach

will be the most promising.

5.3.2 Test Language

Our test language consisting of timed may and must properties were obtained

as a straightforward extension of the untimed versions. These tests dictates

the speci�c time points at which communication should be attempted.

One may argue that it is diÆcult to test these properties in practice because

it is impossible to ensure that an action is enabled in precisely the required

moment. However, it is our belief that a successful synchronization in a small

interval around the desired time instant is suÆcient in most practical situa-

tions. The absolute size of the interval obviously depends on the magnitude

of the delays in the trace, of the required precision, and also of the precision

of the physical timers in the test system.

Further, the test language can check that the implementation refuses an ac-

tion that is refused by the speci�cation at a single time point. An important

improvement of the test language will be to check refusal of actions over du-

rations of time rather than only at speci�c time points. Fortunately, this

improvement seems straightforward to implement with our current speci�ca-

tion language and symbolic analysis techniques.

The test language is most e�ective when the speci�cation requires \strict"

timing of the implementation, as indeed is the case in our interpretation of

ERA. If actions with timing uncertainty (e.g., delivery of an action at some

point in an interval) dominated the speci�cation, our testing language would

be ine�ective: Many test executions would result in inconclusive verdicts be-

cause the implementation should only possibly engage in the synchronization

at the speci�ed time point. Instead, it would be more e�ective if the tester

continuously o�ered its action during the entire interval in which the imple-

mentation was expected to accept the action. This extension would bene�t

from a change from o�ine generation to online generation. See Section 6.1.2

for a detailed discussion of online and o�ine testing. In an online generator,

the speci�c time point at which the synchronization took place could be fed to

the generator that could then narrow the expected interval of the next action.

Online testing will require that the test system is suÆciently fast to inter-

pret the speci�cation symbolically in real-time. Alternatively, symbolic test

cases could be generated, meaning that the clock constraints characterizing
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the symbolic path leading to the partition to be tested should be preserved in

the test case, and be interpreted and instantiated at test execution time.

As we shall elaborate on in Section 6.2.1, our test language does not fully

characterize the testing preorder. It would be ideal to generate tests based

on such a characterization, but to our knowledge such a theory does not exist

for timed automata. Also, candidate theories should be carefully evaluated to

balance the increased testing power with the potential increase in the number

of test cases, and the potentially increased complexity of generating them.

In conclusion, timed must tests is adequate for the current setup. It has

constituted a challenging case for our test case generation method. However,

it should be extended to include continuous refusal and enabling of actions.

5.3.3 Environment modeling

Throughout the thesis we have implicitly assumed that a speci�cation is self

contained, and that the implementation should operate correctly in a universal

and unrestricted environment. However, in some cases the operational envi-

ronment of the implementation must also be taken into consideration. The

environment consists of the components with which the implementation under

test communicates. This can either be components in the computer system,

or components in the external physical environment.

The dependency on the environment occurs at least in two situations:

� Sometimes the speci�cation is developed under the assumptions of a spe-

ci�c environment. This issue arised numerous times in the speci�cations

given in Section 5.1.

� It may not be necessary to establish that a component is correct in

any environment, but frequently it suÆces to establish correctness in a

speci�c environment only. First, the component may not work (and is

not required to) at all in other environments, and establishing correctness

wrt. to these are meaningless. Second, it may be possible to reduce the

size of the test suite when a speci�c environment is considered. This

means that only the test cases that are relevant with respect to this

environment should be generated.

The environment assumptions can be modeled explicitly by a collection of

timed automata, and these can be fed to the test generator along with the

speci�cation. Formally, the test generator should generate test from a syn-

chronous product of the speci�cation and environment model. Our current
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interpretation of ERA o�ers only urgent actions, and is therefore not gen-

erally appropriate for environment modeling; the environment usually has a

substantial freedom in deciding when to perform which actions. Timing un-

certainty is desired for this purpose.

Manually modifying the ERA speci�cation to implicitly include the environ-

ment assumptions is rarely possible because a test generator would need to

distinguish between events that are forbidden and events that are not relevant.

Otherwise, irrelevant or unsound tests could result. Thus, for both method-

ological and technical reasons, our approach should be extended to facilitate

explicit environment modeling.

5.3.4 Test Selection

Our approach to test selection is primarily guided by the chosen partitioning.

We have focused on one possible partitioning strategy, stable edge sets, which

we believe, and have argued in favor of, would constitute a good compromise

between generating a reasonable number of tests, and still capturing suÆcient

timing aspects to be able to detect signi�cant timing faults.

So far we have no practical experiences using our approach to test real sys-

tems, and have consequently little factual knowledge about its fault detection

potential in practise. An alternative way of evaluating its fault detection po-

tential could be to state a fault model describing the implementation faults

that could be detected, and then state the assumptions on the implementa-

tion necessary to detect all such faults. Some central observations towards

such a characterization include:

� The implementation behaves uniformly in each partition, i.e., if it be-

haves correctly in one point, it does so for all. Extreme values can be

used to support this assumption.

� The implementation does not introduce further partitions, or at least,

the number of partitions in the implementation is explicitly bounded.

� The symbolic transitions that take place between partitions are imple-

mented correctly. This can be ensured by applying checking sequences,

see Chapter 6, and assuming uniformity.

The development and formalization of such a fault model and its assumptions

would be academically very fruitful, and provide valuable insight into the un-

derlying properties of the chosen strategy. On the other hand, its practical

value is less obvious because implementations rarely are timed automata that
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are simple mutations (change clock constants or add/remove edges, locations

and timers) of the speci�cation automata. Instead they are typically imple-

mented using a programming language, operating system, and hardware. A

more valuable approach in practice would be to characterize the timing faults

that actually occur in real implementations, trace these back to the speci�ca-

tion, and develop the selection strategy based there on. This would require a

large amount of practical work and empirical studies.

We �nd the low number of generated tests very encouraging.

Our proposed partitioning strategy has two potential disadvantages:

� If the speci�cation is very large, the number of generated test cases may

exceed what can be executed. There are two strategies to deal with this.

The �rst is to limit the size of the partition and reachability graphs

used in the test generation process, for example by using the partial

techniques proposed in Section 4.4.2. The second strategy is to choose a

coarser partitioning, for example by only insisting on testing every action

or every edge. It is an open question under which circumstances which

strategy is preferable. Currently, only options from the �rst category

are supported by RTCAT.

In the other extreme, when speci�cations are fairly small, there is a

choice between executing longer traces by unfolding loops, or generating

tests from a �ner partitioning. Only the �rst choice is straightforward

to include in the current tool.

We would prefer a technique where the user could tune the partitioning

to his particular needs, or perhaps even let the tool make an optimal

choice, given a certain amount of testing resources.

� A theoretical computational limitation lies in the partitioning itself.

From a given set of control locations, the constraints characterizing the

enabledness of each subset of edges must be computed. This is expo-

nential in the number of edges, and can potentially become a limiting

factor in practice. Two factors contribute to the number of partitions.

One is the degree of non-determinism: The more non-deterministic, the

larger the set of location vectors in the determinized automaton, and the

larger the number of edges from the union of these control vectors. The

second factor is the complexity of the guards. If one is very unfortunate,

all subsets of edges could have a solution. Currently, the RTCAT imple-

mentation forms all subset of edges from a node in the partition graph,

and checks if the resulting constraints have solutions. Our experience

indicates a practical limit of this approach of less than 20 edges with

non-trivially true guards.
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Also, because we have decided to treat the disjuncts of the disjunctive

normal form representation of a partition as separate convex \smaller"

partitions, the number of conjunctions in guards also contribute with a

blow up.

It is easy to give unrealistic speci�cations that approaches these limits,

but to what extend the practical applicability will be limited is a rather

di�erent issue, that we believe best can be resolved through further spec-

i�cation of real-life systems, and application of our techniques.

We are cautiously optimistic about the size of speci�cations that can be

handled using our technique on the following grounds. First, speci�ca-

tions seem to be only modestly non-deterministic, and guards are rarely

very complex. Second, ERA models only need to specify the externally

observable behavior. Such speci�cations rarely consist of a large num-

ber of internal components, and consequently rarely has a large number

of simultaneously enabled edges. Further, as brie
y discussed in Sec-

tion 5.3.1, it might sometimes be possible to decompose a speci�cation

into smaller parts modeling di�erent aspects of the system behavior,

or into properties, that can be tested separately. Thus, there seem to

be a large number of potential applications that could bene�t from our

technique.

5.4 Implementation

The following sums up our experiences implementing test generation using

symbolic reachability techniques.

5.4.1 Symbolic Reachability Techniques for Testing

We have shown how symbolic techniques invented for model checking can be

used to generate test cases. The two main ingredients in our solution are 1) a

partitioning of the state space characterized by enabled edges, and 2) the use

of symbolic reachability analysis to �nd the reachable parts of the partitions,

and to compose test properties into test trees.

The strength of this approach is that it systematically explores the state space,

and generates tests for the partitions yet uncovered. The resulting test suite

is well de�ned, and guarantees full coverage.

A potential weakness is the means available to handle very large speci�ca-

tions where attempts to generate the partition graph and perform exhaustive

reachability analysis would be futile.
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Our use of the symbolic techniques requires several phases: Partitioning,

reachability analysis, back propagation, and trace generation, and in each

phase many small details must be considered. Some of the encountered prin-

cipal problems have been the representation of concave solution sets, and the

\chopping" up of the state space into a large number of symbolic states, espe-

cially when many clocks are involved. The techniques are therefore non-trivial

to employ eÆciently, and require a substantial implementation e�ort.

5.4.2 Prototype Tool Implementation

The current implementation can and should be optimized both with respect

to speed and memory usage of reachability analysis, and the amount of space

used to store book keeping information for test generation.

Speci�cally, our experiences suggest that RTCAT could be improved signi�-

cantly by storing \coarser" information in the passed list, and by performing

reachability analysis also on a coarser level. However, changing the reachabil-

ity analysis is non-trivial to implement because the test tree required for test

case composition would then have to be reconstructed afterwards from the

coarser symbolic states. This would e�ectively mean that parts of the reacha-

bility analysis would be computed twice, once in forward reachability analysis,

and once to construct the partitions and their individual successors. Avoiding

this extra amount of computation was our original motivation for doing reach-

ability on partition level. However, given the potential space savings and the

current termination problems, this decision should be reconsidered.

It is also clear that only the part of the test graph used for the current test

(tree) should be stored to save memory. This implies that the test tree con-

struction algorithm, test composition algorithm, and test output should oper-

ate alternatingly, rather than in the present distinct phases. This idea can be

extended to a general tool architecture where all lower level modules are being

invoked on a need basis (lazy evaluation) as dictated by the upper modules.

The current DBM implementation is reused from an old simulation/visua-

lization tool. Signi�cantly improved implementations both with respect to

space and time are now used in newer versions of the UppAal tool, cf., [64].

Application of these newer techniques will enable exhaustive test generation

from even larger speci�cations.

5.4.3 Veri�cation Techniques and Testing

We stated in Section 1.2.4 that veri�cation and testing were complementary

techniques solving di�erent problems. Yet we have successfully applied model
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checking techniques for the generation of tests. This raises the question of

what their di�erences and similarities are seen from a tool development point

of view. We shall here try to convey our experiences gained through the

present work.

The main objective of veri�cation is to automatically prove by exact means

that a formalized model satis�es certain properties, or that certain re�nement

or simulation relations exist between such formal objects. Recurring themes

in this line of research are the expressiveness of the used languages, their

decidability properties, and the size of the models that can be analyzed. In

contrast, testing does not in practice aim at establishing a proof, but aims at

obtaining best possible con�dence in the correct operation of a physical system

under the given circumstances and resources. Applicability of testing is not

necessarily limited by the size of the system to be tested, or by the availability

of speci�cations that can be exactly or fully analyzed. This gives the test tool

developer approximation options (and challenges) not available to veri�cation

tool developers. Testing techniques as means of approximating veri�cation

have been investigated by Clarke and Lee in [29, 28, 30], see Section 6.2.3.

Despite of these di�erences there is also a lot of common ground between these

approaches. In particular, speci�cation languages, their formal semantics, and

implementation relations seem to be in common when using automated testing.

Furthermore, progress in symbolic execution techniques, and data structures

and algorithms for representing and analyzing the speci�cation at the semantic

level will bene�t both camps.

The di�erences seem to dissipate when test tools attempt to guarantee a cer-

tain coverage, as in our case, or to construct optimal test cases by either

minimizing test suites, or by reducing the amount of inconclusive verdicts.

It should also be noted that other veri�cation techniques such as exploiting

structural symmetries in the speci�cation and partial order reduction tech-

niques have interpretations as test selection strategies [73, 20]. We argue that

the analysis techniques developed for veri�cation in many cases also can be

used to improve testing.

5.5 Summary

The evaluatation of our technique was done both quantitatively and qualita-

tively by examining a number of example speci�cations. One is an attempt

to model and generate test for a realistic real-life example, the Philips audio

protocol.
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The simplicity of the ERA language, and its ease of analysis, made it an

excellent vehicle for exploring our ideas. We �nd that ERA are suÆciently

expressive, but are sometimes inconvenient to use. More seriously, our cur-

rent interpretation lacks a way of specifying timing uncertainty. The problem

with timing uncertainty also appears in our testing language which allows

instantiated time traces only. Because the occurrences of outputs from the

implementation are uncontrollable, the result is too many inconclusive ver-

dicts during test execution. Our technique should also be extended to allow

modeling of environment assumptions.

The number of computed partitions, and consequently, the number of gen-

erated test cases, is very reasonable, and can easily be executed in practice.

Although potentially a bottleneck, also the space and time used to generate the

tests is very encouraging, and suggests that even larger speci�cations can be

handled. The current implementation can be optimized in many ways, most

notably by employing a lazy evaluation architecture where only the needed

parts of the partition and reachability graphs are computed on a need basis.



Chapter 6

Related Work

In the following we review some of the work that have appeared on methods

and tools for automated testing, and relate this to our work. The discussion

is structured into an untimed part appearing in Section 6.1, and a timed

part appearing in Section 6.2. We outline the novelties of our approach in

Section 6.3.

We shall introduce an alternative method of testing based on checking se-

quences for �nite state machines. This has recently been applied also to real-

time systems. Other topics include the choice of implementation relation, the

approach to test generation, be it online or o�ine, and the strategy used to

select tests.

6.1 Untimed Testing

This section discusses related work that does not deal explicitly with real-time,

but which is nevertheless important. We �rst take a deeper look at both the

theoretical and practical issues that arise from testing of concurrent systems.

Then two extreme approaches to automatic testing, o�ine and online test

generation, are identi�ed. The description of test generation using checking

sequences follows. Finally, we discuss test selection. Our test selection method

is rooted in well known sequential testing techniques.

6.1.1 Test Observations

In the presented untimed testing theory we have assumed that the outcome

of executing a test could be found by reading the verdict label of the state

in which the execution of the tester and implementation deadlocks. However,
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this assumption is not without practical complications, as we shall discuss in

the following. The comments also apply to our real-time preorder.

The �rst problem is how to conclude that the execution of the tester and

implementation has entered a deadlocked con�guration, i.e., that no further

synchronizations are ever possible. It is of course impossible to wait an in�nite

amount of time to determine whether a deadlock has occurred, or whether

the implementation is just too slow to respond. In practise, extremely long

response times are unacceptable, and consequently expiration of a carefully set

timer can be used to declare deadlock. Another consequence of our assumption

is that deadlocks and internal divergence (live lock) in the implementation are

indistinguishable. However, such information about divergence could be of

great value when diagnosing why a test failed.

The second problem is related to the certainty with which observations can be

made in face of non-determinism. The essential problem is that satisfaction

of a must property is quanti�ed over all computations of the implementation,

whereas a single test execution only reveals one.

When the execution of a must test deadlocks in a fail state, it can safely

be concluded that the system is erroneous. However, from the observation

of a successful computation, it cannot be concluded that the implementation

always passes that test. Similarly, when a may test is successful, the imple-

mentation certainly had the desired trace, but when it is inconclusive, neither

presence nor absence of the trace can be concluded.

Even if the same test were executed multiple times, it is unlikely that the

implementation has followed all possible paths or interleavings. Hence, there is

no means by which a black box tester can guarantee satisfaction of a must test.

It is frequently assumed in practice that a �nite number of re-executions of

the same test will pass through all computations of the implementation (called

the complete-testing assumption in [108]). An alternative to the complete

testing assumption is to equip the tester with capabilities for monitoring which

internal computations have been taken, or possibly even controlling which are

taken, c.f., Brinch-Hansen [48] and Taylor et al. [110].

Deadlocks are not the only possible observations; indeed an abundance have

been proposed. For an overview and classi�cation we refer to Glabbeek [113].

Di�erent assumptions induce di�erent implementation relations that di�er in

how discriminating they are. For example, we could assume that the tester,

in addition to observing deadlocks, also could recover from the deadlock and

continue testing by enabling an alternative set of actions. Adopting observa-

tion of such communication failures leads to an implementation relation called

the failure trace preorder. It turns out that such observations become central

when time is taken into consideration, see Section 6.2.1.
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Another fascinating example, albeit quite exotic, is observations corresponding

to making copies1 of the implementation in its current state. Each copy can

then be subjected to di�erent experiments. This technique enables testing of

the very discriminating the 2/3-bisimulation (ready-simulation) [67] preorder.

Nearly all of these theoretically based preorders are based on symmetric and

synchronous communication between tester and implementation. However, in

practice communicating systems often distinguish between inputs and outputs:

Inputs signify data given to the system, and outputs data being produced

by the system. Inputs cannot be refused, but may of course be ignored, i.e,

system entities are assumed to be input enabled. Tretmans proposes in [112] a

preorder ioconf that relates processes when the outputs of the implementation

after a trace are included in the outputs of the speci�cation after the same

trace. Tretmans also de�nes a stronger version ioco that additionally requires

that the implementation only refuses to deliver outputs when the speci�cation

also refuses to deliver outputs.

6.1.2 Approaches to Test Generation

We distinguish between two extreme types of test generators: Online and of-


ine generators. An o�ine generator does all work o�ine before test execution

begins. It interprets the speci�cation, constructs the success graph, traverses

it to construct test cases, and performs test selection. The entire test suite is

thus constructed a priori, and is typically stored in a set of �les from where it

can be recalled when a new product is to be tested.

An online generator constructs a test case as it is being executed. During test

execution the test driver simulates the speci�cation. The test driver constructs

a set of actions that the implementation is expected to be able to synchronize

on in its current state. This set of actions is typically chosen randomly from

the success sets from the speci�cation's current state. If synchronization were

successful, the synchronization action is fed to the simulator that computes

the states that the speci�cation can reach after performing the action. A new

success set is then computed and the procedure is continued. If the synchro-

nization attempt was unsuccessful the test driver stops execution and reports

the appropriate verdict. The test driver can be restarted to perform a new

test for as long as time and other resources permit. Thus, only the parts of

the state space and success graph actually executed needs to be constructed.

Online testers are thus special cases of environment simulators where the in-

teractions are derived from a well de�ned testing theory.

1Provided that we have yet to master the sophisticated technology required to realize Star

Trek Replicators [63] we may need to settle with snapshots or core dump approximations.
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An example of an o�ine generator is the TGV (Test Generation with Veri�-

cation technology) toolkit, developed at the University of Rennes, France by

J�eron et al. [57, 19, 41]. Input to TGV consists of an SDL or LOTOS speci�-

cation and a collection of test purposes. A test purpose expresses a particular

property that the implementation must satisfy. The tool then constructs one

test graph for each test purpose such that failure to pass the test implies failure

to satisfy the test purpose. A test purpose is modeled as an automaton with

a subset of states labeled with 'pass' or 'reject' verdicts. The test graph is a

controllable subset of the graph consisting of traces leading to pass verdicts.

A test case is controllable if it never has a choice of outputs, or a choice of

producing an output or accepting an input. TGV is based on an asynchronous

testing theory that distinguishes between inputs and outputs.

The test graph is constructed in several steps. First the speci�cation is �

reduced and determinized. It is then composed with the test purpose via a

synchronous product construction. The result is the behavior that is relevant

for the test purpose. The 'reject' verdict is used to limit the size of the prod-

uct graph by not constructing behavior that has been deemed irrelevant by

the test engineer. The graph is then traversed in two phases to resolve con-

trollability con
icts. It should be noted that TGV performs � reduction and

determinization on-the-
y, i.e., only the used state space is constructed and

processed.

The test purpose plays an essential role in this approach since it determines

which tests to be are generated. TGV thus uses test purpose based test

selection. Because the test purposes are written by test engineerers, this is a

manual strategy.

The techniques of TGV has been integrated into the commercial testing tool

objectGEODE from Verilog [59].

Trojka by de Vries and Tretmans [37] is a tool for online testing. It accepts

speci�cations written in the Promela protocol speci�cation language [53]. A

Trojka con�guration consists of three logical components: A speci�cation

interpreter, a test driver, and the implementation under test. The current

interpreter is a modi�ed version of the Spinmodel checker [53]. The interpreter

keeps track of the states reachable after the trace executed so far, and computes

the actions possible in the next step. The test driver is the \middle man" which

supplies the inputs produced by the interpreter to the implementation, and

which invokes the interpreter with the resulting output.

In our view a good online tester systematically constructs and applies all

possible tests, and avoids re-executing a test that has already been passed.

Thereby it may obtain better coverage. From the description in [37] Trojka

does not appear to address the issue of obtaining or measuring coverage: It
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does not save information about the test cases already executed, and thus

risks re-executing the same test. It is also unclear whether the tool chooses

between the actions produced by the interpreter randomly or in order.

The VVT-RT (Veri�cation, Validation, and Test for Reactive Real-Time Sys-

tems) testing tool by Peleska et al. [81, 79] is also based on an online approach,

but addresses the issues of systematic test generation and re-execution of test

cases. A CSP speci�cation is compiled to a deterministic graph labeled with

refusal information similar to our notion of a success graph by the CSP re�ne-

ment checking tool FDR [93, 94]. This graph is then interpreted at run time

to generate test cases and evaluate their outcome.

In addition, a test monitor is used to determine the achieved coverage. It is

concerned with two types of coverage. The �rst type is what parts of the refusal

graph have been covered, i.e., which requirements remain to be tested. The

second type detects what internal paths or components have been activated

during a test. Because the implementations may be non-deterministic, this

may vary from one execution to another. It may be important for the test

engineerer to know precisely which components or paths have been activated,

for example which of a set of redundant components was active in a fault

tolerant system. For this reason, the testing monitor can also be equipped

with probes into the internals of the implementation under test that enables

the monitor to track which internal paths have been executed. The necessary

instrumentation of the implementation must usually be done manually.

A �nal remark is that VVT-RT proposes hardware in-the-loop testing. This

means that a separate test computer is used instead of the implementations

operational environment, and that the test computer is connected to the exter-

nal physical interface of the implementation. This tool also has the capability

of generating real-time tests, see Section 6.2.3.

Our approach is based on an o�ine approach where we systematically analyze

the speci�cation and cover this with tests. However, as noted in Section 5.3.2,

timing uncertainty requires symbolic test cases or using an online approach.

We shall therefore consider how to interpret event recording automata dynam-

ically in future work.

6.1.3 Checking Experiments

A substantial amount of research was carried out in the period from the 1950's

to the early 1970's on theories and algorithms for testing of sequential hardware

circuits. This research resulted in eÆcient test generation algorithms that even

guarantees full fault coverage under a speci�c set of assumptions. We refer to

Lee and Yannakakis [68] for a recent survey of these results. The techniques are
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now being resurrected, generalized, and tried out in the context of conformance

testing of communication protocols and reactive real-time systems. We shall

therefore outline the key points of these techniques.

The theories were originally developed for Mealy-machines which are �nite

state machines where transitions are labeled with an input/output pair s
i=o

��!

s
0 such that the machine upon receiving input action i produces output action

o. Two states are equivalent i� for every input sequence both states produce

the same output sequence. Two machines are equivalent i� for every state

in one automata there exists an equivalent state in the other, and vice versa.

This implies trace equivalence. A checking sequence is a sequence of input

actions that is able to distinguish inequivalent implementation machines from

a known speci�cation machine under the following assumptions [68]:

1. The speci�cation and implementation are both deterministic Mealy ma-

chines.

2. The machines has the same set of input and output actions.

3. The speci�cation is minimized (it has no equivalent states).

4. The speci�cation is strongly connected (for every pair of states there

is an input sequence that transfers the machine from one state to the

other).

5. The speci�cation is completely speci�ed (for every state there is an out-

going transition for every input action).

6. The speci�cation has n states, and the implementation has at most m

states, m � n.

7. The particularW -testing method discussed below also requires a reliable

reset operation.

The basic idea in a checking experiment is to ensure that every transition of

the speci�cation is correctly implemented by the implementation. A checking

experiment follows the following generic algorithm:

1. For every speci�cation transition s
i=o

��! s
0, apply an input sequence that

transfers (a correct) implementation to state s.

2. Apply input i, and verify that the output equals o.

3. Verify that the destination state is (equivalent to) state s0.
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There is a host of techniques for verifying that the implementation is in the

expected state (algorithm step 3). One, the so called W-method proposed by

Chow in [27], uses a characterizing set for state veri�cation. A characterizing

set W for the speci�cation machine is a set of input sequences that can distin-

guish the behaviors of all states, that is, for every pair of states s; s0 (s 6= s
0)

there is an input sequence in W such that the output sequence produced by

s di�ers from the output sequence produced by s0. This method thus requires

that the same state is checked using all input sequences in W . This implies

re-application of the transfer sequence in step 1, hence the need for a reliable

reset action.

Let P be a set of input sequences that visits every transition of the speci�cation

machine (i.e., that constitutes a transition cover). P is the set of actions needed

in steps 1{2 in the above algorithm. If n = m the sequences P ÆW constitutes

an exhaustive test suite (X Æ Y =def fx � y j x 2 X; y 2 Y g). These sequences

can be joined via a reset-action to form a checking sequence. When m > n

it must be checked that the extra m � n states has an equivalent state in

the speci�cation. Because the extra states could be attached anywhere to the

minimal implementation machine, additional input sequences of exponential

length are required to ensure that all extra states are visited by the transition

cover, i.e., the sequences P Æ Act
m�n

I
ÆW constitute an exhaustive test suite

(Actm�n

I
is the set of all input sequences of length less than or equal to m�n).

The total length of a checking sequence constructed using the W-method when

m = n is consequently at most n3k, where k is the number of input actions,

and can be constructed in polynomial time. When m > n the length grows

to n
2
mk

m�n+1, and thus becomes exponential in the number of extra states

[27].

Test generation tools for FSMs using state characterization techniques exist.

An example is TAG (Test Automatic Generation) developed by Tan et al. at

the University of Montre�al [107]. The tool uses harmonized state identi�cation

sets instead of Chow's characterization set. This produces fewer test cases.

The methodology was developed for Mealy machines, but have in [108] been

re-formulated for LTSs, and are thus applicable in our testing setup in the

case of deterministic systems. Some work exists on generalizing the theory to

non-deterministic systems [71, 108], but it does not appear as well developed

as the deterministic theory.

The employed implementation relation is trace equivalence. Ours is based on

Hennessy tests which, contrary to traces, also have the capability of detect-

ing deadlocks. We believe that this is essential for testing concurrent and

distributed systems. Checking experiments appear ideal for relatively small

deterministic systems, but where full fault coverage is critical.
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6.1.4 Domain Based Selection

Most introductory books on software engineering or testing, e.g., Pressman [85]

and Beizer [12], describe a technique for functional black box testing involving

partitioning of the input values into equivalence classes (called domains in

[12]) in which the implementation is expected to behave similarly. It is usually

recommended to test each equivalence class once in its interior and a number

of times on its borders or extreme values.

The rationale for this approach can be explained by considering the faults

that can occur. A computation fault is wrong processing of all inputs in a

domain, thus potentially causing wrong outputs. Hence interior selection.

A domain fault is an incorrectly implemented domain, and thus inputs are

classi�ed wrongly. This is expected to occur most frequently on the border or

at extreme values of the domain. Hence extreme value selection.

There is no formal de�nition of what precisely constitutes an equivalence class

or what \same behavior" is. When the source code is available, inputs that

follow the same path can be considered equivalent [116, 31]. Another com-

mon approach is to collect all predicates occurring in the formal or informal

speci�cation describing the pre- and post-conditions of its operations, rewrite

these to a disjunctive normal form in order to obtain nice domains, and �nd

their dependencies. Each disjunct is then treated as an sub-domain which is

tested separately [12].

These ideas have been applied to formal speci�cations with the aim of ensuring

coverage and automatizing testing, especially test selection and test outcome

evaluation. Hierons [52], and H�orcher and Peleska [55] aim at automatizing

testing against Z speci�cations.

Raymond et al. propose in [87] a technique for testing deterministic discrete

time reactive systems against speci�cations given in the synchronous data


ow language Lustre. Their work does not deal with testing of real-time con-

straints, but whether the implementation computes permissible output values,

given an history of input values. Their work shares with ours the use of eÆ-

cient data structures commonly used in model checkers for computing relevant

inputs. They use binary decision diagrams to solve boolean equations, and use

convex polyhedra to represent solutions to numerical constraints. Their test

inputs are then randomly chosen from these solution sets. They neither pro-

pose an explicit notion of coverage nor measure the resulting coverage.

In our approach we apply these selection principles to clock valuations, thus

regarding clocks as parameters, although oddly behaving ones. We use the

actions possible in a partition and its deadlocks properties as \outputs" to

verify that the implementation responds correctly. We also propose extreme
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value selection to check that the time constraints are implemented correctly.

Guards could be implemented erroneously by initializing timers with wrong

values, or timers could be reused unsafely. A premature timeout could be

caught by an \upper" or late extreme value because an action that should

have been enabled (resp. disabled) have been disabled (resp. enabled). A

missed deadline could be detected by a \lower" or early extreme because an

action that should have been enabled (resp. disabled) is still disabled (resp.

enabled). The notions of computation faults and domain faults therefore also

make perfect sense in the time domain.

6.2 Timed Testing

The introduction of real-time in
uences all aspects of automated testing. We

�rst discuss potential revisions of the theoretical foundation and the imple-

mentation relation in Section 6.2.1, and thereafter turn to, in our view, mostly

theoretical testing methods based on checking sequences. Obtaining a manage-

able set of tests is a key issue in real-time testing. Some promising approaches

are discussed in Section 6.2.3. We make some remarks in Section 6.2.4 about

other potentially interesting algorithms for the analysis of real-time systems.

6.2.1 Observations and Timed Preorders

Our timed testing preorder was derived by including time in the traces of the

untimed may and must properties. It is important to note that the satisfaction

of the resulting implementation relation vtte does not imply that no arbitrary

test automaton can distinguish the implementation from the speci�cation. An

ideal preorder would satisfy the relations stated in De�nition 6.1.

De�nition 6.1 Test Preorder:

Let Ltta be the class of test automata, i.e., timed automata whose locations

has been labeled with verdicts pass or fail. Let S; I be timed automata.

1. S vmust I i� 8T 2 Ltta: S must T implies I must T

2. S vmay I i� 8T 2 Ltta: S may T implies I may T

3. S vte I i� S vmust I ^ S vmay I
�

That is, Ltmust does not fully characterize such a preorder. One reason is that

the observations one would naturally make in a timed model change because

the progression of time can be used to observe refusal of actions.
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The notion of refusal testing in the untimed setting was �rst explored by

Phillips in [84]. Contrary to our Hennessy based tests which deadlock when

the implementation refuses to engage in one of the o�ered actions, refusal

testing assumes that the tester can observe such refusals and continue with

an alternative set of actions. In [84] this is explained as a button pressing

experiment where the implementation is equiped with a button for each action

as well as a green light. In a basic experiment a set of actions are continuously

pressed until one is accepted, or until the green light goes o�. The green light

is constructed to be on while the implementation has internal processing to

do, and to be o� when the implementation has reached a stable state without

being able to synchronize with the o�ered actions.

In a timed setting this observation of refusals becomes more natural since one

can o�er a set of actions and wait some amount of time. If the timer goes o�

a time bounded refusal has been observed.

This idea of refusals seems to underly the testing theory developed by Hennessy

and Regan in [50] for the discrete Timed Process Language (TPL). They de�ne

the notions of may and must testing, and give an alternative characterizations

based on barbs, and based on passing tests in an associated test language

(F-tests). Further, they also give a proof system for TPL. This work is thus a

timed dual to the classical untimed work of De Nicola and Hennessy [75].

To apply the notion of refusals to dense timed automata we conjecture the

need for test automata structured like the one illustrated in Figure 6.2. The

automaton continuously o�ers a set of actions for c time units, and uses an

internal action to time out.

: : :

(t � c)

t < c

a1
t < c

Tt;a1 T:ATt;an

an
�; t � c

Figure 6.2. Test automaton for densely timed automata? t is a

clock used by the test automata, c is a real-valued constant, Tt;ai
is the sub test after executing ai at time t, and T:A is the sub test

after refusing A = fa1 : : : ang for c time units.

The timed failures model of timed CSP [102] could also serve as basis for a

continuous time testing theory. A timed failure is a timed trace and a set of
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refusal tokens describing which actions are continuously refused in which time

intervals along that trace. The semantics of timed CSP is de�ned using timed

failures.

An alternative testing theory is developed by Cleaveland and Zwarico in [33].

In this theory an internal computation step (� action) is de�ned to take one

time unit. Systems are related by a faster-than relation. This work thus sug-

gests a link between real-time conformance testing and performance testing.

We conclude that the theoretical ground for real-time testing is not completely

covered. We are looking forward to a well-developed and practical theory for

timed automata.

We �nally remark that Mok's Real-Time Logic (RTL) [56] like ERA expresses

time constraints on the occurrences of events. Central to RTL is the occurrence

relation R(e; i; t), which states that the ith occurrence of event e happens at

time t. Time constraints are expressed by a �rst order predicate logic on time-

and occurrence variables. The event recording automata model is similar in

the sense of stating timing constraints on event occurrences. However, in the

basic de�nition, event recording automata only permit reference to the last

occurrence of an event, and permits a limited set of guards only.

6.2.2 Checking Experiments for Real-time Systems

It would be natural to assume that exhaustive testing of densely timed systems

would be impossible because of the in�nite state spaces. However, it was

shown by Springintveld et al. in [105] that a �nite set of �nite length tests

suÆces. Like the untimed case, exhaustiveness is only ensured under a set of

assumptions about the implementation. Before stating the exact result and

its assumptions, some de�nitions are necessary.

Recall regions from De�nition 3.14. De�ne the grid automata G(A; Æ) as the

sub automata of timed automaton A that only contains clock valuations that

are multiples of Æ, where 0 < Æ < 1. Let S be the states in A, and X the

set of clocks. Thus, a state h�l; �ui 2 S is also a state in the grid automaton i�

8x 2 X: 9k 2 N: �u(x) = kÆ. G(A; Æ) represents a discrete version of A with

discretization step Æ.

The algorithm developed in [105] generates test cases for a 
avor of timed

automata called Bounded Time Domain Input/Output Automata (TIOA).

The TIOA model distinguish between input and output actions; inputs are

controlled by the environment and outputs by the automaton itself. A TIOA

is input enabled which means that it is able to receive inputs at every time

instant. The time domain of a clock is a bounded interval of real numbers
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united with the in�nite element 1. Intuitively, the value of a clock is de�ned

to be 1 when it exceeds the upper bound of the interval. Beyond this bound

the exact value of the clock is irrelevant|it suÆces to know that it is large.

[105] proves that bisimilarity of two TIOA can be decided by checking bisim-

ilarity of their (�nite state) grid automata, provided that the step size Æ is

chosen suÆciently small, i.e., A1 ' A2 i� G(A1; Æ) ' G(A2; Æ).

The basic idea is now to use Chow's algorithm to derive a checking sequence

from such a suÆciently �ne grained speci�cation grid automata. Note that

in the deterministic case trace equivalence coincides with bisimilarity. A suf-

�ciently small step size is 2�n where n is chosen to be greater than or equal

to the number of regions in the product automata of the speci�cation and

implementation TIOA.

Because the number of regions in realistic speci�cations is very large, it should

be clear that the step size becomes in�nitesimal, and consequently that the

algorithm, while theoretically exhaustive, is highly impractical.

The assumptions of the algorithm can now be stated as:

1. The speci�cation is a known controllable deterministic TIOA. The im-

plementation can be modeled by some controllable deterministic TIOA.

2. The number of regions in the implementation does not exceed n
0, and

the step size is chosen suÆciently small as de�ned above.

3. The number of states in the grid automaton for the implementation does

not exceed m.

A more recent result also using checking sequences of grid automata is pre-

sented by En-Nouaary et al. in [39]. The algorithm also uses a deterministic

TIOA-model, but here the step size is chosen much larger than in [105]. It has

been shown that when the step size is chosen to be 1=(jXj+2) [66], all reach-

able regions has a representative state in the grid automaton. The checking

sequence derived from the grid automata can thus be viewed as a checking

sequence for the region graph of the speci�cation. A fault model based on

wrongly implemented regions is also presented.

The resulting test suite is exhaustive wrt. trace equivalence if uniformity can

be assumed about the implementation. Their uniformity assumption states

that if the implementation behaves correctly on some points in a clock region,

it also behaves correctly for the remaining points. Although not explicit from

the paper, it also seems necessary to assume that the implementation uses the

same number of clocks as the speci�cation, and has a no more than m states

in its grid automaton.
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The authors of [39] give an example of an on-o� switch speci�cation. The

timed automata has two locations, two edges, one clock, and uses a maximum

clock constant of 1. For this example, their algorithm generates 30 test cases.

Thus, although the step size is more reasonable than [105], we still believe

that it will be too small for most practical applications.

A �nal e�ort using checking sequences is reported by Cardell-Oliver and Glover

in [26]. Their speci�cation language, termed timed transition systems, is dif-

ferent from timed automata in that no explicit clocks exist. Instead actions

are guarded by an upper and lower bound. One of the enabled actions must be

taken from a state before any of them disables. Their testing methodology as-

sumes a discrete time interpretation of deterministic, �nite state, deadlock and

live lock free speci�cations and implementations. As usual an upper bound on

the number of states in the implementation must be assumed. Their approach

is implemented in a tool which is applied to a series of small cases. Their

result indicates that the approach is feasible, at least for small systems, but

problems arise if the implementation has more states than the speci�cation.

Recently Cardell-Oliver [24, 25] has outlined how to generate tests in the

form of timed traces from continuously timed automata. Testing is based on

generating a checking sequence from a digitized approximation of the original

automaton. However, it is unclear from the presentation what properties this

approximation has. The step size is chosen much larger than that required

to visit every region, and possibly only such that every edge can be visited.

Further, it is unclear what kind of communication interface is assumed to exist

between the tester and the implementation: She seem to assume that the tester

can observe the values of the clocks and state variables in the implementation.

Our symbolic method maintains exact information of the state space of the

speci�cation, and only assumes communication with the implementation via

synchronizing on actions.

6.2.3 Real-Time Testing

The application of black-box domain testing to real-time systems is also pro-

posed by Clarke and Lee in [29, 28, 30]. Although their primary goal of using

testing as a means of approximating veri�cation to reduce the state explo-

sion problem is di�erent from ours, their generated tests could potentially be

applied to physical systems as well. Their tests are not applied to a physi-

cal system, but to an Algebra of Communicating Shared Resources (ACSR)

model thereof.

Time requirements are speci�ed as directed acyclic graphs called constraint

graphs. Nodes in a constraint graph correspond to actions, and edges express
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a time constraint between the source and target action. An edge is labeled

with two pieces of information; an interval describing the permissible delays

between the two actions, and a set of actions that may not occur during this

interval. Tests can be automatically generated from such constraint graphs.

The authors de�ne the domain of an action to be the permissible delays pre-

ceding the action. They further de�ne di�erent coverage criteria for these

domains, such as observation of all actions, and/or observation of all extreme

values in the domains. These criteria are then organized in a subsumption

hierarchy.

Their domains are \nice" linear intervals that are directly available in the

constraint graph. Also, since their constraint graphs must be acyclic this only

permit speci�cation of �nite behaviors. Our speci�cations are given as event

recording automata without these restrictions. Our stable edge set partition-

ing were obtained, not only by looking at single actions, but sets thereof, i.e.,

we do not assume independence of these. Moreover, since we operate with

constraints over many clocks, our partitions are no longer just intervals, but

of a dimension corresponding to the number of clocks. We further subdivided

these into convex polyhedra, and applied symbolic reachability analysis to �nd

the reachable parts thereof. Thus, we are faced with a more diÆcult analy-

sis problem, and the constraint graph can to some extend be viewed as the

outcome of this analysis.

Braberman et al. [20] describe an approach where a structured analysis/struc-

tured design real-time model is represented as a timed Petri net. Analysis

methods for timed Petri nets based on constraint solving can be used to gen-

erate a symbolic timed reachability tree up to a prede�ned time bound. From

this, speci�c timed test sequences can be chosen. This work shares with ours

the generation of tests from a symbolic representation of the state space. The

paper also proposes other selection criteria, mostly based on the type and

order of the events in the trace. However, they seem to be concerned with

generating traces only, and not on deadlock properties as we are. The paper

describes no speci�c data structures or algorithms for constraint solving, and

states no results regarding their eÆciency. Their approach does not appear to

be implemented.

The VVT-RT (now known as RT-Tester) tool developed in cooperation

between Bremen University and Veri�ed Systems GmbH. [81, 79, 78], brie
y

discussed in Section 6.1.2, also facilitate real-time testing. The speci�cation

language is untimed CSP extended with a set of special actions seti and

elapsei for setting and waiting for timers provided by the runtime system.

CSP speci�cation processes can synchronize on these actions, and use them to

signal error if an action is not received when required, or for delaying inputs,
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etc. There are two types of timers. Fixed timers time out after a speci�ed

amount of time. Random timers time out at a random instant in a speci�ed

time interval.

It should be noted that the speci�cation accepted by RT-Tester is not a

model of the desired target system behavior, but rather is a test speci�cation

consisting of CSP expressions representing the joined behavior of a collection of

use cases, each describing a communication scenario, that the test engineerer

wish to have tested. Thus much of the burden of generating and selecting

test cases lies with the test engineerer. In the reviewed literature there is no

description of how a test speci�cation can be derived systematically from a

model of the environment and desired target system behavior.

The employed coverage criterion aims at executing every edge in the refusal

graph of the test speci�cation at least once, including timer events. There is no

coverage criterion for the time domain except that all time outs will be covered.

Their approach has detected implementation faults in industrial applications

[80, 98, 23, 82], but whether a more systematic and detailed treatment of time

could reveal further faults is an open issue.

The approaches reviewed so far are based on so called behavioral speci�ca-

tion languages. Another school is logic speci�cations. Mandrioli et al. [72]

proposes a technique for tool assisted generation of tests from TRIO discrete

time temporal logic speci�cations. The user assists in selecting the tests to be

generated by guiding the decomposition of the speci�cation into subformulae.

The tool then generates a history (execution trace) satisfying the chosen sub-

formula. With appropriate input/output labeling this trace can be used as a

test case. The authors propose to measure coverage in terms of the number

of axioms and predicates that have been tested.

6.2.4 Algorithms

Yannakakis and Lee [117] describe an alternative algorithm for computing a

minimized reachable symbolic transition system from a deterministic timed

automaton. The symbolic states resulting from their algorithm are stable in

the sense that all its members have the same symbolic a successor states for all

actions a, including the immediate time successor action. Our symbolic states

do not have this property which implies that we must strengthen the symbolic

states through a back propagation step prior to trace generation. Their algo-

rithm is of potential interest to us because avoiding back propagation will be a

big advantage if our techniques are to be applied in an online testing approach

where the test case is generated while being executed. It will enable us to sys-

tematically visit all equivalence states without use of back propagation. It is
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unclear whether we will bene�t from the acclaimed eÆciency of the algorithm

because the initial partitioning that must be provided (although the same as

ours where the same edges must be enabled) is required to be convex.

Clock Di�erence Diagrams [11] is a binary decision diagram inspired data

structure that permits representation of non-convex unions of convex sets.

This data structure will allow a much more compact representation of the

passed list than presently done. It will possibly also enable reachability anal-

ysis to be made based on non-convex partitions, rather than on their present

convex subsets.

6.3 Novelties of Our Approach

Our work focuses on fully automatic generation of tests for timed automata us-

ing an o�ine approach. Compared to the related work outlined in this chapter,

our work distinguishes itself by treating time thoroughly and systematically,

yet in a way we claim have practical relevance.

We have de�ned a partitioning of the timed automata speci�cation which is

much coarser than the previous approaches based on regions. It is our view

that the region based techniques in most cases are too �ne grained, and neither

scale well, nor provide good guidance in the test selection process.

We have given algorithms that systematically explore the partition graph and

cover this with tests. To our knowledge, the employed zone and DBM based al-

gorithms and data structures for symbolic execution and reachability analysis

of the speci�cation have not previously been applied to testing.

A further novelty is that we permit both non-deterministic timed speci�ca-

tions and implementations. Most other related work on timed testing limits

attention to only deterministic systems, whereas non-determinism is permitted

in most untimed approaches. Our work thus levels out this discrepancy. To

handle non-determinism, we made a slight generalization to Hennessy's test-

ing theory and adopted a speci�cation language, event recording automata,

that enabled us to perform the necessary analysis. Interestingly, the ease of

analyzing event recording automata does not seem to have been exploited

elsewhere.
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6.4 Summary

We have identi�ed two main approaches to test generation. In the preorder

based approach, an implementation relation de�nes the correcness of imple-

mentations. A tool interprets the speci�cation with respect to this preorder

and generates test cases. Checking sequence based test generation checks that

the states of the speci�cation are equivalent to those of the implementation,

i.e., that the implementation has no output- or transfer-faults. Both tech-

niques have also been applied in the timed setting.

Test case generators can be online or o�ine. Online generators execute test

cases as they are being generated. O�ine generators output completed test

suites before test execution. Further, test selection can be manual or fully

automatic.

Our approach is preorder based, generates tests o�ine, and selects tests fully

automatically. Our work focuses on testing real-time constraints. The novel-

ties include automatic test selection from a coarse grained state partitioning,

handling non-deterministic timed speci�cations, and the application of sym-

bolic veri�cation techniques to test generation.
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Chapter 7

Conclusions and Future Work

This theses is concerned with the development of correct distributed real-time

systems, and has made two main contributions to this �eld.

Our �rst main contribution is in the area of testing where we have developed a

new technique for automatic generation of real-time conformance tests against

formal speci�cations. We implemented our techniques in the RTCAT tool, and

performed an evaluation thereof. The second main contribution is a formally

de�ned speci�cation and programming language that facilitate reuse of real-

time software components. The conclusions of this line of research is contained

in Section A.7. The remainder of this chapter presents conclusions concerning

our work on testing, the lessons learned, and its potential implications.

It has been our goal to develop an automatic testing technique for densely

timed systems speci�ed using timed automata. Further, tests should be gen-

erated from a sound theoretical basis with a well de�ned implementation re-

lation. It has also been our goal to select tests systematically such that the

generated test suite would give a well de�ned coverage. To approach these

goals we employed three existing techniques:

Hennessy's Testing Theory: This theory is a widely accepted testing the-

ory for concurrent systems. In addition to checking the traces of the im-

plementation, it also checks that the implementation has no unspeci�ed

deadlocks.

Classical Black-box Test Selection: A common approach to selecting tests

for black box sequential procedures is to use partition or domain testing,

where inputs are partitioned into sub domains in which the procedure,

according to the speci�cation, is expected treat identically. We regard

the clocks of a timed speci�cation as (oddly behaving) input parameters.

163
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Symbolic Reachability Analysis: In the recent years eÆcient constraint

solving techniques for model checking of timed automata have been de-

veloped. These techniques provide the necessary means for computing

the reachable partitions, for covering the speci�cation systematically,

and for computing the timed test sequences.

In Chapter 2 we present Hennessy's testing theory and associated test language

formally. We de�ne the class of relevant Hennessy tests, and we show how to

generate such tests from speci�cations given as communicating extended �nite

state machines provided with a labeled transition system semantics. To further

study the properties of the involved algorithms, we implement an untimed test

generation tool, TestGen, that constructs the success graph data structure

containing the information necessary for test generation. Once constructed,

the success graph eases systematic generation of Hennessy tests. We also give

some examples of speci�cations and the resulting success graphs.

In Chapter 3 we propose to use Hennessy's tests lifted to include timed traces

as test language, knowing that this does not fully constitute an alternative

characterization of a real-time testing preorder. We formally de�ne a quite

unrestricted model of timed automata, and outline an algorithm based on

symbolic execution of timed automata for generating timed Hennessy tests.

However, this algorithm does not systematically generate tests suites from a

well de�ned coverage criterion.

There are numerous ways of de�ning input partitions, and the precise de�ni-

tion a�ects the nature and the number of tests that will be generated. We

therefore organize these in a common framework, and de�ne a number of pos-

sible instances thereof. One of these, stable edge set partitioning, is chosen

for further investigation in a prototype implementation. Stable edge set parti-

tioning is chosen partly on intuitive grounds, and partly because the members

of the partitions are equivalent with respect to certain deadlock and action

properties (Hennessy tests without a preceding trace).

Construction of a timed version of the success graph by applying our par-

titioning and symbolic reachability ideas to the unrestricted model of timed

automata turned out to be very challenging, for both technical and princi-

pal reasons. The principle problems are caused by the indeterminizability

of timed automata. Obtaining a �nite deterministic success graph, as is de-

sired for generating timed Hennessy tests, may therefore be impossible. The

technical problems are related to computing the desired partitions and their

reachable parts. One problem is that the adopted symbolic techniques cannot

represent concave unions of sets of states; another is maintaining a common

\time base" when di�erent clocks were reset along non-deterministic choices.
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For these reasons we decide to develop our techniques for Alur's restricted

but determinizable timed automata model, called event recording automata,

which restricts the resets of clocks. Using this model, most technical problems

vanish, and it therefore turns out to be an excellent vehicle for developing our

techniques.

Chapter 4 contains the main results of our work on real-time testing. We

show how to generate tests for event recording automata in an automatic

and systematic way. Our technique involves three main steps. The �rst step

constructs a partition graph based on the stable edge set partitioning. The

second step is symbolic reachability analysis of that graph. The �nal step is

the generation of the tests themselves. For this we give two algorithms; one

basic algorithm that also supports extreme value selection, and one that aims

at reducing the size of the test suite by composing test cases. Our techniques

are implemented in the RTCAT tool.

In Chapter 5 we evaluate our techniques with respect to usability and ex-

pressiveness of the event recording automata model, the number of generated

tests, and implementability.

Through a series of examples we demonstrate how event recording automata

can specify untrivial and practically relevant timing behavior. While theoreti-

cally less expressive than timed automata, it has proven suÆciently expressive

for our examples, but sometimes causing minor inconveniences. More impor-

tantly, however, our present interpretation lacks means of expressing timing

uncertainty and modeling of environment assumptions.

Generating tests from these speci�cations using RTCAT results in fairly small

covering test suites. The smallest covering test suite is obtained by con�guring

RTCAT to compose tests, and to perform breadth �rst test generation. Our

preliminary experience with respect to the number of tests that will be gener-

ated is therefore very encouraging, and we believe that our technique is feasible

for even larger speci�cations. However, guaranteeing coverage of large speci�-

cations could become problematic because both test execution and reachability

analysis may become bottlenecks. We have yet to determine how large real-

istic and practical speci�cations our techniques can handle. Alternatively, it

is sometimes possible to decompose the speci�cation into more manageable

properties that can be tested separately.

We also conclude that our Hennessy based test language should be extended

with continuous enabling and refusal of actions. It should be further examined

whether Hennessy's recent testing theory [50] for real-time systems could serve

as practical basis for this extension, see Chapter 6.
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Our implementation e�ort shows that our techniques are indeed implementable

and operational, but it also indicates that neither partitioning, nor the reach-

ability techniques are straightforward to apply eÆciently. We �nd that future

implementations could be improved by employing a lazy evaluation architec-

ture, and perform the reachability analysis using coarser symbolic states.

In our review of related work, we found only a moderate amount dealing

explicitly and systematically with generation of real time tests. Compared

to these our approach is novel. Speci�cally, compared to present attempts at

generating tests for timed automata based on a representation using regions

or digitized clocks, our approach seem advantageous. We believe that our

techniques deserve further attention, and that future work can improve on its

applicability and eÆciency.

Future Work

There are many aspects of our work that require further work. Listed below,

in what we believe should be an approximate order of signi�cance, is a number

of topics for future work.

Applications: So far we have only generated tests from a few more or less

realistic hypothetical speci�cations. An important next step is to apply

our techniques to test of real-life systems. This entails both speci�cation,

test generation, and test execution.

Such case studies will contribute with essential information about the

applicability of our technique, including the outstanding question of the

error detection abilities of our selection scheme, and for which kinds of

applications this approach is useful.

Environment Assumptions: A facility should be added to our techniques

to permit modeling of the environment of the speci�cation, and to take

this into account in the test generation process. We expect that it will

be unproblematic to develop an algorithm that factors in the environ-

ment behavior in the reachability analysis, although some amount of

implementation work is required.

Timing Uncertainty: The perhaps most inhibiting aspect of our interpre-

tation of the ERA speci�cation language is its inability to specify uncer-

tain timing behavior. We see no evidence that this should be a profound

limitation of ERA. It was rather introduced by our application of timed

Hennessy tests, and by our desire to keep matters reasonably simple. We
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envision two types of actions, urgent and non-urgent actions, as included

in our general timed automata model.

Because the need for timing uncertainty most frequently arises in con-

junction with actions that one would logically regard as being outputs,

a distinction between input (controlled by the environment) and output

actions (controlled by the system) should be considered.

Fortunately, most of our techniques appear to be applicable also in this

setting. The partitioning and reachability analysis techniques are largely

una�ected. Further, it will be easy to de�ne a timed version of the

input/output conformance relations reported in Chapter 6 in the same

way we did with Hennessy's untimed tests.

However, it will be more diÆcult to change the test notation language,

and the algorithms producing the tests: To be e�ective, it should allow

actions to be continuously enabled and refused over a time interval.

Also, since the time instant where a synchronization took place is only

available during test execution, we think that better or stronger tests

could be generated using online testing. This does not rule out the use

of our symbolic techniques per se, as the basic operations are suÆciently

eÆcient to be executed in real-time (obviously depending on the time

scale of the system being tested). Alternatively, the generated test cases

should be stored in symbolic form and be instantiated at execution time.

Signi�cant implementation e�ort will be needed to change test language,

and rewrite the implementation for online testing.

Implementation Improvements: Two important improvements of the im-

plementation should be made. Reachability analysis should be applied

di�erently to avoid chopping up the state space into many small sym-

bolic states. The memory usage should be reduced by only storing the

parts needed for generation of the current test case. Finally, with a

lazy evaluation tool architecture, it would be easier to accommodate

large speci�cations. Implementing these improvements requires a large

redesign and implementation e�ort.

Testing Reusable Speci�cations: We have proposed a model where a re-

usable speci�cation consists of separately speci�ed untimed objects and

time constraints. One approach to derive tests from such speci�cations,

is to compose the components and their constraints, and to analyze

their combined behavior using similar techniques as we have proposed

for timed automata. Thus, the separation itself seems to cause only

minor challenges. It is unclear whether, or to what extend, tests can be

generated from the separate speci�cations, thus reusing parts of the test

generation e�ort.
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However, the particular Real-Time Synchronizers and Actor languages

adds two diÆcult challenges. First, actors communicate asynchronously

via messages. This requires a distinction between inputs and outputs,

and observing that messages may arrive in an order di�erent from their

transmission order. Both aspects a�ect testing theory and algorithms

since these are not directly applicable to asynchronous systems. The

second challenge is to partition these speci�cations and to analyze them

symbolically. The symbolic methods we propose for timed automata

does not appear to be directly applicable to Real-Time Synchronizers,

although similar techniques may be feasible.

Discrete Variables and Value Passing: Currently, value passing is not

supported in our speci�cation languages. Discrete variables are handled

only as an extension of the control location. A logical next step would be

to extend our partitioning to also incorporate discrete variables and pa-

rameters; after all, our approach to real-time test selection was inspired

by the way discrete parameters are traditionally handled in sequential

testing techniques. We expect that these can be incorporated into an au-

tomata based speci�cation language, and that symbolic constraint solv-

ing techniques can be applied. However, the speci�c algorithms remain

to be worked out.

Hybrid Systems: Hybrid systems evolve by discrete transitions and con-

tinuous behavior described by di�erential equations. It would be in-

teresting to �nd approximations to their continuous behavior that can

be analyzed and tested using similar techniques to the ones developed

here for real-time systems. Again, results developed for model checking

may be a source of inspiration. Alternatively, it could be investigated

how simulation techniques can be incorporated to deal with di�erential

equations that cannot be solved feasibly by exact means.

Probabilistic and Performance Testing: The problem of testing real-time

conformity interfaces to a related problem, that of performance testing.

In performance testing absolute correct timing is not required, but only

requirements like average response time, or whether a certain fraction

of responses is earlier than a given limit, should be checked. The out-

come of executing such performance tests could be evaluated against

probabilistic timed automata speci�cations.

Although it may be possible to test hybrid and probabilistic systems us-

ing similar ideas to the ones presented here, this will require a completely

new research e�ort.
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The goal of the work presented here was to show how real-time test cases could

be derived systematically with a guaranteed coverage using the symbolic anal-

ysis techniques developed for model checking. Given our positive results in

this respect, we plan in the near future to further apply our techniques and to

examine how to deal more e�ectively with a number of the identi�ed practical

issues. Speci�cally, we intend to add environment modeling, timing uncer-

tainty, and distinguish between inputs and outputs. We believe that our basic

techniques are still applicable in this setup although some re-implementation

e�ort is needed towards online testing.
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Abstractz

Large and complex real-time systems can bene�t signi�cantly from

a component-based development approach where new systems are

constructed by composing reusable, documented and previously

tested concurrent objects. However, reusing objects which execute

under real-time constraints is problematic because application spe-

ci�c time and synchronization constraints are often embedded in

the internals of these objects. The tight coupling of functionality

and real-time constraints makes objects interdependent, and as a

result diÆcult to reuse in another system.

We propose a model which facilitates separate and modular speci-

�cation of real-time constraints, and show how separation of real-

time constraints and functional behavior is possible. We present

zThis chapter is previously published in [77].
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our ideas using the Actor model to represent untimed objects, and

the Real-time Synchronizers language to express real-time and syn-

chronization constraints. We discuss speci�c mechanisms by which

Real-time Synchronizers can govern the interaction and execution

of untimed objects.

We treat our model formally, and succinctly de�ne what e�ect real-

time constraints have on a set of concurrent objects. We brie
y

discuss how a middleware scheduling and event-dispatching service

can use the synchronizers to execute the system.

A.1 Motivation

Real-time systems remain among the most challenging systems to build, and

often projects are late and products faulty. Developers are faced with ever

more stringent requirements for building larger, more complex systems at a

faster pace and without proportional resources. However, because current

tools and techniques to deal with complexity do not scale linearly with size of

programs, development problems worsen. We believe that real-time systems

can bene�t signi�cantly from a development approach based on components

where new systems are constructed by composing reusable, documented and

previously tested components. Unfortunately, current software development

methods and tools do not properly support such construction.

Because real-time systems are safety critical and often unattended, they must

operate under strict end-to-end time constraints and be dependable. Depend-

ability requirements entail both correctness and tolerance to faults. Real-time

systems can be loosely de�ned as systems where timely response is equally im-

portant as correct response. Real-time systems typically monitor and regulate

physical equipment. Some well-known examples include: manufacturing plant

automatization, where the production steps must be supervised and coordi-

nated; chemical processes which are automatically monitored and regulated

through sensors and actuators; safety systems aboard trains and cars; �nan-

cial applications where stock rates must be guaranteed up-to-date and where

transactions must be completed within speci�c time bounds.

Historically, real-time systems were built using low level programming lan-

guages and executed on dedicated hardware and specialized operating sys-

tems: eÆciency, high resource utilization, and integration with hardware were

the primary concerns, software modularity and reuse were only secondary. In

the light of more stringent development requirements, we believe the emphasis

should now be on building modular and reusable components, which can be

used in many applications.
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Middleware services (i.e. general purpose services located between platforms

and applications [16]) can then be used to help integrate the components.

However, reusing real-time components is often problematic because appli-

cation speci�c time and synchronization constraints are embedded in the in-

ternals of these components. This kind of tight coupling makes components

interdependent, and consequently unlikely to be reusable in other systems.

Properly supported component-based software development will allow compo-

nents to be developed individually and later be composed with other individu-

ally developed or existing components, making it possible to reuse components

in di�erent applications. Thus component-based software has emerged as an

active area of research. Our work makes a contribution to this area.

A.2 Separation and Reuse

In what follows we use collections of concurrent objects to represent compo-

nents in a distributed real-time system. Typically these objects model real-

world entities or act as proxies for them. The objects execute concurrently

and communicate by exchanging messages containing computation results or

information about their local states. Objects may be larger entities than data

structures such as lists or trees, they need not be heavyweight processes.

Designing reusable objects is diÆcult and requires skilled engineers. Building

reusable concurrent real-time objects is even more diÆcult, and necessitates

particular restrictions:

1. Objects should not schedule themselves by setting their priorities or by

specifying deadlines and delays on method invocations, e.g., use expres-

sions such as object.method(args) deadline 10, or contain any other

type of scheduling related information.

2. Objects should not manipulate timers for programming delays or time-

outs. Timer manipulation includes requesting, cancelling, and handling

timer signals.

3. Objects should not have hardwired synchronization constraints. In a

concurrent system, certain restrictions on order of events must be enfored

in order to ensure safety and liveness. This concerns both the order of

invocations of a single object, and the interaction between invocations

on a set of objects.

Priorities, real-time constraints, timer values, and synchronization constraints

are all properties that are likely to di�er between applications, and therefore
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objects that embed such behavior cannot be readily reused. In addition most

of these properties are global properties, not properties belonging internally to

a single object. For example, a priority level only makes sense when compared

to the priorities of other objects. Similarly, an object is usually part of a

sequence of objects chained by method calls which together must obey an end-

to-end deadline. A deadline on a method invocation only represents a single

object's time budget along the call chain. New applications using the object

will usually have di�erent end-to-end deadlines and di�erent call sequences.

Therefore the objects would have to be modi�ed, and consequently re-tested,

to accommodate a new time budget.

Parameterizing objects with timing and scheduling information would solve

these problems only to a very limited extent. This is partly because it is dif-

�cult to know which attributes should be parameterized, and partly because

concurrency constraints among objects are diÆcult to capture through param-

eters. We argue that it is better to handle the composition by a composition

software agent, and use design methods and programming languages/environ-

ments that explicitly provide notations and abstractions for this decoupling.

Another source of reuse is the constraints themselves. We expect that many

instantances of the same constraints will recur in di�erent applications. It

would therefore be advantageous to reuse them. However, a more important

reason for reuse is that real-time and synchronization constraints can be ex-

tremely tricky to specify correctly. Constraints that work as desired should be

reused rather than be replaced by new similar ones. An e�ective and modu-

lar language should enable the programmer to factor out common constraint

instances as constraint patterns and support their composition.

We propose a model in which both real-time and synchronization constraints

can be speci�ed in an integrated manner, enabling a fairly general set of con-

straints to be speci�ed. For example, a time constraint could specify that

a controller object must receive sensor data from a sensor object every 20

milliseconds. A synchronization constraint temporarily disables some actions

until others have taken place, for example, to prevent a producer from in-

serting in a full bu�er. We refer to combined real-time and synchronization

constraints as interaction constraints. Both types constrain dynamic interac-

tions among objects.

Our interaction constraints are conceptually installed \above" ordinary ob-

jects, and they actively enforce the developers' constraints, see Figure A.1.

The enforcing agent is the scheduler (or schedulers) which bases its decisions

on the supplied constraints.

Interaction constraints are expressed in terms of enabling conditions on com-

munication events occurring on the interface of objects. These events consti-
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constraint-level

functional-level

object

unprocessed messages

interaction
constraints

communication
event

Figure A.1. Separation of constraints and objects.

tute the observable behavior of a system. What goes on inside an object is

encapsulated, and cannot be constrained. Speci�cally, a collection of synchro-

nizer entities constrain by delaying or accelerating message invocations. Each

synchronizer implements a constraint pattern. We use the object-oriented

Actor model to describe objects.

Section A.3 introduces and exempli�es our model. Since we are interested in

providing a clean and sound model, it is accompanied by a description of its

semantics. Our goal is to succinctly de�ne constraints and their e�ects on the

objects they constrain. Section A.4 provides the formal de�nitions. Finally,

in Section A.5 we discuss implementation.

A.3 Speci�cation of Interaction Constraints

We use the object-oriented Actor model [1, 2, 5] to describe distributed com-

puting entities (hardware or software). An actor encapsulates a state, provides

a set of public methods, and potentially invokes public methods in other ob-

jects by means of message passing. Unlike many object-oriented languages,

message passing is non-blocking and bu�ered. This means that when an actor

sends a message, it continues its computation without waiting for, or getting a

reply from, the receiver. Further, messages sent but not yet processed by the

receiver are conceptually bu�ered in a mailbox at the receiver. The receiver

receives and processes messages one at a time. In addition, actors execute

concurrently with other actors. An actor system is illustrated in Figure A.2.
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thread state:

A

B

methods:

interface

thread state:

A

B

methods:

interface

thread state:

A

B

methods:

(pending messages)

message

message

…
…

Figure A.2. Illustration of an actor system.

actor pressureSensor ( ) f

real value;

method read(actorRef customer) f

send customer.reading(value);

g

g

actor steamValve ( ) f : : : g // unspeci�ed

actor controller (actorRef sensor,valve) f

method loop( ) f

send self.loop( );

send sensor.read(self);

g

method reading(real pressure) f

newValvePos=computeValvePos(pressure);

send valve.move(newValvePos);

g

g

Figure A.3. Steam boiler.
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Each actor is identi�ed by a unique name, called its mail address. A mail

address can be bound to state variables of type actor reference. To send a

message an actor executes the send a:m(pv) primitive, where a is an actor

reference variable containing the mail address of the target actor (possibly the

actor itself), m is the method to be invoked, and pv is the value(s) passed.

It is possible to communicate mail-addresses through messages thus allowing

dynamic con�guration of the communication topology.

The example actor program in Figure A.3 describes part of a simple boiler con-

trol system consisting of a pressure sensor, a controller, and a valve actuator.

These entities are modelled as actors. The goal is to maintain a pre-speci�ed

pressure level in the boiler. The controller is the heart of the system. It repeat-

edly executes a method which sends a request to the pressure sensor for the

current boiler pressure. The iteration is implemented by having the controller

send itself a loop message which causes requests to be sent to the pressure

sensor. The parameter of this message speci�es which actor the result must

be sent to, in this case the controller itself. Upon request, the pressure sensor

sends a reply containing its current pressure reading back to the initiator of

the request (i.e., the controller). Based on that value, the controller computes

an updated steam valve position, and sends a message to invoke the move

method on the valve.

The RT-Synchronizers� language that we de�ne in this paper to express con-

straints is purposely distilled: it does not include syntactic sugar for convenient

description of common constraint patterns. This allows us to focus on the cen-

tral ideas, and makes it easier to de�ne a complete semantics. A synchronizer

is an object that enforces user speci�ed constraints on messages sent by actors.

Such constraints express real-time or ordering constraints on pairs of message

invocations. The messages of interest are captured by means of patterns that

represent predicates over message contents and synchronizer state. The struc-

ture of an RT-Synchronizers� declaration is given in Figure A.4. It consists

of 4 parts: A set of instantiation parameters, declarations of local variables, a

set of constraints, and a set of triggers.

A constraint has one of the following forms:

p1 ) p2 � y: Here p1 and p2 are message patterns and y is a variable or con-

stant with positive real value. Let a1(cv1) and a2(cv2) be message in-

vocations matching p1 and p2 respectively. This constraint then states

that after an a1(cv1) has occurred, an a2(cv2) must follow before y time

units elapse. We say that event a1(cv1) �res the constraint, and causes

a demand for a2(cv2).

p1 ) p2 � y: After a1(cv1) occurs, at least y time units must pass before

a2(cv2) is permitted.
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synchronizer (a1; : : : ; an)f

StateDeclaration

p11 ) p21 � y1

...

p1n ) p2n � yn

p1 : x := exp

...

pk : x := exp

g

Figure A.4. Structure of RT-Synchronizers�. �2 f�;�g.

In both cases there are no constraints on a2(cv2) until after a1(cv1) �res. A

pattern has the form x1(x2) when b, where b is a boolean predicate (guard)

over the message parameter x2 and the state of the synchronizer. x1 is a state

variable containing an actor address. Intuitively, a message satis�es a pattern

if it is targeted at x1 and the boolean predicate evaluates to true. If a message

satis�es a pattern, the invocation is a�ected by a constraint which must then

be satis�ed before the invocation can take place. When a constraint forbids

the invocation of a message, it is bu�ered until a later time when the constraint

enables it. A disabled message may become enabled when a delay has expired,

or when the synchronizer changes state through a trigger operation.

A trigger command speci�es how the synchronizer's state variables change

when a message invocation satis�es a given pattern. Speci�cally, assignment

of the trigger p : x := exp is executed when a message satisfying p is invoked.

Synchronizers can thus adapt to the system's current state.

To promote modularity of interaction constraints, the constraints can be spec-

i�ed as a collection of synchronizer objects executing concurrently.

A.3.1 Example 1: Steam Boiler Constraints

The synchronizer in Figure A.5 describes the real-time constraints for the

simple boiler control system from Figure A.3. The controller should read the

pressure periodically (every 20 time units plus or minus some tolerance). The

controller must receive sensor data from the pressure sensor within 10 time

units measured from the start of the period, and it must update the steam
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valve position no later than 5 time units after receiving sensor data. A message

sequence chart illustrating the communication among the boiler objects and

the associated timing constraints is shown in Figure A.6.

This example shows how real-time constraints can be expressed and imposed

separately from the functionality. It also shows how periodic constraints can

be expressed by combining deadlines and delays. To make the language easier

to use, common constraint patterns such as those enforcing periodicity can be

speci�ed as macros.

actor pressureSensor ( ) f : : : g;

actor steamValve ( ) f : : : g;

actor controller (actorRef sensor,valve) f : : : g;

synchronizer boilerConstraints (actorRef: controller,valve) f

// periodic loop:

controller.loop ) controller.loop � 20+�

controller.loop ) controller.loop � 20-�

//deadline on reading:

controller.loop ) controller.reading � 10

//deadline on move:

controller.reading ) valve.move � 5

g

Figure A.5. Steam boiler constraints.

A.3.2 Example 2: New Boiler

In a new boiler application, the pressure sensor must be polled approximately

every 100 time units for pressure readings, and the pressure valve must be

moved accordingly no later than 20 time units after the appropriate reading.

However, in situations where the pressure in the boiler is high, the system must

operate with a higher frequency. The pressure sensor must then be polled every

50 time units. Two threshold values, NormToHighThr and HighToNormThr,

de�ne which pressure values cause mode change.

The functional part is reused from Example 1, i.e., the actors and their respec-

tive behaviors are unmodi�ed, but they are now composed by the \newBoiler-

Constraints" synchronizer given in Figure A.7. The synchronizer maintains a
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pressureSensor controller steamValve

read

reading

loop

move 5

20

10

loop

time

Figure A.6. Message sequence chart with annotated timing con-

straints for the steam boiler example.

synchronizer newBoilerConstraints (actorRef: sensor, controller, valve)f
enum Mode fNormal,Highg mode = Normal;

//normal pressure periodic:

sensor.read when mode==Normal ) sensor.read � 100+�

sensor.read when mode==Normal ) sensor.read � 100-�

//high pressure periodic:

sensor.read when mode==High ) sensor.read � 50+�

sensor.read when mode==High ) sensor.read � 50-�

//deadline on move:

sensor.read ) valve.move � 20

//Trigger mode change

controller.reading(pressure) when pressure�NormToHighThr: mode=High;

controller.reading(pressure) when pressure�HighToNormThr: mode=Normal;

g

Figure A.7. New steam boiler.
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mode state variable which tracks whether the system operates in high or nor-

mal pressure mode. The example also illustrates RT-Synchronizers�'s ability

to capture the dynamic changes that are common to many real-time systems

through the use of a state variable, and to change time constraints accordingly.

A.3.3 Example 3: Time Bounded Bu�er

This and the next example show two common real-time constraint patterns: a

real-time producer-consumer relation, and rate control. These examples also

show how RT-Synchronizers� can express synchronization (event ordering)

constraints.

actor q f

method put(Item item) f// store item g;

method get(actorRef customer) f send customer.processItem(item);g

g

actor consumer( ) f actor producer( ) f

method consume( ) f method produce ( ) f

send q.get(self); send q.put(item);

send self.consume( ); send self.produce( );

g g

method processItem(Item item) f : : : g g

g

synchronizer bbConstraints (actorRef: producer, consumer, q) f

int n=0; // no of elements in queue

q.put ) q.get � 20; // time bound on get

disable consumer.consume when n � 0; // buf empty?

disable producer.produce when n � maxBufSz; // buf full?

producer.produce: n++;

consumer.consume: n��;

g

Figure A.8. Bounded bu�er with time constraints.

Figure A.8 shows a time bounded bu�er where each element must be removed

20 time units after it has been inserted. In addition, the usual restrictions of

not putting on a full bu�er and not getting from an empty bu�er are enforced.

Note that the code uses a shorthand, disable p, to temporarily prevent mes-

sages matching the pattern p from being invoked. disable p can be written as
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e0 ) p � 1, where e0 is a pattern assumed to be �red at system startup time.

This synchronizer could be used, for example, in a multimedia system where

the queue is an actor capable of decompressing a compressed video stream:

the actor has a �xed storage capacity for frames. Until a compressed frame

is decompressed and consumed, it occupies a bu�er slot. The actor accepts

messages containing a compressed frame and messages removing an uncom-

pressed frame. The frames may only stay in the actor for a bounded amount

of time. The bu�er space must then be freed up for processing of new, fresh

frames.

A.3.4 Example 4: Rate Control

The example shown in Figure A.9 illustrates how rate control can be described.

At most 20 move operations can safely be performed on an actuator in any

time window of 30 time units.

actor actuator f method move( ) f : : : gg

actor eventGenerator f

method timeout( ) f send self.timeOut( ); g

g

synchronizer rateControll (actorRef: actuator, eventGen) f

int credit=20; // max no of events in window

// timeout 30 tu's after move:

actuator.move ) eventGen.timeOut � 30;

actuator.move ) eventGen.timeOut � 30;

// event permitted?

disable actuator.move when credit � 0;

// timeOut must be after move!

disable eventGen.timeOut when credit � 20;

actuator.move: credit��;

eventGen.timeOut: credit++;

g

Figure A.9. Rate control.

We use an event generator actor to produce message invocations so that the

synchronizer changes state at certain time-points. An event generator actor

does not add any functionality per se, but is necessary for the proper func-
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tioning of the synchronizer. This programming technique obviates the need

for a special internal event concept in RT-Synchronizers�.

A.4 Formal De�nition

In this section we provide a formal de�nition of our model. The formal model

de�nes the permissible behavior of a constrained actor program, which is cru-

cial for determining which executions on a physical machine will be considered

correct.

The separation of functionality and constraints is maintained in the formal

de�nition, and this enables the semantics for Actors and RT-Synchronizers�

to be given as independent transition systems. The meaning of a program com-

posed of actors and synchronizers is then given by putting the two transition

systems in \parallel". Figure A.10 gives an overview of the transition systems

to be de�ned. A numerator denominator-pair should be read as Premise
Conclusion ,

where the premise is the condition that must hold in order for the conclusion

to hold. The � transitions de�ne semantics for Actors, the 
 transitions for

individual constraints, and the � transitions for synchronizer objects. Finally,

�� transitions de�ne the behavior of a constrained actor-system.

Actors: ����!�

Single constraints: ����!


Synchronizers: ����!�

Constrained System: ����!��

Figure A.10. Dependencies of the transition systems to be de-

�ned.

A.4.1 Semantics of Actors

We �rst de�ne a transition system � for an actor language. This de�nes how

the state of an actor system changes when a primitive operation is performed,

thus giving an abstract interpretation. The actor semantics presented here is

inspired by the work of Agha et. al. [5] where a well-developed theory of actors

can be found. However, note that we present actor semantics in imperative

style rather than the applicative style used in previous work. Our semantic

model abstracts away the notion of methods. Instead, each actor has a sin-

gle behavior|a sequence of statements|which it applies to every incoming

message.
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When an actor has completed processing a message it executes the ready

command to indicate its readyness to accept a new message. As an aside,

readers familiar with the classic Actor literature will note that the original

become primitive has been replaced with ready. When an actor executed

a become it created a new anonymous actor to carry out the rest of its

computation, and prepared itself to receive a new message. Thus, in the

classic model, actors were multi-threaded, and tended to be extremely �ne-

grained. In recent literature [3], the simpler ready has replaced become,

with essentially no loss of expressiveness. In addition we have, due to brevity,

omitted the semantic de�nition of dynamic actor creation.

The state of an actor system is represented by a con�guration which can

be thought of as an instantaneous snapshot of the system state made by a

conceptual observer. It is modeled as a pair h � j� i where � represents

actor states, and � is the set of pending messages. The � mapping maintains

the state of all actors in the system. An actor state holds the execution state of

an actor: the values of its state variables and the commands that remain to be

executed. An actor state is written [E ` b]
a
where a is the actor's address, E is

an environment (mapping from identi�ers to their values) tracking the values

of the state variables, and b is the remainder of the actor's behavior. In each

computation step the actor reduces the behavior until it reaches a ready(x)

statement. This juncture signi�es that the actor a is waiting for an incoming

message whose contents should be bound to x. When a message arrives, the

actor continues its execution. A message is a pair ha( cvi consisting of a

destination actor address a, and a value to be communicated cv. In general

cv encodes information about which method to invoke along with the values

of the method's parameters.

hfun : ai
E ` b �!� E

0
` b

0

h � ; [E ` b]
a

j� i �!� h � ; [E0
` b

0]
a

j� i

hsnd : a; ha0 ( cvii

h � ; [E ` send(a0; cv); b]
a

j� i �!� h � ; [E ` b]
a

j� ; ha0 ( cvi i

hrcv : a; ha( cvii

h � ; [E ` ready(x); b]
a

j� ; ha( cvi i �!� h � ; [E[x 7! cv] ` b]
a

j� i

Figure A.11. Con�guration transitions �!�.
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The semantics of actors is given in Figure A.11. The fun transition de�nes

the e�ect on system state when an actor performs an internal computation

step, i.e. a reduction of an expression. The transition system �!� de�nes the

semantics of the sequential language used to express actor behaviors. Since

we do not rely on a speci�c language, we have omitted its de�nition.

The interpretation of send is given by the snd-rule. The newly sent message

is added to �. Message reception is described by the rcv transition. When

an actor executes a ready(x) command, it becomes ready to accept a new

message in an environment with the updated state variables left by the pre-

vious processing. Also, the actual value carried by the message is bound to

the formal argument x. Finally, the message is removed from �. It is ex-

actly these receive transitions that will be constrained by RT-Synchronizers�.

Other transitions are only a�ected indirectly.

From this semantics one can make no assertions about the execution time of

an actor program; how, then, can we meet real-time requirements? To make

this point clear, we temporarily introduce time into the Actor semantics.

Time can be added to transition systems by introducing a special set of de-

lay actions written as "(d) where d is a �nite positive real-valued number

representing the passage of d time units. The idea is that system execution

can be observed by alternatingly observing a set of instantaneous transitions

and observing a delay. In [76] this idea was termed the two-phase function-

ing principle: system state evolves alternatingly by performing a sequence of

instantaneous actions and by letting time pass.

By adding the rule: h � j� i
"(d)
��!� h � j� i, we extend the �!� transition

relation with the ability to let time pass. The rule states that any actor con-

�guration is always able to delay transitions for some (�nite) amount of time.

The consequence is that one cannot tell how long a time an actor program

takes to �nish; indeed the interval between any pair of actions is indetermi-

nate. This is a reasonable model for untimed concurrent programs, where no

assumptions on the relative order or timing of events should be made. How-

ever, a language with this semantics is unsuitable for real-time system: from

the code one can only make assertions about eventuality properties, not about

bounded timing. A real-time programming language should make assertions

about time bounds possible, and its semantics should de�ne when and by how

much can time advance.
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A.4.2 RT-Synchronizers� Semantics

We start by de�ning semantics for single constraints (�!
 transition system),

and thereafter proceed to a synchronizer object (�!� transition system); the

latter is essentially a state plus a collection of constraints and triggers. The

state variables of a synchronizer will be represented by an environment V

mapping identi�ers to their values. Constraints and patterns are evaluated in

this environment.

Recall that a constraint has the form p1 ) p2 � y. Whenever an invocation

matches p1 the constraint �res thereby creating a new demand instance for an

invocation matching p2. Such a demand will semantically be represented by

the triple p2 � d, where d is a real number denoting the deadline or release

time of p2, depending on �. d is initialized with the value of state variable

y, V (y), when �red.

hSat� : a(cv)i

cs =

�
; if a(cv) j= p2

p2 � d
0 otherwise

cf =

�
p2 � V (y) if a(cv) j= p1)

; otherwise

hj �� j � ] p2 � d
0 ji

a(cv)
���!
 hj �� j � ] cf ] cs ji

hSat� : a(cv)i

cs =

�
; if a(cv) j= p2 ^ d

0
� 0

p2 � d
0 otherwise

cf =

�
p2 � V (y) if a(cv) j= p1)

; otherwise

hj �� j � ] p2 � d
0 ji

a(cv)
���!
 hj �� j � ] cf ] cs ji

hSat
;
: a(cv)i

cf =

�
p2 � V (y) if a(cv) j= p1)

; otherwise

hj �� j ; ji
a(cv)
���!
 hj �� j ; ] cf ji

hDelay� : ei
8p2 � di 2 (�� e):di � 0

hj �� j � ji
"(e)
��!
 hj �� j �� e ji

a(cv) j= x1(x2)when b =def a = V (x1) ^ b(V [x2 7! cv])

Figure A.12. Semantics for single constraints �!
 , �2 f�;�g.



A.4. FORMAL DEFINITION 187

Since a constraint can �re many times successively, a constraint may induce

many outstanding demand instances. The state of a single constraint is there-

fore represented as a constraint con�guration hj �� j � ji where �� stands

for the (static description of a) constraint of the form p1 ) p2 � y, and �

is a multi-set of demands instantiated from the static description �� . The

semantic rules are shown in Figure A.12.

The function cs determines whether the pattern of a demand instance is sat-

is�ed, and if so, removes it from the demand instance set. If the pattern is

not satis�ed, the demand is maintained. Similarly, the function cf determines

whether or not the constraint �res and therefore whether or not to add a

new demand instance. Thus the Sat-rules ensure that whenever a constraint

�res, a demand (cf ) is added to �. Also, whenever a demand (cs) is satis�ed,

it is removed from �. Due to the possibility of a single message matching

both p1 and p2 the Sat-rules are prepared to both satisfy and �re a demand.

The demand instance to be removed is chosen non-deterministically, giving

the implementation maximal freedom to choose the demand it �nds the most

appropriate, e.g., the one with the tightest deadline.

Passage of time is controlled by the Delay-rule such that the elapsed amount

of time (e) is subtracted from di in each demand pi � di. This is written ��e.

Thus for p � d, d is the amount of time that must pass before p is enabled. In

particular, p will be enabled when d is less than 0. This requirement is enforced

by the cs function of the hSat� : a(cv)i rule. For p � d, d is the amount of time

that may pass before p will be disabled. p would be disabled if d is less than 0.

However the hDelay� : ei rule prevents time from progressing that much. In

e�ect, the delay rule ensures that deadline constraints are always satis�ed in

the semantics. This corresponds to the declarative meaning one would expect

from a constraint: something that must be enforced. Without this strict

de�nition, our constraints would degenerate to mere assertions and not convey

their intended meaning. Note that an actual language implementation may

not always be able to give this guarantee | either statically or dynamically

| for two reasons. First, because physical resources may not exist to realize

them, and second, because �nding feasible schedules for general constraints is

computationally very complex.

Con
icting constraints that have no solutions should be detected as part of

the compiler's static program check. Ren has shown how RT-Synchronizers�

constraints can be mapped to linear inequality systems for which polynomial

time algorithms exist for detecting solvability [90, 88].

The following transition sequence illustrates application of the transition rules

for a constraint:
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hj p1 ) p2 � 7 j ; ji
a1(cv)
����!


hj p1 ) p2 � 7 j p2 � 7 ji
"(3)
��!


hj p1 ) p2 � 7 j p2 � 4 ji
a1(cv)
����!


hj p1 ) p2 � 7 j p2 � 4; p2 � 7 ji
"(4)
��!


hj p1 ) p2 � 7 j p2 � 0; p2 � 3 ji
a2(cv)
����!


hj p1 ! p2 � 7 j p2 � 3 ji
a2(cv)
����!


hj p1 ! p2 � 7 j ; ji

Given that the behavior of each individual constraint is well de�ned, it is

easy to de�ne the behavior of a collection of constraints as found within a

synchronizer. Essentially the individual constraints are conjoined, i.e., we

require that all constraints agree on a given invocation. Similarly, they must

all agree on letting time pass.

A synchronizer is represented by a synchronizer con�guration [�
jV ] where �


is a set of constraint con�gurations (ranged over by 
). As previously stated

V represents the state variables of a synchronizer and is a mapping from

identi�ers to their values. The necessary de�nition is shown in Figure A.13.

A synchronizer can engage in message reception a(cv) or delay "(e) only when

it is permitted by every constraint.

We have omitted the rather simple de�nition of the e�ect of triggers: V
0

is V simultaneously updated with the speci�ed assignments in the matched

triggers.

hAction : `i

8i 2 [1::n]:
i
`
�!
 


0

i

[
1; : : : ; 
njV ]
`
�!� [


0

1; : : : ; 

0

njV
0]
; ` 2 fa(cv); "(e)g

Figure A.13. Semantics for a synchronizer �!�.

A.4.3 Combining Actors and RT-Synchronizers�

The preceding sections de�ned Actor and RT-Synchronizers� languages inde-

pendently. The e�ect of constraining an actor program can now be de�ned

here as a special form of parallel composition (denoted by k) that preserves the
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meaning of constraints. We call a collection of synchronizers an interaction

constraint system con�guration which is written (�1; : : : ; �n) where � ranges

over synchronizer con�gurations. The composition k of an actor con�guration

and an interaction constraint system con�guration is de�ned in Figure A.14.

Una�ected Actions

h � j� i
`
�!� h �

0 j�0 i ` 2 fhfun : ai; hsnd : a;mi; hready : aig

h � j� i k (�1; : : : ; �n)
`
�!�� h �

0 j�0 i k (�1; : : : ; �n)

Receive

h � j� i
`
�!� h �

0 j�0 i
V

i2[1::n]

�i
a(cv)
���!� �

0

i
` = hrcv : a; ha( cvii

h � j� i k (�1; : : : ; �n)
`
�!�� h �

0 j�0 i k (�01; : : : ; �
0

n)

Delay V
i2[1::n]

�i
"(d)
��!� �

0

i

h � j� i k (�1; : : : ; �n)
"(d)
��!�� h � j� i k (�01; : : : ; �

0

n)

Figure A.14. Combined behavior �!��.

Transitions una�ected by interaction constraints altogether are message sends

and local computations. These only have e�ect on the actor con�guration.

Message invocations hrcv : a;mi are the interesting events a�ected by con-

straints. Note that the same invocation may be constrained by several syn-

chronizers, and all must certify the invocation, i.e., synchronizers, like con-

straints, are composed conjunctively. The idea is that adding more synchro-

nizers should further restrict the behavior of objects. A consequence of this

idea is that the synchronizers also must agree on letting time pass.

The combined semantics de�ne all correct transition sequences (�!�

��). A

transition sequence corresponds to one possible schedule of the implemented

system (consisting of actors, constraints, operating system, runtime system,

and hardware resources), and thus a primary task of the language implemen-

tation is to schedule events in the system such that the resulting schedule can

be found in the program's semantics. Thus, a program consisting of actors

and RT-Synchronizers� can be viewed as a speci�cation for the set of possible

systems.
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Observe that not all transition sequences de�ned by �!�

�� are realizable on

a physical machine. The problem is related to the progress of time and our

intuition about causal ordering. Suppose event e1 is a method invocation

resulting in the sending of a message which eventually causes a method invo-

cation, event e2, then we surely would expect that time has progressed between

these events. That is, in terms of a �ctitious global clock C, it should hold

that C(e1) < C(e2). However, in our semantics, time is not required to pass

between causally related events, but only permitted to.

There are two related problems, time locks and cluster points. A time lock

occurs when no time progress is possible, i.e., the delay transition is eternally

disabled. In our model this occurs as consequence of an unsatis�able deadline

constraint. A cluster point is a bounded interval of time in which an in�nite

number of events occur. It is possible to write such a speci�cation in RT-

Synchronizers�. However, it will not be implementable on a (�nitely fast)

computer! Since our goal is to de�ne the permissible implementations, and

since time locks and cluster points are only required when explicitly speci�ed,

we have taken no measure to prohibit such behavior. A compiler should,

however, warn developers about such unsatis�able constraints.

A.5 Middleware Scheduling of RT-Synchronizers�

The examples in Figures A.5{A.9 illustrated how our language can be used as a

speci�cation or modeling language that de�nes the structure and permissible

behavior of a computer system consisting of hardware and system software

executing an application.

An attractive approach to implementing a language that supports separation

of objects and time constraints is to use a middleware scheduling/event dis-

patching service. Such a service is depicted in Figure A.15. An application con-

sists of two parts, objects and time constraints. A set of potentially reusable

objects are composed by middleware services for communication and schedul-

ing. Communication typically includes request-reply communication, point-to-

point real-time communication, and group communication. The scheduler(s)

are responsible for event dispatching and resource (typically processor) alloca-

tion, based on information that is speci�ed by the application separately from

the objects. Thus, objects are being controlled by the middleware, rather than

controlling themselves or each other.

Speci�cally, given a set of synchronizers as input, this service should, prefer-

ably without further programmer involvement, schedule message invocations

in accordance with the speci�ed real-time and synchronization constraints.
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O1 O2 O3

middleware services

host OS + hardware

time
constraints

Figure A.15. Middleware integrates pre-built objects.

The remainder of this section is devoted to uncovering what work such a ser-

vice must do to execute the speci�cation directly.

Implementing our full model is not an easy task, but the diÆculty is mostly

related to the generality of the constraints that can be expressed, rather than

due to the separation of functionality and time constraints. We have identi�ed

three main tasks a compiler and scheduling service should address:

Scheduling: One challenge is to �nd a scheduling strategy that satis�es the

deadline constraints when the RT-Synchronizers� program is executed

on a physical machine with limited resources. In addition, hard and �rm

real-time systems require an a priori guarantee (or at least a solid ar-

gument) that timing constraints will be satis�ed on the chosen platform

during runtime.

Constraint propagation: In RT-Synchronizers� the programmer need only

specify end-to-end timing relations, not intermediate constraints on all

events along the call chain. Assume that actor a receives a message

m1; a then responds with a message m2 to actor b which in turn sends

a message m3 to actor c. Let am1, bm2 and cm3 denote the reception

events of these messages. Then a typical interaction constraint would

be am1 ) cm3 � 10. This scenario is depicted in Figure A.16. Conse-

quently, there is an implicit constraint on event bm2 which is to happen

(well) before cm3. Ideally, the compiler/runtime system should be able

to perform constraint propagation along the call chain, and derive the

intermediate deadlines.

Synchronizer distribution: If the synchronizer entities are maintained as

runtime objects, how should their state be distributed? Here there is

a classic compromise between a centralized solution where consistent
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a b c

m1

m2

m3

end-to-end
deadline

Figure A.16. End-to-end deadlines require computation of inter-

mediate deadlines along the call chain.

updates are easy versus a distributed solution that potentially reduces

bottlenecks and increases fault tolerance, but by increasing the cost of

maintaining consistency.

Our implementation idea seems practical for soft real-time systems only: we

provide no procedure, whether automatic or manual, for establishing the guar-

antees of satisfaction of time constraints as required by hard real-time systems,

and for the unrestricted type of real-time and synchronization constraints that

we permit in our language. Additionally, a full veri�cation of the implemented

system is rarely practical. To make schedulability analysis practical, one often

restricts the types of constraints to periodic constraints. Similar restrictions

can be made to RT-Synchronizers�. With simple dependencies between peri-

odic tasks generalized rate-monotonic analysis can be utilized [104].

Constraint directed scheduling is an implementation technique that dynami-

cally uses the information of the �red constraints in the synchronizers to assign

deadlines and release times to messages (see Figure A.17). Synchronizer ob-

jects are thus maintained at run time as data objects, whose state can be

inspected by the scheduler.

Time-based scheduling such as Earliest-Deadline-First (EDF) can then be used

to dispatch messages based on their deadlines. We propose to use EDF-

scheduling because it is dynamic and optimal: if a feasible schedule exists

EDF will produce one. Obviously, EDF does not in itself guarantee that a

feasible schedule exists and constraint violations may therefore occur. An ad-

vantage of our strategy is that it does more than simply monitor the time

constraints; it constructively applies information from the synchronizers to its

scheduling decisions.
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unprocessed msgs

Scheduler ActorsSynchronizer
objects dispatch

 events

deadlines
release times

enable/disable info

new messages

msg. dispatch

Figure A.17. Implementation architecture with constraint di-

rected scheduling.

We propose to let the compiler compute a conservative version of the call

graph annotated with worst case execution time and message propagation

delays, and include a copy of it at runtime [88]. The runtime system then has

the information necessary to propagate constraints automatically when this

cannot be done statically by the compiler. Moreover, we expect that in many

cases the compiler would be able to compile away synchronizers entirely. It

can generate code (similar to remote-procedure-call stubs) which can be linked

with the objects. This code implements the time constraints by manipulating

timers, setting priorities and/or instructing the scheduler about method call

deadlines, etc.

It is interesting to note that the operational semantics can assist in the imple-

mentation of a constraint directed scheduling system. An operational seman-

tics can often be constructed such that it constitutes an abstract algorithm

for the language implementation. However, because our semantics abstracts

away any notion of resources and execution time, in our case, this algorithm

can only be partial. In particular, it does not solve the constraint propagation

problem mentioned earlier.

The following example demonstrates two potential bene�ts of the semantics.

First, it shows how the semantics manipulates the synchronizer data structure

by adding and removing constraints, and second it indicates how release times

and deadlines for messages can be deduced. Recall the boiler example in Sec-

tion A.3.1. We show how the runtime system may execute that speci�cation.

We maintain two important data structures, the set of �red demands, and the

pool of unprocessed messages. We reuse the notation for demands from the

semantics: hj �� j � ji where �� stands for the static description of a con-

straint, and � is the multi-set of instantiated demands. A message is written
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as o:m[R,D] where o is the target object, m the method to be invoked, and R

and D respectively the release time and deadline of the message. In the fol-

lowing, we measure time relative to a global clock t, and not using individual

timers as was convenient in the semantics. Each row in Figure A.18 shows

the global time at which a given event (i.e., message invocation) occurs, the

resulting synchronizer state, and the set of unprocessed messages (including

those produced by the event).

t Event Synchronizer State Message Pool

0 (initial)

hj c.loop) c.loop � 20 + � j ; ji
hj c.loop) c.loop � 20� � j ; ji
hj c.loop) c.reading � 10 j ; ji
hj c.reading) v.move � 5 j ; ji

c.loop[0;1]

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

1 c.loop

hj c.loop) c.loop � 20 + � j c.loop � 1 + 20 + � ji
hj c.loop) c.loop � 20� � j c.loop � 1 + 20� � ji
hj c.loop) c.reading � 10 j c.reading � 1 + 10 ji
hj c.reading) v.move � 5 j ; ji

c.loop[21� �; 21 + �]

s.read[0; 6]z

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

4 s.read

hj c.loop) c.loop � 20 + � j c.loop � 1 + 20 + � ji
hj c.loop) c.loop � 20� � j c.loop � 1 + 20� � ji
hj c.loop) c.reading � 10 j c.reading � 1 + 10 ji
hj c.reading) v.move � 5 j ; ji

c.loop[21� �; 21 + �]

c.reading[0; 11]

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

9 c.reading

hj c.loop) c.loop � 20 + � j c.loop � 1 + 20 + � ji
hj c.loop) c.loop � 20� � j c.loop � 1 + 20� � ji
hj c.loop) c.reading � 10 j ; ji
hj c.reading) v.move � 5 j v.move � 9 + 5 ji

c.loop[21� �; 21 + �]

c.move[0; 14]

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

13 v.move

hj c.loop) c.loop � 20 + � j c.loop � 1 + 20 + � ji
hj c.loop) c.loop � 20� � j c.loop � 1 + 20� � ji
hj c.loop) c.reading � 10 j ; ji
hj c.reading) v.move � 5 j ; ji

c.loop[21� �; 21 + �]

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

21 c.loop

hj c.loop) c.loop � 20 + � j c.loop � 21 + 20 + � ji
hj c.loop) c.loop � 20� � j c.loop � 21 + 20� � ji
hj c.loop) c.reading � 10 j c.reading � 21 + 10 ji
hj c.reading) v.move � 5 j ; ji

c.loop[41� �; 41 + �]

s.read[0; 26]

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Figure A.18. Sample execution of the boiler speci�cation.
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At time 0, the system is shown in the initial state in which the message

pool contains an initialization message (controller.loop) and in which no syn-

chronizer demands have been �red. Suppose the scheduler invokes the con-

troller.loop message at time 1. This invocation matches three constraints and

consequently causes the synchronizer to issue three new demands. The two

�rst constitute the periodic constraint on a future loop message and the last

one determines the deadline on the sensor reading. During processing of the

loop message the controller sends out two new messages, the loop message to

itself, and a read request to the pressure sensor.

The new loop message matches two demands, and according to the seman-

tics these are applied conjunctively. The runtime system can therefore deduce

the release time and the deadline (an � interval around time 21) for the loop

message from the demands. Deducing a deadline for sensor.read constitutes

a more diÆcult case (labeled with a z symbol in Figure A.18). There is no

immediate matching demand on which to base the deadline. But it can be

noted that there is a demand for which no matching message exists in the mes-

sage pool. It is therefore likely that invocation of the unmatched sensor.read

message will cause sending of the demanded message (as it indeed turns out

to be the case in this example). Therefore the sensor.read message should be

assigned a deadline before the demanded deadline (at time 11). The speci�c

choice of deadline is in general a heuristic function of slack time and method

computation time. Here time 6 is chosen.

The approach of assigning unmatched messages deadlines based on the most

urgent unmatched demand will generally constrain the system unnecessarily,

but selecting precisely the right message to constrain is generally impossible

without extra information about potential causal relations between messages.

This information is exactly what needs to be generated by the compiler. Less

ideally, the missing constraints could be resolved explicitly by the program-

mer by providing additional synchronizers. In a less expressive real-time pro-

gramming languages where end-to-end constraints cannot be expressed, the

programmer would always be forced to do this.

Resuming the example at time 4 where sensor.read is invoked, the sensor

responds with a controller.reading. Since this message matches a demand, it

inherits the deadline from that (time 11). The result of invoking the reading

message (at time 9) is the �ring of a new demand on the valve movement and

the sending of a valve.move message. Again, the runtime system is able to

deduce the deadline on the move message from the move demand. Finally,

at time 21, the loop message is invoked. This satis�es the remaining two

demands, but at the same �res two new demands, which starts the next period.
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A.6 Related Work

Real-time CORBA (Common Object Request Broker Architecture) [47] is a

highly visible research e�ort where practitioners are shifting towards component-

based real-time systems. An object request broker can be viewed as middle-

ware facilitating transparent client-server communication in a heterogeneous

distributed system. It also contains other communication services to facilitate

building distributed applications. However, according to [99], current ORBs

are ill-suited for real-time systems for at least four reasons. They lack inter-

faces for specifying quality of service, quality of service enforcement, real-time

programming facilities, and performance optimizations.

Current proposals for real-time CORBA [99, 34, 40, 58] use a quality of service

metaphor for specifying real-time constraints. Typically, the interface de�ni-

tion language is extended with QoS-datatypes. In TAO ORB [99], these pa-

rameters, which are necessary for guaranteeing schedulability according to rate

monotonic scheduling, include worst case execution time, period, and impor-

tance. In NRad/URI's proposal [34] for a dynamic CORBA, time constraints

are speci�ed in a structure containing importance, deadline and period, and

the constraints specify time bounds on a client's method invocations on a

server. The proposed runtime system uses this information to compute dy-

namic scheduling and queuing priorities. The Realize proposal [58] associates

deadline, reliability, and importance attributes to application tasks, where a

task is de�ned as a sequence of method invocations between an external input

and the generation of an external result. That is, deadlines in Realize are true

end-to-end deadlines.

We see a clear trend in specifying real-time requirements through interface def-

initions and letting middleware enforce them. Clients and servers are largely

unaware of the imposed real-time requirements. However, we think that these

approaches|although an improvement|are imperfect:

� The quality of service attributes seem to be derived from what current

run-time systems can manage rather than forming a coherent set. We

have opted for a clean language instead of a more or less arbitrary col-

lection of attributes.

� The types of constraints that can be speci�ed are restrictive, e.g., only

periods or deadlines between request and reply events. In addition, the

constraints are static; once assigned they cannot be modi�ed to respond

to dynamic changes in the system's state of a�airs. We allow for a fairly

general set of constraints to be speci�ed.
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� Synchronization constraints are not considered. In our proposal, syn-

chronization constraints are speci�ed using the same mechanism as time

constraints.

The concept of separating functional behavior and interaction policies for Ac-

tors was �rst proposed by Fr�lund and Agha in [43] and a detailed description,

operational semantics and implementation can be found in [42]. That work

only considered constraints on the order of operations. Our work is a contin-

uation of this line of research where we have extended it to apply to real-time

systems and provided a formal treatment of the extended model. However, to

what extent real-time and synchronization constraints can always be cleanly

separated from functionality remains an open issue, and one which we think

can be best resolved through larger case studies.

Another approach which permits separate speci�cation of real-time and syn-

chronization constraints for an object-oriented language is the composition

�lter model [6, 15]. Real-time input and output �lters declared in an ex-

tended interface enable the speci�cation of time bounds on method executions.

Among the di�erences between composition �lters and RT-Synchronizers� is

that RT-Synchronizers� takes a global view of a collection of objects whereas

the composition �lter model takes a single object view. No formal treatment

of composition �lters appears to be available in the literature.

The Real-time Object-Oriented Modeling method (ROOM) [103], which has

many notions in common with the Actor model, has recently been extended

with notions for specifying real-time properties [96]: message sequence charts

with annotated timing information can now be used to express activation pe-

riods of methods or end-to-end deadlines on sequences of message invocations.

With these two kinds of constraints and a few design guidelines, the authors

show how scheduling theory can be applied to ROOM-models.

Our approach to de�ning the semantics is inspired by recent research in formal

speci�cation languages for real-time systems, and the use of timed transition

systems is borrowed from these languages. These languages often take the

form of extended automata (Timed automata [7], Timed Graphs [7, 76]), or

process algebras such as Timed CSP [102]. A di�erent approach is to include

a model of the underlying execution resources. This approach is taken in [97]

and [121]. The resulting semantics includes an abstract model of the execu-

tion environment (number of CPU's, scheduler, execution time of assignments

etc.). The process algebra Communicating Shared Resources (CSR) has been

designed with the explicit purpose of modeling resources [44, 45]. A process

always runs on some, possibly shared, resource. A set of processes can be

mapped to di�erent sets of resources, hence describing di�erent implementa-

tions. Thus, these approaches model relatively concrete systems, rather than

being speci�cations for a set of possible systems, as was our goal.
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A recent implementation result is [61] where certain aspects of RT-Synchronizers�

are implemented in their DART framework where constraints are used to dy-

namically instruct the scheduler about delays and deadlines of messages. How-

ever the paper gives no systematic (automatic) translation of constraints to

scheduling information. We expect that our semantics can help in �lling up

this gap.

A.7 Discussion

Developers of modern real-time systems are required to construct increasingly

large and complex systems, preferably at no extra cost. To satisfy this require-

ment, it is essential that developers can build real-time systems from existing

components, and that newly developed components can be reused in several

applications. We argued that in order to facilitate reuse of real-time objects,

the real-time and synchronization constraints governing the object's interac-

tion should be speci�ed separately from the objects themselves. However,

current development methods do not adequately support such separation.

We formulated our ideas in the context of Actors, and an associated speci-

�cation language, RT-Synchronizers�. Combined, they enable separate and

modular speci�cation of real-time systems: computing objects are glued to-

gether by synchronizer entities that express real-time and synchronization con-

straints. However, we believe that these ideas are applicable beyond these

speci�c languages.

Our model is explained both conceptually and formally. Through a series of

examples we indicated how separate speci�cation is possible. Our operational

semantics de�nes exactly what constraints are and what their e�ect on a given

set of objects should be.

Our work on semantic modeling has clari�ed our understanding of the behavior

of our model, and provides a succinct and detailed de�nition of synchronizers

and constrained actor programs. In particular, we have gained new insight in

three areas, which made the e�ort worthwhile:

� We de�ned the semantics in a modular fashion by composing a transition

system for the untimed object-model with a transition system which

interprets the time constraints. This composition explicitly points out

which, object transitions are a�ected and how: reception of messages

and time-progress may only occur when permitted by the constraints.

Other object transitions are only indirectly a�ected.



A.7. DISCUSSION 199

The modularity opens the possibility of plugging in a di�erent constraint

speci�cation language, i.e., the �!� transition could be replaced with

the semantics for the new language. The composition will work when

a�ected transitions remain as above, and when the semantics of the

new language can be given as a timed transition system. Thus, our

constraining concept is captured by the composition.

� Our semantics helped uncover some of the semantic subtleties of our con-

straint language, such as what happens when patterns and constraints

overlap. For example, the same message may both �re a new demand

as well as satisfy an existing one. Moreover, we decided that overlap-

ping constraints should be interpreted conjunctively, i.e., both must be

satis�ed. Finally, we decided that adding more synchronizers should fur-

ther restrict the behavior of objects; i.e., synchronizers must be satis�ed

conjunctively.

It should also be noted that the rules de�ning the semantics of individual

constraints appear complicated. This should give food for thought when

revising the language or the semantics.

� The last major bene�t is that our semantics suggests an implementation

strategy suitable for soft real-time systems. The synchronizer entities

can be maintained at runtime and can be used to extract information

about release times and deadlines of messages. The semantics gives

an abstract interpretation of the synchronizer objects and speci�es how

demands should be added or removed.

Building real-time components and architectures for integrating them is an

area of active research. We believe that with additional research, component-

based development will allow more complex real-time systems to be developed

on schedule. However, additional work is needed, both on the models used for

separate speci�cation and on the middleware services necessary to implement

them.
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