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Abstract

Massive MIMO (multiple-input multiple-output) systems are key candidates
for the fifth generation (5G) of cellular networks. Having a lot of antenna
elements at the base station (BS) is an important enabler to provide a very
high spatial resolution. Therefore, systems beyond 5G rely on increasing
the number of elements at the BS to support future applications. At very
large dimensions, e.g. aperture sizes bigger than 100 wavelengths, a new
type of array called extra-large scale MIMO (XL-MIMO) emerges that offers
enhanced spectral and energy efficiency. However, practical implementation
of such arrays requires overcoming several challenges such as computational
complexity, hardware limitations and non-stationary propagation patterns.

This thesis presents several techniques to handle major existing concerns
in the XL-MIMO arrays, namely: computational complexity of receiver al-
gorithms, scalability and interconnection overheads. In order to address the
complexity issue, different low complexity methods are proposed. One of the
main differences between these methods and conventional linear receivers in
massive MIMO systems is, that they exploit the information about user en-
ergy patterns over the array to operate more effectively. Another approach is
to distribute the receiver processing tasks between several nodes and create
a hierarchy between processing nodes. The thesis studies different architec-
tures and mostly focuses on a distributed way that uses sub-arrays to obtain
local estimates at local nodes. Then, a central node collects all the local data to
perform a global decision. Furthermore, the thesis suggests several antenna
selection methods to limit the area of the array being processed and control
the amount of computations. These methods directly use the received energy
patterns at the BS to find the best active antenna sets and turn off the rest
of the array to save energy. Moreover, to address the hardware considera-
tions such as scalability and inter-connection overheads, a fully decentralized
method is proposed that works without a central node.

In summary, the main outcome of the thesis is the proposal of signal pro-
cessing enablers for the XL-MIMO systems. The proposed methods address
the aforementioned challenges while providing acceptable performance.
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Resumé

Massive MIMO (multiple-input multiple-output) systemer er vigtige kandi-
dater til den femte generation (5G) af mobilnetværk. At have mange an-
tenneelementer ved basestationen (BS) er en vigtig muliggør for at give en
meget høj rumlig opløsning. Derfor beror systemer over 5G på at øge antallet
af antenneelementer på BS for at understøtte fremtidige applikationer. Ved
meget store dimensioner, f.eks. ved aperturer større end 100 bølgelængder,
opstår en ny type antennearray kaldet ekstra stor MIMO (XL-MIMO), der
giver forbedret spektral- og energieffektivitet. Praktisk implementering af
sådanne arrays kræver imidlertid at flere udfordringer overvindes, såsom
beregningskompleksitet, hardware -begrænsninger og ikke - stationære ud-
bredelsesmønstre.

Denne afhandling præsenterer forskellige teknikker til håndtering af be-
tydelige udfordringer ved XL-MIMO-arrays, navngivelig: beregningsmæs-
sig kompleksitet af modtageralgoritmer, skalerbarhed og sammenkoblings
omkostninger. For at løse kompleksitetsproblemet foreslås forskellige lav
kompleksitets metoder. En af de vigtigste forskelle mellem disse metoder
og konventionelle lineære modtagere i massiv MIMO-systemer er, at de ud-
nytter informationen om brugerens energimønstre over arrayet for at op-
erere mere effektivt. En anden tilgang er at distribuere modtagerens be-
handlings opgaver mellem flere noder og danne et hierarki mellem behan-
dlingsnoder. Afhandlingen præsenterer forskellige arkitekturer og fokuserer
hovedsageligt på en distribueret metode, der bruger underarrays til at opnå
lokale estimater på lokale noder. Derefter indsamler en central node alle de
lokale data for at udføre en global beslutning. Desuden foreslår afhandlingen
adskillige antenneudvælgelsesmetoder for at begrænse arealet af det array,
der behandles, og kontrollere antallet af beregninger. Disse metoder bruger
direkte de modtagne energimønstre på BS til at finde de bedste sæt af aktive
antenner og slukke for resten af arrayet for at spare energi. Desuden fores-
lås en fuldstændig decentral metode, der fungerer uden en central node, for
at imødegå hardwareovervejelser såsom skalerbarhed og sammenkoblings
omkostninger.

Sammenfattet er hovedresultatet af afhandlingen forslaget om signalbe-
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Resumé

handlings aktiverere til XL - MIMO - systemerne. De foreslåede metoder
adresserer de førnævnte udfordringer og giver samtidig acceptabel ydeevne.
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Chapter 1

Introduction and Motivation

In today’s society, we are surrounded by various kinds of connectivity de-
vices and our jobs, social lives and well-being depend on them. Use cases for
each of these devices are countless and still keep growing. Unlike 20 years
ago, when mobile phones could only make calls or send text messages, nowa-
days they can be used for many applications such as video conferencing, web
surfing and navigation. Moreover, there are many types of user equipment
other than mobile phones such as internet of things (IoT) devices or vehic-
ular communication that need wireless connectivity. This rapid growth in
the types of services for the mobile (or cellular) networks is a result of the
development in wireless technologies. With every new generation of the mo-
bile networks, several improvements and new services are being introduced.
Currently, early implementations of the fifth-generation (5G) with limited
services are being deployed [1].

There are many key changes in the 5G compared to the older genera-
tions that target three goals: very high data rate for interactive applications,
ultra-reliable low-latency communications for mission-critical applications
and massive machine type connectivity for the internet of things (IoT) use
cases. Each of these goals has a different requirement in terms of data rate,
latency, reliability and number of connected devices [2]. In order to ensure a
certain quality of service (QoS) for any application, a system designer should
carefully describe the specifications of it in terms of these 4 requirements.
For instance, an application that uses video calling needs a very high data
rate, low latency, moderate reliability and a few connected devices to per-
form as expected. To satisfy these demands, different technologies have been
proposed [3]. One of the main technologies for the 5G deployment is mas-
sive multiple-input multiple-output (M-MIMO) arrays that use tens of anten-
nas at the base station (BS). Having a lot of antenna elements allows a very
high spatial resolution providing a high spectral efficiency (SE) for multiple
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Chapter 1. Introduction and Motivation

users [4]. This feature can be used for all three key services in the 5G [8, 9],
e.g. high data-rate connectivity. Therefore, the M-MIMO systems attracted a
lot of interest in the community.

Multiple antenna arrays were in use way before the idea of the M-MIMO
systems. For instance, many commercial systems such as TV broadcasting,
radars, localization and navigation systems at airports were using arrays with
several antennas. In the late 90s, the idea of space-time codes to improve the
bit error rate of a 2× 1 single-input multi-output (MISO) system was pro-
posed in [5]. Since then, researchers focused on adding more antennas at
both the transmitter and receiver devices to increase achievable data rates.
The concept of the M-MIMO communications was first proposed in [6] intro-
ducing phenomenal changes in the MIMO systems by assuming a BS with an
infinite number of antennas. Even though the idea seemed very theoretical
and far from any practical system in the beginning, it got a lot of atten-
tion later due to very interesting features of such array systems. Most of the
works [4, 16, 17] consider a canonical M-MIMO system, where a multi-carrier
and multi-cell network operates in a synchronous time division duplex (TDD)
protocol. This allows much more efficient channel estimation methods that
only scale with the number of users and not with the number of the BS an-
tennas. Moreover, it is assumed that the number of antennas at the BS is
large enough to achieve channel hardening1 and significantly larger than the
number of active single antenna user devices [16]. Furthermore, each of the
BSs uses linear processing techniques for signal recovery/transmission inde-
pendently. Some of the research topics with these assumptions are reaching a
finish line. For example, energy and spectral efficiency optimization [18, 19],
power optimization [21] and pilot contamination control [20]. Thus, it is nat-
ural for any reader to ask "What is going to happen next? ". We will get back
to this question shortly. But first, we review some of the physical implemen-
tation examples of M-MIMO systems to get a more realistic perspective of
them.

There are several commercial implementations of M-MIMO arrays that
are being used on different network deployments. For instance, Ericsson
AIR 6468 [22] which has 64 antenna elements connected to 64 fully digital
transceiver chains in both uplink and downlink, and it was designed for 4G
LTE and 5G applications in 2018 [13]. Similarly, Huawei has announced that
most of their current commercial products have either 32 or 64 antennas [23].
Therefore, one can completely disregard the old claim of high complexity and
non-practicality of the M-MIMO arrays, since they are already being used
in commercial networks. Now, we can argue that the number of antenna
elements can go beyond the above mentioned values in near future to extend
the quality of existing services or to enable new services.

1Channel hardening makes a fading channel behave as deterministic.
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Here, we get back to the question about the possible future trends. Re-
cently, the idea of scaling up the array size in the M-MIMO up to hundreds
of elements has become a hot research topic [30–32]. We call this generation
of antenna systems, extra-large scale MIMO (XL-MIMO) arrays. More pre-
cisely, in this thesis, we define antenna arrays with more than 200 elements,
which have a physical size of tens of meters2, as XL-MIMO arrays. The main
benefits of the XL-MIMO arrays are threefold:

1. They offer the potential of achieving high SE due to the ability to mul-
tiplex a large number of users over the same time-frequency resources.
This will support beyond 5G services such as virtual reality gaming.

2. They can provide very high EE that enables extreme obtainable through-
put while assuring practical power consumption for the base station.

3. They can easily be deployed on the existing infrastructure such as walls
and ceilings in malls, airports and large venues to help with the cover-
age issues in crowded places [70] [7].

In addition to these merits, all the advantages from M-MIMO systems such
as cell edge coverage are also valid for the XL-MIMO arrays. In the following,
we elaborate more on each of the mentioned unique benefits. As discussed
above, with more antennas at the BS, the ability to fully exploit the spatial
degrees of freedom (DoF) enhances. As a result, we can achieve higher data
rates or higher reliability in a lower transmission latency. This makes it pos-
sible to replace wires with wireless devices in some of the systems such as
entertainment tools, factories and surgery tools [11]. The second benefit is
about the ability of such arrays to reduce the required power consumption to
achieve a certain area throughput. This can indeed save a substantial amount
of power and become an enabler for greener network solutions [14]. Finally,
the last advantage comes into place when we want to install an XL-MIMO ar-
ray, where we can use the existing infrastructure, i.e. walls and ceilings [13].
This indeed reduces the costs of the system deployment. For instance, XL-
MIMO arrays can be installed all around the walls of a stadium to better cover
very high number of simultaneously active users. It is worth mentioning that
each of the antenna elements is made of very cheap materials, but together
they can provide many different services [14].

One way to implement an XL-MIMO system is to use a group of sub-
arrays that are composed of a number of antenna elements. Fig. 1.1 shows
an example of such XL-MIMO system deployment. They can have equal or
unequal sizes. The first case is a good option if the environment is homo-
geneous in terms of user distribution and the second case can be used in

2We assume sub-6 GHz frequencies and half a wavelength antenna distancing in a linear
array.
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Fig. 1.1: An example of the distributed architecture of the XL-MIMO system with presence of
the energy spatial non-stationarities.

non-homogeneous scenarios. The bright side about using sub-arrays is that
a part of the processing tasks can be done locally at each sub-array unit and
then forwarded to a central unit for a final symbol detection procedure (see
Fig. 1.1). This kind of architectures can help in many practical issues such
as scaling up the number of antennas, high power central processing units
and high communication overhead in the system. On the other hand, the
performance degradation due to distributed processing is inevitable and it
goes until a point that the network performance requirements cannot be met.

One of the main differences between the XL-MIMO arrays and other
MIMO systems is the physical size of the array. Due to its large size, dif-
ferent antenna elements face dissimilar environments [36]. Thus, each part
of the array is only visible to subsets of clusters of scatterers in the propaga-
tion environment resulting in an uneven received energy distribution along
the array. This variation on the received user energies is called spatial non-
stationarities. This is different from the conventional M-MIMO case where
the energy distributions are assumed to be stationary and independent of the
antenna indices. As shown in Fig. 1.1, different parts of the array is visible to
each of the users in the area. This variability is degrading the performance
of the system and we investigate it in detail in Chapter 3.
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1. Motivation

1 Motivation

As discussed above, the idea of adding more antennas at the BS has brought a
lot of benefits for wireless communications. However, we believe that it does
not stop with current M-MIMO array technologies and the antenna count can
be pushed even further. In this direction, XL-MIMO arrays have the potential
to be a proper candidate for the next generation of the MIMO communica-
tions. Due to the benefits of large antenna arrays, we conjecture that the
trend of increasing the number of antenna elements in base stations will con-
tinue to be the main driver of future systems. Hence, we set out to devise
the necessary signal processing algorithms to make such an increase possible
and feasible. In short, we try to tackle the problem of high computational
complexity, scalability and channel non-stationarity with our methods. A de-
tailed description of the challenges and research questions is presented in the
next chapter.

2 Structure of the thesis

The rest of the thesis is organized as the following; first, we start with stat-
ing the problem and research questions that this thesis is trying to answer.
Then, we continue with categorizing the contributions of the thesis into sev-
eral groups. Next, for each of the groups, we review the related literature,
highlight the research gaps, demonstrate our proposed methods to tackle the
existing challenges and present a summary of our papers. We conclude the
thesis by discussing the advantages of the proposed receivers and directions
for future research.
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Chapter 2

Problem statement

In this chapter, we focus on identifying the challenges of XL-MIMO systems
and then try to address each of the challenges with a research question. Next,
we introduce our methodology together with comparison measures that have
been used to evaluate our methods.

1 Challenges

Before listing the existing challenges, we start with a clear definition of an XL-
MIMO array and what we mean by it throughout this thesis. An XL-MIMO
array is a MIMO array with tens of hundreds of elements where its physical
size is in the range of tens of meters for the sub-6 GHz frequency bands. Un-
like most of the works in the area of M-MIMO arrays, in this thesis we are not
aiming at making large-system or asymptotic analysis of M-MIMO systems;
but instead, we would like to focus on the more practical signal process-
ing aspects operating with these very large arrays. For instance, we do not
employ random matrix theory, large-system analysis, and asymptotic results
on simple theoretical channel models to analyze the problem, and instead,
put more emphasis on the processing aspects for arrays with a very large
(but finite) number of elements and rely on more realistic and sophisticated
models.

Similar to any other technology, there comes a lot of difficulties in the de-
sign and development phases. Naturally, a group of the challenges are inher-
ited from the M-MIMO systems. For instance issues regarding channel state
information (CSI) acquisition, pilot contamination, hardware non-linearities,
etc. However, the focus of this thesis is to study the challenges that arise
when we go extra-large scale and for this reason, we avoid addressing typi-
cal M-MIMO problems for the rest of the thesis. The main concerns regarding
the XL-MIMO systems can be grouped into three major challenges:
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Chapter 2. Problem statement

1. Computational complexity: Larger arrays support more users and re-
quire more computational capacity at the processing unit. Due to the
large dimensions of the channel matrices, some of the conventional lin-
ear signal processing techniques that deal with matrix inversion become
unfeasible.

2. Non-stationarities on the energy patterns: An important modification
on the channel assumptions for this type of array is that the average
channel gain varies along the array. We call this uneven distribution
of the receiving power over the array channel non-stationarities. This
phenomenon is limiting the number of effective antenna elements in
the signal transmission and therefore results in a reduction in the array
gain and the SE.

3. Scalability: Managing more and more antenna elements at the BS
causes many deployment issues including the scalability and signalling
overhead. For instance, many commercial products are made with a
certain number of antenna elements and putting them together to make
an extra-large array is not straightforward. The number of interconnec-
tions, signalling and total back-haul bandwidth of the overall system
should be allocated carefully to ensure the desired performance.

Next, we address each of the mentioned challenges in one research question
that this thesis is trying to answer.

2 Research questions (RQs)

RQ1: Can receiver processing methods with feasible complexity lead to
a performance close to those of classical receivers, such as zero-forcing
(ZF) or minimum mean square error (MMSE), which are infeasible in
the XL-MIMO regime? Which techniques are suitable for this task?

RQ2: What is the effect of channel non-stationarities in the performance
of XL-MIMO arrays? Can these be accounted for in order to obtain
better performing receiver algorithms?

RQ3: Is there a way to make a scalable architecture for an XL-MIMO
array? In other words, can we adapt our signal processing methods to
work on multiple nodes with minimum signalling overhead between
them?

In the following, we investigate each of the questions and provide a short
description of our approach to tackle them.
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3. Methodology

As mentioned before, with an increase in the number of elements in the
antenna array and the number of serving users, conventional linear process-
ing methods become computationally heavy. We aim to use distributed pro-
cessing units to divide the signal processing tasks. Moreover, we try to in-
vestigate non-linear and low-complexity techniques to keep the operations as
simple as possible. Therefore, the main problem is converted into finding the
best way to supervise the distributed units. In other words, we try to design
a multi-node system where each node is connected to a sub-set of antenna
elements and has limited processing capability. Each of these nodes produces
local estimates and the goal is to mix these estimates in a way that the per-
formance of the whole system is close to the one with all nodes working in a
central manner. Our main candidate methods are message-passing, random-
ized and genetic algorithms that have low-complexity and are multi-node
compatible. We discuss each of these methods in detail in Chapter 3.

In order to explain the second question, it is worth noting that the energy
non-stationarities along the array cause uneven importance for the signals
observed at the antenna elements. This property gets even more relevant
when we employ distributed processing nodes. In that case, some nodes will
have better channel conditions and receive lower interference signals which
make their local estimates more reliable. This indeed adds to the difficulty of
the problem since a uniform mix of the estimates will not result in the best
performance. Therefore, there is a need for a smarter decision-making system
that mixes the local estimates based on their reliability and signal quality.

Last but not least, the issue with the scalability of the XL-MIMO arrays
arises when we try to add more antenna elements to an existing MIMO sys-
tem to expand its quality of service. For example, if a centralized processing
technique is employed, then adding new elements will require connecting
each of them to the central unit. In some cases, this might not be possible if
the processor is far from the array or its input ports are all in use. Thus, using
a distributed architecture would make sense because of lowering the need for
wiring and computational capacity. However, this new design should con-
sider the performance loss, delay and overhead caused by decentralizing the
array processing unit. Moreover, more relevant to the studies of this thesis, it
requires signal processing methods that can deal with these issues and whose
complexity scales well in such situations.

3 Methodology

Throughout this thesis, we have used computer simulations implemented by
MATLAB. The simulations use the Monte-Carlo method for repeated random
experiments since closed-form performance measures are not available for
the proposed techniques. Our performance assessment is based on synthetic
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channel realizations generated using stochastic channel models. The main
sources of randomness in the simulations are the additive Gaussian noise,
the fading channel gain matrix and the transmitted data symbols for each of
the users.

In order to compare the performance of the proposed methods, we use
several measures. Some of these metrics include symbol and bit error rates
(coded and uncoded), sum-rate, energy efficiency, spectral efficiency and
post-processing signal to noise and interference ratio. Moreover, the com-
plexity of the algorithms is compared in terms of the number of complex
multiplications and the size of signalling overhead between the distributed
units.

With the aim of finding out how good our methods are, we have imple-
mented several well-known benchmark techniques. In general, these tech-
niques can be classified into two groups of linear and non-linear methods.
Each of the methods within these groups has two implementation types: 1.
centralized, where all of the processing tasks are done in a central node, 2.
distributed mode, where several nodes are operating in co-operation. It is
worth mentioning that the main idea is to propose a distributed method that
works very close to a centralized processing technique.

3.1 Scope of the study and main assumptions

In this subsection, we mention the main assumptions made throughout this
thesis. We study single-cell scenarios with orthogonal pilots for all the active
users. We consider synchronous TDD cases where the reciprocity between
the uplink and downlink channel holds. Channel state information (CSI) is
assumed to be known at the BS. We leave channel coding out of the scope
of our research and the objective of our proposed receivers is to recover the
modulated user symbols. For the most part of the papers (except papers
G and H), we assume the uplink data transmission, where the BS detects
user symbols. Similarly, in all of the papers except paper H, we assume a
digital beamforming system where each antenna element is connected to an
RF chain unit. Moreover, we assume that all the active users are in connected
mode and have data to transmit. The performances are evaluated at a link-
layer level ( physical layer). We have investigated various types of channel
models for simulating the wireless environment including uncorrelated and
correlated Rayleigh fading models.
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Chapter 3

Background and

Contributions

In this chapter, first, we categorize the areas of contribution of the thesis
into 4 groups and describe the research questions that each group tries to
answer. Next, for each of the groups, we study the state of the art (SoA)
and demonstrate the research gaps in the SoA and how the studies in each
group aim to go beyond and solve the challenges. We finalize the discussion
of each group with a short summary of the papers published in each group.
We conclude the chapter by summing up the contributions of the thesis.

1 Grouping of the contribution areas

In order to discuss the logic behind classifying the types of the contributions
in the thesis, we begin with discussing briefly the aim of the thesis. As men-
tioned in Chapter 2, our focus in this thesis is to answer 3 research questions.
These questions are the concerns about: complexity performance trade-off,
dealing with non-stationarities and scalable receiver design for the XL-MIMO
systems. Thus, the challenge is to find signal processing techniques that are
low complexity, scalable and less sensitive to the channel non-stationarities.
In short, the main outcomes of the thesis are various distributed low com-
plexity methods that are working better than other conventional techniques
in the XL-MIMO channel models.

We arrange the areas of the contributions in 4 groups, depending on the
type of problems we solved and the methods we exploit in each of them to
answer the RQs. Fig. 3.1 shows a schematic of these areas and consequently,
the papers within their corresponding categories. The first group discusses
the main advantages and concerns of having an extra-large array and demon-
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Fig. 3.1: Graphical representation of the contribution areas and the papers in each of the groups.

strating all three RQs in detail and proposing possible directions to deal with
them. The second group focuses on all the RQs and uses graph-based tech-
niques to lower the receiver complexity. The third group mostly targets RQ1
and RQ2 and exploits randomized methods to propose distributed receiver
processing schemes. Finally, the last group pays attention to the problem of
antenna selection using genetic algorithms to lower the computational costs
and is concerned about RQ1 and RQ2.

In the following, we study each of the groups in detail by reviewing the
related literature, pointing out the gaps in the state-of-art and then titles of
the papers and their approach to handle the challenges.

2 Group 1: Fundamental definitions and modeling

As discussed above, this group introduces the benefits and challenges of the
XL-MIMO arrays. It formulates the RQs and gives preliminary ideas and
results on the possible ways to tackle the obstacles of such systems. In the
following, we study several relative background topics for this group.

2.1 From MIMO to Massive MIMO

Scaling up the size of the conventional MIMO arrays was first mentioned
in [6] and then more practical approaches were introduced in [15] and [16].
Authors in [4] list five main improvements of the M-MIMO compared to the
MIMO arrays that are: 1. A 10-fold increase in the capacity and 100 times
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better energy efficiency at the same time. 2. the possibility of using inexpen-
sive and low-power components 3. significant reduction in the latency on the
air interface 4. simplified multiple access layer and 5. increased robustness
to both man-made interference and intentional jamming. All of these points
are in line with the main targets of 5G and can be exploited for different use
cases [3].

One of the main features of the M-MIMO systems is their ability to sup-
press the interference caused by serving multiple users at the same time.
This is a result of favorable propagation that is discussed next. The quantity
of the interference between two users can be measured with an inner product
between their channel vectors. With a large number of antennas at the BS,
the channel vector of each of the users has many elements. Using random
matrix theory and basic assumptions, it can be seen that while increasing the
vector dimensions, the inter-user interference asymptotically approaches to
zero [17]. However, this is only valid when the user channels have indepen-
dent identically distributed (i.i.d.) complex Gaussian entries which do not
happen often in practice [24]. On the other hand, adding more antennas to
a BS array with a fixed aperture saturates the asymptotic orthogonality [25].
Therefore, an effective way to achieve favorable propagation is to increase the
array aperture together with the number of antennas. In the next section, we
discuss arrays with a larger aperture and their practical challenges.

2.2 MIMO systems with extra-large arrays

Following a similar approach of scaling up the spatial size of the BS array, we
arrive at the XL-MIMO arrays. The XL-MIMO systems use antenna arrays
with extremely large apertures to gain their high spatial resolution [26]. This
indeed boosts the ability of the array to direct the beam to each of the desired
users while in the meantime mitigating the inter-user interference. Moreover,
employing a large number of antennas implies that cheaper antennas can be
used in the array and their flaws can be compensated when they are operating
together [27].

Here, we briefly talk about two other variants of the MIMO systems with a
large number of antenna elements; large intelligent surface (LIS) and cell-free
M-MIMO. An LIS can be seen as a planar array consisting of a large number
of elements (often modelled as a continuous electromagnetically active area).
The main idea of the LISs is their ability to carefully control electromagnetic
fields in their environment that makes it possible to tightly focus energy
in three-dimension space bringing entirely new capabilities [33]. The LISs
have three different subgroups: active arrays that can detect the transmitting
signals, passive ones that only act as a relay and hybrid LISs that use a part
of the array for sensing and the rest of it for data transmission [28] [29]. The
most attractive subgroup is the passive ones since they offer fundamental
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improvements to the wireless environment while consuming a very small
amount of power. These arrays are also called intelligent reflective surfaces
(IRS) that can be used for sensing and channel enhancement purposes [34].
The main issues with these arrays are the size of the sensed data together with
the size of signalling overhead. For instance, for the channel enhancement
applications, where the IRS is helping the M-MIMO BSs to achieve better
channel conditions, the BS has to send all of its obtained channel gains to the
IRS. The amount of this signalling overhead can be prohibitive in a multi-
cell MIMO system. On the other hand, the cell-free M-MIMO can be seen
as an extension to distributed MIMO systems, where a network of M-MIMO
BSs are located in a large area and are connected to a cloud processor via
high bandwidth back-hauls. The key point in these systems is that each
individual BS forwards the received signals to the central processing unit and
a global decision is made there. In other words, in the cell-free M-MIMO, the
main idea is to use all of the BSs in a cooperative way to increase network
performance metrics such as the SE and user fairness [35]. However, the main
differences with the XL-MIMO array are in the array configuration and back-
haul limitations. While in the XL-MIMO case the antennas are co-located
and inter-connection delay is negligible, The cell-free systems try to deal with
transferring pre-processed data of each of the BSs.

2.3 Spatial non-stationarities of XL-MIMO arrays

We start with one of the fundamental differences of the XL-MIMO arrays
compared to other multi-antenna systems. With this type of array, the an-
tenna elements occupy hundreds of wavelengths and therefore different parts
of the array see different propagation environments. To be specific, the re-
ceived signal at each part of the array comes from different scatterers causing
uneven energy distribution along the array [26] [37]. Furthermore, spherical
propagation of the electromagnetic waves conveys that the channel propaga-
tion features are dependent on the relative position of the users to the BS ar-
ray and the size and magnetic properties of the antenna elements. Therefore,
the antenna elements will have an unequal impact on the signal reception.
As a consequence, the channel can not be considered wide sense stationary
(WSS) in the spatial domain.

The concept of the Visibility regions (VRs) was first introduced in COST
2100 channel model [38]. The standard defines a VR as a terminal geograph-
ical area; meaning that when the terminal is located in this area, it can see
a given set of clusters and this set of clusters associate with the VR. On the
other hand, when the terminal moves out of that VR, it sees a different set of
clusters and a different VR. In paper I, we extend the concept of VR to indi-
cate a part of the BS array from which a given set of clusters is visible. Thus,
we discriminate between VRs in the terminal domain VR-T and in the array
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Fig. 3.2: An XL-MIMO array and VRs at both terminal and array domains.

domain VR-A. Fig. 3.2 illustrates an example of an XL-MIMO array where
each user equipment (UE) is seeing a subset of the existing clusters (VR-T)
and each portion of the array is visible to a group of the clusters (VR-A) [7].
In order to have a unified and compact definition of the VR, we will use the
following description henceforth in the thesis: VRs are the portions of the
array where most of each user’s channel energy is concentrated.

One of the major drawbacks of having spatial non-stationarities is the per-
formance loss experienced by the conventional linear receivers. For instance,
authors in [39] show a significant performance degradation due to the non-
stationarities compared to the WSS channels for most of the scenarios. The
only case where a non-stationary channel helps boosting the linear receiver
is when the VRs of the user are non-overlapping and thus, the inter-user in-
terference is zero. Moreover, in Paper E we show the effect of the VR size in
the performance of regularized zero-forcing (RZF) when the system load, i.e.
number of antennas per user, changes. The results confirm a major increase
in the bit error rate (BER) of the RZF receiver. One of the main conclusions
from these results is that the linear receivers are not optimal for the XL-MIMO
arrays for two reasons: first, their lack of ability to deal with non-stationary
energy distributions and correlated channels and second, their impractical
computational complexity when the number of antennas and users is very
high.
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2.4 Paper summaries

This group only contains one paper:
Paper I: (published) Elisabeth de Carvalho, Anum Ali, Abolfazl Amiri, Marko
Angjelichinoski, Robert W Heath, “Non-Stationarities in Extra-Large-Scale
Massive MIMO" , IEEE Wireless Communications Magazine 27, no. 4, pp.
74-80, IEEE, 2020.

The main idea in this paper is to study the primary differences of the XL-
MIMO arrays with several conventional systems and discuss research possi-
bilities and challenges in this topic. The paper can be seen as an introduction
to very large array MIMO systems. The ideas and conclusions are backed up
with several measurements and simulation results. Moreover, the paper sug-
gests several research directions in the area of such arrays and considers the
implementation concerns for them. It proposes that non-stationarity-aware
and distributed solutions are the way to use XL-MIMO systems in practice.

3 Group 2: Graph-based receivers

This group focuses on all the RQs. Several graph-based receivers that uti-
lize non-stationarities to cut the computational costs are proposed to address
the existing challenges. The main idea is to present the user symbol detec-
tion problem with a graph and then use graph-based techniques to solve the
problem. We begin this part with a short discussion about the problem of
high computational complexity and message-passing based techniques and
then we review some of the literature that are using graphs for the detection
problems. Next, we introduce the papers in this group with a short summary.
The papers in this group provide a wide range of schemes each with different
performance-complexity characteristics.

3.1 Curse of dimensionality and receiver types

Having an array with hundreds or thousands of antenna elements requires
a powerful central processing unit (CPU) that can manage the complexity of
the implemented receive combining method. This complexity is a function of
the number of the active users K and antenna elements at the BS M and the
user equipment Nu for the linear methods. In general, the received signal in
the uplink (UL) of a multi-user MIMO system with single antenna users is
modelled as:

y = Hx + n (3.1)

where, y ∈ CM is the received signal vector, H ∈ CM×K is the channel matrix,
x ∈ CK is the transmitted signal vector and n ∈ CM is the noise vector at
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(a) (b) (c)

Fig. 3.3: Three different receiver design architectures for the XL-MIMO arrays. (a) fully central-
ized mode, with a single CPU, (b) hybrid mode with a CPU and several LPU at each sub-array
and (c) distributed mode with only LPU connected to their neighbors.

the receiver. The main objective of the receivers in this thesis is to recover
the user symbols1 xk, k = 1, . . . , K. For instance, linear receivers try to find a
combiner matrix F to obtain estimates of the symbols as x̂ = Fy. As an exam-
ple, for the ZF combiner, this matrix is F = (HHH)−1HH , with (·)H denoting
matrix conjugate transpose operation. The design of the linear combiner ma-
trices can be done in three different ways; centralized, distributed and hybrid
modes. Fig. 3.3 illustrates the difference between each of these designs. In
the following, we discuss each of the modes.

The original derivation and implementation of the linear receivers are all
in the centralized mode. These designs demand a single processing node
that collects the signals from all the elements and applies the matrix opera-
tions at the same time. The only linear centralized receiver that has a linear
complexity growth with respect to M and K is the maximum ratio combiner
(MRC). However, this method is unable to cancel the interference between the
users and therefore, has a poor performance in most of the multi-user scenar-
ios. On the other hand, other linear receivers such as the ZF and minimum
mean square error (MMSE) receivers use matrix inversions to cope with the
inter-user interference which adds non-linear terms2 to the complexity ex-
pression [14]. With a lot of antenna elements at the XL-MIMO BS together
with many active users, the absolute value of the flops needed for the receiver
processor is much bigger than any other M-MIMO system [40]. Therefore, us-

1As discussed in the previous chapter, we omit the channel coding in this thesis and thus, the
receivers are only recovering the user symbols instead of detecting the transmitted information
bits.

2Third and second-order relation with the number of users
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ing a centralized technique is not desirable for the XL-MIMO case due to the
high computational capacity requirement and large processing delay times.

With the aim of dealing with the problem of the centralized methods,
two other modes can be employed: 1. distributed methods that only rely
on local processing units (LPU) and 2. hybrid methods that use both the
CPU and LPUs for signal processing tasks. The distributed receivers for the
multi-antenna systems are made of several local nodes that are connected
to a subset of the antenna elements called sub-arrays. The extreme case is
when each of the antennas has a simple processor and the size of the sub-
array is 1 [41]. The main idea in these types of receivers is to obtain several
local estimates of the user symbols and then try to refine these estimates by
partial existing connectivity between the LPUs. For instance, authors in [41]
use a method called daisy-chain to approximate the ZF by cancelling the
user interference by processing each of the antennas in series. One major
drawback of the daisy-chain techniques is that they weigh the contribution
of all the antennas equally, while in the XL-MIMO arrays, the spatial non-
stationarities change this equality and degrade the performance. Therefore,
there is a need for accounting for the non-stationarities in the design of the
receivers.

In order to overcome the issues of the fully distributed receivers, the hy-
brid methods use a CPU to orchestrate the receiving tasks between the local
nodes. The main idea here is to combine the local estimates in the best way
possible (which in some cases is not a low-complexity solution) to improve
the results. For example, in [42], authors use a hierarchical structure to up-
date the local estimates of the sub-arrays where the CPU calculates the global
symbol estimates and then sends it back to the LPUs at each step of their pro-
posed heuristics. In paper C, we use a two-tier receiver that uses both data
fusion and successive interference cancellation (SIC) at the CPU and then
propagates the updated estimates back to the sub-arrays until all the user
symbols are detected. One of the concerns in designing this type of architec-
ture is to handle additional signalling overhead between the nodes, keeping
the complexity per node in an acceptable range3 and limiting the back-haul
resources needed to connect all the processors.

3.2 Graph-based and Message-passing based receivers

Using graphs to represent interconnected and complex problems is one of
the ways to help visualise the model better and eventually solve it efficiently.
For instance, authors in [52] used a graph-based access protocol for M-MIMO
systems. Their graph representation models the pilot collision in the access
phase of a multi-user scenario. This model helps in realizing the colliding

3The main reason to use multiple processing units is to have a much lower load in each of
them enabling the use of inexpensive units.
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users and makes it easier to implement an effective method to solve the
problem. The graph-based methods are widely used in the physical layer
problems as well. In [53], a graph-based receiver that iteratively performs
soft channel estimation and data detection is presented. The graph shows
the correlation between different nodes in the receiver. A novel detection al-
gorithm for MIMO communication systems employing Gaussian trees is pre-
sented in [54]. The graph model in the original problem is very loopy. Thus,
the authors manage to use tree approximation methods to obtain cycle-free
discrete symbol distributions. As discussed before, two of the main objec-
tives of this thesis is to design low-complexity receivers while taking the
channel non-stationarities into account. Therefore, inspired by the ability of
the graph-based techniques in collision resolution problems, we modelled
our multi sub-array multi-user system with a bipartite graph. The idea is
to model the non-stationarities with the graph and then use it to iteratively
detect the users. See the details of this technique in paper A.

One of the main methods that has been widely used in the context of the
M-MIMO systems to lower the complexity is the message-passing methods.
In this thesis, we pay special attention to variational Bayesian inference-based
and message-passing algorithms [43]. The inference frameworks try to solve
approximate probability density/mass functions of the variables that are very
hard to solve directly. These frameworks are recognized with two compo-
nents; beliefs q(x) that are approximating the desired probability function
of p(x) and an objective function F(q) that measures the discrepancy of the
approximation and the desirable function [44]. Two of the major approaches
for variational Bayesian inference are the mean-field (MF) approximation and
belief propagation (BP).

We start with describing the MF method. Assume we have a fully Bayesian
model where prior distributions of all parameters are given. Moreover, the
model can have both latent variables and parameters, and we use z to show
the set of all latent variables and parameters. In the same manner, we de-
note the set of all observed variables by x. We assume a probabilistic model
that specifies the joint distribution p(x, z), and our goal is to find an approx-
imation q(z) for the posterior distribution p(z|x) as well as for the model
evidence p(x) [45]. Moreover, minimizing the objective function is equiva-
lent to minimizing the Kullback-Leibler divergence between q and p which
is defined as D(q||p) = ∑z q(z) ln( q(z)

p(z|x) ) [46]. Allowing any possible choice
for q(z), then the best approximation happens when the KL divergence van-
ishes, which occurs when q(z) equals the posterior distribution p(z|x). How-
ever, we restrict the class of functions that we allow for q(·) since working
with the true posterior distribution is intractable. One of the famous ap-
proaches which is called Naive MF assumes a fully factorized model such as
q(z) = ∏M

i=1 qi(zi), where we partition the elements of z into disjoint groups
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of denote by zi and i = 1, · · · , M. Next, we discuss the BP approach to the
approximation problem. In the BP methods, we try to calculate the marginals
qi(zi) = ∑z\zi

p(z)4 instead of trying to approximate the full probability func-
tion. In BP, we iteratively try to approach the stationary points of the Bethe
free energy (unless the underlying factor graph has a tree structure, there is
no guarantee that BP will lead to the stationary points) [47].

Both the BP and the MF concepts can be expressed via message-passing
algorithms in factor graphs. Factor graph [48] is a tool for graphical repre-
sentation of a probabilistic model. The message-passing interpretation of the
BP and the MF principles are known as the sum-product (SP) algorithm and
the variational message-passing (VMP) algorithm, respectively [55].

The SP algorithm can find the exact marginal distribution of the factor
graphs without loops. Otherwise, the outcome is an approximation of the
desired marginal. The overall strategy is simple message passing; first, we
need to form a rooted tree at zi to compute qi(zi). Then, we take the product
of descendants at every variable node. Also, for the factor nodes, we take the
product of the factor with descendants followed extrinsic sum over the parent
of the factor. The SP algorithm has been used in 5G new radio standard for
LDPC codes [49].

Similarly, for the MF approximation, the VMP algorithm is minimizing
the variational free energy. However, the computation of the exact marginals
is not guaranteed [47]. The convergence of the algorithm is assured at each
step of the algorithm by confirming that the variational free energy of the
computed beliefs is non-increasing. The format of the messages in the VMP
algorithm is making it suitable for conjugate-exponential probabilistic mod-
els in the wireless communication applications allowing the acquisition of
closed-form expressions in many cases. We would like to refer the readers to
the papers in this group for more details on the message derivations of both
MF and BP frameworks.

There are several works that are using message-passing methods to re-
duce the receiver complexity in the M-MIMO systems. For instance, [51]
proposes a low complexity detector for the M-MIMO systems that uses ex-
pectation propagation (EP). The solution suits well with high-dimensional
systems with high-order modulations. However, the authors try to come
up with reduced-complexity variants of EP to avoid large matrix inversions
within the algorithm. A novel approximate probability updating scheme is
proposed in [56] that tries to lower the complexity of the message-passing
receiver when the number of users or the order of modulation increases.
Message-passing methods are also used to compensate some of the hardware
non-idealities. As an example, in [58] the authors introduce a low complexity
method for an M-MIMO array with low-resolution analog digital convert-

4The expression z \ zi is the set exclusion operation denoting all components of z except zi .
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ers (ADC) at each antenna. They combine generalized approximate message
passing detection with channel decoder to ensure that the information fil-
tered by the ADCs can be recovered as accurate as possible. However, as
discussed in the previous chapters, the challenges in the XL-MIMO arrays
are different from the M-MIMO ones. Therefore, direct use of the aforemen-
tioned methods in the context of the XL-MIMO arrays will not result in the
same performance characteristics. Thus, there is a need to develop methods
that are compatible with distributed nodes that can talk to each other and up-
date their local information. Furthermore, the effect of non-stationary chan-
nels on the performance of such receivers needs to be studied. Motivated
by these shortcomings in the literature, we aim to design several message-
passing based techniques that have acceptable performance in the XL-MIMO
systems, which are presented in papers B,C and D.

3.3 Paper summaries

There are four papers in this category:
Paper A: (published) Abolfazl Amiri, Marko Angjelichinoski, Elisabeth de
Carvalho, Robert W Heath, “Extremely Large Aperture Massive MIMO: Low
Complexity Receiver Architectures" , 2018 IEEE Globecom Workshops (GC
Wkshps), pp. 1-6. IEEE, 2018. Paper B: (published) Abolfazl Amiri, Carles
Navarro Manchón, Elisabeth de Carvalho, “A Message Passing Based Re-
ceiver for Extra-Large Scale MIMO", 2019 IEEE 8th International Workshop
on Computational Advances in Multi-Sensor Adaptive Processing (CAM-
SAP), pp. 564-568. IEEE, 2019.
Paper C: (accepted) Abolfazl Amiri, Sajad Rezaie, Carles Navarro Manchón,
Elisabeth de Carvalho, “Distributed Receiver Processing for Extra-Large MIMO
Arrays: A Message Passing Approach", Accepted for publication in IEEE
Transactions on Wireless Communications.
Paper D: (accepted) Abolfazl Amiri, Carles Navarro Manchón, Elisabeth
de Carvalho, “Uncoordinated and Decentralized Processing in Extra-Large
MIMO Arrays", Accepted for publication in IEEE Wireless Communications
Letters.

Chronologically, Paper A is the first work on the XL-MIMO arrays that
focuses on the distributed receiver designs. The motivation of the paper is to
propose a better receiving technique that is aware of users’ channel energy
non-stationarities. In order to deal with high computational complexity, the
paper assumes that the array is composed of many smaller sub-arrays that
have a local processing unit. These sub-arrays are in charge of estimating the
user symbols locally and then, they forward their information to the central
node for data fusion and a global decision. The paper presents a graphi-
cal method that uses the energy distributions to construct a bipartite graph
that is showing each user’s dominant sub-arrays, the sub-arrays that have
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95% of that user’s energy. Then, inspired by a collision resolution method
from access protocols, the proposed algorithm finds the best schedule of user
detection in a successive interference cancellation (SIC) scheme.

In the following, we continue with an overview of the rest of the papers
and then mention the main contribution of each of them separately. The main
idea of these three papers is to replace conventional linear receivers such as
ZF with the VMP receivers. Since the channels are Gaussian, close-form ex-
pressions for the messages can be obtained. These VMP receivers can either
process the signal from all the array elements or only the signal from a sub-
array. The best performance is of course for the first case, but in order to have
a more scalable solution, the second option can be used. Then, mixing the
local decisions of the sub-arrays and using interference cancellation methods
can boost the detection performance to an acceptable level. Another advan-
tage of having a sub-array based architecture is that the contribution of those
with lower received energy (due to the non-stationarities) can be adjusted in
the final decision. In other words, a non-stationarity-aware receiver can be
implemented to reduce the complexity of the central receiver.

Paper B, suggests a centralized VMP receiver design for the XL-MIMO
system in crowded scenarios that has a linear complexity behaviour. Next,
an extended work to a hybrid architecture is presented in paper C, where
local VMP receivers (LPUs) are used to get the local estimates. Moreover,
different options are available for the CPU and LPU units to distribute the
processing tasks among them. The CPU can fuse the local estimates and
apply a SIC procedure on top to enhance the performance. Finally, paper D,
uses a combined VMP-BP method in a fully decentralized XL-MIMO system
(without a central unit) to deal with the scalability issues of the BS array. The
VMP is used for the LPUs while the data exchange process between the LPUs
is done using the BP.

4 Group 3: Randomized algorithms for receiver

design

In this section, we study another way of lowering the complexity of the XL-
MIMO receivers with the use of randomized techniques. Particularly, we
are investigating the use of Kaczmarz algorithms in this group and mostly
addressing RQ1 and RQ2 here.

4.1 Kaczmarz algorithms

As mentioned before, the important reason for not choosing the centralized
linear receivers for the XL-MIMO arrays is their high computational complex-
ity. For instance, the regularized zero-forcing (RZF) technique uses a matrix
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inversion that is very costly, especially when the number of users and an-
tennas is high. This symbol estimation of the RZF receiver is calculated by
x̂RZF =

(
HHH + ξIK

)−1
HHy = FRZFy, where FRZF is the linear combiner ma-

trix, ξ is an arbitrary regularization coefficient5 and IK is an identity matrix
of size K. One can reformulate this receiver as a solution of the following
optimization problem [50]:

w∗ = arg min
w
||Hw− y||22 + ξ||w||22 (3.2)

with w∗ corresponding to x̂RZF. The cost function can be written in a more
compact way as ||Bw− y0||22, where B = [H; ξIK] and y0 = [y0; 0K×1]

6. The
solution to Bw− y0 = 0, which is a system of linear equations (SLE), can be
obtained with various techniques. One way to keep the complexity controlled
is to select a subset of these equations instead of solving the full SLE. This
indeed reduces the accuracy of the solutions, but with a good selection of the
equations and the algorithm the performance gap can approach zero. One of
these methods is Kaczmarz algorithms (KA) that were first introduced by a
Polish mathematician Stefan Kaczmarz and have been widely used in signal
processing applications [59].

The authors in [60] used another variant called randomized Kaczmarz
(rKA) that has a much better convergence and complexity behaviour than
the original version. In summary, the rKA can be seen as a particular case of
stochastic gradient descent. The algorithm chooses the equations in a random
way based on a predefined probability distribution. Then, it computes a
residual that is an orthogonal projection of the last iterative solution onto the
solution hyper-plane. Then, this residual is normalized by the energy of the
chosen equation and the algorithm continues until a stopping criterion is met.
This algorithm has been used in detection problems of MIMO systems [50,
61, 62]. In general, these papers try to describe the data detection problem
in the MIMO and M-MIMO systems with an SLE and use variants of KA
to approximate an exact linear detection technique (such as RZF) to develop
a low complexity solution. However, we believe their extension for an XL-
MIMO array needs more investigations to adapt the KA methods for such
arrays.

The three key reasons that make these algorithms interesting for the XL-
MIMO are : 1. simple calculations that are done in vector and scalar multipli-
cations instead of matrix operations. 2. A graceful degradation that gives a
fine balance between the complexity and accuracy and can be managed very
easily. 3. The randomization function can exploit the non-stationarities of

5One suitable option is to choose the inverse of the pre-processing user transmit signal to
noise ratio (SNR) for ξ which will resemble the linear minimum mean square error (LMMSE)
receiver.

6The expression 0K×1 is denoting a vector of zeros of size K.
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the channel in a straightforward way. In other words, the importance of the
users can be seen as the size of their VR and the stronger users are selected
for detection first. Moreover, the algorithm does an implicit interference can-
cellation after each projection resulting in improved performance compared
to other iterative methods. In the following, we introduce two papers where
we evaluate the use of randomized methods for the XL-MIMO systems.

4.2 Paper summaries

This group has two papers:
Paper E: (published) Victor Croisfelt Rodrigues, Abolfazl Amiri, Taufik Abrão,
Elisabeth de Carvalho, Petar Popovski, “Low-Complexity Distributed XL-
MIMO for Multiuser Detection", 2020 IEEE International Conference on Com-
munications Workshops (ICC Workshops), pp. 1-6. IEEE, 2020.
Paper F: (published) Victor Croisfelt Rodrigues, Abolfazl Amiri, Taufik Abrão,
Elisabeth de Carvalho, Petar Popovski, “Accelerated Randomized Methods
for Receiver Design in Extra-Large Scale MIMO Arrays", , IEEE Transactions
on Vehicular Technology vol. 70, no. 7, pp. 6788-6799, IEEE, July 2021.

Both of the papers propose low-complexity and distributed approxima-
tions of the ZF and RZF receivers. The main idea is to use the spatial non-
stationary information to simplify the aforementioned linear receivers. More-
over, the proposed receivers are implemented in a distributed way which is
practical for the XL-MIMO systems with sub-arrays. These receivers use the
rKA to mimic the RZF and utilize VRs to fine-tune the randomness design of
the rKA. A novel equation selection probability function is introduced that is
using the VRs and normalized user energies to prioritize the stronger users
first. This algorithm works at each of the sub-arrays to approximate the com-
bining matrix of that sub-array. Then, all these matrices are concatenated
together at the CPU to find the global receiver. One of the key features of
the rKA is the graceful degradation manner of it allows the designer to han-
dle the complexity- performance trade-off only by changing the number of
algorithm iterations.

In paper E, the use of rKA for the context of XL-MIMO arrays is intro-
duced, where the randomization function uses VR-related information to ob-
tain better results than uniform random selection. Aiming to extend the con-
tributions of paper E, paper F uses several acceleration techniques for further
complexity reduction of the receivers. The idea is to use these techniques to
overcome the convergence issues and help boost the convergence speed and
eventually reduce the computational cost of the updated algorithm. The main
takeaway of the paper is the ability of the three proposed methods to adjust
the computational cost of the XL-MIMO receiver and offer several quality of
service options.
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5 Group 4: Antenna selection for complexity re-

duction

The main approach in this group is quite different from the rest of the groups.
While most of the groups try to reduce the receiver complexity in the uplink,
this group is analyzing the downlink transmission and beamforming tech-
niques. Most of the focus of this group is on RQ1 and RQ2. The main idea
here is to find a good antenna selection (AS) scheme that can cut the complex-
ity of the transmitter at the BS. We start with an introduction to the necessity
of AS solutions and then examine two widely used approaches. We conclude
the section by summarizing the papers of this group.

Before discussing any details, we would like to clarify our definition of
the AS in this thesis. Our AS methods provide a set of candidate antenna set
A that is a subset of all the antenna elements in the XL-MIMO array. This
selection is done based on an optimization solution and is maximizing a util-
ity function that we will introduce in the following. Earlier in this chapter,
we mentioned that the complexity is a function of the number of users K and
the number of antennas M. So far, we reviewed several methods to propose
receiver design functions with complexities that grow slower with respect to
these two parameters. We also introduced the distributed and hybrid meth-
ods that are composed of smaller antenna clusters called sub-arrays. Now, we
consider the downlink transmission in an XL-MIMO system. The main idea
here is to first restrict M for each of the LPUs to deal with a lower number of
antennas. Moreover, due to the user energy non-stationarities, the number of
active users will decrease at each sub-array7. In other words, each sub-array
will have a certain number of dominant users (smaller than the total number
of active users in the system) that have an almost spatially stationary chan-
nel over the elements of that sub-array. The problem of AS has been studied
vastly for the M-MIMO systems mostly because of the hardware limitations
of the fully digital implementations [63]. There are several techniques that are
employed to select the best antennas based on some predefined cost function
such as power consumption or RF chain connections [64]. For instance, [65]
selects an optimal channel sub-matrix with the largest minimum singular
value. [66] and [67] use machine-learning based techniques to maximize the
energy efficiency of the array. In the following, we study several methods for
the AS in the XL-MIMO arrays.

7We assume that the impact of the users that have less than a certain percentage of their
energy on a specific sub-array can be ignored on that sub-array without a major performance
loss.
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5.1 Simple AS techniques

One of the major concerns about the AS problem in the context of the XL-
MIMO systems is to control the complexity of the AS solution. In other
words, the computations needed for the AS problem plus the transmitter
block should be less than the one needed for a centralized method; other-
wise, the objective of complexity reduction will be violated. The simplest AS
method is a fixed division method where the array is divided equally into
B sub-arrays and at each instance, a subset of these sub-arrays will trans-
mit. This method has almost no complexity burden but it is not optimal in
the sense of optimizing the EE and SE, especially for the XL-MIMO systems
where the distribution of the users’ energies is not uniform. Another sim-
ple technique is to use the channel matrix or second-order statistics of the
channel to find the parts of the array, let us call them effective antennas, that
have the most of the user energies. There are two important issues with this
method: 1. the effective antennas for each of the users are different and we
might end up selecting the whole array by choosing each users’ part. 2. The
effect of interference is neglected in this solution, meaning that an effective
area for a user can cause and unaccounted interference to other users, result-
ing in a poor symbol detection outcome. Therefore, we seek to find smarter
methods that consider the shortcomings of these two simple schemes.

5.2 Genetic algorithm for the AS problem

The genetic algorithm (GA) is one of the famous bio-inspired methods that
has been widely used for optimization problems [68]. The main idea consists
of a simulation of natural selection. In short, the GA is a local search tech-
nique that tries to find an approximate solution for optimization and search
problems.

The implementation of the GA contains the following phases:

1. Elitism: The elitism intends to keep the best individuals of the current
generation without any change. It ensures that the score of the best
individual over the generations is non-decreasing.

2. Tournament selection: During the tournament selection, the score of ran-
domly chosen individuals are compared in pairs.

3. Crossover: The crossover phase aims to mix chromosomes of the win-
ners of the tournament in order to get new solutions, with a focus on
exploring the search space. Note that, the chromosomes are a set of
optimization variables for any candidate solution.

4. Mutation: The mutation phase intends to add random small changes
to the generated offspring by the crossover step. This phase increases

28



5. Group 4: Antenna selection for complexity reduction

the variability among the individuals, exploring different regions of the
feasible set.

The main motivations for using this algorithm for the AS problem in the
context of the XL-MIMO array are threefold: 1. the algorithm has low com-
plexity and uses pay-off information instead of derivatives. 2. It can easily
be used in paralleled implementations. 3. It support multi-objective opti-
mization problems [69]. Therefore, this algorithm can give us a set of the
best antennas that can maximize for example, the energy efficiency of the
system. In this group of papers, we are particularly interested in the spectral
and energy efficiencies for the XL-MIMO arrays. We try to look deeper into
the effect of non-stationarities on the AS problem, which is missing in the
literature and exploit it to achieve even lower complexity AS solutions. In the
following, we introduce the papers that explore the GA method for the AS
problem in the XL-MIMO arrays.

5.3 Paper summaries

This group has two papers:
Paper G: (published) José Carlos Marinello, Taufik Abrão, Abolfazl Amiri,
Elisabeth De Carvalho, Petar Popovski, “Antenna Selection for Improving
Energy Efficiency in XL-MIMO Systems", IEEE Transactions on Vehicular
Technology 69, no. 11, pp. 13305-13318, IEEE, 2020.
Paper H: (published) João Henrique Inacio de Souza, Abolfazl Amiri, Tau-
fik Abrão, Elisabeth de Carvalho, Petar Popovski, “Quasi-Distributed An-
tenna Selection for Spectral Efficiency Maximization in Subarray Switching
XL-MIMO Systems", in IEEE Transactions on Vehicular Technology, vol. 70,
no. 7, pp. 6713-6725, IEEE, July 2021.

These papers, as it is obvious from their titles, propose several AS tech-
niques for the XL-MIMO arrays in the downlink transmission. The utility
function is EE in the first one and is SE in the second one. The proposed
optimization solutions target two main concerns with the XL-MIMO arrays:
1. the energy consumption due to activation of the RF chains and 2. the use
of energy for computational tasks. Papers discuss the cases, where there are
much fewer active users in the system than the number of antennas and their
signals will only cover a part of the array. Thus, exploiting a good antenna
selection strategy can help reduce the energy usage and shed a light towards
more green solutions.

Since the problem of AS is a combinatorial optimization problem, papers
G and H, use the GA to solve the AS problem subjected to energy efficiency
and spectrum efficiency maximization constraints, respectively. The solutions
in paper G aim to minimize the energy consumption at the BS considering
the power used at the RF chains and also for the signal processing purposes.
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Several AS schemes are proposed that work in a centralized manner. On
the other hand, in paper H, the focus is to find distributed techniques to
find the best active antenna set that guarantee a sum-rate that is very close to
that of the centralized receivers. Moreover, the problem of power allocation is
considered jointly with the SE maximization to have more realistic constraints
for the optimization problem.

6 Summary of the thesis’s contributions

In this section, we summarize the main novelties of this thesis. So far, we
have discussed the newness in each of the paper groups and here, we try
to put them together and give a higher-level perspective of the contributions
done in the thesis. These contributions are addressing the RQs introduced in
Chapter 2. In the following, we try to further discuss the technical contents
in a compact way.

6.1 Low complexity and scalable algorithm designs

The main concern about the practical implementation of the XL-MIMO sys-
tems is the required computational capacity for them to operate properly. In
this thesis, we target this issue and come up with several techniques to allevi-
ate the computational cost of signal reception at the XL-MIMO BS. We used
three approaches in this regard: distributing the processing tasks, using sim-
pler non-linear reception methods and limiting the processing area size by
antenna selection techniques. We employed several decentralizing schemes
that use local nodes at each sub-array for a part of the signal reception.
Then, these nodes either communicate with each other or forward their esti-
mates to a central processing unit for further decisions. One major outcome
of these processing methods is their flexibility to control the complexity-
performance trade-off. Further, we used several low-complexity heuristics
such as message-passing and Kaczmarz tools to approximate the exact sym-
bol detection process. This approximation results in a much lower compu-
tational complexity compared to the centralized linear processing methods
with the cost of degraded performance which we try to minimize. Last but
not least, the antenna selection techniques that mostly use genetic algorithms
aid the complexity reduction. We focus on several antenna selection criteria
to target complexity reduction, RF chain power consumption and sum-rate
maximization. Using the distributed schemes, gave us the ability to scale up
our solutions to any size of the array, without the need for a complete mod-
ification of the algorithms. Our multi-node processing tools can be used in
any other system that try to have scalable designs.
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6.2 Spatial non-stationarity aware receivers

One of the main differences of XL-MIMO arrays with ordinary M-MIMO ones
is the appearance of visibility regions due to uneven energy distributions over
the array. In this thesis, we introduce numerous methods to first recognize
these VRs and then incorporate them in the receiver design process. We
question the applicability of conventional linear receivers for the XL-MIMO
arrays and show that they suffer from a substantial degradation due to non-
stationarities of the channel. Our receivers try to exploit the VRs and employ
interference cancellation techniques using the natural signal separation made
by the VRs. In other words, non-overlapping parts of the VRs , that are
less affected by the interference, can be used to recover stronger user signals
and then a SIC receiver can recover the signals from the overlapped parts.
Furthermore, we show that with smart VR-aware methods the computational
costs can be cut considerably while the system performance stays almost the
same.
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Chapter 4

Concluding remarks

This chapter aims to wrap up the main content of the thesis by reviewing the
key benefits of employing XL-MIMO arrays together with the signal process-
ing techniques introduced here. Further, different possible applications and
future research directions and extensions are provided.

1 Conclusions

In this section, we begin with a general review of the findings of the thesis.
Then, we revisit the research questions that were asked at the beginning of
the thesis and then show how our studies answer/ shed some light on them.

This thesis focuses on providing several signal processing methods for
the XL-MIMO systems. It argues with a common understanding that the
conventional linear receivers, that operate close to optimal for the M-MIMO
systems, can also be used for the XL array as well. The thesis disagrees
with this idea and tries to first find evidence that usual M-MIMO reception
techniques fail greatly in the XL-MIMO scenarios and then, studies various
methods to combat the challenges.

In order to answer RQ1, the proposed receiver designs combine different
strategies to deal with the high number of antenna elements at the BS and
also the channel non-stationarities. They make use of distributed and parallel
processing techniques to divide the computational burden into manageable
smaller tasks that can be done in remote and cheaper units. Each of these
processing units is connected to a sub-array that can have either a fixed or
dynamic size. Most of the receivers introduced in the thesis are working
with the first case while the antenna selection methods propose new ways to
assign the sub-arrays. One remark that should be considered for any type of
antenna selection technique is that the overhead complexity of this selection
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must not make the whole process more complex than a full-array selection
unless the designer wishes to limit the power consumption. In short, in
response to RQ1, our methods offer performances close to those of classical
receivers with feasible computational complexities.

Regarding the second RQ, our studies first analyze the effect of user chan-
nel energy non-stationarities in the XL-MIMO systems, and then, try to ex-
ploit it to design efficient algorithms. It was believed that the capacity of the
M-MIMO system can grow boundlessly if the number of antennas at the BS
goes to infinity. However, this thesis is looking into more realistic scenarios
where the channel correlations and energy non-stationarities do not allow the
above statement. After recognizing the concern of uneven energy patterns,
the thesis aims to utilize the information about the visibility regions to design
smarter algorithms. The main idea is to use this information as a tool to cut
the complexity in the first place and then try to improve the performance by
means of interference cancellation techniques.

Last but not least, in response to RQ3, our proposed distributed methods
can provide scalable solutions for the XL-MIMO arrays. In other words, they
use several multi-node processing techniques that can handle any size of the
system. The key point is to divide the central processing problem into many
sub-problems (in the local units) and solve them and then, find a way to
connect all these sub-solutions to each other. One main challenge is to have
control over the added information exchanges between the local units and the
central unit. The solutions mentioned in the thesis try to keep the overheads
very low. For instance, instead of transmitting the raw received signals (that
scale with the number of antennas at each local unit), they send their local
estimates which scale with the number of users. This indeed has a much
lower size and will not grow with the number of antennas in the XL-MIMO
array.

So far, we have discussed a lot about the advantages of the methods in
the thesis and here we mention some of the disadvantages of the methods
as well. These points can be seen as a motivation to continue the topics
studied in this thesis with other techniques. One of the main shortcomings of
the designed receivers is their dependency on accurate channel information
and imperfect channel estimates can substantially degrade the performances.
One way to compensate this effect is to account for more robust techniques
that account for such imperfections. For the graph-based techniques, the
modulation order can play a crucial role in defining the complexity. While
we mostly used orders of 4 and 8, extending the works to higher orders
might encounter a prohibitive amount of computations. A feasible approach
to tackle this issue would be the use of continuous modulated symbol space
instead of discrete modulated points to limit the complexity. Regarding the
heuristics used in the third and fourth groups of the contribution areas, the
problem and convergence can be critical. Especially, when the selection of

34



2. Applications

the starting points of the algorithms is not done properly.

2 Applications

Here, we try to give a few examples of possible applications of our findings in
current or future multi-antenna systems. The first obvious application is for
the extra-large size multi-antenna systems. As an example, a refined version
of stripe-line antennas is introduced to improve coverage [70]. These arrays
are composed of thousands of cheap antenna elements and can be deployed
very easily. Our proposed methods can be applied for these types of systems
where the number of elements is huge, the aperture size is big and compu-
tational power is limited. In general, the methods of this thesis can still be
adopted for any M-MIMO system that has a limited processing capability.
Our proposed decentralizing methods can inspire different hybrid architec-
tures in the M-MIMO arrays each covering a range of applications. Moreover,
early implementations of the LISs that still use many antenna elements can
benefit from our techniques for signal reception and also antenna selection
schemes for power management considerations.

3 Future work directions

There are several possibilities to extend the work done in the thesis. The first
category is to use more realistic channel models and also consider the CSI
acquiring phase in the designs. Therefore, new techniques can be developed
that are robust to partial and imperfect CSI. Moreover, the channel coding
can be directly embedded within the message-passing methods to boost the
performance. On the other hand, more focused research should take care
of implementation challenges such as hardware imperfections, backhaul link
requirements and local unit capabilities. Another relevant problem is the
scheduling of the users in the XL-MIMO systems especially using some VR-
related side information. The problem gets more interesting if the user de-
vices can perform beamforming to redirect their signal to non-overlapping
areas of the array to maximize their rate. Finally, the use of the machine-
learning technique is also an option in different parts of the XL-MIMO sys-
tems. Such tools can predict the non-stationary pattern changes and adapt
the receiver based on that. Further, they can be utilized for other tasks such
as user-sub-array assignment, beamforming design and power control prob-
lems.
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1. Introduction

Abstract

This paper focuses on new communication paradigms arising in massive multiple-
input-multiple-output systems where the antenna array at the base station is of ex-
tremely large dimension (xMaMIMO). Due to the extreme dimension of the array,
xMaMIMO is characterized by spatial non-stationary field properties along the ar-
ray; this calls for a multi-antenna transceiver design that is adapted to the array
dimension but also its non-stationary properties. We address implementation aspects
of xMaMIMO, with computational efficiency as our primary objective. To reduce
the computational burden of centralized schemes, we distribute the processing into
smaller, disjoint sub-arrays. Then, we consider several low-complexity data detection
algorithms as candidates for uplink communication in crowded xMaMIMO systems.
Drawing inspiration from coded random access, one of the main contributions of the
paper is the design of low complexity scheme that exploits the non-stationary nature
of xMaMIMO systems and where the data processing is decentralized. We evaluate
the bit-error-rate performance of the transceivers in crowded xMaMIMO scenarios.
The results confirm their practical potential.

Keywords— Very large arrays, Massive MIMO, non- stationary, coded random
access, 5G

1 Introduction

Massive multiple-input-multiple-output (MIMO) is a key technology in cellular com-
munication systems for increasing area spectral efficiency [1], [2]. The highest gains
with massive MIMO are achieved when the antenna array dimension is very large [3,
4]. This has motivated the introduction of new types of deployment where arrays
with extremely large dimension are deployed as part of a large infrastructure, for ex-
ample along the walls of buildings in a mega-city, in airports, large shopping malls or
along the structure of a stadium [4]. Similarly, large intelligent surfaces have emerged
involving large electromagnetic surfaces [5]. Such a massive MIMO system with an-
tenna arrays of extremely large dimension is denoted as xMaMIMO.

With increased antenna array dimensions, spatial non-wide sense stationary prop-
erties appear across the array due to electromagnetic propagation attributes as well as
the distance between the users and the array that becomes smaller than the Rayleigh
distance (see Fig. 1). In such xMaMIMO systems, different channel models and re-
ceiver algorithms are needed that account for this non-stationarity.

In this paper, we consider non-stationary properties through the concept of vis-
ibility region. A visibility region is associated to one given user and is defined as
the portion of the array that one given user sees, i.e. that is able to receive signals
from the user. This behaviour of the channel introduces an inherent sparsity to the
system model, meaning that the transmitted signal of one user only exists on a small
part of the antenna array. Thus, in contrast to ordinary massive MIMO models, user
detection can be done by only processing the visibility region of each user. Using
this important property of the system, we cut the computation costs of central pro-
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cessing, i.e. processing all antenna elements together, and propose local approaches.
Note that the vast majority of the existing works on massive MIMO are based on con-
ventional standard models with stationary characteristics of the channel [7]. In [8],
an information theory study on non-wide sense stationary characteristics of massive
MIMO channels is available where different parts of the array see different propaga-
tion paths. The problem of user assignment in large intelligent surfaces is studied
in [9] in an interference-free environment.

To exploit cluster visibility regions, we propose new algorithms for uplink data
detection. One of the challenges in xMaMIMO is its practical implementation, espe-
cially the enormous computational load that is required. To reduce the computation
load of the system, we divide the array into smaller, disjoint units, referred to as
subarrays and we distribute the computations among them. Then, we propose two
types of uplink receivers. The first receiver is based on distributed linear data fusion
(DLDF), where the users are first softly detected per subarray and then linearly fused
in a centralized manner to produce the final soft information used to reconstruct the
symbols.

Next, relying on the non-stationary nature of the xMaMIMO system and drawing
inspiration from coded random access, we propose a decentralized receiver of very
low complexity where processing is executed locally per subarray with the fusion
centre acting only as a forwarding node, relaying messages among the subarrays.
One important factor here is the order of local processes and our proposed method
copes delicately with it. The simulation results confirm the practical potential of the
proposed receivers for xMaMIMO systems especially in crowded applications.

2 System Model

We consider an xMaMIMO system. As discussed earlier, such infrastructure can be
deployed along walls of buildings in urban sprawls, airports, shopping malls, even
stadiums and they are envisioned to provide services to massive crowds.

A possible way to deal with the enormous computational load of the xMaMIMO
system is to distribute the computation within separate processing units, referred to
as subarrays. Depending on the specific implementation of the system and the actual
physical constraints, a subarray can be defined in various ways. For instance, a sub-
array can correspond to a separate physical component. To see this, consider a large
stadium. To provide high quality connectivity, an xMaMIMO system can be deployed
along its walls. Depending on the actual deployment burden and cost, the operator
might choose to mount individual arrays and connect them into a central processing
unit using a cloud radio access network architecture. In such case, the number and
the sizes of the subarrays is fixed. Alternatively, the operator might install a single
array and provide logical interconnections between different portions of it. Here, the
subarrays can be defined flexibly, adapting their size, number and position to the
evolving data traffic conditions. We note that our framework is applicable to both
cases as well as any combination in-between.

Let M and K denote the number of antennas and simultaneously active users, re-
spectively. We assume narrow-band transmissions; x ∈ CK denotes the vector of com-
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plex input symbols, H ∈ CM×K is the complex channel matrix and n ∼ CN (0, σ2
nIM)

is the AWGN (IM denotes the identity matrix). We model the received baseband
signal y ∈ CM across the whole array as follows:

y = Hx + n. (A.1)

Let hk denote the k-th column of H, corresponding to user k; in this work, we adopt
the following channel model [6]:

hk =
√

wk � h̄k, (A.2)

with � denoting the element wise (Hadamard) products between two equal-size vec-
tors. wk captures the effect of large scale fading which in turn is a function of the
distance of the user from the array, denoted with dk, and the propagation properties
of the environment; here, we employ the following simplified propagation model [11]:

wk = βd
γ
k , (A.3)

where β is a attenuation coefficient [11] and γ is the pathloss exponent. h̄k ∼ CN (0, I)
accounts for fast fading.

We split the xMaMIMO system into B subarrays, each with M(b) ≥ K, b = 1, . . . , B
antennas such that ∑B

b=1 M(b) = M; the received signal per subarrays is denoted by
y(b) ∈ CMb and can be written as:

y(b) = H(b)x + n(b), (A.4)

for any b = 1, . . . , B. Without loss of generality, in the rest of the paper we will assume
that all active users transmit with equal power (E|x|2 = 1).

3 Multiuser Detection Algorithms

In this section, we develop algorithms for multiuser symbol detection in xMaMIMO
systems. Throughout, we assume perfect Channel State Information (CSI) at the re-
ceiver.

We distinguish between two different regimes of operation of the system: (i) sta-
tionary regime, where we assume that the users’ energy spread across the whole ar-
ray (in other words, each user “sees” the whole array), and (ii) non-stationary regime,
where we assume that the energy of each user is predominately concentrated on a
limited number of antennas (see Fig. A.1), which is usually significantly smaller than
M (i.e., each user “sees” only limited portion of the array). Obviously, the inherent,
natural regime of operation of the system would be the non-stationary one in general,
since the uplink power of each user will be unevenly distributed along the antenna
array. Here, the distinction between the two regimes is done according to the knowl-
edge of the receiver, i.e., when we say stationary regime, we mainly refer to the aspect
of receiver agnosticism towards the non-stationary nature of the system.
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Fig. A.1: An example of extremely large M-MIMO array with spatial non-stationary
regions along the array. Each user has a specific visibility region according to the
channel conditions.

3.1 Stationary regime

Centralized Zero-Forcing Receiver

Given the main underlying assumption, i.e., each user “reaches” every antenna of the
array, a straightforward way to perform multiuser symbol detection is to process the
complete received signal y. This can be done simply via Zero-Forcing (ZF); specifi-
cally, the ZF receiver for user k, denoted by FZF,k, can be written as follows:

FZF,k[H] =
hH

k P⊥
H̄k

hH
k P⊥

H̄k
hk

, (A.5)

with P⊥
H̄k

= I− H̄k(H̄
H
k H̄k)

−1H̄H
k [12]; H̄k is obtained from H by removing its kth

column hk. The post-processing SNR of the ZF receiver obtains the following form:

SNRZF,k = ρ hH
k P⊥

H̄k
hk, (A.6)

with ρ = 1/σ2
n . Given the extreme dimension of the aperture and potentially the

extremely crowded setup, one should immediately note the computational burden
of the centralized scheme. To reduce the computational complexity, we propose two
schemes based on subarray processing. In both cases, the underlying idea is simple;
instead of processing y fully, first process y(b), b = 1, . . . , B and then perform linear
soft fusion in a centralized manner.

Distributed Linear Data Fusion Receiver

We introduce a simple, distributed linear data fusion (DLDF) method that combines
softly the detected signals from each individual subarray. Furthermore, soft informa-
tion of each user is obtained by

x̂(b)k = FZF,k[H
(b)]y(b) (A.7)
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Algorithm 1 Distributed Linear Data Fusion receiver.

Result: Estimates of xk, k = 1, . . . , K
Initialize: H, K, B, M(b), K = {1, . . . , K}
Stage I: Distributed Linear Data Fusion (DLDF)
1. compute x̂(b)k , k ∈ K, b = 1, . . . , B via (A.7)

2. compute α
(b)
k , k ∈ K, b = 1, . . . , B via (A.12)

3. compute x̂k, k ∈ K via (A.8)
4. perform hard decision over x̂k, k ∈ K and terminate

For each user k we define the combined DLDF symbol x̂k as follows:

x̂k =
B

∑
b=1

α
(b)
k x̂(b)k , (A.8)

where α
(b)
k is the weight for user k using from subarray b; note that ∑B

b=1 α
(b)
k = 1. It

is worth mentioning that (A.8) is done in the central unit after receiving all the soft
information from the subarrays. Also, mean squared error (MSE) of each user on
subarrays is defined as:

MSE(b)
k = E|x(b)k − x̂(b)k |2 (A.9)

where E denotes the expectation operation. Here, it is taken with respect to the noise.
As the noise is assumed independent across subarrays, the overall MSE when data

fusion is performed is:

MSEk =
B

∑
b=1

α
(b)2
k MSE(b)

k , (A.10)

The objective is to minimize MSEk with the constraint ∑B
b=1 α

(b)
k = 1. Using the

Lagrange multiplier method [13] gives us the optimal weights:

α
(b)2
k =

1
MSE(b)

k

∑B
b=1

1
MSE(b)

k

, (A.11)

for b = 1, . . . , B. Given that all users use equal transmit power, normalized to 1, we

have that SNR(b)
k = 1/MSE(b)

k , which yields:

α
(b)
k =

SNR(b)
k

∑B
b=1 SNR(b)

k

(A.12)

for b = 1, . . . , B. The complete algorithm is summarized in Algorithm 1.
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Algorithm 2 Bipartite graph construction from H.

Result: H
Initialize: H, K, B, Mb, p0, H = {0}B×K, B = {1, . . . , B}
for k = 1 to K do

1. reinitialize pk = 0
2. compute total cumulative power Pk

3. compute per subarray power P(b)
k , b ∈ B

while pk ≤ p0 · Pk do

1. find b∗ = maxb∈B P(b)
k

2. pk = pk + P(b∗)
k

3. set H(b∗, k) = 1
4. B = B \ b∗

end

end

3.2 Non-stationary regime

In this case, we assume that the users have a limited visibility region of the array,
which is illustrated in Fig. A.1. Hence, the non-stationary regime of operation can be
seen as a special case of the stationary one, implying that we can easily apply any of
the receivers described in the previous subsection.

Nevertheless, we introduce a simple method, inspired from the concept of coded
random access in slotted aloha IoT systems. They key idea operates as follows: given
the non-stationary nature of the array, each user is predominantly present only on
very limited number of subarrays, i.e., all of its power is concentrated over limited
number of subarrays. As a result, the system becomes inherently sparse, implying
that the subarrays where a user is not present should not be processed for that spe-
cific user. So, in principle, we can obtain a sparse bipartite graph, representing the
connections of the users to the subarrays after which we can apply the principles of
successive elimination of connections from the graphs as in coded random access.
This further reduces the computational cost but since we are neglecting some portion
of the signal energy, p0, and treat it as interference at the remaining arrays, and we do
not perform any soft fusion at the central processing unit, it is reasonable to expect
that the performance of the method might be slightly degraded in some configuration
regions of the system (i.e., specific values of K relative to B and Mb, b = 1, . . . , B).

The most attractive feature of the proposed method is the fact that the bipartite
graph can be constructed very simply, exploiting the sheer fact that the receiver has
perfect CSI, i.e., it knows H; in other words, by observing the k-th column, the receiver
can determine which parts of the array the dominant part of the power of user k is
allocated. This way, the receiver obtains a binary matrix H ∈ {0, 1}B×K . We use H to
construct a bipartite graph. Note that, at the beginning of the algorithm 3, the central
unit runs Algorithm 2 according to the CSI and then sends the order of the detection
to each subarray. This means that each subarray receives a schedule consisting of the
list of users that should be detected by that subarray. This is the only centralized
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Fig. A.2: An example of linear M-MIMO array with different user visibility regions.
Equivalent graph representation for this system is shown in Fig. A.3 (a).

broadcasting in this algorithm and the rest of it is decentralized.
The procedure is described in Algorithm 2. Moreover, an example of xMaMIMO

with 5 users is illustrated in Fig. A.2 where the energy distribution of each user on
antenna arrays is also presented. The equivalent bipartite graph representation of this
setup is shown in Fig. A.3 (a). The extension of this binary graph to a weighted one,
where the weights show the portion of user’s total power, is left for future work.

The bipartite graph constructed this way is characterized by the following quan-
tities: (i) a set B of B nodes representing subarray units, (ii) a set K of K user nodes
and, (iii) a set E of edges, i.e. connection between users and subarrays. We use
G = (B,K, E) to denote this graph. We also define the node degrees Sb, b ∈ B and
Uk, k ∈ K; the degrees give the number of edges connected to each of the nodes in B
and K, respectively. For instance in Fig. A.3(a), subarray b = 1 only receives signal
from user k = 1 and user k = 3; therefore, its degree is S1 = 2.

Once the graph has been constructed, we apply simple symbol detection strat-
egy inspired from coded random access [10]. Hence, we search for subarrays with
the lowest number of users; we detect the symbols of those users and subsequently
remove them from the other subarrays. An illustrative example for the procedure is
shown in Fig. A.3. We assume xMaMIMO system with K = 5 users and B = 5 sub-
arrays with graph representation shown in Fig. A.3(a). After computing the degrees,
we see that S2 = 1. Thus, we start signal detection in subarray b = 2 for user k = 2.
Then, we remove any other edges corresponding to user k = 2 from the graph. We
repeat the procedure for S5 and U5 in Fig. A.3(b). In step (c), we have three nodes
with same degree and similar conditions. We randomly choose S3 and start a ZF
detection within subarray b = 3 between users k = 3 and k = 4. After recovering both
of them, we remove all edges from the graph corresponding to those users. Finally,
in part (d) we have a singleton node that can be easily detected. Now, since all the
users are detected, the algorithm terminates. The complete algorithm is summarized
in Algorithm 3.
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Fig. A.3: An example of the proposed detection model on a bipartite graph model with
K = 5 users and B = 5 subarrays. (a): connections of the users to each array. The
subarray with the lowest number of users is selected (S2). The corresponding user
symbols are detected and removed from the other subarrays. (b): the procedure is
repeated for S5 and U5. (c): S3 is randomly selected. ZF detection is used to decode
user 3 and user 4. Their data is removed from the other subarrays. (d): the last user
is detected.
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Algorithm 3 Low complexity multiuser detection in non-stationary regime

Result: Estimates of xk, k = 1, . . . , K
Initialize: H, K, B, Mb, B = {1, . . . , B}, K = {1, . . . , K}
1. compute H via Algorithm 2
while K 
= ∅ do

1. compute node degrees Sb, b ∈ B, Uk, k ∈ K
2. find b∗ = minb∈B {Sb}
if b∗ = 1(only user k∗in the subarray with minimal degree) then

1. compute x̂(b
∗)

k∗ via (A.7)
2. broadcast x̂k† so other subarrays remove it from y(b) for b ∈ B \ b∗

3. K = K \ k∗

if b∗ > 1(multiple users K∗ ⊂ K in the subarray with minimal degree) then

while K∗ 
= ∅ do
1. sort the users according to SNRZF,k, k ∈ K∗ in (A.6)
2. find k† = maxk∈K SNRZF,k
3. broadcast x̂k† so all subarrays remove it from y(b) for b ∈ B
4. K∗ = K∗ \ k†

end

6. K = K \ K∗
end

4 Complexity, Convergence and Delay Analyses

In this section we first consider computation complexity comparison between the
proposed algorithm and the linear data fusion using ZF detector. Convergence and
delay characteristics of the proposed algorithms are discussed next.

4.1 Complexity of DLDF

In DLDF we have three phases for user detection which have the following complexi-
ties:

1. Data detection: Consists of ZF matrix inversion for all users in all of the subar-
rays with MbK elements, which have a complexity order of BK(K)3.

2. SNR extraction: This function is also for all users in all of the subarrays con-
taining BK(Mb(K− 1)).

3. Soft fusion: The last part with BK matrix multiplications.

4.2 Complexity of Algorithm 3

We study this part with two extreme cases that could happen regarding the nature of
non-stationarity.
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Table A.1: Complexity comparison of the studied methods

Methods Number of multiplications

ZF-DLDF BK(K)3 + BK((K− 1)) + BK

Algorithm 3 Worst case: K4 + K(Mb(K− 1))

Best case: K4B−3 + KMbK
B

Worst case

This case occurs when we have all of the users in all of the subarrays or when we
have them in only one subarray. Thus, the algorithm sets min Ns = K and performs
detection over only one subarray. Moreover SNR extraction is also done for all users
in this subarray containing K(Mb(K− 1)). Therefore, the complexity of this part is at
most K4 + K(Mb(K− 1)) calculations.

Best case

This case happens when we have users evenly distributed between subarrays meaning
that each subarray performs detection over K

B users. Therefore the complexity of the
detection part is

B

[(
K
B

)3
+

(
K
B
− 1
)3

+ · · ·+ 1

]
<

K4

B3 . (A.13)

Also, for the ordering part we have KMbK
B computations. TABLE A.1 provides the

complexity comparison between the aforementioned algorithms.
A rough comparison between the complexities of the Algorithms reveals that the

complexity reduction of Algorithm 3 scales with B in the worst case and with B4 in
the best case. If B is of the order of 10, we see that significant computational power
can be saved by employing Algorithm 3.

4.3 Convergence Analyses

The analyses for the convergence for Algorithm 3 over graphical model can be found
in [10]. Moreover, considering this algorithm as an extension to the model in [10] by
enabling continuous signal space, i.e. we recover a part of data at each step even on
non-singleton nodes, it will converge even faster due to this claim.

4.4 Delay Characteristics

In order to highlight the trade-off between using our proposed algorithms instead of
the centralized methods, we discuss delay properties of the algorithms. Algorithm 3
introduces some delay due to the sequential nature of the algorithm. For example,
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while a selected subarray b performs the detection of a given symbol, the other subar-
rays carrying the same symbol should wait for the input from subarray b to perform
interference cancellation.

This waiting time vanishes when we have sparse channels since different sub-
arrays become independent as they involve different users. Thus, they can work
together in a parallel mode. A deeper analysis of the overall delay is left for future
work.

5 Simulation Results

In this section we compare the Bit Error Rate (BER) performance of the proposed
algorithm and DLDF. We assume a linear xMaMIMO configuration (see Fig. A.2)
for our simulations setup. We use Monte-Carlo simulations to generate the channel
realizations. Some of the fixed variables are: β = 1, γ = 2, array length = 100
m, power threshold for constructing the bipartite graph p0 = 0.9 and we use an 8-
PSK input constellation. Moreover, we assume that the user location has a random
uniform distribution along the array. Note that user distribution and antenna array
length have a direct impact on the large scale fading characteristics and therefore
control the bipartite graph structure.

Fundamentally, for a given average user load per subarray, the BER performance
is determined by the dimension of the visibility region seen by each user. Here, the
users are at the same distance and uniformly distributed along the array, so that the
average size of the visibility region is the same per user (except for users at the edges
which have a non-significant impact for a large enough number of users). In the
simulation, we study the following factors: a) the number of subarrays, b) the total
number of users and c) the number of antenna per subarray.

First, we compare the BER of the detection methods for different numbers of
subarrays, B, while the number of antennas is fixed, M = 512, starting from a number
of 2 subarrays (256 antennas per subarray) and ending by a number of 32 subarrays
(16 antennas per subarray). We observe:

• Algorithm 3 performs significantly better than the DLDF.

• Linear processing: when the number of antennas per subarray is asymptoti-
cally large, due to the law of large numbers, the processing decouples across
the subarrays (this fact is supported by the rich scattering assumption). Sub-
array processing becomes equivalent to a centralized linear processing. We
observe an almost stable performance level (corresponding to the centralized
processing) until a number of antennas per subarray smaller then 32.

• Algorithm 3: the performance of algorithm 3 is degraded when the number of
subarray is small. The reason is that the algorithm lacks degrees of freedom for
the SIC mechanism to have its full effect. Performance saturates when the reso-
lution offered by the number of subarrays reflects the non-stationarity patterns,
more precisely when each subarray offers a stationary picture of the received
signal.

In Fig. A.5, we compare the performance of Algorithm 3 and DLDF with respect
to the number of users. The total array size is kept fixed. The array is comprised of B
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Fig. A.4: The effect of the number of subarrays B on the average BER of the detection
systems. We set M = 512 and SNR= 25dB.

subarrays, each with a number of antennas Mb = K. Note that the subarrays are not
adjacent in this simulation. We make the following observations:

• Again, algorithm 3 performs significantly better than the DLDF.

• As the number of antennas grows at the same speed as the number of users,
the user load per subarray is maintained so that performance remains approxi-
mately constant.

• We observe an improvement of algorithm 3 as the granularity increases, i.e. the
number of subarrays.

6 Conclusions

In a massive MIMO systems with extremely large arrays, users can effectively com-
municate only with a sub-part of the array called a visibility region. A receiver design
should be adapted to this kind of non-stationary patterns with partially overlapping
visibility regions. The receiver architectures proposed in this paper are based on sub-
array processing where part of the computational load is carried out. A central unit
coordinates the operations at each subarray and proceeds to data fusion. We pro-
posed a linear data fusion method, as well as a graph-based algorithm inspired from
coded random access which uses low complexity and distributed scheme for the data
detection. This method converts the propagation environment of the channel into a
bipartite graph and detects the users in a novel scheme.
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1. Introduction

Abstract

We consider a massive MIMO system where the array at the access point reaches a dimen-
sion that is much larger than the array in current systems. Transitioning to an extremely
large dimension and hence large number of antennas implies a need to scale up the multi-
antenna processing while maintaining a reasonable computational complexity. In this paper,
we study the receiver of such an extra-large scale MIMO (XL-MIMO) system. We propose
to base the reception on Variational Message Passing (VMP). The motivation is that the com-
plexity of VMP scales (almost) linearly with the number of antennas and number of users,
hence enabling low-complexity reception in crowd scenarios. Furthermore, VMP adapts to the
non-stationarities of the MIMO channel that appear due to the large dimension of the array.
Through numerical results, we show significant performance improvement and computational
complexity reduction compared to a zero-forcing receiver.

Keywords— Massive MIMO, Message passing, Extra-large scale MIMO, Crowd
scenarios

1 Introduction

Motivated by the significant spectral efficiency gains brought by massive multiple-
input multiple-output (MIMO) systems, the study of systems with even larger num-
ber of antenna elements is currently under investigation. In conventional massive
MIMO [1], the arrays have a moderate size with an antenna spacing with half the
wavelength. In extra-large scale MIMO (XL-MIMO), the focus is placed on increasing
the dimension of the antenna array at the access point to capture additional spatial
degrees of freedom [2].

Due to the large array dimension and according to the electromagnetic propaga-
tion effects, spatial non-wide sense stationary properties appear along the array in XL-
MIMO (see Fig. B.1) [2]. This results in the appearance of visibility regions (VR), which
are the areas of the array where most of a given users’ energy is concentrated. The
non-stationary properties impact the performance of XL-MIMO and calls for adapted
transceiver designs. Another challenge is that of the computational complexity of the
receiver processing, especially when the system is serving a large number of users.
Since the conditions for favorable propagation are not satisfied when the number of
users is not much smaller than the number of antennas, simple receivers such as a
matched filter do not offer good performance [3]. In addition, more advanced linear
options such as zero-forcing (ZF) and linear minimum mean squared error (MMSE)
receivers have prohibitive complexity due to large matrix inversions. Hence, there is
a need for finding multi-user detection algorithms whose complexity scales well with
the number of antenna elements and users, and whose performance is comparable to
that of classical linear MIMO receivers.

We studied the receiver design for large scale MIMO systems in [4] where dis-
tributed units, called sub-arrays, detect users’ signals by cooperation. We used a suc-
cessive interference cancellation (SIC) based method between sub-arrays. Message
passing (MP) has been applied to massive MIMO systems. In [5] authors develop low
complexity MP methods using graphical models. Both channel estimation and data
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detection problems with one-bit quantization are solved with MP techniques in [6].
Recently, authors in [7] used expectation propagation (EP) to solve the symbol de-
tection problem in XL-MIMO systems. They have exploited the sub-array structure
to model their EP scheme. To the best of our knowledge, the case of heavily loaded
XL-MIMO system, where the ratio between the numbers of BS antennas and active
users is small (less than 5), is not studied in the literature. The main challenges in
these scenarios are the extreme complexity of the conventional methods and huge
degradation in the performance of the benchmark linear receivers.

In this paper we propose a multi-user symbol detection algorithm for XL-MIMO
systems based on variational message passing (VMP). In the VMP framework, the
a-posteriori probability of the symbols from all users is approximated by a fully-
factorized distribution [8, 9], yielding an algorithm with complexity that scales lin-
early with the number of users and antenna elements, as no matrix inversions are in-
volved. The proposed algorithm is initialized with a maximal ratio combiner (MRC),
whose complexity also scales linearly with the system dimensions. In addition, since
the variational framework operates with approximations of the posterior probability
distributions of the unknown variables rather than with point estimates, it provides
an inherent way of optimally fusing the information on a user’s symbol obtained from
the different antenna elements in the array. This property is especially useful in the
presence of spatial non-stationarities and VRs, as occurring in XL-MIMO arrays.

Our complexity analysis shows that the number of multiplications for our pro-
posed algorithm grows much slower with the size of the BS array than for the ZF,
especially in crowded scenarios. We showcase the performance of the proposed re-
ceiver in an XL-MIMO system with a large user load, showing that it outperforms the
ZF receiver with a significantly lower computational overhead.

2 System Model

In this section, we present the system model and introduce a channel model incorpo-
rating spatial non-stationarities. We denote the number of antennas and simultane-
ously active users by M and K, respectively. We assume narrow-band transmissions;
x∈CK denotes the vector of complex user symbols, H∈CM×K is the complex channel
matrix and n∼CN (0, σ2

nIM) is the AWGN (IM denotes the identity matrix). We model
the received baseband signal y∈CM as:

y = Hx + n. (B.1)

Denoting by hk the kth column of H, corresponding to user k, and adopting the
channel model in [3]:

hk =
√

wk � h̄k, (B.2)

with � denoting the element wise (Hadamard) products between two equal-size vec-
tors. wk captures the effect of large scale fading and has entries

wk,m = Ωksν
k,m, m = 1, . . . , M (B.3)
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Fig. B.1: An illustrative example of visibility region and received power distribution
over XL-MIMO array.

where sk,m is the distance between user k and BS antenna m, Ωk is an attenuation
coefficient and ν is the pathloss exponent [10].

h̄k ∼ CN (0, Rk) models a non-line of sight fast fading scenario, with Rk being a
symmetric positive semi-definite channel covariance matrix. Karhunen-Loeve expan-
sion representation of the channel vectors h̄k are

h̄k = UkΛ
1
2
k ωk, (B.4)

where ωk ∈ Cζ×1 ∼ CN (0, I), Λk is an ζ× ζ diagonal matrix with dominant eigenval-
ues and Uk ∈ CM×ζ is the tall unitary matrix of the eigenvectors of Rk corresponding
to the ζ dominant eigenvalues.

2.1 Visibility Regions and Correlation Model

In order to model the channel characteristics in the non-stationary conditions, we refer
to the measurement-based data from [11]. There, more realistic scenarios exploiting
the VRs over a relatively large array (7.35 meters) were applied. The authors modeled
different properties for the VRs including VR centers and VR lengths which we denote
with ck and lk, respectively for user k. The ck’s are modeled with a uniform random
variable over the array, i.e. ck ∼ U (0, L), where L is the physical length of the XL-
MIMO array. The length of the VR follows a log-normal distribution, lk ∼ LN (μl , σl).

Exploiting the well-known one-ring model [12] to define Rk, the correlation be-
tween the channel coefficients of antennas p and q is given by

[Rk]p,q =
1

2Δ

∫ Δ

−Δ
exp

(
jf(α + θ)(up − uq)

)
dα, (B.5)
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where f(ω) = − 2π
λ (cos(ω), sin(ω)) is the wave vector with carrier wavelength of λ

and up, uq ∈ R2 are the position vectors of the antennas p, q within the VR of user
k, angle of arrival of ω and Δ is angular spread which is Δ ≈ arctan( r

s ), with r
standing for the ring of scatterers radius [13]. Angle θ is the azimuth angle of user
k with respect to antenna array (See Fig. B.1). When either of the antenna indices
p, q is outside the VR for user k given by the non-stationary parameters, we have
[Rk]p,q = 0. In this work, we use a uniform linear array (ULA) configuration and
assume a uniform distribution for the scattering rings in front of the array.

3 Proposed Receiver Algorithm

In this section we describe our proposed symbol detection method which is based on
variational message-passing (VMP). Due to space limitations, we cannot include the
full details of the VMP method, and refer the readers to [8, 9] instead.

3.1 Variational Message Passing

We aim to detect the transmitted user symbols xk (for user k) which take a value
from the constellation set A = {a1, a2, · · · , a|A|}. Moreover, we also estimate as a
nuisance variable the noise precision (i.e. inverse noise variance) λb, b = 1, . . . , M at
each antenna port. The posterior probability density of these two variables factorizes
as

p(x1, · · · , xK , λ1, · · · , λM|y1, · · · yM) ∝
M

∏
b=1

p(yb|x1, · · · , xK , λb)︸ ︷︷ ︸
fyb

M

∏
b=1

p(λb)︸ ︷︷ ︸
fλb

K

∏
k=1

p(xk)︸ ︷︷ ︸
fxk

(B.6)

The factorization chosen in (B.6) can be visualized in the factor graph representation
shown in Fig. B.2, where variable and factor nodes are illustrated with circles and
squares, respectively.

In variational inference/message passing, we approximate the joint posterior of
the variables in the system by a fully factorized auxiliary function of the form

q(x, λ1, . . . , λM) =
K

∏
k=1

qxk (xk)
M

∏
b=1

qλb
(λb) (B.7)

The individual q(·) factors in the r.h.s. of (B.7) are then sequentially updated by mini-
mizing the Kullback-Leibler divergence between the posterior probability function in
(B.6) and the approximating auxiliary function with respect to one of the factors at a
time. After convergence, they yield approximations of the posterior marginals of the
system variables.

The variables λb model the variance of noise n and residual interference at antenna
ports b = 1, ...., M. We set their prior as a Gamma distribution [14], which is the
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Fig. B.2: Factor graph representation of the system model.

conjugate prior for the precision of a Gaussian distribution with known mean. Hence,
their pdfs read

fλb
(λb) ∝ λb

(α0−1) exp (−z0λb) for b ∈ {1, · · · , M} (B.8)

where α0 and z0 are respectively the shape and rate parameters. The factors fyb

correspond to the pdf of the signal received at antenna ports b conditioned on the
users’ symbols and λb, reading

p(yb|x, λb) =
λb
π

exp(−λb||yb −H[b,:]x||2) (B.9)

where H[b,:] denotes bth row of H, i.e. the channel for antenna element b. Finally, the
prior distribution of the transmitted symbols are modeled as uniform over constella-
tion set A.

To begin with, and according to the definition of the VMP method, the message
from factor node fyb to the variable node λb is

m fyb−→λb
(λb) ∝ exp (Ex{ln

(
p(yb|x, λb)

)
}) (B.10)

where Ex is the expectation with respect to the distribution given by
qx(x) = ∏K

k=1 qxk (xk).
After multiple simplifications, we reach to

m fyb−→λb
(λb) ∝ λb exp(−λbZ) (B.11)

where Z = ||yb −∑k hkμxk ||2 + ∑k σ2
xk

hH
k hk with μxk and σ2

xk
standing for mean and

variance of xk, which is derived below. Now, we can calculate the approximate
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marginal probability distribution of λb at antenna port b by multiplying the messages
entering the variable node λb as

qλb
(λb)= fλb

×m fyb→λb
=λb

α−1︷︸︸︷
α0 e−λb

β︷ ︸︸ ︷
(z0+Z) (B.12)

Next, we consider the messages from each antenna to the symbol variables, m fyb−→xk

which is

m fyb−→xk
∝ CN

(
xk;

Hb,k

|Hb,k|2
(yb−∑

k′ 
=k
μxk′ Hb,k′ ),

1
μλb
|Hb,k|2

)

where μλb
is the mean value of the λb variable which can be calculated from (B.12) as

μλb
|α0=0
z0=0

=
α

β
=

1
|yb−∑k Hb,kμxk |2+∑k σ2

xk |Hb,k|2
(B.13)

with Hb,k denoting the channel between antenna element b and user k. Finally, we cal-
culate the marginal probability of the symbols of each user by multiplying messages
from all the antenna elements and their prior, yielding

qxk (xk) ∝
M

∏
b=1

m fyb−→xk
(xk)× fxk (xk). (B.14)

From the resulting discrete distribution, we can compute the symbols mean and vari-
ance as μxk = ∑xk∈A xkq(xk) and μxk and σ2

xk
= ∑xk∈A |xk|2q(xk)− |μxk |2.

Damping factor

In order to improve the convergence of our VMP-based scheme, we use a damping

factor δvmp to smooth the updates of q(t)xk (xk) at tth iteration as [15]

q(t)xk (xk)⇐ δvmpq(t)xk (xk) + (1− δvmp)q
(t−1)
xk (xk) (B.15)

where the symbol "⇐" denotes the assignment and δvmp ∈ [0, 1] performs a weighted
average over the messages in the current and previous iterations.

3.2 MRC initialization

One of the important factors in the convergence rate of the message passing-based
algorithms is the initialization. Here, we propose an initial MRC processing over
the received signal and feed the soft information to the VMP algorithm for further
processing.

In order to apply MRC to the received signal, we need to use FMRC =
hH

k
||hk ||2 filter

on (B.1) that yields to

xMRC
k =

hH
k

||hk||2
y = xk +

K

∑
k′ 
=k

hH
k

||hk||2
hk′xk′ +

hH
k

||hk||2
n (B.16)
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Algorithm 4 VMP with MRC initialization.

Result: Symbol detection for all active users
Initialize: M, K, parameters in 2, A, VMP iterations I ,δvmp.
1. Generate channel matrix H using (B.2).
2. Calculate the initial MRC probabilities q0(xk) using (B.17).
for i = 1 to I do

3. Extract μx and σ2
x values from q(i−1)

xk (xk).
4. Calculate the mean value of the precision parameter λ̂b using (B.13) for
all the antenna elements b = {1, · · · , M}.

5. Calculate symbol probabilities q(i)xk (xk) using (B.14) for all the users
k = {1, · · · , K}.

6. Update the symbol probabilities applying the damping factor in (B.15).
end

for k = 1 to K do

7. x̄k = arg maxi q(I)xk (xk = ai|ai ∈ A)
end

Assuming the crowded scenario mode (K � 1), the second and third terms in xMRC
k

can be approximated as complex Gaussian random variable according to the central
limit theory. Therefore, we set the initial marginal of xk’s as

q0(xk)=CN
(

xk; xMRC
k ,

∑K
k′ 
=k Pxk′ |hH

k hk′ |2 + ||hk||2σ2
n

||hk||4
)

(B.17)

where Pxk = E{xkxH
k } is user signal power.

3.3 Algorithm

Our proposed receiver is summarized in Algorithm 4, where VMP solver and the XL-
MIMO system parameters are given as inputs and detected symbols are the outputs.
After generating the true non-stationary MIMO channel and initial symbol probabil-
ities by MRC, several loops in the VMP begin to exchange messages and update the
variables. The first loop calculates the different parameters for the desired messages
and updates them until a predefined number of iterations I . Finally, the second loop
chooses the most probable symbol for each of the users.

4 Simulation Results

In this section we evaluate the performance of the proposed algorithm and com-
pare it with the other benchmark methods. We choose an ideal bound where perfect
interference removal is done for each target user and then MRC is used for single-
user detection in the interference-free channel. We call this bound “matched filter
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Table B.1: Simulations parameters in detail.

Variable Value Variable Value

M 512 K 256
I 3 |A| 4
P I r Uniform(5, 10)
L 29.51m ν 3
λ 2.6GHz Antenna spacing λ/2

(μl , σl) (2.25, 0.1) ζ M/4
Ω 4 δvmp 0.45

-4 -2 0 2 4 6 8
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Fig. B.3: SER comparison of the different detection methods in a heavily loaded XL-
MIMO system with M

K = 2

bound" [16]. All of the simulation parameters are shown in Table B.1. According to
the numerical analyses VMP in our model converges at most at I = 3. Fig. B.3 shows
the SER comparison of the proposed method, ZF and the ideal single user bound. As
it can be seen, the VMP based algorithm outperforms the ZF detector while keeping
an acceptable gap with the ideal bound. As mentioned before, due to lack of the
favorable propagation, ZF fails to work near-optimally.

4.1 Complexity Analyses

Here, we derive the computational complexity of the proposed method and the bench-
mark method zero-forcing (ZF). The complexity of ZF is [17]

CZF =
K3

3
+ MK2 + MK (B.18)
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Fig. B.4: Complexity comparison of the different detection methods in three system
load modes.

while the complexity of the VMP-based method is

CVMP = I(M(3 + 2K)︸ ︷︷ ︸
(I)

+ MK|A|︸ ︷︷ ︸
(I I)

) + 3MK︸ ︷︷ ︸
(I I I)

(B.19)

where, in (I) we have 3 multiplications for updating μb, σ2
b and λ̂b for each of the

antennas plus 2 multiplications per user for deriving μx and σ2
x . Then (I I) stands for

executing (B.14) and finally (I I I) is for the MRC initialization part in (B.17).
Fig. B.4 compares the complexity of these two methods in three different scenarios

of high, moderate and low load regimes with M/K equal to 2, 10 and 20, respectively.
The total number of the multiplications for VMP is always smaller than the ZF’s and
the gap grows as we approach to the crowded scenarios with much more users in the
system.

5 Conclusions

In this work, we have studied the design of multi-user detection schemes for XL-
MIMO systems. We have shown that VMP can be used to design a message-passing
receiver with complexity that scales linearly with the number of users and antenna
elements, thus making it suited for XL-MIMO systems with high system load. In
addition, the detection performance surpasses that of a classical ZF detector, in spite
of requiring fewer computations. Future research will address the inclusion of channel
estimation together with data detection in the VMP receiver and the exploration of
distributed implementations.
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1. Introduction

Abstract

We study the design of receivers in extra-large scale MIMO (XL-MIMO) systems, i.e. systems
in which the base station is equipped with an antenna array of extremely large dimensions.
While XL-MIMO can significantly increase the system’s spectral efficiency, they present two
important challenges. One is the increased computational cost of multi-antenna processing.
The second one is the presence of spatial non-stationarities in the channel response, which
imply that the mean energy of a given user’s signal varies across the array. Such non-
stationarities limit the performance of the system. In this paper, we propose a distributed
receiver for such an XL-MIMO system that can address both challenges. Based on variational
message passing (VMP), we propose a set of receiver options providing a range of complexity-
performance characteristics to adapt to different requirements. Furthermore, we distribute the
processing into local processing units (LPU), that can perform most of the complex processing
in parallel, before sharing their outcome with a central processing unit (CPU). Our designs
are specifically tailored to exploit the spatial non-stationarities and require lower computations
than linear receivers. Our simulation study, performed with a channel model accounting for
the special characteristics of XL-MIMO channels, confirms the superior performance of our
proposals compared to the state of the art methods.

Keywords— Massive MIMO, Message passing, Extra-large scale MIMO, Beyond
5G (B5G), Large intelligent surface, Spatial non-stationary, Complexity reduction

1 Introduction

Massive multiple-input multiple-output (MIMO) systems are known to have high
spectral and energy efficiencies that make them a candidate for beyond fifth-generation
(B5G) and 6G technologies [1–3]. Scaling up the number of antenna elements helps
getting better performance, as it allows for spatially multiplexing a large number of
users on the same time-frequency resources. Recently, the concept of extra-large scale
MIMO (XL-MIMO) systems [4], or large intelligent surfaces (LIS) [5], has drawn atten-
tion among the researchers. Such systems can provide very high spatial resolutions
leading to better quality of services for the mobile users.

One of the main obstacles limiting the possibility of increasing the dimensions of
the MIMO array is the computational complexity cost. Most of the well-known con-
ventional linear processing methods such as zero-forcing (ZF) and minimum mean
squared error (MMSE) receivers have prohibitive complexity due to large matrix in-
versions when a large number of users is jointly served. Hence, there is a need for
developing smarter multi-user detection algorithms that deal better with the higher
number of users and antennas at the BS.

According to the electromagnetic propagation effects, in an array with very large
dimensions spatial non-wide sense stationary properties appear [6]. In particular, the
large dimension of the antenna array results in a mean energy received from a given
user that may vary significantly across the array elements. On the one hand, the
large separation between some of the array elements implies that their distance to the
user of interest may be significantly different [4]. On the other hand, array elements
that are distant from each other may experience a notably different propagation en-
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vironment towards the user of interest [7]. These effects have been accounted for in
proposed channel models by considering visibility regions (VRs) of a given user in
the array. The VR for a given user is the subset of BS array elements that hold most of
the user’s received energy [6]. Presence of VRs limits the system performance com-
pared to the conventional massive MIMO systems where VR sizes are bigger or equal
to the array size [8]. Results in [9] also confirm system capacity reduction due to
the existence of partially visible clusters in the massive MIMO channel. On the other
hand, this property can be exploited to design smarter receivers that only consider
the processing of the signals received inside the VRs [4] [10].

1.1 Literature review

The concept of low-complexity receivers for massive MIMO systems has gained a
lot of attention recently. Various linear and non-linear techniques are used in the
literature. The authors in [11] and [12] used a daisy-chain architecture and recursive
methods based on approximating ZF for uplink detection and downlink precoding.
The performance of these methods highly depends on the stationary conditions of the
users’ energy distribution over the antenna array. On the other hand, different low-
complexity non-linear techniques such as message passing (MP) have been applied to
massive MIMO systems as well. For instance, in [13] authors develop low complexity
MP methods for MIMO inter-symbol-interference systems using graphical models.
Both channel estimation and data detection problems with one-bit quantized massive
MIMO are solved with variational approximate message passing (VAMP) in [14].

One of the major drawbacks of centralized processing methods in conventional
massive MIMO receivers is that they lack the ability to parallelize the operations.
Moreover, scaling up the dimensions of the array becomes very hard due to the high
number of interconnections and heavy load on the central node. Therefore, various
de-centralizing techniques have been proposed. One of them is cell-free massive MIMO
that is trying to remove the cell boundaries and have a user-centric approach for the
data-transmission [15] [16]. Unlike XL-MIMO systems, cell-free systems have con-
siderable computational delay time [17]. For the XL-MIMO arrays, we designed a
receiver in [4] using distributed units, called sub-arrays. First, the central processing
unit (CPU) uses a method to assign users to the sub-arrays and then, the sub-arrays
detect users’ signals. Also, in [18], we used randomized Kaczmarz algorithm (rKA)
to design a receiver with a heuristic approach to approximate the zero-forcing. All
these methods work closely to the centralized linear approaches while having a per-
formance gap with optimal solutions.

One of the ways to tackle the curse of dimensionality with the XL-MIMO arrays
is to use algorithms that grow linearly with the number of the antennas at the BS.
We proposed the idea of using MP for the XL-MIMO arrays to deal with its extreme
dimensions [19]. Motivated by the complexity behaviour of the VMP (which scales
almost linearly with the number of antennas and number of users), we managed
to have a low-complexity reception in crowd scenarios. An expectation propaga-
tion (EP) based solution for symbol detection in XL-MIMO systems was presented
in [20], where a sub-array structure is assumed to model the EP scheme. However,
this method works fine with a small number of users.
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1.2 Contributions

In this article, we propose a distributed receiver 1 structure based on variational
message-passing and sequential interference cancellation for XL-MIMO systems. In
our receiver, local processing units (LPU) perform in parallel soft user symbol detec-
tion by applying VMP to the signals received locally at each subarray. Then, they
forward their soft symbol estimates to the CPU for the final decision. In this method,
each of the LPUs can operate independently and in parallel. Moreover, SIC is used to
improve the performance of the symbol detection. The CPU fuses information from
all the LPUs, detects the strongest user and propagates the detected user’s symbol to
the LPUs. Then, each of the LPUs removes the signal contributions of the detected
user. A secondary parameter called noise precision is estimated as well. This param-
eter provides a good measure of the quality of users’ signals at each sub-array and
thus helps to schedule the detection order. We propose multiple initialization strate-
gies of the algorithm and investigate their convergence, performance and complexity
characteristics.

The contributions of this work can be summarized as follows:

• We present a receiver architecture with flexible complexity-performance trade-
off, where we offer a set of receivers that can have low, moderate and high
complexity. Depending on their level of complexity, the performance ranges
from good to close to optimal. Their complexity also scales at a lower rate than
the conventional central linear processing methods, such as the ZF, with regard
to the number of users.

• Our receiver distributes symbol detection tasks between the CPU and the LPUs,
making it possible to parallelize most of the computations.

• We introduce a generalised non-stationary channel model to capture realistic
scenarios. We update the double-scattering channel model in [21] by intro-
ducing random spatial non-stationarities in it. This model is based on various
measurements data and can model several scenarios and is a more accurate
representation for XL-MIMO channels than typically used i.i.d models.

• We present various VR-aware receivers that account for the spatial non-
stationarities of XL-MIMO channels. These receivers work in a more efficient
way by obtaining much better performance than the centralized methods and
working very closely to the normal-data fusion VMP method while keeping
the complexity limited. To the best of our knowledge, this is the first work that
exploits the non-stationarities to design a receiver obtaining close to optimal
performance.

In our previous work [19], we proposed a centralized VMP architecture for the
XL-MIMO arrays. We investigated a crowded scenario in a relatively simple chan-
nel model. This algorithm does not allow distributed processing at local units and
has no complexity-performance flexibility. In contrast, in this paper we introduce
a set of distributed receivers that work in co-operation in an iterative manner. We
present a task scheduling technique between the central and local processing units

1 The term ’Distributed receivers’ is referring to the processing techniques that are used
throughout the paper.
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to enable low-complexity parallel processing. Moreover, we propose the VR-aware
receivers that exploit channel non-stationarities to lower the complexity even more
with a small cost in the performance. We study a general channel model and evaluate
the performance in various scenarios with respect to different system parameters. We
also add channel coding in our results and compare the error rate of our methods
with [19] to show the improvement of the new receivers.

1.3 Paper structure

First, we start with discussing the channel model in an XL-MIMO system considering
the random non-stationarities in Section 2. Then, we explain the principles of varia-
tional inference, our problem formulation, the distributed VMP scheme and different
initialization techniques in Section 3. After designing the message passing structure,
we aim to detect the transmitted symbols in Section 4. There, we discuss about dif-
ferent data fusion methods and symbol detection techniques taking place at the CPU.
We conclude our paper with the simulations results in Section 5 and the conclusions
section.

1.4 Notations

Capital calligraphic letters A denote finite sets. The cardinality of a set is denoted
by |A|. X \ Y is set X from which set Y is excluded. Boldface small and capital
letters stand for vector and matrix representations, respectively. (.)H is matrix con-
jugate transpose operator. Is is an identity matrix of size s× s. f (x) ∝ g(x) denotes
that f (x) = ag(x) for some positive constant a. Ex is the expectation operator over
variable x and x̄ is the mean value of x. CN(x; μ, Σ) as the probability distribution
function (pdf) of a multi-variate complex Gaussian distribution with mean vector μ

and covariance matrix Σ over a variable x. CN (μ, Σ) is a multi-variate complex Gaus-
sian distribution with mean vector μ and covariance matrix Σ. U (a, b) is a uniform
distribution in [a, b] interval.

2 System Model

We consider a narrow-band MIMO system where K single-antenna active users trans-
mit in the uplink to a base station (BS) with M antenna elements. User symbols are
denoted with the vector x ∈ CK with entries taking values from the complex constel-
lation set A = {a1, a2, · · · , a|A|}. H = [h1, · · · , hK ] ∈ CM×K is the channel matrix
and has column vectors hk each of which denote the channel for user k . At the
BS, the noise is assumed to have circularly symmetric complex Gaussian distribution
n ∼ CN (0, σ2

nIM) ∈ CM. We model the received baseband signal y ∈ CM across the
whole array as follows:

y = Hx + n. (C.1)
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Fig. C.1: An illustrative example of the propagation model in a XL-MIMO array. Spatial
non-stationarities are appearing along the array where most of users’ energies are
concentrated in the VRs. There are several local clusters at the BS side and one cluster
per user at each user’s side. The interaction between these clusters determines the
characteristics of the non-stationarities.

The BS is made of a set of B sub-arrays each with Mb = M
B antennas. Here, we define

H̃b ∈ CMb×K and yb ∈ CMb as the channel matrix and the received signal in the b-th
sub-array for b ∈ {1, · · · , B}, respectively.

2.1 Channel Model

Fig. C.1 shows the channel model for the XL-MIMO system accounting for the non-
stationary properties of the propagation environment. We adopt a specific channel
model called double-scattering model [21]. In this channel, correlation is allowed at
both the transmitter and the receiver side. In the double scattering channel model,
there are two types of scattering clusters in the propagation environment: the one
located at the BS side called BS-cluster and one located at the user side called U-
cluster. Signals emitted by the users first impinge on the U-cluster, which scatters
them towards multiple BS-clusters directing the signal to the BS array.

As mentioned before, unlike conventional massive MIMO arrays, XL-MIMO ar-
rays can have a large number of antennas spanning hundreds of wavelengths in space.
By decomposing the propagation channel into scatterers, it is observed that the scat-
terers are not visible over the whole array. This causes variations in the received en-
ergy on the array and therefore the appearance of the spatial non-stationarities [6] [7].
The main difference between this model and the model in [21] is that we have several
BS-clusters due to the large array size at the BS. Each of these clusters is seeing a
subset of the antennas. Furthermore in our model, unlike the previous models pro-
posed in the XL-MIMO literature, we distinguish between the correlation matrices at
the receiver and the user side. This decomposition allows us to model wider ranges
of dynamics in our MIMO channel. For instance, in Section 5.3, we evaluate the per-
formance of our receivers in channels with different correlation characteristics at both
user and the BS sides.
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The channel between the user k and the BS is modeled as

hk =
[
h̃1,k, · · · , h̃C,k

]
Dk gk ∈ CM×1, ∀ k ∈ {1, · · · , K} (C.2)

where h̃i,k ∈ CM×Si denotes the sub-channel for the ith BS-cluster with Si scatterers,
Dk ∈ {0, 1}S′×S is in charge of assigning the visible BS-clusters to the U-cluster, and
the entries of gk ∼ CN (0, IS) ∈ CS×1 model the small-scale fading between user k
and the S scatterers in its U-cluster. Moreover, we assume that there are C BS-clusters
in the propagation channel and S′ scatterers at the BS side visible to the U-cluster. We
formulate the sub-channel of the ith BS-cluster and the U-cluster associated to user k
as

h̃i,k = Υiρ
1
2
i R

1
2
i GiR̃

1
2
i,k ∈ CM×Si , ∀i ∈ {1, · · · , C} and k ∈ {1, · · · , K} (C.3)

where Υi ∈ {0, 1}M×ri determines indices of the antennas at the BS that are visible
to the i-th BS-cluster with ri as the number of visible antennas. ρi ∈ Cri×ri is the
visibility gain matrix, Ri ∈ Cri×ri and Gi ∈ Cri×Si are the correlation matrix and the
complex scattering amplitudes between the BS and the BS-cluster i, respectively. Also,
R̃i,k ∈ CSi×Si is the correlation matrix between the i-th BS-cluster and the U-cluster
for user k. In the following we will discuss each of the channel components in (C.2)
and (C.3) in detail.

Cluster VR and power distribution

We have two types of VRs in our propagation channel: cluster VR and user VR. The
cluster VR is defined as an antenna region on the BS array that is visible to a cluster.
On the other hand, the user VR is a set of the clusters that are being seen by a user.
The antenna region for the cluster VR has a random center ci ( indicating position of
the center of the VR in meters) and a random length li consisting of ri consecutive
antennas on the BS in the interval [ci − li

2 , ci +
li
2 ] with dr as the BS antenna spacing.

These antennas are belonging to a index set of Ri = {ai
1, · · · , ai

ri
} where ai

j is the

j-th antenna element inside the i-th cluster VR starting from ai
1 = � ci− li

2
dr
� (|Ri| = ri).

Note that for two-dimensional arrays, the cluster VR will be an area on the array. We
have C cluster VRs that can overlap. Concerning the size of the array, the BS-clusters
are all partially visible. This indicates that none of them can see all of the antennas
at the BS or in other words, |Ri| 
= M ∀ i ∈ {1, · · · , C}. We indicate the relation
between the BS antennas and each of the BS-clusters with the antenna association
matrix Υi ∈ {0, 1}M×ri obtained by:

Υi =

⎡
⎢⎣0mi

1×ri
Iri

0mi
2×ri

⎤
⎥⎦ , mi

1 = ai
1 − 1 and mi

2 = M− ai
ri

(C.4)

where 0mi×ri
s are zeros matrices and the identity matrix Iri starts from the ai

1-th row,
i.e. from the first antenna of the VR. For example, in a system with M = 5 antennas
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and a VR cluster covering antennas in R1 = {2, 3, 4}, this association matrix is

Υ1 =

⎡
⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎦

The reason for using this matrix is to map the antenna elements into the individual
sub-channels for each of the BS-clusters.

The energy distribution is not constant inside each of the cluster VRs. We refer to
the measurements in [7] to model the variations in the received energy from cluster i
within its VR. According to these measurements, energy peak happens at ci and then
it attenuates linearly, i.e with a constant slope ψi (dB/m), in a logarithmic scale per
distance unit inside the VRs. We call the energy distribution visibility gain and can be
calculated using a discrete function such as:

ρi[n] =

{
10−ψi |ci−dr(n−1)| n ∈ Ri

0 n /∈ Ri
(C.5)

where n is the index of the antenna elements inside the cluster VR. We assume a BS
array with antennas located on the y-axis starting from the origin ( see Fig. C.1). A
small portion (less than 5%) of the reflected energy from the clusters is spread outside
of the VR. For the sake of simplicity in our model, we assume that this energy is
zero. Measurements in [7] suggest a uniform distribution for ci along the BS array,
a normal distribution for the slope of the gains ψi and a log-normal distribution for
the cluster VR size li. The measured parameters for these distributions that are used
for the simulations are presented in 5. Knowing the energy variations inside the VRs,
we define the visibility gain matrix ρi = diag(ρi[ai

j]|ai
j ∈ Ri) ∈ Cri×ri that stores the

visibility gains for all of the antennas inside the i-th VR in its diagonal entries.

BS-Clusters

Aiming to model the correlation between the elements on the receiver side ( at the
BS antennas), we define the correlation matrix for the BS-cluster i Ri ∈ Cri×ri . This
matrix can be calculated as the following where its (m, l) element is [21]:

[Ri]m,l =
1
Si

Si−1
2

∑
n= 1−Si

2

exp
(
−2π j(m− l)dr cos(π/2 + αi +

nθi
Si − 1

)

)
∀ m, l ∈ {1, · · · ri}

(C.6)

where, θi is the angular spread and αi is the azimuth angle between the BS and the
i-th BS-cluster. We assume that the BS-clusters are located randomly in the x− y plane
and the x-axis is the referral line for all the azimuth angles in this paper. Moreover,
the small-scale fading modelling the complex scattering amplitudes between the BS
and the i-th BS-cluster is Gi ∈ Cri×Si and each of its i.i.d entries follow a complex
Gaussian distribution CN (0, ISi ).
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In order to indicate the indices of the scatterers in all the BS-clusters, we use an
index set. Without loss of generality, we assume that the scatterers of all the BS-
clusters are indexed and stored in scattering set S′ = {1, 2, · · · , S′} with S′ = ∑C

i=1 Si.

U-Cluster k

This cluster models the scatterers around the user equipment (UE) such as buildings,
cars and trees. We assume that each user only sees one U-cluster with S scatterers.
These scatterers are viewed as an array of S virtual antennas that have an average
spacing of ds. For simplicity, we assume the same ds size for both BS and U clusters.
The correlation matrix between the i-th BS-cluster and the U-cluster for user k is
R̃i,k ∈ CSi×Si . The (m, l) element of this matrix is computed as:

[R̃i,k]m,l =
1
Si

Si−1
2

∑
n= 1−Si

2

exp

(
−2π j(m− l)ds cos(π/2− α̃i,k +

nθ̃i,k
Si − 1

)

)
∀ m, l ∈ {1, · · · Si}

(C.7)

where, α̃i,k is the azimuth angle between the i-th BS-cluster and the U-cluster of user
k and θ̃i,k is the corresponding angular spread between them.

The visibility matrix

Due to the randomness and obstacles in the environment, only a subset of the C BS-
clusters ( See Fig. C.1) are visible to the U-cluster k. We denote the user VR by Vk
for each user k containing the indices of the BS-clusters visible for the U-cluster k.
We denote the scatterer visibility set for user k as Sk ⊂ S′ that stores all the indices
of the scatterers of the BS-clusters in Vk. Now, We can define the visibility matrix
Dk ∈ {0, 1}S′×S and its m-th row is calculate as:

[Dk](m,:) =

{
11×S if m ∈ Sk

01×S otherwise
(C.8)

This matrix shows the visibility of the BS-cluster scatterers to the U-cluster. As an
example, assume 3 BS-clusters each with 2 scatterers and a U-cluster with 5 scatterers
and V1 = {1, 3}. Thus, the resulting scatterer visibility set is S1 = {1, 2, 5, 6} and the
visibility matrix is

D1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

Finally, we can assemble the channel for each user k in (C.2) using different chan-
nel components from equations (C.3)-(C.8). The scatterer visibility set of user k, Sk, is
different and independent from the rest of the users. Thus, users can share some of
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the BS-clusters depending on these sets. Eventually, the complete channel matrix can
be calculated as H = [h1, · · · , hK ].

3 Variational Message Passing

In this section, we introduce the basics of the VMP method before formulating the
problem of estimating the transmitted symbols. Finally, we derive the messages for
the VMP algorithm.

3.1 Variational Inference and Variational Message Passing

Let p(z, x) denote a joint probability density function (pdf), where z = {z1, . . . , zN}
denotes a set of unobserved variables and x a set of observed variables. Our goal
is to find estimates of the variables in z from their marginal posterior pdfs p(zi|x).
However, finding these pdfs is often too complex or intractable. Instead, we resort
to computing a surrogate distribution q(z) that approximates the posterior p(z|x)
and from which marginals qi(zi) can be easily found. This is obtained in variational
inference by minimizing their Kullback-Leibler (KL) divergence, defined as

D(q||p) �
∫

q(z) log
q(z)

p(z|x) dz. (C.9)

To make the problem tractable, the surrogate function q is restricted to fulfill certain
constraints. Typically, the mean-field approximation, which considers a fully factor-
ized distribution of the form

q(z) =
N

∏
i=1

qi(zi) (C.10)

is applied, in addition to normalization constraints
∫

qi(zi)dzi = 1. With these con-
straints, a sequential minimization of the KL divergence with respect to each of the
factors qi is performed. It can be shown [22] that, at each step, the optimal factor qi
given all other factors qj, j 
= i is obtained by

q(zi) ∝ exp
(

Ej 
=i{ln p(z, x)}
)

(C.11)

where the expectation is taken with respect to all approximate marginals qj, j 
= i. The
above update rule is applied alternately to the different factors until convergence is
achieved.

This algorithm can also be formulated in terms of a message passing algorithm.
Assume that the joint distribution factorizes as

p(z, x) = ∏
a

fa(za, xa) (C.12)

where za ⊆ z and xa ⊆ x are subsets of the unobserved and observed variables. All
of the fa(za, xa)s are the factors in the joint pdf and they depend on the statistical
dependencies in the model. The factorization is not unique, as several factors can be
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combined together. Moreover, this factorization can be graphically represented as a
factor graph which we will introduce it in the next subsection. The update in (C.11)
can be expressed in terms of messages passed along the edges of the factor graph [22]
as in

qi(zi) ∝ ∏
fa∈N (zi)

m fa→zi
(zi) (C.13)

where N (zi) denotes the set of factors in (C.12) that contain variable zi, and the
messages read

m fa→zi
(zi) = exp

(
Ej 
=i{ln fa(za, xa)}

)
. (C.14)

3.2 Probabilistic System Description

To apply the VMP inference described above, we first formulate a probabilistic model
of the system. Our ultimate goal is to infer the values of the transmitted symbols
xk, k = 1, . . . , K and of the unknown noise precision (inverse of the noise variance)
λ = 1

σ2
n

. Ideally, this should be done from their joint posterior distribution, which
reads

p(x, λ|y) ∝ p(y|x, λ)p(x)p(λ) (C.15)

where, due to the white Gaussian noise, p(y|x, λ) = CN(y; Hx, 1
λ IM). The prior

symbol probability mass function (pmf) reads p(x) = ∏k p(xk), with p(xk) being
uniform over the constellation set A, and we assume the noise precision to have a
non-informative Gamma prior.

As we are interested in performing as much of the processing locally at each of
the BS sub-arrays, however, we formulate instead B similar models, one for each of
the sub-arrays:

p(xb, λb|yb) ∝ p(yb|xb
1, · · · , xb

K , λb)︸ ︷︷ ︸
fyb

p(λb)︸ ︷︷ ︸
fλb

K

∏
k=1

p(xb
k)︸ ︷︷ ︸

fxb
k

, b = 1, . . . , B. (C.16)

where the variables xb = [xb
1, . . . , xb

K ]
T and λb denote respectively the transmitted

symbols and noise precision observed by the b-th BS sub-array,
fyb (x

b, λb) = CN(yb; H̃bxb, 1
λb

IMb ), fxb
k
(xb

k) = 1
|A|1(xb

k ∈ A), and fλb
∝ 1/λb

2. Al-

though, clearly, xb and λb represent the same random variables for the different sub-
arrays b = 1, . . . , B, we treat them separately here such that each sub-array can, in
their local processing phase, obtain independent estimates of them based on solely
their received signals yb. After each local processing phase, their respective estimates
are fused in a CPU and distributed back to the sub-arrays. The factor graphs illustrat-
ing the models in (C.16) and their linking with the CPU are depicted in Fig. C.2.

2This choice of prior corresponds to an improper, noninformative Gamma prior distribution
with shape and rate parameters approaching zero.
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Fig. C.2: Factor graph representation of the local processing units and the central unit.
Local estimations obtained by the local units are sent to the central unit for the data
fusion and detection.

3.3 VMP at the Local Processing Units

We proceed in this section to describing the VMP algorithm run at each of the LPUs at
the sub-arrays. The b-th LPU aims at approximating the posterior in (C.16) by using
the approximate distribution

qb(x
b, λb) = qλb

(λb)
K

∏
k=1

qxb
k
(xb

k) (C.17)

where the naïve mean-field approximation [23] is applied. At each of the local pro-
cessing rounds, an initial setting for the factors qxb

k
(xb

k), k = 1, . . . , K is available, with
different initialization strategies discussed in Section 3.4. In the first step, the message
from factor node fyb to the variable node λb is calculated as [24] [22]

m fyb−→λb
(λb) ∝ exp (Exb{ln

(
fyb (x

b, λb)
)
}) ∝ λb

Mb exp(−λbZb) (C.18)

where Exb{·} denotes the expectation with respect to the initial distribution qxb (xb) =

∏K
k=1 qxb

k
(xb

k), and Zb = ||yb −∑k h̃b,k x̄b
k ||2 + ∑k σ2

xb
k
h̃H

b,kh̃b,k. In this expression, h̃b,k de-

notes the kth column of H̃b while x̄b
k = ∑s∈A sqxb

k
(s) and σ2

xb
k
= ∑s∈A |s|2qxb

k
(s)− |x̄b

k |2

are the mean and variance of xb
k with respect to qxb

k
(xb

k). The approximate marginal
distribution qλb

(λb) is then obtained by multiplying the messages entering the vari-
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able node λb as

qλb
(λb)= fλb

(λb)×m fyb→λb
(λb) =λb

α−1︷ ︸︸ ︷
Mb − 1e−λb

β︷︸︸︷
(Zb) (C.19)

which correspondes to a Gamma distribution with mean

λ̄b =
α

β
=

Mb
Zb

. (C.20)

Next, the LPU computes the messages from factor node fyb to the variable nodes
xb

k , which result in

m f
yb−→xb

k
∝ exp (Eλb ,xb

\k
{ln
(

fyb (x
b, λb)

)
})∝CN

(
xb

k ;
h̃H

b,k

||h̃b,k||2
(yb−∑

k′ 
=k
x̄b

k′ h̃b,k′ ),
1

λ̄b||h̃b,k||2
)

(C.21)

where, similarly as in (C.18), Eλb ,xb
\k
{·} denotes the expectation with respect to qλb

(λb)

and ∏k′ 
=k qxb
k′
(xb

k′ ) [24] [22].
To finalize, the approximate marginals of the symbols of each user at the sub-array

b are obtained by multiplying these messages with their local priors, yielding

qb
xk
(xb

k) ∝ m fyb−→xb
k
(xb

k)× fxb
k
(xb

k). (C.22)

3.4 Initialization Options

As mentioned above, VMP requires initial approximate symbol distributions q0
xb

k
(xb

k)

to begin its operation, which we review next.

Type of the initialization

The simplest option is to initialize the algorithm with a uniform distribution where
all the symbols are, a priori, equiprobable for all users. In this case, the initial distri-
butions are set as q0

xb
k
(xb

k) =
1
|A|1(xb

k ∈ A), ∀k ∈ {1, · · · , K} and ∀b ∈ {1, · · · , B}. This

method has no computational complexity, but typically results in slow convergence
of the VMP algorithm.

The performance and convergence speed of the local processing can be improved
by using linear processing techniques to set the initial symbol distributions. As a first
option, we consider maximum ratio combining (MRC) over all the BS array. Applying
the MRC for user k to the received signal in (C.1) yields

x̂MRC
k =

hH
k

||hk||2
y = xk +

K

∑
k′ 
=k

hH
k

||hk||2
hk′xk′ +

hH
k

||hk||2
n (C.23)

Assuming a large number of users (K � 1), the sum of the second and third terms
in (C.23) can be approximated as a complex Gaussian random variable according to
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the central limit theory. The initial approximate marginals of the symbols xk’s are
therefore set as proportional to a Gaussian pdf, restricted to the symbol alphabet A,
i.e.

q0
xb

k
(xb

k)∝CN
(

xb
k ; x̂MRC

k ,
∑K

k′ 
=k Pxk′ |hH
k hk′ |2 + ||hk||2σ2

n

||hk||4
)

1(xb
k ∈ A), ∀b ∈ {1, . . . , B}.

(C.24)

where Pxk = E{xkx∗k} is user signal power. This initialization introduces a complexity
load of 3MK multiplications. There is also another possibility to apply the MRC
initialization locally and at each of the LPUs. For this type, local channel vectors h̃b,k
and h̃b,k′ and local received signal yb are used in (C.23) for each sub-array b. Then,
local estimates are calculated using (C.24) for all of the B sub-arrays.

Another candidate for the initialization is the ZF method. The ZF receiver filter
for user k, denoted by FZF,k, reads

FZF,k[H] =
hH

k P⊥
H̄k

hH
k P⊥

H̄k
hk

, (C.25)

with P⊥
H̄k

= I − H̄k(H̄
H
k H̄k)

−1H̄H
k [25]; H̄k is obtained from H by removing its kth

column hk. The resulting estimates after application of the ZF filter are

x̂ZF
k = FZF,ky = xk + FZF,kn (C.26)

and they have mean equal to the transmitted symbol xk and a variance given by

σ2
xZF

k
= σ2

n

(
hH

k P⊥
H̄k

hk

)−1
. (C.27)

Similarly as for MRC initialization, we approximate the inital marginals as

q0
xb

k
(xb

k)∝CN
(

xb
k ; x̂ZF

k , σ2
xZF

k

)
1(xb

k ∈ A), ∀b ∈ {1, . . . , B}. (C.28)

A last option is to perform similar ZF initialization but applied locally at each of
the LPUs. In this case, the ZF filter for the bth sub-array is computed analogously to
(C.25) but using channel matrix H̃b instead of H. After this, an approximate marginal
similar to that in (C.28) is calculated for each of the B sub-arrays.

Strategy

In this subsection, we present two different modes to initialize the VMP method.
The first option is to initialize the VMP just a single time. We call this mode One-
time initialization. The second option is to initialize the algorithm multiple times.
This mode is done to help stabilizing the outputs within the consecutive iterations
of the VMP method. This mode becomes more interesting when we initialize the
VMP at each step of the interference cancellation detection. There, after each step
of the interference removal, the linear pre-processing used for the initialization will
perform more accurately and improve the performance of the overall scheme. With
this, we finalize the description of the processing of the LPUs of each sub-array, which
is summarized in Algorithm 5.
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Algorithm 5 VMP at each of the LPUs.
Result: Local symbol estimates for all active users
Initialize: M, K, y, sub-array index b , parameters in Sec. 2, A, VMP iterations I .
1. Get the corresponding channel matrix for sub-array b from H̃b that is generated

using (C.2).
2. Choose one of the initialization methods in (3.4) set the initial probabilities as

q0(xk).
for i = 1 to I do

3. Extract x̄b
k and σ2

xb
k

values from q(i−1)
xk (xk).

4. Calculate the mean value of the precision parameter λ̄b using (C.20) for the
sub-array.

5. Calculate symbol probabilities q(i)xk (xk) using (C.22) for all the users k =
{1, · · · , K}.

end

6. Finalize the local information to be sent to the CPU qb
xk
(xk)=q(i)xk (xk).

4 Data Fusion and Symbol Detection

In this section, we detail how the results of the local VMP processing performed by
the LPUs at each of the sub-arrays are combined at the CPU to yield the final symbol
estimates. The overall receiver process is illustrated in the block diagram in Fig. C.3.
The operations are divided between the LPUs and the CPU while offering each of
them several options. At the LPUs illustrated in the left-hand side of the diagram,
VMP processing is performed as discussed in Section 3, including the different ini-
tialization options. On the right-hand side of the diagram, the CPU is illustrated as
having two basic tasks: the fusion of the symbol estimates provided by the differ-
ent LPUs, and the eventual detection of the symbols by using the fused information.
Four different options are studied for the data fusion process, and two options are
considered for detection: non-iterative, and SIC based. In the latter case of SIC based
detection, several iterations of local and central processing are performed before the
symbols of all users are detected, which is illustrated in the diagram by the feedback
connection between the CPU and the LPU. In the following we introduce each of the
options.

4.1 Data Fusion at the CPU

After the local processing at each LPU is performed as described in Section 3 and
Algorithm 5, the local approximate marginals from all the sub-arrays are sent to the
CPU. The CPU fuses the received information to get an overall estimate of each user’s
symbol. The data fusion is done based on a sub-array data fusion binary matrix
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InitializationInitialization

DetectionDetection

Data fusionData fusion

Type:
1. Flat (equiprobable)
2. MRC
3. ZF

Type:
1. Flat (equiprobable)
2. MRC
3. ZF

Strategy:
1. At each SIC step
2. Only once

Strategy:
1. At each SIC step
2. Only once

1. Normal
2. SIC based
1. Normal
2. SIC based

1. All of the subarrays 
2. Energy based
3. Noise precision based
4. Hybrid mode

1. All of the subarrays 
2. Energy based
3. Noise precision based
4. Hybrid mode

VMP

At each LPU At the CPU

Fig. C.3: A summary of the algorithms for the VMP based symbol detection in the
XL-MIMO system.

defined as

V =

⎛
⎜⎝

v1,1 v1,2 · · · v1,K
...

...
. . .

...
vB,1 vB,2 · · · vB,K

⎞
⎟⎠ ∈ {0, 1}B×K . (C.29)

If vb,k = 1 then the local estimate xb
k of sub-array b will contribute to the global

estimate of xk, otherwise if vb,k = 0 it will not be fused. The data fusion is done
by multiplying the estimates coming from each of the sub-arrays. Thus, the global
estimates can be calculated as

qxk (xk) ∝ ∏
b∈Fk

qxb
k
(xk) (C.30)

where Fk = {b ∈ {1, . . . , B}|vb,k = 1}, i.e., for the kth user symbol the product is only
taken over those sub-arrays b whose entry vb,k = 1. Depending on the values of V,
different data fusion strategies can be selected. The simplest choice of the data fusion
is when the CPU fuses data from all of the sub-arrays, i.e. V = 1B×K (a matrix of all
ones).

Other selection options exploiting the non-stationary spatial structure of the re-
ceived signals over the array are discussed next, with the goal of finding a data fusion
matrix V which yields an advantageous complexity-performance trade-off.

Power based data fusion

One of the main differences of an XL-MIMO system with a conventional one is the
variations of received users’ energy along the array. For instance, measurements in [7]
confirm that the energy from each user is not evenly distributed along all the elements
of the array. Therefore, this property can be exploited to reduce the complexity of the
receivers by processing only the parts of the array with the highest energy. Further-
more, results in [6] confirm that processing parts of the XL-MIMO array that contain
a significant amount of energy is enough to get almost the same spectral efficiency
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Algorithm 6 sub-array data fusion matrix V construction.
Result: V

Initialize: H, K, B, Bmax, Mb, p0, λ, V = {0}B×K , B = {1, . . . , B} , data f usion type
if data f usion type ==PWR then

for k = 1 to K do
1. reinitialize pk = 0
2. compute total cumulative power Pk = ||hk||22
3. compute per sub-array power P(b)

k = ||H̃b,k||22, b ∈ B
while pk ≤ p0 · Pk do

1. find b∗ = maxb∈B P(b)
k

2. pk = pk + P(b∗)
k

3. set V(b∗, k) = 1
4. B = B \ b∗

end

end

else if data f usion type ==NOP then
1. sort λ’s elements decreasingly (b = arg sort(λ))
2. choose the first Bmax elements of the sorted indices vector b as b∗ = b(1 : Bmax)
3. set V(b∗, :) = 1

else if data f usion type ==HYB then

1. compute per sub-array power P(b)
k , b ∈ B and P = {pb,k|pb,k = P(b)

k ∀k, b}
2. compute the hybrid measure matrix from (C.31)
for k = 1 to K do

3. sort elements of the k-th column of Γ decreasingly (bk = arg sort(Γ(:, k)))
4. choose the first Bmax elements of bk as bk

∗ = bk(1 : Bmax)
5. set V(bk

∗, k) = 1
end

else
All sub-arrays fusion : V = 1B×K

end
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(SE) as processing all the elements of the array. Here, we use the same principle by
assigning the users to the sub-arrays that contain a certain ratio of the user’s energy,
for instance 80%, as we introduced in [4]. This method is noted by PWR mode in
Algorithm 6.

Noise precision based data fusion

As mentioned in Section 3, the noise precision parameter λb is a measure of residual
interference and AWGN variance per each sub-array. Therefore, more reliable sub-
arrays for signal detection are those with the highest λ̄b values. In order to limit the
complexity, we restrict the algorithm to choose the top Bmax sub-arrays. This method
is included as NOP mode in Algorithm 6, where λ = {λ̄b|∀b ∈ B} and B = {1, · · · , B}
is the set of all sub-arrays.

Hybrid data fusion

Inspired by (C.21) and the variance of the Gaussian distribution, another possible
metric is to choose the ones with the lowest variance in (C.21). In order to calculate
this metric, we define a hybrid measure matrix Γ ∈ RB×K as

Γ = diag(λ)P (C.31)

where, P = {pb,k|pb,k = P(b)
k ∀k, b} is the energy of each user in each of the sub-arrays.

Then, based on the number of sub-arrays to be processed Bmax, we select the top
Bmax sub-arrays for each of the users. These sub-array subsets determine the data
fusion candidates for each of the user symbols. This method is listed by HYB mode
in Algorithm 6.

4.2 Symbol Detection Strategies

After the data fusion process, CPU can decide how to detect the users’ symbols. In
the following, we discuss two different approaches for the detection in the CPU.

Non-iterative Data Fusion and Detection

In this case, the CPU fuses all the local estimates and no further processing is done
over the fused information. Then, it uses the global estimate for each of the users’
transmitted symbol, qxk (xk), and detects x̂k as the constellation point from the set A
with largest approximate marginal , i.e. x̂k = arg maxa∈A qxk (a) ∀k.

SIC Data-Fusion and Detection

One of the effective ways to boost the receiver performance is to use SIC. This type
of detector works sequentially and at each step detects the strongest user (or layer)
and then removes its effect from the received signal. This operation reduces the in-
terference successively and therefore improves the probability of successful detection
of the subsequent symbols. One of the main factors that determine the performance
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Algorithm 7 Data fusion and the SIC at the CPU.
Result: Central symbol estimates using the SIC detection
Initialize: y, K, A, detected symbols set S = φ.
1. Define user set K � {1, · · · , K}
for i = 1 to K do

2. Run Algorithm 5 to get the local estimates qb
xk
(xk) for all the LPUs b ∈

{1, · · · , B}.
3. Fuse the local estimates to get qxk (xk) from (C.30) for all the users in K.
4. Choose the strongest user k∗ to detect with the LR measure using (C.32).
5. Detect the transmitted symbol for k∗ as x̃k∗ and include it to the detected symbol

set S ← S ∪ x̃k∗ .
6. Cancel the interference caused by k∗ by: y ← y− x̃k∗hk∗ and remove hk∗ from

H

7. Fix the prior for k∗ as qxk∗ (xk∗ ) = δ(xk∗ − x̃k∗ )
8. K ← K \ k∗

end

9. Output: S .

of the SIC detector is the user (or layer) ordering method. Instead, we propose a new
metric called likelihood ratio (LR) metric, based on the ratio of probabilities between
the top two most likely symbols. In order to define the symbol certainty, first, we sort
the symbol probabilities provided by the approximate marginals qxk (xk) of each user

k as p(k)1 ≥ p(k)2 ≥ · · · p(k)|A|. Next, we define the symbol certainty as

Δk �
p(k)1

p(k)2

, k = 1, . . . , K. (C.32)

Finally, the LR metric which chooses the strongest user as k∗ = arg maxk Δk. Algo-
rithm 73 represents the SIC mechanism and cooperation between the CPU and the
LPUs.

5 Performance Evaluation

In this section, we present numerical results for the performance of the proposed al-
gorithms. We begin by describing the used simulation model and the selected bench-
marks. We follow by analysing the computational complexity of the methods and end
by illustrating the performance of the proposed receivers with respect to the bench-
marks.

Generating the channel and simulation parameters

Intending to generate the channel model in (C.2), and based the on simulation pa-
rameters in Table C.1, first we generate the VRs. After assigning nb random clusters

3δ(·) is the Dirac delta function.
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Table C.1: Simulations Parameters

Variable Value Variable Value Variable Value

M 256 K 32 dr 0.0578 m
dS 5 m I 1 |A| 4 (QPSK)
C 20 li LN(0.7, 0.2) ci U (0, M)
ψi N(−0.21, 0.8) Si 31 αi, α̃i,k U (−π

2 , π
2 )

θ̃i,k 3π/4 θi 7π/8 B 4
Bmax 3 p0 0.75 nb 4

to each user k and forming Vk, the correlation matrices are calculated using (C.6) and
(C.7).

Note that, the fast fading parameters are generated at each channel realization
while the correlation matrices are updated every 50 realizations to model the long
term statistics of the channel. We have implemented channel coding using low
density parity check (LDPC) codes. We use the code in the 5G New Radio standard
[26, Section 5.2] with the following parameters: LDPC base graph 2 is used with
block length = 20, Kb = 6 and Zc = 2 resulting in an initial coding rate of 1/5. Rate
matching is used to increase the code rate to 0.5.

5.1 Benchmarks

Ideal matched filter bound

We choose matched filter bound which is the case when the effect of all the other users
are ideally canceled and the target user’s signal is detected by MRC. This single-user
detection in the interference-free channel gives the best achievable BER [27].

Central linear processes

To compare the performance of our proposed receiver with centralized linear pro-
cessing methods, MRC and ZF benchmarks are implemented. These are obtained by
respectively applying (C.23) and (C.25).

Expectation propagation method from [20]

Aiming to have a benchmark method for a message passing based scheme, we im-
plemented the EP algorithm presented in [20]. This method works in a distributed
manner where the sub-arrays are exchanging their local estimates and a final decision
is taken in the central node. It is worth mentioning that the complexity of this method
is higher than our method due to the matrix inversions and singular value decompo-
sitions required. However, here we only consider the error rate results regardless of
the complexity.
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Table C.2: Complexity analyses for Alg. 5

Step # of multiplications Remarks

1 None –
2 3MbK For the MRC initialization
3 2K Two operations for each user
4 2K + Mb Two summations + l2 norm for each user
6 K|A| |A| constellation points for each user
– I(K(4 + |A|) + Mb) + 3MbK Total number of multiplications

Centralized VMP method from [19]

In order to have a VMP based receiver benchmark, we compare our proposed re-
ceivers’ performance with the centralized VMP method that we proposed in [19].

5.2 Complexity Analyses

In this subsection we analyse the complexity of the aforementioned methods. The
complexity for the central ZF and the central MRC are [28]

CZF =
K3

3
+ MK2 + MK (C.33)

CMRC = 3MK. (C.34)

In order to calculate the complexity of the VMP method in both of the algorithms,
we start with Algorithm 5 and analyse each of the steps separately. Their complexity
is reported in Table C.2. Next, the total complexity of Algorithm 7 is calculated using
the complexity values obtained for VMP processing at each sub-array. To begin with,
we discuss the following remarks regarding this algorithm:

• Remark 1: The number of VMP iterations I is one of the important parameters
in the complexity-convergence performance of the VMP method. We tested
different values for I and found that the VMP converges at I = 1 and there is
no need to repeat the operations. Thus, I = 1 is assumed for all simulations
and analyses henceforth.

• Remark 2: At each SIC iteration, the number of undetected users decreases by
1. Therefore, we have to consider a variable complexity for step 2 of Alg. 7 due
to the size of K. This can be done easily by factorizing K from the expressions
in Table C.2 as CVMP ≈ K f (Mb,A) and a summation over different values
of K. For instance, algorithm starts with K users, then in the second round
with K − 1 users and so on. The total complexity can be approximated as
∑1

k=K k f (Mb,A) ≈ K2 f (Mb,A)/2.

• Remark 3: For the VR based VMP methods the complexity depends on Bmax
and p0 values. Thus, with a rough comparison, the complexity will scale with
factor of Bmax/B and p0 for noise precision and power based data fusion meth-
ods, respectively. For instance, considering 75% power threshold or having
Bmax = 3 in a system with B = 4 will approximately reduce the total complex-
ity by 25%.
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Fig. C.4: Different initialization techniques and their effect on the probability of er-
ror. In this simulations we used a lowly-correlated channel having the parameters in
Table. C.1 with M = 128, K = 16, B = 2.

Thus, using last row of Table II, Remark 1 and 2, the complexity after doing SIC
at each LPU is CLPU-SIC = ∑1

k=K k(4 + 3Mb + |A|) + Mb ≈ K2/2(4 + 3Mb + |A|) +
MbK. This operation is done in B subarrays, thus, Call-LPU-SIC ≈ BK2/2(4 + 3Mb +
|A|) + BMbK. Finally, the data fusion at the CPU that has k multiplications per each
SIC step, resulting in approximately K2/2 additional multiplications. Therefore, total
complexity of the algorithm is CVMP-SIC ≈ K2/2(4B + 3BMb + B|A|+ 1) + BMbK and
knowing BMb = M we can simplify it to

CSIC-VMP ≈
K2

2
(3M + B(|A|+ 4) + 1) + MK (C.35)

which is a second-order function of K. We will compare the numerical evaluations of
the expressions we derived in this subsection later in Sec. 5.4

Fig. C.4 shows the different performances depending of the initialization types
discussed in 3.4. As expected, the best performance is when we initialize at each step
of the SIC operation. Due to the similar performance of the ZF and the MRC methods,
it is more favorable to use the MRC mode for its less complexity. Thus, from now on
we use the MRC at each step of the SIC as our default initialization method in all of
the VMP performance evaluations.

5.3 Simulation Results

We start with comparing the coded bit error rate (BER) of the detection methods for
different values of the pre-processing SNR= P

σ2
n

where P is the expected transmitting
power of the users. The data fusion matrix is V = 1B×K except for Fig. C.8 for the
VR-aware methods. We consider three types of channels according to the correlation
matrices introduced in (C.3) as

4The complexity burden of calculating VR-aware metrics is negligible. For instance, in the
PWR mode, the value of user energies are calculated within the messages of the VMP method.
Therefore, the CPU only needs to order them and choose the first Bmax of them with the com-
plexity of O(B log B). The same complexity order holds for the other modes as well.
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(b) Low-correlated channel
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(c) High-correlated channel

Fig. C.5: Coded BER of different methods vs pre-processing SNR for different correla-
tion scenarios. Simulation parameters are detailed in Table I.
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Fig. C.6: Coded BER of different methods vs pre-processing SNR. M = 100, K = 8 and
B = 4.

1. Uncorrelated channel with H ∼ CN (0, I).

2. Lowly correlated channel with θi = 7π/8, yielding Ri very close to the identity
matrix.

3. Highly correlated channel with θi = 3π/4.

In Fig. C.5 we compare the performance of the aforementioned methods for the
three types of channels. First, in an uncorrelated Rayleigh fading channel, our VMP
based method works very close to the lower bound and clearly outperforms the bench-
marks. For the case of the lowly correlated channel, our method still performs very
close to the matched filter bound. However, for the highly correlated channel, the
performance gain over linear methods is small. One way to boost the performance is
to add a central ZF initialization to our VMP receiver, which significantly increases
its complexity. As expected, this ZF initialization is showing better performance than
the local MRC initialization one. The results show the superior performance of the
proposed distributed VMP method where it performs very close to the ideal bound.
Having a SIC mechanism in combination with VMP processing provides the best per-
formance in high SNR regimes where the effect of error propagation becomes negli-
gible. Another observation from Fig. C.5 is the large performance degradation caused
by correlated and non-stationary channels compared to an uncorrelated one. This is
due to the channel capacity reduction that has been shown in [21] for the correlated
channels and in [9] for the non-stationary channels. The reason for the poor perfor-
mance of the EP based method is because of the relatively high ratio of the users
and antennas M

K � 10. Furthermore, the complex correlated channel model of (C.2)
impairs the receiver and makes it perform only slightly better than the centralized
MRC. The EP based method works significantly better in the unrealistic i.i.d. channel
model with a smaller number of users [20], as shown in Fig. C.6. Here, we compare
the methods in an i.i.d channel and a lower system load M

K = 12.5. As can be seen,
the EP based method performs much closer to the central ZF curve. For the rest of
the simulations we use the lowly correlated channel model.

In Fig. C.7, we compare the performance of the receivers with respect to the num-
ber of users K. The total array size is kept fixed at M = 256. We can observe that
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Fig. C.7: Effect of number of the users in performance of the detection methods. The
VMP based method degrades slower than the benchmarks with increasing K. (SNR=
10 dB, M = 256 and B = 4)
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Fig. C.8: The VR based methods and their performance compared to the benchmarks
and also the VMP with full sub-array data fusion. Bmax = 3 and p0 = 0.75. Other
parameters are from Table I.

as we add more user in the system and go towards crowded scenarios, the VMP
method, which is using the MRC initialization, degrades at a slower rate than the
ZF receiver. The reason is the fact that the linear receivers fail to operate properly
when the number of users becomes comparable with the number of the antennas
at the BS ( M

K < 10). With a larger number of users present, the probability that a
user’s channel is approximately orthogonal to that of all other users decreases, with
large degradation of the “favorable propagation" conditions usually present in mas-
sive MIMO channels. Although the performance also degrades considerably for the
VMP receiver, the degradation is less than for the ZF.

The BER of the different VR based modes which restrict data fusion to 75% of the
sub-arrays according to section 4.1 is illustrated in Fig. C.8. The VMP method with the
fusion of data from all sub-arrays, i.e. with V = 1B×K , provides the best performance
as expected. The power-based data fusion technique (PWR) provides better perfor-
mance than the ZF receiver, while the noise precision based (NOP) receiver performs
poorly. The receiver with hybrid (HYB) is the best among VR-based methods, as it ap-
proaches the performance of full data fusion while only requiring approximately 75%
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Fig. C.9: Effect of number of the sub-arrays B on the BER behaviour of the distributed
schemes. The size of the array M is fixed to 128. (SNR= 5 dB, K = 8)

of its complexity.5 (The complexity reduction is scaled with Bmax
B

6) These results illus-
trate that exploiting non-stationary properties helps to obtain a receiver with lower
computational complexity and almost the same performance of normal data fusion.

In Fig. C.9 we analyze the performance of the VMP receiver as the processing is
distributed among different number sub-arrays. With an array of fixed size M = 128,
the performance at an SNR of 5 dBs is analyzed for different number of subarrays B.
The central ZF and MRC receivers and the matched filter bound are unaffected by B.
Predictably, distributing the processing among more local units leads to an increase
in the BER, although the performance is still better than that of centralized receivers.
Note that in the rightmost point of this figure, with B = 16, the number of antennas
per sub-array is Mb = M/B = K = 8 which is an extreme case for a massive MIMO
system, but the VMP receiver still operates with acceptable performance.

We finalize by showcasing the complexity of the assessed receivers in Fig. C.10.
We consider two system load regimes: one with M/K = 10 for a moderate load,
and M/K = 5 in a crowded scenario. As it can be observed, the complexity of
the VMP method when it fuses all the sub-arrays is higher than the ZF method.
As we discussed before, this is a trade-off point where we get a near to optimal
performance while spending more computational resources. Moreover, we can see
that the complexity of a VR based method with hybrid fusion mode is close to the
ZF while it still provides better BER output. These results illustrate that the proposed
VMP receiver can be tuned to trade-off performance and computational complexity
depending on the system requirements and operating conditions.

5The term “approximately” is subarray ordering the CPU and only activate the first Bmax of
the LPUs.

6For example, for the case of power-based mode, after the channel state information (CSI)
obtaining phase, the CPU can choose maximum Bmax LPUs for each of the users to be in charge
of that user, and the rest of LPUs will not run the VMP algorithm for that user.
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6 Conclusions

We propose a distributed receiver structure based on VMP that outperforms conven-
tional massive MIMO receivers, especially when operating in spatial non-stationary
channels. Numerical results show that the receivers implementing the proposed algo-
rithm perform close to a genie-aided receiver (matched filter bound), even in highly
correlated channel conditions. One of the key components of our method is the in-
ternal SIC mechanism which takes advantage of the energy variations over the VRs
of different users. This interference cancellation improves the receiver performance
for the users with overlapping VRs. Unlike the conventional linear receivers, our VR-
based methods use information about the non-stationarities to limit the complexity
without performance degradation. Our design is versatile in several respects: the dis-
tributed manner of all the processing tasks makes it easier for practical deployments
of the XL-MIMO systems. The variety of options for initialization, data fusion and
detection methods gives us several control parameters allowing for trading off compu-
tational complexity for performance and vice-versa in the receiver design for different
applications. Our future research will address lower complexity receivers for higher
modulations schemes, extending the detectors using machine learning techniques to
optimize the data fusion and the SIC at the CPU.
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[12] M. Sarajlić, F. Rusek, J. R. Sánchez, L. Liu, and O. Edfors, “Fully decentralized
approximate zero-forcing precoding for massive mimo systems,” IEEE Wireless
Communications Letters, vol. 8, no. 3, pp. 773–776, 2019.

[13] P. Som, T. Datta, N. Srinidhi, A. Chockalingam, and B. S. Rajan, “Low-complexity
detection in large-dimension mimo-isi channels using graphical models,” IEEE
journal of selected topics in signal processing, vol. 5, no. 8, pp. 1497–1511, 2011.

[14] Z. Zhang, X. Cai, C. Li, C. Zhong, and H. Dai, “One-bit quantized massive mimo
detection based on variational approximate message passing,” IEEE Transactions
on Signal Processing, vol. 66, no. 9, pp. 2358–2373, 2017.

[15] G. Interdonato, E. Björnson, H. Q. Ngo, P. Frenger, and E. G. Larsson, “Ubiq-
uitous cell-free massive mimo communications,” EURASIP Journal on Wireless
Communications and Networking, vol. 2019, no. 1, p. 197, 2019.

[16] E. Björnson and L. Sanguinetti, “Making cell-free massive mimo competitive with
mmse processing and centralized implementation,” IEEE Transactions on Wireless
Communications, 2019.

103



References

[17] T. T. Vu, D. T. Ngo, N. H. Tran, H. Q. Ngo, M. N. Dao, and R. H. Middle-
ton, “Cell-free massive mimo for wireless federated learning,” arXiv preprint
arXiv:1909.12567, 2019.

[18] V. C. Rodrigues, A. Amiri, T. Abrao, E. de Carvalho, and P. Popovski,
“Low-complexity distributed xl-mimo for multiuser detection,” arXiv preprint
arXiv:2001.11879, 2020.

[19] A. Amiri, C. Navarro Manchón, and E. de Carvalho, “A message passing based
receiver for extra-large scale mimo,” arXiv preprint arXiv:1912.04131, 2019.

[20] H. Wang, A. Kosasih, C.-K. Wen, S. Jin, and W. Hardjawana, “Expecta-
tion propagation detector for extra-large scale massive mimo,” arXiv preprint
arXiv:1906.01921, 2019.

[21] D. Gesbert, H. Bolcskei, D. A. Gore, and A. J. Paulraj, “Outdoor mimo wireless
channels: Models and performance prediction,” IEEE Transactions on Communi-
cations, vol. 50, no. 12, pp. 1926–1934, 2002.

[22] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[23] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to
variational methods for graphical models,” Machine learning, vol. 37, no. 2, pp.
183–233, 1999.

[24] C. Navarro Manchón, "Advanced signal processing for mimo-ofdm receivers,”
Ph.D. dissertation, Aalborg University, 2011.

[25] T. Brown, P. Kyritsi, and E. De Carvalho, Practical guide to MIMO radio channel:
With MATLAB examples. John Wiley & Sons, 2012.

[26] “3GPP TS 38.212. NR; Multiplexing and Channel Coding.” Technical Specifica-
tion Group Radio Access Network, Standard, Jul. 2018.

[27] W. Burchill and C. Leung, “Matched filter bound for ofdm on rayleigh fading
channels,” Electronics Letters, vol. 31, no. 20, pp. 1716–1717, 1995.

[28] E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design of
energy-efficient multi-user mimo systems: Is massive mimo the answer?” IEEE
Transactions on Wireless Communications, vol. 14, no. 6, pp. 3059–3075, 2015.

104



Paper D

Uncoordinated and Decentralized Pro-
cessing in Extra-Large MIMO Arrays

Abolfazl Amiri, Carles Navarro Manchón, Elisabeth de
Carvalho

The paper is accepted for publication in the
Wireless Communications Letters (WCL)



© 2021 IEEE
The layout has been revised.



1. Introduction

Abstract

We propose a decentralized receiver for extra-large multiple-input multiple-output (XL-MIMO)
arrays. Our method operates with no central processing unit (CPU) and all the signal detec-
tion tasks are done in distributed nodes. We exploit a combined message-passing framework
to design an uncoordinated detection scheme that overcomes three major challenges in the XL-
MIMO systems: computational complexity, scalability and non-stationarities in user energy
distribution. Our numerical evaluations show a significant performance improvement com-
pared to benchmark distributed methods while operating very close to the centralized receivers.

Keywords— Massive MIMO, Message-passing, decentralized receivers, XL-MIMO

1 Introduction

Beyond fifth-generation (B5G) multi-input multiple-output (MIMO) systems will rely
on antenna arrays with an extreme number of elements that provide a very high
spatial resolution. Recently, different variants of such systems such as extra-large
scale MIMO (XL-MIMO) systems [1], or large intelligent surfaces (LIS) have been
introduced. An XL-MIMO array has hundreds of elements where its physical size is
in the range of tens of meters in sub-6 GHz frequency bands. These technologies offer
a boost in the system’s spectral efficiency thanks to their ability to jointly serve a large
number of users. However, the large array dimensions bring about three important
challenges: an increase in the computational complexity of the receiver processing,
difficulties in the scalability of the array architecture, and the emergence of spatial
non-stationarities (NS) of the received signal across the array.

Most of the conventional receiver designs, e.g. zero-forcing (ZF), rely on a central
processing unit (CPU) that inverts large matrices [11]. Such receivers need a vast
amount of computational capacity to operate and are not suitable for our XL-MIMO
system. Distributed receiver techniques such as [5] try to divide the computations
between several nodes, but still, need a CPU to supervise all the data transmission
steps.

Having a central node for processing all the transmitting signals requires a ded-
icated link between all the antenna elements and the CPU. Managing these inter-
connections is costly and hinders adding more antennas next to the existing array
deployment. Therefore, scaling up the array size becomes challenging. Different hier-
archical processing methods are used in [6–8] that aim to divide the processing tasks
between the CPU and local units at the sub-arrays. However, a connection between
each of these sub-arrays and the CPU is still necessary and limits the scalability of the
receivers.

The last challenge is the presence of spatial NS of the channel gains imposing vari-
able mean energy of a given user’s signal along the array, thereby creating visibility
regions (VR) [1]. A VR is a subset of the antennas that hold most of a user’s received
energy and limits the performance of linear receivers [5]. Therefore, there is a need
for more efficient techniques that work regardless of the properties of the wireless
channel and deliver an acceptable performance.
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Most of the literature focuses on either lowering the computational complexity
or dealing with the effect of NS. Authors in [9–11] propose fully decentralized ZF
approximators that work without a CPU. However, these methods have a high pro-
cessing delay and their performance is highly dependent on the even distribution of
users’ energy on the array. [8] and [12] use expectation propagation to distribute the
symbol detection between a central node and local units. A Gaussian message pass-
ing technique is used for an overloaded MIMO system in [4]. In [6], we presented an
NS-aware receiver that works in a hierarchical way. Yet all of these methods rely on a
central node with a high processing delay.

In this paper, we propose a decentralized receiver that works without a CPU
for user symbol detection. Our main focus is to decentralize the processing, and
have a scalable receiver architecture that can be augmented by adding more subar-
rays without increasing the computational complexity and data-exchange load of the
individual local processing units (LPUs). Our method leverages an approximate in-
ference framework based on a combination of belief propagation (BP) and variational
message-passing (VMP). We use distributed nodes called LPU that work in parallel
to calculate the local symbol estimates. These nodes are only allowed to exchange
information with their neighbors, making the receiver scalable and easy to deploy.
Moreover, LPUs use a local successive interference cancellation (SIC) scheme to boost
the symbol detection performance. Our numerical results show a significant improve-
ment compared to other decentralized techniques while obtaining almost the same
performance as the centralized benchmark methods.

Notations: Boldface lowercase and uppercase letters represents vectors and matri-
ces, respectively. Set cardinality is denoted by |I|; the relative complement of i in a
set I is denoted as I \ i. Superscripts (·)T and (·)H show transposition and Hermi-
tian, respectively. The probability density function (pdf) of a multivariate complex
Gaussian distribution with mean μ and covariance Σ and its distribution are denoted
by CN(·; μ, Σ) and CN (μ, Σ), respectively. U (a, b) shows a uniform distribution in
[a, b]. IM denotes the identity matrix of size M and 1M is a vector with M 1s. We use
f (x) ∝ g(x) when f (x) = cg(x) for some positive constant c.

2 System Model

We assume a fully-digital narrow-band MIMO system with K single-antenna users
and a base station (BS) with M antenna elements placed in a uniform linear array
(ULA)1 in the uplink transmission. User symbols are denoted with the vector x ∈ CK

with entries taking values from the complex constellation set M = {a1, a2, · · · , a|M|}.
H = [h1, · · · , hK ] ∈ CM×K is the channel matrix with column vectors hk each of which
denotes user k’s channel. We assume perfect channel knowledge is available at the
BS. The noise at the BS is assumed to have circularly symmetric complex Gaussian
distribution n ∼ CN (0, σ2

nIM) ∈ CM and σ2
n is noise variance. The received baseband

signal y ∈ CM across the whole array is

y = Hx + n. (D.1)

1The extension to planar array topologies follows similar principles described in the paper.
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The BS is made of a set of B sub-arrays located next to each other in one dimension,
each controlled by an LPU and having Mb = M

B antennas . We denote H̃b ∈ CMb×K

and yb ∈ CMb as the channel matrix and the received signal in the bth sub-array for
b ∈ {1, · · · , B}, respectively. An optimal receiver aims to find the symbols that maxi-
mize the posterior pdfs p(x|y). However, this problem has a combinatorial behaviour
with |M|K options for each instance of x and is unfeasible. Instead, we resort to infer-
ring approximate marginals using our message passing algorithm that requires only
|M| × K evaluations instead.

3 Proposed Receiver Algorithms

In this section, we describe the unified message-passing algorithm that combines the
BP and mean-field approximation (MF) approaches [16] and its application to derive
our proposed decentralized receiver algorithm.

3.1 Preliminaries

Let p(z) denote the pdf of a random vector z � (zi|i ∈ I)T with the set I indexing all
the random variables in its entries. The combined BP-MF inference method is used to
calculate approximate marginals qi(zi) that are commonly called beliefs. To apply the
BP-MF framework, first a factorization of p(z) of the form

p(z) = ∏
a∈AMF

fa(za) ∏
c∈ABP

fc(zc), (D.2)

should be selected, in which the different factors are classified as either belonging
to the BP part (factors fa, a ∈ ABP and messages mBP) or the MF part (factors fc,
c ∈ AMF and messages mMF). The vectors za denote vectors containing all the random
variables that are argument of a given factor fa. In addition, the sets N (a) ⊆ I and
N (i) ⊆ A are defined to be the set of indices of all variables that are arguments of
factors fa and all factors that have variable zi as an argument, respectively. With the
above factorization, an algorithm is formulated that exchanges information, called
messages, between factors in (D.2) and the variables zi, i ∈ I iteratively. The messages
are computed according to

mBP
a→i(zi) =

∫
∏

j∈N (i)\i
dzjnj→a(zj) fa(za), ∀a ∈ ABP, (D.3a)

mMF
a→i(zi) =exp

(∫
∏

j∈N (i)\i
dzjnj→a(zj) ln fa(za)

)
, ∀a ∈ AMF, (D.3b)

ni→a(zi) ∝ ∏
c∈ABP∩N (i)\a

mBP
c→i(zi) ∏

c∈AMF∩N (i)
mMF

c→i(zi), ∀a ∈ A (D.3c)

for all i ∈ N (a), and the messages in (D.3c) are normalized so that they integrate
to unity, resembling a valid pdf. From inspecting (D.3a), we see that messages to
a factor in the BP part are computed using the sum-product (SP) algorithm, while
the messages to an MF factor in (D.3b) are computed using the VMP rule [16]. At
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any point during the algorithms, each of the variables’ beliefs in the system can be
recovered as

qi(zi) ∝ ∏
c∈ABP∩N (i)

mBP
c→i(zi) ∏

c∈AMF∩N (i)
mMF

c→i(zi), (D.4)

where the beliefs are normalized to behave as proper pdfs.

3.2 Probabilistic System Description

We seek to detect the transmitted user symbols xk, k = 1, . . . , K and estimate the noise
precision λ = 1

σ2
n

as a nuisance variable. Our focus is to perform such processing
locally at each of the BS sub-arrays. The posterior probability density of these two
variables is factorized as

p(x1, · · ·, xB, λ|y1, · · · ,yB)∝ p(y1|x1, λ1)p(λ1)
K

∏
k=1

[p(x1
k)︸ ︷︷ ︸

fxk

]

×
B

∏
b=2

[
p(yb|xb, λb)︸ ︷︷ ︸

fyb

p(λb)︸ ︷︷ ︸
fλb

K

∏
k=1

p(xb
k |xb−1

k )︸ ︷︷ ︸
fEb

k

]
(D.5)

where the variables λb and xb = [xb
1, . . . , xb

K ]
T represent noise precision and the trans-

mitted symbols observed by the bth BS sub-array, respectively. Also, fyb (x
b, λb) =

CN(yb; H̃bxb, 1
λb

IMb ) and fλb
∝ 1/λb

2. fxk = p(xk) = 1
|M|1|M|(xk ∈ M) and

p(xb
k |xb±1

k ) are equality constraints that we will describe in 3.4. Note that (D.5) is
a direct application of (D.2) where ∏K

k=1 p(xb
k |xb−1

k ) shows the factors for the BP part
and the rest of the terms are the MF factors. Clearly, xb and λb model the same random
variables for the different sub-arrays b = 1, . . . , B. However, we treat them separately
such that each sub-array can get independent estimates of them. We impose equality
constraints on the symbols xk at different sub-arrays since it is important that dif-
ferent sub-arrays converge to common detected symbols by exchanging messages on
their respective local estimates3. The graphical representation of the model (D.5) is
depicted in Fig. D.1, where Tanner-style factor graphs [16] are used.

3.3 MF at the Local Processing Units

At each of the LPUs, the processing is done using the VMP algorithm which is a
message-passing interpretation of MF inference. Thus, the bth LPU aims at approxi-
mating the posterior distribution of xb and λb by using the approximate distribution
qb(x

b, λb) = qλb
(λb)∏K

k=1 qxb
k
(xb

k), where the naïve MF approximation is applied. To

2This choice of prior corresponds to an improper, non-informative Gamma prior distribution
with shape and rate parameters approaching zero.

3We do not use the equality constraint for the noise precision since it is a nuisance variable
and, consequently, it is not critical for the algorithm if different sub-arrays yield slightly different
estimates for it.
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Fig. D.1: Factor graph representation of the local processing units. Local estimations
are being exchanged between the sub-arrays.

begin with, using (D.3b), the message from factor node fyb to the variable node λb is
calculated as [6]

mMF
fyb−→λb

(λb) ∝ λb
Mb exp(−λbZb) (D.6)

where Zb = ||yb −∑k h̃b,k x̄b
k ||2 + ∑k σ2

xb
k
h̃H

b,kh̃b,k and h̃b,k denotes the kth column of

H̃b while x̄b
k = ∑s∈M sqxb

k
(s) and σ2

xb
k
= ∑s∈M |s|2qxb

k
(s) − |x̄b

k |2 are the mean and

variance of xb
k with respect to qxb

k
(xb

k). Next, the LPU calculates the approximate
marginal distribution qλb

(λb) by multiplying the messages entering the variable node
λb as

qλb
(λb)= fλb

(λb)×mMF
fyb→λb

(λb) =λb
Mb−1e−λb Zb (D.7)

which corresponds to a Gamma distribution with mean λ̄b = Mb
Zb

. Afterwards, the
LPU computes the messages from factor node fyb to the variable nodes xb

k , yielding [6]

mMF
f
yb→xb

k

∝CN
(

xb
k ;

h̃H
b,k

||h̃b,k||2
(yb−∑

k′ 
=k
x̄b

k′ h̃b,k′ ),
1

λ̄b||h̃b,k||2
)

. (D.8)

To conclude the MF part, the approximate marginals of the symbols of each user
at the LPU b are obtained by multiplying the above messages with their local priors
and incoming messages from the neighboring LPUs, resulting in

qxb
k
(xb

k)∝ mMF
fyb→xb

k
(xb

k)m
BP
fEb

k
→xb

k
(xb

k)m
BP
f
Eb−1

k
→xb

k
(xb

k), (D.9)
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where, mBP
fEb

k
→xb

k
(xb

k) is the message from the LPU b + 1 to LPU b. Also, for b = 1

the message coming from LPU b − 1 is replaced by fxb
k
(xb

k), while for b = B there
is no message from LPU b + 1. Basically, the equation shows that, at each LPU, the
local estimate of the symbol distribution is obtained from a combination of the LPU’s
observed signal and the information received from the adjacent LPUs. Since adjacent
LPUs estimates include, in turn, information from their respective adjacent LPUs, this
mechanism ensures that after sufficient iterations of the algorithm the different LPUs
converge to consistent estimates. We describe the details for these messages in the
next subsection.

3.4 BP between the sub-arrays

In this subsection, we discuss the exchange of the BP messages taking place between
adjacent LPUs. The fact that each LPU exchanges messages only with their neighbors,
and independently of how many sub-arrays are there in total, makes our proposed
solution scalable. To begin with, we define the equality factor nodes as

fEb
k
(xb

k , xb+1
k ) = δ(xb

k − xb+1
k ), (D.10)

where δ(·) is Kronecker Delta function ensuring consistency of the local estimates at
LPUs b and b + 1. Thus, we can use this function to calculate the incoming messages
to the bth LPU from both right and left side as:

mBP
fEb

k
→xb

k
(xb

k) = nxb+1
k → fEb

k

(xb
k), 1 ≤ b ≤ B− 1 (D.11)

mBP
f
Eb−1

k
→xb

k
(xb

k) = nxb−1
k → f

Eb−1
k

(xb
k), 2 ≤ b ≤ B (D.12)

representing the incoming messages from the right and the left side, respectively4.
Using (D.3) for the BP messages, the outgoing messages of the LPUs are computed
as:

nxb
k→ fEb

k

(xb
k)∝ qxb

k
(xb

k)/mBP
fEb

k
→xb

k
(xb

k), 1 ≤ b ≤ B−1 (D.13)

nxb
k→ f

Eb−1
k

(xb
k) ∝ qxb

k
(xb

k)/mBP
f
Eb−1

k
→xb

k
(xb

k), 2 ≤ b ≤ B (D.14)

with qxb
k
(xb

k) given by (D.9).

3.5 Local SIC boosting

One of the key points in the XL-MIMO non-stationary channels is uneven user energy
distribution between the sub-arrays. This phenomenon can be utilized to manage the
inter-user interference; symbols of the strong users in one sub-array can be detected
and other sub-arrays can use this information to cancel the interference from those
users.

4We assume that the LPUs are located and ordered from left to right.
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4. Performance Evaluation

Here, unlike conventional SIC receivers, there is no central unit to decide which
users should be detected at each SIC step. Thus, we introduce a local SIC mechanism
that works at each of the LPUs. Upon each update of qxb

k
(xb

k), a likelihood ratio
(LR) [6] is compared with a predefined threshold Γthr to find the strong users. The LR

metric is defined as Γk � pk
1

pk
2
, ∀k, where pk

1≥· · ·≥ pk
|M| are sorted symbol probabilities

provided by qxk(xk), xk ∈ M for each user k.
When the LR metric exceeds the threshold, i.e. when Γk > Γthr, the belief of the

corresponding symbol is set to qxb
k
(xb

k) = δ(xb
k − a∗), where a∗ denotes the symbol in

M with largest probability in the approximate marginal. Note that this restriction of
the belief to a delta function corresponds to a hard decision on the symbol xb

k . When
this belief is propagated to neighboring sub-arrays via the messages in (D.13) and
(D.14), it leads to these sub-arrays also adopting the hard decision. Analogous mes-
sages are progressively propagated to the neighboring sub-arrays, eventually yielding
the same hard symbol decision for all sub-arrays.

3.6 The algorithm

The proposed combined MF-BP receiver mechanism is demonstrated in Algorithm 8.
It is composed of three main elements: 1. Local symbol estimation, which is done
by the VMP at each LPU (steps 3-6, Sec III.C). 2. The SIC detector, that is activated if
the LR metric is satisfied (steps 7-8, Sec III.D). 3. Exchange of local estimates, which
takes care of the message exchanges between the LPUs using the BP (steps 2 and 9,
Sec III.E).

We use a maximal ratio combining (MRC) initialization technique [6] for the local
estimates. Therefore, the initial approximate marginal of the symbol xk in LPU b is

q0
xb

k
(xb

k)∝CN
(
xb

k ; x̂b
k ,

∑K
k′ 
=kPxk′

|h̃H
b,kh̃b,k′ |2
||h̃b,k ||2

+σ2
n

||h̃b,k||2
)

(D.15)

which is restricted to the symbol alphabet M. Here, x̂b
k =

h̃H
b,k

||h̃b,k ||2
yb and Pxk is the user

signal power. Also, the operations in steps 9 and 10 of Algorithm 1 make sure that all
the users that do not satisfy the LR condition by the end of the algorithm be detected
without SIC. Note that the algorithm is applicable to receivers operating with a signal
model as in (D.1), regardless of the channel properties.

4 Performance Evaluation

4.1 Channel Model

We adopt the channel model presented in [13], where the effect of VRs have been
applied to the one-ring model [14]. The channel for each user, hk ∼ CN (0, Rk),
models the small-scale fading of the channel, with channel covariance matrix Rk.
The entries of Rk are defined as [Rk]p,q = 1

2Δ
∫ Δ
−Δ exp

(
jfT(α + θ)(up − uq)

)
dα, repre-

senting the correlation between the channel coefficients of antennas p and q. Here,
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Algorithm 8 Proposed combined MF-BP receiver.
Result: Symbol estimates for all active users
Initialize: M, K, y, B, Γthr, M, VMP iterations J , total iterations T , local detected user

sets S = {(S1 = φ), · · · , (SB = φ)}.
for j = 1 to T do

1. Initialize local user sets as Kb � {1, · · · , K}, ∀b.
for b = 1 to B do

2. Extract the messages to the bth LPU from (D.12) and (D.11).
3. Use (D.15) to set the initial probabilities as q0(xk).
for i = 1 to J do

4. Extract x̄b
k and σ2

xb
k

values from q(i−1)
xk (xk).

5. Calculate λ̄b and find symbol probabilities q(i)xk (xb
k) using (D.9) for all

the users k = {1, · · · , K}.
end

6. Set the LPU’s estimate as qxk (xb
k) = q(i)xk (xb

k).
for k ∈ Kb do

if Γk ≥ Γthr then
7. Detect the transmitted symbol for k as x̃k and Sb = Sb ∪ x̃k, Kb =
Kb \ k and cancel the interference, fix the prior as qxb

k
(xb

k) = δ(xb
k −

x̃k).
else if j = T and Γk < Γthr then

8. Detect the user k without SIC; x̃k = arg max qxb
k
(xb

k), Sb = Sb ∪ x̃k

and Kb = Kb \ k.
end

9. Compute the right and left outgoing messages in (D.13) and (D.14), respec-
tively.

end

end

10. Choose any of the LPUs to get the detected symbol set.

f(ω) = − 2π
λ [cos(ω), sin(ω)]T is the wave vector with carrier wavelength of λ and

angle of arrival of ω and up, uq ∈ R2 are the position vectors of the antennas p, q
within the VR of user k and Δ is angular spread. Angle θ is the azimuth angle of user
k with respect to the antenna array. We have [Rk]p,q = 0 when either of the antenna
indices p, q is outside the VR for user k. We use a uniform distribution for the center
of the VRs within the array and the length of the VRs follows a lognormal(μl , σ2

l )
distribution [15].

4.2 Benchmarks

We have implemented five different benchmarks to compare with our proposed algo-
rithm. We choose matched filter single-user bound which is the case when the effect of
all interfering users is ideally cancelled and the target user’s signal is detected by the
MRC [13]. Centralized ZF as a linear and central VMP [13] and central minimum
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mean square error (MMSE-SIC) as non-linear methods are presented. Moreover, we
implemented the daisy-chain algorithm from [11] as a benchmark for the distributed
receivers and the hierarchical VMP (H-VMP) receiver in [6] as a mixed method that
has both local and central processing units.

4.3 Complexity and Exchanged Messages

We have calculated the computational complexity of the VMP method in one LPU
in [6], which is CMF = J (K(4 + |M|) + Mb) + 3MbK and J is the number of it-
erations in the VMP algorithm. The additional complexity by the BP part is 2M
multiplications for computing (D.14) and (D.13) for each user and LPU5. Moreover,
the SIC part requires BK multiplications to check the LR metric. Since activation of
the SIC part is not deterministic, we have a variable complexity expression that varies
between the best and worst complexity cases. The worst case happens when non of
the users satisfy the LR condition and Ctot = T

(
BCMF + K[B(2M+ 1)− 2M]

)
with

T denoting the number of total BP iterations. The best case is when all of the users
are detected in one iteration of the main loop with K/B users detected at each LPU
resulting in Ctot = BCMF + K(2M(B− 1) + 1). The complexities for the daisy-chain,
the ZF, the MMSE-SIC, the centralized VMP [13] and the hierarchical VMP [6] are
CDC = M(K + 2), CZF = K3

3 + MK2 + MK, CMMSE-SIC = K(K + 1)2( K
12 + M), CVMP =

J (M(3 + 2K) + MK|M|) + 3MK and CH-VMP = K2

2 (3M + B(|M| + 4) + 1) + MK ,
respectively. With a simple comparison, we can see that the complexity grows with a
slower slope with respect to both K and M in Ctot than the central methods. However,
it is more complex than the daisy-chain method which is a trade-off to get a better
performance and lower processing delay.

At each iteration of our algorithm, LPUs send 2K messages in each direction (two
complex numbers x̂b

k , σ2
xb

k
for each user). Thus, the total number of exchanged mes-

sages (EM) in the algorithm is 4KT (B-1) which is much lower than the EM for H-VMP
method, which is 4BK2.

4.4 Simulation results

Here, we present the numerical results evaluating the performance of our proposed
method, as well as the benchmarks. Simulation parameters are as follows: QPSK
modulation, uniform linear array (ULA) with M = 300, K = 40, B = 5, Δ = π

10 ,
θ ∼ U (−π

2 , π
2 ), J = 2, T = 10, Γthr = 103, 8× 104 channel realizations and corre-

lation matrices are updated every 50 realizations. Centers of the VRs are uniformly
distributed across the array and μl = 0.7 and σ2

l = 0.2.
In Fig. D.2, we compare the symbol error rate (SER) of the proposed method and

the benchmarks. The SNR is calculated as SNR= 1
σ2

n
at the BS side, where we as-

sumed unit received power for all the users over the BS array. Moreover, for our
MF-BP method, we include the symbol detection results of the first and B

2 th LPUs to
show the convergence of the local estimates. The performance of the MF-BP method
is very close to the central processing techniques and outperforms the daisy-chain

5There is only one BP message for the first and the last LPUs.
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Fig. D.2: SER comparison of the proposed MF-BP method with other benchmarks.
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Fig. D.3: The effect of number of LPUs on the SER of the proposed MF-BP method. The
curves for the single user bound and the H-VMP B = 2 are superposed. (M = 128,
K = 25, Δ = π

5 )

technique. The reason for the degraded SER of the daisy-chain receiver is due to the
channel NS and a high system load M

K < 10 that makes it hard for the algorithm
to completely cancel the inter-user interference. The dashed line shows the perfor-
mance of the daisy-chain method in a non-correlated channel with M

K = 300
20 > 10 and

confirms the statement above. The H-VMP is outperforming all the methods since it
uses a more complex receiver with a central SIC that repeats the detection process K
times. Besides, we show the effect of imperfect CSI, where the estimated channel is
Ĥ =

√
1− τhH + τhZ and τh determines CSI accuracy and Z is modelling Gaussian

measurement noise. We assume τh = 0.1. As expected, non-accurate CSI is increasing
the error rate. One way to alleviate this effect is to include channel estimation in the
VMP part which is left for future work.

The effect of number of distributed units, i.e. LPUs, on the SER of the MF-BP
scheme is shown in Fig. D.3. The performance of our method is better than the
central VMP algorithm for B = 2, 4. Also, for these two values of B, the algorithm is
giving similar results even though there are fewer antennas per each LPU in the latter
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case, i.e. Mb|b=4 = 1
2 Mb|b=2. This is the result of having more SIC detectors in B = 4

that compensate for the lower spatial resolution compared to the B = 2 case. On the
other hand, as B increases, the number of antennas per LPU reduces (e.g. Mb = 8
for B = 16) while the number of users is still high (K = 25) and the quality of local
estimates weakens and results in a poor outcome.

5 Conclusions

We introduce a fully decentralized receiver for the XL-MIMO array that only relies on
the LPUs for the user symbol detection. This receiver is scalable and can be deployed
easily with minimum inter-connections between the sub-arrays. The ability to oper-
ate in parallel is minimizing the processing delay experienced by other benchmark
techniques. Moreover, the size of exchanged messages between the LPUs, i.e. com-
munication overhead, is limited and allowing the use of inexpensive backhaul links.
Future works will focus on integrating channel estimation and coding within the local
units.
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[11] M. Sarajlić, F. Rusek, J. R. Sánchez, L. Liu, and O. Edfors, “Fully decentralized
approximate zero-forcing precoding for massive mimo systems,” IEEE Wireless
Communications Letters, vol. 8, no. 3, pp. 773–776, 2019.

[12] Z. Zhang, H. Li, Y. Dong, X. Wang, and X. Dai, “Decentralized signal detection
via expectation propagation algorithm for uplink massive mimo systems,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11 233–11 240, 2020.

[13] A. Amiri, C. N. Manchón, and E. de Carvalho, “A message passing based re-
ceiver for extra-large scale mimo,” in 2019 IEEE 8th International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2019, pp.
564–568.

[14] A. Adhikary, J. Nam, J. Ahn, and G. Caire, “Joint spatial division and multi-
plexing—the large-scale array regime,” IEEE Transactions on Information Theory,
vol. 59, no. 10, pp. 6441–6463, Oct 2013.

[15] X. Gao, F. Tufvesson, and O. Edfors, “Massive mimo channels—measurements
and models,” in 2013 Asilomar conference on signals, systems and computers. IEEE,
2013, pp. 280–284.

[16] E. Riegler, G. E. Kirkelund, C. N. Manchón, M.-A. Badiu, and B. H. Fleury,
“Merging belief propagation and the mean field approximation: A free energy
approach,” IEEE Transactions on Information Theory, vol. 59, no. 1, pp. 588–602,
2012.

118



Paper E

Low-Complexity Distributed XL-MIMO
for Multiuser Detection

Victor Croisfelt Rodrigues, Abolfazl Amiri, Taufik Abrão,
Elisabeth de Carvalho, Petar Popovski

The paper has been published in the
IEEE International Conference on Communications Workshops (ICC Workshops)

Proceedings pp. 1–6, 2020.



© 2020 IEEE
The layout has been revised.



1. Introduction

Abstract

In this paper, the zero-forcing and regularized zero-forcing schemes operating in crowded extra-
large MIMO (XL-MIMO) scenarios with a fixed number of sub-arrays have been emulated
using the randomized Kaczmarz algorithm (rKA). For that, non-stationary properties have
been deployed through the concept of visibility regions when considering two different power
normalization methods of non-stationary channels. We address the randomness design of rKA
based on the exploitation of spatial non-stationary properties. Numerical results show that, in
general, the proposed rKA-based combiner applicable to XL-MIMO systems can considerably
decrease computational complexity of the signal detector by paying with small performance
losses.

1 Introduction

Motivated by higher area throughput that extremely large arrays can offer [1], recent
notable research efforts are being carried out to improve the scalability of the so-called
extra-large MIMO (XL-MIMO) systems. Due mainly to increased spatial resolution
and the emergence of non-stationary channels, this new vision is currently material-
izing as an important beyond 5G technology and being considered as a distinct op-
erating regime of Massive MIMO (M-MIMO) [2]. With physical large arrays, spatial
non-stationarity and inherent high array dimensions under user crowded scenarios
have significant harmful impacts on the performance and computational complex-
ity of linear receive combining techniques, which are traditionally used in M-MIMO
systems [3]. This calls for different manners of performing receive combining in XL-
MIMO systems, which try to exploit non-stationarities and seek a good trade-off be-
tween performance and computational complexity when a large number of users are
served.

Taking into account crowded scenarios and the desire for low cost base stations
(BSs), several low-complexity linear detection algorithms that attempt to relax the
computation of known linear receive combining criteria have been proposed in recent
years for canonical M-MIMO; such as [4, 5] to cite a few. These works, however, do not
consider non-stationary channels that appear when antenna arrays are scaled up, as
is the case of XL-MIMO. Meanwhile, the authors in [6] propose a variational message
passing (VMP) based symbol detection method for XL-MIMO and under crowded
scenarios. Although the proposed method outperforms linear receivers, the algorithm
demands the optimization of a damping factor, which accelerates the convergence of
the algorithm, but unfortunately translates into undesired additional complexity. In
addition to that, its complexity depends on the modulation order used to transmit
user messages, making the comparison with linear receivers cumbersome. To the
best of our knowledge, few are the works that study low-complexity linear receive
combining techniques under the presented scenario of interest.
Contributions: Inspired by the promising results obtained for M-MIMO [5, 7, 8],
this work proposes the application of the randomized Kaczmarz algorithm (rKA) as
a way to circumvent the high-dimensional matrix inversion that comes with zero-
forcing (ZF) and regularized zero-forcing (RZF) schemes when these are applied to
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recover the signal estimates of a crowded XL-MIMO scenario [2]. The contributions
are listed as follows: (i) extension of rKA to resemble the performance of ZF and RZF
schemes for a XL-MIMO system with a fixed number of sub-arrays; (ii) consideration
of non-stationary properties through the concept of visibility regions (VRs) when tak-
ing into account two different power normalization methods of non-stationary chan-
nels [9]; (iii) exploitation of non-stationary features in the randomness design of rKA;
(iv) complexity analysis considering the different random variants of the proposed
algorithm.

Some valuable features of the algorithm are as follows. Simplicity: the only tuning
parameter needed to be set is the number of iterations at each sub-array. The others
stem from network design choices and environment characteristics, which obviously
affect the convergence of the algorithm, as discussed in [5], [7], and [8]. In opposite
to that, this also means that a convergence analysis is sufficient to characterize the
efficiency of the algorithm in achieving its goal. Graceful degradation: given the com-
putational constraints for any BS, we can flexibly trade off the number of iterations
with the performance.

2 System Model

In this section, we describe the uplink transmission phase of a XL-MIMO BS equipped
with M antennas that is serving K single-antennas users. The users are using the
same time-frequency resources and simultaneously transmitting data to the BS, where
narrowband transmissions are considered. From now on, BS is supposed to know the
channel state information (CSI) perfectly. This communication setup is shown in Fig.
E.1. Let S be the number of fixed sub-arrays that splits an M antenna array into

Fig. E.1: XL-MIMO BS with fixed sub-arrays.
disjoint groups of M(s) = M/S antennas, where ∑S

s=1 M(s) = M and each group
has its own local processing unit for signal detection. A central unit is considered
responsible for performing a data fusion operation that combines the soft information
received by each sub-array [10]. Furthermore, to ensure the benefits of M-MIMO, it is
assumed that M(s) ≥ K. Thus, sub-array s receives the following baseband signal:

y(s) =
√

pH(s)x + n(s), (E.1)

where p is the uplink transmit power equal to for all users, H(s) ∈ CM(s)×K =

[h
(s)
1 , . . . , h

(s)
K ] is the channel matrix of sub-array s, x ∈ CK is a vector that contains the

K complex symbols messages with normalized power, and n(s) ∈ CM(s) ∼ NC(0, σ2I)

122



2. System Model

is a white noise vector. Noise vectors are considered to be independent over s. The
M(s) × 1 channel vector with the channel coefficients of user k to M(s) antennas of
sub-array s is modeled as [6]

h
(s)
k =

√
w

(s)
k � h̄

(s)
k , (E.2)

where w
(s)
k embodies large-scale fading effects; path-loss is modeled as w

(s)
k = Ω(d

(s)
k )−ν,

where Ω is the path-loss attenuation coefficient, d
(s)
k ∈ RM(s)

is a vector of the dis-
tances between user k and each antenna of sub-array s, and ν is the path-loss exponent.

Channel effects resulting from small-scale fading are embraced by h̄
(s)
k ∼ NC(0, Θ

(s)
k ),

where Θ
(s)
k ∈ RM(s)×M(s)

is the sub-array channel covariance matrix that takes into
account non-stationarity and spatial channel correlation effects. The overall channel

covariance matrix of the antenna array is then Θk ∈ RM×M = blkdiag(Θ(1)
k , . . . , Θ

(S)
k )

and
Θk = D

1
2
k RkD

1
2
k , (E.3)

where Rk ∈ RM×M is a symmetric positive semi-definite matrix that captures spatial
channel correlation effects and Dk ∈ {0, 1}M×M is a diagonal, indicator matrix that
embraces non-stationary modeled through the VR concept.

2.1 Visibility Regions (VRs)

The VRs describe the portion of the array being "viewed" by each user, i.e., where most
portion of users’ energy is concentrated. In particular, we adopt the model described
in [6], wherein each user has a VR identified by two main properties: its center and
its length. Thus, VR centers are modeled as ck ∼ U (0, L), where L is the XL-MIMO
antenna array physical length, whereas VR lengths lk ∼ LN (μl , σl).

Let Dk denote the number of active antennas that are serving user k, which
is defined as the sum of array antennas within the physical region delimited by
[ck − lk, ck + lk]. Hence, the diagonal matrix Dk, introduced in (E.3), has Dk non-
zero diagonal elements. In the sequel, two different power normalizing schemes for
the non-stationary channels are revisited [9].
Normalization 1. Stationary and non-stationary channels have the same norm, i.e.,
tr (Θk) = tr(Rk) = M ∀k. This is achieved by Dk = diag([0, (M/Dk)

1/21Dk , 0]T).
Normalization 2. Non-stationary channels have norm (in general) less than or equal
to stationary ones. In this case, tr (Θk) = Dk ∀k and Dk = diag([0, 1Dk , 0]T).

2.2 Signal-to-Interference-Plus-Noise Ratio (SINR)

Considering that the data symbols of each user are i.i.d. and Gaussian distributed, the

instantaneous uplink SINR γ
(s)
k of user k regarding sub-array s can be defined as [1]:

γ
(s)
k =

p|(v(s)k )Hh
(s)
k |2

p ∑K
i=1,i 
=k |(v

(s)
k )Hh

(s)
i |2 + σ2||v(s)k ||2

, (E.4)
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where v
(s)
k ∈ CM(s)

is the receive combining vector of sub-array s. Recall that the

objective of this work boils down to obtain an efficient way to compute v
(s)
k in terms

of performance-complexity trade-off.

3 Randomized Kaczmarz Signal Detection

The rKA is an iterative algorithm that solves systems of linear equations (SLEs) and
has been recently applied to efficiently tackle the problem of relaxing linear signal
processing schemes in the context of M-MIMO. This procedure was first presented
in [5] and deepened in [7, 8]. The randomization in rKA is related to the order in
which the SLE equations are being selected when solved. Adapted and novel random
selection methods that exploit non-stationary effects are discussed here.

Each BS with fixed sub-array dimensions is interested in detecting the users’s
transmitted symbols. In the context of M-MIMO, ZF and RZF are two widely used
schemes that, for the sake of argument, can be applied over each sub-array, yielding
in the following symbol estimates for ξ = 0 (ZF) or ξ 
= 0 (RZF):

x̂(s) =(V(s))Hy(s) = [(H(s))HH(s)+ ξIK ]
−1(H(s))Hy(s), (E.5)

where V(s) ∈ CM(s)×K = [v
(s)
k 1, . . . , v

(s)
k K] is the receive combining matrix associated

with sub-array s and ξ = 1
SNR = σ2

p .
The problems with adopting the procedure described in (E.5) for extremely large

arrays are the increased computational cost of the matrix inversion in crowded scenar-
ios and its inherent scalability with the growing number of antennas and sub-arrays.
To circumvent this high computational complexity and alleviate/decrease the hard-
ware cost of each sub-array’s processing unit, our proposal is to obtain the symbol
estimates at each sub-array by still relying on the ZF and RZF methodologies, but
instead of using the classical computation form in (E.5), we apply the rKA to obtain
them. The main idea behind this is to realize that (E.5) can be posed as the following
optimization problem [5]:

arg min
�(s)∈CK

‖H(s)�(s) − y(s)‖2
2 + ξ‖�(s)‖2

2, (E.6)

which can be compactly written as

arg min
�(s)∈CK

‖B(s)�(s) − y
(s)
0 ‖2

2, (E.7)

where �(s) represents the K symbol estimates at sub-array s, B(s) ∈ C(M(s)+K)×K =

[H(s);
√

ξIK ], while y
(s)
0 ∈ CM(s)+K = [y(s); 0]. The symbol estimate vector in (E.5)

becomes
x̂(s) = [(B(s))HB(s)]−1(B(s))Hy

(s)
0 . (E.8)
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3.1 Signal Estimates for Each sub-array via rKA

To derive the rKA-based signal detection schemes at each sub-array s, the key idea is

to solve the optimization problem by finding the solution of the SLE B(s)�(s) = y
(s)
0

via rKA, considering that each sub-array is an independent MIMO system. However,
due to the presence of arbitrary noise in the receive signal, it is possible to observe
that this SLE is inconsistent, i.e., if the rKA is applied to solve this system, a high
level of residual error would be obtained. To solve this problem, the authors of [5]
proposed a suitable transformation over the above SLE to remove the inconsistency,

by solving the SLE in two steps: Step.1. Estimation of y
(s)
0 as

ŷ
(s)
0 = B(s)x̂(s)

(a)
= B(s)([B(s)]HB(s))−1(H(s))Hy(s), (E.9)

where in (a) we used (E.8). Note that ŷ
(s)
0 lies in the subspace spanned by the columns

of B(s). Thus, the following SLE can be obtained:

(B(s))H ŷ
(s)
0 = ([B(s)]HB(s))([B(s)]HB(s))−1(H(s))Hy(s) (E.10)

= (H(s))Hy(s),

which can be written as:
(B(s))Hw(s) = b(s), (E.11)

where w(s) ∈ CM(s)+K plays the role of ŷ
(s)
0 as an unknown vector, while b(s) =

(H(s))Hy(s). This SLE outputs ŷ
(s)
0 and represents the first step to obtain the signal

estimates.
Step.2. Without loss of generality, lets assume that ŷ

(s)
0 can be recovered through the

solution of (E.11) via rKA. With ŷ
(s)
0 , the SLE in (E.9) can be solved to obtain the

estimates of the symbols transmitted by the users. This second SLE does not need

to be solved directly, since, when recovering ŷ
(s)
0 , we can already obtain x̂(s) via the

solution of (B(s))Hw(s) = b(s) by considering the K last components of w divided by√
ξ, where b(s) = (H(s))Hy(s).

3.2 Receive Combining Matrix for Each sub-array via rKA

For scenarios where the channel coherence block is large, it turns out that the proce-
dure described above is not computationally efficient, since we have to compute it to
get estimates of x̂(s) at each complex-valued sample of the coherence block. A bet-
ter way would be to have a method that computes V(s) only once, and then use this
information to compute all the signal estimates concerning a given coherence block1.
The key to finding a way to get an estimate of the receive combining matrix V̂(s) is to
note that a scaled version of the K receive combining vectors can be acquired when

we have K different SLEs of the form (B(s))Hw
(s)
i = ei, where ei is the ith canonical

basis, i.e., a vector comprised of zeros with a single value one in the ith position, for

1This procedure, however, would not be adequate in cases where channel responses fluctuate
rapidly.
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i = 1, 2, . . . , K. It can be argued that this SLE results in a scaled estimate of the receive

combining vector v
(s)
k i of user i (see further details in Section V of [5]). As a result,

if this SLE is solved for each user i, we can obtain an estimate of V̂(s), which can
be used to get the symbol estimates x̂(s). These observations yield in the procedure
summarized in Algorithm 9. Note that the K rKAs carried out by a sub-array s can
be executed in parallel in a commodity hardware, i.e., they are independent, their
randomness may or may not be shared2, and the processing can be distributed over
cheap, not-so-powerful computing units.

3.3 Algorithm Features and Data Fusion

The main differences of Algorithm 9 for XL-MIMO in comparison to its analogous
counterpart for M-MIMO are: (i) the algorithm does not need to run over users that
do not have sufficient (or any) power present at sub-array s, see step 5; this comes
from the non-stationary nature of extremely large arrays which implies that users are
only being served by a limited number of sub-arrays defined by Dk, and (ii) each sub-
array’s distributed unit needs to execute the algorithm possibly with a different num-
ber of iterations T(s) for a central unit to get all symbol estimates x̂(s) = (V̂(s))Hy(s) for
s = 1, . . . , S; then, the central unit applies a final data fusion step over these estimates
to obtain a coherent detection of the symbols sent by all users across the different
sub-arrays. In Section 5, we use the distributed linear data fusion (DLDF) receiver
described in [10], which attempts to minimize the mean-squared error of users’ signal
estimates at each sub-array.

3.4 Different Update Schedule Schemes for XL-MIMO

In the context of rKA, the manner and order in which selection of the random rows
occurs is often called as the update schedule. The convergence speed of the rKA is
closely tied to the updating schedule strategy, and this has motivated the study of
randomized variants in new application scenarios, such as [7], [11]. This basically

translates into the choice of the probability vector p(s) = [P(s)
1 , . . . , P(s)

K ]T in step 12
of Algorithm 9. Below, it is introduced some possible but effective ways to select the
rows r(t) in the context of XL-MIMO by trying to exploit non-stationary properties.
In particular, we present a novel approach, as well as alter different known ones. It is
noteworthy that all three strategies described in the sequel can be thought as different
power allocation methods. A comparison among the three update schedules is carried
out in Section 5.

Power-based update schedule (pwr.)

The traditional rKA sample probability in the context of Algorithm 9 is [11]

P(s)
r(t) =

‖h
(s)
r(t)‖2

2 + ξ

‖H(s)‖2
F + Kξ

. (E.12)

2The version of Algorithm 9 comes from [8], which considers a self-initialization procedure
to ensure and accelerate convergence for all users, i.e. both center- and edge-located users (see
Step 10 of Algorithm 9).
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Algorithm 9 Receive Combining Matrix Estimation for Each sub-array using rKA.

1: Input: Number of sub-array antennas M(s), number of users K, inverse of the
SNR ξ ≥ 0 (RZF regularization factor), sub-array channel matrix H(s) ∈ CM(s)×K ,
and number of iterations T(s).

2: Initialization: Specify W(s) ∈ CK×K = 0.
3: Procedure:

4: for k ← 1 to K do

5: if power of user k is not zero then

6: Define state vectors ut ∈ CM(s)
and zt ∈ CK with u0 = 0 and z0 = 0.

7: Define user canonical basis ek ∈ RK , where [ek]k = 1 and [ek]j = 0, ∀j 
= k.
8: for t ← 0 to T(s) − 1 do

9: if t = 0 then

10: Pick row k of (H(s))H as a way to coherently initialize the algorithm and
make it fair. This is referred to as self-initialization [8].

11: else

12: Pick a row r(t) of (H(s))H with r(t) ∈ {1, 2, . . . , K} drawn based on p(s)

(see Section 3.4).
13: end if

14: Compute the residual:

ηt :=
[ek]r(t) − 〈h

(s)
r(t), ut〉 − ξzt

r(t)

‖h
(s)
r(t)‖2

2 + ξ
.

15: Update ut+1 = ut + ηth
(s)
r(t).

16: Update zt+1
r(t) = zt

r(t) + ηt.

17: Repeat zt+1
j = zt

j , ∀j 
= r(t).
18: end for

19: Update
[
W(s)

]
:,k

= zT(s)−1.

20: end if

21: end for

22: Output: W(s), V̂(s) = H(s)W(s).
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This probability can be interpreted as the relative ratio of the power of user r(t) ∈
{1, . . . , K} to the power of all users in the system. Therefore, users with better channel
conditions or/and now with more active antennas Dk at a specific sub-array s are more
often chosen. Moreover, to compute this sample probability, we need to obtain the K
sample probabilities of each user in which each takes 2M(s) complex multiplications
[3, Appx. B]. In fact, due to non-stationary, not all users will be served by sub-array s,
and therefore only K̄(s) sample probabilities need to be computed, where K̄(s) is the
average number of users served by each sub-array.

Uniform update schedule (unif.)

A second strategy for the sample probability was suggested by the authors in [7].
The authors of [7] proved that, if the selection of the rows is defined to be uniform

with respect to the users i.e., P(s)
r(t) = 1/K(s), the rKA also achieves an expected rate

of convergence, where K(s) denotes the number of active users at sub-array s. This
method can be considered to bring fairness to the update schedule, in the sense that
no user-specific equations are preferable. Different from the previous case, we assume
that no extra computational complexity is required to compute p(s).

Active-antennas-based update schedule (a.a.)

Aiming to exploit non-stationary channels, herein, we propose an update schedule
scheme which is similar to the uniform one, but now the samples probabilities are

based on the number of active antennas D(s)
k of user k at sub-array s. We define the

sample probability as
P(s)

r(t) =
D(s)

r(t)

∑K(s)

i=1 D(s)
i

. (E.13)

This approach gives more attention to users that have a large number of active anten-
nas at each sub-array. Again, no additional computational complexity is considered.

4 Computational Complexity Analysis

In this section, we characterize the computational complexity of Algorithm 9. To do
so, we consider the framework for complexity analysis presented in [3, Appx. B],
where only complex multiplications/divisions are taken into account.

Table E.1 summarizes the computational complexity expressions of the traditional
ZF and RZF schemes [3], as benchmarks, and of Algorithm 9 when considering the
three different update schedule schemes discussed in Section 3.4. Since the computa-
tional cost of rKA-based methods are related to T(s), a comparison is made in Section
5 after numerically characterizing some convergence notions. Some observations:

1. We consider that the vector norms ‖h
(s)
r(t)‖2 are computed once and then, they

are stored at each sub-array’s processing unit. The only other operation that

contributes to the computational complexity is 〈h(s)
r(t), ut〉 at each iteration t.
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4. Computational Complexity Analysis

2. The reception columns refers to the computation of x̂(s) = (V(s))Hy(s) at each
sub-array. From the point of view of low-complexity, we can maintain the out-
put of Algorithm 9 in the factorized form W(s) and to recover the symbol es-
timates at each complex-valued sample, perform x̂(s) = ([W(s)]H([H(s)]Hy(s))).
Let τul be the number of complex-valued samples reserved to the uplink phase.
Thus, the above operation leads to τul M(s)K̄(s) at each sub-array distributed
unit.

3. We assume that both the canonical in (E.5) and rKA forms of computing the ZF
and RZF receive combining matrices are taking advantage of the non-stationary
premise that not all users are served by all sub-arrays.

4. The overall computational complexity is given by the computation of all x̂(s)’s,
where it is important to note that the number of iterations may vary for each
sub-array.

Table E.1: Overall computational complexity per coherence block for the XL-MIMO
receive combining schemes based on complex operations

Scheme
Receive combining matrix Reception

Multiplications Divisions Multiplications
ZF S[(3(K̄(s))2M(s))/2 +

(K̄(s)M(s))/2 +
((K̄(s))3 − K̄(s))/3]

SK̄(s) τulSM(s)K̄(s)

RZF S[(3(K̄(s))2M(s))/2 +
(3K̄(s)M(s))/2 +
((K̄(s))3 − K̄(s))/3]

SK̄(s) τulSM(s)K̄(s)

Alg. 1
(pwr.)

S[M(s)T(s) +
2M(s)K̄(s)]

τulSM(s)K̄(s)

Alg. 1
(unif./a.a)

S[M(s)T(s) + M(s)] τulSM(s)K̄(s)

4.1 Deriving Upper Bounds for the Number of Iterations

From Table E.1, one can note that the computational advantage of Algorithm 9 basi-
cally depends on the amount of iterations T(s) required for the algorithm to achieve
a given convergence notion (an iterative stopping criterion). We now derive upper
bounds for T(s) in the sense that, if the average number of iterations required to reach
a given convergence notion exceeds these bounds, Algorithm 9 would perform worse
than the canonical form of computing the ZF and RZF schemes, given in (E.5). In
fact, without loss of generality, we focus only on the RZF scheme from now on3.

3As discussed in [5], [8], most promising results are obtained for the RZF scheme due to the
fact that the regularization factor ξ assists in the convergence of the algorithm.
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Table E.2: Simulation parameters.

Parameter Value Parameter Value

Cell area 0.1× 0.1 km2 Min. distance 30 m
M 100 Array type ULA
S 4 Carrier frequency 2.6 GHz

M(s) 25 Antenna spacing 2λ m
K 25 L 23.0610 m
p 0 dBm Channel model Rk = IM

σ2 [−55,−40] dBm ck U (0, L)
Ω 4 lk LN (0.1L, 0.1)
ν 3

Comparing the rows in Table E.1 and isolating the number of iterations, we have

T(s),up
pwr. =

1
3
(K̄(s))3

M(s)
+

2
3

K̄(s)

M(s)
+

3
2
(K̄(s))2 − 1

2
K̄(s) (E.14)

T(s),up
unif.,a.a. =

1
3
(K̄(s))3

M(s)
+

2
3

K̄(s)

M(s)
+

3
2
(K̄(s))2

+
3
2

K̄(s) − 1. (E.15)

These upper bounds are used in the convergence analysis carried out in Section 5.1.

5 Numerical Results and Discussion

To verify the efficiency of Algorithm 9 in achieving a good performance-complexity
trade-off solution for XL-MIMO signal detection, we now collect some quantitative
results. The simulation parameters are disposed in Table E.2. The users are uniformly
distributed inside a square-cell area with a minimum distance of 30 m to the BS. The
extremely large array follows a uniform linear array (ULA) arrangement with spacing
between antennas of 2λ m.

5.1 Convergence Analysis

Here, we characterize SNR regions in which the proposed algorithm brings relevant
computational gains. To ease the exposition, we define the following quantity called

as the computational relaxation degree crd(s)
i :

crd(s)
i =

T(s),up
i − T̄(s)

T(s),up
i

, if T̄(s) < T(s),up
i (E.16)

and 0 otherwise, where T̄(s) is the average number of iterations per sub-array needed
to achieve a sense of appropriate convergence and i indexes the different update
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schedules. This quantity measures the relative computational complexity gains ob-
tained for each sub-array via Algorithm 9 compared to the canonical way of comput-
ing the RZF scheme.

Fig. E.2(a) shows the computational relaxation degree as a function of the noise
variance in dBm. Note that both ways of normalizing Dk discussed in Section 2.1 were
considered. The average number of iterations were obtained by comparing the aver-
age SINR of Algorithm 9 with the average SINR benchmark given by the canonical
computation of RZF at each sub-array. Moreover, two stopping criteria were con-
sidered in relation to the performance measured via average SINR: (i) Algorithm 9
outputs an estimate of V(s) that reduces 10% of the canonical performance of the RZF
scheme, and (ii) the same but considering a losing in performance of only 1%. We
now made some observations:

1. Average system performance: uniform update schedule outperforms all the other
schemes. This is because, for users with good and bad channel conditions,
the algorithm converges properly. This last conclusion may change, since our
evaluated metric is based on average.

2. Active-antennas-based update schedule performs marginally better than the
typical power-based one and has a considerably easier implementation.

3. Normalization 2 better accelerates the algorithm convergence because of the
disparity among users’ power, which reduces the overall average signal-to-
interference ratio (SIR).

The most important conclusion is that we can roughly resemble the performance
provided by RZF by greatly reducing the computational cost. At low SNR, this is
easily achieved due to low interference among users.

Fig. E.3 illustrates the relaxation in computational complexity brought by the
algorithm when considering different system sizes. Note that the RZF complexity has
a rapid growth in comparison with the rKA-based schemes as M(s) and K increase.
Uniform and active-antennas approaches are the most attractive ones.

5.2 Performance Comparison

To give a notion of the performance gap of the two different adopted stopping criteria,
Fig. E.2(b) shows the average symbol error rate (SER) as a function of the noise
variance in dBm. The number of iterations used for each different noise variance
point follows the results obtained in Fig. E.2(a). To fusion the signal estimates of each
sub-array, we used the DLDF receiver described in [10, Algorithm 1]. It is important to
observe that, although the algorithm rate of convergence when using Normalization
2 of Dk is faster (see Fig. E.2(a)), its performance is impaired by the different array
gains for each user in comparison with the first normalization method.

6 Conclusions

In this work, we have proposed a rKA-based combiner specifically applicable to XL-
MIMO systems aiming at reducing the computational burden of the signal detector
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(a) Average crd × noise variance in dBm.

(b) Average SER × noise variance in dBm.

Fig. E.2: Performance-complexity trade-off. K/M = 0.25 and p = 0 dBm. Performance
gaps of 10% and 1% regarding the canonical RZF scheme and two ways of normalizing
Dk were considered.
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Fig. E.3: Receive combining computational complexity as a function of M(s) and K̄(s).
p = 0 dBm, σ2 = 50 dBm, normalization 2 is considered, and the number of iterations
is fixed according to the methods used in Fig. E.2(a) based on losing 10%.

with improved performance-complexity trade-off. We have provided a computational
complexity analysis by deriving upper bounds for number of iterations required for
convergence (10% or 1% performace losing). Besides, we have proposed a new update
scheduler for the rKA, namely active-antenna-based update schedule, aiming at ex-
ploiting the intrinsic non-stationary properties in XL-MIMO channels. Future research
will address optimizing the complexity of systems with different user requirements.
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1. Introduction

Abstract

Massive multiple-input-multiple-output (M-MIMO) features a capability for spatial multi-
plexing of large number of users. This number becomes even more extreme in extra-large
(XL-MIMO), a variant of M-MIMO where the antenna array is of very large size. Yet, the
problem of signal processing complexity in M-MIMO is further exacerbated by the XL size
of the array. The basic processing problem boils down to a sparse system of linear equations
that can be addressed by the randomized Kaczmarz (RK) algorithm. This algorithm has re-
cently been applied to devise low-complexity M-MIMO receivers; however, it is limited by the
fact that certain configurations of the linear equations may significantly deteriorate the perfor-
mance of the RK algorithm. In this paper, we embrace the interest in accelerated RK algorithms
and introduce three new RK-based low-complexity receiver designs. In our experiments, our
methods are not only able to overcome the previous scheme, but they are more robust against
inter-user interference (IUI) and sparse channel matrices arising in the XL-MIMO regime.
In addition, we show that the RK-based schemes use a mechanism similar to that used by
successive interference cancellation (SIC) receivers to approximate the regularized zero-forcing
(RZF) scheme.

Keywords— massive MIMO; extra-large scale massive MIMO; randomized Kacz-
marz algorithm; receiver design.

1 Introduction

Early deployments of fifth generation (5G) networks are already exploiting massive
multiple-input multiple-output (M-MIMO) technology to cope with the rapid growth
in the number of users and data traffic [1]. The benefits from the M-MIMO topology
come from the spatial multiplexing of the users on the same time-frequency resources.
However, the common choice for compact antenna arrays limits the spatial dimension
of such systems, reducing the performance gains achievable in practice. One way
to enhance the promised benefits of M-MIMO is to scale up the number of antenna
elements at the base station (BS). Systems that embrace antenna arrays of extremely
large dimensions can better separate a large number of users, significantly increasing
overall performance. This uncovers a new regime of M-MIMO referred to as the
extra-large scale MIMO (XL-MIMO) [2].

Despite the potential benefits, a disadvantage of extremely large antenna arrays
is the excessively high computational complexity concerning signal processing at the
receiver. The reason is that inter-user interference (IUI) management is necessary
to deal with a large number of users, motivating the use of more intricate receiver
designs. The canonical regularized zero-forcing (RZF) is one of these schemes that can
offer near-optimum performance in many scenarios [3]. Unfortunately, applying the
RZF scheme implies calculating the inverse of large matrices, which needs very high
computational capacity at the processing units. This motivates the design of schemes
that match the RZF performance, while offering complexity that scales better with the
number of antennas and users.

Another practical challenge for receivers when increasing the dimension of the
antenna arrays is the emergence of new channel effects. With a larger array, different
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users experience the same channel paths with variable energy or totally different
channel paths. This effect results in a variable mean energy value along the array that
is called spatial non-stationarities [2]. In contrast, the term spatial stationarity refers to
the case where the energy variations along the array is negligible. Non-stationarities
give rise to sparse channel matrices due to the possibility that the user’s energy is
concentrated only in a small part of the large antenna array. This uneven energy
distribution limits the performance of conventional linear receivers, e.g., zero-forcing
(ZF) [4]. Thus, there is a need for low-complexity receiver designs that are aware of
such non-stationarities.

1.1 Related work

Many recent works address the design of low-complexity receivers in the context of
multi-antenna systems. One of the most common techniques consists of approxi-
mating the matrix inverse in the RZF scheme. There are three main approximation
techniques: approximate matrix inversion algorithms [5, 6], matrix gradient search
methods [7], and iterative solvers of systems of linear equations (SLEs) [8–10]. These
methods provide ways to manage the performance and complexity trade-off. How-
ever, they face some challenges that can decrease their applicability. The first two
have limited control over the performance-complexity management and can involve
steps that can still be considered complicated and costly from implementation point of
view. For example, the truncated polynomial expansion (TPE) technique used in [5, 6]
has iterations comprised of matrix products and further processing is needed to fine
tune parameters. Iterative solvers of SLEs, on the other hand, depend dramatically
on their convergence rate. In this paper, we focus on the third category in order to
increase its applicability using acceleration techniques that are premised on simplicity.

Among the iterative solvers of SLEs, the Kaczmarz algorithm [11] is a popular ap-
proach for solving very large SLEs, fitting well with our application scenario. In [12],
a randomized Kaczmarz (RK) algorithm was introduced and shown to have an excel-
lent convergence behavior. The authors of [10] introduced a low-complexity receiver
design to approximate the RZF scheme based on the RK algorithm of [12] for M-
MIMO. There are two main features in favor of the RK-based RZF scheme of [10].
First, the scheme is simple, meaning that there is no need to adjust any parameters
other than the number of iterations or to know second-order channel statistics. Sec-
ond, the scheme is flexible, which means that it can easily control performance and
complexity with great granularity by adjusting the number of iterations.

However, two known problems with the RK algorithm were not treated in [10].
The RK algorithm randomly selects one of the SLE equations to be solved in a given
iteration. This equation sampling is based on a probability criterion where probabili-
ties are proportional to the energy of the equations, giving rise to the following weak-
nesses: (a) low-energy equations are rarely selected, and (b) performance of the RK
algorithm is deteriorated when the energy of the equations are very similar [13–15].
We refer to these weaknesses as the problem with rare equations and the curse of uniform
normalization, respectively. Then, the low-complexity receiver of [10] performs poorly
when some users are located at the cell-edge or a user power control scheme has been
employed. Because of this, we call the receiver scheme in [10] as nRK, short for naive
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RK. Besides the above intrinsic issues, it has been found in [13] that the RK algorithm
can fail under certain sparsity conditions, hindering the operation of the nRK in sparse
channels characteristics of the XL-MIMO regime.

Recent interest in solving sparse SLEs for neural network training and other ma-
chine learning problems has motivated the research on accelerated RK algorithms,
such as the greedy RK (GRK) of [13] and the randomized sampling Kaczmarz (RSK)
of [16]. The accelerated RK algorithms can address the three presented weaknesses
of the RK algorithm to some extent. In this paper, we embrace this observation and
introduce three different accelerated RK-based receiver designs to compete against
the nRK scheme of [10].

Distributed receiver designs are also being studied to further alleviate the com-
plexity in the XL-MIMO systems [17, 18]. We share the belief that the distributed
approach is the way to further reduce complexity when it comes to XL-MIMO sys-
tems, due to the excess of complexity and information management brought by the
large number of antennas. For the sake of tractability, however, here we focus on a
centralized receiver design in order to cover simultaneously the discussion of both
M-MIMO and XL-MIMO regimes. Since centralized designs do not suffer from the
inevitable performance loss given the decentralization process [17], they can be ad-
vantageous when the number of antenna modules is limited and the hardware does
not suffer from unsustainable processing capacity and excessive information commu-
nication. Furthermore the distributed framework derived in our previous work [19]
can be used to generalize the receivers presented herein for a XL-MIMO system com-
prised of sub-arrays [2].

1.2 Contributions

In this paper, we introduce three low-complexity receiver designs based on the ac-
celerated RK-algorithms for M-MIMO and XL-MIMO systems. These acceleration
techniques are using the following heuristics: (i) the sampling without replacement
(SwoR) technique, (ii) the GRK algorithm of [13], and (iii) the RSK algorithm of [16].
To the best of our knowledge, this is the first work that uses these accelerated RK-
based algorithms to design receivers for multi-antenna systems. Our schemes work
by approximating the performance of the RZF, while providing control over its com-
plexity. This control is realized by only adjusting the number of iterations of the
algorithms. The proposed schemes are executed at a central processing unit (CPU).
Below, we summarize the contributions of this work:

• We present three flexible receivers that are able to select points of operation
from a two-dimensional space defined by performance and complexity. The
upper bound of performance is provided by the RZF scheme and the perfor-
mance range is discretized by the number of iterations.

• We show that one can interpret the RK-based receivers in general to perform a
kind of successive interference cancellation (SIC) procedure, giving us a better
understanding of how the RK algorithms work when approaching the RZF
scheme from the standpoint of classical literature.

• We provide a detailed complexity analysis, showing that our schemes have
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more scalable computational complexities with respect to the number of anten-
nas and users.

The remainder of this paper is organized as follows. Section 2 defines a single-
cell uplink system model suitable for the M-MIMO and XL-MIMO regimes. Section
3 introduces the mathematical framework needed to approximate the RZF scheme
based on the RK algorithms. The proposed accelerated RK-based RZF schemes are
described in Section 4, while Section 5 provides a better interpretation of them. Com-
plexity analysis and numerical results are given in Section 6 followed by the main
conclusions summarized in Section 7.
Notations: We use upper and lower case boldface to denote matrices and vectors,
while non-boldface are used for constants. Discrete and continuous sets are given by
calligraphic X and blackboard bold X. Cardinality of a set is given by |X |. The n-th
element of x is denoted as xn. The m, n-th element of the matrix X is [X]m,n, while
[X]:,n represents the n-th column vector of X. Vertical and horizontal matrix con-
catenations are [X; Y] and [X, Y], respectively. We indicate transpose and Hermitian
transpose by (·)T and (·)H . Identity matrix of size n is denoted as In, while 0m×n is an
m× n matrix of zeros. Trace and diagonal matrix operators are denoted respectively
by tr· and diag·. The l2- and Frobenius norms are given by ||x||2 and ||X||F, respec-
tively. Gaussian distribution is represented by N (·, ·), whereas circularly symmetric
complex-Gaussian distribution is CN (·, ·). The indicator function with argument x
over the set A is denoted as χA(x), where χA(x) = 1 if x ∈ A, and zero otherwise.
Floor operation is �·�.

2 System Model

We consider the uplink payload data transmission of an M-MIMO system wherein a
BS with M antennas simultaneously serves a total of K < M single-antenna users. For
convenience, the group of users is indexed by the set of integers K = {1, 2, . . . , K},
while M = {1, 2, . . . , M} is the set of antenna indexes. Moreover, we assume the
block-fading channel model where the channel vector hk ∈ CM×1 of user k ∈ K is
constant and frequency-flat within a coherence block [3]. When all users transmit
simultaneously, the BS receives the following narrowband baseband signal y ∈ CM×1:

y =
√

ρHx + n, (F.1)

where ρ is the user transmit power, H ∈ CM×K = [h1, h2, . . . , hK ] is the channel
matrix perfectly known by the BS, x ∈ CK×1 is the transmitted signal vector, and
n ∈ CM×1 ∼ CN (0, σ2IK) is the receiver noise vector with noise power σ2. The vector
x is composed of the modulated transmission symbols sent by each user indepen-
dently, where xk is drawn from a normalized constellation sequence X . Our goal is to
design an efficient and reliable receiver that coherently combines the M observations
of the received signal y and produce a soft estimate x̂ for x. Throughout this work, we
consider a traditional baseband processing architecture, where a CPU is responsible
for all processing activities related to the signal reception in the antenna array.
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Table F.1: Summary of the Low-Complexity Accelerated RK-Based RZF Receiver Designs

Scheme Acceleration Method Advantages Disadvantages

nRK-RZF [10] none
least costly iteration

↓ complexity due to sparsity (XL-MIMO)†
↓ performance for cell-edge users and user power control

↓ weak against IUI and sparsity

RK-RZF
(Algorithm 1)

SwoR
best benefit-cost ratio

↑ performance for cell-edge users and user power control
↑ robust to sparsity than nRK-RZF

± robust against IUI
iteration cost grows linearly with K

GRK-RZF
(Algorithm 2)

complete residual info.

best under extreme conditions

↑ performance for cell-edge users and user power control
↑ robust against IUI and sparsity

smallest number of iterations to converge

most costly iterations

RSK-RZF
(Algorithm 3)

partial residual info.
same from GRK-RZF to a much smaller extent

intermediate iteration cost (between RK and GRK)
↑ number of iterations to converge w.r.t. GRK

† All other receivers inherent the complexity reduction due to sparsity.

2.1 General Channel Model

We adopt the correlated and non-stationary Rayleigh fading channel model proposed
in [4], suitable for transmissions at sub-6 GHz frequencies. Following this model, the
channel vector of user k ∈ K is defined by hk ∼ CN (0, Θk), where Θk ∈ CM×M is the
general channel covariance matrix. This matrix can be decomposed as [4]:

Θk = D
1
2
k RkD

1
2
k . (F.2)

where Rk ∈ CM×M is the spatial correlation matrix and Dk ∈ {0, 1}M×M is an in-
dicator diagonal matrix. Further, the vector with the large-scale coefficients of user
k is defined as βk = diagRk = [β1

k, . . . , βM
k ]T . The diagonal matrix Dk models the

portions of the antenna array "seen" by each user through the concept of visibility
regions (VRs) [2], where [Dk]m,m = 1 indicates that antenna m ∈ M sees user k ∈ K,
[Dk]m,m = 0 indicates otherwise. For convenience, we assume that trDk = D, ∀k ∈ K,
where D ≤ M is the number of visible antennas. The term visible indicates that only
D antennas have the major contribution in the communication of any user to the BS,
but the visible antenna indices can differ between users. One of the key differences
between the M-MIMO and XL-MIMO regimes is in their corresponding D matrix that
determines the stationarity of the received energy over the BS array. For the stationary
case D = IM, since the array is compact. Spatial non-stationarities impose a sparse
structure into the channel matrix H that can be exploited for simpler receiver designs.
In fact, one of the main motivations of this work is to design efficient receivers using
such information to reduce the computational complexity.

3 Preliminaries

In this section, we introduce the RZF scheme as one of the state-of-the-art receivers
used in the literature [3]. We argue that the straightforward implementation of the
RZF scheme may not be attractive from the hardware point of view. To solve this
problem, we interpret its solution as an optimization problem that can be solved
through an SLE. Then, we describe the process of acquiring a consistent SLE that
meets our needs.

A conventional scheme suitable for a scenario where IUI is a problem and the
signal-to-noise-ratio (SNR) of users may vary overly is the RZF scheme [3]. Employing
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the RZF to combine coherently the payload information in y yields in [3]

x̂RZF =
(

VRZF
)H

y =
(

HHH + ξIK

)−1
HHy, (F.3)

where VRZF ∈ CM×K is the RZF receive combining matrix, x̂RZF ∈ CK×1 is the RZF
soft estimate, ξ = σ2/ρ is the inverse of the pre-processing user transmit SNR, G ∈
CK×K = HHH is the channel Gramiam matrix, and Ryy ∈ CK×K = G + ξIK is the
sample covariance matrix of the received signal y.

The classical RZF scheme can be viewed as the solution of the following optimiza-
tion problem [10]:

w� = arg min
w∈CK×1

||Hw− y||22 + ξ||w||22, (F.4)

where w� is the optimal solution and corresponds to x̂RZF. The proof simply follows
by taking the derivative of the l2-regularized least-squares cost function above and
equating it to zero. A compact form of the cost function is ||Bw− y0||22, where B =

[H;
√

ξIK ] ∈ C(M+K)×K and y0 = [y; 0K×1] ∈ C(M+K)×1. Naturally, the solution of this
optimization problem can be obtained by solving the thin SLE Bw = y0.

The presence of noisy observations in y hinders the use of iterative solvers over
Bw = y0. On the other hand, this SLE is inconsistent; meaning that the noisy obser-
vations in y make y0 not lie in the range of B [20]. Thus there is no solution set. It is
preferable to obtain a consistent SLE with minimum additional complexity cost. We
use the transformation proposed in [10] that yields the following consistent, fat SLE:

BHz = b = HHy, (F.5)

where z ∈ C(M+K)×1 = [u ∈ CM×1;
√

ξv ∈ CK×1]. The minimum-norm solution
to the SLE above is given by u = Hx̂RZF and v = x̂RZF. One can note that the k-
th equation of this SLE can be associated with obtaining the k-th component of v,
which solution is x̂RZF

k of user k ∈ K. Hence, we can use the terms equation and user
interchangeably.
Remark 1. (MR Receiver). The vector with constant terms b =HHy in (F.5) is the
maximum-ratio (MR) soft estimate x̂MR and the price to pay for consistency [3]. There-
fore, the respective upper and lower bounds of receiver performance and complexity
are given by the MR scheme in this work.
Remark 2. (Normal Equations). The authors of [21] designed Kacmarz-based receivers
using the normal SLE BHBw = BHy0. The solutions discussed here are easily ex-
tended to this case as well. Here, we use the SLE in (F.5) to avoid the additional
complexity of acquiring the normal SLE.
Remark 3. (Three Challenges). (i) BH does not have symmetry properties, impeding
the application of some classical iterative methods, e.g., conjugate gradient [22]. (ii)
the amounts of calculations and storage are limited due to wireless nature, hindering
the use of common acceleration techniques, such as preconditioning [22].1 (iii) BH is
a sparse full rank matrix when the channel is non-stationary D 
= M, making the SLE
difficult to be solved by some methods, e.g., the RK algorithm [12] depending on the
sparse structure. The methods proposed here aim to overcome these challenges.

1It is common the use of a relaxation parameter to improve convergence of RK methods [23].
However, this expedient requires adjusting the regularization parameter.
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4 Low-Complexity Receiver Designs Based on Ac-

celerated RK Algorithms

In this section, we exploit recently established acceleration techniques for the RK al-
gorithm to increase the applicability of RK-based receiver designs in both M-MIMO
and XL-MIMO regimes. We start with an overview of the three introduced accelerated
RK-based receivers, justifying the reasons for using the chosen methods and indicat-
ing the advantages and disadvantages of each. Then, we give a detailed presentation
for each of the schemes.

4.1 Overview: Proposed Receivers

We present three receivers based on variations of the RK algorithm: (i) RK-RZF: a
receiver that improves the overall performance of nRK-RZF [10] using a SwoR-based
acceleration technique, which is simpler than those used in the other two schemes; (ii)

GRK-RZF: a greedy scheme that exploits the residual information of the SLE in (F.5)
to further accelerate convergence [13]; (iii) RSK-RZF: a scheme introduced to deal
with the complexity disadvantages of the GRK-RZF whilst still exploits part of the
acceleration provided by the residual information [16]. The "-RZF" suffix explicitly
denotes that the performance of the RZF scheme is being emulated by the RK-based
receivers.

Table F.1 summarizes the main differences and advantages/disadvantages of each
new accelerated RK-based RZF schemes. The RK-RZF scheme has the best benefit-
cost ratio among the three proposed receivers. This means that the RK-RZF is able
to reduce the complexity of the RZF scheme with little performance losses for typical
numbers of antennas M and users K of the M-MIMO and XL-MIMO systems. On the
other hand, the performance of the RK-RZF is drastically affected by high levels of
IUI and/or sparsity, and when operating at high SNR regime. The GRK-RZF scheme
works better under these extreme conditions, being more robust against IUI, sparsity,
and increased SNR. However, the price to pay for these gains can turn the GRK-
RZF receiver very costly. The RSK-RZF scheme is an effort to reduce the cost while
hold part of the benefits of the GRK-RZF. The region of applicability of the RSK-RZF
receiver is very limited though.

Figure F.1 illustrates the main steps that are common to all the proposed accel-
erated RK-based RZF receivers when considering a centralized baseband architec-
ture coordinated by a CPU. First, the CPU uses the received signal y to calculate
the common information which is fixed for all the iterations.2 Then, depending on
the selected scheme (from Table F.1), it starts with the user symbol estimation pro-
cess. In general, the probability criterion used to select the equations from the SLE
in (F.5) differs between the algorithms, while the steps used to update the solution
are the same. We refer to this set of steps as the Kaczmarz update step, since it follows
the classical Kaczmarz algorithm [11]. If a pre-defined stopping criterion is fulfilled,

2As a practical matter, if the coherence block is large enough, it is more efficient to calculate
VRZF in (F.3) just once and then use it until the end of the coherence block. Actually, the schemes
described here can be generalized in this way by following the lines in [10, 19, 24].

143



Paper F.

no

CPU: RX

output
soft 

estimate
 

 

yes

algorithm selector
{RK, GRK, RSK}

define a convenient stopping
criterion

input
received 

signal

common
computations

e.g., 

iterative
method

compute
probability
criterion

stopping
criterion is

met?

select an eq. of
the SLE in (5)
based on the

probability
criterion

Kaczmarz
update step

Fig. F.1: Illustration of the basic steps realized by the proposed low-complexity receivers based
on accelerated RK algorithms in a centralized baseband architecture, where the CPU is carrying
out the signal reception (RX).

the iterative method converges and the CPU obtains the soft estimate x̂s, which is
an approximation of x̂RZF, where the superscript s indexes the proposed schemes in
{RK, GRK, RSK} according to Table F.1. Otherwise, the algorithm will continue until
a certain maximum number of iterations. The complexity analysis and the stopping
criterion are discussed in Subsection 6.1.

4.2 Randomized Kaczmarz Algorithm with SwoR

Algorithm 103 summarizes the RK method applied to solve (F.5) when adopting the
SwoR technique in Step 11. We refer to Algorithm 10 as the RK-RZF scheme. Except
for the application of the SwoR technique, the description of the nRK-RZF [10] scheme
is the same as that used in Algorithm 10. However, this seemingly small modification
leads to important implications as we discuss below.

The RK-RZF scheme works as follows: Steps 1-7 are comprised of initialization
of variables and common computations that will be used throughout the iterative
process. In Step 7, the sampling probability vector p is calculated in (F.6), representing
the probability criterion used to select the equations from the SLE in (F.5). As long
as a stopping criterion is not met, the algorithm randomly selects in Step 9 one of
the equations based on p, where the superscript (t) indicates the current iteration.
After choosing an equation index i(t) ∈ K, the method projects orthogonally the last
iterative solution z(t) = [u(t), v(t)] onto the solution hyperplane bi(t) = hH

i(t)u
(t) + ξvi(t) ,

as described in Step 10. This orthogonal projection is seen as the residual r(t)i(t) in

relation to the i(t)-th equation. In Step 11, this residual is normalized by the energy
of the chosen equation ||hi(t) ||22 + ξ. In Steps 12 and 13, the solution z(t) is updated
into z(t+1), considering the contribution γ(t) of the normalized orthogonal projection
of the last iterate over equation i(t). The Kaczmarz update step in Fig. F.1 can be defined

3Two key observations about the description of all algorithms: (a) a count in terms of floating-
point operation per second (FLOPs) is annotated after "%" and (b) the keyword "Store" stands
for one time calculations.
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according to the realization of Steps 10-14 and is common to all the algorithms in this
paper. When the stopping criterion is met, the iterative process terminates and v(t) is
considered to be the RK-RZF soft estimate x̂RK, an approximation of x̂RZF.
SwoR. Let P (t) denote the population from which the equations are sampled available
in Step 9 at iteration t. At t = 0, we have P (0) = K. Applying the SwoR technique
implies that P (t+1) = P (t) \ {i(t)} until the end of a sweep. At an arbitrary iteration t′,
we define a sweep as the cycle of K iterations that consists of bringing |P (t′)| from |K|
elements to 1 element. After the end of a sweep, a new sweep begins with P (t′+K) = K
and so on. Because P (t) changes at each new iteration, the sampling probability vector
p in Step 9 needs to be constantly re-scaled in Step 11 considering the elements in P (t).

Probability criterion based on energy information of the equations

The key feature of the RK algorithm [12] is the sub-optimal probability criterion in
(F.6) that dictates how the equations of the SLE in (F.5) will be selected.4 This criterion
is based on the energy information of the equations. Note that the k-th entry of the
sampling probability vector p is the ratio of the regularized channel gain of user k to
the sum of the regularized channel gains of all users. And that the desired solution

v(t)k is only updated if the k-th equation is selected. Two bad phenomena can occur
if p is poorly scaled: (a) the weakest users will not be selected as often resulting
in a poor performance; (b) convergence performance is naturally degraded if the
users experience similar channel gains, which implies that pk ≈ 1/K, ∀k ∈ K. Both
problems can be partly eliminated in a heuristic way by the SwoR technique in Step
11 of Algorithm 10. First, the SwoR technique avoids selecting the same equation
in sequence, increasing the frequency of selection of the weakest users. Second, the
SwoR is changing the selection probabilities constantly to lower the effect of uniform
normalization curse. On the flip side, the SwoR technique comes with the price of
re-scaling p in Step 11 after each new iteration, which causes the cost per iteration to
grow linearly with K. Motivated by these limited solutions provided by the RK-RZF,
in the following we seek other acceleration methods to improve the nRK-RZF [10]
receiver.

4.3 Greedy Randomized Kaczmarz Algorithm

The GRK algorithm is an accelerated version of the RK algorithm proposed in [13].
The main idea is to eliminate the equations with larger residuals as quickly as pos-
sible. This heuristic design deals with the problem of rare equations and the curse
of uniform normalization present in the RK algorithm. Beyond that, the GRK has
improved convergence in comparison to the RK algorithm when solving sparse SLEs
in general. The application of the GRK to solve (F.5) is given in Algorithm 11, namely,
the GRK-RZF scheme.

We start by explaining the functionality of the GRK-RZF scheme. At the begin-
ning of the iterative approach, the current residual vector r(t) is calculated in Step

4Due to natural wireless channel variations, the SLE in (F.5) is constantly changing. Finding
the optimum probability of sampling the equations is very costly and should be computed many
times, and, therefore, avoided here.
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Algorithm 10 RK-with-SwoR-Based Receiver (RK-RZF)

1: Input: H, y, M, K, ξ
2: Output: x̂RK, TRK

3: b = HHy % 8KM− 2K FLOPs
4: Store {||hk||22 + ξ} % 8KM− K FLOPs
5: Store ||H||2F + Kξ = ∑k∈K(||hk||22 + ξ) % K− 1 FLOPs
6: u(0) ∈ CM×1 = 0M×1
7: v(0) ∈ CK×1 = 0K×1
8: t = 0
9: Probab. criterion based on energy info. of eqs. p ∈ RK×1:

pk =
||hk||22 + ξ

||H||2F + Kξ
, ∀k ∈ K (F.6)

10: While stopping criterion is False do
11: pick i(t) ∈ K by re-scaling p w/ SwoR % K FLOPs
12: Kaczmarz update step (Steps 12-17):

13: r(t)
i(t)

= bi(t) − hH
i(t)

u(t) − ξv(t)
i(t)

% 8M + 4 FLOPs

14: γ(t) = r(t)
i(t)

/(||hi(t) ||22 + ξ) % 2 FLOPs

15: u(t+1) = u(t) + γ(t)hi(t) % 8M FLOPs
16: v(t+1) = v(t) + γ(t)[IK]:,i(t) % 2 FLOPs
17: t = t + 1
18: end while

19: x̂RK = v(t), TRK = t
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Algorithm 11 GRK-Based Receiver (GRK-RZF)

1: input: H, y, M, K, ξ
2: output: x̂GRK, TGRK

3: Repeat Steps 1-6 of Algorithm 10% 16KM− 2K− 1 FLOPs
4: Store (||H||2F + Kξ)−1 % 1 flop
5: While stopping criterion is Falsedo

6: r(t) ∈ CK×1 w/ % 8KM− 8 FLOPs

r(t)k = bk − hH
k u(t) − ξv(t)k

7: �SAR
(t) ∈ RK×1 with SAR(t)

k = |r(t)k |2 % 3K FLOPs

8: RSS(t) = ∑k∈K SAR(t)
k % K− 1 FLOPs

9: Compute ε(t) as % 2K + 3 FLOPs

ε(t) =
1
2

⎛
⎝ 1

RSS(t)
max
j∈K

⎧⎨
⎩ SAR(t)

j

||hj||22 + ξ

⎫⎬
⎭+

1
||H||2F + Kξ

⎞
⎠

10: Get the set of working equations: % K + 1 FLOPs

Ut =
{

k : SAR(t)
k ≥ ε(t)RSS(t)

(
||hk||22 + ξ

)}

11: Probab. criterion based on complete residual info. p(t) ∈ RK×1: % K
FLOPs

p(t)k =

⎧⎨
⎩ SAR(t)

k

∑j∈Ut SAR(t)
j

, if k ∈ Ut

⎫⎬
⎭ . (F.7)

12: pick i(t) ∈ Ut based on p(t)

13: Kaczmarz update step (Algo. 10 – Steps 10-14) % 8M + 4 FLOPs
14: end while

15: x̂GRK = v(t), TGRK = t
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6. We refer to r(t) as the complete residual information on an iteration basis. In Steps

5 and 6, we obtain the squared absolute residuals arranged in a vector �SAR
(t)

and
the residual sum of squares RSS(t). Then, in Step 7, the quantity ε(t) as a measure
of the weighted average of the normalized squared absolute residuals is computed.
Using this quantity, in Step 8, we can select a set Ut of working equations that corre-
sponds to the equations with residuals larger than the weighted average. The idea is
to discard equations with the lowest residuals prioritizing the equations (users) that
are further away from being solved. In Step 9, the sampling probability vector p(t) is
now iteration dependent and calculated in (F.7) on the basis of the squared absolute
residuals of the equations in Ut. The subsequent steps follow the Kaczmarz update
step. When the algorithm converges, we obtain the GRK-RZF soft estimate x̂GRK. A
relaxed version of the GRK algorithm is presented in [25], where one can control the
quantity ε(t) and adjust the size of Ut. However, we chose not to follow this method
because the control of ε(t) can generate unwanted complexity.

Probability criterion based on complete residual information

The GRK-RZF exploits the complete residual information as part of its probability crite-
rion in (F.7) used to select the working equations (preferred users) from the SLE in
(F.5). Evidently, this use can solve the two fundamental problems of the nRK-RZF
scheme [10] of rare equations and curse of uniform normalization in a heuristic way
because the residuals progress as solutions become better. The trend is that the resid-
uals tend to zero as the number of iterations grows towards infinity. Therefore, it
is expected that the number of necessary iterations for convergence of the GRK-RZF
scheme is less than that of the RK-RZF. However, obtaining the complete residual in-
formation and its processing makes iteration more expensive. This indeed can lead to
the case where the total complexity cost of the GRK-RZF receiver after convergence is
greater than that of the RK-RZF and even of the RZF. This issue driven us to look for
ways to further explore the performance gains brought by the residuals and reduce
the related cost. We further elaborate the benefits brought by the probability criterion
based on the residuals in Subsection 5.2.

The first way to decrease the complexity of the GRK-RZF scheme is to adopt the
following recursive relationship [13]:

r(t+1) = b−HHu(t+1) − ξv(t+1)

(a)
= b−HH(u(t) + γ(t)hi(t) )− ξ(v(t) + γ(t)[IK ]:,i(t) )

= b−HHu(t) − ξv(t) − γ(t)HHhi(t) − γ(t)ξ[IK ]:,i(t)

(b)
= r(t) − γ(t)(HHhi(t) + ξ[IK ]:,i(t) )

(c)
= r(t) − γ(t)[Ryy]:,i(t) , (F.8)

where the following steps were applied: (a) the Kaczmarz iteration relationship (Algo.
11 – Step 11), (b) the definition of the residual vector r(t) ∈ CK×1 at iteration t (Algo.
11 – Step 4), and (c) the definition of Ryy in (F.3). Henceforth, we assume that the
GRK-RZF scheme adopts the above recursive updating of the complete residual in-
formation.
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Algorithm 12 RSK-Based Receiver (RSK-RZF)

1: input: H, y, M, K, ξ, ω
2: Output: x̂RSK, TRSK

3: Repeat Steps 1-6 of Algorithm 10% 16KM− 2K− 1 FLOPs
4: Store (||H||2F + Kξ)−1 % 1 flop
5: While stopping criterion is False do

6: Uniformly draw w/ SwoR Ut w/ |Ut| = ω
7: r(t) ∈ CK×1 with % ω(8M + 4) FLOPs

r(t)j =
{

bj − hH
j u(t) − ξv(t)j , if j ∈ Ut

}
.

8: Compute �RR
(t) ∈ RK×1 w/ % 4ω FLOPs

RR(t)
k = |r(t)k |2/(||H||2F + Kξ) ∀k ∈ K

9: i(t) = arg maxj∈Ut
�RR

(t)
% ω FLOPs

10: Kaczmarz update step (Algo. 10 – Steps 10-14) % 8M + 4 FLOPs
11: end while

12: x̂RSK = v(t), TRSK = t

4.4 Randomized Sampling Kaczmarz Algorithm

To reduce the complexity related to the processing of residuals and still exploit part
of this information, Algorithm 12 describes the RSK method proposed in [16] to solve
the SLE in (F.5). We called this as the RSK-RZF scheme. Here, the iterative process
starts by uniformly drawing equations to comprise the set Ut of working equations
with a pre-defined size of ω. Subsequently, only the residuals of these ω equations
are calculated, reducing the iteration cost in comparison with the GRK-RZF scheme.
To select the equation at iteration t, a deterministic criterion is now adopted: the

equation k ∈ Ut with the largest entry in the relative residual vector �RR
(t)

is chosen.
Then, the algorithm follows the Kaczmarz update step.

Probability criterion based on partial residual information

Different from the other algorithms, randomization is used when constructing Ut

and sorting �RR
(t)

and depends on a partial residual information coming from the ω

equations selected at random. Because of this, the RSK-RZF scheme gives up some
performance gains, since Ut may not have the equations (users) that have the largest
residuals. Another implementation issue that arises with Algorithm 12 is how to
select |Ut| = ω. Motivated by [16], we use ω = �log2 K�.
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5 RK-Based Receiver Designs for Multi-Antenna

Systems

This section addresses two issues on the algorithms’ operation described above when
applied to the M-MIMO context: What is the meaning of a RK-based iteration for
multi-antenna systems? What are the main benefits of using residual information in
the equation selection probability criterion? A short answer to both of the questions
is: we notice a similar operation of our schemes with the SIC and we find robustness
against IUI and sparsity, respectively. We elaborate further on each of these issues in
the sequel.
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Fig. F.2: Illustration of the Kaczmarz update step when user k is selected at iteration t. Observe
that the residual r(t)k stores the MR combined signal of user k less: (i) IUI from previous iterations
and (ii) the regularization term applied to combat noise.

Table F.2: Computational Complexity Comparison

Scheme Computational Complexity [FLOPs]
M-MIMO [FLOPs]

(M = 64, K = 8, T = 12)†
XL-MIMO [FLOPs]

(M = 256, K = 32, T = 64)†

MR 8KM− 2K 4080 65472
RZF 4K2M + 12KM + 5K3 + 10K2 − 4K 25696 1320832

nRK-RZF [10] 16KM− K− 1 + (16M + 8)TnRK 20567 393695
RK-RZF

(Algorithm 10)
16KM− 2K− 1 + (K + 16M + 8)TRK 20653 395711

GRK-RZF
(Algorithm 11)

4K2M + 12KM− K2 − K + (16K + 8M + 7)TGRK 30220 1310112

RSK-RZF
(Algorithm 12)

16KM− 2K + [ω(8M + 9) + 8M + 4]TRSK 33124 920576

TPE-RZF [5, 6] 4K2M + 12KM + 3K + 4 + (8K2 + 4K)TTPE 29696 1679460

†T = TnRK = TRSK = TGRK = TRSK = TTPE; Ts denotes the number of iterations of scheme

s ∈ {nRK, RSK, GRK, RSK, TPE}.

5.1 A Similarity with SIC receiver

We show that the structure of the RK algorithms applied to solve the SLE in (F.5) yields
a mechanism similar to the used by the SIC receiver. For that, Fig. F.2 illustrates in
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details the Kaczmarz update step that is common to all algorithms. In this figure,
we assume that user k ∈ K is selected at a given iteration t. In addition, the residual
vector r(t) and the vector of constant terms b with the MR soft estimate are represented
by stacks of blocks. An interesting pattern can be observed from the figure. The

residual r(t)k is storing the MR combined signal of user k less: (i) the IUI from previous

iterations and (ii) the regularization term applied to combat noise. Then, r(t)k is used
to get a new estimate of x̂RZF

k considering remaining IUI as noise. We notice that this
mechanism is similar to that used by the SIC receiver [26], which successively remove
the contribution of the decoded data from the received signal on an iteration basis.
Mathematically, we can obtain this interpretation of the residual using the recursive
relationship in (F.8). From this, we can write

r(t)k = hH
k y−

t

∑
t′=1

γ(t′)[Ryy]k,i(t′ )

= hH
k y−

t

∑
t′=1

γ(t′){χI (i(t
′))hH

k hi(t′ )︸ ︷︷ ︸
IUI

+

+ [1− χI (i(t
′))] [||hk||22 + ξ]︸ ︷︷ ︸

self-knowl. + reg.

} (F.9)

where χI (i(t
′)) is the indicator function with argument denoting the equation selected

at iteration t′ and I = K \ {k} is the set of interfering users in relation to user k. In

the expression above, we used the fact that r(0)k = bk since u(0) and v(0) are initialized
with zeros. Moreover, it can be seen that: if user k was selected at previous iterations,

the previous estimates of x̂RZF
k is also removed from r(t)k together with the noise penal-

ization (self-knowledge + regularization in (F.9)). Recall that the RK-based algorithms
are approximating the RZF scheme when solving the SLE in (F.5). The application
of the RK algorithms over (F.5) is then transforming the RZF scheme into a SIC-alike
receiver. Effectively, we are refining the MR soft estimate x̂MR stored in b to approach
the RZF soft estimate x̂RZF, placing the SIC-alike iterations in charge of computing the
weights of IUI suppression based on the RZF criterion. This adaptive mechanism im-
plicitly helps supporting more users in multi-antenna systems with low-complexity.
In addition, the RK-based receivers do no explicitly calculate metrics, such as post-
processing SNR or signal-to-interference-plus-noise ratio (SINR), that are normally
used to order the classical SIC receiver [26]. In fact, the RK-based algorithms give
preference to the equations (users) based on the two types of information promptly
provided by the SLE in eq. (F.5): the energy information of the equations in (F.6)
and the complete residual information in (F.7), which is partial for the RSK-RZF. We
discuss the advantages of the latter below.

5.2 Probability Criterion and Residual Information

The probability criterion in (F.7) uses the complete residual information r(t) to se-
lect the equations of (F.5) to be solved. The residual contains inner products be-
tween channel vectors; hence, eq. (F.9) describes the IUI and naturally introduces
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the sparse structure arising from the spatial non-stationarities. This is a relevant con-
trast compared to the probability criterion in (F.6) that has probabilities proportional
to ||hk||22 + ξ, ∀k ∈ K only. As a result, the probability criterion of (F.7) can better
capture the interaction effects of IUI and sparsity existing in the XL-MIMO channels,
outperforming (F.6) under the occurrence of theses effects. Also, (F.7) is dynamic in
the sense that the IUI terms and consequently the probabilities are updated in the
background according to the SIC-alike IUI suppression mechanism running in the
foreground, changing the set Ut of preferred users as the solution evolves. The RSK-
RZF scheme partly features these gains. However, a clear issue of using residual
information is the cost of such more involved probability criterion, as best evidenced
in the next sections.

6 Complexity Analysis and Numerical Results

In this section, we first discuss the computational complexity of the proposed RK-
based RZF receivers in terms of floating-point operations per second (FLOPs) and how
their stopping criterion can be defined in practice. The performance of the proposed
receivers is numerically evaluated in the sequel by taking the bit-error-rate (BER)
as a metric. Further, we assume that x is drawn from the equiprobable 16-QAM
constellation. Besides MR, RZF, and nRK-RZF [10], in the numerical simulations we
compare our proposed schemes to the TPE-RZF receiver of [5, 6]. The choice for
the TPE-RZF is due to the fact that this receiver is a consolidated approach in the
literature that also iteratively approximates the RZF scheme. Finally, for tractability
reasons, we further consider horizontal uniform linear array (ULA) arrangements
under non-line-of-sight conditions in both M-MIMO and XL-MIMO regimes, with
the distance between any two neighboring antennas greater than half a wavelength
when considering sub-6 GHz transmissions.

6.1 Complexity Analysis

The second column of Table F.2 summarizes the total number of FLOPs needed to
compute the receiver designs relevant for this work. We always account for the worst-
case when performing the complexity analysis of our proposed schemes. For Algo-
rithm 10, this means that the cost of Step 11 is considered to be K FLOPs at most due
to the re-normalization of p. For Algorithm 11, Step 11 costs K FLOPs, since |Ut| is
always considered to be K. Complexity of the MR and RZF schemes follows [3], while
the complexity of the TPE-RZF receiver is discussed in detail in [5] and [6]. For the
TPE-RZF, we adopt the eigenvalue estimation of Ryy proposed in [5]. For the sake of
fairness, we assume that the BS does not know second-order channel statistics. Thus,
the scaling proposed in [5] to lower the scattering of the eigenvalue is not performed.
This allows us to show that our methods are more robust to channel gain variations
between users without the need to seek alternatives to reduce the impact of these
variations.

To give a better notion of how the computational complexities are compared to
each other, we evaluate two typical scenarios of both M-MIMO and XL-MIMO regimes
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in Table F.2. Note that we set the same number of iterations T for all the iterative algo-
rithms in the table, where T = 12 and T = 64 iterations for M-MIMO and XL-MIMO,
respectively. We chose these numbers because they allow us to show the computa-
tional gains brought by our receiver designs, while achieving good performance. We
notice the hereafter trends from the table: a) for M-MIMO, the GRK-RZF scheme is
unable to relax the RZF, exemplifying the high cost of complete residual informa-
tion; b) in contrast, the RK-RZF receiver can relax complexity of the RZF in 19.62%.
For XL-MIMO: c) the GRK-RZF scheme is up to reduce the complexity of the RZF
in 0.81%, while the RK-RZF achieves a relaxation of 70.19%; d) the RSK-RZF scheme
only achieves its goal of relaxing the GRK-RZF in the XL-MIMO scenario; e) the TPE-
RZF receiver has iterations independent of M, but it has a high fixed cost due to the
exact computation of Ryy and the estimation of its eigenvalues. From these observa-
tions, we noticed that as M and K increase, the relaxation capacity of the GRK-RZF
receiver is improved. However, the RK-RZF will always have a greater ability to relax
complexity, since its iterations are cheap.

Next, we evaluate the difference in performance among the proposed receivers,
identifying when the use of residual information becomes justified.

Sparsity

In the case of a sparse SLE in (F.5), we can automatically reduce the costs of the
iterations of the RK-based receivers. The reason for this is to note that inner products
are the most cost operations in the iterations of all the algorithms, which can be
evidently reduced by only using the non-zero entries of the vectors.

Defining in practice the number of iterations

The most convenient stopping criterion of all the proposed algorithms is the max-
imum number of iterations. The BS can regularly adjust the maximum number of
iterations after a constant period of time-frequency resources that spans multiple co-
herence blocks. This adjustment can be based on some performance or complexity
metric that the BS wants to achieve.

6.2 Stationary Case: M-MIMO

Consider a cell that covers a square area of 0.4 km × 0.4 km served by a BS with M =
64 compactly installed antennas located at the cell center. The users are uniformly
distributed in the cell area at locations further than 35 m from the BS. Furthermore,
for this scenario we assume that all the elements of βk are equal, since the distance
between antennas is much smaller than the distance between users and the antenna
array. Then, we model the pathloss based on the urban micro scenario as [3]: βk =
−30.5− 36.7 log10 dk in dB, where βk = 1

M trRk is the average large-scale coefficient, dk
is the distance in meters between user k ∈ K and the BS. In addition, we consider the
more general exponential correlation model in which [Rk]i,j = ι|i−j|, ∀i, j ∈ M [27],
where ι is the antenna correlation coefficient.
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We first evaluate the convergence in terms of both performance (Fig. F.3(a)) and
complexity (Fig. F.3(b)) of the proposed algorithms. A typical load of K = 8 users
and a crowded scenario with K = 32 users are examined. The first observation from
Fig. F.3(a) is that the performance of our three accelerated RK-based RZF schemes is
much better than that obtained with the nRK-RZF proposed in [10]. We also notice
that increasing the IUI with increasing K harms the convergence of RK-based schemes
in general. However, the GRK-RZF suffers the least from increased IUI. This result
is inline with the observed fact that randomization based on the residual information
is more robust against IUI. However, we learn from Fig. F.3(b) that the GRK-RZF
receiver is not suitable for typical M-MIMO scenarios in terms of complexity and
only starts to get more appealing in this regime as K increases. Moreover, the bouncy
behavior of the performance curves associated to RK-RZF in Fig. F.3(a) is explained by
the SwoR technique and the stochastic behavior of the elements of the set P (t). Note
that the start and end point of the bounce comprehends the definition of a sweep
made in Subsection 4.2 that embraces K iterations.

Fig. F.4 depicts the BER performance of different receivers as a function of the
pre-processing SNR ρ/σ2 with K = 8 users for uncorrelated and correlated (ι = 0.5)
Rayleigh fading conditions. It considers a number of iterations fixed in 12 for all
the iterative schemes. The final complexity of each scheme follows the third column
in Table F.2. Among the RK-based RZF schemes, the GRK-RZF attains the best per-
formance, but needs more FLOPs than the RZF scheme. In contrast, the RK-RZF
performs well as a whole while relaxing the complexity of the RZF in 19.62%. In gen-
eral, the accelerated RK-based RZF schemes better approximate the performance of
the RZF at low pre-processing SNRs. This is because the strength of IUI is amplified
when operating at high SNRs. Finally, our schemes perform better than the TPE-RZF
scheme [5, 6] with less complexity.

6.3 Non-Stationary Case: XL-MIMO

Let’s consider a square cell with an area of 0.25 km × 0.25 km that has totally oc-
cupying one of its side by a ULA equipped with M = 256 antennas. The users
are uniformly distributed in the cell keeping a minimum distance of 25 m from
the array.5 The distance between the user and antenna elements is now relevant.
Therefore, each element βm

k of βk is modeled as βm
k = −30.5− 36.7 log10 dm

k , where
dm

k is the distance between user k ∈ K and antenna m ∈ M. Under this set-
ting, we focus on non-stationarities and consider antenna correlation irrelevant, then
Rk = IM. Moreover, we generate Dk for user k ∈ K as follows [4]: a) we choose
an arbitrary antenna m ∈ M uniformly at random to be the center ck of the VR;
b) if D is odd, the VR of user k is Vk = {ck − �D/2�, . . . , ck + �D/2�}, otherwise
Vk = {ck − �D/2�, . . . , ck + �D/2� + 1}; c) we set [Dk]m,m = 1, if m ∈ Vk ∩M and
[Dk]m,m = 0 otherwise, and d) we normalize Dk by M/D, hence stationary and non-

5The choice for these values and the geometry is motivated by the fact that the users are close
enough to the array to justify the emergence of spatial non-stationarities [17, 26]. It is noteworthy
that the adopted geometry of M-MIMO and XL-MIMO are comparable given that in M-MIMO,
the BS is cell-centered; while in XL- MIMO geometry, the BS comprises one of the edges of the
square area.
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(a) Average BER versus iterations.

(b) Computational complexity in FLOPs versus iterations.

Fig. F.3: Convergence of the RK-based RZF schemes in a normally loaded (K = 8) and crowded
(K = 32) M-MIMO system with M = 64 antennas, under Rayleigh fading channels, and a pre-
processing SNR of 0 dB.
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Fig. F.4: Average BER performance of various receivers vs. the pre-processing SNR under un-
correlated and correlated (ι = 0.5) Rayleigh channels for the M-MIMO system equipped with
M = 64 antennas and K = 8 users.

stationary channels have the same norm [4]. We stress that this normalization is giving
an array gain for non-stationary channels similar to the stationary channels, allowing
a fair comparison between the two array regimes. With this model, the users have a
unique cluster of antennas representing their VRs with an average size of D. To eval-
uate how the receivers behave under very extreme sparse conditions, in the following,
we set low values for D. In [4], for example, the authors report problems with the ZF
scheme from D below 30 visible antennas. Here, the RZF regularization term makes
it possible to perform the matrix inversion even in these severe conditions.

We first take a look at Fig. F.5 that exhibits the convergence of the RK-based RZF
schemes and how it impacts performance (Fig. F.5(a)) and complexity (Fig. F.5(b))
with D = 8. Again, a typical load of K = 32 users and a crowded scenario with
K = 128 users are evaluated. Comparing Fig. F.3(a) and Fig. F.5(a), one can see the
bad effects of IUI over the convergence of the algorithms and how it impacts more
severely the RK-RZF scheme. Furthermore, we now find from Fig. F.5(b) that the
GRK-RZF scheme has more room to be able to relax the RZF scheme. One of the
reasons is that the values of M and K become higher, justifying the cost related to
residual information. Another is that the RK-RZF scheme needs more iterations to
achieve a better performance under high levels of IUI and sparsity.

Similar to Fig. F.4, a performance comparison of the receivers is available in Fig.
F.6 with K = 32 users and under D = 8 and D = 16 visible antennas. In addition, we
fix the number of iterations of all the iterative schemes to 64. The final complexities
of every scheme is reported in the fourth column of Table F.2. Definitely, we note that
the performance difference between the RK-RZF and the GRK-RZF schemes increases
in Fig. F.6 in comparison to Fig. F.4. This indicates that besides being more robust
against IUI, the GRK-RZF scheme is more robust against the sparse structure arising
from the spatial non-stationarities. Interestingly, the GRK-RZF receiver performs bet-
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(a) Average BER versus iterations.

(b) Computational complexity in FLOPs versus iterations.

Fig. F.5: Convergence of the different RK-based RZF schemes in a normally loaded (K = 32) and
crowded (K = 128) XL-MIMO system with M = 256 antennas, under Rayleigh fading channels,
a pre-processing SNR of 0 dB, and a sparsity level of D = 8 visible antennas.
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ter than the RK-RZF in high SNR regime, while relax the RZF in 0.81%; besides, the
RK-RZF gives up of performance at high SNR and achieve a relaxation of 70.19%. The
TPE-RZF scheme [5, 6] notably experiences a strong performance degradation from
the sparse channels, corroborating a greater robustness of our proposed methods.

From the above results, we can observe that the GRK-RZF scheme becomes more
convenient when the scenario is more crowded (↑ K), sparsity effects are more intense
(↓ D), and/or the system is operating at high SNR. On the other hand, the RK-RZF
scheme is the most appropriate choice when more relaxation is desired, the perfor-
mance losses are tolerable at high SNR, and/or the system is operating at low SNRs.
Although GRK-RZF operates better at high SNR, its gains in complexity compared to
the RZF scheme may be only marginal depending on the values of M and K; when
this is the case, the use of RZF may then be more advisable. The RSK-RZF receiver
can achieve its goal of relaxing the GRK-RZF in some regions, at the cost of reduced
performance; e.g., in the range of 27 − 29 iterations for K = 128 in Fig. F.5.

Fig. F.6: Average BER performance of various receivers vs. the pre-processing SNR under un-
correlated Rayleigh channels for the XL-MIMO system equipped with M = 256 antennas and
K = 32 users; two distinct sparsity levels, D = 8, and D = 16 visible antennas.

7 Conclusions

We introduced three accelerated RK-based receivers, which approximate the perfor-
mance of the RZF scheme, while relaxing its complexity. In our experiments, all of our
proposed schemes are able to dramatically overcome the nRK-RZF introduced in [10].
The main feature of each scheme is in order. The RK-RZF (Algo. 10) is the proposed
receiver with the best benefit-cost ratio, performing well in typical M-MIMO and XL-
MIMO circumstances, while relaxing the complexity of the RZF in almost 20% and
70%, respectively. Moreover, the GRK-RZF scheme (Algo. 11) is more suitable for
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extreme cases where IUI and sparsity effects cannot be neglected. The RSK-RZF re-
ceiver (Algo. 12) can be more efficient than GRK-RZF in some scenarios but suffers
from performance losses. Future work can go deeper into the theoretical analysis of
the introduced receivers by using the analogy with SIC receivers revealed herein.
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1. Introduction

Abstract

We consider the recently proposed extra-large scale massive multiple-input multiple-output
(XL-MIMO) systems, with some hundreds of antennas serving a smaller number of users.
Since the array length is of the same order as the distance to the users, the long-term fading
coefficients of a given user vary with the different antennas at the base station (BS). Thus, the
signal transmitted by some antennas might reach the user with much more power than that
transmitted by some others. From a green perspective, it is not effective to simultaneously ac-
tivate hundreds or even thousands of antennas, since the power-hungry radio frequency (RF)
chains of the active antennas increase significantly the total energy consumption. Besides, a
larger number of selected antennas increases the power required by linear processing, such as
precoding matrix computation, and short-term channel estimation. In this paper, we propose
four antenna selection (AS) approaches to be deployed in XL-MIMO systems aiming at maxi-
mizing the total energy efficiency (EE). Besides, employing some simplifying assumptions, we
derive a closed-form analytical expression for the EE of the XL-MIMO system, and propose
a straightforward iterative method to determine the optimal number of selected antennas able
to maximize it. The proposed AS schemes are based solely on long-term fading parameters,
thus, the selected antennas set remains valid for a relatively large time/frequency intervals.
Comparing the results, we find that the genetic-algorithm based AS scheme usually achieves
the best EE performance, although our proposed highest normalized received power AS scheme
also achieves very promising EE performance in a simple and straightforward way.

Keywords— Extra large-scale MIMO, Antenna selection, Energy efficiency, Spec-
tral efficiency,; Visibility region (VR), Non-stationary, Near-field

1 Introduction

In the fifth-generation (5G) networks, massive multiple-input multiple-output (MIMO)
is identified as a key technology for achieving large gains in spectral and energy ef-
ficiencies [1, 2]. Recently, a new type of very large antenna arrays, which can be
integrated into large structures like stadiums, or shopping malls, has been conceived:
the so called extra-large scale massive MIMO (XL-MIMO) [3–5]. XL-MIMO system
is a very promising and recent technology, pointed out as important candidate for
sixth-generation (6G) and beyond technologies [6, 7], which is still in its inception,
lacking for further elaborated techniques in order to mature the technology. Indeed,
due to the large dimension of the antenna array in XL-MIMO systems, different kinds
of spatial non-stationarities appear accross the array [3–5]; hence, admitting constant
long-term fading coefficients between a user and all the antennas of the array is not
a valid assumption. This is the main difference between the XL-MIMO scenario and
the typical massive MIMO system model assumed in most part of massive MIMO lit-
erature. In [8], it is shown through experimental measurements how different regions
of an extremely large array see different propagation paths, and in some cases, the
terminals might see just a portion of the array, called visibility region (VR). Authors
also discuss how the non-stationarity properties of this new scenario change several
important design aspects.

In [3] authors seek for mapping users in terms of XL-MIMO array partition, such
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that the downlink (DL) sum-rate using a truncated zero-forcing (ZF) precoder is max-
imized. Numerical results show that a properly trained network via deep learning
approach solves the problem nearly as well as an optimal mapping algorithm. Hence,
increasing the size of current massive MIMO arrays is promising in terms of boosting
the spectral efficiency (SE) of the wireless systems.

Since the centralized processing may present very high computational complexity
in XL-MIMO arrays, a useful approach is to split the signal processing between subar-
rays. A subarray-based system architecture for XL-MIMO systems is proposed in [4],
where closed-form uplink (UL) SE approximations with linear receivers are derived;
the goal is to maximize the system sum achievable SE. Two statistical channel state
information (CSI) based greedy user scheduling algorithms are developed, providing
improved performance for XL-MIMO systems.

In [5], a simple non-stationary channel model is proposed for XL-MIMO systems,
and the performance of conjugate beamforming (CB) and ZF in the DL have been
investigated considering such channel. The non-stationarities are modeled in a binary
fashion, such that each antenna can be visible or not for a specific user, giving rise to
the VRs: an area of the massive antenna array concentrating the most of the received
user’s energy. However, the authors did not consider long-term fading variations
between the visible antennas of a given user.

In [9] authors develop procedures for XL-MIMO receivers design. There are two
important challenges in designing receivers for XL-MIMO systems: increased com-
putational cost of the multi-antenna processing, and how to deal with the varia-
tions of user energy distribution over the antenna elements due to the spatial non-
stationarities across huge distributed antenna-elements in the 2D or 3D array. Indeed,
non-stationarities limit the XL-MIMO system performance. Hence, the authors pro-
pose a distributed receiver based on variational message passing that can address
both challenges. In the proposed receiver structures, the processing is distributed into
local processing units, that can perform most of the complex processing in parallel,
before sharing their outcome with a central processing unit. Such designs are specifi-
cally tailored to exploit the spatial non-stationarities and require lower computations
than linear ZF or minimum mean square error (MMSE) receivers.

In [10], the ZF and regularized ZF schemes operating in XL-MIMO scenarios with
a fixed number of subarrays have been emulated using the randomized Kaczmarz
algorithm (rKA), deploying non-stationary properties through VRs. Numerical results
have shown that, in general, the proposed rKA-based combiner applicable to XL-
MIMO systems can considerably decrease computational complexity of the signal
detector at the expense of small performance losses. On the other hand, in [11], an
expectation propagation detector for XL-MIMO systems has been proposed. In order
to reduce complexity, the subarray-based architecture employed distributes baseband
data from disjoint subsets of antennas into parallel processing procedures coordinated
by a central processing unit. Additionally, authors also propose strategies for further
reducing the complexity and overhead of the information exchange between parallel
subarrays and the central processing unit to facilitate the practical implementation of
the proposed detector.

Recently, to deal with subarrays and channel scatterers in non-stationary XL-
MIMO environment, [12] proposed two channel estimation methods based on subarray-
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wise and scatterer-wise near-field non-stationary channel properties. Authors model
the multipath channel with the last-hop scatterers under a spherical wavefront and
divide the large aperture array into multiple subarrays. The proposed channel esti-
mation methods position the scatterers and perform a mapping between subarrays
and scatterers. Hence, the scatterer-wise method simultaneously positions each scat-
terer and detects its VR to further enhance the positioning accuracy. Moreover, the
subarray-wise method can achieve low mean square error (MSE) performance under
low-complexity, whereas the scatterer-wise method can accurately arrange the scat-
terers and determine the non-stationary channel.

In [13], authors propose and validate realistic channel models when employing
physically-large arrays, in which non-stationarities and visibility regions are present,
as in the XL-MIMO system. The statistical distribution of important channel pa-
rameters are found based on measurements. Such contributions are proposed as
extensions to the COST 2100 channel model. Besides, key statistical properties of the
proposed extensions, e.g., autocorrelation functions, maximum likelihood estimators,
and Cramer-Rao bounds, are derived and analyzed. Furthermore, the performance
of a spatial modulation massive MIMO system is investigated in [14] under a non-
stationary channel model. Authors show that spatial modulation can outperform typ-
ical employed spatial multiplexing transmission in certain scenarios of low correlation
among sub-channels, for example under a rich scattering environment.

A novel random access (RA) protocol for crowded XL-MIMO systems is proposed
in [15]. Authors have proposed a decentralized and uncoordinated decision rule,
which can be evaluated at the users side, for retransmitting or not the RA pilots
during the connection stage, taking advantage of the XL-MIMO propagation features.
The proposed protocol achieves significant performance improvements in terms of
reducing the connection delay and providing access for larger number of devices.

1.1 Motivation, Contributions and Novelties in Comparison
with Existing Works

Current design approaches in telecommunication systems include a global effort in
saving energy and reducing pollution [2], [16], [17]. We show in this paper that an-
tenna selection (AS) methods in XL-MIMO systems is a very important issue since
the energy expenditure of such systems could be very high if activating the radio
frequency (RF) chains of all antennas simultaneously. Besides, some antennas might
contribute very little with the system performance due to the non-stationarities and
visibility regions, in such a way that the power required to activate their RF chain be-
comes a burden that severely penalizes the total energy efficiency (EE) of the system.
Therefore, the very large number of antennas deployed in the XL-MIMO systems in
conjunction with the spatial non-stationarities make the application of AS schemes
very important.

The main contributions of this work are threefold:

(i) Reformulating the signal to interference plus noise ratio (SINR) performance
expressions of [5], considering long-term fading variations across the array and
incorporating the maximum transmit power constraint into the expressions for
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CB and ZF, and finding more compact and comprehensive results, readily ap-
plicable for antenna selection procedures.

(ii) Based on the obtained expressions, and on a realistic power consumption model,
we evaluate the total EE of the XL-MIMO system. Besides, we propose and
compare four low-complexity AS procedures aiming to maximize the total EE
of the system, different than [3, 4] which proposed SE-based AS schemes. Our
proposed schemes are based solely on the long-term fading parameters, and
the obtained solutions remain valid for larger time/frequency intervals.

(iii) Based on our proposed AS schemes, and some simplifying assumptions, we de-
rive approximated closed-form EE expressions, and propose an iterative method
for finding the optimal number of selected antennas which maximizes EE. Fi-
nally, numerical simulations have validated the proposed performance expres-
sions and compared the different XL-MIMO AS schemes.

AS methods for typical spatially stationary massive MIMO systems [18, 19] is
a well investigated topic. However, the XL-MIMO system is a different scenario.
While the spatially stationary model applies for typical cellular systems, where the
BS antenna array dimension is much lower than the distance to the users and a single
long-term fading coefficient holds for all antennas, significant power variations appear
along the XL-MIMO array, due to its large dimension and number of antennas, and
proximity with users. The non-stationary XL-MIMO scenario just very recently was
introduced in the literature. To the best of our knowledge, this contribution is the first
evaluating the EE of the XL-MIMO scenario, showing that AS methods are especially
important to improve EE due to the spatial non-stationarities that naturally arise in
XL-MIMO systems, proposing long-term fading based AS procedures, and deriving
the optimal number of active antennas for this new wireless communication context.

With respect to the existing XL-MIMO literature, we can point out as the main
novelties of our paper: although our system model and CB and ZF performance ex-
pressions are similar to that of [5], authors have considered a binary visibility region
model for the XL-MIMO scenario, in which no long-term fading variation occurs
for the visible antennas. Besides, performance expressions are dependent of power
coefficients obtained resolving a separated optimization problem for meeting power
constraint, and no antenna selection is considered. Differently, we incorporated the
power constraint into the performance expressions, arriving at more compact and
comprehensive results, readily applicable for AS procedures, and considered long-
term fading variations along the array. Besides, AS for XL-MIMO systems has been
investigated only in [3, 4] at the moment of writing this paper; however, both works
proposed SE-based AS schemes for XL-MIMO systems. Differently, based on only
long-term fading coefficients, we propose AS schemes aiming to maximize the XL-
MIMO total EE, since this is a very important issue due to the very large number
of antennas at the XL-MIMO array, and the non-stationarities and visibility regions
which arise in this scenario. Furthermore, the long-term fading approach has the
advantages of being simpler than short-term ones, and of providing solutions which
remain valid for larger time periods and all subcarriers (if employing a wideband sys-
tem), reducing the computational complexity of the antenna selection approach and
simplifying hardware due to switching and RF chain on-off requirements.
Notations: Boldface lower and upper case symbols represent vectors and matrices,
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respectively. IN denotes the identity matrix of size N, while {·}T and {·}H denote
the transpose and the Hermitian transpose operator, respectively. We use CN (m, σ2)
when referring to a circular symmetric complex Gaussian distribution with mean m
and variance matrix σ2. Besides, tr(·) and diag(·) are the trace and diagonal matrix
operators, respectively, while [A]i,j holds to the element in the ith row and jth column
of matrix A, and ai refers to its ith column vector.

2 System Model

We consider a base station (BS) equipped with a linear XL-MIMO array with M an-
tennas uniformly distributed along a length of L meters , Fig. G.1. In front of the
extra-large array structure, K users are randomly distributed in a rectangular area, of
length L in the array parallel dimension, and with a distance to the array in the range
[0.1 · L, L]1. Since the distances of the users to the antennas is of the same order of the
array length L the average received power varies along the XL-MIMO array, and there-
fore we cannot consider a single long-term fading coefficient for a given user [3, 8].
Instead, we consider a long-term fading coefficient βm,k regarding the m-th antenna
of the XL-MIMO array and the k-th user, similarly as in [3, 9, 10, 15], given by

βm,k = q · d−κ
m,k, (G.1)

in which q is a constant determining the path loss in a reference distance, dm,k is the
distance between the m-th antenna of the XL-MIMO array and the k-th user, and κ

is the path loss decay exponent. The channel matrix H ∈ CM×K is thus formed by
elements hm,k =

√
βm,k · hm,k, in which hm,k ∼ CN (0, 1), assuming a rich scattering

environment as in [4, 5]. If we arrange the long-term fading coefficients of a user in a
diagonal matrix:

Rk = diag([β1,k, β2,k, . . . , βM,k]) ∈ RM×M, (G.2)

and the elements hm,k in a vector hk ∈ CM×1, we have that each column of H can be

defined as hk = R
1
2
k hk as in [5].

Fig. G.1: Illustration of the adopted system model.

In the DL, considering an average received signal-to-noise ratio (SNR) ρ at the
users, an average long-term fading coefficient βavg (among all antennas and users’

1In order to guarantee a minimum distance of the users to the XL-MIMO array, as in [10, 16].
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positions), and a uniform power allocation policy for the users, the total transmit
power, Pmax, should satisfy [1]

ρ =
Pmax · βavg

σ2 , (G.3)

in which σ2 is the noise power. Since the channel gain βm,k varies significantly along
the array, it is more effective to select just the stronger antennas to transmit signal
to the k-th user, reducing the number of active antennas , as well the power spent
with power-hungry RF chains. We discuss in the next Section different approaches to
obtain the set of antennas selected to serve the users, A. For simplicity, we considered
βavg≈q · L−κ in our simulations. The signal for user k, sk, is precoded by gk ∈ CM×1

and scaled by pk ≥ 0, which adjusts the signal power, before transmission. Consid-
ering a similar XL-MIMO system model than [5], the transmit vector x is the linear
combination of the precoded and scaled signal of all the users, i.e.,

x =
K

∑
k=1

√
pk · gk · sk. (G.4)

Let G = [g1, g2, . . . , gK ] ∈ CM×K be the combined precoding matrix, and P =
diag([p1, p2, . . . , pK ]) ∈ RK×K be the diagonal matrix of signal powers. The combined
precoding matrix G is normalized to satisfy the power constraint

E[||x||2] = tr(PGHG) = Pmax. (G.5)

The signal received by the k-th user is

yk = hH
k x + nk, k = 1, 2, . . . K, (G.6)

in which nk ∼ CN (0, σ2) is an additive white Gaussian noise (AWGN) sample. As-
suming independent Gaussian signaling, i.e., sk ∼ CN (0, 1) and E[sis∗j ] = 0, i 
= j, the
SINR γk of the k-th user can be defined as [5]:

γk =
pk|hH

k gk|2

∑K
j=1,j 
=k pj|hH

k gj|2 + σ2
. (G.7)

We selected the CB and ZF approaches as representative low-complexity linear
precoding schemes. The CB precoder matrix is simply defined as

GCB = αCBH, (G.8)

and the ZF precoding matrix is

GZF = αZFH(HHH)−1, (G.9)

where the scaling factors αCB =
√

Pmax/tr(PHHH) and αZF =
√

Pmax/tr(P(HHH)−1)
ensure that the power constraint (G.5) is met.

Using (G.8) in (G.7), the SINR of the kth user for CB is

γ
(CB)
k =

pk|hH
k hk|2

∑K
j=1,j 
=k pj|hH

k hj|2 + σ2

Pmax
tr(PHHH)

. (G.10)
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Similarly, using (G.9) in (G.7), the SINR of the kth user for ZF is

γ
(ZF)
k =

pkPmax

σ2tr(P(HHH)−1)
. (G.11)

Given the system model presented in this Section in eq. (G.1)–(G.11), and the
deterministic equivalent analysis of [20], it is presented in [5] the deterministic equiv-

alent of γ
(CB)
k in (G.10) as

γ
(CB)
k =

pk(tr(Rk))
2

∑K
j=1,j 
=k pjtr(RkRj) +

σ2

Pmax
∑K

j=1 pjtr(Rj)
, (G.12)

and the deterministic equivalent of γ
(ZF)
k in (G.11) as

γ
(ZF)
k =

pkPmax

σ2 ∑K
i=1 pi

(
tr(Ri)−∑K

j=1,j 
=i
tr(RiRj)

tr(Rj)

)−1 . (G.13)

where Ri is defined as in (G.2).
Having found the SINR of the kth user, the spectral efficiency is readily obtained

as ηs
k = log2(1 + γk). On the other hand, the energy efficiency is [16, 17]

ηe =
B ∑K

k=1 ηs
k

P , (G.14)

in which B is the system bandwidth, and P is the total power consumption, discussed
in Section 2.3.

2.1 Further Advances in the Performance Expressions

We revisit the performance expressions for non-stationary XL-MIMO discussed in
[5], while propose further elaborations to arrive at lean and more comprehensive
results. Note that the results of (G.12) and (G.13) depend on the signal powers in
both numerator and denominators, and such coefficients should be chosen in order
to satisfy the power constraint in (G.5). In the simulation code made available by the
authors of [5], they apply the CVX solver of [21] to find a matrix P satisfying (G.5).
This makes the performance expressions less intuitive, while limiting the application
of AS schemes as proposed in Section 3 of this paper. Hence, in this subsection,
we shed light on deriving self-contained closed-form SINR expressions recalling the
channel hardening massive MIMO properties. For that, we first rewrite (G.5) in the
following form:

E[||x||2] = tr(PGHG) =
K

∑
k=1

pk||gk||2 = Pmax. (G.15)

If a uniform power allocation scheme is applied, the following equality holds

pk||gk||2 =
Pmax

K
, k = 1, 2, . . . K. (G.16)
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Hence, when adopting CB, eq. (G.16) becomes

pkα2
CB||hk||2 =

Pmax

K
, k = 1, 2, . . . K, (G.17)

and we have an undetermined system with K equations and K + 1 variables. By
choosing αCB = 1 for simplicity, the pk coefficients can be obtained for CB as

p(CB)
k =

Pmax

K||hk||2
, k = 1, 2, . . . K. (G.18)

Following similar assumptions as in [5], we have that

||hk||2 = hH
k hk = hH

k Rkhk
M→∞−−−→ tr(Rk), (G.19)

and a deterministic equivalent of (G.18) is

p(CB)
k =

Pmax

Ktr(Rk)
, k = 1, 2, . . . K. (G.20)

Substituting (G.20) in (G.12), we arrive at

γ
(CB)
k =

tr(Rk)

∑K
j=1,j 
=k

tr(RkRj)
tr(Rj)

+ Kσ2

Pmax

. (G.21)

On the other hand, for the case of ZF, (G.5) becomes

E[||x||2] = tr
(

PGHG
)
= Pmax,

= α2
ZFtr

(
P(HHH)−1HHH(HHH)−1

)
= Pmax,

= α2
ZFtr

(
P(HHH)−1

)
= Pmax,

= α2
ZFtr (PV) = Pmax, (G.22)

in which the matrix V is a diagonal matrix formed by the main diagonal elements of
(HHH)−1. We can thus rewrite (G.22) as

α2
ZF

K

∑
k=1

pk[V]k,k = Pmax, (G.23)

and if a uniform power allocation is employed

α2
ZF pk [V]k,k =

Pmax

K
, k = 1, 2, . . . K. (G.24)

Again, making αZF = 1, the pk coefficients can be obtained for the ZF precoding
as

p(ZF)
k =

Pmax

K [V]k,k
, k = 1, 2, . . . K. (G.25)

Following the analysis of [5, App. A], it can be shown that

[V]k,k
M→∞−−−→

⎛
⎝tr(Rk)−

K

∑
j=1,j 
=k

tr(RkRj)

tr(Rj)

⎞
⎠−1

, (G.26)
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and a deterministic equivalent of (G.25) is

p(ZF)
k =

Pmax

K

⎛
⎝tr(Rk)−

K

∑
j=1,j 
=k

tr(RkRj)

tr(Rj)

⎞
⎠ , k = 1, . . . K. (G.27)

Substituting (G.27) in (G.13), we arrive at

γ
(ZF)
k =

Pmax

Kσ2

⎛
⎝tr(Rk)−

K

∑
j=1,j 
=k

tr(RkRj)

tr(Rj)

⎞
⎠ . (G.28)

Equations (G.21) and (G.28) show the XL-MIMO DL system performance employ-
ing CB and ZF, respectively, as further extensions of eq. (G.12) and (G.13) from [5].
This is a first contribution of this manuscript, which serves as basis for the following
EE and AS analysis.
Remark 1: Although we have considered αCB= αZF = 1 in our analysis, any other
choice for these parameters would result in the same expressions, since would affect
every numerator and denominator terms in the same way.
Remark 2: The SINR performance expressions presented in [5, Table I] can be seen as
particular cases of (G.21) and (G.28) when neglecting long-term fading and applying
the normalization tr(Rk) = tr(Θk) = M or tr(Θk) = D, where Θk and D are the
matrix describing the VR of kth user and the number of visible antennas per user,
respectively, as in [5].

2.2 Antenna Selection Model

Given our deterministic equivalent performance expressions for CB and ZF in eq.
(G.21) and (G.28), respectively, we can rewrite these expressions considering the acti-
vation subset of antennas. Hence, denoting A as the set containing the indices of the
active antennas, the deterministic equivalent SINR for the CB precoding results

γ
(CB)
k =

∑m∈A βm,k

∑K
j=1,j 
=k

∑m∈A βm,k βm,j

∑m∈A βm,j
+ Kσ2

Pmax

, (G.29)

while for the ZF:

γ
(ZF)
k =

Pmax

Kσ2

⎛
⎝ ∑

m∈A
βm,k −

K

∑
j=1,j 
=k

∑m∈A βm,kβm,j

∑m∈A βm,j

⎞
⎠ . (G.30)

It is worth to note that, in our formulation, the activation subset of antennas is the
same for all users, differently from [3], in which each user has its own set of active
antennas aiming to maximize the system sum-rate. We justify our formulation since,
when aiming to maximize the total energy efficiency, once the power-hungry RF chain
of an antenna is active, it is better to take full advantage of it, transmitting signal for
all users. It has no significant benefit in defining the activation subset of antennas in a
per-user fashion, since the ZF approach is able to eliminate the inter-user interference,
while the power increment necessary to compute the precoding vector with a slightly
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large number of antennas is small if compared to the power to activate the RF chain of
the additional antenna, as evinced in the next subsection. Besides, it would result in
more complicated performance expressions, probably in terms of short-term fading
coefficients, and the dimension of the search space of the AS algorithms would scale
with K, becoming considerably more complex and power consuming.

2.3 Power Consumption Model

We follow the same power consumption model of [16], which is very similar to that
in [17], and is a very realistic model. However, as we focus on the DL transmis-
sion, we do not consider the UL data rates as well as the UL transmit powers. In
the XL-MIMO scenario analysed herein, we consider the power expenditures of the
irradiated DL data signal (with the amplifier efficiency), Pdl

tx , the UL training, Ptr
tx,

the channel estimation, Pce, the coding/decoding, Pc/d, the backhaul, Pbh, the linear
processing computation, Ppr, the transceiver chains, Ptc, and a fixed quantity regard-
ing the circuitry power consumption required for site-cooling, control signaling, and
load-independent power of backhaul infrastructure and baseband processors, Pfix.
Thus, the overall power consumption results

P = Pdl
tx + Ptr

tx + Pce + Pc/d + Pbh + Ppr + Ptc + Pfix. (G.31)

Our objective here is to investigate the dependence of the selected subset of an-
tennas, A, with the total energy efficiency of the system. Note that the total energy
efficiency of the system depends on A in different ways. First, the sum rate of the
system depends on the SE of the users, which is a function of their SINRs depen-
dent of A. Moreover, the sum rate impacts on the power expenditures of the cod-
ing/decoding, and the backhaul. Besides, the power consumption of the transceiver
chains is modeled as

Ptc = Psyn + |A|Pbs + KPmt, (G.32)

in which Psyn is the power of the local oscillator, Pbs is the power required to each
active BS antenna operate, while Pmt is the power required to each single-antenna
mobile terminal (MT) operate. Note that M is usually very high in an XL-MIMO
system2, while Pbs accounting for the power-hungry RF chains is considered in [16]
as 1 W per antenna. Thus, activating the RF chains of all BS antennas would result in
a very large power expenditure, in such a way that it is very important to perform a
suitable antenna selection procedure.

The power consumed with processing, Ppr, corresponds to the power required to
obtain the transmit signal in (G.4), to obtain the precoding matrix, and to obtain the
AS set. Note that this power is also dependent on the number of active antennas
|A|. Following the model in [16], but including the term of power related to the AS
processing, we have

Ppr = B
(

1− τ

S
) Cts

Lbs
+

B
S
Cprec

Lbs
+

1
Tlt

Cas

Lbs
, (G.33)

in which τ is the length of the uplink pilot signals, S is the coherence block size,
Cts is the computational complexity for evaluating eq. (G.4). Besides, Lbs is the

2Typically hundreds or even thousands of antennas.
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computational efficiency of the BS (in W/ f lop), Cprec is the complexity of obtaining
the precoding vectors for all users, Tlt is the long-term fading coherence time, and Cas
is the complexity of obtaining the antenna selection set. The obtained AS set remains
valid for a long-term coherence interval, since our analysis is based only in long-term
fading parameters. One can see from (G.33) that this approach results in a lower
influence of the AS set computation in Ppr, since it is multiplied by the factor 1/Tlt,
which is much lower than B/S and B

(
1− τ

S
)
.

Following the analysis in [16], [17], we consider 1 f lop as an arithmethic operation
between two complex numbers. Thus, the multiplication between a matrix A ∈ Cm×n

and a matrix B ∈ Cn×p spends 2mnp flops. Therefore, we have Cts = 2|A|K f lops
from [17]. Besides, if using the CB precoder, Cprec = CCB = 3|A|K f lops from [17],
against Cprec = CZF = K3/3 + 3|A|K2 + |A|K f lops if adopting ZF. The complexity
Cas is discussed in the next Section. Besides, the terms in (G.31) not discussed in this
Section can be computed in the same way as in [16].

Finally, we can rewrite (G.31) as

P = P† + Pce + Pc/d + Pbh + Ppr + |A|Pbs, (G.34)

in which we have gathered the power components that do not depend of A in the
term:

P† = Pdl
tx + Ptr

tx + Psyn + KPmt + Pfix. (G.35)

The dependence of the terms in (G.34) with A can be justified as follows: Pce
depends on A since the short-term channel estimates are obtained only for the active
antennas, Pc/d and Pbh because they depend on the system sum-rate, which depends
on A, and Ppr because the processing complexity is dependent on the number of
active antennas.

3 Antenna Selection Schemes

In this section we propose different AS schemes for XL-MIMO aiming to obtain a
suitable subset of antennas A selected to transmit the DL signal to the mobile users
subject to channel non-stationarities. First we propose a simple, deterministic, greedy
scheme based on the highest received normalized power (HRNP) criterion. Then, three
heuristic schemes are proposed using the HRNP active antennas set as initial solution:
local search (LS), genetic algorithm (GA), and particle swarm optimization (PSO).

3.1 HRNP criterion

A first and greedy approach is to select just the Ms antennas responsible for the major
part of the power received by the users. However, since closer users receive more
power, this should be performed in a normalized fashion in order to achieve a fair
result for all users. In this case, we first compute the metric:

ϕm =
K

∑
k=1

βm,k

∑M
j=1 β j,k

, m = 1, 2, . . . , M. (G.36)
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Then, the selected subset of antennas Ahrnp will be composed by the Ms antennas
with the highest values of ϕm. A pseudo-code for the HRNP-AS procedure is pre-
sented in Algorithm 13, in which ϕ = [ϕ1, ϕ2, . . . ϕM].

The complexity3 of the HRNP AS scheme is described by

Chrnp
as = 3MK + M log(M) [ f lops], (G.37)

corresponding to the computation of (G.36) for all antennas, and a sorting algorithm to
select the Ms antennas with highest ϕm. It is noteworthy, however, that the HRNP EE
performance is highly dependent on the Ms choice, since the system would provide
low sum-rates with few active antennas, or it would consume a high power with
many active antennas. Thus, we propose in Section 4 an approximated closed-form
analytical expression for the EE of the XL-MIMO system employing ZF and HRNP-
AS as a function of Ms. Then, we propose an iterative method for obtaining the Ms
value which maximizes this expression. We do not consider the complexity of this
method in eq. (G.37) since it is not dependent on the channel parameters, but only
controlled by the system parameters, such as the number of users, transmit power,
dimensions of XL-MIMO array and coverage area. Therefore, its computation can be
performed over larger time periods. We discuss in Section 5.1 the complexity of the
proposed method for obtaining the optimal Ms value.

Algorithm 13 Proposed HRNP AS Scheme

Input: Ms, βm,k, ∀m, k.

1: Initialize A as an empty set;
2: for m = 1, 2, . . . , M do

3: Evaluate ϕm as in (G.36);
4: end for

5: for n = 1, 2, . . . , Ms do

6: Evaluate a = arg maxm ϕm;
7: Update A as A = A∪ a;
8: Remove ϕa from ϕ;
9: end for

Output: Ahrnp.

3.2 LS-based Antenna Selection

A simple strategy for seeking a better active antennas set is to perform a local
search (LS) in the neighborhood of the HRNP solution. For this purpose, we
first represent the set A as a binary vector a of length M, in which if m ∈ A,

3We evaluate the computational complexities of the investigated schemes in terms of floating
point operations (flops), defined as an addition, subtraction, multiplication or division between
two floating point numbers [22].
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am = 1; otherwise am = 0. Then, we compute the total energy efficiency
(G.14) of every candidate within a certain Hamming distance dHam from it.
If a better candidate is found, the solution is updated, and the procedure
is repeated on its neighborhood. This iterative procedure is repeated for a
predefined number of iterations or until the convergence. A pseudo-code
representation of the LS-based AS scheme is provided in Algorithm 14, in
which Nel as defined in step 3 is the number of elements within the Hamming
distance dHam from the current solution. For simplicity, we have limited our
search with a unitary Hamming distance.

The complexity of the LS-AS scheme is

Cls
as = Chrnp

as + Nit MCee [ f lops], (G.38)

in which Nit is the average number of iterations until convergence, and Cee =
2MK2 [ f lops] is the complexity of computing the total energy efficiency cost
function. An interesting point to observe in the LS algorithm is that if a new
solution is not found into an iteration, the search can be interrupted, since
the algorithm has converged. This contributes to decrease the complexity of
the algorithm, and, therefore, improve EE.

Algorithm 14 Proposed LS-based AS Scheme

Input: dHam, Nmax
it , Ahrnp, βm,k, ∀m, k.

1: Initialize a0 as the binary vector representation of Ahrnp;
2: Initialize ηbest

e as the total energy efficiency of a0;
3: Evaluate Nel = ( M

dHam
);

4: for n = 1, 2, · · · , Nmax
it do

5: Generate the search space matrix S of size M × Nel with all vectors
within the distance dHam from an−1;

6: for � = 1, 2, . . . , Nel do

7: Evaluate ηe as the total energy efficiency of s�;
8: if ηe > ηbest

e then

9: Update ηbest
e = ηe, and an = s�;

10: else

11: Break;

12: end if

13: end for

14: end for

Output: Als as the set representation of an.
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3.3 GA-based Antenna Selection

The genetic algorithm is a widely-known bio-inspired heuristic optimization
algorithm, which has been used to solve optimization problems in differ-
ent areas. In the context of massive MIMO antenna selection, GA has been
employed in the conventional stationary case in [18]. Herein, we employ a
similar algorithm from [18], but adjusted to the non-stationary XL-MIMO
configurations. The GA-AS uses the HRNP output as initial solution, also,
other random candidates forming an initial population of size pga, which is
evaluated in terms of the cost function in (G.14). A given number φ of the
best candidates in this population is selected as parents, which will generate
descendants in a new population. For this purpose, two parents are selected
at random for each descendant, and the crossover operator is applied with a
random crossover point. Then, the mutation operator is also applied, which
inverts the entries of each candidate with certain probability pmut. After a
predefined number of iterations or until the convergence of the algorithm, it
returns the best solution found so far. A pseudo-code representation for the
GA-based AS scheme is provided in Algorithm 15.

The complexity of our proposed GA-AS procedure is

Cga
as = Chrnp

as + Nit[pgaCee + pga log(pga)] [ f lops], (G.39)

due to the cost function evaluation of each candidate in the population, and
a sorting algorithm for selecting the best candidates.

3.4 PSO-based Antenna Selection

The particle swarm optimization algorithm is another bio-inspired optimiza-
tion algorithm, similarly as GA. However, it is commonly recognized as a
simpler algorithm, in terms of fewer mechanisms to escape from local max-
ima, and reduced computational complexity per iteration. Therefore, we also
suggest the use of a PSO-based AS scheme for the non-stationary XL-MIMO
case, similarly as proposed in [19] for conventional stationary massive MIMO
scenario.

The PSO-AS algorithm uses the HRNP output as initial solution, as well
as other random candidates to form an initial swarm of ppso particles. At
each iteration, each particle updates its position in terms of its previous ve-
locity (inertial effect, with inertia weight ν), its individual best solution found
(cognitive information, with cognitive factor μc), and the best solution found
by all particles (social information, with social factor μs). After a predefined
number of iterations or the convergence of the algorithm, it returns the best
solution found. A pseudo-code representation for the PSO-based AS scheme
is provided in Algorithm 16, in which Γ ∈ RM×ppso is a random matrix gen-
erated each time it is called with each element uniformly distributed in [0, 1]
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Algorithm 15 Proposed GA-based AS Scheme

Input: pga, φ, pmut, Ahrnp, Nmax
it , βm,k, ∀m, k.

1: Initialize the population Θga with the binary vector representation of
Ahrnp and other pga-1 random binary vectors;

2: Evaluate the total energy efficiency of each candidate in Θga, forming the
vector ηga

e ;
3: Sort ηga

e in descending order, reorganizing the columns of Θga accord-
ingly;

4: Initialize ηbest
e = ηga

e,1 , and aga = θga
1 ;

5: for n = 2, 3, . . . , Nmax
it do

6: for � = 1, 2, . . . , pga do

7: Generate two different random integers ∈ [1, φ] to be the parents
of θga

� , applying the crossover operator in a random crossover point
∈ [2, M];

8: Apply the mutation operator in θga
� with probability pmut;

9: Evaluate the total energy efficiency of θga
� , and assign it to ηga

e,� ;
10: end for

11: Sort ηga
e in descending order, reorganizing the columns of Θga accord-

ingly;
12: if ηga

e,1 > ηbest
e then

13: Update ηbest
e = ηga

e,1 , and aga = θga
1 ;

14: end if

15: end for

Output: Aga as the set representation of aga.

interval, and binround(x) is the binary round operator, which returns 1 if
x > 0.5, and 0 otherwise.

The complexity of the proposed PSO-AS algorithm is

Cpso
as = Chrnp

as + Nit(ppsoCee + ppso) [ f lops], (G.40)

due to the cost function evaluation (G.14) for all particles and finding the
maximum EE particle, at each iteration.

4 Optimal number of selected antennas: an iterative-

analytical method

In this Section we derive approximated performance analytical expressions
for XL-MIMO systems employing the ZF precoder and the HRNP-based AS
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Algorithm 16 Proposed PSO-based AS Scheme

Input: ppso, ν, μc, μs, Ahrnp, Nmax
it , βm,k, ∀m, k.

1: Initialize the positions Θpso with the binary vector representation of
Ahrnp and other ppso-1 random binary vectors;

2: Evaluate the total energy efficiency of each candidate in Θpso, forming
the vector ηpso

e ;
3: Initialize the social information ηbest

e = ηpso
e,φ , and apso = θpso

φ , in which
φ = arg maxn ηpso

e,n ;
4: Initialize the cognitive information ηc

e = ηpso
e , and Θpso

c = Θpso;
5: Initialize the velocity matrix V ∈ RM×ppso with random elements uni-

formly distributed in [−1, 1];
6: for n = 2, 3, . . . , Nmax

it do

7: Update the velocity matrix
V = νV + μcΓ [Θpso

c −Θpso] + μsΓ [apso −Θpso];
8: Update the positions Θpso = binround (Θpso + V);
9: for � = 1, 2, . . . ppso do

10: Evaluate the total energy efficiency of θpso
� , and assign it to ηpso

e,� ;
11: if ηpso

e,� > ηc
e,� then

12: Update ηc
e,� = ηpso

e,� , and θpso
c,� = θpso

� ;
13: if ηpso

e,� > ηbest
e then

14: Update ηbest
e = ηpso

e,� , and apso = θpso
� ;

15: end if

16: end if

17: end for

18: end for

Output: Apso as the set representation of apso.

method. Such expressions are compared with numerical results obtained via
Monte-Carlo simulation method in Section 5, confirming the tightness of the
derivations proposed herein. Then, based on these analytical expressions,
we devise an analytical iterative algorithm based on Newton-Raphson (NR)
method to determine the optimal number of activated antennas for XL-MIMO
systems, which maximizes the approximated EE expression.

In order to compute the average ZF SINR expression, one can directly
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evaluate from eq. (G.30):
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γ
(ZF)
k

]
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⎣Pmax

Kσ2

⎛
⎝ ∑

m∈A
βm,k −

K

∑
j=1,j 
=k

∑m∈A βm,kβm,j

∑m∈A βm,j

⎞
⎠
⎤
⎦

= E

⎡
⎣Pmax

Kσ2

⎛
⎝ ∑

m∈A
βm,k − ∑

m∈A
βm,k

K

∑
j=1,j 
=k

βm,j

∑n∈A βn,j

⎞
⎠
⎤
⎦

= E

⎡
⎣Pmax

Kσ2 ∑
m∈A

βm,k

⎛
⎝1−

K

∑
j=1,j 
=k

βm,j

∑n∈A βn,j

⎞
⎠
⎤
⎦

=
Pmax

Kσ2 ∑
m∈A

E
[
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∑
j=1,j 
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E

[
βm,j

∑n∈A βn,j

]⎞⎠ (G.41)

in which the expectation is taken with respect to the random users’ positions.
Instead of advancing with (G.41) seeking an exact solution, we approx-

imate the average SINR by the SINR of a user in the most expected position
(umep). Given the uniform distribution of the users as illustrated in Fig. G.1,
this most expected position would be as depicted in Fig. G.2.

Fig. G.2: Illustration of the most expected user’s position (umep).

Then, considering this position for the users, and noting that the HRNP
AS activate in this case the Ms closest antennas, the ZF SINR expression
becomes

E
[
γ
(ZF)
k

]
≈ Pmax

Kσ2

(
∑

m∈A
βm − (K− 1)

∑m∈A β
2
m

∑m∈A βm

)
,

≈ Pmax

Kσ2

(
2

Ms/2

∑
m=1

βm − (K− 1)
2 ∑Ms/2

m=1 β
2
m

2 ∑Ms/2
m=1 βm

)
, (G.42)

with βm = q · (dm)−κ , and dm =
√

y2 + [(m− 1
2 )dx]2 = y

√
1 + [(m− 1

2 )
dx
y ]2 ≈

y
√

1 + (m dx
y )2 is represented in Fig. G.2 for m = 2. Eq. (G.42) can thus be
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simplified as in the next page, in which from (G.48) to (G.49) we have used
the binomial approximation (1 + x)α ≈ 1 + αx for |αx| � 1. In our scenario,
this condition becomes

κ M2
s dx2

8 y2 � 1, (G.43)

which usually holds for typical XL-MIMO systems. For example, the bino-
mial approximation results in relative errors lower than 5% for |αx| < 0.25,
which in our XL-MIMO scenario corresponds to Ms < 225. Besides, with this
approximated ZF HRNP-AS SINR expression, we can also approximate the
EE expression as in eq. (G.44). Moreover, by expanding all the power terms
in the denominator of (G.44), as discussed in Section 2.3, and grouping them
according to their dependence with Ms, we arrive at eq. (G.45), in which
Pbc = Pcod + Pdec + Pbt, and T0 , T1 are defined in eq. (G.46) and (G.47),
respectively.

ηe ≈
BK log2

(
1 + E

[
γ
(ZF)
k

])
Pdl

tx + Ptr
tx + Pce + Pc/d + Pbh + Ppr + Ptc + Pfix

, (G.44)

≈
BK log2

(
1 + E

[
γ
(ZF)
k

])
PbcBK log2

(
1 + E

[
γ
(ZF)
k

])
+ T0 + T1 Ms

. (G.45)

T0 = P† +
3MK + M log(M)

Tlt Lbs
+

B K3

3S Lbs
. (G.46)

T1 = Pbs +
5 B K2

S Lbs
+
(

1− τ

S
) 2 B K
Lbs

+
B K
S Lbs

. (G.47)

4.1 Optimal Number of Activated Antennas

Considering our previous analytical results, we propose in this Section a
method for obtaining the optimal Ms value when employing ZF with HRNP
AS, by taking the derivative of eq. (G.45), with the SINR given in eq. (G.51),
with respect to Ms, and equaling it to 0 when Ms = M∗

s . Following this pro-
cedure, and after some simplifications, we arrive at f (M∗

s ) = 0, with f (Ms)
defined as

f (Ms) =
∂E
[
γ
(ZF)
k

]
∂Ms

−
T1 ln(2)

(
1 + E

[
γ
(ZF)
k

])
log2

(
1 + E

[
γ
(ZF)
k

])
T0 + T1 Ms

, (G.55)

where
∂E
[
γ
(ZF)
k

]
∂Ms

is given in (G.53).

Since E
[
γ
(ZF)
k

]
and its derivative are dependent of Ms, we cannot arrive

at a closed-form expression for M∗
s . However, we can find the root of f (Ms)

by applying some iterative numerical method, like Newton-Raphson (NR)

182



5. Numerical Results and Discussion
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≈ Pmaxq y−κ

Kσ2

[ (
T1,1 Ms − T1,2 M2

s − T1,3 M3
s

)
(G.50)

− (K− 1)

(
T2,1 Ms − T2,2 M2

s − T2,3 M3
s
)

(T1,1 Ms − T1,2 M2
s − T1,3 M3

s )

]
(ZFBA),

with T1,1 = 1− K dx2

12 y2 , T1,2 =
K dx2

8 y2 , T1,3 =
K dx2

24 y2 , (G.51)

T2,1 = 1− K dx2

6 y2 , T2,2 =
K dx2

4 y2 , T2,3 =
K dx2

12 y2 .

method, which obtains a sequence of Ms values Ms,0, Ms,1, Ms,2, . . . Ms,n con-
verging to M∗

s if the starting point Ms,0 is not too far from it. The values in
the sequence obey

Ms,n = Ms,n−1 −
f (Ms,n−1)

∂ f (Ms)
∂Ms

∣∣∣
Ms,n−1

, (G.56)

in which the derivative of f (Ms) is given in (G.52).

5 Numerical Results and Discussion

Our adopted simulation parameters are indicated in Table G.1. While we
have chosen very similar power consumption parameters than that of [16],
[17], the XL-MIMO system parameters are chosen similarly as [3–5], as well
as in accordance with common XL-MIMO scenario applications. Considering
M = 512 antennas at the XL-MIMO BS, Fig. G.3 depicts the SINR, sum SE
and the energy efficiency as a function of number of users K (from 1 to M/2),
for both CB and ZF precoders. The sum SE is presented in units of bits per
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with
∂E
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]
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and
∂2E

[
γ
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1
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in which F1 = T1,1 Ms − T1,2 M2
s − T1,3 M3

s , F2 = T2,1 Ms − T2,2 M2
s − T2,3 M3

s ,

F′1 = T1,1 − 2T1,2 Ms − 3T1,3 M2
s , F′2 = T2,1 − 2T2,2 Ms − 3T2,3 M2

s ,

F′′1 = −2T1,2 − 6T1,3 Ms, F′′2 = −2T2,2 − 6T2,3 Ms.

channel use (bpcu). One can note that ZF precoding always achieve a higher
total energy efficiency than CB in the scenario investigated. The presented re-
sults were averaged among 1000 random realizations of the users’ positions.
It is also shown in the Figure the equivalence between the results of perfor-
mance expressions from [5], eq. (G.12) and (G.13), and the expressions with
our proposed simplifications, eq. (G.21) and (G.28).

Now, considering M = 500 antennas at the XL-MIMO BS, and the same
power consumption parameters, Fig. G.4 shows the SINR, sum SE and the
EE as a function of Ms ∈ {100; M}, with K = 100 users, for both CB and ZF
precoders when employing the HRNP AS scheme. Notice that ZF precoding
achieves a higher total energy efficiency than CB in the scenario investigated.
Besides, by activating a number of Ms = 146 BS antennas, one can attain
the maximum total energy efficiency for ZF precoder with K = 100 users
("M∗

s by NR" point in Fig. G.4.c), as found by our proposed NR method of
Section 4.1. Fig. G.4 also compares the performance obtained by averaging
eq. (G.30) with several random realizations for the users’ positions (denoted
as ZF), with the approximated deterministic result from eq. (G.48), denoted
as ZFME, and with the binomial approximation in eq. (G.51), denoted as
ZFBA. It also shows the results in terms of sum SE and EE of the XL-MIMO
system. One can conclude that both proposed approximations are tight, and
that the Ms values that maximize them are nearly the same.

Next, in order to obtain the performance results of GA, LS, and PSO-based
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Table G.1: Simulation Parameters.

Parameter Value

Carrier frequency: f 2.6 GHz
Number of BS antennas M [500; 512]
XL-MIMO array length: L 30 m

Distance of users to BS: [0.1 · L, L]
Path loss decay exponent: κ 3

Path loss at the reference distance: q 10−3.53

Transmission bandwidth: B 20 MHz
Channel coherence bandwidth: BC 100 kHz

Channel coherence time: TC 2 ms
Long-term fading coherence time: Tlt 2 s

Total noise power: σ2 −96 dBm
UL pilot transmit power: ρp 20 mW

DL radiated power: Pmax =
ρσ2

qL−κ 0.23 mW

Coherence block: S 200 symbols
Length of the uplink pilot signals: τ K

Computational efficiency at BSs: Lbs 12.8
[

Gflops
W

]
Fraction of DL transmission: ξd 1
Fraction of UL transmission: ξu 0

PA efficiency at the BS: ηd 0.39
PA efficiency at the MTs: ηut 0.50

Fixed power consumption: Pfix 18 W
Power for local oscillators at BSs: Psyn 2 W
Power for circuit components BSs: Pbs 1 W

Power for circuit components MTs: Pmt 0.10 W

Power density for coding data: Pcod 0.10
[

W
Gbit/s

]
Power density for decoding data: Pdec 0.80

[
W

Gbit/s

]
Power density for backhaul traffic: Pbt 0.25

[
W

Gbit/s

]
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Fig. G.3: (a) SINR, (b) sum-SE, and (c) EE vs. K for M = 512 antennas, selecting all available
antennas. Proposed eq. (G.21) and (G.28), are represented by dotted and solid line curves,
respectively, while the performances from [5], eq. (G.12) and (G.13), are indicated by the curves
with ’♦’ and ’o’ markers.
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Fig. G.4: HRNP-AS scheme under ZF and CB precoders: (a) SINR, (b) sum SE, and (c) EE as a
function of Ms for M = 500 antennas and K = 100.
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AS schemes, we have set the maximum number of iterations Nmax
it = 60 for

such schemes, and analysed their convergence for K = 100 users, as de-
picted in Fig. G.5.a. One can see from the Figure that the LS-AS convergence
presents a non-decreasing behavior, since when a new solution is not found
in certain iteration, the algorithm interrupts its search, and does not spend
more processing power. On the other hand, for GA and PSO-based AS for
XL-MIMO systems, if the algorithms do not find new solutions and keep
searching during additional iterations, the EE of that solution decreases due
to the progressive processing power consumed in the subsequent iterations.
Therefore, it is not efficient to predefine the number of iterations for these two
schemes in the XL-MIMO antenna selection problem, since in this optimiza-
tion problem it would be very difficult do adjust the number of iterations in
such a way to obtain a suitable EE solution for the algorithms. To circumvent
while taking advantage of this feature, we implement an early-interruption
criterion, in which if the GA or the PSO-based AS schemes do not find a new
solution within 5 iterations, the search is interrupted, obtaining the conver-
gences depicted in Figure G.5.b. Besides, for the GA-based AS scheme, we
have considered a population size of M/2, of which 10% are selected as par-
ents at each iteration, and a mutation probability of 2%. For the PSO-based
one, we have considered a swarm of M/5 particles, and an inertia weight,
cognitive factor and social factor of 0.5.
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Fig. G.5: Convergence of the AS schemes: (a) without, and (b) with early-interruption stopping
search criterion. K = 100 and M = 500 antennas.
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Fig. G.6 depicts the SINR, sum SE, and EE as a function of K for the
HRNP, GA, LS, and PSO-based AS schemes employing ZF precoding, with
M = 500 antennas at the XL-MIMO array. While the achieved sum SE per-
formance is nearly the same for all investigated schemes, the graphs reveal
that SINR and EE gains can be achieved in comparison with HRNP. The Fig-
ure also shows that, in terms of SINR and EE, the GA, LS, and PSO-based
AS schemes achieve a similar performance, and their gains in comparison
with HRNP AS are small, since the processing required for finding a suitable
antennas subset in the XL-MIMO system increases the energy consumption;
thus, the EE gains become marginal. Except for small number of users, the
GA AS scheme achieves one of the best EEs in most part of the investigated
scenario, although for high number of users, its performance becomes very
similar to HRNP AS scheme. Besides, due to its simplicity and celerity to
return the results, one can point out that the HRNP criterion coupled to the
NR procedure for M∗

s selection represents a very promising XL-MIMO AS
scheme.
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Fig. G.6: AS schemes for ZF precoding: (a) SINR, (b) sum SE, and (c) EE as a function of K for
M = 500 antennas.

5.1 Complexity of XL-MIMO AS Methods

Fig. G.7.a depicts the average number of active antennas as a function of K
for the investigated AS methods. One can see that the M∗

s value obtained
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5. Numerical Results and Discussion

by our proposed NR method usually matches the number of antennas se-
lected by LS, PSO, and GA-based AS schemes, corroborating the tightness
of the approximations made and the effectiveness of the method. The major
advantage of our proposed NR method for obtaining M∗

s is that it can be
evaluated for any system configuration satisfying eq. (G.43). In our numer-
ical simulations, the method has converged in at most 3 iterations from the
starting point Ms,0 = 1.5K. Besides, the M∗

s value is not dependent on the
channel coefficients, but only on the system parameters, like number of users,
transmit power, dimensions of XL-MIMO array and coverage area. Therefore,
once found M∗

s , the NR method just has to be evaluated again when one of
these parameters change. The fixed complexity of evaluating M∗

s under 3 NR
iterations is about 380 flops, which is negligible in comparison with that of
selecting the antennas subset, eq. (G.37), (G.38), (G.39), and (G.40), besides of
remaining valid for larger time periods.
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Fig. G.7: (a) Average number of active antennas, (b) average number of iterations, and (c) com-
plexity increase of the AS schemes w.r.t. HRNP AS approach as a function of K for M = 500
antennas.

Fig. G.7.b depicts the average number of iterations required by each in-
vestigated AS scheme, recalling that the number of iterations are not fixed,
since the LS interrupts when a new solution is not find in an iteration, and
GA and PSO implement the early-interruption criterion. Besides, due to the
non-decreasing behavior of the LS convergence depicted in Fig. G.5, the av-
erage number of iterations for this scheme in Fig. G.7.b does not correspond
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to the point in which the LS convergence curve becomes horizontal. Besides,
the advantage of HRNP criterion in selecting antennas within the XL-MIMO
array can also be confirmed by the extra computational complexity required
for the other analysed methods. Hence, considering the average number of
iterations from Fig. G.7.b, the relative complexity increment of the LS, GA and
PSO AS schemes w.r.t. the HRNP AS method are depicted in Fig. G.7.c. The
relative complexity increment metric is defined as:

ΔC =
Cls, ga,pso

as − Chrnp
as

Chrnp
as

considering typical XL-MIMO network configurations for K users and M BS
antennas. One can confirm the very large relative complexity increase of the
AS methods for XL-MIMO, i.e., this complexity increment is in the order of
105, which make the benefits they would bring less significant in terms of
energy efficiency.

It is noteworthy that the computational complexity spent with the AS
methods is included in the EE values, in terms of the processing power. In
summary, the performance improvement of the AS scheme comes at the ex-
pense of high complexity, which results in marginal EE gains. On the other
hand, the HRNP-AS procedure is able to achieve an improved EE of 34.85
Mbit/J for K = 100 users, in comparison with 18.71 Mbit/J of selecting all
antennas, i.e., not applying any AS procedure, corresponding in a 86.3% of
EE increasing, as one can infer from Fig. G.4.

Elaborating further regarding the dependence of the optimal number of
selected antennas M∗

s on the system parameters, such as number of users,
total transmit power available, dimensions of XL-MIMO array, and cover-
age area, one can argue that such system parameters vary quite slowly with
respect to the data symbol period. Therefore, it could be possible to eval-
uate the proposed AS scheme, and turning-on the optimal number of RF
chains M∗

s , which are then switched to the best antenna subset according to
our proposed HRNP criterion. Notice that only when the number of users
changes significantly that it would be necessary to re-evaluate the (G.55)-
(G.56), and then turning-on or turning-off some RF chains. Besides, the
proposed method for finding the optimal number of selected antennas can
provide very useful information for XL-MIMO system designers.

6 Conclusion

In this paper, we have investigated the XL-MIMO systems subject to chan-
nel non-stationarities. First, we have revisited the performance expressions
from [5], and proposed to incorporate the power constraint at the SINR ex-
pressions of CB and ZF to arrive at more lean and comprehensive results.
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Then, based on such obtained expressions, we have proposed four XL-MIMO
AS schemes aiming at maximizing the EE based on the following criteria:
HRNP, LS, GA, and PSO. Some simplifying assumptions allowed us to de-
rive closed-form EE expressions, based on which we proposed a NR iterative
method to obtain the optimal number of active antennas. Numerical results
have shown that GA usually achieves one of the best EEs, although the gains
were marginal in comparison with HRNP, since the processing required for
achieving a suitable antennas subset increases the consumed energy, limiting
the achieved EE gains. Thus, due to its simplicity and celerity in returning
results, the proposed HRNP-AS scheme, with the NR method providing the
optimal subarray size value M∗

s , can be seen as a very promising solution for
AS XL-MIMO systems, achieving an EE gain of 86.3% in comparison with
selecting all antennas strategy.
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1. Introduction

Abstract

In this paper, we consider the downlink (DL) of a zero-forcing (ZF) precoded extra-large scale
massive MIMO (XL-MIMO) system. The base-station (BS) operates with limited number of
radio-frequency (RF) transceivers due to high cost, power consumption and interconnection
bandwidth associated to the fully digital implementation. The BS, which is implemented with
a subarray switching architecture, selects groups of active antennas inside each subarray to
transmit the DL signal. This work proposes efficient resource allocation (RA) procedures to
perform joint antenna selection (AS) and power allocation (PA) to maximize the DL spectral
efficiency (SE) of an XL-MIMO system operating under different loading settings. Two meta-
heuristic RA procedures based on the genetic algorithm (GA) are assessed and compared in
terms of performance, coordination data size and computational complexity. One algorithm is
based on a quasi-distributed methodology while the other is based on the conventional central-
ized processing. Numerical results demonstrate that the quasi-distributed GA-based procedure
results in a suitable trade-off between performance, complexity and exchanged coordination
data. At the same time, it outperforms the centralized procedures with appropriate system
operation settings.

Keywords— Extra-large scale massive MIMO (XL-MIMO), antenna selection (AS),
resource allocation (RA), genetic algorithm (GA), distributed signal processing

1 Introduction

The benefits of adopting a high number of antennas at the base-station (BS) have at-
tracted the interest on the massive MIMO transceiver design for the multi-antenna
wireless communications systems beyond the fifth generation (B5G) and of the sixth
generation (6G). The main advantages are the large array gain, inter-channel orthog-
onality and channel hardening. Also, increasing the number of antenna elements can
enhance the cell coverage, improving the quality-of-service (QoS) of the border-cell
users [1].

When the BS array attains extreme physical dimensions to support crowded sce-
nario locations, such as airports and large shopping malls, the system is classified
as extra-large scale massive MIMO (XL-MIMO) [2]. The XL-MIMO array provides
the benefits of massive MIMO with additional beam-forming resolution due to the
large array aperture [3]. The XL-MIMO array is characterized by key changes in the
electromagnetic propagation conditions when compared to the conventional spatial
stationary massive MIMO regime. The first property is the spherical wavefront prop-
agation feature for the received signal due to the distance between the BS and the
users being less than the Rayleigh distance [4]. Second, each cluster of scatterers
sees only a portion of the array. Thus, the transmitted signal by each user reaches a
small group of antennas, which comprises the visibility region (VR) of this user [2].
Additionally, the different propagation paths experienced along the array result in
variations on the average received power. Results in [5, 6] demonstrate that the spa-
tial non-stationarities produced by these two properties limit the performance of the
system in terms of spectral efficiency (SE) unless an appropriated signal processing
technique is applied.
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Despite the benefits of high numbers of antennas, the XL-MIMO scenario imposes
challenges for transceiver design. The first of them is the high cost and power con-
sumption of fully digital implementations, which require one radio-frequency (RF)
transceiver per antenna element [7, 8]. In addition, adopting a large number of an-
tennas demands a high interconnection bandwidth to transmit the baseband data
throughout the links to the BS processing unit. This turns into a serious implementa-
tion bottleneck, since the required bandwidth can not be handled by the current radio
interfaces [9, 10]. Lastly, handling the complexity of signal processing techniques is
a relevant issue, since the number of executed operations in linear detectors, such as
zero-forcing (ZF) and minimum mean-squared error (MMSE), scales with the number
of antennas [11].

In order to design practical BS architectures, one can limit the number of RF
transceivers to cope with the cost constraints. The implementation with a limited the
number of RF transceivers can benefit from the large array by adopting techniques
such as antenna selection (AS) and hybrid precoding. Often, hybrid precoding design
is associated with the solution of intricate optimization problems [12]. In addition, the
commonly employed analog phase shifters are more expensive and consume more
power than conventional on-off switches [8]. For these reasons, combining the AS
procedures with linear precoding designs result in attainable strategies aiming at ro-
bust and effective implementations. Different approaches and tools can be adopted to
perform AS, such as convex optimization [7, 13, 14], greedy heuristics [7, 15], machine
learning [16] and metaheuristics [17–20].

One strategy to combat the problem of high interconnection bandwidth is to use
hierarchical architectures. Adding multiple processing units to handle small groups
of antennas and choosing the right signal processing methods can reduce significantly
the amount of exchanged information in the regime of asymptotic number of anten-
nas, as discussed in [9, 10]. However, the coordination of such processing units to
perform different signal processing and resource allocation (RA) tasks constitutes a
big challenge. In addition, many of these activities rely on the knowledge of fully
reliable channel state information (CSI), which is hard to attain due to the high ar-
ray dimensions. Many works on channel estimation [21], precoding and data detec-
tion [9, 10, 22–25] in massive and XL-MIMO consider distributed pre-processing at
local nodes. However, studies on the distributed RA strategies, mainly involving AS,
are scarce.

The signal processing complexity is an important concern in XL-MIMO due to
the high number of antenna elements. However, differently from the conventional
massive MIMO, the XL-MIMO can benefit from the spatial non-stationarities adopting
local signal processing strategies to treat the signals inside the VRs at the BS’ sub-
arrays with reduced complexity [22, 24].

1.1 Literature Review

AS strategies for MIMO systems are extensively discussed in the literature. One AS
algorithm to improve capacity in low rank matrix channels on point-to-point MIMO
was first introduced in [26]. Later, the capacity distribution of systems with receive
AS has been derived in [27]. These results were extended to massive MIMO regime
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in [28] and [29]. In these papers, the authors derived capacity bounds for systems
with transmit and receive AS, respectively.

The authors in [13, 14] proposed AS procedures respectively for the channel capac-
ity and downlink (DL) sum-capacity maximization based on the convex optimization
framework. One technique based on the branch-and-bound algorithm is used in [8].
Considering linearly-precoded systems, the problems of AS for SE and sum-SINR
maximization are addressed respectively in [15, 30]. Differently, the work in [31]
analyzed one joint AS and power allocation (PA) procedure in a system with spa-
tially distributed antennas. The proposed procedure runs at each antenna with side-
information shared within its neighborhood. Besides, AS considering limited connec-
tions in the RF transceivers switching matrices is examined in [7].

On the other hand, there are only a few works that consider the AS problem for
the XL-MIMO systems. A spatial users mapping procedure to maximize SE imple-
mented with convolutional neural networks (CNN) is proposed in [16]. The aim is
to determine each effective subarray window to precode the users signals using ZF.
Results demonstrate that the CNN-based procedure achieves SE values comparable
to the optimal mapping algorithm. In [17], several transmit AS procedures to maxi-
mize the energy efficiency (EE) from the long-term fading coefficients are proposed.
Asymptotic SINR expressions for the received signal with AS are derived. Since the
derived optimization problem is NP-hard, three of the proposed procedures are im-
plemented by metaheuristic techniques, one being the genetic algorithm (GA). The
GA is a powerful evolutionary metaheuristic that was used in different contexts to
solve AS problems, as it is considered in [18–20].

1.2 Contribution

Motivated by the benefits of large numbers of antennas at the BS and the restricted
number of RF transceivers, this work examines the joint AS and PA problem on the
DL of a linearly-precoded XL-MIMO system. Differently from other papers adopting
AS strategy, a distributed BS signal processing architecture is considered and the AS
procedures are characterized in terms of the exchanged information between the pro-
cessing nodes. Furthermore, we extend part of the results of [17] with the proposition
of AS algorithms for XL-MIMO that use the short-term fading coefficients instead of
the long-term ones. Additionally, we address the problem of joint AS and PA in XL-
MIMO sub-arrays using a decentralized RA algorithm. The proposed RA algorithm
uses the Sherman-Morrison-Woodbury (SMW) formula to perform optimal power al-
location (OPA) and AS in a decentralized fashion.

The BS is constituted by multiple non-overlapping subarrays with dedicated re-
mote processing units (RPUs), which perform independently channel estimation, pre-
coding calculation and RA, mainly AS and PA. Each subarray is equipped with a
fixed number of antenna elements and RF transceivers. Using the ZF precoding, the
optimization goal is to maximize the SE subjected to the constraints of subarrays con-
nections and maximum transmitted power.

The contribution of this work is fourfold. i) Description of a distributed transceiver
design for XL-MIMO based on a subarray switching architecture; ii) proposition of a
centralized procedure based on the evolutionary heuristic GA to perform joint AS and
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PA to maximize the SE with subarray connection and maximum transmitted power
constraints; iii) proposition of a distributed version of the GA procedure for joint AS
and PA which achieves performance tight to the centralized one but with low-size
coordination data and less number of executed operations; iv) extensive analyses of
the proposed procedures in terms of number of symbols for training, coordination
data size and number of floating point operations per second (flops).

The numerical results corroborate the GA-based procedures in achieving high per-
formance, specifically in crowded XL-MIMO applications. Additionally, the decentral-
ized GA version offers a good trade-off between performance, number of operations
and coordination data size, outperforming the centralized procedures by adopting
proper settings.

The rest of the paper is organized as follows. In Section 2 is described the system
model, including the distributed subarrays processing at the BS. Next, in Section
3 are described the centralized and distributed GA-based optimization procedures
for joint AS and PA in XL-MIMO systems, while Section 4 discusses two feasible
AS procedures adopted as a result of decoupling the joint AS and PA optimization
problem. Section 5 examines the complexity of the proposed algorithms. Extensive
numerical results are discussed in Section 6. Final comments and conclusions are
provided in Section 7.

1.3 Notation

Boldface small a and capital A letters represent respectively vectors and matrices.
Capital calligraphic letters A represent finite sets, and |A| denotes the cardinality of
the set A. In denotes the identity matrix of size n. {·}T and {·}H denote respectively
the transpose and the conjugate transpose operators. diag(·), tr(·) and det(·) denote
respectively the diagonal matrix, trace and determinant operators. �·� denotes the
greatest integer operator. (n

k) denotes the binomial coefficient. CN (μ, σ2) is a circu-
larly symmetric complex Gaussian distribution with mean μ and variance σ2. E[·]
denotes the expectation operator.

2 System Model

Consider the DL of a narrow-band multi-user XL-MIMO system with the BS equipped
with M antennas and N RF transceivers serving K single-antenna users, as is depicted
in Fig. H.1. During the DL, the BS uses ηtr symbols to perform channel estimation
and ηdata symbols to transmit the payload. We assume that the time interval used to
send the total DL symbols ηdl = ηtr + ηdata is less than the channel coherence time.

The array in the BS is composed of B independent subarrays, each with Mb an-
tennas and Nb < Mb RF transceivers. The subarrays are equipped with a RPU to per-
form, in a distributed way, channel estimation, precoding calculation and RA tasks,
specially AS and PA procedures. In addition, the BS has a central processing unit
(CPU) to coordinate the subarrays operation. Fig. H.2 depicts all the described BS
blocks.
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Fig. H.1: XL-MIMO system deployed inside a square cell with size L. The BS is a ULA with
M antennas divided into B subarrays of Mb antennas each one. The K users are randomly
distributed at a distance in the range (0.1L, L) from the array.

Fig. H.2: Diagram of the BS architecture for DL. The BS array is composed by B subarrays
containing Mb antennas, Nb RF transceivers and one RPU. Additionally, the BS has a CPU for
subarrays coordination.

Assumption 1 (Subarray switching stage): A flexible switching stage is implemented in
each XL subarray. This stage allows every antenna of the subarray i to connect to
any RF transceiver of it. Results in [7] demonstrate that partially connected archi-
tectures introduce lower insertion loss than fully-flexible matrices, which allows the
connection of any antenna in the entire array to any RF transceiver.

We assume that each subarray has perfect knowledge of the channel coefficients
associated to its antennas. See [21] for details on channel acquisition in distributed
signal processing architectures. Besides, we deploy the ZF precoder to decode signals
in each subarray. We adopt the technique in [21] to calculate the ZF precoder with low
interconnection traffic, splitting the computations between the RPUs and the CPU.
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2.1 Channel Model

In the XL-MIMO scenario, spatial non-stationarities arise due to the large array phys-
ical dimensions and number of antenna elements. Such non-stationarities are ad-
dressed in the adopted channel model as the variation of the mean received power
along the array, as in [17, 22]. The path-loss coefficient associated to the BS antenna m
and the user k is defined as

βm,k = q0d−κ
m,k (H.1)

where q0 is the path-loss attenuation at a reference distance, dm,k is the distance be-
tween the antenna m and the user k and κ is the path-loss exponent.

Let Rk ∈ CM×M, Rk = diag([β1,k · · · βM,k]
T) be the matrix with the long-term

fading coefficients of the user k. The channel vector of the user k is defined as

hk = R
1
2
k h′k (H.2)

where h′k ∈ CM×1, h′k ∼ CN (0, IM) is the short-term fading vector. From the users
channel vectors, the channel matrix H ∈ CM×K is defined as

H =
[
h1 · · · hK

]
=
[
hT

1 · · · hT
M

]T
(H.3)

considering hm ∈ C1×K as the channel vector with the coefficients associated to the
antenna m.

During the DL, the BS activates a group of antennas represented by the set S ⊆
{1, . . . , M} such that |S| ≤ N. A partition of the set S , i.e. {Sb}, ∀b = 1, . . . , B,
contains the index of the selected antennas in the subarray b. This set is defined such
that |Sb| ≤ Nb ∀b, meeting the adopted subarray structure. The equivalent channel
matrix of the active antennas is defined as a row-wise submatrix of H, HS∈ C|S|×K .
Similarly, the matrix HSb∈ C|Sb |×K contains only the channel vectors related to the
active antennas in the subarray b.

Let Dm ∈ {0, 1} , ∀m = 1, . . . , M be an indicator equal to 1 if the antenna m is
active during the DL and 0 otherwise. These indicators form the diagonal matrix D =
diag([D1 · · · DM]T). During the precoding and SE computations, it is required to
calculate the matrix product HH

S HS of the active antennas channel matrix. Intended to
enable this computation by the distributed signal processing architecture, the Gramian
matrix is defined as in the following.

Remark 1 (Gramian matrix): Let Gm = hH
m hm, ∀m = 1, . . . , M be the Gramian matrix

associated with the BS antenna m. The set Mb is defined for b = 1, . . . , B as the group
of antennas in the subarray b. The Gramian matrix associated to the b-th subarray
includes only the active antennas inside it, and it can be written as

GSb = HH
Sb

HSb = ∑
m∈Mb

DmGm (H.4)

Similarly, the array Gramian matrix considering only the active antennas is defined as

GS = HH
S HS =

M

∑
m=1

DmGm (H.5)
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2. System Model

An upper bound for the system performance considering the active antennas in
the set S , namely the DL sum-capacity, is calculated by [14]:

Cdpc = max
P

log2 det
(

IK +
1

σ2
z

PHH
S HS

)
(H.6)

= max
P

log2 det
(

IK +
1

σ2
z

PGS

)

where σ2
z is the additive noise power, while P = diag ([p1 · · · pK ]) denotes the matrix

with the allocated power for each user. The powers pk, ∀k = 1, . . . , K are defined
in order to meet the total power constraint ∑K

k=1 pk = Pmax. The DL sum-capacity
is achieved by the dirty paper coding (DPC) precoder, which has prohibitive high-
complexity for practical implementations.

2.2 Downlink Signal

The data signal transmitted by the BS is defined as x ∈ C|S|×1,

x = FP
1
2 s (H.7)

where F∈ C|S|×K denotes the ZF precoding matrix, calculated by

F = HS
(

HH
S HS

)−1
(H.8)

= HSG−1
S

s = [s1 · · · sK ]
T denotes the vector of modulated data symbols such that E

[
‖sk‖2

2
]
=

1, ∀k = 1, . . . , K and E
[
s∗k sk′

]
= 0, ∀k 
= k′. The allocated powers in (H.7) are

calculated in order to meet the following power constraint

tr
[

P
(

HH
S HS

)−1
]
= tr

(
PG−1

S
)
= Pmax (H.9)

Therefore, the entries of P depend on the active antennas set S and the PA policy.
The signal received by the users in the DL is defined as y ∈ CK×1,

y = HH
S FP

1
2 s + z (H.10)

= P
1
2 s + z

where z ∈ CK×1, z ∼ CN
(
0, σ2

z IK
)

denotes the additive noise vector.
Given the ZF precoding design, the system SE is calculated by

SE =
K

∑
k=1

log2

(
1 +

pk

σ2
z

)
(H.11)

which is equivalent to the SE of K independent Gaussian channels with received
signal-to-noise ratio (SNR) equal to pk/σ2

z ∀k.
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2.3 Optimal Power Allocation (OPA) Policy

The OPA policy is the one that solves the problem of maximizing the system SE at
(H.11), subjected to the maximum power constraint in (H.9):

maximize
P

SE =
K

∑
k=1

log2

(
1 +

pk

σ2
z

)
(H.12a)

subject to tr
[
P(HH

S HS )
−1
]
≤ Pmax (H.12b)

pk ≥ 0, ∀k = 1, . . . , K (H.12c)

The optimization problem in (H.12) is equivalent to the well-known PA problem
on independent Gaussian channels. It has an analytical closed-form solution derived
by the Lagrange multipliers method (water filling solution). The optimal power dis-
tribution is calculated by [32]:

pk =

(
μ
[
(HH
S HS )

−1
]−1

k,k
− σ2

z

)+

(H.13)

where (x)+ = max(x, 0) and μ is a constant calculated by

μ =
1
K

{
Pmax + σ2

z tr
[
(HH
S HS )

−1
]}

(H.14)

If pk = 0 for some user k, the PA problem including this user is not feasible. For this
reason, the k-th user is deactivated and the power distribution is recalculated consid-
ering only the group of the remaining active users. This process must be repeated
until a group of users which results in a feasible solution is found.

3 Algorithm for Joint Antenna Selection and Power

Allocation

The problem of jointly selecting the antenna-elements of the BS and allocating appro-
priate power amounts to maximizing the ZF SE given the constraints of maximum RF
transceivers, subarray connections, and maximum power is formulated as

maximize
D,P

SE =
K

∑
k=1

log2

(
1 +

pk

σ2
z

)
(H.15a)

subject to ∑
m∈Mb

Dm ≤ Nb, ∀b ∈ {1, . . . , B} (H.15b)

tr
[
P(HHDH)−1

]
≤ Pmax (H.15c)

Dm ∈ {0, 1}, ∀m ∈ {1, . . . , M} (H.15d)

pk ≥ 0, ∀k ∈ {1, . . . , K} (H.15e)

The objective function in (H.15a) is the system SE. The constraints (H.15b) are the
subarray connections constraints, which allow the activation of a maximum of Nb RF
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3. Algorithm for Joint Antenna Selection and Power Allocation

transceivers in each subarray. Also, the constraint (H.15c) ensures that the maximum
transmitted power is equal to or less than Pmax. Moreover, the constraints (H.15d) and
(H.15e) define respectively the binary antenna association variables and non-negative
allocated powers.

Since D is binary constrained, the problem (H.15) constitutes a non-convex com-
binatorial optimization problem. One approach to solve (H.15) comprises two steps:
firstly, determining the optimal active antennas set via exhaustive search assuming
equal PA; after that, given the result D� from the exhaustive search, the allocated
power matrix P� is calculated adopting the OPA policy in (H.13).

The AS via exhaustive search considering the activation of all the RF transceivers

requires testing (Mb
Nb
)

B
candidate solutions, a number that attains prohibitive dimen-

sions in the XL-MIMO regime. For instance, in a system with B = 8 subarrays
equipped with Mb = 64 antennas and Nb = 32 RF transceivers, there is a number
of feasible solutions on the order of 10146. Testing all these solution candidates in a
timely manner is impracticable. An efficient alternative to the exhaustive search is to
perform a guided search along the feasible set using an intelligent metaheuristic pro-
cedure. In this way, a good quality solution can be obtained in feasible time testing
only a few candidates.

3.1 Genetic Algorithm

One metaheuristic procedure adopted to solve many different combinatorial problems
in wireless communications is the GA. This technique implements different search
phases to efficiently explore the feasible set and exploit the good candidates properties
in order to find promising regions in the feasible sub-spaces. Differently from exact
optimization methods, evolutionary metaheuristics do not require convex objective
functions or constraints. In addition, the execution complexity can be fitted to the
available computational burden by adjusting the input parameters and number of
iterations. Despite the advantages, the GA, as well as other metaheuristics, does not
ensure finding the optimal solution.

As the GA is a procedure inspired by principles of genetics and natural selection, it
inherited several terms from biology. To simplify understanding, Table H.1 contains a
glossary of some common GA terms adopted throughout this work. In the following,
the implemented GA procedures, phases and variables deployed to solve the problem
(H.15) are briefly described.

Optimization variables encoding: The optimization variables of the problem (H.15)
are the antennas state indicators Dm and the users allocated powers pk. The powers
pk are determined by the OPA, eq. (H.13). Therefore, only the antennas indicators
should be encoded as individuals. Thus, Dms are defined as genes and the column
vectors [di,b]m = Dm, ∀m ∈ Mb, b = 1, . . . , B containing the optimization variables
w.r.t. each subarray represent the chromosomes, where i is the individual index.
Every individual is defined by a vector di ∈ {0, 1}M×1,

di =
[
dT

i,1 · · · dT
i,B

]T
=
[
D1 · · · DM

]T (H.16)
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Table H.1: Glossary of the genetic algorithm terms

Parameter Description

Individual Candidate solution for the optimization problem
Population Set of candidate solutions for the optimization problem
Offspring Set of candidate solutions generated during an iteration
Gene One optimization variable of the candidate solution
Chromosome Set of optimization variables of the candidate solution
Generation Genetic algorithm iteration
Fitness Objective function of the optimization problem
Score Value of the objective function for a candidate solution

Fitness function: The fitness function considered for the implementation is the ZF SE
defined in (H.11), with the power distribution computed by the OPA policy.

The implemented GA contains the following phases: a) elitism, b) tournament
selection, c) crossover and d) mutation. These phases require the definition of the
parameters: population size Np, number of individuals for elitism Ne, number of
tournaments Ns, crossover probability pc and mutation probability pm. Each proce-
dure is summarized in the sequel.

Elitism: The elitism aims to keep the best individuals of the current generation with-
out change. At every generation, the Ne best individuals are chosen as the first indi-
viduals of the next generation. Elitism ensures that the SE obtained with the best AS
indices of the GA iteration is always a non-decreasing value.

Tournament selection: During the tournament selection, the individuals are pairwise
randomly compared according to their score values. The winners of the Ns tourna-
ments become candidates for the crossover phase. The selection step compares the
sets of AS indices produced at each GA iteration according to the SE achieved by
them.

Crossover: The crossover phase aims to mix the chromosomes of the tournaments
winners in order to obtain new solutions. This phase exploits the good properties of
the current set of AS indices. Two tournament winners, named parent 1 and parent
2, are randomly selected to generate two new individuals. Each chromosome of child
1 has the probability pc of being inherited from parent 1 and 1− pc from parent 2.
Considering child 2, every chromosome has the probability pc of being inherited from
parent 2 and 1− pc from parent 1.

Mutation: The mutation phase aims to add random small changes at the offspring
generated by crossover. This phase promotes the variability among the set of AS
indices, exploring different regions of the feasible set. The chromosomes are mutated
with probability pm, when one random selected gene of the chromosome is flipped. To
preserve the solutions’ feasibility, the mutation phase is implemented by the scheme
of Algorithm 17. The set Pc denotes the offspring generated during the crossover, and
Pm is the offspring after mutation.

Convergence: There are several mechanisms to check the GA convergence. Herein,
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3. Algorithm for Joint Antenna Selection and Power Allocation

Algorithm 17 Mutation procedure
Input: Crossover offspring Pc , pm, B, Mb, Nb
Output: Mutated offspring Pm
Pm ← ∅
for di ∈ Pc do

for b = 1 : B do

if rand uniform(0, 1) ≤ pm then
k ← rand discrete uniform(1, Mb)

if [di,b]m == 0 and ∑Mb
j=1[di,b]j == Nb then

Go to line 5
[di,b]m ← flip([di,b]m)

Pm ← Pm ∪ di

the implemented algorithm has two different criteria: the maximum number of gener-
ations Tmax and the no improvement of the best score during the last Tstall generations.

Algorithm 18 summarizes the implemented procedure, named genetic algorithm
for resource allocation (GA-RA). The set P0 denotes the initial population, Pt the pop-
ulation of the generation t, Ps the winners of the tournament selection and Ptemp a
temporary set for the elitism phase.

3.2 Quasi-Distributed Genetic Algorithm

The proposed GA-RA procedure requires the entire channel matrix H knowledge at
the CPU to compute the individuals score values. Such requirement is unfeasible in
the XL-MIMO scenario due to the high bandwidth to transfer all the channel coeffi-
cients associated to thousands of antennas to the CPU. For this reason, one solution
that does not depend on the knowledge of full CSI at the CPU is preferable.

One solution to avoid the requirement of full knowledge of the H matrix consists
of performing local AS at each subarray, considering fixed the AS indices in the other
subarrays. The contribution of these fixed AS indices can be calculated previously
by the CPU and transmitted to the RPUs with reduced bandwidth and processing
power resources. Therefore, each subarray can selects its antennas using the GA. The
proposed quasi-distributed genetic algorithm for resource allocation (DGA-RA) implements
this concept and is presented in the following.

Analyzing the fitness function of the GA-RA procedure in (H.11), one can observe
that it depends on the inverse of the array Gramian matrix, G−1

S = (HH
S HS )−1. The

computation of G−1
S can be done from the subarrays Gramian matrices by

G−1
S =

(
B

∑
b=1

GSb

)−1

(H.17)

Therefore, the CPU can compute the inverse of the array Gramian matrix to calculate
the GA-RA fitness function only with the subarrays Gramian matrices calculated lo-
cally at the RPUs. Each subarray Gramian matrix has K2 entries, while the channel
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Algorithm 18 GA-RA
Input: Np, Ne, Ns, pc, pm, Tstall, B, Mb, Nb, H

Output: The best selected antennas set, D�

P0 ← ∅ P0 ← P0 ∪N-AS(H) (Section 4.2)
for i = 1 : Np − 1 do
P0 ← P0 ∪ rand individual()

for t = 0 : Tmax do
Pt+1,Ps,Pc ← ∅ Ptemp ← Pt
for i = 1 : Ne do Elitism

de ← argmax
dj

score(dj), dj ∈ Ptemp Pt+1 ← Pt+1 ∪ de Ptemp ←

Ptemp\de

for i = 1 : Ns do Tournament selection
ds1 , ds2 ← rand(Pt) ds ← argmax

dj

[score(ds1), score(ds2)] Ps ← Ps ∪

ds

for i = 1 : Ne do Crossover
dc1 , dc2 ← rand(Ps) do1 , do2 ← 0M
for j = 1 : B do

if rand uniform(0, 1) ≤ pc then
do1,j ← dc1,j do2,j ← dc2,j

else
do1,j ← dc2,j do2,j ← dc1,j

Pc ← Pc ∪ do1 ∪ do2

Pm ← mutation(Pc) (Algorithm 17)
Pt+1 ← Pt+1 ∪ Pm
d�

t+1 ← argmax
di

score(di), di ∈ Pt+1

if t > Tstall then Stall convergence criterion
dstall ← argmax

di

score(di), di ∈ Pt−Tstall if score(d�
t+1) == score(dstall)

then
Break the loop

D� ← diag(d�
t+1) return D�

matrix has MK. Therefore, calulating the contribution of the selected antennas at the
CPU using the Gramian matrix strategy requires less bandwidth than by using the
centralized strategy if BK2 < MK holds.

Based on (H.17), the DGA-RA procedure operates as follows. Initially, each sub-
array selects an active antennas set based on a simple criterion, such as the norm-based
antenna selection (N-AS) described in the subsection 4.2. Then, the subarrays compute
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their Gramian matrices based on the selected set and transmit them to the CPU. At
the CPU, the array Gramian matrix is computed by (H.17) and transmitted back to
the subarrays. Afterwards, every subarray performs local antenna selection by a GA
implementation, considering that the other subarrays are fixed. To evaluate the fit-
ness function in eq. (H.11), the subarrays compute the array Gramian inverse matrix
adopting the SMW formula for matrix inversion, as follows.

Remark 2 (SMW formula): The SMW formula [33] gives the inverse of the matrix (A +
UVH) from A−1, U and V by computing:

(A + UVH)−1 = A−1 −A−1U
(

I + VHA−1U
)−1

VHA−1 (H.18)

Adopting this formulation, the array Gramian matrix can be calculated at the subarray
b during the iteration n by letting

A−1 =
(

G
(n−1)
S

)−1
, (H.19)

U =

[
−
(

H
(n−1)
Sb

)H (
H

(n)
Sb

)H
]

, (H.20)

VH =

⎡
⎣H

(n−1)
Sb

H
(n)
Sb

⎤
⎦ , (H.21)

where the superscript (n) denotes the variable during the n-th iteration of the DGA-
RA procedure (proof in Appendix A).

After performing local AS, each subarray transmits their achieved SE values to the
CPU. The CPU updates the AS indices of the subarray that has achieved the maximum
SE values at the iteration n. Then, the CPU requests the subarray Gramian matrix
of the updated subarray, and recalculates the inverse of the array Gramian matrix,

(G
(n)
S )−1. The process can be executed iteratively following the scheme depicted in

Fig. H.3.
The GA implemented in the DGA-RA procedure is similar to that one described

in the Algorithm 18, except for some details at the optimization variables encoding

Fig. H.3: Proposed DGA-RA procedure steps with coordination between the CPU and the RPUs.
The superscript (n) denotes the n-th iteration.
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and the crossover phase. About the individual encoding, the optimization variables
at each subarray are reduced from M to Mb, since local AS is performed at each RPU.
In addition, as the optimization variables consider only one subarray at each RPU,
the individuals have two chromosomes: one represented by the first Mb/2 genes, and
another composed by the remaining genes.

Due to this new chromosome definition, one further procedure after the crossover
phase is required to preserve the solution’s feasibility. The chosen method is to deac-
tivate antennas of individuals with more than Nb antennas in a random fashion until
they become feasible.

4 Antenna Selection Procedures

Two techniques to perform antenna selection are presented in the sequel, the DL sum-
capacity maximization antenna selection ( SCMAX-AS) and the N-AS method , proposed
respectively in [14], [7]. The goal of solving only the antenna selection problem is
to decouple the two RA problems associated to (H.15) aiming at obtaining tractable
formulations.

4.1 Antenna Selection for DL Sum-Capacity Maximization

Firstly, we analize equal power allocation (EPA) strategy, i.e. P = Pmax
K IK , intended to

obtain a manageable optimization problem. The problem of selecting the set of active
antennas in order to maximize the DL sum-capacity with the constraints of maximum
number of RF transceivers and subarray connections is formulated as [14]:

maximize
D

Cepa = log2 det
(

IK +
Pmax

Kσ2
z

HHDH

)
(H.22a)

subject to ∑
m∈Mb

Dm ≤ Nb, ∀b ∈ {1, . . . , B} (H.22b)

Dm ∈ {0, 1}, ∀m ∈ {1, . . . , M} (H.22c)

Despite the concavity of the objective function in (H.22a) [13], the problem (H.22) is
not convex due to the binary constraint in (H.22c). Hence, we define a convex relax-
ation of (H.22) by taking the variables Dm in the range (0, 1). This new problem, which
can be solved with convex optimization tools, has the constraint (H.22c) replaced by

0 ≤ Dm ≤ 1, ∀m ∈ {1, . . . , M} (H.23)

Notice that the solution of the convex relaxation results in non-binary values for the
active antenna indicators Dm, which is outside the original problem domain.

One method for performing the antenna selection by solving the convex relaxation
is to activate the Nb antennas with the highest Dm values at each subarray. This
procedure is named in this work as SCMAX-AS, and is followed by the OPA policy
in eq. (H.13). This AS procedure gives near-optimal results, except for N � M
[14]. Therefore, in a XL-MIMO system where the number of available RF transceivers
is much less than the array antennas, the achieved system SE with the SCMAX-AS
algorithm will be sub-optimal.
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4.2 Norm-Based Antenna Selection (N-AS)

The N-AS procedure focus on selecting the subset of Nb antennas with the highest
channel vector norm values [7]. We adopt this method to initiate the population of
the GA-based procedures due to its low computational cost. The N-AS method solves
the optimization problem formulated as

maximize
D

Π =
M

∑
m=1

Dm‖hm‖2
2 (H.24a)

subject to ∑
m∈Mb

Dm ≤ Nb, ∀b ∈ {1, . . . , B} (H.24b)

Dm ∈ {0, 1}, ∀m ∈ {1, . . . , M} (H.24c)

where the objective function consists of the sum of the squared norms of the channel
vectors associated to the selected antennas.

The problem (H.24) can be solved quickly by selecting the Nb antennas with the
highest channel vector norms at each subarray. After selection, the PA is performed
by the OPA policy in (H.13).

5 Complexity Analysis

The complexity of the presented procedures is evaluated in terms of the number of
symbols required for channel acquisition, the size of the coordination data exchanged
between the RPUs and the CPU, and the number of flops during execution.

5.1 Training

In the following, we analyze the procedures in terms of training symbols for CSI
acquisition. The length of the mutually orthogonal pilot signals used to estimate
the channel vectors at the BS depends on: a) the number of users; b) the number of
available RF transceivers; c) the number of antennas at the BS.

The number of symbols to acquire the entire channel matrix, required in all the

presented procedures except in the N-AS, is K
⌈

M
N

⌉
. Particularly, the N-AS algorithm

requires only the knowledge of the channel vector norms for selection. For this rea-
son, the N-AS can be implemented without explicit channel estimation, supported by
physical power-meters [21]. With this implementation, the N-AS requires a total of
2K symbols to operate. From this total, K symbols are required to estimate the norms
of the channel vectors, and the remaining K symbols are used to estimate the channel
vectors associated to the selected antennas.

5.2 Coordination Data Size

The coordination data is defined as the data originated at the RPUs that is required
at the CPU during the RA procedures. Determining the coordination data size is
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Table H.2: Coordination data exchanged between the RPUs and the CPU

Procedure Implementation Data type Data size

GA-RA Centralized Channel matrix MK
SCMAX-AS [14] Centralized Channel matrix MK
N-AS [7] Totally distributed – –
DGA-RA Quasi-distributed Gramian matrix (B + Nit)K2

crucial since it can grow tremendously in the XL-MIMO scenario. In practical imple-
mentations, techniques as data compression helps alleviating the high interconnection
bandwidth associated to the coordination data. However, such kind of consideration
and optimization are out of the scope of this work.

Table H.2 contains the coordination data size associated to the considered RA
procedures, detailing the type of required data in each one. The GA-RA and SCMAX-
AS procedures require the entire channel matrix at the CPU, while the DGA-RA one
relies on the subarrays Gramian matrices. On the other hand, the N-AS procedure
does not require any CSI knowledge at the CPU for antenna selection purpose, being
the most appealing technique in terms of the coordination data size.

5.3 Number of Flops

The third complexity metric is the number of flops executed by each procedure. The
complexity analyses for the N-AS and the GA-based AS algorithms are as follows.
The SCMAX-AS procedure is not considered due to the high complexity associated
with computing the number of executed operations by the convex optimization solver.

N-AS: The operations executed at each subarray on the N-AS procedure consists of
calculating the channel vectors’ norms then sorting the obtained values to get the Nb
largest ones. Assuming that the sorting operation has the complexity of the order
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Fig. H.4: Convergence of the GA-RA with the number of generations t varying the GA input
parameters Np, pc and pm. The "best" and "average" SE surfaces are obtained over 20 realizations.
In each plot, the values of the remaining input parameters are given in Table H.4.
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Mb log(Mb), the per-subarray flops for N-AS is

Cn-as = Mb(2K− 1) + Mb log(Mb) (H.25)

GA-RA: The complexity of the GA-RA method is dominated by the number of oper-
ations required for the evaluation of the GA fitness function, eq. (H.11). At the first
iteration, the algorithm evaluate the fitness function for Np individuals. During the
remaining iterations, (T − 1)(Np − Ne) fitness function evaluations are done, where
T denotes the total number of generations.

As the OPA policy involves simple computations, the complexity of the fitness
function is reduced to the inversion of the array Gramian matrix. The flops to compute
the array Gramian matrix inverse is derived in Appendix B. From this result, the total
flops for the GA-RA algorithm is

Cga-ra =
[
T(Np − Ne) + Ne

] (7
3

K3 + 2NK2 − K2
)

(H.26)

DGA-RA: For the DGA-RA procedure, a similar approach to the one used for GA-RA
can be followed. Despite that, the inverse of the array Gramian matrix is computed
by the SMW formula, which is implemented with a different number of flops. The
number of flops to obtain the inverse of the array Gramian matrix in the DGA-RA
procedure is derived in Appendix C. Taking into account these differences and the
fact that the DGA-RA procedure runs over Nit iterations, the total number of flops is
given by:

Cdga-ra = Nit
[
T(Np − Ne) + Ne

]
× (H.27)

×
[

7
3

N3
b + 2K3 + N2

b (4K− 1) +

+ K2(4Nb − 2) + N2
b (1− 2K) + K

]

6 Numerical Results

The numerical evaluations of the proposed methods as well as the benchmark tech-
niques are presented in this section. The simulation system parameters are given in
Table H.3. The users are randomly located inside a square cell of size L, and the BS
is equipped with a uniform linear array (ULA) positioned on one side of the cell, as
depicted in Fig. H.1. Additionally, the users are random uniformly located at a dis-
tance in the range (0.1L, L) from the array. Although the results in the following are
obtained for the ULA, they can be easily extended to other array form factors, such
as the uniform planar one.

Before comparing the proposed techniques, it is necessary to tune the GA-RA and
DGA-RA GA input parameters in order to obtain a suitable performance-complexity
tradeoff. The input parameter Np, pc and pm values are selected using the iterated
local search algorithm [34]. The number of individuals for elitism is equal to 10% of
the population size, and the number of tournaments is defined in order to fill the pop-
ulation after the elitism phase. Additionally, the stall convergence criterion parameter
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Table H.3: Simulation parameters

Parameter Value

Cell size L = 30 m
# Users K ∈ [1, 217]
Maximum transmitted power Pmax = 230 μW
Path-loss at the reference distance q0 = −35.3 dB
Path-loss exponent κ = 3
Noise power σ2

z = −96 dBm
Uniform Linear Array (ULA) Setup

# Antennas M ∈ [32, 2048]
# RF transceivers N ∈ [64, 256]
# Subarrays B = {2, 4, 8}
# Antennas per subarray Mb = M/B
# RF transceivers per subarray Nb = N/B

Table H.4: Genetic algorithm parameters

Symbol Description
Parameter value

GA-RA DGA-RA

Np Population size 80 80
Ne Elitism individuals 8 8
Ns Tournaments 36 36
pc Crossover probability 0.33 0.35
pm Mutation probability 0.13 0.36
Tmax Maximum generations 103 102

Tstall Stall generations 300 30

is approximately 30% of the maximum number of generations. The selected param-
eters for the GA-based procedures are listed in Table H.4. Notice that the DGA-RA
procedure is set to run 10 times less generations than the GA-RA, since the num-
ber of optimization variables decrease from M at the GA-RA to Mb in the DGA-RA
procedure.

In Fig. H.4, the quality of convergence of the GA-RA procedure is corroborated
varying the parameters Np, pc and pm independently. Each surface is computed by
averaging the achieved scores over 20 realizations. These results on the best and
average SE scores among the generations t confirm the parameters’ values adopted
in Table H.4, while demonstrating a relative low tuning sensibility of the GA-RA
convergence to the three input parameters.

Fig. H.5 depicts the system SE achieved by the proposed RA procedures versus
the number of available RF transceivers. In addition to the proposed solutions, the SE
attained by random AS scheme and using all the M antennas are plotted as the lower
and upper performance bounds, respectively. The results consider M = 512, B = 8,
K = 50 and Nit ∈ {5, 16} for the DGA-RA procedure. Observing the Fig. H.5, one
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Fig. H.5: Comparison of SE vs the number of available RF transceivers. M = 512, B = 8, K = 50
and, for the DGA-RA procedure Nit ∈ {5, 16}.

realize that the GA-based procedures achieve better SE results than the other ones. In
the sequence, there are respectively the SCMAX-AS and N-AS. As expected, all the
performance curves are upper and lower bounded by the SE achieved using full-array
ZF and random AS, respectively. The SE gap between the procedures decreases as the
number of RF transceivers increases. Analyzing the GA-based procedures, the DGA-
RA achieves SE values tight to the GA-RA running with only five iterations. However,
setting Nit = 16 makes the DGA-RA system SE values outperform marginally the ones
obtained by the GA-RA procedure. Therefore, the quasi-distributed procedure can
achieve a performance comparable, or even better, to the fully centralized approach
by adopting a sufficient number of iterations.

In the following, Fig. H.6 depicts the system SE achieved by the proposed RA
procedures versus the number of users. These numerical results consider M = 512,
B = 8, N = 256 and Nit ∈ {5, 16} for the DGA-RA procedure. For better under-
standing, let L = K/N be the system effective loading factor. For all the proposed
procedures, firstly the SE increases with K, assuming a decreasing behavior after a
peak. This is due to the reduction of spatial degrees of freedom increasing the system
loading factor, typically observed in linearly precoded systems [35]. Comparing the
procedures, all of them get comparable SE values for a low loading factor. However,
for high loading factor values, typically L = 0.6, the GA-RA and DGA-RA procedures
get substantial better results. Again, the DGA-RA outperforms the GA-RA in terms
of SE by setting Nit = 16. Combining the results in Figs. H.5 and H.6, we conclude
that the GA-based procedures perform with higher SE gains over the other available
AS schemes [7, 14] in crowded XL-MIMO scenarios, i.e., when the loading factor is
high, L > 0.25.
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6.1 Complexity Analysis

The numerical results in the following cover the computational complexity of the pro-
posed procedures. In Fig. H.7 the coordination data size of the centralized procedures
(GA-RA and SCMAX-AS) and the DGA-RA one versus the number of users is illus-
trated. The curves are evaluated by the expressions in Table H.2. The result considers
M ∈ {512, 2048} and,for the DGA-RA procedure, Nit = 16 and B ∈ {2, 4, 8}. Com-
paring the RA approaches when the number of users is low, the quasi-distributed one
get lower coordination data sizes than the centralized procedures. For higher num-
bers of users, the coordination data size associated to DGA-RA acquires larger values
than the obtained by the centralized procedures. This point of inversion of behavior
depends on the numbers of antennas, subarrays and iterations w.r.t. the DGA-RA
procedure. It is worth mentioning that the coordination data size grows quadratically
with K for the DGA-RA procedure, while it grows linearly with K for the centralized
RA procedure.

Fig. H.7 depicts the coordination data size of the centralized procedures and the
DGA-RA one versus the number of antennas in the BS. The results consider K = 50
and, for the DGA-RA method, Nit ∈ {5, 16} and B ∈ {2, 4, 8}. The coordination
data size grows linearly with M in the centralized procedures, while for the DGA-RA
procedure, it does not depend on M. In fact, this is the primary aim for choosing a
distributed RA technique in XL-MIMO, in which the BS is equipped with an asymp-
totically high number of antennas.

The next results are related to the complexity in terms of flops. Fig. H.8 illus-
trates the number of flops per processing unit of the GA-based procedures versus
the number of available RF transceivers. The curves are evaluated by the eqs. (H.26)
and (H.27). Such results consider K = 50 and, for the DGA-RA procedure, B = 8 and
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Nit ∈ {1, 5, 16}. For low numbers of RF transceivers, the flops’ values for the DGA-RA
procedure are lower than the GA-RA algorithm. Again, after a point of inversion of
behavior, the flops’ values for GA-RA get lower than the ones for the quasi-distributed
procedure. This point of changing of behavior decreases as Nit increases.

The curves with the number of flops per processing unit of the GA-based pro-
cedures versus the number of users are depicted in Fig. H.8. This result considers
N = 256 and, for the DGA-RA procedure, B = 8 and Nit = {1, 5, 16}. For low num-
bers of users, the flops’ values of the GA-RA procedure are lower than the ones get
for the DGA-RA. However, this behavior inverts quickly, and the gap between the
flops’ values for both centralized and distributed procedures becomes constant. This
constant behavior for large K is due to the fact that both eqs. (H.26) and (H.27) grow
asymptotically with K3.

7 Conclusions

This works proposes a subarray switching architecture for the BS antenna array, while
examining the problem of joint AS and PA optimization aiming at maximizing the SE
of XL-MIMO systems with limited number of RF transceivers. Two GA-based near-
optimal and low-complexity procedures are proposed. One is the centralized GA-RA,
designed to operate with the entire channel matrix available at the CPU. The other
is the quasi-distributed DGA-RA, based on the subarrays Gramian matrices. Both
evolutionary metaheuristic optimization methods are analysed in terms of achieved
SE, coordination data size and flops , and compared with benchmarks, including two
procedures from the literature, the SCMAX-AS and the N-AS followed by optimal PA.
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Numerical results corroborate that the GA-based AS and PA procedures achieve high
SE gains compared to the selected benchmarks, particularly in crowded XL-MIMO
scenarios, i.e., when the effective loading factor L > 0.25. At the same time, the
distributed DGA-RA method can outperform the other procedures with low-size co-
ordination data and low computational complexity by taking the appropriate system
operation settings.
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A. Local Computation of the Inverse of the Array Gramian Matrix via the Sherman -
Morrison - Woodbury Formula

A Local Computation of the Inverse of the Array

Gramian Matrix via the Sherman - Morrison -

Woodbury Formula

To compute the array Gramian matrix at the subarray b, the RPU must follow these
two steps. Firstly, remove the contribution of the selected antennas at the subarray
b at the iteration n − 1. Then, add the contribution of the selected antennas at the
iteration n. Therefore, it needs to compute the inverse of the array Gramian matrix by
the expression (

G
(n)
S
)−1

=
(

G
(n−1)
S −G

(n−1)
Sb

+ G
(n)
Sb

)−1
(H.28)

which evaluation would be straightforward if all the terms were available at the sub-
array.

However, the subarray needs to compute (G
(n)
S )−1 knowing only (G

(n−1)
S )−1 and

the local channel vectors, i.e. hm ∀m ∈ Mb for the subarray b. Writing the subarray
Gramian matrices of (H.28) in terms of the local channel matrices results in

−G
(n−1)
Sb

+ G
(n)
Sb

= −
(

H
(n−1)
Sb

)H
H

(n−1)
Sb

+
(

H
(n)
Sb

)H
H

(n)
Sb

=

[
−
(

H
(n−1)
Sb

)H (
H

(n)
Sb

)H
] ⎡⎣H

(n−1)
Sb

H
(n)
Sb

⎤
⎦ (H.29)

From (H.28) and (H.29), it is possible to define the SMW formula variables, A−1,
U and VH , in terms of the available information at the subarray as the eqs. (H.19),
(H.20) and (H.21), respectively.

B Flops to Compute the Inverse of the Array Gramian

Matrix via the Cholesky Decomposition

Initially, the computation of the array Gramian matrix is done by solving the product
in (H.5), which costs 2K2N − K2 flops [33]. Afterwards, define the Cholesky decom-
position of the array Gramian matrix as

GS = LLH (H.30)

where L is a lower triangular matrix. The computation of L can be done with K3/3
flops [33]. Then, each column of the inverse of the Gramian matrix can be computed
solving the set of linear systems below by backforward substitution,

LLHx = ei, ∀i = 1, . . . , K (H.31)

where ei denotes the canonical basis vector, i.e. a row vector with all entries equal to
0, except the entry i which is equal to 1. Each linear system can be solved with 2K2
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flops [33], totaling 2K3 flops for all the columns of G−1
S . Therefore, the total flops for

the array Gramian matrix computation and inversion is equal to

CChol. =
7
3

K3 + 2NK2 − K2 (H.32)

C Flops to Compute the Inverse of the Array Gramian

Matrix via the Sherman-Morrison-Woodbury For-

mula

To count the flops to compute the matrix inversion by the SMW formula, the eq.
(H.18) is decomposed in six parts. The computations involved in each part and their
respective flops are organized in Table H.5. The flops in Table H.5 are counted as-
suming that the contribution of the selected antennas during the previous iteration is
removed. Such assumption is reasonable since the expression in (H.28) can be done

sequentially, by keeping only the terms −G
(n−1)
Sb

or G
(n)
Sb

at a time.
All the parts include only simple matrix multiplications and sums, except for

the part Q3. This part can be efficiently computed by the Cholesky decomposition
approach followed by the backforward substitution procedure described in Appendix
B. Therefore, the total flops required to compute the inverse of the array Gramian
matrix via the SMW formula is equal to

CSMW =
7
3

N3
b + 2K3 + N2

b (4K− 1) (H.33)

+ K2(4Nb − 2) + N2
b (1− 2K) + K

Table H.5: Flops involved on the Sherman-Morrison-Woodbury formula computation

Symbol Expression Number of flops

Q1 VHA−1 2NbK2 − NbK
Q2 I + Q1U 2N2

b K− N2
b + Nb

Q3 Q−1
2 7/3N3

b
Q4 UQ3 2N2

b K− NbK
Q5 I−Q4Q1 2NbK2 − K2 + K
Q6 A−1Q5 2K3 − K2
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1. Introduction

Abstract

Massive MIMO, a key technology for increasing area spectral efficiency in cellular systems,
was developed assuming moderately sized apertures. In this paper, we argue that massive
MIMO systems behave differently in large-scale regimes due to spatial non-stationarity. In
the large-scale regime, with arrays of around fifty wavelengths, the terminals see the whole
array but non-stationarities occur because different regions of the array see different propaga-
tion paths. At even larger dimensions, which we call the extra-large scale regime, terminals
see a portion of the array and inside the first type of non-stationarities might occur. We
show that the non-stationarity properties of the massive MIMO channel change several im-
portant MIMO design aspects. In simulations, we demonstrate how non-stationarity is a curse
when neglected but a blessing when embraced in terms of computational load and multi-user
transceiver design.

1 Introduction

Massive multiple-input-multiple-output (MIMO) is a key technology in 5G wireless
communication systems in sub-6 GHz bands. It is characterized by the use of many
antennas at the base station serving many terminals simultaneously. In current cellu-
lar deployments, massive MIMO will likely be implementing compact planar arrays.
The small footprint leads to reduced infrastructure costs. Even with a large number
of antennas, though, compact design does not expose enough spatial dimensions.

Spatial dimensions are essential in uncovering the fundamental properties of mas-
sive MIMO: channel hardening, asymptotic inter-terminal channel orthogonality, and
large array gains. Increasing the array dimension contributes to achieving the per-
formance gains originally promised by massive MIMO and providing high data rates
when the number of terminals is much smaller than the number of antennas. In-
creasing the array dimension further allows the support of high data rates to a much
larger number of terminals. Distributing the arrays across a building, for example,
allows for cost-efficient implementation of an extremely large array while bringing
other benefits such as better coverage.

The impact of the array dimension has motivated new types of deployment where
the dimension of the arrays is pushed to the extreme. Such arrays would be integrated
into large structures, for example along the walls of buildings in a mega-city, in air-
ports, large shopping malls or along the structure of a stadium [1, 2] (see Fig. I.1) and
serve a large number of devices. This type of deployment is considered an extension
of massive MIMO with an implementation based on discrete antenna elements. We
refer to this extreme case as extra-large scale massive MIMO (XL-MIMO). We argue in
this paper that XL-MIMO should be considered a distinct operating regime of massive
MIMO with its unique challenges and opportunities.

When the antenna arrays reach such a large dimension, spatial non-wide sense
stationary properties appear along the array. Different parts of the array may have
different views of the propagation environment, observing the same channel paths
with different power, or different channel paths [3]. When the dimension of the array
becomes extremely large, different parts of the array may also view different terminals
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Fig. I.1: The ways to create larger apertures in a massive MIMO. (a) Antenna array with large
dimension. (b) Antenna array with extra-large dimension. (c) Large intelligent surface. (d)
Distributed antenna system.

as the energy of each terminal is focused on a portion of the array, called visibility
region (VR). As the array dimension increases, the performance for each terminal is
limited by its VR, i.e., the effective array dimension viewed from the array. However,
the ability to serve multiple terminals with high data rates is highly enhanced, hence
bringing benefits in crowded scenarios.

Wireless communications involving large electromagnetic elements is an emerg-
ing concept. The term Large Intelligent Surface (LIS) has appeared recently and de-
notes generically a large electromagnetic surface [4] that is active and hence possesses
communication capabilities. Another possible implementation of very large arrays is
through radio stripes as described in [5] that can be easily attached to existing con-
struction structures and are connected to a central unit to form a distributed cell-free
system. Interestingly, research is also focusing on passive large electromagnetic sur-
faces [6]. A passive LIS acts as a reflecting surface that changes the properties of the
incoming electromagnetic waves. It acts as a relay to enhance the propagation features
of the reflected waves.

In this article, we focus on discrete arrays of antennas, not continuous surfaces,
and the effect of non-stationary properties along the array. Our emphasis is on VRs
and their impact on performance and transceiver design. The primary differentiat-
ing feature from stationary massive MIMO is that the terminals have overlapping
VRs with an inter-terminal interference pattern that changes along the array. Non-
stationarity is accounted for in the performance assessment of linear multi-terminal
transceivers and design of hybrid analog-digital beamforming and serves as the main
tool to alleviate the transceiver computational complexity.

2 Types of spatial non-stationary regimes

Fig. I.1 gives an overview of the types of deployments considered in this paper and
the ways to create larger apertures for XL-MIMO.

1. An antenna array of large or extra-large dimension: typically embedded in a
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2. Types of spatial non-stationary regimes

building of large dimension [1].

2. Large intelligent surface: a generic term for a large electromagnetic surface [1].
A possible implementation is with a discrete array of antennas (as in case (a))
but possibly other material.

3. Distributed antenna system: cooperating antennas or arrays of antenna units
placed at distant geographical locations [7].

To illustrate the spatial non-stationarity properties in massive MIMO, we rely on
a cluster-based channel model. Fig. I.2 depicts a conventional massive MIMO channel
model that is spatially stationary, along with two types of spatial non-stationarities
defined according to the concept of VR along an antenna array. The concept of VR
was introduced in the COST 2100 channel model [8]. In its original definition, a VR
is a terminal geographical area. When the terminal is located in this area, it sees a
given set of clusters. This is the set of clusters associated with the VR. When it moves
out of the VR, the terminal sees a different set of clusters. We extend the concept
of VR to denote a portion of the array from which a given set of clusters is visible.
We distinguish between VRs in the terminal domain VR-T and in the array domain
VR-A.

2.1 Large-scale massive MIMO

The L-MIMO regime applies when different sets of clusters are visible from different
portions of the array and the whole array is visible by all terminals. In general,
this implies that the terminals are at a significant distance from the array. Fig. I.2(b)
illustrates a simple case where the array is divided into two disjoint VR-As. This
regime was highlighted in an early measurement [3] involving a long array of 7.4
meters in a courtyard where, at a different portion of the array, different propagation
paths were measured.

2.2 Extra-large scale massive MIMO

The XL-MIMO regime applies when different sets of clusters as well as different sets
of terminals are visible from different portions of the array. The main difference with
the L-MIMO regime is that the terminals are much closer to the array (or the array is
much larger). As seen in Fig. I.2 (c), one can define another type of VR: the portion
of the array that is visible from a given terminal. For example, the VRs of terminal 1
along the array includes VR-A1 and VR-A2.

Aalborg University initiated a measurement campaign specifically dedicated to
XL-MIMO [2] in a large indoor venue. Fig. I.3(a) shows a striking result from the
campaign that illustrates the complexity of the propagation environment. The mas-
sive array is six-meter long and comprises 64 antennas. It is placed along a wall on a
line parallel to the floor and made of units of eight antennas. Eight terminals, around
three meters apart, holding a two-antenna device are located at 2 and 6 meters in
front of the array and send uplink signals as shown in Fig. I.3(b). Fig. I.3(a) displays
the average receive power of the channel when the terminals move locally. First, we
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(a) Stationary massive MIMO

(b) Large scale MIMO: clusters are visible from a portion of the
array

(c) Extra-large scale MIMO: terminals are visible from a portion of the
array

Fig. I.2: Three MIMO scales
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observe very large variations of the power across the array, more than 10dB and dif-
ferent patterns for the two signals coming from the same device. Terminals 5 to 8 are
located behind a stair case, which brings an attenuation of the signal visible from a
portion of the array.

2.3 Distributed massive MIMO

XL-MIMO can be seen as a special case of distributed massive MIMO where the whole
set of arrays is collocated. Especially in a dense distribution, the same kind of model
holds where clusters, as well as terminals, are visible from a subset of the arrays.

2.4 Impact on key channel assumptions

The non-stationary properties of arrays of very large dimension impose a departure
from the conventional channel models, especially the widely used correlated channel
model. This model assumes that the channel has a centered Gaussian distribution
with a covariance matrix that reflects stationary properties in the correlation among
antennas as well as the propagation. While the Gaussian assumption might still hold,
the most basic modification on the channel assumptions is that the average channel
gain varies along the array. A cluster-based geometric channel model reflects more
appropriately the source of non-stationarity, i.e. cluster VRs. The major change com-
pared to traditional models is in the expression of the steering vectors. First, near
the array, the phase of each element should account for a spherical wave modeling as
the planar wave approximation is not valid anymore. Second, the amplitude of each
element varies. This is due to the path loss along the array as well as the interplay be-
tween clusters and obstacles in the environment as different portions of the spherical
wavefront might experience different propagation characteristics. The main draw-
back of this modeling is that it depends on the position of the clusters and terminals
relative to the array, which makes it scenario-dependent and increases its complexity.

A simplification consists in decomposing the array in sub-arrays in which the
channel is approximated as stationary. This model can be enhanced by adding a
transition zone between the sub-arrays [9]. This type of assumption can facilitate per-
formance analysis of XL-MIMO systems [10]. It motivates multi-antenna processing
based on sub-arrays where the sub-array processing is adapted to the non-stationarity
patterns.

3 Exploiting spatial non-stationarity

This section advocates that non-stationary properties, with a focus on VRs, should
be accounted in performance assessment as well as transceiver design. We provide
performance bounds of the zero-forcing (ZF) precoder using a simple VR model. Fur-
ther, we demonstrate that VRs should be taken into account when designing hybrid
analog-digital precoders/combiners. Finally, we exploit VRs, i.e., array regions where
signals have low power, to design low complexity receivers.
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(a) Average received power (dBm) in a 64 antenna array made of
8-antenna units (y-axis). The received power is averaged over the
small movements of the terminals.

(b) The array is 6 meters long. Eight terminals (y-axis)
holding a 2-antenna device are around 2 and 6 meters
from the array and move in a square of 1 square meter.

Fig. I.3: The measurement set-up and results for XL-MIMO [2].
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3.1 Performance bounds

Only a handful of studies have been conducted to study the impact of non-stationarity
on the performance of massive MIMO systems. Channel capacity is studied in [11]
for a spherical wave-front based LOS channel model, while cluster non-stationarity
visibility along the array is treated in [12]. The focus of this section is on the im-
pact of array VRs associated with the terminals and how it compares to the con-
ventional stationary case. In [10], a simple non-stationary massive MIMO channel
model was proposed so that it is conducive to the analysis of the effect of VRs. This
model is employed to assess the performance of simple linear multi-terminal pre-
coders (conjugate-beamforming (CB) and ZF precoders).

The channel of a given terminal is modeled as stationary within its VRs and is set
to zero outside of the VR. Though the model was developed for correlated channels
(see [10]), here, we limit our discussions to independent and identically distributed
channels, for simplicity, and ZF precoding. Consider a MIMO broadcast channel with
K single-antenna terminals served by a BS with M antennas. The SINR of terminal
k for ZF precoding averaged over stationary channels has a well-known expression.
However, VR-based channels are not easily amenable to analysis. It is possible how-
ever to find an approximation of the SINR, valid in asymptotic conditions, as a func-
tion of the VR size of each terminal and the size of the overlap regions. For simplicity,
we assume that the terminals have the same VR size equal to D antennas and total
transmit energy per VR is equal to M. We examine the worst and best case terminal
configuration. The SINR can be written as ρ

K (M − L(K, M, D)) where the loss term
L(K, M, D) differs in each case. The term ρ is the transmit signal-to-noise ratio.

In the worst case, all the terminals have completely overlapping VRs - i.e., they
receive the signal from the same D antennas - the inter-terminal interference is high.
In the best-case, inter-terminal interference is minimized asymptotically for all K ter-
minals. The terminals are grouped in M/D groups where each group contains KD

M
terminals. Hence, there are KD

M − 1 interfering terminals for any terminal k with an
overlapping zone of D antennas.

The SINRs all scale as M/K and differ in lower order quantities. The best-case
non-stationary scenario results in better performance than the stationary case. It
reaches its largest value when M

D is large, i.e., for small VRs or non-overlapping VRs.
The worst-case non-stationary scenario results in worst performance than the station-
ary case. The smaller the VR of the terminal, the more SINR loss compared to the
stationary case.

In Fig. I.4, we provide an example result to demonstrate the impact of non-
stationarity on the performance of ZF precoding. We plot the SINR results against
the active number of antennas per terminal, i.e., D. We can see that depending on the
configuration (i.e., best-case or worst-case) the SINR can be significantly higher/lower
than the SINR of the stationary channels. As expected, the differences are greater for
smaller values of D.

The non-stationarity captured using VRs and subsequent analysis shows that non-
stationarity has a significant impact on the performance of a massive MIMO system.
As such, it is imperative to understand this impact and to exploit it in designing
massive MIMO systems.
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Fig. I.4: The SINR of kth user vs the active number of antennas D (M = 256, K = 64, and
ρ = 10dB).

3.2 Hybrid beamforming

Hardware and cost constraints make it challenging to connect all the antennas in a
massive MIMO system with dedicated RF-chains and high-resolution ADCs. There-
fore hybrid analog-digital architectures, where a few RF-chains are connected to a
large number of antennas are suitable for massive MIMO systems. The hybrid analog-
digital architectures keep the cost and complexity under control by using fewer RF-
chains compared to the number of antennas but allow multi-terminal multi-stream
precoding that is not possible using analog-only architectures.

There are several possibilities for implementing hybrid analog-digital architec-
tures. The more flexible (but complex to implement) architecture is fully-connected
architecture, where all the RF-chains are connected to all the antennas. A simpler
(but less flexible) architecture is partially connected architecture in which every an-
tenna is connected to a subset of RF-chains. Recently, dynamic hybrid architectures
are also considered that adapt to the channel, hence providing flexible yet simpler
implementation [13].

The dynamic hybrid analog-digital architectures can be particularly beneficial in
non-stationary channels. Motivated by the VR-based channel model discussed in the
last section, it can be argued that a simple dynamic hybrid analog-digital architecture
is one in which only the antennas corresponding to the VR are connected to the
RF-chains. This is feasible as the antennas outside the VR do not have significant
channel power. Thus a low complexity dynamic architecture can potentially provide
performance close to the fully digital system but at low hardware cost.

To show the benefit of non-stationarity aware system design, we provide simula-
tion results. Assuming D = M/2 size VR for each terminal (where visible antennas
are chosen uniformly at random), we provide the average SINR of ZF precoder with
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Fig. I.5: The SINR vs the number of antennas M (D = M/2, K = 16, and 16 RF-chains).

different hardware architectures. There are K = 8 terminals in the system. The fully
digital architecture has M RF-chains, and we use the algorithm proposed in [14] to
obtain the hybrid precoders. The hybrid analog-digital architectures have RF-chains
equal to the number of terminals K. The partially connected hybrid architecture has
an RF-chain connected to M/K successive antennas. The dynamic architecture has
kth RF-chain connected only to the antennas visible to the terminal K. From the
results in Fig. I.5 we can see that the dynamic architecture can provide performance
better than fully-connected architecture (in non-stationary channels) and close to fully
digital system.

Dynamic hybrid architectures are interesting for non-stationary massive MIMO.
These architectures are an example of a system design that exploits the non-stationary
nature of the massive MIMO channel. The results presented herein, however, are pre-
liminary and a lot of research is required for practical designs. One major challenge in
dynamic hybrid architectures is the efficient acquisition of channel state information
(the presented results are based on genie aided CSI).

3.3 Low complexity transceivers

One obvious consequence of having an extremely large number of antennas at the
base station is its high complexity architecture. Even with simple linear transceivers,
the base station should perform a large number of complex operations. This problem
gets even worse when it comes to crowded scenarios with many terminals in the
system. Therefore, implementing low complexity techniques is one major challenge.
One possible way is to adapt the transceiver design to the non-stationary energy
patterns of the terminals, complemented by distributed processing methods such as
sub-array based architectures. To determine low complexity transceivers, acquiring
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information about the VRs is critical.
The existence of VRs is the basis to implement low complexity linear transceivers

such as the ZF. Indeed, the computational cost of implementing a ZF operation is
dominated by the inversion of a matrix that has a band structure due to the VRs
and might even be sparse. However, implementing distributed techniques is more
favorable due to lower complexity and more flexibility. Distributed processing is
motivated not only by the computational cost but also by the ease of installation of
very large arrays that are made out of smaller sub-arrays. Each sub-array carries out
local processing of the signals while a central unit is responsible for the final data
fusion step.

As the terminals are connected to a subset of sub-arrays, a graph can be used
to describe the connections between terminals and sub-arrays. When the terminals
are connected to a small number of sub-arrays, the graph is sparse and becomes a
convenient tool to facilitate low complexity transceiver designs. Compared to a fixed
sub-array division, a dynamic division leads to a better performance outcome where
the division fits ideally the multi-terminal VR patterns and should be updated for
the changes in the VR patterns. Simple learning algorithms can help in tracking the
power pattern of the terminals over the array.

Considering the uplink, a linear fusion of the sub-array output signals is carried
out at the central unit. When arrays are deployed in a very large structure, such as
around the roof of a stadium, the processing can be structured hierarchically with a
multi-stage fusion involving a hierarchical subset of sub-arrays at each step.

Non-linear processing can be beneficial in some situations to improve perfor-
mance compared to linear fusion. Due to spatial non-stationarities, multi-terminal
interference patterns vary over the array so that one terminal experiences different
interference conditions at each of the sub-array. Therefore, it becomes beneficial to
detect a terminal from the sub-array with favorable interference conditions and then
remove its contributions from the other sub-arrays, enhancing the signal to interfer-
ence ratio of all the other terminals. This nonlinear method follows the principle of
successive interference cancellation technique and was tested in [15]. More advanced
receiver based on message passing among sub-arrays can be employed to reduce the
performance gap with the optimal methods such as maximum likelihood.

In Fig. I.6, we test the notion of VR in a multi-terminal processing. The terminals
are uniformly distributed in front of a linear array comprising 1024 antennas. The
channel is assumed to have a Gaussian distribution while the energy variations along
the array come from the path loss. The figure displays the spectral efficiency per
terminal as a decreased number of antennas is considered in the VR of each terminal.
For this channel model, we observe a saturation in the performance of the centralized
processing. With some performance degradation, the processing can be reduced to a
relatively small number of antennas per terminals (two sub-arrays of 128 antennas). In
distributed processing, we have 128 antennas per sub-array. We observe a degradation
when the number of antennas in the VR increases for a loaded system (128 terminals).
As the VR becomes larger, the number of terminals to be processed per sub-array
increases until reaching a regime where the sub-optimality of distributed processing
becomes apparent.
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Fig. I.6: Rate per user comparison between centralized and distributed ZF processing vs number
of contributing antennas in the VR of each terminal. (M = 1024 and SNR= 15dB).

4 Next steps

4.1 Characterizing the channel

Near-field channel measurements involving extremely large arrays where non - sta-
tionary patterns are visible are scarce (see section I.2). Yet, they are necessary, as
little is known about their non-stationary features outside of a theoretical framework.
Channel measurements are needed to understand in more depth the propagation be-
havior in real-life set-ups. For example, it appears important to uncover how the
wireless channel behaves in a large indoor venue with very large antenna panels de-
ployed along the walls: is the channel sparse or does it demonstrate rich scattering?
The issue is not only about the phase front that is spherical and not planar anymore.
It is also about the channel energy variations along the array as was the focus in this
article. Those variations are the results of the path loss in line-of-sight but also the ge-
ometry of the building and reflecting structures (ceiling, floor, stairs, various objects)
that are near the communicating panels and the end-terminals.

To characterize the channel, a multitude of measurements are needed in differ-
ent deployment scenarios (e.g., different room types, outdoor scenarios) to guaran-
tee statistical significance. Many more measurements are necessary to extract the
non-stationary channel attributes but also other important features impacting chan-
nel modeling. An extremely large array views the propagation environment with
super-resolution. The objects along the propagation do not look the same when illu-
minated by a large array. For example, large arrays can differentiate a set of reflecting
entities that would be part of a cluster otherwise. Hence, the definition of clusters can
be questioned, as well as the distribution of the small scale fading along the propaga-
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tion path. Another example is about the modeling of large scale fading. As a terminal
moves locally, large scale fading remains identical for a compact array size. With very
large arrays, even very small movements might impact large scale quantities.

4.2 Embracing electromagnetics

Communication in the near-field and hence spherical wave modeling implies that the
propagation features are dependent on the relative position of the end-terminals to
the electromagnetic panels, the size of the panels, as well as their magnetic properties.
This paper has considered very simplified models to highlight the impact of energy
variations along the array panels. There is a need, though, to revisit communication
theory to incorporate those electromagnetic attributes more faithfully.

The incorporation of advanced electromagnetic features impacts the development
of algorithms and likely adds to their complexity. As an example, compressed sensing
methods are employed widely for sparse channel estimation. Those methods rely
usually on a dictionary, i.e., typically an over-complete set of vectors that span the
propagation space. Spherical waves imply that more parameters are necessary to
describe the dictionary.

Compared to stationary massive MIMO, the array aperture offers an additional
degree of freedom: the assignment of a subset of antennas to each terminal. In section
3.3, we have restricted the processing area per terminal to the visibility region. Com-
putational cost motivates the shrinkage of the processing area. Inside the processing
area, the signal of a terminal is a signal of interest while it is treated as interference
outside. Satisfying specific metrics provides another motivation: a terminal requiring
more data is assigned a larger area while a fairness criterion might lead to a balanced
assignment. This processing leads to a system model that lies between full network
MIMO (the processing areas correspond to the visibility regions) and MIMO interfer-
ence channel (the processing areas to all terminals are disjoint). This is reminiscent of
the access point association in distributed settings. It is different though due to the
high resolution in the assignment problem and an assignment that could be highly
dynamic and follows the movements of the terminals.

5 Conclusions

XL-MIMO is an extreme but practical case of massive MIMO with larger apertures.
This paper has focused on discrete antenna arrays of extremely large dimension that
are deployed as part of a new large building structure. Along with active and passive
large electromagnetic surfaces, they participate in a vision of ubiquitous connectivity
where a connection is not achieved through access points anymore but rather through
diffuse access that is located much closer to the end terminals. Such a vision is not
realized yet and comprises many practical challenges. We have discussed how non-
stationarities along the array found in XL-MIMO change the performance of MIMO
systems and how visibility regions can be accounted for to decrease the computational
load associated to MIMO transceivers in centralized or distributed implementations.
When communication happens in the near-field, many other communication aspects
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are impacted. For example, propagation attributes become different from the conven-
tional far-field so that channel models need to be properly adjusted calling for new
measurements. Directional beamforming is more complex because the beam does not
depend on the directions only but also on the position of the terminals relative to the
array. Those might be well-known properties of near-field communications. How-
ever, the array dimension brings specific challenges in terms of computational load
that need to be addressed.
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Summary

Massive MIMO (multiple-input multiple-output) systems are key candidates 
for the fifth generation (5G) of cellular networks. Having a lot of antenna el-
ements at the base station (BS) is an important enabler to provide a very high 
spatial resolution. Therefore, systems beyond 5G rely on increasing the num-
ber of elements at the BS to support future applications. At very large dimen-
sions, e.g. aperture sizes bigger than 100 wavelengths, a new type of array 
called extra-large scale MIMO (XL-MIMO) emerges that offers enhanced 
spectral and energy efficiency.However, practical implementation of such ar-
rays requires overcoming several challenges such as computational complex-
ity, hardware limitations and non-stationary propagation patterns.
This thesis presents several techniques to handle major existing concerns in the 
XL-MIMO arrays, namely: computational complexity of receiver algorithms, 
scalability and interconnection overheads. In order to address the complexity 
issue, different low complexity methods are proposed. One of the main dif-
ferences between these methods and conventional linear receivers in massive 
MIMO systems is, that they exploit the information about user energy patterns 
over the array to operate more effectively. Another approach is to distribute 
the receiver processing tasks between several nodes and create a hierarchy be-
tween processing nodes. The thesis studies different architectures and mostly 
focuses on a distributed way that uses sub-arrays to obtain local estimates at 
local nodes. Then, a central node collects all the local data to perform a global 
decision. Furthermore, the thesis suggests several antenna selection methods 
to limit the area of the array being processed and control the amount of com-
putations. These methods directly use the received energy patterns at the BS 
to find the best active antenna sets and turn off the rest of the array to save 
energy. Moreover, to address the hardware considerations such as scalability 
and inter-connection overheads, a fully decentralized method is proposed that 
works without a central node.
In summary, the main outcome of the thesis is the proposal of signal process-
ing enablers for the XL-MIMO systems. The proposed methods address the 
aforementioned challenges while providing acceptable performance. 
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