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Abstract

In my research I have worked towards enabling real-time human-robot trust
assessment by inferring decreases human trust from signs of physical appre-
hension from the robot. The goal is to help enable robot-augmented produc-
tion, where robots assist production staff to relieve them of repetitive and
strenuous tasks. To ensure safe and productive human-robot collaboration
we have to ensure an appropriate level of trust in the robot, as too much trust
can lead to dangerous situations, whereas too little trust can lead to loss in
productivity. My main hypothesis is that if the user experiences a decrease in
trust, they will increase their distance from the robot by stepping or leaning
away from it.

I designed and developed an augmented reality enabled human-robot
collaboration cell, using projection to display task critical information within
the shared work space. Using a Rethink Robotics Sawyer robot I performed a
series of experiments where participants performed repeated tasks with the
robot. In the middle of the experiments I would have the robot disrupt the
participants” expectations in order to decrease their trust towards it. Using
an infrared camera for body tracking I assessed changes in their movement
to correlate it with decreases in trust.

Through my experiments I found that sudden increases in robot move-
ment speed would decrease trust in the robot, while decreases in speed or
having the robot change movement trajectory during collaboration had no
effect. Also, if the robot would perform an action that went counter to the
shared objective, trust decreased significantly. Despite provoking decreases in
trust, I was not able to find consistent correlations with apprehensive move-
ments. I also experimented with repairing trust using explanations of why
the robot made a mistake, but they had no effect.
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Resumé

I min forskning har jeg arbejdet pa at muliggere maling af menneske-robottillid
ved at leese fald i tillid ud fra tegn pé fysisk tilbageholdenhed i forhold til
robotten. Malet er at muliggere robot-udvidet produktion, hvor robotten
assisterer de ansatte for at hjeelpe med gentagende og besverlige opgaver.
For at sikre produktiv og sikker menneske-robotsamarbejde er vi nedt til at
opretholde et passende niveau a tillid til robotten, da for meget tillid kan fore
til farlige situationer, hvorimod for lidt tillig kan fere til fald i produktivitet.
Min hypotese er, at hvis brugeren oplever et fald i tillid, vil de oge deres
afstand til robotten ved enten at traede eller leene sig veek fra den.

Jeg designede og udviklede en menneske-robotsamarbejdsstation udstyret
med augmented reality, som kan vise opgavekritisk information i arbejdsom-
radet ved hjeelp af projektioner. Med en Rethink Robotics Sawyer robot ud-
forte jeg en serie af eksperimenter, hvor deltagerne udferte gentagende op-
gaver i samarbejde med robotten. Midtvejs gennem eksperimenterne fik jeg
robotten til at bryde deltagerens forventninger for a nedseette deres tillid til
den. Hjeelp af et infraredt kamera til sporing af brugeren malte jeg 2endringer
i deres beveegelser for at korrelere dem med fald i tillid.

Gennem mine eksperimenter fandt jeg ud af, at pludselige forhejelser
af robottens bevaegelseshastighed ville seenke tillid til robotten, hvorimod
senkelse i hastighed eller eendringer i robottens bevaegelsesmenster under
samarbejdet ikke havde nogen effekt. Derudover, hvis robotten udferte en
handling, som gik imod det delte samarbejdsmal, ville tillid ogsa falde. Pa
trods af at jeg kunne provokere fald i tillid, var jeg ikke i stand til at finde
konsistente korrelationer med tilbageholdende beveegelser. Jeg testede ogsa
reparation af tillid ved hjeelp af forklaring om, hvorfor robotten lavede en fejl,
men de havde ingen effekt.
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Introduction






Chapter 1

Scope & Contribution

In this chapter I present the initial motivation for the research into robot-
augmented production, after which I outline the main frameworks and termi-
nology surrounding the research objectives. I present the main frameworks
informing our approach to human-robot collaboration (HRC) and human-
robot trust (HRT). Lastly, I present the objective and scope of the research
going into this thesis.

1.1 Robot-Augmented Production

In recent years the long-term effects of working in industrial production lines
have been observed, showing that performing strenuous repeated tasks over
a career of many years highly increase the risk of acquiring quality-of-live-
affecting musculoskeletal deceases in later life [7]. In Denmark there is an
especially high risk in working in industrial meat production [1]. Because
the work is set up in a production line where each staff member performs a
few tasks repeatably on every cut of meat at a conveyor belt, it is common for
the staff to be doing the same motions repeatably for long periods of time.
This thesis is in part motivated by these issues with the goal of advancing
the field of human-robot interaction (HRI) in the context of close-proximity
HRC. Introducing collaborative robots in industrial meat production can po-
tentially help relieve the human worker, from here referred to as the operator,
of the strenuous tasks, as it can assist in tasks such as positions or flipping
over the cuts meat, or even assisting in cutting. HRC is a sub-category within
HRI. Whereas HRI can be used to describe a brought variety of contexts,
such as talking to a socially enabled robot, HRC is specifically about work-
ing together with the robot to achieve a common objective. While HRC also
encompasses remotely controlling a robot, such as for search-and-rescue op-
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erations, I focus on close-proximity collaboration, which introduces some
unique challenges, as the scenario does not allow for safety barriers.

While the field of close-proximity HRC is not new, the body of research
have increased throughout the 2000s [3]. The focus of the majority of the
research has been on the practical elements of the collaboration, such as op-
erator tracking as well as task and motion planning. Due to the nature for
meat processing where the cuts come in many varieties, the system sensors
and planning software have to be very advanced to adapt and perform the
tasks correctly. In addition, this means that the robot will have to move dif-
ferently for each task, making the motions less predictable to the operator.
Therefore an appropriate level of operator trust is necessary to prevent ac-
cidents, as sudden arm movements sparked by uncertainty is hazardous in
close proximity to a robot equipped with powerful or sharp tools. It is there-
fore the focus of this thesis to develop methods of real-time trust assessment
in the context of close-proximity HRC.

A necessary part of HRT is communication between the system running
the robot and the operator, as system transparency and the properties of Ex-
plainable Artificial Intelligence improves operator trust. Because of this I also
evaluate non-obstructive display modalities to facilitate system communica-
tion to aid in the collaboration, such as for displaying relevant task informa-
tion and planned collaboration steps. With fast-paced production work in
mind where the staff stand at a work surface, the initial design is based on
the ability to overlay information on the work surface and the task subjects,
those being the cuts of meat. I therefore start by investigating the capabilities
of augmented reality (AR) technology. An illustration of the HRC production
scenario is shown in Figure 1.1.

1.2 Human-Robot Collaboration

While HRI and HRC are not new fields of research, as experiment on humans
interacting with social robots and collaborative manipulators have been done
for decades, the main body of empirical research into close-proximity HRC
has been done after the turn of the millennium. The topics of optimizing col-
laborative manufacturing and operator safety seeing particular growth after
2010 and HRT being tested less frequently [3]. The increase in publications of
these topics involving close-proximity HRC experiments is shown in Figure
1.2.

When referring to social robots versus manipulators, social robots are de-
signed with mimicking social interaction as their primary function, often hav-
ing anthropomorphic features such as arms and a face for expression, while
manipulators are designed for moving objects, primarily. There are seldom
overlaps within research where manipulators are tested for their utility in
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Fig. 1.1: A robot and an operator working in close proximity on a shared subject (green) with a
circle projected onto it using AR to notify the operator of an area of interest.

social interaction, but the type of robot and whether it is anthropomorphic
has been shown to affect operator perceptions of and trust in the robot [4].

HRC is a specific sub-topic HRI in which the robot and operator are work-
ing together to achieve an objective separate from the interaction itself. This
often involves physical manipulation of one or several objects. This defini-
tion allows for a wide variety of scenarios, including the operator interacting
with or controlling the robot remotely, or the operator and robot operating
separately from one another, such as moving a collection of objects from one
side of a room to the other. The common term for all types of collabora-
tions between robots and humans is human-robot teams, but whether it is
considered HRC is judged by the team composition and level of engagement
between the human and robot [6].

Malik and Bilberg [6] proposed a model for referencing the types of HRC
based on characteristics on three axes; interaction levels, team compositions
and safety implications. Team composition describes the number human and
robots involved in the collaboration. In this thesis I am focusing on teams
composed of one human and one robot. Malik and Bilberg’s levels of en-
gagement are especially useful in illustrating the types of collaboration I am
interested in. The levels named Isolation and Co-existence involve the oper-
ator and robot each performing their own tasks with no shared space, one
with robot in a cage and one with them alongside one-another, respectively.
In Synchronized Collaboration they do share a work space and goal, but
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Fig. 1.2: Accumulative total of publications in empirical close-proximity HRC with stated moti-
vations being optimizing collaborative manufacturing, operator safety and trust assessment. [3].

only one of them occupies the work space at any given time in what could
be considered a turn-taking fashion. What separates the last two levels of en-
gagement, Cooperation and Collaboration, is that while both involve a shared
goal and work-space, which both occupy simultaneously, it is only when both
operator and robot work on the same component at the same time, Malik and
Bilberg label it as Collaboration. The levels of engagements is illustrated in
Figure 1.3.

In this thesis, HRC is used in reference to mainly the Cooperation and
Collaboration levels of engagement. When reviewing the literature of close-
proximity HRC, our criteria was that publications had to document an exper-
iment involving a human operator collaborating with a robot while within
reach of the robot end-effector with no safety barriers. They also had to
manipulate the same object or collection of objects during the task, but not
necessitating that they had to touch the same object simultaneously. The
literature review is documented in Paper A [3].
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Fig. 1.3: The five levels of engagement in HRC, illustrating the overlapping work spaces of the
operator and robot [6].

1.3 Human-Robot Trust

Trust in a collaborative robot partner is very important, as it has an effect
on the decisions of the operator [4]. In the research there is large overlap
between trust in robots and trust in automation in general. Lee & See [5]
defined trust in automation as the attitude that an agent will help achieve a
goal in a situation involving uncertainty and vulnerability. This definition is
with the caveat that it must consider the appropriateness of the trust as well
as the context and the characteristics of the robot.

In describing trust calibration in human-robot teams, de Visser et al. [2]
use a similar definition of trust, based on the willingness of a party to be
vulnerable to the actions of another party based on the expectations towards
that party. Both use definitions based on the willingness to be vulnerable as
a results of the cognitive processes based on the goal, the context and the
characteristics of the partner.

Both Lee & See [5] and Hancock et al. [4] present similar models on trust
calibration for automation and robots, respectively. The goal of trust calibra-
tions is to achieve the appropriate level of trust for the operator relative to
the actual trustworthiness of the system, actual trustworthiness being an ob-
jective measure of the systems capabilities to achieve the goal. Cases of over
trust can lead to misuse, which is potentially dangerous in HRC, while under
trust can results in disuse, which could be considered non-optimal use. The
process of trust calibration consists of trust-dampening actions in the case of
over trust and trust-repairing actions in case of under trust. The concept of
trust calibration is illustrated in Figure 1.4 [2].

In a meta-analysis Hancock et al. [4] categorized factors affecting trust
development, grouping them between human-related, robot-related and en-
vironmental factors. The robot-related factors are further categorized be-
tween performance-based and attribute-based. The performance-based fac-
tors, among which are reliability, predictability and failure rates, are espe-
cially relevant in the context for robot-augmented production, as these factors
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Fig. 1.4: Illustration of trust calibration, maintaining appropriate trust in the robot using trust
repair and trust dampening [2].

will also have a large effect on operator safety.

1.4 Thesis Scope

The objective of this thesis is to contribute to safe robot-augmented produc-
tion. As safe operations in HRC require appropriate levels of trust I look
to enable trust calibration, which requires that one can infer the operator’s
current level of trust in the robot and the system. Operator trust toward a
robot is often evaluated using questionnaires, which is not feasible in the con-
text of robot-augmented production. Therefore I research the possibilities of
non-obstructive sensors for real-time HRT assessment by correlating reported
trust with sensor data in the context of close-proximity collaboration.

I approach the objective with the hypothesis that physical apprehension
signals towards the robot can serve as an indicator of a decrease trust. As
the definitions used for HRT [4, 5] involve the willingness to engage in a vul-
nerable situation, apprehension in the form of the operator increasing their
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distance to the robot should indicate trust dampening. Approaching this
using computer vision-based motion tracking will also be useful for other
applications, such as implicit human-robot communication. Rani et al. [8]
described how the affective state of the operator can be used in implicit com-
munication and inform the next actions of the robot in combination with
the task objectives and the operator’s actions. They showed that enabling
an adaptive human-aware motion-planning system improved the operator’s
feeling of safety around the robot.

My approach is a series of HRC experiments featuring repeated collabora-
tive tasks while the test subjects report their trust toward the robot. Through-
out the experiments I introduce trust-dampening actions by disrupting the
subject’s expectations toward the robot in order to correlate the decrease in
trust with the sensor data gathered. Due to the lock-down in 2020 I also in-
vestigated the options of trust assessment experiments using virtual reality
(VR).

A secondary objective is enabling HRC using non-obstructive displays for
system communication based on AR. This allows us to evaluate the effects
of robot transparency in trust-repairing actions. For this I did a test on trust
repair through mistake explanation in collaboration with the Lab for Human-
Centered Artificial Intelligence at Augsburg University. It also informs how
to design the test scenarios for evaluating real-time trust assessment. This is
why, despite being being a secondary objective, system communication is the
first subject to be implemented and evaluated.

The topics and papers in the thesis and how topics derive from others are
shown in Figure 1.5. Based on the research objective I aimed to address the
following questions.

1. How can we enable communication between the operator and the sys-
tem controlling the robot using AR?

2. How can we use system communication in trust-repairing actions to
increase HRT?

3. How can we measure HRT throughout repeated close-proximity HRC
tasks?

4. How can we lower the operator’s trust toward the robot through trust-
dampening actions?

5. How can we correlate body tracking as signals of physical apprehension
with measured HRT throughout repeated close-proximity HRC tasks?

6. How can we perform HRT assessment experiments in VR?
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Human-Robot Human-System
Collaboration Communication
Human-Robot Augmented
Trust Calibration Reality [B]

Real-Time Robot Mistake
Trust Assessment Explanatlon [C]

Trust From Physm rust Assessment in
Apprehension [D- F Vlrtual Reality [G]

Fig. 1.5: The scope of the thesis, the main subjects in frames and with the arrows indicating which
topics informed or enabled work on other topics. Subjects that I have performed experiments on
are framed in grey and the paper indexes in this thesis are shown in square brackets.

1.5 Summary

In this chapter I described the motivations and challenges of implementing
robot-augmented manufacturing technologies in industrial meat production,
as well as the frameworks of HRC and HRT and trust calibration I am apply-
ing in the research. Lastly, I described the main objectives and scope of the
thesis.

e People who work in manufacturing positions with a lot strenuous or
repetitive movements have a high risk of developing musculoskeletal
deceases. Introducing collaborative robots can potentially help reduce
this risk.

e [ focus on HRC at the levels of engagement where the robot and oper-
ator are either cooperating or collaborating, meaning they inhabit the
same work area, either by taking turns or working on the subject simul-
taneously.

e Appropriate HRT is necessary for safe and efficient HRC, as too much
trust may be dangerous and too little trust may lead to disuse of the
robot. Trust can be calibrated to an appropriate level using trust-dampening
and trust-repairing actions.
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¢ HRT is a relatively novel field with most published experiments with
close-proximity HRC having been done after 2010.

e System communication and transparency is important for maintaining
trust. I am working with AR technology, as it is not obstructive and can
be used to display task relevance information in the work area.

* As a step towards enable trust calibration I research real-time trust as-
sessment using computer vision. I focus on signs of physical apprehen-
sion toward the robot through sudden motions or increased distance
from the robot.

* In addition to testing trust assessment using trust dampening actions,
I test system transparency and mistake explanations as trust-repairing
actions.

* Throughout this thesis I will be addressing six research questions per-
taining to system communication, AR, HRT assessment and VR.
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Chapter 2

State of the Art

This chapter presents some of the existing research that informed the methods and
procedures used throughout my studies. As human-robot trust (HRT) assessment is
a main focus, I review previous empirical studies and assessment methods, as well
as experiments into robot transparency and mistake explanations. To outline the
technical requirements of my research I look at previous applications of augmented
reality (AR) for system communication and body tracking utilized in human-robot
collaboration (HRC). In addition, due to lock-down restrictions, I have researched the
effects of performing HRC experiments using virtual reality (VR).

2.1 Human-Robot Trust Assessment

Schaefer [24] developed two scales with questions pertaining to the robot’s charac-
teristics, capability, dependability, predictability, errors and more. One scale with 40
items and a shorter version with 14 items. In both scales the participants rate each
item in a scale of 0 to 100 in intervals of 10. The final trust score is the average of all
item scores with negative qualities having inverted values. These scales were shown
to be more sensitive and accurate than previous scales on trust in automation. Sim-
ilarly, Charalambous et al. [4] developed a trust scale designed for industrial robots,
specifically, with ten items pertaining to operator comfort, robot intimidation factor
and reliability. Unlike the Schaefer scale, the items are statements graded according
to agreement on a five-point scale. Kessler et al. [16] compared the Schaefer scale to
a trust scale for automated systems by having participants rate the same robot with
both scales. They found conflicting results, suggesting that they evaluate different
constructs and are therefore not interchangeable.

Alternative measures of trust have previously been used in experiments. Rani
et al. [21] utilized physiological measurements for affect recognition in the context
of remote human-robot interaction (HRI). They measured inter-beat interval, relative
pulse volume, electrodermal activity and facial electromyographic activity to poten-
tially be used in an adaptive affect-based robot controller. Freedy et al. [12] inferred
HRT from number of operator interventions as they were observing the operations of
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Table 2.1: Summary of methods of assessing HRT in prior research.

Method Features

Questionnaires [4, 14, 24] Reported after interaction with the robot, but
allows for high levels of detail.

Physiological measurements [21] | Automatic assessment with delay dependent
on physiological reaction.

Number of operator interventions | Based on operator behaviour and easily uti-
[10-12] lized in adaptive system.

Marker-based hand tracking [22] | Inferred from operator movements compared
to previous movement patterns.

a collaborative unmanned ground vehicle based on perceived trustworthiness. Sadr-
faridpour et al. [22] used marker-based hand tracking to infer trust using a neural
network based on operator work speed compared to the robot in a HRC assembly
task.

Researching previous trust experiments in with close-proximity robots, Dragan et
al. [6] evaluated HRT dependent on robot motions patterns in collaborative task where
the robot would hand the operator a cup of water. They used Hoffman’s measure,
which is a compound measure based on a series of questions, few of which reference
trust and feeling of safety directly [14]. Comparing purely functional motions, based
on motion planning for obstacle avoidance, to motions designed to be predictable, the
predicable motions were more accepted by test participants. Bergman & Zandbeek [2]
found that speed and stopping distance of an industrial robot at close proximity had
significant effect trust based on questionnaires with five statements rated by agree-
ment on a five-point scale. They conclude that speed and stopping distance should
be considered as communicative cues.

In an example of application of trust, Floyd et al. [10, 11] implemented an adaptive
behavioral framework for a robot based on inverse trust estimation, assessing operator
trust based on the number of interruptions during the interaction, mainly adapting
to under-trust. This was demonstrated in a simulated patrolling task with different
types of simulated operators. Previously used methods of assessing HRT and their
features are summarized in Table 2.1.

Computer vision-based body tracking in HRI is usually utilized for safety pur-
poses. Both Morato et al. [19] and Tan & Arai [27] implemented skeleton tracking for
safe HRC using a Kinect for standing work and a triple-camera setup for sedentary
tasks, respectively. While I tested skeleton tracking during the thesis, I later adopted
a top-down RGB-depth (RGB-D) camera setup. In a literature review on the possi-
bilities and challenges of this type of tracking Liciotti et al. [18] outlined how this
camera configuration has been successfully utilized in both people recognition and
behaviour analysis. The uses include security and video analysis, intelligent retail en-
vironments and activities of daily living, but they only found one example involving
HRI or robots in general.
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2.2 Robot Transparency & Mistakes

Looking at trust and transparency in HRC, Boyce et al. [3] tested the effects of three
transparency conditions on HRT in a human-in-the-loop robot simulations experi-
ments with higher levels of transparency yielding higher trust scores using a modified
trust in automation scale.

In a survey using a simulated robot testbed, where the human-robot team would
perform reconnaissance missions to gather intelligence in a foreign town, Wang et
al. [30] found that adding decision explanation capabilities increased transparency,
trust and team performance. Based on their analyses, however, there was only sig-
nificant differences when comparing explanation to no-explanation conditions for a
simulated low-ability robot. A high-ability robot saw no gains in trust from enhanced
decision explanations.

Kaniarasu & Steinfeld [15] tested the effects of the robot assigning blame after
an error in a collaborative task. Comparing three robot personalities, one where the
robot blamed itself, one blaming the user and one blaming the human-robot team,
results showed that participants were annoyed at the robot blaming them, but they
also showed less trust toward a robot that kept blaming itself.

Salem et at. [23] tested a home companion robot, comparing a robot that would
make errors with one that did not. Results showed that the robot performing errors
significantly affected perceived trustworthiness, while it did not have a significant
effect on participants” willingness to follow the robot’s instructions.

2.3 AR & VR in Human-Robot Interaction

Implementing AR in manufacturing is not a novel concept, and the umbrella term of
AR-aided robot control, testing, assembly and transport has been coined as AR-aided
manufacturing [20]. Using three case studies, Szafir [26] argued for the utility of
virtual, augmented and mixed reality in HRI, demonstrating significant performance
benefits.

To determine the most appropriate AR hardware for the context, Elia et al. [8]
proposed a 4-step process of evaluation depending on the specific manufacturing
processes. The first step is pair-wise comparing the options using a multi-criteria
analysis, ranking the options based on output modalities, reliability, responsiveness
and agility. The second step is creating a judgement matrix from the comparisons.
Step three is evaluation local weights and consistency of comparison, and step four
is the final ranking of devices. Elia et al. also categorized the four main types of
AR displays as head-mounted displays (HMD), handheld devices, projection-based
displays and haptic force-feedback systems.

Kruijff et al. [17] categorized types of AR displays similarly to Elia et al., although
excluding the haptic devices. They pointed out relevant issues of using see-though
HMDs, as they have limited field of view (FOV), also pointed out by Szafir [26], and
risk vergence-accommodation conflicts for virtual objects. For projection-based AR
they pointed out the challenge presented by distortion of the images when projecting
on uneven surfaces. Schwerdtfeger et al. [25] compared HMDs to laser projection-
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based displays, pointing out the low FOV and limited resolution of the HMD. In
addition, the potential swimming effect of objects superimposed in see-through dis-
plays and having multiple planes of focus are significant challenges with high risk
of eye fatigue. While they pointed out that projection-based AR addresses some of
these problems, it also introduces other issues, mainly the requirement to pre-distort
the image if it is to be projected onto an uneven surface and the issue of the operator
occluding the projection if they reach into the work area.

While AR has been tested in the context of human-system collaboration, it is often
implemented in sitting tasks, such as in a study by Green et al. [13], who utilized a
HMD. Rather than using a see-through HMD, they used a stereo OLED display, which
showed the feed from a camera mounted to the headset and angled downwards for
more ergonomic posture during use. Charoenseang & Tonggoed [5] proposed an AR
setup for sedentary collaborative assembly with a robot. Unlike the AR display types
previously categorized, they used a top-down camera feed on a monitor in front of
the operator, on which they displayed task-relevant overlays, yielding high usability
scores. Similarly, Fang et al. [9] demonstrated a monitor-based AR interface for robot
path planning with positive results. Lastly, Vogel et al. [28] proposed projections-
based AR to display safe areas when working close to a robot.

During the thesis period the country went into lock-down, so I decided to ex-
plore evaluation of HRI using VR, allowing for experiments outside of the laboratory.
Wainer et al. [29] tested the importance of robot presence on human-robot team per-
formance and perception of the robot, comparing interaction with a co-located robot
to a remote robot and a virtual robot, both presented on a screen. They found that
the co-located robot was significantly favoured over the alternatives. Similarly, Bain-
bridge, et al. [1] compared a co-located humanoid robot to the same robot displayed
on a screen with similar results.

Duguleana et al. [7] did a comparative study on the effect of immersive VR on
HRI using a cave automation virtual environment. When compared the participants
would give a real robot more space than the virtual one, but the subjects reported
high engagement toward the virtual robot and a high degree of realism, 7.8 out of 10,
relative to the real robot.

24 Summary

In this chapter I described state of the art of HRT with a focus on assessment methods
and empirical studies as well as the effects of robots and transparency and the utility
of AR, VR and body tracking in HRI. Below are the main takeaways.

* Schaefer [24] developed two HRT scales that have been proven to have higher
validity than previous automation trust scales.

¢ Physiological measurements as well as marker tracking have previously been
used in robot affect and trust assessment with promising results.

* While skeleton tracking in HRC is most often utilized for security purposes,
top-down RGB-D cameras have successfully been used for people recognition
and behaviour analysis.
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System transparency have been shown to increase HRT and human-robot team
performance.

A robot making mistake significantly decrease perceived trustworthiness.

The main categories of AR displays are see-though HMDs, handheld devices,
projection-based AR, haptic force-feedback systems and top-down camera feed
with graphical overlays.

While co-located robots are generally preferred over simulated or remote robots
on a screen, a virtual robot may still be rated highly in terms of engagement
and realism by users.
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Chapter 3

System-Operator
Communication

In this chapter I present my research into the system-operator communication modal-
ities and how we can utilize them for trust-repair during close-proximity human-
robot collaboration (HRC), as communication and system transparency are critical for
maintaining operator trust toward the robot and the system. I present the design and
development of the HRC cells used in the human-robot trust (HRT) assessment exper-
iments described in Chapter 4. These include one real setup using projection-based
augmented reality (AR) and a virtual reality (VR) setup based on the communication
modalities of the real setup. This chapter includes the research and evaluation of
appropriate AR display types as outlined in Section 2.3. Lastly, I present the experi-
ment on the utilization of these communication modalities for trust-repairing actions
through mistake explanation.

3.1 HRC Test Cells

The HRC test setup for my experiments into real-time HRT assessment is designed
around projection-based AR as the main communication modality based on the re-
sults from the AR display experiment described in Section 3.1.1. For my experiments
I used a Rethink Robotics Sawyer robot arm. The test cell is designed to let the oper-
ator be in close proximity to the robot for various collaboration scenarios with a table
between them.

To allow for collaboration within the work space without occlusion of the projec-
tion by either the robot or the operator, I installed two projectors, mounted at either
side above the work surface on an aluminium rig. By calibrating the projections such
that they would overlap, both would have to be occluded at the same time for there
to be a blocked area on the work surface. The full setup and demonstration of the
projection are shown in Figure 3.1. In addition, this setup leaves room for a depth
camera pointed down at the operator and work area from above. The setup was first
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Fig. 3.1: Left: Full HRC cell setup with Sawyer robot, projectors and infrared camera. © 2020
IEEE [6]. Right: A coffee cub sitting under the dual-AR projection, preventing the cub from
occluding either side of the AR overlay.

used in the experiment documented in Paper E [4].

Because of lockdown restrictions in 2020 I also designed a VR HRC test cell with
the goal of enabling test subjects to participate remotely if they had the right equip-
ment. The VR environment was designed to allow the same types of communication
as the AR setup. The main method of communication used in this setup was text
displayed on the work surface, mirroring the projection-based AR. The VR test setup
is shown in Figure 3.2.

Your team failed at sorting
the cones. Please take off ine
virtual reality headset and

and call the test conductor.

4

Fig. 3.2: The virtual environment and virtual robot used to test mistake explanations for trust
repair. The bottles had to be sorted with round bottles on the right and square bottles on the
left. The space between the two bottle areas allows for displaying text for communicating with
the participant [7].
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3.1.1 Evaluating AR Displays for Task Communication

I started my research by evaluating the use of AR as a method of system communica-
tion in the context of industrial manufacturing, as it allows for displaying task-critical
information inside the work area without being obstructive. In order to determine
what AR display type should be used going forward, I did an experiment, comparing
four display types in a task based on a hypothetical situation fitting the meat produc-
tion context. This was based on the scenario that a computer vision system would
detect foreign elements or impurities on or below the surface of a piece of meat, and
the operator would have to remove it as it is being shown to them on an AR display.

To represent this scenario in the test I used a tray of sand, as it allows participants
to dig into it easily, yet it can easily be rearranged and reused for other participants. To
evaluate which AR display type is the most suitable for the task I asked participants
to poke into the sand with a nail and hit a point projected into it using one of four
displays. The nail was mounted to a tracked HTC Vive controller, and the participants
were asked to poke at the position as quickly and precisely as possible, then confirm
their hit with a second controller.

I based the four AR display types tested on the categorizations by Elia et al. [2] and
Kruijff et al. [9] as well as the setup used by Charoenseang & Tonggoed [1] and Fang
et al. [3]. These being a head-mounted display (HMD), a handheld device, projection-
based AR and a top-down camera feed presented on a monitor. In my case I used
a see-though glasses-like HMD, as opposed to one with displays and a camera feed,
and the handheld devices was mounted on an adjustable arm, as the participants
would be using both hands in the task. The displays I evaluated are shown in Figure
3.3.

On the AR displays the targets were shown as red dots. The displays also showed
a green grid along the surface of the sand to help participants see where the targets
are in relation to it. This also allowed for depths cues like occlusion and motion
parallax for the HMD and handheld display. Because neither the projection-based
AR nor the top-down camera feed on the monitor allowed for depth cues, the target
positions were displayed with a number indicating their depth under the surface in
millimeters. In hindsight, for more valid comparisons the depths should also have
been displayed for the other two displays. Still, based on the results and observations
this would likely not have made a difference on the decision.

Results showed that the projection-based AR display was among the highest in
accuracy and the lowest in task completions times along with high Standard Usability
Scores. A significant challenge in using the HMD and the mounted handheld display
is that they are dependent on visual tracking, because they are non-static, which
makes them highly vulnerable to occlusion when the operator reaches in front of
their cameras. For the mounted handheld display I was able to position it such that it
could have all tracking markers and the entire work area within its camera’s field of
view (FOV), making it more viable.

The HMD was the worst performing display due its small display area withing
the operator’s field of vision in additions to the low FOV of its mounted camera. The
small display area where the AR overlay was visible required the operator to search
around the surfaces of the sand, as they could not observe it all at once. This, in
turn, made tracking more difficult as the mounted camera would have to maintain
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Chapter 3. System-Operator Communication

Fig. 3.3: The four AR display types evaluated in the experiment. Top-left: Epson Moverio Bt-300
see-through HMD with camera. Top-right: Android tablet with back-camera feed on adjustable
arm. Bottom-right: Projected overlay on the surface of the sand. Bottom-right: Top-down camera
feed with overlay on monitor. © 2019 Springer, Cham [5]

or resume tracking as it would be moving between markers, making the search even
more difficult. For better conditions I could have placed more markers along the
surface, but it may not be as feasible for the manufacturing context. Alternatively, the
tracking solution would have to be separate from the headset, so that the AR overlay
would be fed to the HMD according its position. The experiment and results are
documented in detail in Paper B [5].

3.2 Effects of Robot Mistake Explanation

To evaluate the utility of system communication and transparency in HRT repair
based on the collaboration context and output modalities I had been working with
up to this point, I did a study in collaboration with the Lab for Human-Centered
Artificial Intelligence at Augsburg University. The objective of the study was to test
types and methods of explaining an error made by the robot during a shared task
that could be recreated in the projection AR test cell. The experiment was performed
using the VR test setup.

Our initial research question was focused on the output modalities used to explain
the robot’s error to the operator. We performed a preliminary study using an online
survey, featuring videos of a virtual robot to illustrate it committing two types of
errors. In a scenario where the robot had to sort differently shaped bottles and put
them at either end of a table, one video would show the robot sorting them incorrectly
and another video showed the robot knock over a bottle while performing the task
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otherwise correctly. As a between-subject condition, after watching each robot error
the participants would receive an explanation of the error in either text projected onto
the table or from synthesized speech. The failed sorting was explained as a computer
vision error while knocking over bottle was explained as the motion planning system
not being calibrated properly.

While we expected the participants to request more detailed explanations, perhaps
using visual aids that could be implemented using projection AR, most participants
requested additional details on how to correct the error in the system. We therefore
decided to evaluated whether adding details on how to solve the problem would
improve trust repair after the robot error. With this change in focus we limited the
scope of the experiment and only tested with the robot sorting bottles incorrectly and
the explanations were only delivered in text.

The sorting test from the preliminary study was adapted to be a collaborative
task where the robot and operator had to work together as a team to sort the bottles,
assigning the bottles to each team member by color, red or blue. The virtual envi-
ronment and setup used for the experiment is shown in Figure 3.2. Every participant
would perform the task with the robot twice, and report their trust toward robot after
each task using Schaefer’s 14-item robot trust scale [10]. Measuring HRT and per-
forming experiments are explored in detail in the Chapter 4. In the first task the robot
would sort its bottles correctly, and the participant would be informed that the team
succeeded when they both had finished. In the second test the robot would sort them
incorrectly and once they were both finished, the participant would be informed that
the team had failed. Depending on the test group, some participants would receive
no additional information about the failure or the error, others would be informed
that the system had performed a computer vision error, resulting in the robot’s er-
ror, while last group would also be told that improving lighting conditions would
fix the problem. After the experiment each participant would fill out a Explanation
Satisfaction Scale [8] (ESS) post-test.

After testing with 30 participants results of Schaefer’s trust scale showed a sig-
nificant decrease in trust between the first and second task, suggestion that the robot
acting counter to the shared objective is an effective trust dampener. The scale did
not, however, show significant difference in trust levels after the robot error between
the levels of explanation. The post-test ESS did, however, show significant difference
in regards to trust between the no-explanation condition and the two other condi-
tions, meaning participants found the explanations useful for informing whether they
could trust the robot. Despite this we can not assume that this is transferable to
trust in the robot, especially considering the ESS was administered after the trust as-
sessment questionnaires. Further studies are required to learn how trust in different
construct within the system affect on another regarding the user’s perception of them.
This study is documented in detail in Paper C [7].

3.3 Summary

In this chapter I presented our research in human-system communication for HRC.
This included our evaluation of suitable AR display technologies, the design and of
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AR HRC cell used for the HRT experiments and our test of mistake explanations as
trust-repairing actions.

* Based on accuracy, task completions times and usability scores, I would work
with projection-based AR going forward.

* Our AR HRC cell features two projectors mounted on an aluminium rig to
allow for two overlapping projections, minimizing occlusion. It also allows for
mounting a top-down camera or sensor.

* After testing levels of explanation after the robot performed an error, providing
an explanation to why the robot made the error had no trust-repairing effect.
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Chapter 4

Trust Assessment

In this chapter I present my research into human-robot trust (HRT) assessment based
on the robot trust and trust calibration definitions presented in Section 1.3. This in-
cludes four empirical studies documented in Papers D through G, but I have split the
chapter into sections pertaining to the base topics of my research approach. These
topics are how I measure the ground truth in HRT, how I disrupt operator expec-
tations with trust-dampening actions and how I use different tracking methods to
measure physical reactions when the expectations are disrupted.

4.1 Measuring Ground Truth

As outlined Section 2.1, Schaefer [7] created two versions of a HRT scale that was
both more sensitive and valid than previous trust in automation scales, one with 40
items and one with 14 items. I used the 14-item scale in the experiment documented
in Paper F [4], but because even the short version of scale would take a long time to
fill out repeatably in a series of tasks, I decided to investigate quicker alternative ways
of trust reporting.

For two experiments, documented in Papers D [1] and E [2], I used an Android
tablet to administer a shortened version of Hoffman’s measure [6], using only three
items pertaining to robot predictability and operator feeling of safety. The three items
were formulated as the following statements:

e [ trust the robot to do the right thing at the right time.
¢ [ felt safe working next to the robot.

* The robot’s reaching motions was surprising.

The statement referring the robot’s reaching motion is mainly relevant in the ex-
periment documented in Paper D [1], as the robot would reach toward the participants
with a wooden baton. This question should be changed to fit the robot’s actions in
other experiments. To get higher granularity and with the aim of getting quicker
and more intuitive responses from the participants, the three question were formu-
lated as statements and the participants had to state their level of agreements using a
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sliding scale with option to simply touch the scale to move the marker, allowing for
rapid responses. The combined trust score is the average score for the three questions
where disagreement yield zero and agreement yields one, with the statement that the
robot’s motion was surprising having its value inverted. The questionnaire is shown
in Figure 4.1.

Fig. 4.1: The tablet used to administer the short trust scale questionnaire. The sliding scales let
the participants quickly report their attitude toward the robot as level of agreement with the
three statements [1]

Due to the lock-down in 2020, I decided to experiment with HRT assessment in
virtual reality (VR), allowing for tests without bringing people into the laboratory. I
designed it to be used as part of data crowd-sourcing, where participants use it at
home if they have the required VR equipment. Because of this it would have to be
brief, compared to my other experiments, to avoid people quitting part-way through.
This is especially a risk due to the test design where participants perform repetitive
tasks with the intend of having them lose count, so I can disrupt their expectations
halfway through. Doing this when the participant is alone instead of in a laboratory
setting likely has a higher risk of participants losing patience and quitting, especially
if they do not notice the trust-dampening action in the experiment. To make the
test brief and also support input modalities for as many VR setups as possible, the
questionnaire is stripped down to one questions on whether the participants feels safe
while close to the virtual robot, which is reported on a seven-point scale according to
agreement. This scale in the virtual environment is shown in Figure 4.2. The design
and an in-lab evaluation of this measure are documented in Paper G [3].

While these small and rapid questionnaires have not been verified on their validity
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Fig. 4.2: The virtual robot, environment and seven-point scale used by participants to rate their
agreement to the statement, that they felt safe about the virtual robot [3].

compared to Schaefer’s [7] scales in a comparative experiment, in all experiment they
yielded results expected when the robot would perform trust-dampening action in
the more volatile conditions, such as speeding up or performing wrong actions. The
scores throughout the experiments show a drop in trust at disruption of expectations,
often followed by slow trust recovery. The trust scores throughout the experiments for
effective trust-dampening actions are shown in Figure 4.3. Still, it would strengthen
the conclusions to perform a study verifying the validity of the measures.

A potential weakness to the trust scales is that the scores have to be within set
minimum and maximum values. Based on participants’ perceptions of the robot and
the scales, different participants may report trust at the extremes of the scales at
different levels of perceived robot trustworthiness. This is especially concerning when
analysing delta trust scores after the robot performs a trust-dampening action, as a
higher trust level before the action allows for a greater drop in trust. To check if
there is an effect of high trust levels on delta trust after trust-dampening, I collected
all the trust scores before and after for conditions in each of my experiment that
showed significant drop in trust. Normalizing the scores and performing linear and
logarithmic regression on trust delta scores dependent on trust score before yielded
R-squared values of 0.08 for both. This suggests the effect of trust levels before trust
dampening can not be proven, though it should still be considered when planning
future studies.

4.2 Disrupting Operator Expectations

Throughout my experiments I have tested various ways of disrupting the participants’
expectations toward the robot during their test sessions. Among the robot-related
factors affecting trust development listed by Hancock et al. [5] are reliability and
predictability, and in the experiments documented in Papers D through G I would
manipulate these.
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The common approach in the experiments is to have the participants perform
a repetitive collaborative task with the Sawyer robot, in-between witch they would
report their trust toward the robot. The robot’s behaviour would be identical for the
first half of the tasks. During these tasks I would expect to see an increase in trust
toward the robot, as the participants are getting used to it and getting confident with
the task. Then the robot would change behaviour to disrupt participant expectations,
often yielding a drop in trust. For tests on changes in speed the robot would maintain
the new behaviour for the rest of the tasks, often resulting in gradual recovery of
trust. The statistical analyses for the four experiments are summarized in Table 4.1,
comparing reported trust immediately before and after the trust-dampening actions
occurred.

In the experiment documented in Paper D [1] the robot would hold a wooden
baton that it would hand over to the test participant. Depending on the condition
the robot would start at 25, 50 or 75 percent maximum movement speed for the first
half of the tasks, after which the speed would be increased by 25 percentage points.
An additional test condition was whether there would be a work surface between the
robot and operator. There was an error in the analysis in Paper D, so despite what is
documented, having the work surface between the robot and participant did not yield
any significant difference, and the increase in speed was only effective when the robot
went from 25 to 50 movement speed. This may be due to the proportionality of the
increases in speed, as going from 25 to 50 percent doubles the speed while going from
50 to 75 percent only increases it by 50 percent. The trust scores from the significantly
effective conditions from this experiment are shown in Figure 4.3, Section A.

In later experiments I would test conditions where the robot would either increase
or decrease its movement speed. In the experiment documented in Paper E [2] the
robot would hold a felt pen and draw a square on a piece of paper held down to a
table by the test participant. in the VR experiment in Paper G [3] the robot would
move toward the participant holding a plate with the letter A or B for the participant
to read and report. Both of these experiments only showed significant changes in
reported trust when the robot increased speed, suggesting that feeling of safety has a
higher effect than robot predictability in these cases. As in Paper D, there is an error
in analysis in Paper [2], yet the conclusion is the same with correct analysis. The trust
scores for the speed-increase conditions from these experiments are shown in Figure
4.3, Sections B and C.

With increase in robot speed proven to affect HRT, for the last close-proximity
HRC experiment I tested different types expectation disruptions. In the experiment
documented in Paper F [4] the robot and participant each had to move a set of col-
ored cones from side of a table to the other, repeatably. The participant would move
the red cones while the robot would move the blue cones. For every task an arrow
projected on the work surfaces indicated to which side the cones should be moved.
In this experiment I tested the effect of robot dependability in addition to predictabil-
ity by simulating two different error types. The first error type is designed to affect
predictability, as the robot changes its movement trajectory and moves closer to the
participant than previously. For the other error I changed dependability by having
the robot initially move a cone to right place, after which it would move it back in the
wrong direction. The participant had the option to stop the robot if they felt it acted
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Table 4.1: Summary of statistical analyses in HRT experiments. Testing the difference in reported
trust before and after a trust-dampening action, using t-tests for parametric data and Wilcoxon
rank sum tests otherwise.

Test t w df p-value
Baton Handover Experiment [1]

Increasing speed: 75% - 100% 1.39 16.27 18
Increasing speed: 50% - 75% 57 .62
Increasing speed: 25% - 50% 4.99 16.29 <.01
Collaborative Drawing Experiment [2]

Increasing speed 380 <.01
Decreasing speed 260 .09
Virtual Reality Experiment [3]

Increasing speed 78 .03
Decreasing speed 45 69
Collaborative Sorting Experiment [4]

Irregular movement 71 12
Wrong action 3.50 16.95 <.01

against the objective. The robot would then move the cone back to correct position
and continue the task. Test results only showed a significant drop in trust when the
robot moved the cone to the wrong position. An additional condition in this exper-
iment was whether the participant was instructed to move the cones simultaneously
with the robot, or if they were taking turns, moving one cone at a time. This condition
showed no significant effect. The trust scores for the wrong-action condition from this
experiment are shown in Figure 4.3, Section D.

4.3 Testing Body Tracking & Apprehension

The first body tracking experiment was performed using an Orbbec Astra RGB-Depth
(RGB-D) camera mounted on a light stand and positioned facing the participants with
the robot between them. In each task the robot would reach toward the participant
with a wooden baton, handing it over to them, increasing the movement speed with-
out warning halfway through the test. A participant retrieving a baton from the robot
gripper is shown in Figure 4.4.

This experiment utilized the skeleton tracking software compatible with the cam-
era, allowing me to easily distinguish and record the tracking data from the partic-
ipants’ limbs separately. In the analyses I focused on the positions and movements
of the participants” hands and head, as I expect the extremities of the body to move
the most during apprehensive behavior to increase their distance from the robot. The
analyses showed that only the non-dominant hand’s movement could be correlated
with the reported trust level, which may have been due to them still reaching for the
wooden baton out of habit with their dominant hand. The study is documented in
detail in Paper D [1].

There are restrictions to the tracking setup with skeleton tracking, as it required a
few meters of distance to the participant for proper tracking, and since it has to face
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Fig. 4.3: Average trust scores with confidence intervals throughout the tasks for conditions with
effective trust-dampening actions in the experiments in Papers D through G. The vertical lines
show the midway point where the trust-dampening action occurred.
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Fig. 4.4: The participant grabbing the wooden baton from the robot. © 2019 IEEE [1].

them front-on, the robot will have to be in-between them, occluding the participant.
Because of this I proceeded with the top-down approach to operator tracking, which
also informed the design of the AR HRC cell setup described in Section 3.1.

With the RGB-D camera mounted at the top of the aluminium rig, pointed down
at the operator, I use the depth frame to track their approximate position and pos-
ture. First, a snapshot of the empty test environment is subtracted from the recorded
frames. Each frame is then aggregated by each horizontal line of pixels, averaging
all non-zero depth values, because zeros are pixels with no reflected infrared light.
Looking at the values we can get an impressions of how the operator is physically
distributed within the frame, as the values closest to the camera can be assumed to
be the top of the head and the difference between the positions closest and farthest
from the robot gives an impression of their posture, and if they are sitting or standing
upright or leaning away or toward the robot. Examples of this tracking is shown in
Figure 4.5. The design is documented in detail in Paper E [2].

I used this tracking method in two experiments. The first involved the participant
sitting in front of the robot, holding down a piece of paper as the robot would draw
a square on it. This scenario is shown in Figure 4.6. Although, the reported trust
in the robot matched my hypotheses when the robot performed a trust-dampening
action, there was no correlation with operator movement or proximity to the robot
afterwards. This experiment is documented in detail in Paper E [2]. For the last close-
proximity HRC experiment I had the participants do the standing task of moving
cones across a table to see if more freedom of movement would yield more movement
when disrupting their expectations. The setup for the test and the standing task is
shown in Figure 4.7. However, as with the previous experiment, even though certain
disruptive robot actions yielded changes in trust, there was no consistent correlation
with movement or proximity. The last HRC experiment is document in Paper F [4].
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Fig. 4.5: Images from the top-down IR camera. Left: User sitting upright. Right: User leaning
backwards. Below are the groups of aggregated tracking data based on the samples. © 2020
IEEE [2].
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Fig. 4.6: A test participant holding down a piece of paper as the robot draws on it. © 2020
IEEE [2].

Fig. 4.7: The test setup where the participants would stand in front of the robot and repeatably
move the colored cones from one side of the table to the other [4].
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44 Summary

In this chapter I described my experiments into HRT assessment documented in Pa-
pers D through G, focusing on measuring reported trust, disrupting operator expec-
tations and using two different types of body tracking.

* I designed a rapid trust reporting tool to be used between repeated tasks in
close-proximity HRC. While the trust measure in my studies lets me retain
hypotheses regarding gradual build of trust, drop in trust after disruption of
expectations followed by gradual trust recovery, it would highly benefit from a
verification study, comparing it to a standardized trust scale.

¢ I tested changes in robot speed, irregular movements and mistakes in task exe-
cution to affect operator trust. Results showed that increasing movement speed
and mistakes in task execution caused decreases in operator trust, while irreg-
ular movements and decreasing speed had no effect.

¢ In testing body tracking to assess trust through physical signs of apprehension
I found no consistent correlations between reported trust and operator motions
or proximity to the robot during or after trust-dampening robot actions.
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Chapter 5

Conclusion & Future Work

In my research I have worked toward enabling robot-augmented production by ad-
dressing the challenge of maintaining appropriate operator trust during close-proxi-
mity human-robot collaboration (HRC). I focused on real-time trust assessment with
the goal to enable adaptive robot behaviour and real-time human-robot trust (HRT)
calibration. My first step was enabling system communication using a non-obstructive
display type for the manufacturing setting. To answer my first research question,
"How can we enable communication between the operator and the system controlling the robot
using augmented reality (AR)?”, i performed a usability study of different types of AR
devices, in which projection-based AR was the most accurate and usable. I then de-
signed the system communication for future studies around projection-based AR [3].

To answer my second research question, "How can we use system communication
in trust-repairing actions to increase HRT?"”, I performed a study in collaboration with
the Lab for Human-Centered Artificial Intelligence at Augsburg University. After
performing a user experiment using a virtual robot in virtual reality (VR) we found
that the robot performing an action going counter to the shared objective significantly
decreased HRT, but providing an explanation to the error did not result in less of
a decrease, even though the explanations were rated higher in regards to informing
whether they could trust the robot.

For the third research question, "How can we measure HRT throughout repeated close-
proximity HRC tasks?”, 1 designed a digital solution for rapid reporting of trust toward
the robot using a touch screen application. While this trust scale measured scores
consistent with my hypotheses regarding decrease in operator trust after disruptive
robot actions, a comparative study verifying it against standardized trust scales [9]
would be highly beneficial.

My approach to real-time trust assessment was based on the hypothesis that de-
creases in trust are measurable in the operator’s movements and their preferred prox-
imity to the robot, as HRT is based on the willingness to engage in a vulnerable
situation with a robot [1, 8]. To test this hypothesis I ran a series of experiment
where the participants would perform repeated tasks with a Rethink Robotics Sawyer
robot, during which the robot performs a trust dampening action, disrupting partici-
pant expectation with the purpose of invoking a decrease in trust. Between each task
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the participant would rate their trust towards the robot in a HRT scale. As for my
fourth research question, "How can we lower the operator’s trust toward the robot through
trust dampening actions?”, increasing robot movement speed without warning or hav-
ing the robot perform actions counter to the objective significantly lowered reported
trust [2, 4, 6].

I then tested the correlation between the trust scores and the tracked movements
during trust-dampening actions. While some of the trust-dampening actions did yield
decreases in reported robot trust I found no correlations between the trust and the
movements or proximity of the participants. As such, for my fifth research question,
"How can we correlate body tracking as signals of physical apprehension with measured HRT
throughout repeated close-proximity HRC tasks?”, at the current stage of my research,
it is inconclusive. Lastly, for the final research question, "How can we perform HRT
assessment experiments in VR?”, from the experiments I performed, trust score results
were consistent with experiments with a real robot. This was the case both when
verifying the VR test setup [5] and evaluating mistake explanations as trust-repairing
actions [7].

For future work, although initial analyses did not yield useful correlations, I have
gathered a large amount of tracking data, so further analyses may yield beneficial
insights. Possibly, a machine learning approach can be useful to parse the tracking
data. Alternatively, rather than the current top-down RGB-depth camera approach,
where the depth frames are aggregated by averages for tracking of operator positions
and posture, I can research skeleton detection algorithms suitable for the setup.

Another consideration for future research is the implications of performing HRC
experiments on trust in laboratory environment. A considerable challenge to the
validity of my approach is that participants may realize that the robot will make a
mistake or otherwise disrupt trust at some point in the test, based on the questions
they answer between tasks. This may be helped by instead using between-subjects
experiments with a control that would not experience trust dampening actions and
only having participants rate trust once. This would, however, yield much fewer data
points per participants. Alternatively, we have to carefully consider how we frame
the HRC experiments and how it affects the participants” expectations. For example,
in my experiments there were no framing to explain why the participants would
perform tasks with the robot. As such, the participant’s perception of the situation
is just that they are in an experiment run by the test conductor. We can assume that
the participant’s trust in the robot is influenced by their trust in the test conductor,
because the conductor is the one controlling what occurs during experiment, unless
they assume the robot errors are real. On the other hand, framing the experiment as
a quality assurance test of the robot, introducing the possibility that robot is fallible,
may more effectively yield the desired results.

Lastly, for future research more focus may be necessary on whether participants
actually recognize robot errors or irregular behaviour, depending on the context. As
could be seen in the VR trust repair [7] and cone sorting [6] experiments, having the
participants actively performing tasks simultaneously with the robot may affect their
ability to keep part of their attention on the robot. Future experiments should include
an element pertaining to the degree to which participants recognized robot errors or
irregular movements.
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1. Introduction

Abstract

To get an overview of the research done into shared-space human-robot interaction we per-
formed a literature review of relevant papers from the IEEE, ACM and Springer databases.
We filtered 2097 papers from our initial search based on the criteria that they had to document
a human-robot experiment where they share a space without any physical safety barriers, yield-
ing 125 papers published between the years 2000 and 2019. We have written up overviews
of years of publication and the growths of bodies of research regarding motivations, objectives,
data collected and more. Initial findings suggest that human-robot collaboration for industrial
manufacturing have been a major driving factor for research, with initial focus on efficiency,
but with a growing interest in worker safety in recent years. We have also constructed a
conceptual hierarchy of the types of roles for the robots in collaboration context.

1 Introduction

The field of human-robot collaboration is rapidly evolving with the next step being
robotic collaboration partners sitting within reach of a human operator. With the next
stage in the development of human-robot interaction (HRI) being shared-space and
close-proximity human-robot collaboration (HRC), it is important to know findings
and methods that have been used so far. Work is being done to implement collabo-
rative robotics in many context and for many purposes. These include, but are not
limited to, collaborative industrial assembly, relieving workers of strenuous and repet-
itive tasks, assisting the elderly or people otherwise in need of aid, as well as robots
for collaborative transport of heavy or bulky objects.

Our goal is create a review and make an overview of the field of research into
shared-space human-robot collaboration (SHRC). We define shared space as a human
operator working with a robot in a shared environment with no physical barriers
between them for safety or otherwise. Collaboration is defined as when the operator
and robot are not only working towards the same goal, but also interacting with the
same object or objects at the same time. Examples of this would be collaborative
lifting or positioning and handing over objects.

For this literature review we go through 125 relevant papers from the previous
two decades and categorize them in terms of goals, technology, methods and findings
among others. We then aggregate the data and create and overview of the body of
research throughout the years and with reflections on the field today and where it
may go in the near future. We also analyse the practical collaboration type as well as
the social roles of the robot as a partner in SHRC and write a conceptual hierarchy in
terms of the types of robot influence on the collaboration.

2 Procedure

In this section we describe the methods used for gathering and sorting sources as well
as the filtering and coding processes for the literature review.
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2.1 Initial Search

The first collection of literature is gathered by searching the publication databases
of Springer, ACM and IEEE with the search terms "Human-Robot Collaboration",
"Human-Robot Cooperation", "Human-Robot Coordination" and "Human-Robot Team".
We limit the search to these three databases as they cover the largest robotics confer-
ences, and our main focus is on the boundaries of the research field. These search
results are initially filtered to remove doubles and eliminate all articles of less than
3 pages of length. While "Human-Robot Interaction” is also a common keyword, in
addition to covering collaborative manipulation of objects, it also commonly describes
interaction with social robots. To not significantly lengthen the filtering process, this
keyword was omitted.

2.2 Manual Filtering

After the initial search, the articles are manually filtered based on relevance to SHRC.
To be included in the review the articles must describe an experiment using human
test subjects sharing a space with a robot as they do a collaborative task. In this context
"sharing a space" means that the human and a robot subjects must be in a proximity
that allows physical contact, excluding them being in separate rooms or separated
by a barrier, transparent or otherwise. For a robot to be relevant it must be moving
at least one limb during the collaboration, whether it is for physical manipulation of
an object or for communication. This excludes communication exclusively through
audio-visuals from a monitor or otherwise. For a task to be considered collaborative
the human and robot must interact with the same object or group of objects. This
does not exclude sorting tasks. These features must be indicated in the title, abstract
or keywords in order to be considered.

2.3 Coding

After filtering out irrelevant sources, we read through the remaining papers, focusing
on specific elements and topics. With our focus being on procedures of experiments in
SHRC these topics are stated author motivations, research objectives, their definition
of HRC, technology used aside from the robot, task types in the experiment, operator-
robot proximity, types of data gathered and overall results and conclusion from the
authors. To do the coding, we identify the topics relevant for each category and add
the labels to our data sheet if there are no fitting labels already. For each publication
we add a binary indicator for whether each label in each category applies to the
paper. This means that multiple levels in each category can apply to the same paper.
For example, a robot used in an experiment can be classified as both a robot arm and
a mobile robot. In addition, we classify the experiments as either technical test or HRI
test based on whether the purpose is to verify the performance of new technology or
if it also investigates human factors, respectively.
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3 Findings

The initial search described in Section 2.1 yielded 2097 results from between 1992 and
2020 after removing doubles and articles less than 3 pages of length. After manually
filtering the papers according to the guidelines in Section 2.2 we had a total of 125
paper for the review.

3.1 Topics

After reading through the papers and coding the relevant topics we have gathered
the items listed in the tables below. During the coding process the papers were cat-
egorized as documenting either technical tests or human-centered tests. Technical
tests focus on verifying the design and implementation of an HRC-related solution
while still including at least one human participant, where human-centered tests fo-
cus on measuring human factors in HRC. The number of publications and test types
throughout the years is shown in Figure A.1. We can see that technical HRC ex-
periments have had the earliest publications in the early two-thousands with steady
increase since then, while human-centered experiments had a high increase in publi-
cations in 2015 to comprise more than half the total HRC publications.

The stated motivations of the authors are listed in Table A.1 and the release years
and accumulative totals are shown in Figure A.2. While some times only stated in the
abstract, these are usually the first thing in the introduction and explain the intended
long-term purpose of the research. Most often, they do not state an explicit purpose
or context outside the research objective itself and are thus labelled as such. The
most common motivation for HRC experiment is improving efficiency in human-
robot manufacturing teams, followed by ensuring operator safety. Developing robot
adaptation is often motivated by enabling obstacle avoidance during robot motion
and often overlaps with operator safety and trust assessment.

The research objectives are listed in Table A.2. They are often stated explicitly
in the introduction, but they can also be inferred by through the technology used
and the data collected in the paper for a more complete picture. As such, testing
visual tracking is a frequent objective, as it is often a part of the the system design.
Objectives often overlap, and as intention recognition is often a step towards other
objectives, such as motion or collaboration planning, it has a high frequency.

The types of HRC in the experiments are listed in Table A.3 and the release years
are shown in Figure A.3. The label of shared work space is for experiments that
did not involve the human and robot touching each other or a shared object. These
usually involved collaborative sorting or the robot serving an item by placing it near
the operator.

In Table A.4 the technologies used in addition to the main robot are listed, split
between hardware and software. These include both technologies that enable the HRC
and ones that are used for data collection. Force-torque sensors are often featured,
and the sensors they use are usually the one build into the robot itself. The depth
camera category includes infra-red cameras and ultra-sonic sensors, whether in single
or multi-sensor configurations. Similarly, the RGB camera category includes single
and multi-camera solutions. Projected augmented reality is grouped separately from
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Fig. A.1: Number of SHRC-relevant papers published throughout the early two-thousands, col-
ored according to test type.

other visual interfaces, which are usually on regular monitors.

The robot types are listed in Table A.5. Mobile robots and multiple robot labels
always overlap with one of the other categories. The lift category is robots that use a
scissor lift mechanism, rather than a jointed robot arm.

The HRC tasks performed in the experiments are listed in Table A.6. Many of
these are also listed as collaboration types while others overlap, such as pick and
place and pointing tasks both being shared work space collaboration.

The human-robot proximity is rarely documented with units of measurement, so
in Table A.7 it is categorized mainly based on collaboration context. The release years
and accumulated totals are shown in Figure A.4. Table distance means that the robot
was either mounted to the work surface or was at the opposite side of it. Holding
small and large objects means the operator and robot were separated by an object
they were simultaneously touching as part of the collaboration. Small objects were
usually no larger than a handball and large objects would be a table or a rod of about
one meter in length.

The data types collected in the experiments are listed in Table A.8, split between
objective and subjective measurements. The sensor data label is for internal system
signals for primarily technical tests. The label miscellaneous questionnaires is used
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Table A.1: Frequency of stated motivations in the papers.

Motivations Freq.
Nothing stated 56
[1-56]

Efficient manufacturing 35
[56-90]

Operator safety 28
[27, 32, 38, 43, 45, 48, 61-64, 67, 84, 87, 91-105]

Robot adaptation 24
[30, 33, 39, 47, 50, 56, 57, 69, 76, 86, 89, 98, 104-115]

Disability aid 6
[95, 103, 116-119]

Trust assessment 3
[120-122]

Combating labor shortage 2
[94, 123]

Robot maintenance 1
[124]

Household robots 1
[125]

when they are not standardized tests, such as the System Usability Score.

3.2 Test Results

Most of the papers focus on verifying implementation of novel SHRI solutions, most
reporting success while others describe the weaknesses in their design or refined their
problem outline. In these publications the results and conclusions are closely related
to their research objectives and technologies used as listed in the Tables above. Still,
several experiments are exploratory in nature and their results can reflect HRI in
general.

Coban and Gelen [45] found that human-robot teams performed better than robots
on their own. Several authors found that operators preferred autonomous and proac-
tive robots over reactive ones [35, 68]. Baraglia et al. found that proactive robots
yielded better teamwork fluency [68]. Han and Yanco [54] applied proactive robotics
and handover task, where enabling the robot to the detect operator grasp effort pat-
terns and act accordingly significantly improved the experience and efficiency. The
preference for proactive robots partners is consistent with research showing that re-
quiring repeated verbal instructions towards the robot has a negative effect on opera-
tor satisfaction [13, 17].

In researching human-robot group dynamics and collaboration planning, both
Giuliani and Knoll [13] as well as Gombolay et al. [65] found that the operators were
willing to cede planning authority to the robot partner. This may be a sign of opera-
tors trust in the system as a whole. Still, Gombolay et al. [65] also concluded that the
operators still value human partners over robots in groups collaborations. Dragan et
al. [21] found that motion planning that communicates robot intent improves collab-
oration, and Vannucci et al. [37] found that operators believe robot motions influence
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Fig. A.2: Accumulative total of research motivations in the papers.

their actions, both of which are consistent with other research by Giuliani and Knoll.
They found that when the robot partner is assigned either supportive of instructive
role, the operator will adopt the opposite role [13, 17]. Also, Laursen et al. [24] found
that operator behaviour was affected by the robot’s ability to provide negative feed-
back. While Fischer et al. [23] found that operators prefer robot with eyes utilize social
gaze, Zheng et al. [26] found that having the robot shifting gaze between end goal and
operator face during a handover task did not improve timing, but it was perceived as
better communication. Lastly, Reinhardt et al. [36] found that operator trust towards
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Table A.2: Frequency of research objectives, stated or inferred from the data collected.

Research Objectives Freq.
Intention recognition 51
[11, 15, 16, 22, 29, 31, 34, 35, 37, 38, 4042, 46, 48, 53, 54, 56, 57, 64-66, 68, 69, 73,

74,77, 80, 85, 88-90, 94, 97, 98, 102, 104-116, 118, 125]

Visual Tracking Test 48
[10, 12, 19, 20, 22, 25, 29, 30, 32, 33, 36, 38, 40, 4348, 56, 61, 63, 64, 67, 70, 74, 76,

77,79, 83, 85, 91-93, 9597, 99-101, 105, 108, 111, 112, 115, 117, 118, 123]

Motion planning 32
[2,6,10,12, 15,31, 34, 35, 37, 41, 42, 48, 54, 56, 57, 63, 67, 73, 74, 76, 77, 88, 90, 91,

94, 96, 97,99, 102, 105, 110, 115]

Collaboration planning 23
[10, 33-35, 3841, 43, 47, 48, 58, 65, 66, 68, 69, 71, 83, 84, 104, 105, 114, 125]
Collaborative heavy lifting 18
[1-4, 6,12, 14, 18, 22, 28, 47, 55, 56, 71, 79, 84, 104, 125]

Test control system 9
[5,8,9,27,30,50,79, 111, 114]

Performance assessment 9
[45, 51, 58, 62, 66, 67, 71, 78, 83]

Test usability 8
[5, 49, 51, 70, 72, 82, 83, 97]

Operator safety 6
[49, 58, 81, 93, 96, 100]

Test robot social behavior 6
[13, 17, 23, 24, 26, 75]

Assess mental workload 5
[49, 58-60, 66]

Test gesture recognition 4
[25, 89, 90, 94]

Test speech recognition 4
[69, 80, 102, 123]

Operator trust assessment 4
[83, 120-122]

Robot design framework 4
[52, 86, 87, 119]

Assess operator perception 3
[28, 36, 37]

Test robot maintenance system 2
[103, 124]

Test tactile system 1
[7]

Test robot motion patterns 1

[21]

51

the robot was enhanced if it used submissive motion cues, rather than dominant ones.
Lots of work have been done in measuring operator mental strain and perceived
safety during SHRC, both of which are critical to successful HRC [75]. Several re-
searchers found that low robot motion speed [59, 122] and non-straight motions [59]
reduced mental strain and that the operator should be informed of the robot motion
speed before the robot moves [59, 60]. The benefit of communication on percep-



Paper A.

Table A.3: Frequency of collaboration types used in the experiments in the papers.

Collaboration Type Freq.
Simultaneous manipulation 33
[1-7,12, 18, 19, 22, 28, 30, 31, 33, 43, 44, 47, 50, 55, 56, 75, 79, 84, 100, 101, 104,

107, 109, 110, 114, 117, 125]

Cooperative assembly 33
[10, 13, 15, 17, 23, 25, 35, 38, 45, 48, 51, 52, 58, 61-66, 81-83, 85-87, 90, 93, 97, 102,

106, 113, 120, 121]

Shared work space 28
[13, 24, 34, 36-38, 42, 49, 59, 60, 67-70, 72-74, 76-78, 88, 91, 96, 99, 105, 112, 115,

122]

Handover 22
[16, 20, 21, 26, 32, 40, 41, 46, 53, 54, 63, 65, 71, 80, 89, 94, 95, 98, 111, 118, 119, 123]
Collaborative transportation 11
[2,3,6,11, 12, 14, 28, 55, 92, 98, 104]

Assisted lifting 6
[8, 43, 47,79, 101, 116]

Simultaneous tool use 6
[5,27,29, 104, 108, 124]

Assisted robot control 3
[8,9,57]

Dressing the operator 2
[39, 103]

tion of safety has also been shown using projection-based augmented reality over-
lays [97]. Also, Kato et al. [60] found that increasing operator-robot distance can help
lower mental strain, while Bergman and van Zandbeek [122] found that short motion
stopping distances to the operator would increase mental strain [122]. Despite other
researchers finding that low motions speed and longer operator distances reduced
mental strain, Reinhardt et al. [36] found that operator trust did not correlate with
robot predictability.

4 Reflections

In this section we present our subjective reflection regarding the evolving trends in the
field of SHRC based on our findings. Based on our review we want to determine how
robot partners and their roles can be conceptualized based on their use in human-
robot experiments, both as practical and social collaborator. Lastly, we present our
prediction on how SHRC trends will evolve in the near future.

4.1 Research Trends

While the first occurrence of an SHRC experiment we found was in the year 2000, the
first database result on HRI, HRC and teams was in 1992. During the filter process
we found that HRI was often used to describe research into purely social robots,
rather than manipulators. Manipulator meaning that robot was build to physically
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manipulate an object. This does not include robot dancing partners, which is also a
widely researched topic. HRC often refers to remote control or collaboration, often

developed for search and rescue operations in earthquake scenarios.
Looking at Figure A.1 we see that the earliest publications focused on the tech-

nical aspects, rather than assessing human factors. It was not until 2014 the number
of human-focused papers started matching the number of technical papers. This sug-
gests either an increase in interest in the one or two years leading up to this point or
that the technological or ethical requirements for safe SHRC had been met to a wider
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Table A.4: Frequency of technologies used in the designs or experiments in the papers. Hard-
ware is listed at the top, software at the bottom.

Technology Freq.
Force-torque sensors 35
[1-6, 8,9, 12, 14, 18, 27-31, 33, 41, 50, 54, 55, 63, 76, 79, 84, 91, 95, 101, 104, 107,

109, 114, 117, 124, 125]

Depth sensors 29
[2, 12, 16, 25, 33, 35, 36, 48, 53, 56, 63, 64, 68, 71, 76, 77, 85, 92-97, 99, 102, 110,

117, 118, 123]

Marker tracking 20
[10, 15, 20, 22, 29, 32, 37, 57, 67, 73, 74, 79, 83, 100, 101, 105, 108, 111, 112, 115]

RGB cameras 14
[13, 17,19, 30, 38, 43, 44, 46, 47, 58, 61, 62, 75, 91]

Physiological measurements 9
[29, 40, 45, 59, 60, 89, 101, 102, 108]

Inertial sensors 6
[34, 40, 48, 85, 90, 92]

Pressure sensors 3
[78, 101, 116]

Projected Augmented Reality 3
[49, 70, 72]

Robot-mounted controller 3
[8,9, 28]

Visual interfaces 2
[82, 83]

Audio interfaces 1
[82]

Tactile sensors 1
[7]

Probabilistic state machine 18
[3, 11, 16, 22, 30, 40, 42, 62, 6466, 68, 72, 96, 98, 108-110]

Machine learning 13
[15, 33, 39, 46, 51, 56, 85, 89, 99, 103, 113, 121, 124]

Speech recognition 11
[13, 17, 41, 46, 57, 69, 80, 94, 102, 106, 123]

Gesture recognition 3
[25, 90, 94]

Multi-robot coordination 1
6]

Face tracking 1
[26]

Gaze tracking 1
[69]

extend, making the technology more widely available for research.

Looking at the stated motivation in publications in Figure A.2, the three most
stated are enabling HRC in manufacturing, enabling robot adaptation and ensuring
operator safety. With the sudden increase in publications going from 2015 to 2016,
it suggests a growing interesting in SHRC as part of industrial manufacturing in
position where the operator’s function cannot be fulfilled by a robot alone. However,
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Table A.5: Frequency of robot types used in the experiments in the papers.

Robot Types Freq.
Single-arm robot 77
[1,3-11, 15, 16, 18, 21, 23, 25, 27-30, 32, 33, 36, 38, 42, 45, 51-53, 57-63, 65-70, 72—
74,76-79, 82, 86-97, 99, 101-104, 108-110, 112, 120-125]

Dual-arm robot 38
[2, 12,13, 17, 20, 26, 31, 34, 35, 39-41, 43, 46, 48-50, 54, 56, 64, 75, 80, 81, 83-85,
98, 100, 105-107, 111, 113-115, 117-119]

Humanoid 6
[14, 22, 24, 37, 47, 55]

Mobile robot 5
[2,3,6,12, 65]

Multiple robots 3
[6, 10, 84]

Lift 2
[71, 116]

Three-digit robot 2
[19, 44]

standardized ergonomic scores have only been measured twice in SHRC experiments
[81, 100], suggesting that the interest in operator safety has initially been in regards
to avoiding physical hazards from the robot itself, rather than reducing health risks
from working conditions. The two papers addressing labor shortage were not related
to manufacturing, as may be expected, but rather to address shortages of nurses for
handing over tools during surgery [94, 123]. Also starting around 2016 is a growing
body of research into robots as aids to the disabled or citizens otherwise in need of
assistance.

Very little research has been done in communication methods between the robot
and the operator aside from the movement of the robot itself, with regular monitors
only being used in two publications [82, 83] and augmented reality being used in
three [49, 70, 72]. This suggests a significant gap in research of user-centered design
concerning testing SHRC.

4.2 Collaboration in SHRC

Based on the collaboration and task types in papers, listed in Tables A.3 and A.6, we
can categorize the conceptual levels of SHRC. Following are our categories based on
the literature review.

No physical collaboration

In this category the robot and operator are not touching each other or a shared object
at the same time. This type of collaboration uses the robot for communication only,
such as in the case of pointing or holding a projector for augmented reality. The only
example of a robot used for pointing is by Hoffman and Breazea [57].
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Table A.6: Frequency of robot task types used in the experiments in the papers.

Task Types Freq.
Pick and place 27
[5, 11, 13, 23, 24, 34, 36-38, 42, 49, 63, 68-70, 72-74, 76, 78, 88, 97, 98, 103, 105,

115, 119]

Cooperative assembly 26
[10, 15, 17, 25, 32, 35, 45, 48, 51, 52, 58, 61, 62, 66, 81-83, 86, 87, 90, 93, 98, 102,

113, 120, 121]

Handover 23
[11, 16, 20, 21, 26, 40, 41, 43, 46, 53, 54, 63, 65, 71, 80, 89, 95, 98, 106, 111, 118, 119,

123]

Object positioning 21
[1-4, 6, 8,12, 18, 28, 31, 34, 43, 79, 91, 104, 107, 109, 111, 112, 114, 125]

Manipulation 14
[7, 30, 33, 39, 43, 47, 50, 56, 70, 75, 84, 100, 110, 117]

Object transportation 10
[2,3,6,12, 14, 28, 55, 91, 104, 109]

Holding 10
[18, 19, 22, 44, 79, 92, 94, 101, 106, 111]

Tool use 5
[27,29, 104, 108, 124]

Lifting 2
[56, 116]

Move to position 2
[77,122]

Drawing 1
[5]

Pointing 1
[57]

Turn-taking

In this category the robot and operator physically interact with a shared object, but
never at the same time. Examples of this are solo object positioning tasks and pick-
and-place tasks as listed in Table A.6.

One passive collaborator

The next level is when the robot and operator have physical contact, either directly or
through a shared object, but one or the other remains mainly stationary during the
interaction. An examples of this is the type collaborative assembly where the robot
hold the object while the operator performs the assembly task. The handover task is
somewhere between this level and the next, depending on the implementation, as the
giver often stationary while waiting for the receiver to take the object.
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Table A.7: Frequency of operator-robot proximity in the experiments in the papers.

Operator-Robot Proximity Freq.
Table distance 60
[11, 13, 16, 17, 21, 23-26, 34-38, 41, 45, 46, 48, 49, 52, 54, 58-63, 65, 66, 68-70, 72—
75, 80-82, 85, 87, 88, 90, 93, 94, 96-99, 102, 105, 110, 112, 113, 115, 118, 119, 121,
123, 125]

Holding small object 29
[2, 5,10, 15, 18, 20, 29, 32, 40, 43, 44, 53, 56, 57, 67, 77, 83, 86, 89, 91, 92, 95, 100,
103, 104, 109, 111, 120, 122]

Holding large object 22
[1,3,4,6,7, 12,14, 19, 22, 30, 31, 33, 47, 50, 55, 71, 101, 104, 107, 108, 114, 117]
Touching 9
[5,8,9,27,28,76,79, 116, 124]

Side-by-side 4
[42, 51, 84, 106]

Beyond table 1
[58]

Operator-mounted 1
[78]

Concurrent collaboration

The majority of paper in the literature review focus on concurrent collaboration,
wherein the robot and operator touch each other or a shared object at some point
in the task. These can be simultaneous manipulation, object positioning, transporta-
tion and assisted lifting among others. Handover tasks can be considered concurrent
collaborations in the cases where the robot acts proactively according to the operator’s
actions to improve the interaction.

4.3 Robot Collaborator Roles

When planning the filtering process we already limited our definition of SHRC to
require shared space with no dividing barriers between operator and robot and ma-
nipulating a shared object. Still, reading through the papers fitting this description,
robots have been put in different roles in relation to the operator. Following is our
outline of these roles.

Robot as a smart tool

This type of collaboration often involves assisted lifting of heavy objects, but can also
be the robot equipped with a power tool. This kind of collaboration is characterized
by moving the robot end-effector physically while the robot follows the motion or
adjusts to optimize the process. Papers featuring collaborative tool use and heavy
lifting are listed in Table A.6.
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Fig. A.4: Accumulative total of human-robot proximities in the papers.

Robot as a robot

In this case the robot works and reacts according to the pre-programmed process,
objects and environment, rather than reacting to the operator. At most, the robot will
adjust movement to avoid collisions. This can involve pick-and-place operations at
pre-determined positions or picking up and holding an object so the operator can
perform assembly before the robot takes the object away.
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4. Reflections

Table A.8: Frequency of data collected in the experiments in the papers. Objective measurement
are the top, subjective measures at the bottom.

Types of Data Collected Freq.
Error rate/count 38
[5, 11, 14, 27, 32-34, 38, 40, 46, 47, 50, 51, 55, 62, 63, 65, 67, 69, 70, 72, 76, 77, 79,
80, 84, 89, 94-96, 104, 105, 109-111, 113, 117, 118]

Observations 31
[1-4, 6, 10, 12, 19, 20, 23, 26, 36, 43-45, 48, 53, 56, 61, 68, 85, 86, 92, 99, 105, 106,
111, 114, 119, 124, 125]

Sensor metrics 31
[2, 3,5, 6,8-10, 14, 18, 19, 22, 28-31, 40, 45, 55, 61, 89, 91, 92, 101, 104, 107-109,
116, 117, 124, 125]

Task completion time 28
[4,5,7,12,13,16, 21, 37,41, 45,51, 54, 57, 58, 62, 65-68, 71, 77, 78, 83, 93, 94, 103,
106, 110]

State-machine probability metrics 19
[11, 20, 22, 30, 36, 46, 48, 59, 64, 67, 69, 74, 77, 80, 90, 94, 96, 98, 111]

Machine learning metrics 13
[15, 39, 42, 54, 56, 85, 99, 102-104, 113-115]

Task step count 5
[13,17, 68, 72, 123]

Physiological measurements 4
[58-60, 69]

Operator intervention count 4
[24, 49, 88, 121]

Command count 2
[13, 17]

Ergonomics score 2
[81, 100]

Operator gaze duration 1
[26]

Operator reaction time 1
[24]

Robot-operator proximity 1
[110]

Misc. questionnaires 30

[4,17, 21, 23, 25, 26, 28, 35-37, 49, 52, 54, 65, 66, 68-70, 72, 73, 75, 82, 87, 97, 100,
102, 110, 112, 120, 122]

Stress assessment 6
[49, 52, 53, 58, 66, 83]

Trust score 3
[21, 83, 121]

Usability score 2
[49, 83]

Robot as assistant

As opposed to the robot as a robot, what can lift the robot to the level of assistance
is enabling movement adjustment to react directly to the operator’s actions. This
requires that robot can track the actions of the operator as well as keep track of the
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shared objective, allowing for operator intention recognition. An example of this the
proactive robot tested by Han and Yanco [54].

Robot as collaborator

For the robot to considered a collaborator it must have the same capabilities of the
robot assistant while also enabling proactive planning and actions, as opposed to
purely reactive actions. This often creates an overlap of HRC and social robotics,
as dominant and submissive roles can occur between the robot and operator as re-
searched by Giuliani and Knoll [13] and Gombolay et al. [65].

4.4 Future Trends

With no sign of a plateau in the growth of the body of research relevant to SHRC
in manufacturing, this is likely to continue in the foreseeable future. It is, however,
likely that there will be an increased focus in operator ergonomics in order to limit
long-term injuries as well as focus on visual communication, using augmented reality,
virtual reality, monitors or others, due to comparably small body of research. Also,
progress in SHRC in manufacturing along with growing interest in HRC for disabled
citizens, applying the knowledge from the former is likely to results in growing body
of research in the latter.
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1. Introduction

Abstract

When designing human-system collaboration to assist in strenuous manual tasks we need
to develop methods of communication between the system and the human. In this paper we
are evaluating augmented reality (AR) technologies for displaying task-relevant information
when the target is on a work surface for a typically standing work operation. In this case we are
testing AR interfaces for displaying sub-surface positions. To do this we compare four types of
AR interfaces, a head-mounted see-through display, a mounted see-through display, top-down
surface projection and graphical overlays on a static monitor. We performed the experiment
with 48 participants. Data analyses show significant difference between the AR interfaces in
terms of task completion times and user satisfaction with the projection-based display being
the fastest and most satisfying to the participants.

1 Introduction

Repetitive strenuous movements involved in production work can lead to muscu-
loskeletal diseases in the long term [1]. This issue can be addressed by introducing
assistive and collaborative systems that can relieve some of the strain. This also has
the potential to increase productivity. In order to do this we need to develop com-
munication methods between the system and the human, from here referred to as
the operator. The communication from the system to the operator in the production
context will involve conveying the details pertaining to the current task, and for this
study we seek to utilize augmented reality (AR) interfaces for this purpose.

The studies and development are done in the context of industrial meat produc-
tion in which employees stand on the meat processing lines. In this case the term
operator will refer to a single production employee collaborating with an instance of
the system’s assisting agents. The system will be assisting in tasks involved in sequen-
tial meat processing where each employee performs one task on each piece of meat
for a period of time. These tasks include positioning the meat, cutting it down to size,
trimming fat layers or picking out impurities. For this test we focus on the latter task
and develop methods for the system to show the position of an impurity, whether
it be on or under the surface of the meat, that it can be addressed and removed by
operator.

Because the operators will be working in close proximity with potentially haz-
ardous hardware it is critical that task-relevant information can be displayed non-
obstructively to the operator in order to communicate the current objective of the
system. This will allow the operator to anticipate the actions of the system, leading to
safer collaboration and improve human trust in the system as the communication is
developed further.

We focus on evaluating AR interfaces since these can be used hands-free. The
goal is to evaluate and compare four different types of AR interfaces in terms of effec-
tiveness, ergonomics and user acceptance when showing sub-surface positions in an
opaque mass acting as the analog for the meat. The four types of AR interfaces are a
head-mounted see-through display, a tablet-based see-through display mounted to an
adjustable arm, top-down surface projection and graphical overlays on a static moni-
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tor. The experiment plans and procedure have previously been presented in a poster
abstract at Human-Work Interaction 2018 [2], while this paper is more accurate.

2 Related Research

The communication from the system to the operator in the manufacturing context will
involve conveying the details pertaining to the current task. Novak-Marcinin et al. [3]
define augmented reality-aided manufacturing (ARAM) as the overlap of AR-aided
robot control, AR-aided testing, AR-aided assembly and AR-aided transport and stor-
age. The experiment in this paper is to evaluate interfaces for AR-aided assembly,
because of the meat production context, where it will be used to aid production staff.

Regarding preliminary evaluation of AR devices, Elia et al. [4] proposed a 4-step
model to be applied in specific manufacturing processes. The fist step is a multi-
criteria analysis for ranking the most effective AR systems for the purpose, which is
the current stage of this project. The ranking is performed by comparing the hardware
options in terms of output modalities, reliability, responsiveness and agility. The
ranking is done using pair-wise comparison followed by analysis and ranking of the
AR devices. Elia et al. [4] categorize types of AR hardware as head-mounted displays
(HMD), handheld devices, projectors and haptic force feedback systems. The second
step is obtaining a judgment matrix using pair-wise comparison between criteria,
followed by evaluation of local weights and consistency of comparison in step 3, with
final ranking of devices as step 4.

Kruijff et al. [5] classified potential issues with AR caused by a combination of
the environment of use, capturing the environment, the method of augmentation,
the types of display device and user. They also point out whether these issues are
predominant with particular display types which are categorized similarly to Elia et
al. [4]: Head-mounted displays (video see-through or optical see-through), handheld
mobile devices or projector-camera system (stationary or mobile). Relevant issues for
this study include wearable see-though displays having limited field of view (FOV)
and vergence-accommodation conflict for virtual objects and surface-based distortions
for projector-based setups.

For this experiment we consider the environment of use be recreating the rele-
vant working conditions pertaining to freedom of movement and posture allowed in
a standing task. The four categories outlined by Elia et al. and Kruijff et al. have
all been considered for the experiment. However, seeing as all of them are primarily
visual aids as opposed to haptic force feedback systems, the latter is not included in
this experiment. Since the context of the study allows for handheld devices to be im-
plemented in combination with existing production tools, we would consider haptic
feedback as a possible addition to visual augmented reality, so it may be evaluated as
an addition at a later stage.

Human-system collaboration enabled by AR has been studied previously, often in
the context of human-robot collaboration. However, often these tests have not been
performed in the context of a close-proximity task with the user standing at a table.
Green et al. [6] tested a human-system collaboration system utilizing an HMD where
the operator was sitting at a table. However, the headset used in this case, rather than
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being a see-through AR display, was an eMagin Z800 headset using OLED displays
with the augmented video fed from a mounted webcam. With the potential to have
the webcam pointed downwards toward the table the operator would be relieved
from bending their neck to look directly down at the tracking markers. The paper
does not specify any angle adjustment in the implementation. This solution is not
considered for this comparison due to the potential hazard or limiting the operators
field of view as opposed to see-through HMDs which allow the user to still see outside
of the display field. Even-though not pertaining to a task specifically, Vogel et al. [7]
proposed using projection-based AR to show an outline of a safe working area in
relation to the collaborative system.

Schwerdtfeger et al. [8] go into depth describing the projected AR, specifically
using lasers. They points out the cons of HMD AR devices, those being narrow
field of view, limited resolution, swimming effect, multiple focus planes as well as
eye fatigue. While laser-projected AR can address some of these issues it is limited
to displaying information on surfaces in the environment and the image must be
distorted to compensate for environment geometry and viewing angle, whether the
projector is head-mounted or stationary. In addition, it also introduces the challenge
of occlusion by either the user or other objects. In order to avoid surface distortion for
this test we use an even surface for this comparison.

Swan et al. [9] studied how depth perception is affected while using AR devices in
that subjects tended to underestimate distance in AR when they are projected at less
than 23 meters distance to the user, after which the bias switches to overestimation.
Comparing this to short distance error, Singh et al. [10] estimated an error of -5.5
cm at most for distances less than 50 cm. From these finding we should expect our
participants to underestimate the target distances in our test. However, we can not
know if this is true when the user can judge distance in relation to a real surface as
opposed to judging a target hanging in the air.

Similarly to showing sub-surface positions, augmented reality has previously been
used to imitate x-ray vision. Avery et al. [11] emphasized that when showing the con-
tent beyond the surface using an graphical overlay it should include an edge overlay
representing the surface as a depth cue, using occlusion as a depth cue so the object
does not appear to float in front of the surface. We are implementing the same method
in our test applications by projecting a graphical grid overlay on the surface of our
meat analog.

The main contribution of this experiment to the fields of human-robot collabora-
tion and ARAM is in the comparison between the AR devices, but the significance is
in the environment and conditions it will be utilized, as comparing the systems in a
low-distance setup while standing at a work surface has rarely been done.

3 AR Devices

We are testing four different types of AR devices. Three of them are based on three
of the types outlined by both Elia et al. [4] and Kruijff et al. [5]; head-mounted
see-through display from here referenced as HMD, see-though mobile display and
projection-based AR. In addition, we are comparing a video feed on a monitor aug-
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mented with graphical overlays because this is currently a typical way of displaying
information in meat production settings. The software for the four AR devices are
developed using Unity 3D. Similar to all of the versions is that a green grid is pro-
jected aligned with the surface of the sand, similarly to what is described by Avery et
al. [11].

The targets are shown as a red sphere or circles at 10 mm in diameter projected
into the sand. Due the nature of the devices the display methods for the targets differ
between the displays. Because the image for the top-down projector and the stationary
screens are limited to 2D projections on the surface of the sand, the red dot is shown
along with a number indicating the depth of the target in millimeters. We considered
using similar labels for HMD and tablet devices, but because the user will see the
target projected from different angles depending on their viewing angle as opposed
to always seeing it from the top and directly down. Both the HMD and tablet show
3D-rendered images, allowing for occlusion and motion parallax as occlusions by the
green grid as cues, which is not possible for the remaining displays without using
head-coupled perspective.

Because of the varying nature and performances of the displays, accurate calibra-
tion between all devices proved very difficult. Because of this, this study focuses on
the accuracy spread between each device. In practice this means that the accuracy
for each device is measured by the offsets from the median offset from the targets for
each participant. By doing this we assume that the median hit is an accurate hit as
adjusted to the user.

3.1 Head-Mounted See-Through Display

The HMD using an Epson Moverio Bt-300 which is an Android-based device and
is equipped with 0.43 inch wide panel 720p displays at a 30 Hz refresh rate. The
software is implemented using Unity 3D with the Vuforia AR plugin. The HMD is
shown in Figure B.1. The impurities are projected into the sand on the glasses while
also utilizing the overlay grid.

Using Vuforia along with the build-in 5 megapixel camera on the right-hand side
of the headset the system is tracking using the AR markers at either end of the surface
of the sand. The goal is to avoid the participants occluding the trackers by only having
to use one hand for the tasks, leaving the tracker on the opposite side exposed. The
feed from the camera itself is not displayed on the HMD, only the grid targets are
displayed. The overlay is manually offset and rotated to best fit the surface of the
sand. This process includes adjusting the rendering FOV to fit the display area of the
glasses. In this case the FOV is set to 21 degrees, despite the manufacturer advertising
23 degree FOV for the device.

Since we are not able to perform eye tracking using the hardware to determine
the convergence point, rendering the position in stereo would leave the user with
difficulty focusing. Because of this the target is not rendered in stereo, but rather as
a 2D overlay similarly to the see-through display, and when analyzing the data the
participants” dominant eye must be taken into consideration.
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Fig. B.1: The Epson Moverio Bt-300 glasses used for the experiment. [2]

3.2 Mounted See-Through Display

Similarly to the HMD, the see-through tablet display is running Android and Unity
with Vuforia. The display is shown in Figure B.2. The tablet is mounted to an ad-
justable stand, so it can be positioned according the user’s height while oriented to
show the entire surfaces area of the sand and all the targets in frame. For this test
the tablet is manually adjusted to each subject and remains stationary where an AR
tracking marker is visible.

We focus on the marker opposite the user’s dominant hand to prevent occlusion.
The participant also has to be able to reach underneath the tablet and their hands are
visible throughout the test sessions and they can coordinate their movement with the
targets in the camera feed. Since the tablet remains mostly stationary during each
session, Vuforia is mainly used when the tablet is initially adjusted for the user, this
device is less susceptible to errors and latency introduced by Vuforia.

3.3 Top-Down Projection

This device is set up using a projector mounted to a tripod with a 3D printed adapter
and pointed down towards the sand. The projection is shown in Figure B.3, bot-
tom left. The projection is adjusted using a piece of paper with a grid printed on it
matching the green grid overlay. The projected overlay features the green grid and
the targets are shown as red dots with depth in millimeters shown next to them.

3.4 Stationary Screen

The monitor setup utilizes a 25 inch PC monitor with an aspect ratio of 16 by 10. The
monitor is shown in Figure B.4, bottom right. We use a Logitech C920 on an adjustable
mount pointed straight down to the surface of the sand. Similarly to the top-down
projection setup, the camera feed on the monitor features the green grid overlay and
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Fig. B.2: The arm-mounted see-through display setup with impurity projected into the sand as
a red dot assisted by a grid overlay aligned with the surface. [2]

Fig. B.3: The grid projected onto the sand with the targets shown as a red dot. [2]
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Fig. B.4: The monitor and top-down camera. [2]

the targets are displayed along with label indicating their depth. Similarly to the tablet
setup, the user will be seeing their hands in the video feed during the test sessions.
The camera position is calibrated using the printed grid and by placing an HTC Vive
controller in the video feed and matching its position with the representation on the
monitor.

4 Setup

The experiment is performed using a tray of sand as the analog for a cut section of
meat, as it allows the test subject to poke into it with a tool to address the impurities
that will be displayed in it using the AR devices. We use dry loose sand with low
density so allow easy entry and to prevent visible entry points to stay throughout a
test session. The sand also allows for the surface to be smoothed out by hand.

The participant’s performance is measured using an HTC Vive controller with a
nail mounted to the bottom as shown in Figure B.5. Using the six degrees of freedom
tracking capabilities of the controller the participants are using the tip of the nail to
poke into the body of sand as closely as they can while holding the controller in
their dominant hand. A second Vive controller is held in the non-dominant hand
and the participants will use a button on it to confirm when they have hit a target.
Confirming with the non-dominant hand prevents shaking the tip of the nail during
a button press.

The HTC Vive tracking space is running using a Windows 10 PC which also acts
as the host for the test application, developed in Unity 3D. In order to show the target
position on the HMD and the mounted tablet, both of which run Android, the PC
acts as network host and sends target positions to the devices acting as clients over a
wifi connection throughout the test sessions.
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Fig. B.5: The needle used for the experiment, made from a 3D printed mount and a nail attached
with a bolt in the loop designed for the wrist strap.

The surface position of the sand is calibrated in the tracking space using the
tracked nails on the Vive controller along with a printed piece of calibration paper
which also fits in-between the tracking markers used for the HMD and mounted
tablet. The tracking markers are positioned at either side of the testing area with the
goal of having at least one visible to the tracking camera regardless of where the user
is looking and to prevent occlusion of the trackers. The full test setup is shown in
Figure B.6.

5 Experiment

Each participant is introduced to the topic at the beginning of the experiment and
they are asked to sign a consent form, followed by a questionnaire pertaining to their
age, sex, height, dominant hand and dominant eye. In cases where participants do
not know their dominant eye, it is determined with the Miles Test [12].

5.1 Pointing Tasks

Each participant performs a set of pointing tasks with each AR device. The order of
the devices is counterbalanced between participants in order to counter bias and initial
confusion about the tasks with the first devices. With four systems we have 24 possible
combinations. We do each combination twice to reach a total of 48 participants.
While wielding the HTC Vive controller the participant is asked to point the tip
of the nail in the center of the target as they appear, as quickly and precisely as
they can. To do this they will be asked to have the HTC Vive controller rest on the
side of their dominant hand between the thumb and index finger as shown in Figure
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Fig. B.6: The full setup for the AR test [2].

B.5. When the participant believes they have reached the target center, they must
confirm by pressing the trackpad on the controller in the non-dominant hand. To
prevent accidental double-presses there is a delay of one second from when a target
is confirmed to when the next target is shown, during which the confirm button is
disabled. This also allows the participants to return their hand to a natural position
close to their body, but they are not instructed to do so.

The sand is held in a rectangular plastic tray and has a depth of 5 centimeters.
The targets are shown at depths of 0, 5 and 10 millimeters, meaning that participants
can not expect to drive the nail to the bottom of the tray and get a precise hit. At
each of the three depths the targets are distributed on two rows and four columns
with 10 centimeters of spacing in both dimensions, so the participants will get to both
reach across and away from the center of their body. With a 24 targets per device per
user, we get a total of 4608 samples. The rectangular shape for the tray and the sand
is appropriate for the experiment considering that at the points of fine operation in
meat production, such as picking out impurities, the meat has been cut down to these
shapes.

For each target we measure the task completion time from when a new target
appears until the participant confirms a hit. This includes time spend searching for
the targets. The accuracy is measured as the offsets from the target center to the tip of
the nail at confirmation for the three dimensions individually as well as the absolute
distance from target to tip. After using each of the four devices the participants get
to evaluate the device in terms of acceptance and ease of use with System Usability
Scale (SUS) [13].
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5.2 Hypotheses

With the experiment we aim to prove that there are significant differences in the
effectiveness and user experience between the AR display types, specifically in terms
of the following hypotheses:

* HI1: Spotting and hitting sub-surface targets when using different AR devices
will yield different task completion times.

e H2: Hitting sub-surface targets using the different AR devices will yield differ-
ent hit accuracy.

e H3: The different AR devices have different usability based on the Standard
Usability Score.

6 Results

As described in Section 3, the four devices can be split into two categories, the AR
glasses and mounted tablet showing depth through perspective, occlusion and paral-
lax while the remaining are limited to 2D overlays. In this section these categories are
described as the 3D and the 2D enabled devices, respectively.

The experiment was performed with 48 participants, average age 24 years, rang-
ing between 20 and 34. Nine participants were female, ten were left-handed. 21
reported having left-eye dominant, 25 reported right, one reported both eyes to be
dominant and one could not be determined. Eight participants had positive eyeglass
prescriptions, ten had negative prescriptions and two had unknown prescriptions.

6.1 Data Analyses

Performing analyses of variance with significance threshold at .05 shows significant
difference among the AR devices in task completion times when comparing them
individually (F(2,3926) = 333.3, p < .001) and when comparing the 3D and 2D enabled
devices (F(1,3926) = 124.7, p < .001) with Tukey’s HSD post-hoc analysis showing
significant difference between all devices. The projection-based display yielded the
lowest average time (2.3 seconds), followed by the stationary screen (3.55 seconds),
the mounted see-through display (4.5 seconds) and the AR glassed (9.92 seconds) had
the longest average task time. A summary of the task time data is shown in the box
plot in Fig. B.7. These results confirm the first hypothesis.

To analyze the accuracy between AR devices, in order to compensate for dominant
eye and calibration inaccuracies between test participants, the samples are corrected
according to their per-session median hit value. By doing this we make the assump-
tion that the median offsets are for a precise hit, making the median values zero for the
data sets used. Figure B.8 shows the per-session median hit values for each condition
and participants. The high median offsets for depth suggest a calibration error.

Performing a multiple analysis of variance, dependent values being the hit off-
sets on three separate dimension, there is significant difference between the four AR
devices (F(2,3926) = 6, p < .01) as well as when comparing the 3D and 2D enabled
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Fig. B.7: Box plot of the task completion times between the four AR interfaces. Next to each box
plot are their mean values and confidence intervals.

devices (F(1,3926) = 3, p < .002), confirming the second hypothesis. The handedness
of the user did not yield significant difference in hit offsets.

Looking at hit spread, the AR glasses have the largest average standard devia-
tion at 51 millimeters in target hit offsets for all three dimensions. In comparison,
the stationary screen, projection and tablet displays have averages of 10, 28 and 30
millimeters, respectively.

Investigating the difference in sideways offsets in relation to the user for the four
devices (F(2,3926) = 3.36, p < .05), a Tukey’s HSD post-hoc analysis shows no sig-
nificant difference between any pair of devices, suggesting the difference depends on
whether the interfaces were 3D or 2D enabled (F(1,3926) = 9.26, p < .003). Similarly for
offsets going towards or away from the body is only significantly difference between
the two groups (F(1,3928) = 8.27, p < .005). The average offsets along with standard
deviations along the surface are shown in Figure B.9.

For the depths offsets as well there is only significant difference between the two
categories (F(3,3926) = 3.4, p= .017) and all of the average offsets are within one mil-
limeter of each other. The depth offsets are shown in Figure B.10.

The SUS scores show significant difference between the four devices (F(3,186) =
92.03, p < .001) with Tukey’s HSD post-hoc analyses showing significance between all
four devices. There is not significant difference in user acceptance when comparing
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Fig. B.8: Per-session surface median hit offset values for each participant (left) and histogram
for depth offset medians in bins of 5 mm (right) for each condition.

2D and 3D devices. However, two of the four devices do not have normally distributed
scores according to the Shapiro-Wilk normality test, the AR glasses (p = .062) and the
mounted see-through display (p = .16), making the third hypothesis harder to retain.
The SUS scores are summarized in Figure B.11.

6.2 Observations

The AR glasses had the longest overall task completion time. The long task times are
likely due to the narrow FOV, for multiple reasons. Firstly, the FOV does not allow
for the user to see the augmentation overlay on the entire surface at once, requiring
additional search time to the task. Despite them being able to see all of the surface
at once, the AR glasses only cover a small segment of their FOV, creating a letterbox
effect. Despite the mounted tablet display tracking and showing targets in similar way,
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Fig. B.9: The average offsets along with standard deviations along the surface between the four
AR devices.

its position and FOV did allow for user to see the entire surface at once, eliminating
the need for search time.

The limited FOV of both the display and the camera used for the tracking in
combination with the short distance to the surface of the sand made it difficult for the
participants to inspect the entire surface area while also keeping the tracking marker
in view of the camera. This in combination with errors and latency introduced by
Vuforia made a sub-par user experience.

In addition, the glasses” FOV does not allow the user to glance downwards, lead-
ing them to turn their head downwards to an uncomfortable degree as they leaned
in over the tray, while also having to turn their head to look around and search for
targets. A few test participants commented on this, stating that using the glasses was
starting to give them neck pains. Many participants who tried other devices after the
glasses would comment out loud on how much easier it was.
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Fig. B.10: Average depth offsets between the four AR devices along with confidence intervals.

7 Discussion

Despite the accuracy of the AR devices proved significantly different, it is hard to
define a concrete set of tendencies, seeing as significance differs between devices and
axes and the average hit positions differ as seen in Figure B.9. Also, the average
hit accuracy in depth, though significantly different, are within one millimeter of one
another, making it less relevant in a real-world context. It does show, however, that the
projection based AR and the monitor were the two devices with the lowest standard
deviations along the surface.

The analyses show significant differences when comparing the 2D and 3D enabled
interfaces, both for task completion time and accuracy. For the latter this grouping
is more consistently significant, because the post-hoc analyses show no significant
difference in pairwise comparison. This may be due to both of them being static and
showing the positions from a top-down perspective as opposed to the see-through
display which required interpretation of perspective and occlusion as depth clues
and the glasses that required constant tracking as the user moves, introducing noise.
The tracking noise would also be introduced for the mounted displays in a real-
world setting as the display would be moved around. Nevertheless, the inaccuracy
for the projection and the monitor can likely be fixed with hardware and software
adjustment, where the remaining devices have the challenge of tracking and depths
communication.

The SUS results show that the projection-based AR and the monitor-based AR
were the only two devices with averages scores reaching above the standard cut-off
point of 68. The analysis of variance was used despite not all of the groups being
normally distributed because due to the nature of the SUS scale where groups will be
tailed in different directions dependent on their average position on the scale, making
them hard to fit in any statistical model.
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Fig. B.11: Box plot of the SUS scores between the four AR interfaces and a line at the cut-off
value of 68. Next to each box plot are their mean values and confidence intervals.

The low task completion time combined with the high SUS score for the projection-
based AR system is likely due to the direct connection between the display and the
target, the interfaces being on the target itself. Eliminating the requirement of coordi-
nating hands with a display offset from the target seems to make the interface more
accessible. This is despite the problem with projection-based AR that the user will
occlude the projection when interacting with it.

The issues with the AR glasses described in Section 6.2 make the Epson Moverio
non-viable for near-distance tasks. An alternative would be the technique used by
Green et al. [6] where the user’s viewing direction would be shifted downwards,
compensating for the FOV. However, whether this approach, occluding part of the
user’s FOV during a potentially hazardous task, would work is uncertain. It would be
beneficial to repeat the experiment using a HMD specifically designed for the context
of close-proximity tabletop operations. This would involve expanding the display
FOV, allowing the user to search by scanning with their eyes rather than turning
their head straight at the target. Another required feature is eye-tracking in order to
properly implement stereo display.

It is worth considering after this experiment whether 2D and 3D enabled AR
devices are comparable in terms of accuracy and user experience due to differences in
affordances. Because the projection-based overlay and the screen are static displays,
the only tracking involved in a real-life scenario is of the meat and the targets as
the subject is moved around work surface. As such, these two displays potentially
introduce less tracking noise, which is also likely to have affected the test results.

The results and conclusions to this experiment are mainly valid in the simulated
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context and would benefit from repeating in a setup with real meat. In that case, the
results and observations illustrate the limitations of the AR glasses as implemented in
this experiment, which should be addressed before they are assessed with real meat,
either by different hardware or tracking solutions.

8 Conclusion

This paper presents a comparative study of the usability of four types of AR displays
for showing sub-surface impurities in meat by having the participants point to targets
inside an analog made of sand. The four display types are wearable AR glasses, a
mounted see-through display, projection-based AR and a monitor displaying a top-
down video feed with graphical overlay. The goal is to determine suitable interfaces
for augmented meat production.

After performing the evaluation with 48 participants our three hypotheses were
retained with significantly different task completion time, accuracy and user accep-
tance depending on the AR display type used. Data analysis indicates that projection-
based AR yields the second-lowest variance in combination with the lowest task com-
pletion times and the highest SUS score, making it the most suited for the task with the
mounted see-through display and stationary screen being viable alternatives, while
the AR glasses showed to be non-viable for near-distance tasks as they were imple-
mented for the experiment.

Even though the research is aimed at the meat production industry, the results
are relevant to any industry that utilized manual processes while standing at a work
surface. Whether the results would pertain to sitting tasks at a desktop might require
further testing due to the difference in distance and postures.

As stated in Section 7, for further comparison between the devices, the limitations
of some of the devices have to be addressed with more suitable hardware and tracking
solutions before they are tested further in a real-world context. That is if the 2D and
3D-enabled devices can be considered comparable from an accuracy perspective due
to the difference in affordances. Even so, at early stages of development it is relevant
to compare them in terms of the usability and user acceptance that stems from the
different affordances.
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1. Introduction

Abstract

Human-robot collaboration in industrial settings is an increasing research field in robotics.
When working together, robot mistakes are an important factor to decrease trust. It is unclear
whether explanations help to restore human-robot trust after a mistake. In our study, we in-
vestigate whether system explanations as a trust-repairing action after a robot makes a mistake
in a collaborative task is helpful. Our pilot study revealed that users are more interested in
solutions to errors than they are in just why the error happened. Therefore, in our main study,
we evaluated three levels of mistake explanations (no explanation, explanation, and explana-
tion with solution) after a robot in VR made a mistake in executing a shared objective. After
testing with 30 participants we found that the robot making a mistake significantly affects
trust toward the robot, compared to it completing the task successfully. While participants
found the explanations helpful to trust or distrust the robot, the levels of the explanation did
not lead to an increase in trust towards the robot after a mistake. In addition, we found no
significant impact of explanations on self-efficacy and the emotional state of the participants.
Our results show that explanations alone are not sufficient to increase human-computer trust
after robot mistakes.

1 Introduction

The collaboration between humans and machines in the industrial setting is becom-
ing more and more realised due to the enormous progress in the fields of robotics
and machine learning. Through the use of machine learning methods like Deep Re-
inforcement Learning, it is possible for robots to interact autonomously in industry
tasks and to adapt dynamically to the demands placed on them. In addition, a intu-
itive usage and interaction by humans become more and more common. However, the
more natural the handling of robots in industry becomes, the more demands humans
place on them. If these demands are not met, human-robot collaboration (HRC) can
be disrupted. In addition to reduced trust and frustration, this can have serious con-
sequences such as accidents and production losses [1, 2]. To enable successful HRC it
is important that we can maintain human-robot trust (HRT), especially when working
with a robot at close proximity. To this end we investigate the capabilities of system
communication with the human collaborator to perform trust-repair through expla-
nation in cases where the robot makes a mistake during the execution of a shared
objective. We base the research on the context of a shared task where the human and
robot have to move a collection of objects within a shared tabletop work space. To
integrate system communication with non-obstructive output modalities we base the
design of the communication system on projection-based augmented reality (AR), so
that messages can be displayed directly on the work surface. To sum up, we investi-
gate how we can use mistake explanations after a robot mistake as a trust-repairing
action in order to maintain trust during close-proximity collaboration. Rather than
implementing the communication system using real hardware, we test our prototype
iterations using computer-generated demonstrations and virtual reality (VR) testing
environments. With our work, we make the following contributions:

* We give insights about requirements and expectations of end-users towards
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robot explanations after mistakes
* We present a VR setup to research robot-mistakes in close-proximity tasks

* We report results about the impact of different levels of explanations after robot-
mistakes on trust, explanation satisfaction, self-efficacy, and emotional state of
end-users

e We discuss the challenges using explanations in HRC

2 State of the Art

2.1 Human-Robot Trust & Robot Mistakes

De Visser et al. [1] use a definition of trust in the context of HRC as the human’s
willingness to engage in a situation characterized by vulnerability with another party
based on their expectation toward that party. In this context the other party is the
robot. In a meta-analysis Hancock et al. [2] categorized the constructs that affect the
operator’s perception of the robot into human-related, robot-related, and environ-
mental factors. The Robot-Related factors are further split into performance-based
and attribute-based factors, covering how the robot performs or behaves and how the
robot looks or where it is, respectively. Looking at performance-based robot-related
factors, reliability, dependability, and predictability have significant effect HRT. They
also outline the importance of appropriate trust levels toward the robot in HRC, as too
much trust may lead to dangerous situation as a result of misuse, whereas too little
trust may lead to the robot not being utilized optimally. Schaefer [3] developed two
HRT scales based on the operator’s perception of the robot’s characteristics, perfor-
mance, predictability, and more. The long scale have 40 questions while the shorter
version has 14 questions. Kessler et al [4] compared these scales to a standardised
scale of trust in automation with conflicting results, suggesting that the two scales
evaluated different factors, making them not interchangeable.

In testing robot dependability and its effects on trust, Salem et at. [5] found that
a home companion robot would be perceived as less trustworthy after making a mis-
take, even though the mistake did not significantly affect participants” willingness
to follow the robot’s instruction. In addition to the factors outlined by Hancock et
al. [2], HRT has also been shown to be affected by the general transparency of the
system controlling the robot. Boyce et al. [6] compared three transparency conditions
in a simulation. Higher levels of transparency yielded higher trust measured using a
modified automation trust scale. Due to the scale used one has to consider whether
the trust pertains to the simulated robot or the communication system. Comparing
decision explanations for a robot in a simulated reconnaissance mission, Wang et
al. [7] found that low-ability robots gained more trust from explanation, as opposed
to no explanation, whereas high-ability robots did not gain trust from them. When
testing a robot that would assign blame after a mistake occurred, Kaniarasu & Stein-
feld [8] found that people would be annoyed when the robot blamed them, but they
trusted the robot less if it kept blaming itself.

On the importance of the presence of the robot, as we are testing using VR simu-
lations, both Wainer et al. [9] and Bainbridge et al. [10] compared a co-located robot
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with a remote robot presented on a screen, and both found that the co-located robot
was significantly favoured. However, Duguleana et al. [11] found, when comparing
HRI with a real robot and with one presented in immersive VR, participants reported
high engagement toward the virtual robot and rated it at 7.8 out of 10 in realism,
relative to the real robot.

2.2 Explanations in Human-Robot Interactions

Evidence suggests that a lack of transparency, with respect to the decisions of an
autonomous agent, might have a negative impact on the trustworthiness of a system,
which in return hurts the overall user-experience [12, 13].

The reemerging research field of explainable artificial intelligence (XAI) [14] in-
vestigates approaches to address this problem. Current research on XAl is mainly
dealing with methods to explain the decisions of deep neural networks (e.g., [15-17]).
Various promising approaches have meanwhile been developed for these use-case (the
interested reader is referred here to works of e.g., [18, 19]). In the field or human-robot
interaction, different XAI approaches are discussed to gain insights in behaviour and
goals of robots (e.g., the work of [20]).

Alongside the question of how explanations can be generated, the research field
of XAl is also concerned with the question of how explanations can be communicated
to users. In particular, communicating explanations to end-users is a challenge here,
as they need to interact with the system (e.g., a robot) but have no knowledge how
the system works. The work of Wang et al. [21] shows that explanations to end-users
about a well working robot increases transparency, trust, and performance in human-
robot interactions. But robots also make mistakes and are not free of errors. When
an error occurs, without an explanation end-users are often unable to understand
how the error arose, how to fix it, and how to avoid it in the future. This leads to
performance losses as well as distrust [22]. But even with explanations, less accurate
autonomous systems lead to a decrease of trust in robots abilities, and success of the
task [21]. Therefore it is critical to investigate, whether it is possible to repair trust in
the system and if so, which aspects of an explanation are relevant to increase trust.

3 Pilot Study

The scope of our work is to investigate HRT in an interaction scenario in that the
robot makes a mistake. In the pilot study we conducted, we first wanted to investi-
gate whether different explanation modalities (i.e., textual or auditory) are preferred by
participants. In addition, we varied the type of error:

o Colour vision error: To illustrate the colour vision error, the robot shown is mov-
ing a bottle on incorrect shape. The explanation given was:“A computer vision
error occurred. The system did not successfully distinguish the shapes in the
current lighting conditions.”

e Calibration error: Here the robot knocked over one of the cones while moving the
bottles. The explanation given was: “A calibration error occurred. The motion
planner did not properly compensate for the robot’s momentum.”
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The pilot study was conducted to guarantee, that the different explanation modali-
ties and type of error did not significantly differ in their impact on trust. Furthermore,
we wanted to gain insights whether the given explanations were sufficient enough and
whether/which additional information participant find helpful. In more detail, we we
formulated the following hypotheses:

e H1: After being presented with a robot mistake in videos of a virtual robot and
a given modality of explaining the mistake, the user can describe the nature of
the mistake accurately.

* H2: There will be no difference between the modality of explanation (i.e., tex-
tual and auditory) regarding likeability and performance of the robot.

* H3 There will be no difference between the modality of mistake (i.e., calibra-
tion error and colour vision error) regarding likeability and performance of the
robot.

To answer these hypotheses, we used a between-subjects design for the modality
of explanation (i.e., textual or auditory), meaning that every participant saw online
one of the explanation modalities. For the two different robot mistakes (i.e., colour
vision error and calibration error), we used a within-subjects design. Here, every
participant saw both types of errors during the study.

3.1 Procedure

The pilot study took place as an online questionnaire. Within this questionnaire,
the participants were shown a series of videos of a virtual robot modeled after the
Rethink Robotics Sawyer! model. This robot had the task of sorting bottles based on
their shape.

e First video: The first video showed the robot successfully completing the sort-
ing task. Then, the participants rated the performance of the robot and their
impression of the robot. They were then asked to briefly describe the robot, its
behaviour, and the task it was performing.

* Second video: The second video showed the robot performing the same task
again, but making a mistake (i.e., computer vision or calibration error). The
participants then answered the same questions about the robot’s performance
and their impression. After that, they were asked to briefly describe what the
difference was from the previous video.

e First Explanation: Subsequently, they were shown an explanation of the previ-
ously seen mistake (i.e., textual or auditory explanation). The textual explana-
tion modality being shown in Figure C.1. Next, the participants had to answer
several questions about the explanation shown.

e Third video: After answering these questions, they were shown a third video,
also of the robot making a mistake.

* Second explanation: Here, again, an explanation was shown to them after-
wards and the participants had to evaluate it.

Thttps:/ /www.rethinkrobotics.com /sawyer/
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At the end of the online study, participants had to provide some demographic infor-
mation (e.g., age, gender) as well as their knowledge and attitude towards Al and
XAL

W

& °

A calibration error occurred
7The motion planner did not

properly compensate for

the robot's momentum.

Calibration error explanation

W

- °

A computer vision error occurred
The system did not successtully
aistinguish the shapes in the
current lighting conditions.

Colour vision error explanation

Fig. C.1: Textual explanation modality. Two robot errors were explained during the pilot study:
a calibration error and a computer vision error.

3.2 Evaluation Methods

To gain insights of the user’s impressions regarding the robot errors and the explana-
tion modalities, we used different scales.

Performance To evaluate the perceived robot performance, we asked the partici-
pants after every video to rate the performance of the robot, using a 7-point Likert
scale (1= not good, 7= very good).
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Likeability Similar to the measurement of the perceived robot performance, we
asked the participants after the no-error video as well as after each explanation, how
much the liked the robot and if they wanted to work with the robot.

Explanation Quality To measure the quality of the presented explanations, we
used two items of the Explanation Satisfaction Scale (ESS), proposed by [23]. Here
we asked the participants (1) whether the explanations helped to trust the robot and
(2) whether they helped to understand how the robot worked. In addition, we asked
two general questions regarding the explanations, i.e., “Have you learned anything
because of the explanation?” and “Was the explanation easy to understand?”. We also
asked for free-form feedback. Here we wanted to know from the participants which
parts of the explanation were easy/not easy to understand, whether they would have
needed more/additional information and which one and why the explanation was
not helpful (when participants answered the “Have you learned anything because of
the explanation?”question with yes).

In addition, at the end of the pilot study we collected personal information from
participants as well as their knowledge and attitudes toward Al and XAIL

3.3 Participants

In our pilot study, 20 people between 21 and 54 years (M = 29.3, SD = 7.47) partic-
ipated. 11 of them were male, 9 were female. All participants had heard about the
term Al but only 9 of them had heard about XAL

3.4 Results

Rating of Robot Performance & Likeability

To compare the variables likeability and performance between the no-failure robot
and the two error conditions, we conducted paired t-tests. Here, the performance of
the no-failure robot was perceived significantly higher compared to the calibration
error robot, £(19) = 9.20, p = < .001, d = 2.06 (large effect) as well as the colour vision
error robot, £(19) = 9.11, p = < .001, d = 2.04 (large effect).

Similar results were found for the likeability. The no-failure robot was liked sig-
nificantly more compared to the calibration error robot, #(19) = 3.66, p = .002, d = 0.8
(large effect) as well as the colour vision error robot, #(19) = 3.84, p = .001, d = 0.86
(large effect).

Rating of Explanation Quality

Results for different robot errors To get a general impression of the explanation
quality, we asked the participants whether they had learned something because of
the explanation and whether the explanation was helpful or not. Here, we found
that 14 participants stated that they had learned something from the calibration error
explanation. 17 participants stated they had learned something from the computer
vision error explanation.
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Fig. C.2: Rating of the robot in the no-error and the two error conditions.

To evaluate the explanation quality in more detail, we used two items (“help to
trust or distrust the robot” and “help to understand how the robot works”) proposed
by [23].

Conducted paired t-test revealed that the computer vision error explanation helped
more to trust or distrust the robot compared to the calibration error explanation,
£(19) = -2.77, p = 0.012. For the understanding of the inner workings of the robot, no
difference between the two error explanations were found, #(19) = -0.89, p = 0.38.

Besides the quantitative feedback of the participants, we also analysed the qual-
itative free-form feedback. Here, participants mentioned for computer vision error,
that it would be helpful to add information how to solve the error (e.g., information
whether the error occurred because the lightning was to dark or too bright). For the
calibration error, participants mentioned that the explanation was too technical and
they would have needed more information how to fix the error or how to calibrate the
robot correctly to avoid similar errors in future.
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Results for different explanation modalities Besides the comparison of the
impact of the different robot errors on the explanation impression of the participants,
we also analysed the impression of the different explanation modalities (textual vs.
auditory). Here we found no significant differences between the conditions (see Table
C.1).

Table C.1: No significant differences in explanation quality between the two different explana-
tion modalities (textual vs. auditory) for both types of robot error. Trustworthy refers to “help
to trust or distrust the robot”, Understandable refers to “helps to understand how the robot
works”.

Type of Robot Error Explanation Quality ¢ df  p-value

calibration error trustworthy 18  -0.94 .36
understandable 18  -1.40 .18
computer vision error trustworthy 18  -0.87 .39
understandable 18 -0.50 .62

3.5 Discussion

From the pilot study, it became apparent that people rated the robot significantly
worse in terms of its performance and likeability when it made a mistake. The general
study design in terms of trust repair (comparing trust of a correct working robot and
a robot who makes an error) was therefore maintained for the final study.

Based on the pilot study, it appeared that the explanation for the calibration error
was too technical for end-users without experience in robotics. These resulted in
significant lower trust rating and was mentioned by participants in the free-form
feedback. We therefore decided to use only the computer vision error in the final
study and to generate explanations for it. Inspired by the free-form feedback, we
also decided to use 3 different levels of error explanation: (1) no explanation, (2)
explanation of error source, (3) explanation of error source, and a possible solution.
Since we did not find any huge differences regarding the modality of explanation
(textual or auditory), we decided not to compare these factors in the final study. Due
to better comparability, we decided to use only textual explanations.

4 Experiment

To ensure high fidelity of system communication to the participants we opted to test
HRC and mistake explanation using VR, rather than implementing and testing with
a real robot and projection-based AR overlays. This also increased the test rate, as we
could test with multiple participants at once, the only limit being the number of VR
hardware setups. Based on the results from the pilot study, where the participants
asked for more solution-oriented explanations rather than technical ones, we decided
to define and test different explanation levels. The first level is an explanation to why
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the robot made the error, while the second level, in addition, explains how to solve the
problem causing the error. We compare these two levels as trust-repairing actions after
a robot mistake along with a control condition, where no explanation is provided, the
user is only told that the robot failed the task. Our hypotheses are as follows:

e H1: Providing an explanation after a robot makes a mistake will yield higher
levels of trust toward the robot than providing no explanation.

* H2: Providing different levels of explanation after a robot makes a mistake will
yield different levels of trust toward the robot.

e H3: Adding solution-oriented details to robot mistake explanations will yield
higher operator trust than explanations without them.

4.1 Virtual Environment

The test was performed using HTC Vive VR headsets and Vive Wand 6 degrees-of-
freedom controllers. The virtual environment consisted of an office environment with
desks and office chairs with participants being situated in an isolated corner of the
room. Within reach of the participant is a desk with the robot mounted on top. The
robot is a model after the Rethink Robotics Sawyer robot. On the table is also a white
square platform at either side of the robot with a little copy of the bottles involved in
the test shown next to them, indicating which shapes of bottles have to be put where.
The task involves sorting bottles by whether they have a round base or a square base.
At startup there are four bottles on each of the platforms, two red and two blue on
each, and both have one bottle of each color that does not match the shape. This means
that when the test starts both the participant and the robot have to switch two bottles
between the platforms to complete the shared objective. Between the two platforms is
room to display text to convey instructions and explanations to the participants. The
text is displayed on the surface, similarly to a projected AR overlay. The participants
are able to pick up the red bottles by moving a controller withing 20 cm of their center
and pressing the trigger. Letting go of the trigger releases the bottle, and they drop
straight down as they cannot be thrown. In the case that a bottle is dropped on the
floor, rather than requiring the participant to pick it back up, it will be moved back
to its initial position. The test setup and robot in the virtual environment is shown in
Figure C.3.

4.2 Procedure

After reading the experiment information and signing a consent, the participant was
given instructions to how to complete the test by the test conductor. The participant
was informed that they would perform a collaborative task with a virtual robot and
that they would be given instructions via the text displayed on the table. It was em-
phasized that they should read the instructions carefully, before they were told to put
on the VR headset. The participant was introduced to the task by the text display.
They were told that robot was their teammate and that they were only supposed to
move the red bottles while the robot moved the blue ones as they sorted the bottles
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Your team failed at sortin

the cones. Please take off ine
virtual reality headset and
and call the test conductor.

4

Fig. C.3: The virtual test setup featuring the robot, bottles, their platforms and indicators and
the display text on the desk surface.

according to the small white bottles shown next to their white platforms. The par-
ticipants proceeded through the text instruction using the Menu button at the top of
the Vive wands. Before starting the task the participants were told how to move the
bottles and they were told to try it.

When the participant was told to press the Menu button to start the task and
they proceeded to press it, the robot would start moving the blue bottles. If the
participant moved the bottles before they started the task, the bottles were moved
to their starting position when the task began. The task was completed when the
participant had sorted their bottles and the robot was done moving its bottles. In the
first task the robot moved the bottles successfully, and the participant was presented
with this message on the table: “Your team succeeded at sorting the bottles. Please take off
the virtual reality headset and and call the test conductor”. When they took off the headset,
they were presented with the 14-item version of the Schaefer HRT questionnaire [3].
Once the participant had completed the questionnaire, they were instructed to put the
headset back on and follow the instructions.

Once they had put the headset on again, the display told them to start the task
again by pressing the Menu button. In the second test the robot would make a mis-
take. Rather than switching a round-base and square-base bottles between their plat-
forms, sorting them correctly, it would switch two round-base bottles, leaving two
blue bottles in their wrong positions. The task ended once the participant had com-
pleted their half of the task correctly and the robot had stopped moving. The partici-
pant was then presented with this message displayed on the table: “Your team failed at
sorting the bottles”. If the participant was testing the condition with no explanation of
the mistake they were immediately presented with the text, “Please take off the virtual
reality headset and and call the test conductor”. If the participant was testing the condi-
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tion where they were given an explanation, they were presented with the message,
“A computer vision error occurred. The system did not successfully distinguish the bottles”,
before being told to take the headset off. Lastly, if the participant was in the condition
with solution-oriented details, in addition the previously mentioned explanation they
were presented with the message, “Better lighting conditions will help with successful
sorting”, before being told to take the headset off. Once they had taken the headset off
the participants was presented with another HRT questionnaire as well as additional
post-test questionnaire, which they were told to fill out outside the laboratory.

4.3 Evaluation Methods

To evaluate the participants” impression during and after the VR task, we used the
following scales.

Trust. During and after the VR task, we presented the 14-item version of the Schae-
fer HRT questionnaire [3] at the end of each task.

Explanation Satisfaction. We used the Explanation Satisfaction Scale (ESS), pro-
posed by Hoffman et al. [23] to measure the participants” subjective satisfaction with
the kind of information (no explanation, explanation, or explanation with solution)
that we presented after the robot mistake.

Emotions. We used items for the subscales anger, happiness, anxiety, and relaxation
of the Discrete Emotions Questionnaire (DEQ) [24] to evaluate the participants feel-
ings after the VR task.

Self-efficacy. We used two items to measure the self-efficacy towards the robot.
For this, we used a variation of the item proposed by Bernacki et al. [25] (i.e., “How
confident are you that you would successfully interact with a robot like this one in the
study in the future” and “How confident are you that you could solve a robot error
like this one in the study in the future?”).

4.4 Participants

30 participants between 21 and 31 years (M = 24.0, SD = 2.30) took part in our exper-
iment. Of these 11 were female and 19 male. 29 of the participants had heard of the
term Al but only 4 had heard of the term XAL

5 Results

5.1 Trust Scores

The participants answered an HRT questionnaire after completing each sorting task
with the robot, the first one being successful, while in the second task the robot
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would make a mistake. With all data groups being parametric, performing a pair-
wise t-test showed significant difference in HRT scores between the first and second
task, whether no explanation (#(15) = 5.3, p < .001), the base explanation (t(18) = 7.0,
p < .001) or solution-oriented explanations (t(17) = 4.7, p < .001) were provided.
However, performing a one-way ANOVA showed no significant effects of the
explanations nor the type of explanation on the HRT scores after the second task
(F=(2,27)= .23, p =.79), nor on the delta of HRT scores between tasks (F(2, 27) = .17,
p = .84). The average trust scores with confidence intervals are shown in Figure C.4.
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Fig. C.4: The average HRT scores and confidence intervals for the first and second HRC task
between explanation conditions.

5.2 Post-Test Questionnaire

Explanation Satisfaction, Trust, and Self-efficacy

After the VR experiment, all participants answered the post questionnaire including
questions about their explanation satisfaction?, their general impression of the robot
and their self-efficacy towards the robot. To evaluate these variables between the
three conditions, we conducted a one-way MANOVA. Here we found a significant
statistical difference, Wilks” Lambda = 0.59, F(10, 42) = 2.86, p = .008. The following
ANOVA revealed that only the variable trust showed a significant differences between
the conditions, F(2, 25) = 5.92, p = .008.

2We calculated an overall explanation satisfaction value and used in addition the item for the
helpfulness of explanation to trust or distrust the robot as a single variable
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To determine the direction of this difference between the three conditions, we used
post-hoc comparisons®. We found the following differences:

* The participants’ impression of helpfulness of the explanation to trust / distrust
the system were significantly higher in the explanation & solution condition
compared to the no explanation condition t = -3.73, p = .002, d = 1.67 (large
effect).

¢ The participants’ impression of helpfulness of the explanation to trust / distrust
the system were significantly higher in the explanation condition compared to
the no explanation condition t = 2.49, p = .04, d = 1.13 (large effect).

Emotional state

To evaluate possible differences in the emotional state of participants between the
three conditions, we conducted a one-way MANOVA for the emotion categories hap-
piness, anger, anxiety, and relaxation. Here we found no significant statistical differ-
ence, Wilks” Lambda = 0.84, F(8, 46) = 0.50, p = .84.

6 Discussion

6.1 Main Findings

Based on the analyses of the trust scores we have to reject all three hypotheses. While
all three conditions yielded significant decreases on reported HRT based on the scales,
providing explanations to the error, with or without suggested solutions, showed no
significant difference in trust, suggesting no trust-repairing effect. While the ESS
trust score showed that participants found the given explanations helpful to decide
whether to trust or distrust the robot, this subjective impression of the participants
was not reflected in their trust ratings during the VR task. Despite the effect of the
helpfulness of the explanations to trust or distrust the robot, this trust can not be
assumed to be transferable to trust in the robot, especially as scales for trust in au-
tomation and HRT are not interchangeable [4]. The explanations in our study also did
not increase participants’ self-efficacy, meaning that they did not feel more confident
to interact with the robot in the future. Nevertheless, the ESS trust score can be seen
as a first indicator that explanations might support trust-recovery in HRC, but that
an explanation alone is not enough to recover trust after a robot-mistake, even when
participants retrospectively rate the explanation as helpful. The effectiveness of expla-
nations seems to depend on various aspects. One important variable is the scenario of
the task. Compared to our VR task, Nikolaidis et al. [26] found out that in their study
(a physical human-robot collaboration task), explanations greatly increased human
trust to take robot’s suggestions. Another important variable is the emotional presen-
tation of the explanation. The affect in how an explanation is presented to the user
plays a role in the effectiveness of the explanation [27, 28]. Affective feedback given

3We used the Holm correction for multiple testing to adjust the p-values for all post-hoc tests
we calculated.
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Fig. C.5: Distribution of the items of the Explanation Satisfaction Scale between the three differ-
ent explanation style conditions.

by a robot leads to a more positive user impression [29, 30]. The work of Robinette et
al. [31] propose that the apology of a robot after an error increases trust in the user.
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6.2 Limitations

The results may have been affected by the participants’ understanding of the collabo-
rative task. Some participants seemed to have difficulty with the task, as they would
often move a bottle matching the shape of the bottle moved by the robot, rather than
following the instructions and sorting bottles according to the indicators on the table.
The difficulty understanding the task may affect the participants’ perception of the
robot’s mistake and the explanation by extension. If the participants do not under-
stand the task, when told that the team failed the task, they may not think to inspect
the robot’s work and recognize its mistake, which can affect their perception of the
explanations. Lastly, having the participants perform tasks simultaneously with the
robot may affect how attentive they can be toward the robot and whether they can crit-
ically inspect the robot’s work during the task. In future experiments the instructions
should be clearer or the bottles should be distinguishable by more factors than their
shapes while still indicating which should be moved by the robot or the participant.

6.3 Future Work

For future studies it would be valuable to explicitly ask participants about how their
perception of the system communication affect their perception of the physical robot.
In addition, investigating whether there is a separation between the physical robot and
its operating system and communications in the participants mental model. Consid-
ering participants showed higher trust toward the explanations relative to the robot,
they may consider the robot and system as two separate entities.

To make the explanations for HRC more effective, the recommendations of Kunkel
et al. [32] and Weld et al. [33], among others, should be considered for further studies.
Kunkel et al. [32] point out that richer explanations are preferred by users. In addi-
tion, Weld et al. [33] recommend interactive explanations. Here, the robot could be
provide answers to follow-up questions and actions (e.g., giving more details, chang-
ing the vocabulary, attempting to correct the error), leading to a more social process
of explanation.

7 Conclusion

We set out to investigate how we can utilize system communication and mistake ex-
planation to maintain trust in a collaborative robot after it makes a mistake. In our
conducted pilot study we found that end-users preferred less technical explanations
with a greater emphasis on how to solve the error more useful. Using a VR testing
environment for our main study, we evaluated three levels of explanations after the
robot made a mistake in executing a shared objective in sorting a set of bottles by
shape in collaboration with our participants. After comparing the conditions (no ex-
planation, explanation of robot error, and explanation of error with solution-oriented
details) with 30 participants we found no significant effects on their trust toward
the robot. While participants found the explanations helpful to trust or distrust the
system, we can not assume this trust to be transferable to the robot or the robot’s
operating system. Future studies should consider the participants” understanding of
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the shared task with the robot, ensuring that they recognize the nature of the robot’s
mistake and gain the most from the explanations. In addition, special consideration
should be put into investigating the participants’ mental model of the interactions
between the robot, the system and the explanation system to gain understanding to
which construct the trust is placed.

References

[1] E.]J. De Visser, M. M. Peeters, M. F. Jung, S. Kohn, T. H. Shaw, R. Pak, and M. A.
Neerincx, “Towards a theory of longitudinal trust calibration in human-robot
teams,” International journal of social robotics, vol. 12, no. 2, pp. 459-478, 2020.

[2] P. A. Hancock, D. R. Billings, K. E. Schaefer, J. Y. C. Chen, E. J.
de Visser, and R. Parasuraman, “A Meta-Analysis of Factors Affecting Trust
in Human-Robot Interaction,” Human Factors: The Journal of the Human Factors
and Ergonomics Society, vol. 53, no. 5, pp. 517-527, oct 2011. [Online]. Available:
http:/ /journals.sagepub.com/doi/10.1177/0018720811417254

[3] K. Schaefer, “The perception and measurement of human-robot trust,” 2013.

[4] T. T. Kessler, C. Larios, T. Walker, V. Yerdon, and P. Hancock, “A comparison
of trust measures in human-robot interaction scenarios,” in Advances in human
factors in robots and unmanned systems. Springer, 2017, pp. 353-364.

[5] M. Salem, G. Lakatos, F. Amirabdollahian, and K. Dautenhahn, “Would you
trust a (faulty) robot? effects of error, task type and personality on human-
robot cooperation and trust,” in 2015 10th ACM/IEEE International Conference on
Human-Robot Interaction (HRI). 1EEE, 2015, pp. 1-8.

[6] M. W. Boyce, ]. Y. Chen, A. R. Selkowitz, and S. G. Lakhmani, “Effects of agent
transparency on operator trust,” in Proceedings of the Tenth Annual ACM/IEEE
International Conference on Human-Robot Interaction Extended Abstracts, 2015, pp.
179-180.

[7] N. Wang, D. V. Pynadath, and S. G. Hill, “Trust calibration within a human-
robot team: Comparing automatically generated explanations,” in 2016 11th
ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 2016,
pp. 109-116.

[8] P. Kaniarasu and A. M. Steinfeld, “Effects of blame on trust in human robot inter-
action,” in The 23rd IEEE International Symposium on Robot and Human Interactive
Communication. 1EEE, 2014, pp. 850-855.

[9] ]J. Wainer, D. J. Feil-Seifer, D. A. Shell, and M. J. Mataric, “The role of physical
embodiment in human-robot interaction,” in ROMAN 2006-The 15th IEEE Inter-
national Symposium on Robot and Human Interactive Communication. 1EEE, 2006,
pp. 117-122.

[10] W. A. Bainbridge, J. Hart, E. S. Kim, and B. Scassellati, “The effect of presence
on human-robot interaction,” in RO-MAN 2008-The 17th IEEE International Sym-
posium on Robot and Human Interactive Communication. 1EEE, 2008, pp. 701-706.

108


http://journals.sagepub.com/doi/10.1177/0018720811417254

References

[11] M. Duguleana, F. G. Barbuceanu, and G. Mogan, “Evaluating human-robot in-
teraction during a manipulation experiment conducted in immersive virtual re-
ality,” in International Conference on Virtual and Mixed Reality. Springer, 2011, pp.
164-173.

[12] K. Stubbs, P. ]J. Hinds, and D. Wettergreen, “Autonomy and common ground in
human-robot interaction: A field study,” IEEE Intelligent Systems, vol. 22, no. 2,
pp. 42-50, 2007.

[13] J. D. Hoffman, M. J. Patterson, J. D. Lee, Z. B. Crittendon, H. A. Stoner, B. D.
Seppelt, and M. P. Linegang, “Human-Automation Collaboration in Dynamic
Mission Planning: A Challenge Requiring an Ecological Approach,” Proceedings
of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, no. 23, pp.
2482-2486, 2006.

[14] D. Gunning, “Explainable artificial intelligence (xai),” Defense Advanced Research
Projects Agency (DARPA), 2017.

[15] A. Heimerl, K. Weitz, T. Baur, and E. Andre, “Unraveling ml models of emo-
tion with nova: Multi-level explainable ai for non-experts,” IEEE Transactions on
Affective Computing, no. 01, pp. 1-1, 5555.

[16] K. Weitz, T. Hassan, U. Schmid, and J.-U. Garbas, “Deep-learned faces of pain
and emotions: FElucidating the differences of facial expressions with the help
of explainable ai methods,” tm-Technisches Messen, vol. 86, no. 7-8, pp. 404-412,
2019.

[17] T. Huber, K. Weitz, E. André, and O. Amir, “Local and global explanations of
agent behavior: Integrating strategy summaries with saliency maps,” CoRR, vol.
abs/2005.08874, 2020. [Online]. Available: https:/ /arxiv.org/abs/2005.08874

[18] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should i trust you?: Explaining
the predictions of any classifier,” in Proceedings of the 22Nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining. ACM, 2016, pp.
1135-1144.

[19] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Miiller, and W. Samek, “On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation,” PloS one, vol. 10, no. 7, p. e0130140, 2015.

[20] R. Sheh, “"why did you do that?" explainable intelligent robots,” in AAAI
Workshop-Technical Report, 2017, pp. 628-634.

[21] N. Wang, D. V. Pynadath, and S. G. Hill, “The impact of pomdp-generated ex-
planations on trust and performance in human-robot teams,” in Proceedings of the
2016 international conference on autonomous agents & multiagent systems, 2016, pp.
997-1005.

[22] D. Holliday, S. Wilson, and S. Stumpf, “User trust in intelligent systems: A jour-
ney over time,” in Proceedings of the 21st International Conference on Intelligent User
Interfaces, 2016, pp. 164-168.

[23] R. R. Hoffman, S. T. Mueller, G. Klein, and ]. Litman, “Metrics for explainable
Al challenges and prospects,” CoRR, vol. abs/1812.04608, 2018.

109


https://arxiv.org/abs/2005.08874

References

[24] C.Harmon-Jones, B. Bastian, and E. Harmon-Jones, “The discrete emotions ques-
tionnaire: A new tool for measuring state self-reported emotions,” PloS one,
vol. 11, no. 8, p. e0159915, 2016.

[25] M. L. Bernacki, T. ]. Nokes-Malach, and V. Aleven, “Examining self-efficacy dur-
ing learning: variability and relations to behavior, performance, and learning,”
Metacognition and Learning, vol. 10, no. 1, pp. 99-117, 2015.

[26] S. Nikolaidis, M. Kwon, J. Forlizzi, and S. Srinivasa, “Planning with verbal com-
munication for human-robot collaboration,” ACM Transactions on Human-Robot
Interaction (THRI), vol. 7, no. 3, pp. 1-21, 2018.

[27] ]. Klein, Y. Moon, and R. W. Picard, “This computer responds to user frustration:
Theory, design, and results,” Interacting with computers, vol. 14, no. 2, pp. 119-140,
2002.

[28] R. W. Picard and ]J. Klein, “Computers that recognise and respond to user emo-
tion: theoretical and practical implications,” Interacting with computers, vol. 14,
no. 2, pp. 141-169, 2002.

[29] H. Hastie, P. Dente, D. Kiister, and A. Kappas, “Sound emblems for affective
multimodal output of a robotic tutor: A perception study,” in Proceedings of the
18th ACM International Conference on Multimodal Interaction, 2016, pp. 256-260.

[30] I. Leite, G. Castellano, A. Pereira, C. Martinho, and A. Paiva, “Modelling em-
pathic behaviour in a robotic game companion for children: an ethnographic
study in real-world settings,” in Proceedings of the seventh annual ACM/IEEE inter-
national conference on Human-Robot Interaction, 2012, pp. 367-374.

[31] P. Robinette, A. M. Howard, and A. R. Wagner, “Timing is key for robot trust
repair,” in International conference on social robotics. Springer, 2015, pp. 574-583.

[32] J. Kunkel, T. Donkers, L. Michael, C.-M. Barbu, and J. Ziegler, “Let me explain:
Impact of personal and impersonal explanations on trust in recommender sys-
tems,” in Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, 2019, pp. 1-12.

[33] D. S. Weld and G. Bansal, “Intelligible artificial intelligence,” ArXiv e-prints,
March 2018, 2018.

110



Paper D

Proposing Human-Robot Trust Assessment Through
Tracking Physical Apprehension Signals in
Close-Proximity Human-Robot Collaboration

Kasper Hald, Matthias Rehm, Thomas B. Moeslund

The paper has been published in the
28th IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN), pp. 1-6, 2019.



© 2019 IEEE. Reprinted, with permission, from Kasper Hald, Matthias Rehm and
Thomas B. Moeslund, Proposing Human-Robot Trust Assessment Through Tracking
Physical Apprehension Signals in Close-Proximity Human-Robot Collaboration, 28th
IEEE International Conference on Robot and Human Interactive Communication (RO-MAN),
pp. 1-6, 2019.

The layout has been revised.



1. Introduction

Abstract

We propose a method of human-robot trust assessment in close-proximity human-robot collab-
oration involving body tracking for recognition of physical signs of apprehension. We tested
this by performing skeleton tracking on 30 participant while they repeated a shared task with
a Sawyer robot while reporting trust between tasks. We tested different robot velocity and
environment conditions with an unannounced increase in velocity midway through to provoke
a dip trust. Initial analysis show significant effect for the test conditions on participant move-
ments and reported trust as well as linear correlations between tracked signs of apprehension
and reported trust.

1 Introduction

In the context of industrial repetitive manual production collaborative robots can
be implemented to help relieve strenuous activities and help prevent long-term de-
ceases [1]. However, working in close proximity to an industrial robot may cause the
collaborating worker, from here on referred to as the operator, to feel unsafe, depend-
ing on the nature of the work. For this experiment we define trust towards the robot
as the combination of feeling physically safe around it and a being able to predict the
robot’s actions in the context of the shared task.

For example, when working in industrial meat production, implementing robots
can help in cutting or in flipping or positioning meat for easier operation. Because
the robot will be equipped with either sharp knifes or powerful gripping tools, there
is a high risk that the operator will feel unsafe working near it, decreasing efficiency.

Our long-term goal is to develop computer vision and body tracking methods
that can be implemented non-obstructively in the production context and interpret
the operator’s trust towards the robot based on movement correlated with the robot’s
actions and the current task. In the future this can be used to have the robot adapt
its movement patterns, velocity and secondary communication, such as information
through audio-visual interfaces, according to the comfort of the operator to maintain
their trust throughout the collaboration.

This paper documents an early experiment on operator posture during a human-
robot collaboration task by utilizing an infrared camera for body tracking. We com-
pare operator posture and motions and how they are affected when the robot motions
are suddenly changed and whether they are different when a work surface is between
the robot and operator.

2 State of the Art

Human-robot collaboration is an emerging field within HRI, as can be seen from
dedicated workshops and tracks at HRI conferences [2]. A particular challenge in
HRI is the asymmetrical communication capabilities of the operator and the robot,
creating a need for a multi-level coordination between them to achieve successful
interaction: The communication level, the physical level, the social level and the task
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level. The communication and physical levels are the main focuses of this study. The
physical level because the motions of the robot influence the trust of the operator
and the communication level because the system interpreting the operator’s attitude
is part of implicit communication. The task level will be relevant in later studies
involving varying tasks, where this experiment involves a simple repeated task.

When describing trust in automation Lee & See [3] wrote the definition of trust
as the attitude that an agent will achieve an individual’s goal in a situation charac-
terized by uncertainty and vulnerability. To use this definition it requires elaboration
to include the appropriateness of the trust, defined as the relationship between the
true capabilities of the agent and the level of trust. In addition one must define the
influence of context, the goal-related characteristics of the agent, and the the cognitive
processes that govern the evolution of trust level.

Lee & See [3] proposed that humans develop trust in automation based on a com-
bination of analytic, analog and affective processing of external information and inter-
nal believe. Analytic processes are cost-benefit analyses while analog processes refer
to the assessment of category memberships. Affective processes refer to responses in
confirmation or violation of implicit expectations.

In addition to trust assessment, these processes can be utilized in implicit com-
munication with a system, which was proven to improve performance in human-
computer interaction [4] [5]. Rani el at. [6] framed implicit human-robot communica-
tion as affective communication, where the affective state is interpreted by the robot
system and informs the robot’s next action in combination with sensed operator ac-
tions. It was shown that the operator’s feeling of safety and comfort was improved
if the robot is adaptive to their movements by incorporating human-aware motion
planning systems.

Hancock et al. [7] performed a meta-analysis on factors affecting trust in human-
robot interaction. They found the main influence to be robot characteristics, in partic-
ular robot performance, with environmental factors moderately affecting trust. With
this experiment we aim to develop methods for inferring the changes in trust through
reactive body postures as a result of unexpected changes to expected behaviours,
thereby violating the operator’s explicit expectations.

Dragan et al. [8] tested trust in robots dependant on the robot’s motion patters
using Hoffman’s metrics for fluency in human-robot collaboration [9], where the trust
in the robot is evaluated using a composite measure. Their results showed that a robot
with predictable motions, rather than purely functional motions, was more accepted
by the operator. Predictable motions meant that the robot would move as expected
by the participant, rather than only planning to avoid collisions which would lead to
non-intuitive movement patterns. The post-study questionnaires were administered
after each participant had experienced all three conditions and includes questions
pertaining to trust. The delay and lengths of the questionnaires may have affected
the qualitative measurements. While we take inspiration from this method we aim to
avoid the effect of the delay in this experiment.

Other measurements have been used for trust assessment in the context of HRL
In studying implicit human-robot communication Rani et al. [6] successfully tested
an affect recognition system utilizing physiological measurement during interaction
with a remote robot. Freedy et al. [10] assessed human trust by recording operator
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intervention in remote collaboration with an unmanned ground vehicle depending
on perceived competency. While these measurements are relevant, the context of
manual production work often requires the use of both hands, which does not allow
for directly operating or interrupting the robot, and physiological measuring devices
may prove too intrusive or obstructing for daily operations.

Body tracking and posture have previously been used to enable and secure safety
in human-robot interaction, but they are rarely used as an attitude assessment tool.
For ensuring safe human-robot collaboration Morato et al. [11] implemented multiple
Kinect sensors while Tan & Arai [12] used a triple-camera setup. Both used computer
vision for skeleton tracking with Morato et al. working with standing work while Tan
& Aria focused on sedentary work. While we use a different type of depth camera for
this experiment the goal is to develop methods for tracking and trust assessment for
both standing and sitting operators.

3 Inferring Apprehension

We propose a method of trust assessment through tracking the operator’s physical
reactions, postures and movements and interpreting them as signs of apprehension
in relation to the collaborating robot and the context of the shared task. The features
of these movements can be categorized as by Aghajan et al. [13] for non-symbolic
interpreting of gestures. These features include plane of gesture, closeness, radius,
tempo, velocity, force, gesture frequency and quantity as well as constricted versus
expansive and jerky versus smooth motions.

When analyzing the tracking data, signs of apprehension can be divided into two
categories, those being unforeseeable changes in motion patterns and reactive motions
following predictable patterns. The first category involves changes in physical move-
ment patterns as a result of sudden changes in trust toward the robot that the system
is not programmed to categorize. Recognizing these requires a period of movement
in relation to the shared task that are consistent to a degree where changes can be
recognized in real time. An example of this could be the operator changing hand tra-
jectory to have a longer radius from the robot end effector as an results of unexpected
changes in robot behaviour.

The category of predictable movement patters is based on human recognition of
physical apprehension that the system is programmed to recognize. Examples of
these would be changing proximity to the robot, leaning back or retracting hands to
avoid expected danger. Additionally, reactions can involve hesitation in proceeding
with the task. The analysis for this experiment is based on measuring this category of
reactions. Specifically, we are looking at changes in proximity from the robot for the
tracked points at the participant’ head, spine, hands and elbows, as well as changes
in task completion time.
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4 Evaluation

The purpose of the experiment is to induce varying levels of trust towards the robot
by affecting the operator’s feeling of safety. In a collaborative task we measure the
operator’s motion patterns as a robot arm approaches them at different velocities. We
test the velocities in three conditions, with and without a work-surface between the
robot and operator, making a total of six test conditions. These conditions are tested
between subjects. The hypotheses of the experiment are:

* H1: The participants’ reported trust toward the robot is significantly affected
by the velocity of the robot arm’s movements.

* H2: The participants’ reported trust toward the robot is significantly affected
by having a work surface between the participants and the robot.

* H3: The participants’ movements and posture are significantly affected by the
velocity of the robot arm’s movements.

¢ H4: The participants posture are significantly affected by having a work surface
between the participants and the robot.

* HS5: The participants’ movement patterns correlate with their reported levels of
trust toward the robot at the velocity and work surface conditions.

4.1 Hardware & Software

The robot used in the experiment is a Sawyer by Rethink Robotics with a set of pneu-
matic grippers and motions are planned using Intera Studio. The Sawyer robot fea-
tures animated eyes on a screen during operations by default. These are disabled
during the experiment to limit the participants’” perception of the robot to its move-
ment patterns. The robot is equipped with a red emergency shutdown button, which
is positioned within reach of both the test participant and the test conductor.

The participants” movements are tracked and recorded using Unity, which is also
used to control the robot. They are synchronized using a TCP/IP connection. The
depth camera is an Orbbec Astra infrared camera which uses the Orbbec Body Track-
ing SDK. It is mounted on a light stand in front of the participant at a height allowing
it to consistently track their upper body.

4.2 Procedure

After signing a consent form the participant is introduced to the robot and the task.
The participant is directed to a rectangular area marked on the floor with a size that
allows comfortably standing and keeping the participants at a consistent distance to
the robot. To prevent participants being startled at the first task, the robot motion is
shown once at its lowest velocity.

The task is for the participant to take a wooden baton that is handed to them by the
robot. The baton is handed to the robot by the test conductor before the robot hands it
over to the participant by moving straight toward them, stopping at a distance where
they can grab it with their elbow near their side. This is shown in Figure D.1. The
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batons used for the test are 25 cm long and have a diameter of 2 cm. The robot holds
the baton with a set of pneumatic grippers and the participant retrieves it by pulling
it toward themselves, applying at least 20 N of force, once the robot is in its waiting
position, after which it returns to the conductor.

The participants are instructed that each time they take a baton they have to turn
to their right and put it in a box on a table next to them. This serves to direct their
attention to a tablet on the table where they have to report their attitude toward
the robot after each task. Inspired by the questionnaires by Dragan et al. [8], the
participants are instructed to rate the robot in three categories, by stating agreement
to a statement on a scale between strongly agree or strongly disagree. The three
statements are:

¢ [ trusted the robot to do the right thing at the right time.
e [ felt safe working next to the robot.

* The robot’s reaching motion was surprising.

The participant can report their agreement on a linear scale by freely moving or
tapping on a slider on the touchscreen. The goal of this is to allow quick responses
on a more granular level than on, for example, a Likert scale, hopefully yielding more
representative results. The test conductor will manually command the robot to move
to the participant when they have return to the marked zone on the floor and are
facing the robot.

We compare two independent variable. The first is whether there is a work surface
in the form of a table between the participant the robot. The table is positioned such
that the end position for the robot gripper is above the table. The second variable is
the starting velocity of the robot’s motions. This variable has three conditions, each
with their own starting velocity. These being 25, 50 and 75 percent of the robot’s max
velocity, labelled slow, medium and fast velocity, respectively.

The conditions are compared between subjects. Half of the participants will per-
form the test with the table and half without. Each velocity condition is performed
with five test subjects with and without work surface, making a total of 30 partic-
ipants. Each test involves twenty tasks in total, the first ten being at the starting
velocity. In order to provoke the participant’s trust level, after the tenth task the robot
movement velocity is increased with 25 percentage points without warning. With this
approach we expect to see an increasing level of trust throughout the first ten tasks
with a change in posture and attitude at the velocity change, followed by readjust-
ment to the robot. The conditions are tested between subjects to avoid participants
anticipating what will happen. Throughout the entire test the depth camera is record-
ing skeleton tracking data at 30 samples per second, which is logged along with a
label for the robot’s current state.

5 Results

The experiment was performed with 30 participants at the ages between 21 and 28 at
an average of 24. Participants included 22 men and 8 women, 27 right-handed and 3
left-handed.
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Fig. D.1: A test participant standing with the marked zone on the floor, grabbing the baton from
the robot in the condition with no table in-between.
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The questionnaire results are aggregated by inverting the third question to weigh
positively toward robot trust. Figure D.2 shows the average answers for all partici-
pants between tasks and conditions. The vertical lines marks the step up in velocity.
We see gradual increase in trust for the first ten task for all groups with dips after the
velocity increase being most pronounced in the slow velocity group.
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Fig. D.2: Average and confidence intervals for the questionnaire answers of each task between
the test groups with a line marking the change in robot movement velocity.

To test H1 and H2, and evaluate the trust reporting method, we perform a mul-
tivariate analysis of variance with significance threshold at .05 on the three answers,
treating the task number and whether a task is before or after the step up as a within
subject variables and the velocity and work surface conditions as between subject
variables. Keep in mind that these velocity groups include the initial velocity and the

119



Paper D.

stepped-up velocity, meaning that every participant experience two robot velocity set-
tings. Performing the test for all twenty tasks shows significant differences depending
on velocity condition (F(2,572) = 17.13, p < .001), work surface (F(1,572) = 4.64, p <
.01), task number (F(1,572) = 2.72, p < .05) as well as the two halves of the test (F(1,572)
=7.60, p < .001) as well as interactions between several factors.

In order to test the gradual increase in participant trust throughout the first tasks
visible in Figure D.2, we repeat the analysis on the first ten tasks only. This shows
significant difference between task numbers (F(1,286) = 2.84, p < .05). Performing
an analysis of variance on the three answers separately shows that task number is
significant for two out of three; trusting the robot to do the right thing and the right
time (F(1,286) = 3.99, p < .05) and on the robot’s motion being surprising (F(1,286) =
7.54, p < .01). Performing the test on the final ten tasks yields similar results with
significant difference between tasks (F(2,286) = 7.75, p < .001), which is also true
when testing the answers separately. This suggests that the participants found the
robot more predictable as the experiment went on with a dip in predictability in the
middle followed another gradual increase, as would be expected.

Repeating the analysis, while focusing on the difference in before and after the
step up in velocity, only the interaction between the velocity and task number (F(2,46)
=2.58, p <.05) show statistical significance, and testing the three questions separately
shows that task number (F(1,46) = 7.48, p < .01) and interaction between task number
and velocity (F(2,46) = 3.79, p < .05) only yield significant difference in regards to the
robot motions being surprising.

The significant effect of the test conditions suggests we can retain H1 and H2.
Additionally, the trends regarding gradual gain in trust throughout the tests lends
confidence in this method of measuring human-robot trust.

For testing H3 and H4 we perform a similar multivariate analysis of variance
while adding participant handedness as a between subject variable. We are specifi-
cally testing delta motions towards or away from the robot within the first two sec-
onds after the robot starts moving towards the participant, measured 30 samples per
seconds. Running the analysis across all tasks and tracked bones shows significant
statistical difference for velocity conditions (F(2,35167) = 24.66, p < .001), work surface
conditions (F(1,35167) = 7.43, p < .001), task number (F(1,35167) = 4.64, p < .001), first
and second half of the test (F(1,35167) = 2.00, p < .05) and handedness (F(1,35167) =
20.54, p < .001) in addition to the interaction between multiple factors.

Testing the effect of the step up in velocity by testing the tracked motions for all
tracked bones before and after showed no significant difference between tasks, sug-
gesting no significant gradual changes. Similarly, neither testing the first and last ten
tasks alone showed no significant difference as tasks proceeded. However, aiming to
remove noise, limiting the multivariate analysis to only head and hands tracking show
significant difference for the tasks before and after the step up in velocity (F(1,3506)
= 4.73, p < .01), while there is still no significant difference between tasks throughout
the first and latter half of the test. The average movement toward and away from the
robot throughout the tests is illustrated in Figure D.3.

In addition to tracking motions we analyze the time it takes for the participants
to grab the baton after the robot has arrived in order to gauge their reactions. Testing
across all tasks show significant statistical difference for task number (F(1,571) = 20.37,
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Fig. D.3: Average delta motion towards and away from the robot of the participants” head and
hands for the first two seconds after the robot starts moving, negative being away from the robot.
Includes confidence intervals.

p < .001), the first and second half of the test (F(1,571) = 4.67, p < .05), the interaction
between velocity conditions and work surface (F(1,571) = 34.88, p < .001) and between
velocity conditions and task number (F(1,571) = 5.49, p < .01). Comparing times before
and after the step up in velocity showed no significant difference, while task number
were statistically significant through the first half of the test (F(1,286) = 13.83, p <.001),
but not in the latter half. The average times to grab the batons are shown in Figure
D.4. The analysis results indicate that we can retain H3 and H4 since the conditions
have significant effect on the movements and reaction of the participants.

To test H5 we perform Pearson’s product-moment correlation pair-wise for linear
correlation between the three trust questions and the delta bone positions toward and
away from the robot within the first two seconds of the robot moving towards the
participant. For the head motion there is only correlation for the first question (p <
.001), while the movement of the non-dominant hand correlates to all three questions
(p < .05, p < .01, p < .0001), respectively, and movement of the dominant hand corre-
lates with none. This can be explained by the participants reaching out for the baton
in different ways, while leaving the non-dominant hand at the side. Also, with the
participant anticipating the baton they are likely to engage in the reaching motion
in spite of the level of trust, leaving the opposite side of the body to move with ap-
prehension. The correlation between the reported trust indicators and the participant
movements suggest we can retain H5.
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6 Discussion

Despite the results showing significant effects of the test conditions on the reported
trust indicators and the participants’ reactive movements, the extend is only that they
have an effect, rather than the nature of the effects, specifically. Extended machine
learning analysis including all tracking points is needed to fully interpret the data
and develop predictive measures of human-robot trust. Also, in regards to H5, even
though the analysis showed significant linear correlation in some instances, further
analysis is necessary to determine the best fit, whether it be exponential, logarithmic
or otherwise.

The questionnaire results roughly ranging from 0.5 to 1, as shown in Figure D.2,
suggests that a more aggressive test design may be beneficial to provoke more mistrust
in the robot and get a wider range of data. This could involve the robot performing
operation between the operator’s hands rather than just moving toward their body,
lowering the proximity to not just the hands, but the head as well. This may require
Ethic’s Board approval, seeing as it may be a risk to test participants in case of sudden
movements from either the operator or robot causing dangerous collisions.

The novel method of trust assessment through quick reporting between each task
will benefit from further verification. Even though the results reflect what would be
expected from the test conditions it would benefit from being correlated with ad-
ditional measurements, such as galvanic skin response or facial expression analysis.
Additionally, initial reported trust being around 0.5 may be a side effect or the default
slider value being in the center. Alternatively, it may stem from the participant want-
ing to start the test with values in the middle of the scale to have space for decreases
and increases.

Reported trust level will also be highly affected by the context of the experiment
as well as the nature of the questions. Because the participants are asked about their
trust of the robot, they are very likely to expect a break in that trust. We aimed to
counter this with the continuous scale rather than a segmented scale, like the Likert
scale, resetting the slider between tasks and requiring each slider to be moved before
they can be confirmed, preventing participants from reporting the same value until
they knew they noticed a change in robot behaviour.

7 Conclusion

We propose a novel method of human-robot trust assessment through tracking of
physical apprehension signal in the context of human-robot collaboration. We test
this by performing skeleton tracking during a repeated human-robot collaboration
task where we violate the participants expectations of the robot’s behaviour midway
through, aiming to provoke a drop in robot trust. We test this at varying robot move-
ment velocities as well as with and without a work surface between the robot and
operator.

Though the method of assessing operator trust will benefit from further verifica-
tion, the results support the hypotheses. Participants reported relative levels of trust
as expected from the test conditions and initial analyses show correlation between
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reported trust and reactive movement while collaborating with the robot.

While there are significant effects on participant movement from robot velocity

and the presence or absence of a work surface, deeper analyses are required to develop
methods of concretely interpreting human-robot trust through physical apprehension
with the future goal of real-time trust assessment in human-robot collaboration.
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1. Introduction

Abstract

In this study we set out to design a computer vision-based system to assess human-robot trust
in real time during close-proximity human-robot collaboration. This paper presents the setup
and hardware for an augmented reality-enabled human-robot collaboration cell as well as a
method of measuring operator proximity using an infrared camera. We tested this setup as
a tool for assessing trust through physical apprehension signals in a collaborative drawing
task, where participants hold a piece of paper on a table while the robot draws between their
hands. Midway through the test we attempt to induce a decrease in trust with an unexpected
change in robot speed and evaluate subject motions along with self-reported trust and emo-
tional arousal through galvanic skin response. After performing the experiment with forty
participants, we found that reported trust was significantly affected when robot movement
speed was increased. The galvanic skin response measurement were not significantly different
between the test conditions. The motion tracking method used in this study did not suggest
that subjects” motions were significantly affected by the decrease in trust.

1 Introduction

Human-robot collaboration (HRC) is becoming increasingly relevant as we are seeing
the long-term consequences of repetitive manual production work [1], such as indus-
trial meat production, in which the staff are especially affected [2]. Musculoskeletal
diseases not only affects the quality of life for those suffering, but also makes pro-
duction work less attractive for potential staff. We are working towards enabling
close-proximity HRC, allowing the robot to relieve the collaborating worker, from
here referred to as the operator, of heavy and repetitive actions while keeping the
operator safe and feeling secure. To this end we are researching methods of assess-
ing the operator’s level of trust towards the robot partner in a non-obtrusive way in
real-time.

We use the same definition of HRC as Herrmann and Leonards [3], where the
robot and the operator works on the same component at the same time. In an HRC
task where the operator has to use both hands for manipulation of objects, the system
needs hands-free and non-obstructive methods of human-robot interaction (HRI). The
goal is to develop a HRC cell, a collaborative human-robot work space, that enables
both implicit and explicit communication from the operator to the robot using com-
puter vision while displaying task-relevant information to the user with augmented
reality (AR). Specifically, in this report we propose and evaluate a method of measur-
ing and recording the operator’s proximity to the robot with a depth camera setup
with a very small footprint, allowing the robot system to adapt accordingly. We aim
to develop methods for inferring the changes in operator trust through reactive body
postures as physical apprehension signals from changes in the robot’s behaviours as
a violation of the operator’s explicit expectations. The full prototype and test setup is
shown in Figure E.1. The long-term goal is to develop non-obstructive solution that
will fit into a production context, allowing robot system to interpret the operator’s
trust towards the robot based on proximity tracking. Using cross-referencing with the
current shared objective, the aim is to have the system use the information to adapt to
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Fig. E.1: Full HRC cell setup with Sawyer robot, projectors and infrared camera.

the operator by adjusting movement patterns or secondary communications methods,
such as AR.

2 Background

While body and posture tracking have been used and assessed in enabling safe HRC,
it is rarely utilized for real-time trust assessment. Morato et al. [4] used a setup
of multiple Kinect sensors for ensuring safe HRC in an environment for standing
work while Tan & Arai [5] used a triple-camera setup for sedentary HRC. Both used
skeleton tracking algorithms. Similarly, Hald et al. [6] used skeleton tracking for
proximity tracking and trust assessment, showing correlation between user proximity
and attitude towards the robot. In order to limit the physical footprint of our setup to
allow for close rows of HRC cells we use a single depth camera pointed downwards,
not allowing for effective skeleton tracking. Our long-term goal is to develop methods
for tracking and for both standing and sedentary HRC.

Lee & See [7] defined trust in automation as the expectation that the agent will
achieve their goal in a situation characterized by uncertainty and vulnerability. This
definition requires elaboration in order to include whether the trust is appropriate,
which is derived from the relationship between the capabilities of the agent and the
level of trust. Additionally, we have to consider the influence of the automation con-
text as well as the goal-related characteristics of the agent. Lee & See proposed that
trust in automation is created through a combination of analytic, analog and affective
processes of external information and internal believe. We use these characteristics
of trust in automation to define human-robot trust in HRC. We focus on trust as a
the attitude towards the robot in the moment, rather than necessarily as a results of
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long-term interaction.

This research is relevant as enabling implicit communication has been shown to
improve human-robot interaction [8] [9]. Also, Rani et at. [10] showed that human-
aware motion planning systems improve the feeling of safety and comfort when used
to adapt to the operator.

In a meta-analysis, Hancock et al. [11] found that trust factors in HRI were mainly
influenced by the robot’s characteristics, in particular its performance, while environ-
mental factors had moderate effect. Dragan et al. [12] tested the effect of a robot’s
motion pattern on human trust using Hoffman’s metrics for fluency in human-robot
collaboration [13] and found that predictable motions were more accepted by the
operator than purely functional motions. Hoffman’s metrics were collected using a
post-test questionnaire after the participants had been through all three conditions
which includes questions pertaining to trust. In order to avoid the potential effects
of delaying the questionnaire, we derived a shorter version of the trust metrics to be
administered throughout the experiment.

Rani et al. [10] successfully used physiological measurement in an affect recog-
nition system in the context of interacting with a remote robot. While physiological
measurement might prove intrusive during daily operations, for our experiment we
will use them to help verify our assessment methods.

3 Proximity Tracking

The setup for the human-robot collaboration cell is shown in Figure E.1 and consists of
a roughly two meter by two meter aluminum rig equipped with two projectors and an
infrared (IR) camera. A seat, a work surface and the robot are arranged in the center
of the rig. The dual-projection setup, with projectors positioned at either side and at
a roughly forty-five degree angular offset from the work surface, enables projection-
based AR as an output modality and is hard to fully occlude when reaching across the
surface, as long as the projections are calibrated to match. The IR camera, an Orbbec
Astra, specifically, is mounted at the top-center of the rig and pointed downwards
toward the user. These types of camera allow for skeleton tracking, but this requires
a lot of distance while facing the front of the user. This is problematic in this setup
with the user seated and facing the robot, so we have designed the cell to rely on the
IR images only. The camera has a resolution of 320 by 240, but the outer edges never
receive light, leaving the useful resolution at around 277 by 213.

3.1 Data Processing

In order to infer the proximity and posture of the user we make an aggregate of the
IR camera frame to see how they reflect the light along the vertical axis of the frame.
Examples of the infrared frames are shown in Figure E.2 where a user is shown sitting
upright and leaning back.

The first step of processing the frame is saving an empty background average of
the work environment. The per-line average is from all the non-zero pixels in the line,
as black pixels are areas with no reflected light and are considered noise. Subtracting
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Fig. E.2: Images from the top-down IR camera. Left: User sitting upright. Right: User leaning
back.

the background averages from the per-line averages with user in the frame shows
how much closer the user is to the camera than the background. Examples of these
measurements are shown in Figure E.3. In the example there is a visible difference in
overall magnitude and spread, which can be used to infer the proximity and posture
of the user by looking at the bounds and peaks of the curve. However, as can be seen
in the examples, having the work surface so close to the camera compared to the floor
makes the measurements less sensitive in that part of the frame as the difference, such
as from the user’s arms, is lowered.

4 Experiment

The objective of the experiments is to evaluate the top-down proximity tracking sys-
tem as a tool to infer operator trust during close-proximity collaboration. To do this
we have designed a collaborative drawing task in which the operator has to position
a piece of A4 paper in a space on a table in front of the robot which is marked using
the AR rig. The operator’s role is to hold the paper down to the table as the robot,
equipped with a felt pen in a 3D printed mount, moves in and draws a square on
the paper, between the operator’s hands. Midway through the experiment the robot’s
movement speed is changed without warning, changing pattern in order to provoke
a decrease in trust. The aim is to determine if the operators proximity correlates with
their trust towards the robot, which is assessed from participant arousal inferred from
galvanic skin response (GSR) and with self-reporting using a questionnaire. In addi-
tion, we investigate whether the measures are affected by the operator’s ability to hear
the robot, as different movement speeds produce different motor noise, which may
affect the operator’s perception of the robot. For assessing the proximity tracking we
test the following eight hypotheses:

* H1: The participants’ reported trust toward the robot is significantly affected by
changing velocity of the robot arm’s movements and whether they are wearing
ear protection.

* H2: The participants’ movements are significantly affected by changing velocity
of the robot arm’s movements and whether they are wearing ear protection.
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Fig. E.3: Depth measurements aggregated from the top-down IR camera with background sub-
traction of a user, sitting upright and leaning backwards.

* H3: The participants” GSR response is significantly affected by the velocity of
the robot arm’s movements and whether they are wearing headphones.

* H4: The participants” movements and proximity to the robot correlate with
their reported levels of trust toward the robot.

4.1 Procedure

At the beginning of the test the participants are presented with a printed consent form
and description of the experiment. After signing the consent form the participants are
sat at a table with the Sawyer robot facing them. They are then introduced to the task
procedure: First they have to take a piece of paper from a stack on their left, which
they position in a marked space on the table. Once the paper is positioned and they
hold it down, the robot moves from its resting position and draws a square on the
paper. This motion is activated manually by the test conductor. This is demonstrated
during the introduction using the robot speed the participants starts with. This is
to help the participant feel comfortable at the beginning of the test. In addition to
marking the area for the paper, the AR rig is also used to show the lines that the robot
is going to draw. This is done with projected red lines, which the robot will draw
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over. This is to help inform the participants of the current status of the robot and
when they can safely let go of the paper. Figure E.4 shows a participants sitting in
front of the robot, holding the paper as the robot draws along the projected red line.

Fig. E.4: A participant sitting in front of the robot, holding the paper down. The paper is held in
the area marked with a projected white rectangle, fitting an A4 sheet of paper. The robots holds
the felt pen in a custom-designed 3D printed mount that is fitted with foam. The robot draws
along the red line which is projected on the paper. To the participant’s left is the stack of paper
they can grab from and the tablet used to answer the questionnaire throughout the test.

Once the drawing is complete, the participant has to put the paper off to their
right, after which they have to report their attitude and trust towards the robot using
a questionnaire on a tablet to their left. The participants are instructed to state agree-
ment to three statement on a scale between strongly disagree or strongly agree on
sliding scales, yielding scores between 0 and 1, respectively. Based on the Hoffman'’s
metrics on human-robot trust [13] the three statements are:

o I trusted the robot to do the right thing at the right time.
e I felt safe working next to the robot.

® The robot’s reaching motion was surprising.

The participants are told to grab a new piece of paper and repeat the task until
the test is over. Before the test, electrodes are attached to the back of the participants
shoulder, opposite their dominant hand to limit disturbances, for measuring GSR with
a Bluetooth-enabled device strapped to their upper arm. The GRS device infers the
level of arousal in the participant by measuring the electric conductivity across the
skin between the attached electrodes.

The task is repeated a total of twenty times, and after the first ten repetitions the
robot movements speed is changed. In order to determine if the participants reacts
to an increase in speed or rather to just a change in speed, half the participants start
at a slow speed while the other start at high. The low speed is at a ratio of 0.2 of the
robot’s highest speed and the high speed is a ratio of 0.4. The test conditions, whether
the participant is wearing ear and the robot’s beginning speed, are counter-balanced
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with ten participants for each combination of conditions, leading to a total of forty
participants.

5 Results

A total of forty subjects participated in the experiment. 34 were male and 6 were
female, 34 were right-handed, 6 were left-handed, and ages ranged from 21 to 28 age
with and average age of 23.5 years.

Figure E.5 shows the aggregated questionnaire for each task, grouped by condi-
tion along with confidence interval. The aggregates are the average responses to the
three questions, each answered on a scale between 0 and 1, where the weight of the
last question is inverted, so that that participant disagreement with the statement that
the robot’s motion was surprising will counts positively towards trust. The vertical
lines marks the midway through the tests where the speed ratio was either increased
or decreased. For the groups that started with the slow speed ratio we see that re-
ported trust started high throughout the first half of the test, followed by a dip in
trust when the speed was increased, as we would expect. The reported trust is then
gradually recovered throughout the later half of the test. These effects are recogniz-
able, though less pronounced, for the participants who started with high speed with
a speed decrease in the middle. Still, this groups starts with lower trust towards the
robot, which gradually builds up towards the halfway point.

Running the Shapiro-Wilk test on the reported trust scores, the tracking data and
the GSR revealed that most data groupings are not normally distributed. As such, all
the data is treated as non-parametric. To evaluate hypothesis one we run a Wilcoxon
rank sum test on the reported trust scores immediately before and after the change
in robot movement speed. The test shows significant difference for participants for
whom speed was increase, both with (W = 88, p <.01) and without ear protection (W
= 100, p <.01), while not significant for participants who experienced a decrease in
speed.

To compare the robot start speed and ear protection conditions we compare the
pairs of trust scores for the tenth and eleventh tasks, separately. The Wilcoxon rank
sum test showed significant difference in trust scores between the speed conditions
after the speed change, both with (W = 11, p <.01) and without ear protection (W
= 12, p <.01), while there were no significant differences before the speed change.
There were no significant effects from the ear protection in any condition. From these
results we can retain hypothesis one in that unforeseen changes in robot movement
speed affects reported trust, but only for increases in speed, and the ability to hear
the robot motors has insignificant effect.

The participants’” movement and proximity between the conditions are shown in
Figure E.6 and Figure E.7. The proximity is measured as the position of the partici-
pant’s highest point, usually the top of the head, along the vertical axis of the depth
image, measured in pixels. We measure the participants’ movement reactions to the
robot as the delta changes in proximity within the first second of the robot moving
to draw. Figure E.6 shows the average delta movement among participants for each
task, showing whether the participants overall moved away or towards the robot.
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Fig. E.5: Average reported trust as aggregated from the questionnaire answers throughout the
test along with confidence interval.
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Fig. E.6: Average participant motion for the first second of robot movement weighted by move-
ment direction along with confidence interval. The vertical lines mark the midway point of the
test where the robot speed ratio changes.
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Figure E.7 shows the average absolute. The difference is that this is the total
movement of the participant, regardless of whether they are moving away or towards
the robot, showing how much the participants move in general. Looking at both
Figures, we see no obvious tendencies among the conditions, whether it being in the
first or later half or right before and after the changes in robot speed ratio.

When comparing both the delta and absolute movement between conditions sim-
ilarly to how we did with the reported trust scores, the Wilcoxon rank sum test yield
no significant differences, regardless of data groupings. Due to the lack of significant
difference and the inconsistencies we cannot reject the null hypotheses for hypothesis
two.

Figure E.8 shows the average normalized GSR measurement between participants
and split between conditions. After noise removal the data is normalized by fitting
the range of reading for each participant between zero and one. As such, the confi-
dence intervals increase as the tests go on as most participants start the test with high
resistance across the skin, placing them close to the value one, with the resistance
decreasing at different rates throughout the tests.

To test the curves of the normalized GSR we perform a Wilcoxon rank sum test
between the four conditions at the midpoint of the experiment. This yielded no sig-
nificant differences. As such we cannot reject the null hypotheses for hypothesis
three. Lastly, performing both Kendall’s and Spearman’s rank correlations, neither
the weighted delta movements nor the absolute movements showed significant corre-
lation with the reported trust scores, meaning we cannot reject the null hypothesis for
hypothesis four.

6 Discussion

The trust score results indicate a decrease in trust towards the robot, as is to be ex-
pected from the experiment design, where trust were only significantly affected by
increases in speed. However, our goal to verify it as a measurement using GSR as a
measure of arousal was not met in this study. This may be due to the measurements
not being sensitive enough for the arousal experienced, but it may also be a flaw in the
procedure, as the electrodes may not have had enough time to warm up and level out
before starting the tasks. Future experiments will be started with a warm-up period
as well as a period for taking baseline measurements.

The method of motion tracking used in this experiment is not an effective indicator
of trust through physical apprehension signals. This may be due to low sensitivity
from the low camera resolution, but it may also be an issue with the nature of the
task, in that having the participants be sedentary and holding down the paper may
inhibit movement. Alternatively, only looking at the movement of the peak position
of the user is not enough to indicate movement or apprehension signals. In follow-up
studies we will investigate alternative data processing methods that takes advantage
of all the data we’re collecting. In addition, aggregating the IR frame data along
the horizontal axis may reveal more physical signals. We can also look into operator
proximity to the robot throughout the test as they place the paper in order to infer
trust. In addition, it could be beneficial to design a shared task where the participant
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Fig. E.7: Average absolute participant motion for the first second of robot movement along with
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ratio changes.
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is standing, allowing for more motion as they are not pinned down by having to sit
in a chair.

For this experiment we focused on changes in robot speed for inducing a decrease
in trust, but for real world application it would be valuable to look into more subtle
signs of system error. One possibility with our current setup would be to either re-
move or alter the AR projection that shows what the robot is doing, which may induce
more uncertainty and thereby mistrust in the system. A problem with changing the
speed is that the participants may expect that something unexpected may happen due
to the experiment context, so simulating subtle system errors may do less to immedi-
ately affirm their suspicion. With a longer experiment it would be interesting to look
into the recovery in trust that we see in the later half of the test. As the participants
know that changes can happen, they may expect a break in movement patterns to
happen again, which may affect trust recovery.

7 Conclusion

We aimed to develop a system to assess human-robot trust in real time during close-
proximity HRC. Using a top-down IR depth camera we aggregated the frame data to
measure the operator’s proximity to the robot in order to infer trust towards the robot
from physical apprehension signals.

We tested this setup as a tool for assessing operator trust based on reactions to a
sudden change in robot movement speed in order to provoke a disruption of expecta-
tions. We looked at both increases and decreases in speed, as well as participants with
and without ear protection to see if motor noise from the robot on speed changes have
any effect. To determine the effects on operator trust we assessed the subjects attitudes
towards the robot using self-reporting through questionnaires and emotional arousal
from GSR. After performing the experiment with forty participants, we found that re-
ported trust towards the robot was significantly affected when the robot’s movement
speed was unexpectedly increased. This was not the case for speed decreases. Wear-
ing ear protection did not yield any significant difference, suggesting little effect from
the motor noises. The GSR measurement were not significantly different between the
test conditions, which may be due to an insufficient warm-up period. The analyses
for the motion tracking method used in this study did not suggest that the partic-
ipants’” motions were significantly affected by a decrease in trust. The method was
based on tracking the position of the point of the participant closest to the camera.
For future studies we will work with the data we collected to design a data processing
method that takes better advantage of the amount of data collected in order to obtain
a more sensitive motion measure. We will also re-design the shared task, allowing the
participant to stand up, allowing for more motion.
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1. Introduction

Abstract

With increased interest in close-proximity human-robot collaboration in production settings it
is important that we understand how robot behaviors and mistakes affect human-robot trust,
as a lack of trust can cause loss in productivity and over-trust can lead to hazardous misuse.
We designed a system for real-time human-robot trust assessment using a top-down depth
camera tracking setup with the goal of using signs of physical apprehension to infer decreases
in trust toward the robot. In an experiment with 20 participants we evaluated the tracking
system in a repetitive collaborative pick-and-place task where the participant and the robot had
to move a set of cones across a table. Midway through the tasks we disrupted the participants
expectations by having the robot perform a trust-dampening action. Throughout the tasks
we measured the participant’s preferred proximity and their trust toward the robot. Compar-
ing irregular robot movements versus task execution mistakes as well simultaneous versus
turn-taking collaboration, we found reported trust was significantly decreased when the robot
performed an execution mistake going counter to the shared objective. This decrease was higher
for participant working simultaneously as the robot. The effect of the trust-dampening actions
on preferred proximity was inconclusive due to unexplained movement trends between tasks
throughout the experiment. Despite being given the option to stop the robot in case of abnormal
behavior, the trust-dampening actions did not increase the number of participant disruptions
for the actions we tested.

1 Introduction

The field of human-robot interaction (HRI) has expanded to include close-proximity
human-robot collaboration (HRC) as several manufacturing industries are looking to
implement human-robot teams where possible in order to assist or relieve production
staff of strenuous or repetitive tasks. An important element in close-proximity HRC,
where the human, from here referred to as the operator, works with the robot on a
shared objective with no safety barriers, is that the operator feels safe and can trust
the robot. An appropriate level of trust is very important as under-trust increases the
risk of under-performance in human-robot teams as it can lead to dis-use of the robot,
and over-trust can lead to accidents through dis-use [1].

With our research we aim to contribute to the field of HRC by working to enable
real-time human-robot trust assessment, allowing us to maintain trust at an appro-
priate level through trust calibration. Either trust-repairing or trust-dampening ac-
tions from the robot can be used to correct the operators level of trust [1]. In this
experiment, specifically, we evaluate different trust-dampening action along with a
top-down depth camera tracking system designed to track position and posture with
the goal to use physical signals of apprehension as a sign of lowered trust toward the
robot. The tracking setup is shown in Figure F1. While the system is designed to
track both posture and proximity, the scope of the experiment is to evaluate the util-
ity of changes in operator proximity to the robot for trust assessment. In a repeated
collaborative pick-and-place task we test two types of trust-dampening actions from
the robot. One action to affect predictability of the robot and one to affect dependabil-
ity. In addition, we test the effects of the operator working simultaneously with the

147



Paper F.

robot compared to taking turns with the robot. In this paper we make the following
contributions:

e We give insight into the effects of two kinds of trust-dampening actions as well
as simultaneous collaboration versus turn-taking collaboration on human-robot
trust during repetitive HRC tasks.

* We present our top-down depth camera tracking system and evaluate its utility
to observe changes in operator proximity to the robot after trust-dampening
actions.

* We present the results and analyses of trust questionnaires and proximity track-
ing from an experiment with 20 participants.

* We discuss some of the challenges involved in laboratory experiments on human-
robot trust assessment.

Fig. E1: The human-robot collaboration test setup with Rethink Robotics Sawyer robot as well
as depth camera and projectors mounted to an aluminium rig, allowing for operator tracking
and projection-based augmented reality, respectively.

2 State of the Art

Malik and Bilberg [2] developed a reference model for the terminologies used to de-
scribe HRI. They outlined five levels of engagement in HRC, the first level being when
the robot is isolated from the operator, such as in a cell. The coexistence level is when
there are no barriers between operator and robot, but they do not share a work space.
When the parties share a work space, but only occupy it interchangeably it is defined
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as the synchronization level, whereas in the cooperation level they can occupy the
space simultaneously. The collaboration level of HRC is defined as when the operator
and the robot manipulate an object at the same time. In this experiment we test effects
of the synchronized and cooperation levels, as one conditions has them work in turns
while the other has them work simultaneously.

Trust in HRC is commonly defined as the willingness of a participant to engage
in a situation involving being vulnerable with another party based on their perceived
capability and intent, the other party being the robot and its operating systems. Is is
important for safe and efficient collaboration to maintain an appropriate level of trust
in the robot. De Visser et al. [1] outlined calibrated trust as the operator’s perceived
trustworthiness of the robot matching a measure of the robot’s objective trustwor-
thiness, which is based on its capability to complete its objective. They also stated
that if the operator trusts the robot too much it may lead to misuse, increasing the
risk of accident, while too little trust may lead to disuse, causing losses in produc-
tivity. In a meta-analysis Hancock et al. [3] categorized the elements that can affect
operator trust in the robot, splitting them up between operator-related, robot-related
and environment-related factors. The robot-related factors were further grouped into
performance-based and attribute based factors with dependability, reliability, pre-
dictability and failure rates among the performance-based factors.

In an experiment with a drink-serving robot Dragan et al. [4] found that human-
robot trust was significantly affected by the robot’s movement path with participants
preferring predictable motions designed to appear natural, rather than motions calcu-
lated to be optimal by the motion planning system. Bergman & Zandbeek [5] tested
speed and stopping distance as a robot moved toward the participants and found
them to significantly affect trust and argued that they could be utilized as commu-
nicative cues from the robot. We similarly base the trust-dampening action in our
experiment on disrupting predictability and perception of dependability.

Schaefer [6] developed two versions of a trust assessment questionnaire. A long
version with 40 items and a short version with 14 items. In both versions participants
rate the likelihood of the robot completing its objective, making errors and being de-
pendable among others. In a comparative study Kessler et al [7] had participants rate
a robot using both Schaefer’s scale and a trust in automation scale, finding conflicting
results, suggesting that robot trust and automation trust scales are not interchange-
able. As an alternative measure of human-robot trust, Freedy et al. [8] inferred trust
based on the number of participants interventions as they observed an unmanned
ground vehicle. To assess participant trust throughout our experiment we use Schae-
fer’s 14-item questionnaire as well as giving the them the option to interrupt the robot
during the collaboration.

Computer vision have previously been studies for its utility in safety system in
close-proximity HRC, implementations including depth camera [9] and multi-camera
[10] setups. As for computer vision for human-robot trust assessment, Sadrfaridpour
et al. [11] tested hand-tracking using makers to infer operator trust based on changes
in working speed in an HRC assembly task using a neural network.
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Fig. F2: Example of the top-down infrared tracking with the red lines being the aggregations of
the horizontal lines on the frames. To the left the operator is stood upright close to the robot with
the red having a narrow spread near the bottom. In the middle frame the operator is standing in
the same position but leaning back, yielding a wider spread across the frame. In the right-most
frame the operator is a step further away from the robot while standing upright, giving a narrow
range at the top of the frame.

3 Top-Down Tracking System

The posture and position tracking is implemented using an Orbbec Astra depth cam-
era mounted to an aluminum rig above the work area and pointing downwards, as
shown in Figure F.1. Before beginning the tracking a background image is taken with
no operator present. The background image pixel values are subtracted from the
frames during tracking. To track the position and posture of the operator, each frame
of the infrared camera feed is aggregated by the horizontal lines, where the mean
value of the pixels in each line is logged, excluding zero values as those are positions
where no infrared light is detected due to occlusion. Examples of infrared camera
frames and aggregated lines are shown in Figure E2. The lines with mean values
below zero are where the operator is present, as the distance to the camera is shorter
at those position. Using the range of horizontal lines with the operator present we can
infer the operator’s posture as they will be more spread out across the image when
filmed from above, though evaluation of this is beyond the scope of this experiment.

4 Experiment

To evaluate the tracking system and its utility for trust assessment we tested it in
a close-proximity HRC scenario where the participant has to move a set of cones
from one side of a table to the other in collaboration with the robot. The task is re-
peated ten times, midway through which during the sixth task we introduce a trust-
dampening action from the robot. In a between-subject experiment we test two types
of trust-dampening actions, pertaining to the robot’s dependability and predictability,
respectably. To test predictability, one the sixth repetition of the task the robot will
move in a different path, moving in an arch closer to the participant. To test depend-
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ability the robot will make a mistake in executing the task by picking up and moving
the wrong cone. In addition, in another between-subject condition we test the effect of
having the collaboration be turn-based, where the robot moves one of its cones first,
then the participant, or have them move the cones at the same time. This totals four
between-subject conditions. This is because it may affect how safe the participants
feels working with the robot and how attentive they are toward it during the task.
The test setup is shown in Figure F.3. We are testing the following hypothesis:

e H1: Reported trust in a close-proximity HRC task is significantly affected by
the robot changing its movement patterns.

e H2: Reported trust is significantly affected by the robot making a mistake in
task execution and going counter to the shared objective.

® H3: The chance of the participant interrupting the robot is significantly in-
creased by the robot performing a trust-dampening action.

* H4: Participants’ preferred proximity to the robot is significantly affected by
the robot performing a trust-dampening action.

e H5: Reported trust and participants” preferred proximity are significantly af-
fected by whether the collaboration is simultaneous or turn-taking.

A

Fig. F.3: The test setup where the participant stand in front of the robot and repeatably move the
colored cones from one side of the table to the other.

4.1 Procedure

In the laboratory, first, the participant is introduced to the robot and collaborative
task. They are told that they, along with the robot, have to move a set of four cones
from one side of the table to the other. The participant has to move the red cones
while the robot moved the blue cones, and they can only move one cone at a time.
The participant is not allowed to touch the blue cones. They have to move the cones
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to their colored squares at the other side of the table, shown in Figure B.6. The
correct side of the table is always indicated with an arrow projected onto the table as
shown in Figure F.4. When participants in the simultaneous collaboration condition
start moving the cones, the robot starts moving its cones at the same time, while
in the turn-taking condition the robot moves one cone first and then waits the until
the participant is finished moving theirs before moving the second one. The robot’s
turn is started remotely by the test conductor behind the participant where they do
not see it. The remote activates pre-programmed movements. The robot move the
cones using a rod, shown in Figure F4, that goes through plastic loops attached to the
top of the cones. This to avoid having to use a gripper which would require a load
compressor, which may startle the participant when it activates to restore pressure.
After completing each task the participant is asked to fill out Schaefer’s [6] 14-item
trust questionnaire before beginning the next task.

When the robot performs the action of moving the blue cones it first picks up the
one closest to the opposite side of the table and moves it to blue square farthest away
in a straight line, allowing the second cone to be moved to its place without collision.
In the first five tasks the robot will complete the task with no error, but at the sixth
task it will perform a trust-dampening action, depending on the test condition. If the
participant is testing the irregular movement condition, when moving the first cone
the robot will move it in an arch toward the participant, but otherwise placing it in
the correct position. If they are testing the condition with mistake in execution, the
robot would initially move the first cone correctly, but it would then move back where
it was. Afterwards the robot moves the cone to the correct position again and then
proceeds with the second cone and completes the task. At the beginning of the test the
participant is informed that they can press the space bar on a keyboard on the table
in front of them to pause the robot in case it does something it is not supposed to. It
is counted whenever they pause the robot, and they are asked by the test conductor
why they did it.

4.2 Participants

We performed the experiment with 20 participants, five in each condition. Our par-
ticipants included four female and 16 males, four were left-handed, 16 were right-
handed, average age 23, standard deviation 1.9 years.

5 Results

The average trust scores throughout the tasks are shown in Figure E.5 with the average
delta scores between tasks shown in Figure F.6. We can see a decrease in trust after
the trust-dampening action, marked with the vertical black lines, followed by a slow
recovery of trust.

When analysing the data we start with multi-variate analyses based on the tasks
and conditions, followed by pairwise comparisons to gain further insight. Table F.1
shows a summary of the statistical analyses performed on the trust scores and partic-
ipant proximity before and after the trust-dampening actions as well as analyses on
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Fig. E4: The rod mounted to the robot for picking up and moving the cones. The augmented
reality overlay is made with two overlapping projections from the projectors mounted at either
side of the aluminum rig and pointed diagonally down, as shown in Figure F.1, making the
projection harder to occlude.

the differences in decrease between conditions. Analysing the trust scores before and
after for each of the four conditions separately only show significant change when the
robot performs a wrong actions. While a Kruskal-Wallis analysis showed significant
effect from the conditions on trust scores and changes in delta trust going from the
fifth to the sixth task, pairwise analyses showed that delta scores were not signifi-
cantly affected by whether the robot and participant took turns or worked simulta-
neously. When we compare the trust delta scores between collaboration types after
the robot performs a wrong action, simultaneous collaboration shows significantly
higher decrease in trust than turn-taking collaboration. Also, comparing the delta
trust scores by the mistake types shows significantly larger decrease in trust when the
robot performs a wrong actions than it performs irregular movements. This is only
the case, however, when the robot and participant are performing the task simulta-
neously. These results may also be due to the decreased sample size for the more
granular analyses. We reject the first hypothesis, as changing the movement pattern
did not affect trust, while we retain the second hypothesis, as the robot performing
the wrong action did affect trust.

Participants pressed the button to interrupt the robot 12 times between all of
them. Only six of these interruptions happened during the robot’s trust-dampening
actions; once for irregular movement and turn-taking, three times for wrong action
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during turn-taking and twice for wrong action during simultaneous collaboration. As
there was an equal number of interruptions during trust-dampening actions as during
regular robot operations we reject the third hypothesis.

Table E1: Summary of statistical analyses of the reported trust and participant proximity before
and after a trust-dampening actions. Multi-variate analyses are performed with ANOVA for
parametric data and Kruskal-Wallis otherwise. We test the differences between before and after
as well as the difference between effects of conditions using pair-wise t-tests for parametric data
and Wilcoxon rank sum tests otherwise.

Trust Scores Before After t w df p-value
ANOVA: F(7,32) = 4.34 <.01*
Simultaneous / Irregular movement 78.14 73.00 1.18 7.31 .28
Turn-taking / Irregular movement 75.14 62.86 1.30 6.30 24
Simultaneous / Wrong action 79.29 42.00 2.76 7.44 .027*
Turn-taking / Wrong action 67.71 53.86 2.89 6.92 .024*

Change in Delta Peak Proximity
Kruskal-Wallis: H = 8.74 7 27

Change in Delta Mid Proximity

Kruskal-Wallis: H = 17.49 7 .015*
Simultaneous / Irregular movement -2.81 9.42 4 .095
Turn-taking / Irregular movement -1.28 -5.28 14 .84
Simultaneous / Wrong action -30.54 23.69 0 <.01*
Turn-taking / Wrong action -7.96 6.23 5 .024*
Delta Trust Scores Deltal | Delta 2

Kruskal-Wallis: H = 10.086 3 .018*
Simultaneous(1) v. Turn-taking(2) -21.21 -13.07 -1.03 12.14 .32
Irr. movement(1) v. Wrong action(2) -8.71 -25.57 83 .012*
Simul.(1) v. Turn(2) : Irr. Movement -5.14 -12.29 1.089 6.29 .32
Simul.(1) v. Turn(2) : Wrong action -37.28 -13.86 1 .016*
Irr. movement(1) v. Wrong(2) : Simul. -5.14 -37.28 24 .016*
Irr. movement(1) v. Wrong(2) : Turn -12.29 -13.86 0.24 6.25 .82
Delta Peak Proximity

ANOVA: F(3, 15) =2.22 0.13
Delta Mid Proximity

Kruskal-Wallis: H = 7.91 3 .048*
Simultaneous(1) v. Turn-taking(2) 16.55 0.48 82 .015*
Irr. movement(1) v. Wrong action(2) 2.07 14.96 31 17
Simul.(1) v. Turn(2) : Irr. Movement 9.42 -5.22 82 15
Simul.(1) v. Turn(2) : Wrong action 23.69 6.23 22 .056*
Irr. movement(1) v. Wrong(2) : Simul. 9.42 23.69 7 31
Irr. movement(1) v. Wrong(2) : Turn -5.22 6.23 5 15

The participants’ delta proximity to the robot between tasks are shown in Figures
F.7, measured by the middle position of their volume along the vertical axis of the
infrared camera frames. The proximity is measured as their average proximity to the
robot during the first ten seconds of each task, during which the robot would move its
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Fig. E5: Average trust scores with confidence intervals for each task with the trust-dampening
action marked with a vertical line.

first cone before making errors. The proximity measured by the position of the peak
position of the participant, the top of the head, were not significantly affected by test
conditions according to an ANOVA. Kruskal-Wallis analyses on the delta mid posi-
tions and on the change in delta positions before and after trust-dampening actions,
however, showed significant effect from the test conditions. Pairwise comparisons
showed significantly larger increase in distance only when the participant had to per-
form the task simultaneously with the robot. Comparing collaboration type with each
mistake type separately only showed this effect when the robot performed a wrong
action. As before this may be due to smaller sample size. Mistake types showed no
significant effect on changes in human-robot proximity. Despite the result of the anal-
ysis, looking at the trends on delta proximity for simultaneous collaboration, shown
in Figure E7, shows a pattern of participants interchangeably increasing and decreas-
ing proximity to the robot between tasks. It is unclear what causes this trend. Due
to the results the fourth hypothesis is inconclusive. We retain the fifth hypothesis in
regards to reported trust as there was a higher decrease in trust during simultaneous
collaboration than turn-taking when the robot performed a wrong task.

6 Discussion

Based on the results we retain the second hypothesis, that reported trust is signifi-
cantly affected by the robot making a mistake in execution, while the first hypothesis,
pertaining to irregular robot movement is rejected. This suggests that the irregular
movement was either not considered counter to the objective or hazardous to the
participant, or the participants did not recognize the irregularity. Not recognizing
the error may be a matter of attention as the participants were performing their own
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Fig. F6: Average trust delta scores with confidence intervals for each task with the trust-
dampening action marked with a vertical line.

part of the task. It would be beneficial to evaluate the participant’s perception of
the robot’s errors in a test where they only observe the robot. The analysis showed
higher decrease in reported trust after a wrong robot action when the participants
were doing simultaneous collaboration with the robot than when they were taking
turns, which may suggest a higher level of vulnerability in that situation.

Neither type of trust-dampening action increased the chance of the participants
interrupting the robot. The absence of interruptions may be due to the participants’
interpretation of the instructions. They were told to pause the robot if it did something
it was not supposed to. This may have been interpreted as the robot doing something
that would bring them in immediate danger or cause damage to the robot itself, rather
than just acting counter to the objective. This may also have been due to an inhibition
to commit to interrupting the robot if they were not sure if the robot was making
a mistake or if they were themselves mistaking. This could be affected by the test
conductor’s presence in the room. A separate experiment could be conducted where
the test ends after the trust-dampening action, so we can ask the participant why they
did or did not interrupt the robot and gain some insight into their perception.

While the analysis shows significant effect on participants’ preferred proximity
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Fig. E7: Average changes of participant proximity with confidence intervals for each task with
the trust-dampening action marked with a vertical line.

from the robot performing a wrong action in the condition where they moved cones
simultaneously, looking at the trend throughout the experiment, illustrated in Figure
F.7, it becomes unclear. The data shows a trend where the participants would inter-
changeably move closer to and further away from the robot, the trend lining up so
they moved away after the trust-dampening action, yielding a significant change be-
tween tasks. Seeing as this trend is consistent throughout the experiment the results
become inconclusive. This behaviour may be an effect of the nature of the task where
the cones are moved back and forth between the ends of the table. This may have
caused the participants to switch between two preferred positions and depending on
whether the depth camera, the robot and the table were perfectly aligned, this may
have caused the shift in proximity. It may also be due to the smaller sample size when
analysis a subset of our participants.

While the tracking system would allow us to monitor movement and changes in
posture during the collaboration, it is beyond the scope of this experiment to recognize
and isolate the moment when the participants would recognize the trust-dampening
actions of the robot. Making an assumption of when they recognize inconsistent
behaviour or errors would likely be easier if the robot made sudden changes, like
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increasing speed and making more motor noise. Isolating when the participant leans
away from the robot, rather than increasing their distance from it, would be easier if
the participant was discouraged from taking steps. This could be achieved by having
the participant stand on a small platform, requiring them to step down to move away,
though this would likely be hazardous and not representative of many HRC contexts.

Aside from the challenges specific to this experiment, evaluating human-robot
trust in a laboratory context present difficulties in terms of validity. As the participants
are aware of the experiment, they are likely to expect something to occur related to
the robot, especially when they asked questions pertaining to the dependability of
the robot. As such the participant’s reported trust in the robot may be affected by
their trust in the test conductor if they are present. This can possibly be addressed
by framing the collaboration in such a way that trust-dampening actions can occur
without being attributed to the experiment procedure itself or to the test conductor.
Such a framing could be that the robot is a prototype that needs testing to fix potential
errors. In addition, free-form questions pertaining to the participant’s perception of
the robot and the test scenario would yield valuable insight as to how their trust is
affected.

7 Conclusion

We set out to contribute to the fields of HRI and HRC by evaluating our top-down vi-
sual tracking system for its utility in real-time trust assessment during close-proximity
collaboration. Using a repetitive collaborative pick-and-place task we tested the sys-
tem in four conditions using two collaboration formats and two methods of dampen-
ing trust in the robot while administering human-robot trust questionnaires [6]. After
testing the system with 20 participants, five in each condition, we found that trust
in the robot was significantly decreased when the robot performed actions that went
counter to the shared objective, but not when the robot changed its movement pattern
while otherwise performing the task correctly. The decrease in reported trust was
significantly higher when the participant and robot performed their shared objective
simultaneously rather than taking turns. The trust-dampening actions did, however,
not increase the chance that participants would stop the robot during collaboration.

Whether participants’ preferred proximity to the robot was affected by trust-
dampening actions is inconclusive as the data shows odd movement patterns of
switching between going nearer to and further away from the robot throughout the
experiment. This may be due to the nature of the shared task where they switched
between moving a set of cones from one side of a table to the other. Future experi-
ments should focus on participants’ perception of the robot and the trust-dampening
actions, as the collaboration may affect their attention towards the robot and how they
perceive its actions.
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1. Introduction

Abstract

In this paper we outline some of the challenges of crowd-sourcing data for unsupervised
human-robot interaction experiments, as remote testing is a relevant measure in cases where
laboratory experiments are not possible or feasible. We designed and implemented a virtual
reality application for assessing human-robot trust in a close-proximity human-robot collabo-
ration setting. The experiment involved repeated tasks with a disruptions of participant expec-
tations midway through. After assessing the application and procedure in a laboratory setting,
self-reported trust towards the robot was consistent to similar prior experiments, while effect
on task performance is inconclusive. While there were no issues with application usability, our
remote data submission method can be improved.

1 Introduction

Close-proximity human-robot collaboration (HRC) is becoming increasingly relevant
as we are seeing the long-term effects of repetitive manual work in field like man-
ufacturing [1] and industrial production lines, such as musculo-skeletal diseases [2].
When using Herrmann and Leonards’ definition of HRC, where a the human and
robot work with the same component at the same time, it can be used to relieve some
of the strenuous and repeated tasks. However, close-proximity HRC requires trust
from the human collaborator towards the robot. Especially in cases like meat produc-
tion, where the robot will have to be equipped with sharp tools or powerful grippers.
In this experiment we aim to assess human-robot trust in close-proximity HRC.

Under circumstances where human-robot laboratory experiments are not possible
or feasible, it is relevant to consider how we can perform controlled experiments with-
out the need to gather many test participants in the same location. This is especially
relevant for research areas such as human-robot interaction (HRI) where experiments
often require the participants to be in the room with the robot. To address these
challenges we designed and evaluated a virtual reality (VR) test application, allowing
people with consumer-level VR hardware to participate unsupervised from their own
homes, enabling us to crowd-source test data.

In our experiment we aim perform a human-robot trust assessment experiment
inspired by Hald et al. [3], while adapting it to fit the challenges of creating a VR
data crowd-sourcing application. Even-though the goal to enable unsupervised ex-
periments with participants recruited via the internet, we are verifying the procedure
in a laboratory setting. The virtual environment used for the experiment is shown in
Figure G.1.

2 Background

Gadiraju et al. [4] analyzed and compared the strengths and weaknesses of labora-
tory experiments compared to crowd-sourced experiments. Strengths of a laboratory
experiments include a high level of control of process and environment, possibility
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Fig. G.1: The virtual environment used for the experiment, featuring the robot, chair and desk.

of screening of participants, while weaknesses are that they time-consuming and ex-
pensive. Crowd-sourced experiments, on the other hand, have the strengths of time-
efficiency and ease of access to diverse and representative, while there is less control
of environment and less knowledge of participants” background.

Chernova et al. [5] evaluated an experimental procedure for observing reactions
to task-specific social behaviours in a virtual robot in a virtual environment, finding
very similar patterns of behaviour observed in real-world tasks. Similarly, Matsas
and Vosniakos [6] designed a VR training system for HRC in manufacturing tasks,
utilizing a Microsoft Kinect for body tracking, showing positive results in regards
to the utility of VR applications in HRC simulation. Liu et al. [7] performed two
VR HRI experiments, showing that a VR headset significantly improved performance
in simulated HRC with the stereo display being a contributing factor. Their virtual
environment is similar to the one used in this experiment, as it features a robot arm
on a tabletop with the participant sitting at the opposite side of the table.

When assessing human-robot trust, we are working from Lee & See’s [8] definition
of trust in automation, which is based on the expectation that the agent, in this case the
robot, will achieve its goal in a context characterized by uncertainty and vulnerability.
Close-proximity HRC can easily involve vulnerability due to the risk of injury due
to particularly powerful robots. In our experiment we work with trust in terms of
the participant’s attitude towards the robot in the current moment, rather than the
build-up of trust over a prolonged period of collaboration.

Among the factors affecting trust in HRI are the robot’s physical characteristics,
its performance, while environmental factors have shown only moderate effect [9].
Additionally, Dragan et al. [10] showed that the robot’s motion patterns affect trust,
as predictable motions were preferable to motion that is purely functional from a
motion-planning perspective.
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3 Designing an Unsupervised Experiment

Designing an experiment to be performed unsupervised by a subject in their own
home presents a number of challenges in regards to hardware requirements, usability,
privacy and in communicating the experimental procedure. The main goal is to make
the experiment as accessible as possible to prevent people from losing interest, as there
are no repercussions for them to quit the experiment at any moment, as opposed to
the social situations that may occur if doing so in a laboratory experiment.

3.1 Hardware Requirements

In this case the hardware requirements for people to participate in the test are a
SteamVR-compatible headset and a compatible Windows PC. Requiring what would
be considered niche hardware, compared to just a PC with any operating system, will
dramatically decrease the number of people available to participate. As such, when
recruiting via the internet one should search communities for people with interest in
every sub-category of the experiment subjects. In this case, one should link to the
experiment in communities for both VR, robots, and experiments and surveys for the
chance that a subset of each community are interested in one or more of the other
subjects, with an interest pertaining to the hardware requirements being the most
relevant.

3.2 Usability

Because there will be no test conductors present and adding a manual or tutorial
to the test application will add time to the experiment duration, possible decreasing
participant interest, using the test application should be as intuitive as possible. Es-
pecially if the experiment does not use common hardware, like mouse, keyboard or
gamepad, it can be a benefit to limit the variety of actions required as well as the
number of actions the participants can perform at any point. In the case of this ex-
periment, the participants are informed that they will not need the tracked controllers
that often come included with a SteamVR-compatible headset. There are more details
on this in Section 4.4.

3.3 Privacy Concerns

People may have reservations about downloading and running a program from an
unverified source on their home computer, especially if the program has to send data
over the internet. To help this issue it should be very transparent how the program
works and what data is being send and how. It may encourage trust in the researcher
to include contact information in the experiment description.
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4 Experiment

In order to test human-robot trust we have designed a repeated task where the virtual
robot arm moves toward participant, holding a plate with a letter written on it. The
starting and forward positions of the robot is shown in Figure G.2. When the robot
finishes its movement, the participant has to confirm whether the letter is an "A" or a
"B", after which the robot moves back to its starting position. The letters are shown
at random. This task is performed ten time. The first five times the robot moves at
one of its two starting speeds, full speed or half speed based on the robot’s standard
movement planning. After the fifth task, the robot changes to its other movement
speed setting without warning with the aim of disrupting the participant’s expecta-
tions and trust towards the robot. In the experiment we are testing the following two
hypotheses:

e H1: Self-reported trust in a VR close-proximity HRC task is significantly af-
fected by sudden changes in robot movement speed.

¢ H2: Participant question response time in a VR close-proximity HRC task is
significantly affected by sudden changes in robot movement speed.

Fig. G.2: Left: The starting position of the robot. Right: The forward position of the robot.

4.1 Virtual Environment

The application is implemented using the Unity 3D game engine and the SteamVR
plugin. The virtual environment used for the experiment is an open office area made
from the Snap Prototype Office [11] asset pack from the Unity Asset Store. The office
environment is used in order to have a simple and recognizable setting, rather than a
bare environment, which may be unsettling to the participant.

The environment is based on the sample room from the asset pack, but with the
participant situated in a corner isolated from the other tables and with most props
removed. This is to prevent distractions, as props might be assumed to be interactive.
Within the participants reach inside the VR play area are an office chair and a desk
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with the virtual robot arm mounted on top of it. The purpose of the office chair is to
guide the participant to where they should sit within their play area.

4.2 Virtual Robot

For the experiment we are using a virtual Rethink Robotics Sawyer robot. The robot
model is placed at the far side of the desk in front of the participant. The robot’s move-
ments are based on the inverse kinematics, size and weight of the real robot. Using
a Robot Operating System server on a Linux virtual machine we enable connection
between Unity and the real robot. After programming the robot’s motions for the
experiment, they are executed while the joint positions are streamed to Unity where
they are recorded for playback. This records the springy motions occurring when the
robot stops, making the virtual robot more realistic. As the motions are recorded,
audio of the actuators and springs is also recorded for playback. After recording, the
fan noise from the robots cabinet is removed using noise reduction. The cabinet does
not appear in the virtual environment.

4.3 User Interface

As the participants are performing the test with the VR applications, they have to
press buttons to confirm that they are ready or to select options. To prevent con-
fusing the participants by giving them too many options, they are informed in the
experiment description that they do not need any hardware other than a SteamVR-
compatible headset; no controllers needed.

The interface in the virtual environment is presented as white boxes floating over
the desk, labeled with black text. Each box presents an option and in order to select
it, the participant has to focus on it for two seconds. Using a pointer-style input
modality, a ray is cast from the tracked headset going in the viewing direction. Where
the ray hits a surface, such as on the table, floor, walls or option boxes, a small grey
sphere appears, acting as a cursor.

To select an option, the participant has to hold the cursor on the corresponding
box for two seconds. As they hold the cursor on the box, eight grey boxes start
appearing in a circle formation around it, acting as ticks on a clock face, and the
option is selected when the circle is complete.

This interface is communicated to the participants partly by having the cursor be
visible at all times and partly through the first option presented in the experiment.
The experiment can be presented in either English or Danish, and at the start of the
test the participants have to select a language option. The options are presented on
two boxes, one labelled "Look here for English" while the other is labelled the same,
but in Danish. Using the "look" keyword in combination with visible cursor are used
to relay the interface to the participants.

44 Procedure

The participants are recruited, brought to the laboratory with the VR hardware and
introduced to the main premise of the experiment. They are presented with a PC with
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a Google Forms page open in a browser and told that they should read the instructions
in the survey and perform the test to the best of their ability. They are told that if they
have any questions, the test conductor is available. The survey does not require an
email address or login to perform the test. This is to maintain participant anonymity
to prevent privacy concerns.

The introduction has a Google Drive link to a ZIP file, and the participant is
instructed to download the file, unzip it and run the Unity application inside using
SteamVR. In the lab setting, the participants are informed that the file is already
downloaded and are shown where it is. The participants are informed to return to
the survey after completing the test application. In the laboratory experiment we used
an HTC Vive VR headset with the Deluxe Audio Strap accessory.

When in the virtual environment, the participant is first introduced to the gaze-
directed pointing interface by having them pick the language options, as explained in
Section 4.3. Afterwards, instructions about the test itself are shown above the desk,
with a "Start" button under it. The language selection and introduction interfaces
are shown in Figure G.3. The participant is informed that the robot will show them
a letter, and they will have to answer what letter it is. They do this by picking the
options "A" or "B", which are selectable at either side of the robot arm, as shown in
Figure G.2. After they pick the letter, the robot returns to its outset position. They
are also informed that after each task, they have to rate their feeling of safety around
the robot. This is done with a Likert scale where they state their agreement to the
statement, "I feel safe about the robot". The scale is made from seven selectable boxes,
the left-most being labelled "Disagree" and the right-most labelled "Agree" and the
middle box being labelled "Neutral". The Likert scale is shown in Figure G.4.

The robot will present you with a letter.

Please pick the shown letter when the options appear.

Then state your level of agreement with the shown statement.
There will be 10 letters presented to you.
Please be alone in the room and use headphones.
Thank you for your time.

Look Here Kig Her
For English For Dansk

Fig. G.3: Left: The language selection interface. Right: The experiment introduction and start
button.

The participant starts with either the slow or fast robot movement setting. When
the application is first started, the starting speed is decided by whether the system
clock is at an even or uneven second. After the first time, the starting speed will
change back and forth between test. This is to attempt to get and even number of
samples for each condition in the context of crowd-sourcing data, where the partici-
pants are encouraged to have as many people from their household test as possible.
They are advised to be alone in the room while testing, though. The first five tasks
are performed with the starting speed, after which it changes without warning to the
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Fig. G.4: The Likert scale interface used in the experiment.

other speed for the last five tasks.

After the last task, the participant is informed that they can find their data log in
the "RobotVRTest_Data" folder next to the Unity application executable and that there
are further instructions in the survey. The participant is instructed to open the data
log in a text editor, such as Notepad, and copy and paste all of the file contents into
the first text field of the survey. While this method seems crude in relation to usability
and ease of use, it ensures the participant of their privacy and makes transparent what
data is sent, as they are able to read it all. They are also presented with the option
of sending the log to the researchers via email. After filling in additional details, age,
gender and nationality and submitting the survey, the experiment is concluded.

5 Results

While we developed the experiment for crowd-sourcing data, we first need to verify
that this is a suitable solution. Therefore we performed the experiment in the labora-
tory with 20 subjects, 7 female and 13 male, average age 29, raging between 24 and
38. We disinfected the hardware using isopropyl alcohol between each subject.

5.1 Data

The trust scores and task completion times are shown in Figure G.5. Running the
Shapiro-Wilk test, the data is not normally distributed when grouped for any of our
comparisons, so we perform non-parametric tests. Performing a Friedman test on the
repeated trust reports for both groups, starting with slow and fast robot movement,
yielded significant difference. The group who started with the slow robot yielded
a Chi-squared value of 27.85 (p <.01), while the group starting the fast robot had a
Chi-squared value of 20.38 (p <.02). Analysing the task completions times also yield
significant difference for both groups, Chi-squared value of 30.90 (p <.01) for the slow
robot group, 20.11 (p <.02) for the fast robot group.
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Performing the Friedman test with post-hoc for the group starting with slow robot
movement put task five and six in separate categories, showing a significant effect on
reported trust from increasing the movement speed. For the group starting with fast
robot movement task five and six were in the same category, suggesting no significant
effect on trust when decreasing speed. This means we can retain our first hypothesis
as long as it pertains to increasing speed without warning, similarly to prior similar
experiments.

The post-hoc test on the task completions times on both movement speed groups
yields significant difference between all tasks, making it hard to attribute the changes
in completion to the changes in movement speed, rather than task experience or other
factors. Because of this results are inconclusive in regards to the second hypothesis.
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Fig. G.5: Left: The average trust rating after each task. Right: The average task completion time
in second for each task. Both include error bars and a vertical line marking the mid-point when
the robot movement speed changes.

5.2 Observations

Observing the participants, none had problems with the gaze-directed pointing user
interface, as no one spend more than a few seconds before starting to use it, and no
questions or comments were made about it.

Several participants asked questions to confirm when they had to start the VR
application. Others had trouble opening the log file on Notepad, as it was not the
default program for .csv files on the testing computer. Two participants started writ-
ing their names in the text field in the survey labelled Data Log, where they were
instructed to copy and paste the contents of the log file. This was corrected by the test
conductor.
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6 Discussion

The trust score analysis suggest a significant effect from changing the robot motion
speed. However, due to the context of unsupervised remote testing, the trust question-
naire was shortened to one direct question, compared to previous related experiments,
to keep test time short. This may have affected responses, as the participants could
suspect something to change to surprise them. Still, the slow increases in trust score
shown in Figure G.5 suggest that they were not expecting anything to happen, but
they may also have been countering their expectations when reporting, consciously
or unconsciously, for the sake of the experiment.

The decision to not label all the buttons in the Likert scale may have given some
the impression that some were not selectable. Alternatively, to avoid visual clutter, we
could color the buttons something other than the tiles with questions and instructions,
to establish without doubt what is interactive and what is not.

Judging by the difficulty some participants had with the data log, it may be worth
it to implement a text field in the test applications itself, allowing for easily copying
the data log or using a button to add the log to the system clipboard. There is a
risk that if a participant has problems with this step and there are no one to assist,
that they will abandon the survey at the very end. It could also help to rename the
Unity executable file to something more helpful, like "Click Me To Start", rather than
the generic application name, to help participants who are unfamiliar with Unity
programs, their icons or names.

The issues with participants starting to fill out the survey prematurely or putting
their name by mistake may be caused by the laboratory setting, as they may be rushing
due to a feeling of pressure. We may assume that if a participant have decided to start
the survey on their own accord, they will take their time with it.

Aside from the before-mentioned difficulties, the participants did not generally
have issues using the HTC Vive VR headset, even if they stated that they had no
experience using them. This suggest that participants will have little to no difficulty
if they are performing the test at home with their own hardware.

7 Conclusion

We set out to design a procedure that enables test subjects to participate in HRI exper-
iments from their own home using a VR headset, allowing for data gathering through
crowd-sourcing in cases of where laboratory experiments are not possible.

We set up a virtual environment with a virtual Rethink Robotics Sawyer robot
arm in order to assess human-robot trust in close-proximity HRC. We disrupt the
participants expectations about the robot by having it move towards the participant
and changing movement speed midway through the experiments, and we assess the
trust throughout the test by having the participant report their feeling of safety after
each task.

Verifying the experiment in a laboratory setting with 20 participants, we found
that reported trust was significantly affected disrupting expectations, which is consis-
tent with similar experiments with a real robot. The effect on task completion time
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was inconclusive.

Participant had no problems using the VR headsets during the laboratory exper-
iment, and everyone understood the gaze-directed pointer interface utilized in the
test application. Some quality-of-life improvements can be made to the test applica-
tion pertaining to data logging while maintaining participant anonymity. This will
be important in limiting user frustration, increasing the change the participants will
complete the experiment when performing the test at home with their own hardware.

Using VR applications for unsupervised experiments into HRI is possible from a
usability and validity standpoint, while there are a few improvements to made to our
procedure.
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SUMMARY

To help enable robot-augmented production, where robots assist production
staff to relieve them of repetitive and strenuous tasks, the purpose of the
research is enabling real-time human-robot trust assessment by inferring
decreases human trust from signs of physical apprehension. To ensure safe
and productive human-robot collaboration we have to ensure an appropriate
level of trust in the robot, as too much trust can lead to dangerous situations,
whereas too little trust can lead to loss in productivity. The main hypothesis
is that if the user experiences a decrease in trust, they will increase their dis-
tance from the robot by stepping or leaning away from it.

A series of experiments were performed using a Rethink Robotics Sawyer ro-
bot and an augmented reality enabled human-robot collaboration cell, using
projection to display task critical information within the shared work space.
Participants performed repeated tasks with the robot, midway through which
the robot would disrupt the participants' expectations in order to decrease
their trust towards it. Their movements were assessed using an infrared cam-
era for body tracking to correlate it with decreases in trust.
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