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Abstract

An efficient and robust method to measure the quality of harvested corn
silage is essential for a farmer in order to optimise yield and machine efficacy.
Current measurement approaches are cumbersome and time-consuming due
to manual sample preparation and separation steps.

This PhD thesis investigated automatic monitoring of corn silage qual-
ity from images taken directly after harvesting, without the need for man-
ual processing such as separating particles. Concretely, we proposed to use
deep learning for localising kernel fragments and stover overlengths. Two-
stage networks were evaluated and improved upon in comparison to a more
naive training approach. This was realised through investigations in data
sampling, finetuning, and adapting priors for object shape and size when
initialising training. In addition to two-stage networks, a novel network was
presented aimed to efficiently classify sieve sizes for kernel fragments with-
out the need for regression or classification modules. The proposed networks
showed promising results when evaluated with annotations or correlation to
physically sieved samples.

As deep learning and neural networks played a central role in this thesis,
investigations were made into understanding the models. A number of deep
learning models were evaluated for kernel fragment recognition in relation
to precision, recall and speed, and from this, the optimal deep learning ar-
chitecture was proposed. Deep learning models require a large amount of
high quality annotated data for development and evaluation. Larger datasets
achieve this through extensive pipelines, however, this can be expensive to
implement in more fine-grain tasks. Therefore, we covered the challenges
in annotating corn silage and investigated alternatives to manual annotation.
Finally, deploying models for different computer vision tasks on edge devices
was investigated in regards to the trade-offs in speed and retail price.

This work has covered methodologies for the potential of an automatic,
efficient and robust monitoring of corn silage quality, while covering the real-
world aspects of working with deep learning. Hereby paving the way for
automated optimal machine settings during harvesting, which can ensure
corn silage of high quality.
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Resumé

En effektiv og robust metode til at méle kvaliteten af hostet majsensilage er
afgerende for at landmanden kan optimere udbytte og maskineffektivitet.
Dog er nuveerende mélemetoder er besveerlige og tidskreevende pd grund af
manuel preveforberedelse og separationstrin.

Denne ph.d.-afhandling underseggte automatisk overvagning af kvaliteten
af majsensilage fra billeder taget direkte af planten efter host uden brug af
adskillelsestrin. Konkret foreslog vi at bruge deep learning til at lokalisere
kernefragmenter og overleengder af majsblade. To-trins netveerk blev eval-
ueret og forbedret i forhold til en mere naiv treeningstilgang. Dette blev
realiseret gennem underspggelser i datasampling, finjustering og tilpasning af
forudseetninger for objektets form og sterrelse ved treeningens start. I tilleeg
til to-trins netvaerk blev et nyt netveerk praesenteret med det formal at klas-
sificere sigtesterrelser for kernefragmenter uden behov for regression eller
klassifikationsmoduler. Alle netvaerk viste lovende resultater, ndr de blev
evalueret med annoteringer og/eller korrelation til fysisk sigtede prover.

Da deep learning og neurale netveerk spillede en central rolle i denne athan-
dling, blev der foretaget undersogelser af forstaelsen af modellerne. En
reekke deep learning modeller til kernefragmentgenkendelse blev evalueret
i forhold til preecision, recall og hastighed, og ud fra dette blev den op-
timale deep learning arkitektur foresldet. Deep learning modeller kreever en
stor meengde annoterede data af hej kvalitet til udvikling og evaluering.
Sterre dataseet opnar dette gennem omfattende pipelines, men dette kan veaere
dyrt at implementere i mere specifikke opgaver. Derfor diskuterede vi ud-
fordringerne i at annotere majsensilage data og undersogte alternativer til
manuel annotering. Endelig blev implementeringen af modeller til forskel-
lige computervisionsopgaver pa edge-enheder undersegt med hensyn til kom-
promis mellem hastighed og detailpris.

Dette arbejde har muliggjort udviklingen af metoder til en automatisk, ef-
fektiv og robust overvagning af majsensilagekvalitet, hvor der er taget hgjde
for de praktiske aspekter ved at arbejde med deep learning. Dette er med
til at bane vejen for optimale maskinindstillinger, som sikrer majsensilage af
hojeste kvalitet.
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Chapter 1

Introduction

Many parts of industry are becoming increasingly more automated, includ-
ing agriculture. A significant driving force can be due to projected food
demands as the global population is predicted to increase to over 9 billion by
2050 [1]. It is estimated that food production must increase at even higher
rates due to current trends in eating habits, in addition, income inequality is
reducing significantly between countries. Based upon these trends, by 2050
food production must be increased by 70%, however, this challenge is not
easily solved as most of the land suitable for farming is already in use [1].
Suggestions to solving these problems include investing in technologies that
lead to higher yields, in addition, the technologies should improve current
food production as it is considered largely unsustainable in terms of negative
effects on the climate [2].

Agriculture is one of the cornerstones of our society and there has been a
countless number of technological advancements over many centuries. Major
improvements in recent generations include precise in-field localisation with
global navigation systems [3] or the use of bioengineering in order to cre-
ate crops with enhanced genetics [4]. Current trends include big data as the
number of sensors increase together with improved infrastructure for trans-
ferring data in the field [5]. Finally, image sensors is an area of research that is
especially active ranging from satellite imagery, thermal, hyper-spectral and
traditional RGB cameras [6].

Many occupations in agriculture require intensive work hours and au-
tomating some of the processes would provide an aid to farmers. One such
area is monitoring the quality of crop harvested by a harvester. A farmer
spends a large amount of time before harvesting their crop, including soil
preparation, sowing seeds and weed management. Therefore, finding the
correct settings for the machine is essential in order to optimise yield and
profits.
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This leads to the overall research question on whether the harvest qual-
ity monitoring can be automated using deep learning algorithms on RGB
images. Secondly, since this is an Industrial PhD study a secondary research
question arises in which practical implications this may have. Concretely, this
PhD addresses monitoring the quality of corn silage harvested with forage
harvesters where there is minimal efficient and effective methods currently
available to the farmer. By following the recent advancements in neural net-
works and big data we also adopt methods that can be considered as black-
boxes in this PhD, therefore, we also cover investigating and understanding
neural networks.

1 Monitoring Corn Silage Quality

Determining the quality of harvested Whole Plant Corn Silage (WPCS) is an
essential step for a farmer. WPCS is a popular form of fodder for dairy cows
as it can be efficiently harvested and can provide high amounts of nutrient
energy [7]. The plant has a high starch content present in the corn kernels but
it is protected by the outer shell, therefore, the kernels must be fragmented
to expose the endosperm allowing for a more effective fodder [8]. The stover
(leaves and stalks) are chopped into particles with an aim of producing phys-
ically effective Neutral Detergent Fibre (peNDF). A correct particle length in-
creasing the peNDF is key as these are directly related to each other resulting
in higher quality silage [9]. Longer particles leading to peNDF is desirable as
it promotes a healthy rumen due to increased cud chewing, increased time
of particles in the rumen and an overall healthy pH [10-12]. However, if
particles are too long the silage can be difficult to pack tightly, potentially
promoting unwanted bacterial growth [11, 13]. Furthermore, longer particles
can result in extended eating times and cows may sort the feed such that they
target smaller particles (i.e. kernels) [11, 12].

In Figure 1.1(a) an image is shown of the corn plant with cobs, protected
by husks, attached to the stalk of the plant with its accompanying leaves. The
entire plant is harvested in WPCS and an example is shown in Figure 1.1(b).

There are a number of options that a farmer can adjust when aiming for
high quality WPCS and in this work we focus on two key machine settings,
namely, the Processor Gap (PG) and Theoretical Length of Cut (TLOC). Fig-
ure 1.2 shows these main parts in relation to each other in a forage harvester.
First, the corn plant is fed into the machine (1) to a drum of rotating knives
(2), the knife drum rotates and cuts the plant according to the calibrated
speed via the TLOC, after which two rotating processor rolls compresses the
plant and fragment the kernels based on the PG (3). Lastly, an accelerator
(4) passes the plant via a spout to be dispensed into an external trailer. De-
pending on the processor rolls and knife drum used in the machine, modern
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(a) (b)

Fig. 1.1: The entire corn plant with corn cobs, stalks and leaves (a) is harvested by fragmenting
kernels and chopping stover resulting in WPCS (b).

forage harvesters can set the PG between 3 to 30 mm and the TLOC can range
between 4 to 44 mm.

Fig. 1.2: Overview of inside a forage harvester. Corn plant is fed into the machine (1), chopped
by the knife drum (2), cracked by processor rolls (3) and accelerated to the spout (4) © CLAAS.

These two settings should be monitored regularly as variations within a
number of factors can alter the kernel processing and peNDE. For example, in
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more mature plants with a higher dry matter content, the processor rolls can
be less effective as kernels become harder and more difficult to break [7]. In
addition, decreasing sharpness of the knives in the rotating drum over a har-
vest season can shear and slip on the plant [14]. The structure of a farm can
also influence how a farmer decides to adjust their harvesting settings. For
example, the final particle size of WPCS can be affected differently depend-
ing on if the silage is stored in an upright silo, with a silage bag system, or
in a drive-over pile bunker [12]. Additionally, when the WPCS is transported
to the feeding site, the particle size can be further reduced [12]. Finally, a
modern forage harvester can harvest multiple tonnes per hour using up to
180 litres of fuel [15], therefore, suboptimal settings leading to overuse of the
machine can result in losses from incorrectly harvested crop and unnecessary
machine wear.

When the WPCS is used as feed for dairy cows there are recommendations
that farmers can follow to increase their feed quality. Kernels should be
harvested when the moisture content is between 55 to 70% and only 3 to 8%
of stover particles should remain when passing through a 1.9 cm sieve [16].
A farmer typically measures the quality of their WPCS based upon physical
measurement with sieving systems. There are options that can be used in the
field, such as the Penn State Particle Separator (PSPS) [13] shown in Figure
1.3, that requires an operator to manually shake a number of sieves from
which the Particle Size Distribution (PSD) can be measured. However, as
this must be done manually the process can be cumbersome and prone to
error. Off-site options also exist where a WPCS sample is sent for an in-depth
analysis, such as determining the Corn Silage Processing Score (CSPS) [17]
or the American Society of Agricultural and Biological Engineers (ASABE)
particle separator [18]. However, the analysis can take multiple days making
it impossible for a farmer to adjust their machine during harvesting. An
optimal system for determining the machine efficacy and quality of harvested
silage would occur in the field efficiently and without the need for manual
steps.

Fig. 1.3: PSPS separates WPCS using stacked sieves which an operator has to manually shake.
The distribution of particles on the sieves can describe the quality. Image from [19] © CLAAS.
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2 Understanding Neural Networks

In recent years, neural networks have seen significant growth and adaptation
in both research and industry. This can be attributed to impressive results on
benchmark challenges, such as in 2012 when AlexNet greatly improved the
classification accuracy on ImageNet [20] and Artificial Intelligence (Al)-based
systems surpassing humans in a number of applications such as cancer de-
tection [21]. In academia, the growth can be seen in the increase of papers, for
example, on arXiv in recent years as shown in Figure 1.4, where the number
has especially grown in the field of machine learning and computer vision
and pattern recognition [22].

Number of Al papers on arXiv, 2010-2019
Source: arXiv, 2019
10,000

- Artificial
Intelligence
~ Computation and

Language
= = CV and Pattern
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Fig. 1.4: Al related publications on arXiv. Image from [22] © Stanford University.

Whereas in industry the global investment has increased significantly, by
the order of billions as seen in Figure 1.5 for Al startups [22].

Total Private Investment in Al (in billions of nominal USD)

rce: CAPIQ, Crunchbase, Quid

$50

$40

e

$30

.‘
$20 I
. _=m=0HR Bl

2009 2010 201 2012 2013 2014 2015 2016 2017 2018  Jan-Oct 2019

Total Private Investment in Al (in billions of nominal USD)

Fig. 1.5: Global investment in Al startups. Image from [22] © Stanford University.
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Al and neural networks have great potential in Industry 4.0 and enabling
the technology has become a strategy for a number of nations, including
Denmark. While Denmark is competitive in Al it is still behind other coun-
tries, as seen in Figure 1.6, ranking lower when measuring investments based
on gross domestic product, especially compared to Israel, Singapore and the
United States [22].

Private Investment in Al startups in per capita terms ($ per person), 2018

Israel
Singapore
United States
Iceland
Switzerland
Canada

UK

Hong Kong
Estonia
Ireland
Sweden
France
China
Luxembourg
Belgium
Denmark
Australia
UAE

0 25 50 7% 100 125
Private Investment in Al per capita ($ per person)

Fig. 1.6: Investment in Al startups ranked by gross domestic product. Image from [22] © Stanford
University.

In response to such statistics the Danish government published a report
in 2019 outlining the strategy for Al The report states that agriculture is one
of four focus areas that will be prioritised for gaining Al experience [23].
Precision agriculture is mentioned as a case where Al, together with high
quality data sources, can strengthen the Danish economy and have a positive
effect on the climate [23]. This can be further highlighted by reports that Al
in agriculture is currently valued at USD$ 608.9 million and expected to grow
annually by 25.4% between 2019 and 2025 to USD$ 2.9 billion [24, 25].

In the Danish National Strategy for Artificial Intelligence the government
defines four key objectives. These are quoted here:

1. "Denmark should have a common ethical and human-centred basis for
artificial intelligence,

2. Danish researchers should research and develop artificial intelligence,

3. Danish businesses should achieve growth through developing and us-
ing artificial intelligence and

4. The public sector should use artificial intelligence to offer world-class
services" [23].

By researching the use of neural networks for monitoring WPCS harvest-
ing quality this work will cover objectives 2 and 3, furthermore, we aim to
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investigate models in real-world scenarios. A key item the report mentions
are challenges in moving towards Al systems related to transparency when
working with large amounts of data and complex models [23]. Therefore,
in this PhD there is an aim to have a focus on the understanding of neural
networks.

3 Thesis Structure

This PhD will give an overview to monitoring corn silage quality and un-
derstanding neural networks. The two themes will include an overview of
state-of-the-art and the contributions to the respective fields in Part 1.

Following the overview will be an appendix of two parts, consisting of a
collection of papers for the two topics. Part II will cover the work on mon-
itoring corn silage quality where we investigate the usage of deep learning
for localising objects relevant to WPCS harvest quality. Part III covers the
work done on understanding neural networks in regards to deployability in
real-world scenarios and dataset creation. As illustrated in Figure 1.7, the
collection of papers in the appendix will include three works on monitoring
corn silage quality and three on understanding neural networks.

Monitoring Corn Understanding
Silage Quality Neural Networks

D E F

Fig. 1.7: The thesis is structured as a collection of papers within monitoring corn silage quality
and understanding neural networks. Figure adapted with images from [26-31].
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Chapter 2

Monitoring Corn Silage
Quality

1 Introduction

Computer vision systems are abundant in industry and can lower the re-
quirements on human analysis where tasks can be difficult or tedious to per-
form. As mentioned earlier, an efficient quality monitoring system can have
significant impact on WPCS harvesting as current analysis requires human
knowledge, cumbersome manual preparation and in some cases to be sent
to an off-site laboratory. We propose solving this problem with the usage of
computer vision and neural networks to measure the WPCS quality using
metrics that can describe the shape and size of the harvested crop.

To give an overview of how computer vision could solve this task we
show the general steps for a typical industrial vision system based on object
recognition in Figure 2.1. First, an image is acquired from a sensor, such as an
RGB camera, together with illumination that allows the sensor to capture the
reflected light from the scene. Following this, object recognition can provide
localisation and categorisation. This final module is built by defined rules
utilising features with image processing techniques or learnt via machine
learning. Third, the objects are analysed, for example, by shape and size
characteristics. Finally, a summary of the quality in the scene can be made
for a single or group of images.

Object
Image Acquisitionpmb T ocalisation/ i Analyse Objects b Quality Summary
Recognition

Fig. 2.1: Simplified industrial computer vision system based on object recognition.

15



Chapter 2. Monitoring Corn Silage Quality

To understand the opportunities and challenges for creating a computer
vision system for WPCS an overview into the current state-of-the-art for mon-
itoring harvest quality will be provided. From this, three works completed as
part of the PhD to monitoring corn silage quality will be presented, as shown
in Figure 2.2, together with a number of contributions. However, before the
state-of-the-art will be presented it is appropriate to explain in more detail
the current methodologies used on the farm.

Monitoring Corn
Silage Quality

A B

Maize Silage Kernel Fragment Estimation ~ Anchor Tuning in Faster R-CNN for Measuring SieveNet: Estimating the Particle Size
Using Deep Learning-Based Object Corn Silage Physical Characteristics Distribution of Kernel Fragments in Whole
Recognition in Non-Separated Kernel/ Plant Corn Silage

Stover RGB Images

Fig. 2.2: Overview of the works presented in this thesis for monitoring corn silage quality. Figure
with images from [1-3].

1.1 Current Practices
Kernel Processing

As covered earlier, two of the major settings a farmer can adjust during har-
vesting is the PG and TLOC. Both settings affect the fragmentation of kernels
and chopping of the stover, however, primarily the PG is related to the kernel
processing and TLOC to the stover. Current methods require the separation
of the kernels and stover as this simplifies the task and can provide a basis
for an accurate measurement. An example of a fast but subjective method
is by hydrodynamic separation [4], here, a sample of WPCS is placed in wa-
ter and stirred until kernel fragments sink and stover float due to the lower
buoyancy of the kernels. Once separated, the kernel processing can be sub-
jectively determined. The industry accepted standard for measuring kernel
processing is the CSPS [5]. This method takes a sample of WPCS and passes
it through a number of sieves to separate the stover and kernels. To deter-
mine the CSPS, the percentage of kernel fragments passing a 4.75 mm sieve
is measured for a sample. With CSPS, the authors defined that above 70% of
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fragments passing shows optimal processing, between 50 to 60% is sufficient
and below 50% is suboptimal. However, there have been criticisms to this
approach as it requires the assumption that all fragments passing through
the sieve are of equal quality and this is not necessarily the case. For exam-
ple, particles that can pass a 1.18 mm sieve are ineffective as fodder as they
rapidly pass through a cow’s rumen [6]. Furthermore, in [7] the authors de-
termined that the starch content varied among the PSD of a kernel fragment
sample and using a single sieve to describe the quality was not adequate for
feeding models. Therefore, the authors determined that estimating the geo-
metric mean particle size by first using hydrodynamic separation [4] followed
by sieving dried samples gave a better description of the kernel processing
compared to CSPS.

Stover Chopping

For stover particles, typically the aim is to estimate the peNDF which is done
through size characteristics, such as mean particle length [8]. A popular in-
field method is to manually shake a number of stacked sieves, defined in [9],
separating the stover. Since the original stacked system, a number of sieves
have been replaced as the understanding of how PSD affects the digestion
has progressed and now the PSPS is commonly used [10]. The separator has
a relatively specific set of instructions for operation, that includes a total of
eight iterations of shaking the sieves 5 times, where the sieves are rotated
a quarter turn between each iteration. There are recommendations for the
force of shaking, however, it has been argued that it can be difficult to main
consistency and potentially lead to errors in the measurement [11]. Options
also exist for off-site laboratory sieving, where the standard is the ASABE
separator [12]. However, the time from harvest to measurement can be long
and the machinery is considerably large weighing above 200 kg.

2 State-of-the-art

This section will first cover the state-of-the-art for measuring WPCS from a
computer vision perspective with respect to kernel fragments and stover par-
ticles. As the works on WPCS with computer vision is limited, we also look
into a broader context with respect to other agricultural crops and determin-
ing the PSD in other domains.

2.1 Monitoring Corn Silage Quality

As mentioned, the works within measuring WPCS with computer vision are
limited, additionally, they all require a sample preparation step to separate
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kernel and stover particles.

First, in [13], the authors aim to estimate CSPS in kernels separated from
a WPCS sample and spread out on a black background. An example of the
required sample preparation is shown in Figure 2.3.

Fig. 2.3: Before performing computer vision analysis in [13], kernel fragments must be separated
from stover particles and spread out a black background together with a coin for size reference.

Fragments are found through thresholding a grayscale image where the
optimal threshold is found with Maximally Stable External Regions. Kernel
contours can then be found and the diameter of the maximum inscribed circle
is compared against the CSPS 4.75 mm threshold from [5]. Additionally,
as shown in Figure 2.3, a coin must be placed in the image as a reference
to convert pixels to mm. The authors found a strong correlation between
their method on images with accompanied measured CSPS, with a Pearson
Correlation Coefficient (PCC) of 0.8 over 23 samples. From this work, an
accompanying smartphone application named SilageSnap was developed for
both Android and iOS [14]. Furthermore in [15], SilageSnap has been used to
estimate CSPS in samples of WPCS with disappearing dry matter for samples
that have been ensiled and from a cannulated cow. The authors again found
a strong correlation between the predicted CSPS and measured dry matter
disappearance.

There are a number of works for stover particles and common for them is
that with computer vision they show that mechanical sieving underestimate
the true length of the stover particles. In [16, 17], samples of corn and grass
silage harvested at three different TLOCs, were analysed with the MATLAB
image processing toolbox after being sorted using a separator and spread out
on a flat surface. In addition to showing the underestimation, [17] also found
that combining sorting and the image processing techniques improved the
mass and size estimation of the stover samples. In [18] the authors investi-
gated three longer TLOCs with image processing after sorting and spreading
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out particles. The particles were found using Normalised Multiscale Bending
Energy which provides features for the contour morphology from which the
shape and size were extracted.

In Table 2.1 we summarise the above state-of-the-art in terms of the steps
required, time required for measurements, where the measurement can be
performed and the final metric. A number of the works, for example in [13],
have additional steps when proving their methodology, such as freezing and
thawing samples, however, we only include those that would be required by
a farmer when conducting the measurement in a real-world scenario. From
the table it can be seen that in the best case a quality estimate for a sample can
be acquired in 1-2 hours. However, for most works [16-18] before the image
analysis can be performed, likely samples would need to be transported off-
site as machinery for mechanical sieving is generally heavy and cannot be
moved. Whereas, [13] does potentially allow for CSPS estimation in the field
through a smartphone application. It does however have a number of manual
steps and requires separated kernel fragments to be placed on a black surface.
Furthermore, thresholding of kernel fragments on the black surface can be
sensitive to variations in lighting conditions if the analysis is performed in
the field.

Table 2.1: Overview of the computer vision works for monitoring corn silage quality and their
key characteristics.

Time Required

(hours) Site Metrics

Work  Steps Required

Hydrodynamic separation In-field

[13] Physical separation of fragments  1-2 . CSpPs
Image capture and analysis (requires black surface)
Hydrodynamic separation

Physical separation of fragments ~1-2 In-field
[15] Image capture and analysis +days for ensiling (requires black surface) CSPS
+Potential Ensiling +hours for rumination  +Silo
+Potential Rumination
Mechanical sieving 12 Laboratory .
1] Image capture and analysis +potential transport Off-site Mean particle length
Mechanical sieving 12 Laboratory Mean particle length
[17] . . . U
Image capture and analysis +potential transport Off-site Comb. with sieving
Mechanical sieving 12 Laboratory .
(8] Image capture and analysis +potential transport Off-site Mean particle length

As can be seen in the table current solutions are far from automatic. More-
over, they all require significant amount of time to perform, which reduce
their usefulness. This directly motivates our work where we aim at an auto-
matic system with fast processing.

2.2 Other Examples of Harvest Quality

Looking into the broader domain of not only WPCS and also using other
sensors, there are a number of works that aim to measure quality of silage
from a forage harvester.

19



Chapter 2. Monitoring Corn Silage Quality

Hyperspectral imaging is widely used in agriculture for a number of ap-
plications, including quality and yield measurement, and allows for capture
of up to hundreds of bands that can exceed the visible spectrum [19]. For
corn plants, the WPCS dry matter content and other quality aspects are mea-
sured with near-infrared spectroscopy (NIRS) directly on the machine in [20].
In [21] NIRS is used to adjust the TLOC during harvesting in order to pro-
vide better packing when stored in silos. The dry matter yield and crop
quality have been measured with hyperspectral sensors off-nadir at multiple
heights and angles in [22]. The Normalised Difference Vegetation Index to-
gether with plant height have been used to estimate the dry matter yield at an
early stage of plant growth [23]. Looking into other examples of harvested
silage it can be seen that hyperspectral imaging has been used to measure
dry matter and other characteristics in other crops such as grass [24-29] and
alfalfa [30, 31]. Other sensors have also been used for measuring silage such
as X-ray [32], microwaves [33], mechanical displacement sensors [34, 35] and
flow sensors [36]. While sensors such as NIRS can provide a quality measure-
ment and additional nutrient information which is often not possible with an
RGB camera, they are generally more expensive and can have a limited image
resolution [37].

There are a number of works that adopt computer vision in other harvest
quality applications. In relation to corn plants, [38] uses colour and shape
features to train a maximum likelihood estimator to segment and classify be-
tween normal and damaged corn. However similar to works with WPCS,
samples must be separated and spread out on a flat surface before analysis
can be conducted. In [39] the level of corn kernel losses spread onto the field
from a combine harvester was determined with a Faster R-CNN object detec-
tor [40] with a ResNet50 [41] backbone. An approach to monitor the digestive
health of dairy cows in faecal samples was done in [42] by classifying fibre
and corn content with deep learning and transfer learning. These two deep
learning methods are successful in less controlled environments, for example
in [39] the camera is mounted on the back of the harvester capturing images
of the ground and in [42] corn particles are not required to be extracted from
the faecal matter.

For the quality of rice and grains there are examples of both hand-crafted
features and machine learning, however, all of them are conducted in a lab-
oratory setup requiring manual sample preparation steps before images are
captured. For example, the PSD of a number of biomasses, including rice,
was found on samples spread out on a flat-bed scanner from which Feret’s
diameter could be calculated [43]. Rice grades have been classified using
morphological features to train a Support Vector Machine (SVM) in [44, 45]
and segmented with colour and shape features in [46]. Classification of dif-
ferent types of grains mixed in images has been investigated with a flat-bed
scanner together with size, colour and brightness features [47]. The grades

20



2. State-of-the-art

have also been determined by training artificial neural networks with colour
and texture [48], size, colour and shape [49], and colour and morphological
features [50].

In agriculture there are numerous examples of adopting modern deep
learning in applications similar to harvesting. Many of them exhibit strong
results despite being present in challenging environments with clutter and
occlusion, for example, from surrounding leaves. For example, [51] estimated
the number of corn kernels on an entire ear of corn before harvesting with
a sliding window Convolutional Neural Network (CNN). The biomass and
crop composition is estimated with a modified VGG-16 for semantic seg-
mentation in [52]. In [53] the quality of small grains was classified with
an ensemble of networks. Classification with CNNs are used to identify
different plant species [54] and conduct plant phenotyping [55]. Fine-grain
classification of leaves by combining hand-crafted features and CNNs was
conducted in [56]. Finally, there has been a number of examples of using
deep learning in remote sensing data for estimating crop yields, including
CNNs trained on NIRS for rice yields and for other grain parameters such
as moisture and protein [57, 58]. For citrus fruits, colour and contour fea-
tures were extracted to detect the fruits still on the trees in [59]. An adapted
YOLOvV4 [60] provided improved results, especially on smaller fruits, when
compared to YOLOv3 [61] and Faster R-CNN [40] in [62]. In [63] a Faster
R-CNN [40] with ResNet101 [41] detected highly occluded tomatoes on the
plants, in [64] a modified YOLOv3 [61] produced circular bounding-boxes
around the fruit and [65] used a modified Inception-ResNet [66] to count
the number of tomatoes in images after training only on synthetic images.
The detection of sweet peppers was conducted with two finetuned Faster R-
CNNs [40] with VGG [67] backbones on RGB and NIRS images respectively
in [68]. A Faster R-CNN [40] has also been used for detecting sweet peppers
in [69] with an additional layer estimating the ripeness of the fruit. A num-
ber of variants of the YOLO detector [70], covering trade-offs in accuracy and
speed, detected musk melons in [71]. In [72] a Faster R-CNN [40] detected
passion fruits at multiple scales allowing for improvements on small fruits.
Segmentation of apples for yield estimation was conducted with a custom
CNN architecture in [73] and with a Faster R-CNN [40] in [74]. Mango detec-
tion and yield estimation was done with a Faster R-CNN [40] in [75], the au-
thors also used a LiDAR to determine masks for trees in the canopy to which
the detections could be matched. In [76] grape clusters were segmented with
a Mask R-CNN [77] and tracked in video recordings.

Finally, there are a number of examples in the industry of leading agricul-
tural manufacturers developing quality sensors on harvesters. A NIRS sensor
is available on multiple forage harvesters to measure nutrient contents in the
crop for Fendt [78], New Holland [79], CLAAS [80] and John Deere [81].
However, no options exist for estimating the PSD or metrics such as CSPS or
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peNDF in the field. On the combine harvester there are multiple cameras that
can measure the potential losses from broken grains and unwanted non-grain
materials, such as from Fendt [82], CLAAS [83] and John Deere [84].

It is clear that within agriculture there is considerable activity with various
sensors and computer vision. However, so far none have solved the problem
of automatic estimation of corn silage quality, and hence this is the focus of
our work.

2.3 Particle Size Distribution in other Domains

Motivated by the desire to use object recognition methods for efficiently mon-
itoring WPCS quality we investigate applications in other domains where
objects exist in cluttered scenes.

Firstly, an industry with numerous works covering quality is material
aggregates. In [85, 86] the authors estimated the PSD of iron ore transported
on a conveyor belt based on shape and size features. A number of hand-
crafted features are extracted to train an SVM for estimation of iron ores
on a conveyor in [87]. Iron ore pellets have also been segmented with a
custom lightweight U-Net [88] to estimate the size distribution in [89]. Next,
in medical images relevant applications include segmentation of brains and
brain tumors in MRI images with a custom CNN [90, 91]. Finally, for crowd-
counting deep learning has also shown impressive results such as in [92] that
adopt a Feature Pyramid Network [93] and in [94] where faces are counted
with a custom CNN.

There are a number of examples of object recognition in crowded scenes
over the previous sections, however, determining accurate size characteris-
tics can be difficult due to potential sources of error that can appear. For
example, particle sizes can be underestimated when they are occluded by
other instances, where in [86] this was addressed by determining features
that matched covered instances, such as a longer aspect ratio, and filtering
predictions.

3 Contributions

Based upon the motivation to investigate if harvest quality monitoring can
be automated with deep learning on RGB images the current practices by
farmers and trends in research have been covered. For WPCS, a farmer can
measure the quality by using methods, such as sieving, to separate the kernel
and stover fragments. However, this often requires cumbersome and time-
consuming sample preparation steps or sending samples to an off-site labo-
ratory. Research does exist, as covered in Section 2.1, that aim to determine
the quality of either kernel fragmentation or chopped stover with computer

22



3. Contributions

vision, however, all require the two portions of the silage to be separated from
each other and spread out on a surface before capturing images. To speed up
this process and place less requirements on manual steps, we are inspired to
investigate if the quality can be measured in images of non-separated WPCS.
Additionally, due to recent advances and promising results in similar ap-
plications, we aim to utilise deep learning to localise relevant objects with
CNNs. In Figure 2.4 the differences between previous methodologies and
our approach is highlighted. Firstly, Figure 2.4(a) shows the current steps
required for measuring kernel fragmentation with the computer vision ap-
proach presented in [13, 14], here, kernels and stover are separated using
hydrodynamic separation, then kernels are extracted from the water and the
fragments are spread out on a black background before an image is cap-
tured for analysis. Instead, we propose to take an image directly of a WPCS
sample, as visualised in Figure 2.4(b), followed by computer vision analysis
localising objects relevant to either kernel or stover quality. The removal of
manual steps for sample preparation can lead to a system for estimating the
corn silage quality quickly in the field. However, manual separation does
have some benefits, such as each particle can be measured accurately with-
out occluding each other. Therefore, in this PhD steps were taken in the data
collection, model development and evaluation stages to create a robust and
well-performing system despite the challenging cluttered scenes.

Hydrodynamic Kernels Take image of kernels spread
separation of extracted from out on black background
kernel & stover water with coin reference

Harvest corn
silage

Computer vision

’ analysis

Take image of

sample

Fig. 2.4: The differences in sample preparation between previous state-of-the-art and our pro-
posed approach. (a) Previously, as in [13], kernels and stover are first separated using the
hydrodynamic method, kernel fragments are removed from the water and spread out on a black
background with a coin for size reference before images are captured for analysis. In (b) our
proposed method takes an image directly of the sample and requires no sample preparation.

Without the need for sample separation we propose a system following
the generic industrial computer vision definition presented in Section 1.2.1
in Figure 2.5. In such a system an image is acquired of a WPCS sample di-
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rectly from the harvester, object recognition through a deep learning network
localises and classifies kernel or stover particles, the predicted particles are
analysed inspired by industry standards and finally a summary of the quality
of the WPCS samples is estimated.

Object
Image Acquisition Localisation/ Analyse Objects Quality Summary

Recognition

Fig. 2.5: Overview of the computer vision system proposed in this PhD for monitoring WPCS
quality. Figure adapted with images from [1, 95] and © CLAAS.

Our first contribution is to introduce the first work on measuring the
processing of kernel fragments in images of non-separated WPCS samples.
As covered, previous approaches such as [13, 14] require a number of time-
consuming steps for separating and spreading of kernels. We instead eval-
uate two forms of object recognition networks for the task on our images,
namely, a Region-based Fully Convolutional Network (R-FCN) [96] with an
ResNet101 [41] backbone and a Multi-task Network Cascade (MNC) [97] with
AlexNet [98] in the form of bounding-box and instance segmentation net-
works respectively. In Figure 2.6 we show example predictions from the two
networks where white outlines indicate ground truth annotations. The meth-
ods show promising results in terms of precision and recall, and allow us to
extract object instance characteristics such that we can estimate the CSPS over
a sample of images. We show a first indication of strong correlation between
model CSPS against CSPS estimated from annotations. Further details can be
seen in Paper A.

We also propose to improve the use of two-stage recognition networks
for measuring the quality of WPCS in our non-separated samples. Again,
the use of these networks allow us to extract characteristics about size and
shape for individual predicted instances. A requirement that is necessary if a
PSD should be captured allowing for CSPS estimation. For both kernel frag-
mentation and stover overlengths, we found considerable improvement in
terms of Average Precision (AP) measured from annotations and correlation
analysis against physically sieved measurements. The improvements came
through investigations in training numerous Faster R-CNNs [40] with an In-
ceptionv2 [99] backbone with strategies in data separation, transfer learning
and anchor tuning in the Region Proposal Network (RPN) [40]. However,
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Fig. 2.6: Example predictions for models trained for kernel fragmentation from a R-FCN
bounding-box detector (a) and MNC instance segmentation network (b). Images from [1].

our improvements were not consistent in all cases between annotation and
physical evaluation, indicating the importance of evaluating the system inde-
pendent of annotations. With trained networks for the tasks, we estimate the
CSPS for kernel fragmentation and a measure we introduced, the Overlength
Particle Score (OVPS), for stover overlengths. OVPS differs from CSPS in that
the aim is not to detect all particles. Stover particles account for the vast ma-
jority of pixels in our images, therefore, full PSD was deemed to be infeasible
for this task. Therefore, we train models to predict the level of overlengths, or
how many stover particles are too long. Additionally, we were motivated by a
potentially varying TLOC strategy for promoting peNDF from a given farmer
depending on their specific crop and farm structure. Therefore, we evaluated
stover OVPS based on a variable definition of overlengths given the TLOC at
the time of harvest. Through close collaboration with machine experts at the
Industrial PhD host company, a good compromise definition of 1.5xTLOC
was made. For both CSPS and OVPS, we show a strong correlation against
sieved samples harvested at a number of machine settings. For kernel frag-
mentation, compared to a naive standard training approach, we improved
AP by 11.3% and r? to physical CSPS by 26.6% to a strong correlation of 0.66.
Additionally for stover overlengths, with our model improvements, the AP
was improved by up to 45.2% and correlation to physical samples by 132.4%
to an r? of 0.95 and 0.79 at TLOC 4 mm and 12 mm respectively. Figure 2.7
shows the correlation analysis for both CSPS and OVPS. The CSPS analysis
is shown for two harvest weeks in Figure 2.7(a), while OVPS is shown for
TLOC 4 mm in 2.7(b) and TLOC 12 mm in 2.7(c). The work is covered in
more detail in Paper B.

Additionally, in Paper B we include an appendix covering further de-
sign choices for two-stage object recognition networks. Kernel fragments are
classified in our networks based upon an axis length mimicking the siev-
ing methods. We therefore evaluate differences based upon classifying with
the major, minor and mean axis of a predicted object. Here, we determine
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Fig. 2.7: Correlation analysis between the Faster R-CNN models and physical measurements for
CSPS (a), OVPS at TLOC 4 mm (b) and TLOC 12 mm(c). Images from [2].

optimal results for multiple network architectures based on major axis classi-
fication. Additionally, we investigate differences between Faster R-CNNs [40]
with either an Inceptionv2 [99] or ResNet50 [41] backbone, with better mod-
els being found with the former architecture. Furthermore, we evaluated the
differences between CSPS and OVPS for our Faster R-CNN [40] bounding-
box models and for Mask R-CNN [77] segmentation mask producing mod-
els. Here, higher correlation was found with bounding-box models despite
the possibility of overestimating particles in comparison to the finer-localised
segmentation masks. Lastly, the effect of lowering the image resolution in re-
gards to speed and performance was presented showing significant decreases
in AP and correlation.

Our works so far have concentrated on two-stage networks. These have
produced promising results but some aspects of the networks can be redun-
dant if the aim is to estimate quality based on sieving standards. The net-
works have been trained to perform both classification and fine-grain localisa-
tion. The accurate localisation in the form of bounding-boxes or masks have
allowed us to estimate the harvest quality through metrics such as CSPS.
However, sieving does not aim to find the precise size of each particle but
rather classify which sieving pan a particle would end in. Therefore, we
developed a novel network, which we have named SieveNet, that can effi-
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ciently and accurately classify a kernel fragment into a pre-defined number
of sieves without performing fine-grain localisation. Figure 2.8 visualises the
differences between two-stage recognition and our approach. We remove the
modules for performing mask regression and classification and instead clas-
sify directly from a modified RPN into sieve classes.

conv
RGB Image

Fig. 2.8: Overview of our architecture for directly classifying sieve sizes for kernel fragments
without the need for box/mask regression or classification modules. Image adapted from [1].

This is realised by presenting a novel matching algorithm allowing for
sieve-based anchor matching during training. Then during inference, parti-
cles are classified directly into a sieve class without bounding-box or mask
regression. The approach shows an improvement in inference timings and
a strong correlation when estimating CSPS. Further details can be seen in
Paper C.

From these works our main scientific contributions within monitoring
corn silage quality can be summarised as:

¢ The first works on estimating the quality of harvested corn silage in
RGB images without the need for separating kernel and stover particles.

— First presented in Paper A: Maize Silage Kernel Fragment Esti-
mation Using Deep Learning-Based Object Recognition in Non-
Separated Kernel/Stover RGB Images.

- Algorithm improvements in Paper B: Anchor Tuning in Faster R-
CNN for Measuring Corn Silage Physical Characteristics.

- Further improvements in Paper C: SieveNet: Estimating the Par-
ticle Size Distribution of Kernel Fragments in Whole Plant Corn
Silage.
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* We propose robust two-stage networks for the task of localising kernel

fragments and stover overlengths across harvest seasons and machine
settings.

— Kernel fragments evaluated in Paper A: Maize Silage Kernel Frag-
ment Estimation Using Deep Learning-Based Object Recognition
in Non-Separated Kernel/Stover RGB Image.

- Kernel fragments and stover overlengths localised in Paper B: An-
chor Tuning in Faster R-CNN for Measuring Corn Silage Physical
Characteristics.

We show significant improvements to kernel and stover overlength qual-
ity monitoring in two-stage networks by investigating strategies for data
separation and transfer learning, together with tuning parameters in the
Region Proposal Network with respective shape and size characteristics
for the two tasks.

— Paper B: Anchor Tuning in Faster R-CNN for Measuring Corn
Silage Physical Characteristics.

We present a novel sieve-based matching algorithm allowing us to train
models for efficient estimation of kernel fragmentation quality.

— Paper C: SieveNet: Estimating the Particle Size Distribution of Ker-
nel Fragments in Whole Plant Corn Silage.
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Chapter 3

Understanding Neural
Networks

1 Introduction

The aim of this part of the thesis is to understand a number of key aspects of
computer vision systems adopting neural networks. The focus of the chapter
is on the trade-off in state-of-the-art object recognition models, the challenge
of building datasets for deep learning, and how to deploy models on an ap-
propriate platform. As this work is part of an Industrial PhD, these research
topics have been especially important in terms of deployability into the real-
world. This chapter will give an introduction to the topics and an overview
of the relevant state-of-the-art will be given. This will lead to covering our
works, which are visualised in Figure 3.1, and present our contributions.

Understanding
Neural Networks

o
o
Evaluation of Model Selection for Kernel ~ The Challenge of Data Annotation in Deep Learning Evaluation of Edge Platforms for Deep
Fragment Recognition in Corn Silage — A Case Study on Whole Plant Corn Silage Learning in Computer Vision

Fig. 3.1: Overview of the works covered in this chapter for understanding neural networks.
Figure with images from [1-3].

39
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When designing a computer vision system, care must be taken to reduce
any unwanted variance in the system. If the captured images can be as con-
sistent as possible it can lower requirements on model complexity as the
networks can concentrate on learning the variations between objects. Varia-
tions specific to the image include the amount of illumination, viewpoint or
quality and object variations can be the size and shape. State-of-the-art com-
puter vision models are often developed and optimised towards benchmark
challenges, such as ImageNet [4] and COCO [5], where objects are anno-
tated in images collected from a large number of sources with variations in
the capturing. However, industry models are typically deployed in scenarios
where the company chooses the hardware related to their product and image
variations are therefore decreased. Despite this, there can be differences be-
tween sensors in production and illumination in a given scenario. As models
should perform optimally when deployed, care should be taken to address
these variations to reduce any potential losses in accuracy, in addition to op-
timising towards object variation.

During my master’s thesis I investigated creating an ensemble of R-FCN
[6] networks that aimed to decrease individual ensemble member variance
based on image quality and object size [7]. For image quality, two networks
were trained for low and high quality for a number of distortions including
Gaussian blur and JPEG compression. The distortions were estimated for an
image with a no-reference Image Quality Assessment (IQA) approach using
DeepIQA [8] and object sizes were estimated using sizes of proposals found
with the RPN [9]. At inference time the DeeplQA and RPN were used to
weight the output of individual ensemble members for a final prediction and
led to increasing the AP in comparison to baseline non-ensemble approaches.
This work laid the basis for my interest in working with real-world systems
and adapting to the resulting variance, for example, the works presented in
the previous chapter on monitoring WPCS through kernel and stover recog-
nition. For additional details on work done in my master’s, see the published
paper in [10].

It is well established that deep learning models require large amounts of
data to train and evaluate models. For a project to be successful, high quality
and consistent annotations are key [11, 12]. Benchmark datasets such as Im-
ageNet [13] and COCO [5] achieve this through processes which are highly-
defined including multi-stage annotation and individuals with various roles.
Naturally, this can be expensive, difficult to define and implement, especially
in smaller projects with limited resources. Therefore, as covered earlier, due
to the increasing popularity of adopting neural networks in computer vision
systems, care should be placed on building and evaluating datasets.

Finally, there are trade-offs when developing models for deep learning
systems in complexity, accuracy and speed. In addition, in real-world indus-
trial scenarios it is important to take into account the deployability of the
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model. There are a number of framework options for deep learning models
for both training and inference such as TensorFlow and TensorFlow lite [14].
An optimal deep learning system in the real-world takes into account the per-
formance of a model for the task at hand on a potential hardware platform.

2 State-of-the-art

2.1 Object Recognition with Neural Networks

To obtain an understanding of how to account for variational challenges in
object recognition we start by giving an overview of the key recent works.
Deep learning has been synonymous with computer vision in many applica-
tions since AlexNet won the ImageNet classification challenge in 2012 [15].
Within object recognition, the two-stage approach of first producing a num-
ber of object proposals followed by proposal classification and box refinement
is well established. The most recent winners of the COCO [5] challenges fol-
low this mantra, where [16] used Feature Pyramid Networks for bounding-
box detection and [17] used a custom Mask R-CNN [18] named MegDetV2.
The proposal module in a two-stage object recognition network is typically
lighter weight as it allows for more complexity in other parts of the architec-
ture, such as for classification or feature extraction. Due to increasing com-
plexity in deep learning-based models this is necessary compared to a more
traditional oversampling approach such as a sliding window. Proposal gener-
ation has been present in object recognition before deep learning, as covered
in the comprehensive review in [19], including using superpixels in Selec-
tiveSearch [20] and edge detection in EdgeBoxes [21]. However, since Faster
R-CNN [9], the usage of the RPN has become the standard. In the RPN, a
lightweight sliding window traverses the final feature map and at each slid-
ing window location, anchor boxes with pre-defined shapes and sizes are
regressed from which the class-agnostic probability of an object is computed.
Afterwards, following non-maximum suppression, the top N boxes are fur-
ther refined and classified into the classes defined during training, where
typically N is the order of hundreds.

Open-source frameworks together with more powerful GPUs have been
two of the reasons for deep learning success. Many frameworks have code
and pre-trained models available that allow researchers to conduct fast proto-
typing and produce strong networks. Examples include the TensorFlow Ob-
ject Detection API from Google [22] and Detectron2 from Facebook Al [23].
The frameworks have lower and higher complexity models, for example in
TensorFlow, models that can be run on lower compute hardware are the Sin-
gle Shot Multibox Detector (SSD) [24] or EfficientDet [25]. At the higher end,
models such as Mask R-CNN [18] and ExtremeNet [26] are also available.
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For most of the networks a number of feature extractors can be specified to
further adjust the model complexity. Finding the appropriate model can be
challenging when aiming to solve a specific task. Additionally, there are typi-
cally a number of requirements for a system in regards to accuracy and speed,
but this is highly dependent on how challenging the task is and the quality of
the data. The trade-offs in modern deep learning networks have been covered
in [27], but the focus is on larger benchmark datasets and the findings may
not be directly transferable to a specific task, such as WPCS quality. Other
options exist, such as defining a custom architecture, but significant time can
be spent determining parameters such as the number of layers or filter size.
Alternatively, Neural Architecture Search has become increasingly popular
where an algorithm defines the architecture of the network, however, work
within computer vision has been largely related to classification and can have
significant requirements on the training time [28, 29].

2.2 Building Datasets

As mentioned, benchmarks often have highly-defined processes to obtain a
high quality annotated dataset. In Table 3.1 we provide an overview of some
key processes and statistics for a number of benchmarks within object recog-
nition. It can be seen that object classes vary between 20 to a few thousand,
and annotated instances from tens of thousands to millions. Generally, the
smaller datasets were less complex to collect. For example, the initial an-
notations for PASCAL VOC [30] were made by researchers at an in-person
annotation event and the annotations in ADE20K [31] are annotated by a sin-
gle person. However, we see that as datasets have grown in size so have the
number of processes. Firstly, in ImageNet [13], the dataset for localisation
set a basis for crowd-sourcing annotations through Amazon Mechanical Turk
(AMT). Multiple roles were implemented including annotator and verifier. A
four stage process was used for annotation, where first categories for objects
were labelled at an image level. From this, annotators were asked to draw a
single bounding-box on an image, which was checked for quality by a veri-
fier. Additionally, a third verifier evaluated the coverage, if all instances were
annotated in an image. Once both verifiers approve an image it is accepted
into the dataset. In the COCO [5] instance segmentation dataset, a focus was
placed on non-iconic images and a higher number of objects than previous
benchmarks. This was also achieved with AMT and having roles for anno-
tator and verifier. Category labelling was also used at an image level for the
first step. Next, an annotator marked all instances in an image for one spe-
cific class. Then in the final stage, annotators were instructed to create a sin-
gle mask per image from the markings. Multiple verifiers per mask was used
before an annotation was accepted. This step also allowed the creators to re-
move specific annotators and their masks if quality was poor. In LVIS [32], a
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dataset with focus on a large number of classes, a similar approach to COCO
was taken. Annotators performed category labelling in a first step, but only
marked a maximum of one instance at a time for an image. Next, all instances
of a single class was marked, followed by instance segmentation for a single
mask per image. Masks are then verified by multiple persons before accep-
tance. Finally, the final step used multiple verifiers to check for full object
coverage. The Open Images dataset [33] contains both bounding-box and in-
stance mask annotations. Their annotation process is only covered for boxes
in [33], however, it is likely similar for masks. Category labelling is again
used, but this is performed by a classifier model and verified by a human.
In the next stage, an annotator is iteratively instructed to draw bounding-
boxes for all instances of a single category. Lastly, another example of a large
dataset is Objects365 [11]. Their first step is again category labelling which
is followed by drawing boxes for all instances of a single class iteratively. A
verifier is used to accept or reject all annotations. Additionally, a third role of
examiner reviews the work periodically from annotators and verifiers. In ad-
dition, in Table 3.1 we see that multiple datasets incorporate training for the
respective roles and inject gold standard sets to perform further verification.
It is clear from Table 3.1 that current practices for developing large datasets
is an extensive task. While they appear to gather annotations for a dataset of
sufficient quality that have a benefit to the computer vision community, the
processes require a significant investment if they were to be implemented in
a smaller project, such as within agricultural datasets.

The datasets covered in Table 3.1 are largely created with annotation tools
requiring manually drawing bounding-boxes or masks. There exists a num-
ber of works that aim to be an alternative or an improvement. Firstly, the
process of drawing bounding-boxes or polygon masks can be cumbersome
for annotators and a number of works have attempted to improve this pro-
cess. For example, the bounding-box annotations from Open Images [33]
is largely collected with extreme clicking [34], where the four most extreme
points of an object are clicked from which a box can be determined. Alter-
natively, interactive annotation tools can propose annotations given a coarse
input from a user. This is often done with an algorithm using scribbles or
markings from a user highlighting foreground and background portions of
the image [35-37]. Instead of altering the tool to create the required annota-
tions, weak supervision aims to utilise weaker annotations to train a model
for a more fine-grained task. Such an approach can be considerably cheaper
as annotation is either faster or can be generated automatically. The train-
ing of the models can have algorithm improvements that are able to make
assumptions about the location of a bounding-box or mask from annotations
such as with points [38-40] or scribbles [38, 41]. Image level labels can also be
combined with a strategy to select appropriate proposals [42, 43]. Recently
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Overview of statistics and key processes for a number of object recognition benchmark

Table 3.1

datasets.
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self-supervision has become an increasingly popular approach to utilise unla-
belled data. Self-supervision aims to learn representations that should trans-
fer to another task by automatically generating labels [44]. A common ap-
proach in traditional supervised object detection is to finetune a model that
is first pre-trained on a classification task, however the representations from
this may not be well-suited to transfer to object detection. Self-supervised
pre-training aims to determine more relevant representations for training a
detector, by generating labels to train a model to predict the relative posi-
tion between random crops [45], convert between grayscale and RGB in im-
ages [46], or predict the top proposals from a proposal algorithm [47]. Lastly,
Semi-Supervised Learning (SSL) aims to learn a model from both a set of la-
belled and unlabelled data, where typically the labelled set is much smaller.
This has mostly been popular in image classification compared to object de-
tection. Primarily due to detection being a much more difficult task caused
by class imbalance biases between foreground and background [48]. SSL ap-
proaches for object detection largely follow a teacher-student methodology of
training one model using pseudo labels from another model which is trained
on the labelled set. Pseudo labels can be prone to noise, making it difficult
to train [48]. Recent approaches aim to address this using weighting tech-
niques [48-53], heavy augmentations [48, 50-53], and consistency between
multiple outputs [54].

It is clear that dataset creation is a critical task that has laid the basis for
numerous advances in computer vision. Depending on the task at hand and
the resources available, a practitioner must be aware of the requirements for
manual annotation and consider adopting tools that can aid in the process.

2.3 Network Deployment

Earlier we covered a number of deep learning networks where the aim is
to often to maximise performance on benchmark datasets. However, sim-
ply focusing on the optimal accuracy can come at the expense of increased
hardware requirements to run the models. In an industrial context, there
can be restrictions on the computing power available, especially in situations
that require running the models at the camera. While in the field during
harvesting, the roaming capabilities may not be available for cloud com-
puting and an alternative is to be attached to the device, also known as at
the edge. In recent years there has been focus for numerous companies on
edge devices, such as NVIDIA Jetson [55] and Intel Neural Compute Stick
(NCS) [56]. Edge devices typically have lower computational resources than
workstations, therefore models are often optimised, such as with [57], but this
can also potentially decrease the precision of the models. A number of works
exist that aim to create lower complexity and high precision models that can
be run on the edge [25, 58, 59]. Even with these networks care must to be
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taken when developing models for deployment in the field and the choice of
hardware cannot be neglected in favour of the optimal network architecture.
The choice of hardware directly impacts the inference time, or in worse case,
if the networks even can fit in memory.

3 Contributions

Understanding how neural networks work is a key point in deploying the
systems into the real-world. Automating quality measurements, such as for
WPCS, requires trust from farmers to allow this process to be completed by
an Al-based model.

First, when developing computer vision systems it can be difficult to de-
termine the model complexity required to capture the information needed in
the model to solve the task. There are a large number of network architec-
tures available in the computer vision community, each with their trade-offs
in terms of accuracy, speed and model complexity. Therefore, we investigate
this for our specific use-case of kernel fragment recognition using a large
number of networks. We trained and evaluated three meta-architectures
of different complexity in the form of the SSD [60], Faster R-CNN [9] and
Mask R-CNN [61]. For each network we trained with feature extractors of in-
creasing complexity, additionally, for each combination of meta-architecture
and feature extractor, we trained models for three scales of image resolution.
With a total of 28 models of varying complexity we were able to determine
the trade-offs specifically for our task and propose an optimal architecture.
In Figure 3.2 the trade-off is shown between inference time and AP at an
Intersection-over-Union (IoU) threshold of 0.5 (AP@0.5). The AP@0.5 is eval-
uated against a hand-annotated test set of kernel fragments from three har-
vest seasons and the inference time is measured on an NVIDIA Titan XP. The
meta-architectures and feature extractors can be seen in the legend and the
image resolution is shown by different sized icons for each combination. Fast
and well performing models are seen for a few SSD variants, however, an
optimal trade-off is found for Faster R-CNN [9] with Inceptionv2 [62] at an
image resolution of 400x730. This work is included in Paper D.
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Fig. 3.2: Trade-off in AP@0.5 and inference time for a number of meta-architectures and feature
extractor for the task of kernel fragmentation. For each model three image resolutions are eval-
uated visualised by the decreasing size of the respective icon. Image adapted from [1].

To create a deep learning system for the task of WPCS quality an anno-
tated dataset is required for training and testing of the networks. As covered
earlier, high quality and consistent annotations is important and can be a key
factor to the success of a project. Therefore, we have investigated the chal-
lenges of building datasets for deep learning in our context of WPCS. This
was achieved by performing manual annotation with the aid of an annota-
tion guideline as reference for annotators for both kernel and stover particles.
The aim was to define rules such that all kernel fragments and stover over-
lengths were annotated in the image. In addition to guidelines, we have pre-
sented statistics and an evaluation of the quality of the dataset with respect
to agreeance between annotators and expected instance sizes given machine
settings. This evaluation found that despite best efforts, inconsistent annota-
tions were provided between annotators and across harvest years. Therefore,
an investigation into an alternative to pure manual annotation was conducted
with SSL. It was found that competitive results in terms of AP and correla-
tion analysis could be made when adding a large unannotated set of images.
In Figure 3.3 example annotations are shown from the resulting dataset of
polygons for kernel fragments (a) and stover overlengths (b). This work can
be seen in more details in Paper E.

(b)

Fig. 3.3: Example annotations of kernel fragments (a) and stover overlengths (b). For kernels
there is only a single class for the fragments, whereas for stover overlengths we define four
classes for different parts of the plant.
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We investigated the trade-off in model complexity for a specific task of
kernel fragmentation, however, when deploying neural networks the final
hardware has a significant role with respect to the speed the models can run.
Furthermore, the price of the platform often has a role when deploying a
system. Therefore, we investigated the trade-off when choosing an edge plat-
form for a number of deep learning models for classification, object detection
and semantic segmentation. For each task, we evaluated the speed from dif-
fering complexity and batch sizes for state-of-the-art networks. In addition
to speed, the retail price of the platforms were considered in order to give
an indication of best value when designing an edge-based computer vision
system. In Figure 3.4 an example of evaluating the Frames per Second (FPS)
and FPS cost for a lower complexity classification network is shown. Finally,
we analysed the operations within the networks to identify which parts of
the models could be optimised for further increasing speed. The work can be
seen in more detail in Paper F.
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Fig. 3.4: The FPS cost for a low complexity deep learning classification network for a number of
edge platforms. Image adapted from [3].

Our main scientific contributions across our papers within understanding
neural networks can be summarised as:

* We document the trade-off in model complexity, speed and accuracy for
the task of localising kernel fragments with a number of state-of-the-art
object recognition networks.

- Paper D: Evaluation of Model Selection for Kernel Fragment Recog-
nition in Corn Silage.

* Present and discuss insights into the challenges of building datasets for
deep learning in Whole Plant Corn Silage.

— Paper E: The Challenge of Data Annotation in Deep Learning — A
Case Study on Whole Plant Corn Silage.
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* Investigate the potential of adopting Semi-Supervised Learning for Whole
Plant Corn Silage.

- Paper E: The Challenge of Data Annotation in Deep Learning — A
Case Study on Whole Plant Corn Silage.

* We evaluate and document the trade-off in speed and price for three
computer vision tasks on edge platforms and identified network oper-
ations for further optimisation aiding in edge-based system design.

- Paper F: Evaluation of Edge Platforms for Deep Learning in Com-
puter vision.
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Chapter 4

Conclusion

This Industrial PhD has covered two topics, namely, monitoring corn silage
quality and understanding neural networks. These were chosen in order
to address the research question on whether the harvest quality monitoring
could be automated with deep learning models on RGB images. Currently,
for Whole Plant Corn Silage, there is no efficient and straightforward ap-
proach for determining the quality of the harvested silage. This is a crucial
issue as harvesting with the correct machine settings is key to high quality
fodder for dairy cows and ensuring high machine efficacy. We investigated
measuring the kernel fragmentation and stover lengths in Whole Plant Corn
Silage and found that current approaches require sieving and manual sam-
ple preparation. Therefore, we proposed to significantly speed up the mea-
surement by using RGB images of non-separated Whole Plant Corn Silage.
Through a number of scientific contributions we proposed different deep
learning-based object recognition approaches for localising particles relevant
to quality.

We investigated a number of two-stage recognition networks for the task
of kernel fragmentation and stover chopping quality. The networks first find
object proposals followed by box refinement and classification into either ker-
nel fragments or four classes of stover overlengths. In these works we showed
good performance in terms of object recognition metrics and correlation to
sieved reference samples. For kernel fragments, a strong correlation for Corn
Silage Processing Score was seen between physical measurements as well as
scores estimated from annotations. Additionally, for stover overlengths, a
strong correlation was found for two Theoretical Length of Cuts. The results
from the models were found after researching strategies for data sampling,
finetuning and anchor tuning in the Region Proposal Network, which signif-
icantly improved results compared to a naive training approach.

Further scientific contributions were made to estimating kernel fragmen-
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tation quality with an efficient network for directly classifying relevant sieve
sizes for particles. The classification step was achieved through algorithmic
novelty with a sieve-based matching approach for object anchors. The novel
network showed a considerable improvement on inference time compared
to two-stage networks while having competitive correlation to Corn Silage
Processing Score measurements.

As a focus in this PhD has been adopting deep learning models for au-
tomatic Whole Plant Corn Silage quality monitoring in the field it is impor-
tant to understand how the neural networks perform. To this end, we have
investigated the trade-offs in speed and accuracy in a number of state-of-the-
art object recognition networks for kernel fragmentation. For three different
meta-architectures we trained networks of varying complexity in feature ex-
traction and differing image resolutions. For the models we could see a clear
difference in inference speed and propose an optimal network architecture
and image resolution for our task.

In order to train and test networks to localise non-separated kernel and
stover particles we created a guideline for annotators on how to annotate.
This was necessary in order to define the tasks, with the aim to annotate
and thereby detect as many kernel fragments as possible to estimate the
Corn Silage Processing Score. Whereas for stover, overlengths particles 1.5x
greater than the Theoretical Length of Cut at the time of harvest should be
annotated to estimate an Overlength Particle Score. Despite the guidelines
we saw that annotators found challenges in the process as the agreement
between them and sanity checks based on expected sizes varied. Regard-
less, we see promising results for the two tasks but recommend that care
should be taken when evaluating models with metrics based on manual an-
notations. Furthermore, we investigated the potential of Semi-Supervised
Learning as an alternative to training networks solely on manual annotations.
We found promising results, indicating a potential usage of the method, es-
pecially when combined with a small number of annotated images from a
single harvest.

For deployment of a deep learning-based system it is important to not
only address model accuracy but also the platform it should run on. In situ-
ations where computations must be made on the device, such as in the field
when harvesting, there can be computational restrictions due to power con-
sumption and memory available. Therefore, for a number of edge platforms,
we investigated the trade-off between speed, accuracy and price for three rel-
evant computer vision tasks using deep learning models. For each model we
evaluated the inference time in relation to the retail price which could help in
determining the optimal platform based on a practitioners requirements on
model complexity and budget. Additionally, we analysed the computation
time for each of the models on the different edge platforms, giving indica-
tions on how to address further computational optimisation.
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Summary

The scientific contributions can be summarised to:
Monitoring Corn Silage Quality

* The first works on estimating the quality of harvested corn silage in
RGB images without the need for separating kernel and stover particles.

— First presented in Paper A: Maize Silage Kernel Fragment Esti-
mation Using Deep Learning-Based Object Recognition in Non-
Separated Kernel/Stover RGB Images.

- Algorithm improvements in Paper B: Anchor Tuning in Faster R-
CNN for Measuring Corn Silage Physical Characteristics.

— Further improvements in Paper C: SieveNet: Estimating the Par-
ticle Size Distribution of Kernel Fragments in Whole Plant Corn
Silage.

* We propose robust two-stage networks for the task of localising kernel
fragments and stover overlengths across harvest seasons and machine
settings.

- Kernel fragments evaluated in Paper A: Maize Silage Kernel Frag-
ment Estimation Using Deep Learning-Based Object Recognition
in Non-Separated Kernel/Stover RGB Image.

— Kernel fragments and stover overlengths localised in Paper B: An-
chor Tuning in Faster R-CNN for Measuring Corn Silage Physical
Characteristics.

* We show significant improvements to kernel and stover overlength qual-
ity monitoring in two-stage networks by investigating strategies for data
separation and transfer learning, together with tuning parameters in the
Region Proposal Network with respective shape and size characteristics
for the two tasks.

— Paper B: Anchor Tuning in Faster R-CNN for Measuring Corn
Silage Physical Characteristics.

* We present a novel sieve-based matching algorithm allowing us to train
models for efficient estimation of kernel fragmentation quality.

— Paper C: SieveNet: Estimating the Particle Size Distribution of Ker-
nel Fragments in Whole Plant Corn Silage.
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Understanding Neural Networks

* We document the trade-off in model complexity, speed and accuracy for
the task of localising kernel fragments with a number of state-of-the-art
object recognition networks.

- Paper D: Evaluation of Model Selection for Kernel Fragment Recog-
nition in Corn Silage.

* Present and discuss insights into the challenges of building datasets for
deep learning in Whole Plant Corn Silage.

— Paper E: The Challenge of Data Annotation in Deep Learning — A
Case Study on Whole Plant Corn Silage.

¢ Investigate the potential of adopting Semi-Supervised Learning for Whole
Plant Corn Silage.

— Paper E: The Challenge of Data Annotation in Deep Learning — A
Case Study on Whole Plant Corn Silage.

* We evaluate and document the trade-off in speed and price for three
computer vision tasks on edge platforms and identified network oper-
ations for further optimisation aiding in edge-based system design.

- Paper F: Evaluation of Edge Platforms for Deep Learning in Com-
puter vision.

Through the work conducted in this PhD we investigated a number of
deep learning networks for automatic quality monitoring of kernel fragmen-
tation and stover overlengths in images of non-separated Whole Plant Corn
Silage. In order to develop and deploy the neural network based systems
we studied a number of areas in order to understand them. Based upon our
contributions in these two themes, we believe that an efficient and straight-
forward Whole Plant Corn Silage automated monitoring system can be made
using deep learning and object recognition. This is additionally highlighted
by the fact that the company hosting the Industrial PhD has applied for two
patents in Europe and the United States of America, indicating their belief in
a future product.

Through our work and scientific contributions, the basis has been set for
a system that can efficiently and robustly monitor a farmer’s Whole Plant
Corn Silage quality. This would result in higher earnings by increased yield,
savings in regards to machine wear and lower fuel consumption. Further-
more, it places less requirements on the knowledge required by the forage
harvester operator as specifics to quality are left to the algorithms.
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Future Work

This Industrial PhD has shown work on how to measure Whole Plant Corn
Silage in RGB images of non-separated samples. However, before the models
can be realised as a final commercial system there are a number of steps that
should be addressed.

Firstly, previous measurement systems all rely on separating kernel and
stover together with spreading out samples before an image is taken. This
greatly decreases the difficulty and allows for the ability of determining pre-
cise contours for each particle. Such a precise measurement is naturally not
possible in our images and we have not addressed any sources of sampling
error that may be introduced by measuring Whole Plant Corn Silage directly.
For example, particles occluding each other or particle orientation may result
in underestimating the true size. While we evaluate against physical samples
showing positive correlations, future steps can be taken to account for such
errors, potentially improving the quality estimation. For example, a class
could be added during annotation of a "covered particle" and models trained
to detect these from which uncertainty can be addressed.

We spent extensive time on creating pixel-level annotations for our datasets.
In addition, we attempted to include true population variances that a de-
ployed system can be exposed to by using images from multiple harvests,
different levels of crop maturity and harvester settings. The data used in
this thesis was limited to Northern Europe and is smaller in comparison to
considerably larger benchmark datasets often used in deep learning. Addi-
tionally, the physical sieving measurements are from two harvest weeks in
a single season. Evaluating the system, either against annotated test sets or
physically sieved samples, on more data with increased variance, can perhaps
make the models more robust.

Our approaches for estimating kernel and stover quality vary. For ker-
nels we aim to estimate the particle size distribution for all fragments, how-
ever only use overlengths for estimating stover quality. Annotating all kernel
fragments is an extensive task and places challenges on the networks in that
smaller objects can be more difficult to detect. Therefore, using a similar ap-
proach to stover overlengths by only localising kernel fragments which are
too large could be of interest.

We investigated the trade-off for deep learning models on edge platforms
in regards to speed and price. This is naturally also relevant when deploy-
ing the Whole Plant Corn Silage quality models. For the correlation analysis
we estimated the quality on image sets consisting of a number of images,
however, it is unknown what the minimum requirement on predictions and
images are before a stable quality estimate can be made. Depending on this,
together with a given edge platform, it can place a need for faster and less
complex models than those evaluated in this thesis. If this is the case, the
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trade-off in the quality correlation, complexity and speed should be investi-
gated.

It would also be of interest to investigate if the results from our two-stage
networks transfers to similar applications, both in agriculture and other in-
dustries. This could include other crops, for example, grains harvested from
a combine harvester or before harvesting within localising relevant plants in
crop rows. Additionally, the work presented on understanding neural net-
works for network architecture, dataset creation, and deployment can lead
the basis for adopting our methods. Harnessing the power of deep learning
by appropriate model development and understanding can hopefully digi-
tise many areas of agriculture aiding farmers and continue to optimise food
production.
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1. Introduction

Abstract

Efficient and robust evaluation of kernel processing from corn silage is an impor-
tant indicator to a farmer to determine the quality of their harvested crop. Current
methods are cumbersome to conduct and take between hours to days. We present the
adoption of two deep learning-based methods for kernel processing prediction without
the cumbersome step of separating kernels and stover before capturing images. The
methods show that kernels can be detected both with bounding boxes and at pixel-
level instance segmentation. Networks were trained on up to 1393 images containing
just over 6907 manually annotated kernel instances. Both methods showed promising
results despite the challenging setting, with an average precision at an intersection-
over-union of 0.5 of 34.0% and 36.1% on the test set consisting of images from three
different harvest seasons for the bounding-box and instance segmentation networks
respectively. Additionally, analysis of the correlation between the Kernel Processing
Score (KPS) of annotations against the KPS of model predictions showed a strong
correlation, with the best performing at v(15) = 0.88, p = 0.00003. The adoption of
deep learning-based object recognition approaches for kernel processing measurement
has the potential to lower the quality assessment process to minutes, greatly aiding a
farmer in the strenuous harvesting season.

1 Introduction

Maize kernel processing evaluation is an important step in determining the
quality of silage harvested from a forage harvester. Maize silage is used as
fodder for cattle in dairy production and high quality silage though correct
processing has an effect on milk yield [1] and suboptimal setting of the ma-
chinery can also lead to the quality being affected by up to 25% [2]. Kernels
must be sufficiently cracked for efficient starch intake by lowering the require-
ment for chewing during eating and ruminating [3]. Kernels are processing
by two mill rolls which compress and shear the plant. The gap known as the
Processor Gap (PG) is often between 1 and 4 mm with 0.1 mm increments.
This work focuses on the evaluation of kernel processing for silage quality
efficiently through deep learning computer vision based methods via Convo-
lutional Neural Networks (CNNs). Currently, the particle size distribution of
kernel processing is evaluated through means which can be time consuming,
cumbersome to conduct, and prone to error. An example of this is the Corn
Silage Processing Score (CSPS) [3] and is one of the major standards in kernel
processing evaluation. CSPS gives an analytical measurement of the kernel
processing though laboratory equipment situated offsite typically returning
a measurement after a number of days. In CSPS the user places a 160 g dried
sample of harvested silage on a Ro-Tap sieving system which oscillates to
allow processed kernels to pass through a number of differently sized sieve
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screens. The materials that pass through a 4.75 mm sieve can be measured
for starch content and the percentage of this that passes is the CSPS. Parti-
cles larger than this size may result in a slow starch digestion in cattle and
increase chewing requirement. The CSPS can be interpreted according to [3]
as greater than 70% is optimal processing, between 50% and 70% is adequate
processing and less than 50% is considered inadequate processing. An ad-
ditional finer sieve screen of 1.18 mm can be used to determine the number
of over-processed kernels. The starch content in such fragments can simply
pass through the cow’s rumen, leading to wasted plant.

Another commonly used method for assessing kernel processing is the
Penn State Particle Separator (PSPS) [4]. PSPS is similar to CSPS, however,
does not require off-site laboratory equipment such as the Ro-Tap system or
drying of the silage before starting the measurement process. Therefore, PSPS
is able to give a farmer a much quicker indication of the kernel processing
from the forage harvester. In PSPS three or four stacked trays with varying
gaps are used to separate the kernel particles. The sample is placed in the
top tray and the stack is shook a total of 40 times at a rate of one shake
per second. After this, the weight of each tray is measured and is used to
determine the distribution of kernel processing in the sample. Despite PSPS
being more flexible than CSPS, the method is sensitive to the rate of shaking
and moisture content, potentially giving a less accurate measurement.

The water separation method [5] can also be an effective method for a
farmer to conduct a quick assessment of the kernel processing. Here, the
total number of whole kernels in a 1-quart (946 ml) sample is evaluated.
If more than one whole kernel per quart is found, the kernel processing is
deemed not optimal. The method begins by placing the sample in a container
filled with water. Then the sample is stirred gently until the stover, such as
leaves and stalks, float and the kernels sink. Afterwards the stover and water
is removed from which the number of whole kernels can be counted.

As mentioned, the aforementioned current kernel processing assessment
methods are relatively time-consuming and can require potentially error-
some manual steps. There has been minimal work done in automating this
process and to our knowledge only one such exists. In this work computer
vision is used to calculate the kernel particle size distribution [6]. In the
method, first kernels must be separated from the stover using a method such
as water separation. After this, the kernels are placed without touching any
other samples on a dark background together with a common coin whose
size is known, such as a penny. The coin can then be used as a reference
later on in the system to calculate the kernel sizes. An image is captured and
the contours of the kernel particles are found via image processing. Then
the maximum inscribed circle is found for each particle in pixels which is
converted to a kernel particle size distribution in millimetres. Metrics such
as the percentage of particles smaller than 4.75 mm or average area give an
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indication to the user of kernel processing quality.

Looking into the broader domain, there is a large amount of research into
measuring the quality of other crops. Firstly, the grades of product are de-
termined by calculating rice kernel shape and size features and training a
support vector machine [7, 8]. Additionally, in [9] rice colour features and
Fourier descriptors for shape and size are extracted from which the qual-
ity grade is determined through multivariate statistical analysis. A number
of methods identify whole or broken fragments in grains. In [10], the size,
color and brightness values are used in combination with a flatbed scanning
device. In [11], rice is segmented based on color, and shape features indi-
cate the grade of the crop. Classification of the grains in the image can be
necessary when different grain types are mixed. Artificial neural networks
have been used to classify types based upon extracted handcrafted features.
In [12] color and texture features, in [13] size, color, and shape features, and
in [14] color and morphological features were used to train networks respec-
tively. K-Nearest Neighbor classifiers were trained on size and texture fea-
tures in [15, 16], with a number of color models being used in the latter.
The quality of maize seeds was evaluated in [17] using hyperspectral imag-
ing where data was reduced through t-distributed stochastic neighbourhood
embedding and Fischer’s discriminant analysis for quality classification.

The works mentioned so far all follow that traditional computer vision
approach of extracting hand-crafted features followed by using a classifier
to make a decision on the task at hand. However, since 2012 when AlexNet
[18] won the ImageNet classification challenge by a significant margin, deep
learning with CNNs has dominated the field. Object recognition in images is
a challenging task due to potential variations in objects, such as the colour,
texture, shape, and size, and variations in images, such as the lighting, view-
point, and occlusion. CNNs have been shown to learn complex patterns
in data through a hierarchy of layers. Typically earlier CNN layers capture
simple patterns such as the edges, while later layers learn more complex
representations such as the shape of specific objects. This hierarchy has the
potential to learn a powerful model given high quality data. There are nu-
merous examples of machine vision with deep learning in agriculture that
show good results and in many cases a significant improvement over using
hand-crafted features. Examples include [19], where fully convolutional neu-
ral networks were trained to predict a semantic segmentation map of clover,
grass, and weeds in RGB images containing clover-grass mixtures to estimate
the distribution of the classes in the field. Here, they account for the poten-
tially large amount of training data required for CNNSs, as it was observed
the annotation could take up to 3.5 h for 10 images. New images were simu-
lated by combining augmented objects from those already annotated on top
of captured background images. A deep learning approach to detect tomato
plant diseases and pests was done in [20], where a number of popular models
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was evaluated for the task. In [21] a CNN and random forest classifier was
trained to classify 32 different species of leaves. Plant disease detection of
14 different crop species including 26 diseases was done in [22] using CNNs
and a number of different feature extractors such as AlexNet [18]. Crop and
weed detection using CNNs was done in [23] on a combination of RGB and
near-infrared data.

The aim of this work is to create a system to localise kernels fragments in
RGB images for kernel processing assessment without the requirement sepa-
ration of stover and kernels such as in [3, 4, 6]. Such a system will allow the
farmer to gain an insight into the quality of the kernel processing without the
need to perform a time-consuming and cumbersome process. We propose to
train CNNs in both a bounding-box detector and instance segmentation form
to automatically detect and localise kernel fragments in the challenging im-
ages. Examples of the images used in this work are shown in the following
section in Figure A.3. The methodology in training the aforementioned net-
works will be covered in Section A.2 and the achieved results in Section A.3.

An example of the difference between separated kernel/stover images
such as those typically used in [6] and non-separated used in this work can
be seen in Figure A.1. Additional white outlines in Figure A.1b represent the
outline of kernel fragments.

(@) (b)

Fig. A.1: Example of the difference in images between separated and non-separated corn silage.
(a)Reprinted from [6], with permission from Elsevier; (b) Example image from this work.

2 Materials and Methods

This section details the materials and methods used in the work. This in-
cludes images, subsequent kernel annotation and overview of the CNN mod-
els and training parameters. In order to train the respective recognition algo-
rithms, a dataset of harvested silage is required. Both the basis for the images
of the silage and annotation with resulting datasets is covered.
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2.1 Images

RGB colour images were taken of harvested silage over three years. The silage
was produced from a variety of fields and crop conditions, and harvested
with different machine settings. For example, the PG primarily accounts for
the differences in the level of kernel fragmentation by altering the distance
between two rollers mills in which the corn plant passes through. Secondly,
the cutting length (CL) affects how fine the corn plant is chopped before
passing through the rollers. Figure A.2 shows an example of harvested silage,
while the two images in Figure A.3 show the differences in the harvested
silage and a small PG (a) and a larger PG (b), resulting in a higher proportion
in smaller and larger kernel fragments respectively. The silage in both (a) and
(b) were harvested with same CL. Additionally, in the images a scale is shown
in the bottom right indicating 1 cm, which equates to a resolution of 0.05 mm
per pixel.

(@) (b)

Fig. A.3: Example images of the differences in silage harvested with varying fragmentation.
The white outline shows kernel fragment annotation outlines. (a) Smaller Processor Gap (PG)
resulting in smaller kernel fragments; (b) Larger PG resulting in larger kernel fragments. A scale
in the bottom right of the images shows the size of the images where 200 pixels is equal to 1 cm.
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2.2 Datasets

The images were annotated using a tool with user defining vertices outlining
the kernel fragments creating a polygon for each instance in a given image.
These vertex-based annotations can be used to train both the instance seg-
mentation models or they can be converted to bounding-boxes by taking the
outer extremas of the annotated vertices for detection models. Just under
2500 images were annotated across the data collected from three years, with
the largest number of annotations being done on the images collected in 2017
as seen in Table A.1. It is also shown in the table that a total of four datasets
were created, one for each of the harvest years (2015, 2016, & 2017) and a final
set that contains all of the data from the three years combined (151617). For
each of the datasets, train and test is split randomly at roughly 60% and 40%
respectively. The division of years was done to evaluate how a CNN model
would react to being trained on images from one harvest with its given con-
ditions and how the resulting model would perform on images from another
harvest year. The visual appearance of the crop can change due to the varia-
tions in farming such as geographical location, weather conditions, or plant
maturity. The combination of data in 151617 is to evaluate the large data
requirement of deep learning models and to see if models tuned to specific
conditions or a model with larger variation is preferable.

Table A.1: Overview of datasets created based on the year in which the images were captured.
The total number of images and kernel instances per dataset is shown.

2015 2016 2017 151617

Train Images 111 115 1167 1393
Train Kernel Instances 1388 675 4844 6907
Test Images 76 85 884 1045

Test Kernel Instances 836 433 3425 4694

2.3 Deep Learning Models

This section covers the two deep learning approaches used for kernel frag-
ment recognition in both object detection and instance segmentation form.
First, we will give a short overview of deep learning and CNNs with re-
spect to the core concepts. Deep learning is a form of machine learning that
aims to solve a task using a “deep” model through the transformation of
data using various functions that can represent the data in a hierachical man-
ner [24]. Deep learning can be especially successful as it allows for automatic
feature extraction, rather than an engineer designing hand-crafted features.
If the dataset is representative of the deployment scenario it can allow the
model to learn a strong set of functions that can be difficult for an engineer
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to find. However, due to this deep hierarchical manner, the features deter-
mined by the model can be difficult to debug and are often treated as a black
box. In deep learning the aim is to have model learn a feedforward mapping
between input and output, for example, given an input of an RGB image of
maize silage output, the x-y coordinates of kernels together with a confidence
score of the prediction. In order to learn this mapping the aim is to update
the parameters of the model through training to give the desired output. The
model is trained over a number of iterations where given the model and its
current set of parameters, it perform the feedforward mapping for an image
and measures the error of the model in comparison to the correct answer
defined in the annotation. This error can then be used to push the model
parameters in the correct direction by updating them through the method
of backpropagation. Here, the error traverses back through the network and
computes the gradient for each function’s parameters that should decrease
the error. Using this gradient, an optimisation algorithm, such as Stochastic
Gradient Descent (SGD), updates the parameters of the function. This pro-
cess is continuously performed until the model has updated the parameters
in such a way to best perform the mapping of input and output with the
lowest possible error in the training set whilst still performing well on a val-
idation set. Depending on the task there are a number of different types of
architectures within deep learning: this includes recurrent neural networks
often used for natural language processing, reinforcement learning used in
robotics, and CNNs used in this case for RGB images. With CNNs the deep
hierarchy of functions mainly revolve around the convolution mathematical
operation which is well suited for the grid-like topology of images. The con-
volution operation is relatively simple and has been used in hand-crafted
feature engineering such as edge detection or image blurring. Convolution is
computed by a filter of a given size (i.e., 3 X 3 or 5 x 5) sliding over the image
data and computing an elementwise multiplication and producing a single
output value in a feature map. Convolving over the entire image produces
a fully realised feature map. The deep aspect of CNNs is therefore a large
number of convolution layers computing feature maps upon previously com-
puted maps in succession. The learning process described earlier for CNNs
aims to learn the weights in the hierarchy of convolution filters that give the
optimal mapping between input and output.

The methods chosen in this work are the Region-based Fully Convolu-
tional Network (R-FCN) [25] for bounding-box detection and the Multi-task
Network Cascade (MNC) [26] for instance segmentation. These were cho-
sen due to their state-of-the-art nature at the time of conducting this work,
where both performed well on a number of object recognition benchmarks
including PASCAL VOC [27] and MS COCO [28].

The CNN approaches solve the task of object recognition but at different
degrees of localisation granularity. Bounding-box detectors place an axis-
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aligned bounding-box around the detected object whereas segmentation in-
dicates the object at a pixel level. Due to the lower localisation granularity of
bounding-box detectors, they may over-sample the object and give a larger
indication of size than is actually true. This difference on an image from this
work can be seen in Figure A 4.

(@ (b)

Fig. A.4: Examples of the difference in localisation granularity between bounding-boxes and
segmentation. (a) Bounding-box localisation, (b) Segmentation localisation. The segmentation
localisation fits much closer to the kernel instances and thereby can give a more precise mea-
surement on kernel size.

This remainder of this section includes an overview of how the methods
perform their respective forms of object recognition by covering the model
architecture and defining the model and learning parameters used in this
work.

Region-based Fully Convolutional Networks (R-FCN)

R-FCN is a bounding-box CNN-based object detection method and is based
on the popular two-stage detection strategy of object proposals followed
by classification of found proposals. Additionally, the authors were one of
the first to adapt Fully Convolutional Networks (FCNs) into the two-stage
pipeline, rather than using feature pooling layers, such as Region of Inter-
est (Rol) pooling as in the Faster R-CNN detector [29]. Thus, potentially
important spatial information is not discarded as can be the case when pool-
ing features. The R-FCN architecture can be seen in Figure A.5. In the first
stage, an input RGB image is passed through a number of convolutional lay-
ers to create a deep representation through a number of feature maps. As is
common practice in object recognition through CNNs, the convolutional lay-
ers can take many forms that can vary in complexity. Popular choices for the
layers include AlexNet [18], VGG [30] and ResNets [31], where in the original
R-FCN work the ResNet-101 network was primarily explored. Class-agnostic
Rol object locations are found by a Region Proposal Network (RPN) [29].
The RPN finds Rol proposals by sliding a small network over the last feature
map computed by the previous convolutional layers. At each sliding win-
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dow location a number of anchor boxes with varying scales and aspect ratios
predict the confidence of a location containing an object. In the second stage,
candidate Rol proposal features via an FCN for classification are extracted
from a number of position-sensitive score maps. A total of k?(C + 1) maps
are computed where C is the number of object classes and k? is the spatial
grid representing relative positions. In the case shown in Figure A.5, k = 3,
therefore, nine score maps are computed for each object class.

Region Proposal
Network

0 ood
Feature Extractor I:l |:|

RGB Image

—— vote
pool

ee o HH

HH

Position-sensitive
score maps

Fig. A.5: The R-FCN architecture illustrating an image being passed through a number of con-
volutional layers. Rols are computed from a RPN on the final convolutional layer, these Rols are
classified through the coloured position-sensitive score maps.

The R-FCNs trained for kernel detection in this work largely follow the
same procedure as that conducted in the original work. The network weights
were initialised from a pretrained ResNet-101 for ImageNet [32] classification
supplied by the authors. The networks were trained for a total of 110,000 it-
erations using SGD with an initial learning rate of 0.001 and after 80,000
iterations the learning rate was dropped by 0.1. Additionally, momentum of
0.9 and weight decay of 0.0005 was used during optimisation. With respect
to the position-sensitive score maps k = 3. For each image the mean RGB
ImageNet values are subtracted to normalise the training set which aids in
the learning process. Subtracting the mean RGB from our training datasets
was also evaluated during early development, however, it showed that re-
sults were better when using the ImageNet means. Horizontal flipping was
the only data augmentation strategy used during training and images were
scaled such that the height was 600 pixels and the width was then scaled
accordingly to keep the original aspect ratio.
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Instance-Aware Semantic Segmentation via Multi-Task Network Cascades
(MNCQC)

MNLC also follows the mantra of multi-stage object recognition. The task in
MNC is instance segmentation where the key difference between R-FCN is a
module for determining mask instances, in addition to the region proposals
and classification modules. The general architecture of MNC can be seen
in Figure A.6. As in R-FCN, a feature map is extracted from the last of a
number of convolutional layers computed based on an input RGB image. The
authors performed their primary experiments using the VGG-16 networks,
however, as in R-FCN any popular or user-designed CNN architecture can
be used for feature extraction. An RPN determines class-agnostic region
proposals followed by Rol warping and pooling. These are used as input
to the mask generation modules in combination with learnt fully-connected
(FC) layers. Finally, the masks in combination with another set of FC layers
perform classification of the mask instances.

Region Proposal
Network

Feature Extractor D |:|
Warping ‘
f6P lmag & pooling
- - FCs
masking Categorised
‘ FCs instances

Mask
instances

Fig. A.6: The Multi-task Network Cascade (MNC) architecture, as in Region-based Fully Con-
volutional Network (R-FCN), an image is passed through a number of convolutional layers and
Rols are found with an RPN. Features are extracted from the Rols via Rol warping and pooling.
Class agnostic masks are founding from the features that are being passed through FC layers.
The masks are classified from the Rol features through another set of FC layers.

As the name implies and as shown in Figure A.6, MNC is a cascaded
approach for instance segmentation of first determining box instances then
mask instances and lastly categorising the instances. However, it is com-
mon practice to refine the predictions by extending the cascade to five stages
by repeating both the mask generation and classification module. This ap-
proach was adapted in this work from the open source code provided by
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the authors. The work included a pre-trained VGG-16 network trained on
ImageNet which was used for transfer learning. However, due to the large
complexity of using VGG-16 as a feature extractor, an ImageNet pre-trained
AlexNet feature extractor was adapted instead. Following the author’s pro-
cedures, MNC models were trained for a total of 25,000 iterations using SGD
with an initial learning rate of 0.001. After 20,000 iterations, the learning
rate was decreased by 0.1. Additionally, momentum of 0.9 and a weight de-
cay of 0.0005 was used. As in the R-FCN models, the ImageNet RGB mean
values were subtracted from the images. Again, horizontal flipping was the
only data augmentation implemented and images were scaled such that the
height was 600 pixels with width scaled accordingly.

2.4 Hardware

Models were trained on an Ubuntu 16.04 machine with an NVIDIA Titan
XP Graphics Processing Unit (GPU) using the Caffe framework [33]. Caffe
is a deep learning framework developed by Berkely Al Research that allows
for fast training of testing of multiple types of models including CNNs and
recurrent neural networks. An overview of the memory requirements for
training the R-FCN and MNC models and inference speed can be seen in
Table A.2. While the two models have a relatively low requirement on GPU
memory, the difference in the feature extractor can be seen for both train and
test memory. The considerably larger and more complex ResNet-101 model
present in R-FCN increases the memory usage and adds to the inference
timings in comparison to MNC with the AlexNet backbone.

Table A.2: Overview of hardware statistics for both methods. Timings were done on images of
size 600 x 1000 pixels on an Ubuntu 16.04 machine with an NVIDIA Titan XP GPU.

Train Memory (MB) Test Memory (MB) Inference Time per Image (s)

R-FCN (ResNet-101) 6877 3251 0.101
MNC (AlexNet) 3439 2369 0.087

2.5 Computer Vision Metrics

Both of the algorithms can be evaluated on an object-level. These metrics
do not directly measure how well a prediction intersects with the ground
truth instance, rather, it is a measurement of whether or not an instance is
correctly classified given a minimum Intersection-over-Union (IoU) threshold
between the two. If a prediction overlaps by more than the IoU threshold it
can be determined as a true positive detection, otherwise, it is a false positive.
In this work an IoU of 0.5 is used when presenting results for the object-
level metrics. It should also be noted that only a single prediction can be
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considered as a true positive with a given ground truth—typically this is the
prediction with the highest IoU. If multiple predictions overlap above the
threshold, the remaining are considered as false positives.

Firstly, the precision on a dataset can be calculated as:

TP, objects
TPobjects + FPobjects ’

Precision = (A1)
where TPypjects and FPypjects are the total number of true positives and false
positives object instances.

The recall of a dataset is calculated by:

Pobjects

Recall =

, (A.2)
Pobjects

where Pypjects is the total number of positive ground truth examples.

Additionally, Average Precision (AP) is calculated as the mean precision
of a dataset and is calculated across 11 equally spaced levels of recall [0, 0.1,
..., 1]. AP is determined by:

AP = % Y. pinterp(r), (A.3)
re{0,0.1,..,1}

where the precision at each level of recall r is interpolated by the maximum
precision measured for which the corresponding recall exceeds 7:

pinterp(r) = maxp(7), (A4)

Fr>r

where p(7) is the measure precision at recall 7.
The F1-score is calculated by:

2TP objects
2Tpobjects + Fpobjects + FNobjects ’

F1-Score = (A.5)

where FNppjects are the total number of non-identified ground truth instances.

3 Results

The results for the various trained models according to the metrics defined
in Section 2.5 will be covered. Finally, an analysis of Kernel Processing Score
(KPS) will be conducted to address the potential of using the system for silage
quality evaluation in an industry setting.
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3.1 Computer Vision Results

Firstly, detections from the four trained R-FCN models can be seen on an
example image from the 2016 test set in Figure A.7 and the correspond-
ing four MNC models in Figure A.8. In Figures A.7b—e the ground truth
bounding-box annotations are shown in white around the kernel fragments,
true positive detections are shown in green, and false positives are shown as
red. Whereas in Figures A.8b—e the annotations are shown as a white outline
around the kernel fragment, individual kernel fragment instance predictions
are shown with different colours, while the determination of true positive
or false positive is indicated by the green or red text above the prediction.
In both figures, detections were considered as either a true positive or false
positive at an IoU threshold of 0.5. The original image can be seen in Figure
A.7a and Figure A.8a.
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(e) 151617 model.
Fig. A.7: Model predictions on a test image from 2016. Bounding-boxes colours indicate ground

truth (white), true positive (green) and false positive (red). True positives and false positives
evaluated at an IoU threshold of 0.5.
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Fig. A.8: Model predictions on a test image from 2016. Ground truth annotations are shown as
a white outline around the kernel fragment. The colour in the text box indicate true positive
(green) and false positive (red). True positives and false positives evaluated at an IoU threshold
of 0.5. The individual colour for each prediction indicate separate instances of predictions.

An overview of the metrics covered in the previous section are shown
below for the models trained and tested on the respective datasets defined
in Table A.1. As stated in Sections 2.3 and 2.3, the four respective R-FCN
and MNC models were trained using a consistent architecture and learning
parameters. The only difference is the training dataset itself, where the con-
tent aimed to give an insight into the varying field conditions in agriculture
from harvesting season to season. Additionally, there is a considerable dif-
ference in the amount of data annotated in the sets, where the 2017 sets have
around 10x more images in both training and testing. Of course, this also
has the effect of images captured in 2017 being the significant majority in the
combined 151617 dataset. An overview of the results for the computer vision
metrics can be seen in Table A.3. For each test set the best performing model
for a given metric is shown in bold. The general trend seen in the table is that
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the 151617 model is the most robust across the four test sets, in many cases
being the best performing for a metric or the second best. The differences
between then R-FCN and MNC models are slight with only a few percentage
points difference for all test sets apart from the 2015 test set. For this test set
the model trained on the larger 151617 dataset performs considerably better
than the other models across all metrics, including the 2015 model which is
trained on only images from the same year as the test set. The R-FCN 151617
model achieves a 65.9% AP, 31.9% points higher than that of the 2015 coun-
terpart. Whereas the AP for the MNC model is significantly lower at 40.4%,
a significant increase is still present compared to the 2015 MNC model. Ad-
ditionally, for the 151617 R-FCN model precision and recall scores at 70.0%
and 76.0%, roughly 20.0% points higher than the 2015 model in both regards.
The considerable improvement of the 151617 model in comparison to 2015 is
present despite images from 2015 only making up around 10% of the training
material in 151617. However, this 10% in addition to the roughly 10% from
2016 seems to have a significant impact as the model trained on data only
from 2017 performs worse than both 2015 and 151617 models at 28.5% AP.

Table A.3: Computer vision metric results for both the R-FCN and MNC models across the four
test sets.

R-FCN MNC
Train Dataset AP Prec Recall F1-Score AP Prec Recall F1-Score

2015 Test
2015 340 555 53.0 54.2 27.7 445 31.8 37.1
2016 19.0 80.0 21.0 33.3 16.8 60.5 16.5 25.9
2017 28.5 51.1 40.2 45.0 27.7  50.0 32.1 39.1
151617 65.9 70.0 76.0 73.9 404 50.3 46.3 48.2
2016 Test
2015 253 233 87.1 36.8 40.7  30.1 61.0 40.3
2016 41.8 521 73.2 60.9 52.1 544 62.8 58.3
2017 342 417 63.1 50.2 53.0 45.7 67.9 54.6
151617 66.9 56.9 90.8 70.0 71.8 47.6 80.8 59.9
2017 Test
2015 153 19.0 70.5 29.9 18.6 202 36.4 25.8
2016 19.2 434 44.1 437 243 39.8 32.8 36.0
2017 31.0 364 66.9 47.2 363 329 53.3 40.7
151617 334 376 67.2 48.2 359 319 53.7 40.0
151617 Test
2015 19.6 234 73.6 35.6 261 26.2 429 32.5
2016 223  50.1 447 47.2 284 46.7 34.2 39.5
2017 302 39.2 62.5 48.2 35.8 36.0 51.0 42.2
151617 34.0 40.7 66.0 50.4 36.1 342 52.2 414
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As mentioned, the difference in results between R-FCN and MNC models
are not as significant for the remaining test sets, however, the trend of the
combined 151617 training dataset giving robust results continue. The 151617
models is the best performing for both models by considerable margins. AP
for the 151617 model scores at 66.9% and 71.8% for R-FCN and MNC respec-
tively, 25.1% and 19.7% points higher than the 2016 models. Similar increases
in the remaining metrics exist as of that for the 2015 test set. Once again
images similar to the test set is in the minority in the 151617 training set with
around 10% being harvested in 2016. As in the results for the 2015 test set
this 10% addition has a considerable effect as the relatively large 2017 model
is the third best performing model on most metrics.

The 2017 and 151617 results do not show an as significant difference in
the results as for 2015 and 2016. The best performing model varies across
the numerous metrics, however, the 2017 and 151617 models measure con-
sistently well in comparison to the other two who lack in some regards. For
example, the 2015 R-FCN model has a relatively high recall of 70.5% but
poorer precision of 19.0%. Whereas the 2016 R-FCN model has the highest
precision on both 2017 and 151617 test sets at 43.4% and 50.1%, however, the
AP is considerably lower at around 10% points. The results are similarly not
as varying for the MNC models, with the 2017 and 151617 models in general
performing strongest. In general, there is negligible difference between the
2017 and 151617 models for both R-FCN and MNC on the corresponding two
test sets. This is likely because the training set between the two models has
much more overlap than the earlier results.

3.2 Kernel Processing

To evaluate the viability of the two CNN methods for kernel fragment recog-
nition, we adopt the commonly used KPS score from the CSPS [3]. For each
detected instance for either method the length of smallest axis from a ro-
tated fitted bounding-box is found. This length gives an indication of the
detected kernel instance that would pass through the 4.75 mm sieve screen
used in CSPS. The smallest axis length is used as a quality indicator due to
the three-dimensional shaking present in the Ro-Tap separators used in CSPS,
therefore, particles are separated based upon the shortest diameter. The KPS
was also used to evaluate the image processing algorithm developed in [6],
however, the diameter of the largest inscribed circle was used in this case.
Additionally, in [6] the actual KPS was calculated by performing the Ro-Tap
laboratory separation, unfortunately, this was not done while harvesting in
this work. Instead we calculated the KPS for a sequence of images from a
given PG by determining the shortest axis length from the ground truth an-
notations. As the images of the silage were taken with known distance to the
camera, the pixel resolution in mm can be converted as 1 mm to 20 pixels,
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meaning that kernels of lengths below 95 pixels (4.75 mm) are considered
to be optimally processed. Figure A.9 shows the calculation of the minor
axis from a rotated bounding-box for an annotated image. In this example
a single kernel is above the 4.75 mm threshold and deemed not optimally
processed with a minor axis of 95.10 pixels.
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Fig. A.9: Visualisation of determining kernel processing based on the shortest axis length of a
rotated bounding-box for a number of annotated kernel fragments. The shortest axis is shown
via a blue line with the length in pixels for each shown next to the fragment.

Due to the large number of annotations present for images from 2017, a
number of different sequences were created with different conditions. This
is shown in the left-most two columns in Table A.4, with 17 sequences with
varying PGs. The table also shows the KPS calculated as the percentage of
kernel fragment detections with a shorter axis below 4.75 mm for the eight
respective models trained on different subsets of data. It should be noted
that because of the nature of the predictions between the R-FCN and MNC
models, it was only possible to determine a rotated bounding box for the
MNC predictions due to the higher localisation granularity of pixel-level seg-
mentation. Instead, for the R-FCN detections, the shortest distance of the
axis-aligned bounding box was taken. Finally, the KPS ground truth from
the annotations is shown in the right-most column. The average absolute er-
ror summarises the accuracy of each model of all PGs in the final row. While
there are individual differences in the KPS calculation in comparison to the
annotations from different sequences, in general the average absolute error is
lowest for the 151617 R-FCN model—4.5% points less than the MNC coun-
terpart despite having the disadvantage of axis-aligned bounding-boxes.
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Table A.4: Kernel Processing Score (KPS) results across sequences of varying PGs for R-FCN and
MNC models. The final row shows the average absolute error for each model over all sequences
from the 2017 test set.

% (<4.75 mm) 2015 2016 2017 151617
PG R-FCN MNC R-FCN MNC R-FCN MNC R-FCN MNC Annotation
1 96.2 97.7 91.8 94.7 93.8 95.5 92.2 97.3 93.5
1 95.4 95.4 95.2 96.1 95.8 98.8 95.1 97.7 98.7
1 88.0 76.4 85.7 86.5 81.3 87.2 80.7 88.9 79.9
1 93.7 94.8 93.0 91.1 92.5 95.7 92.1 96.1 94.3
2 93.9 94.8 78.8 75.2 89.2 95.8 87.8 97.3 79.1
2 92.8 97.7 89.9 92.6 86.3 95.7 90.8 95.7 93.8
2 84.8 71.5 84.2 100.0 82.5 85.8 82.7 87.7 88.8
2 88.0 86.1 86.4 85.6 82.2 90.6 76.0 92.6 79.1
3 89.6 80.7 85.1 83.5 82.4 89.3 81.8 90.4 82.3
3 94.6 95.2 91.2 95.7 89.9 94.1 86.1 93.8 85.7
3 90.4 85.9 83.2 83.1 77.9 90.3 80.5 90.0 79.3
3 89.1 86.3 83.6 84.5 88.5 93.0 89.8 91.8 94.5
35 90.2 80.8 83.5 88.0 81.4 89.5 81.2 91.2 83.1
35 88.6 75.5 84.0 81.6 79.7 89.0 80.3 90.2 76.6
3.5 91.2 93.0 89.5 92.6 91.7 93.2 92.9 94.6 92.4
35 85.6 75.9 75.4 725 79.5 84.7 78.4 86.1 73.7
35 91.5 89.8 86.8 91.3 86.6 91.5 86.9 92.9 86.4
Avg. abs.

6.7 53 3.8 4.6 3.3 6.3 27 72

3.3 Correlation Analysis

Given the results in Table A.4 across the varying PGs, the effectiveness of the
KPS calculation can be evaluated across a number of different potential sizes
of kernel fragments. This section covers a correlation analysis for both the
R-FCN and MNC method.

R-FCN

Four scatter plots including the equation describing the linear regression fit
can be seen for each R-FCN model against the KPS annotations in Figure
A.10. Each indicate a positive slope of an increasing KPS for a model as the
ground truth KPS increases.
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(a) 2015 model. (b) 2016 model.
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Fig. A.10: Four scatter plots of the R-FCN model KPS against annotation KPS with linear regres-
sion analysis computer for each.

To determine the significance of a potential correlation, a Pearson’s cor-
relation coefficient was calculated as shown in Table A.5. Results from a
Shapiro-Wilk normality test are also shown, as Pearson’s assumes that both
samples arise from a normal distribution. A high W, as present for all five
samples in Table A.5, means that the null hypothesis that the population is
normally distributed cannot be rejected. Following [34] we can interpret the
results for Pearson’s correlation coefficient that all models have a strong pos-
itive correlation to the annotation KPS. The strongest being the 151617 model
of r(15) = 0.88 with a p-value of 0.000003, explaining 77.7% of the variance in
the ground truth KPS.
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Table A.5: Correlation analysis via Pearson’s correlation coefficient for the KPS of the four R-
FCN models against the annotation KPS. Pearson’s assumes a normal distribution in the data
which is evaluated through a Shapiro-Wilk normality test.

Shapiro-Wilk

Pearson’s Correlation

KPS w p-value r(15) p-value 2 (%)
Annotations 0.94 0.32 NA NA NA
2015 0.973 0.870 0.54 0.0244 294
2016 0.97 0.816 0.77 0.0003 59.5
2017 0.94 0.320 0.81 0.00009 65.1
151617 0.94 0.327 0.88 0.000003 77.7
MNC

The corresponding four scatter plots for the MNC models can be seen in
Figure A.11. Again, a positive relationship is indicated between the KPS
from each model and the KPS for annotations across processor gaps.
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Fig. A.11: Four scatter plots of the MNC model KPS against annotation KPS with linear regres-
sion analysis computer for each.
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4. Discussion

Table A.6 firstly show Shapiro-Wilk tests for each sample with high W
and corresponding p-values. The resulting Pearson’s correlation coefficient
also indicates a strong positive correlation. The strong appears from the 2016
model with r(15) = 0.74 with a p-value of 0.0007, explaining 54.4% of the
variance in the KPS annotations.

Table A.6: Correlation analysis via Pearson’s correlation coefficient for KPS of the four MNC
models against the annotation KPS. Pearson’s assumes a normal distribution in the data which
is evaluated through a Shapiro-Wilk normality test.

Shapiro-Wilk Pearson’s Correlation
KPS \ p-value r(15) p-value 72 (%)
Annotations 0.94 0.32
2015 0.91 0.098 0.60 0.0106 36.2
2016 0.97 0.743 0.74 0.0007 544
2017 0.97 0.806 0.69 0.002 48.1
151617 0.97 0.666 0.63 0.0065 39.9

4 Discussion

The potential to train CNN models for kernel fragment recognition in RGB
images of silage is promising. This appears to be the case even without
conducting the time-consuming step of separating kernels and stover before
evaluation, as in all current popular kernel fragmentation evaluation methods
[3-6].

The four models trained in both R-FCN bounding-box and MNC instance
segmentation performed well and two major tendencies appeared. Firstly
and possibly unsurprisingly, a larger training dataset, such as that of 151617,
led to models that performed well across all metrics on all test sets. Deep
learning methods are known to have a high requirement on the amount of
data and the roughly 10x larger 151617 training set in comparison to the
2015 and 2016 sets seemed to show this effect. However, a total of 1393
images with 6907 annotated kernel instances is not on the same level as con-
siderably larger object recognition benchmarks such as PASCAL VOC [27] or
MS COCO [28] consisting of over 10,000 and 165,000 images for training re-
spectively. The trained R-FCN and MNC models of course take advantage of
transfer learning from a pre-trained models on ImageNet datasets. With this
aid, roughly 1400 annotated training images in 151617 set gave consistent
results across test images from three different harvest years. Additionally,
the second finding was of the at times significant improvement when adding
only a small amount of data to a larger dataset. This was seen for the models
trained on the 151617 dataset for test sets 2015 and 2016, where despite the
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additional data being in the minority during training in contrast to images
from 2017, they had a large increase in performance compared to models that
did not combine all of the data.

With respect to the viability of using a CNN-based model for KPS mea-
surement, both methods can be deemed to have potential. A strong positive
correlation was found between annotation KPS and model KPS, with the
strongest existing for the 151617 R-FCN model. A criticism of the correlation
analysis is naturally that this was against annotation KPS and not a truer lab-
oratory measurement than in [6]. However, as the training and testing splits
were kept separate, the correlation results still give a good indication for the
approaches.

In comparison to [6] who show KPS measurement given manually sep-
arated kernels in a controlled camera setting, the error measurement across
sequences is similar to our work. KPS based on image analysis from wet
samples from the field from [6] show an average absolute error of 5.6% in
comparison to our range of 2.7% to 7.2% dependent on the model and test
set. Of course, care should be taken comparing the two works given the dif-
ferences in ground truth measurement, location of harvesting, the machine,
and so forth. A key improvement in this work is the time required to obtain a
KPS measurement. In [6] the time was improved to hours instead of days as
in [3], however, due to removing the requirement of kernel/stover separation,
this work allows KPS calculation to be done in minutes.

Future work is to evaluate against a laboratory measured KPS as men-
tioned earlier. Furthermore, research into applying newer object recognition
methods from the fast-moving field may also be viable, potentially improv-
ing challenges such as recognition of small objects. Finally, such CNN-based
methods could be used to measure other silage-quality aspects, such as the
cutting length of the forage harvester.

5 Conclusions

This work has shown that kernel fragmentation in maize silage can be esti-
mated from images using trained CNNs in both bounding-box and instance
segmentation form. Through transfer learning and training models on im-
ages captured across three different harvest seasons, both forms were able to
estimate the fragmentation robustly. This was evaluated via computer vision
metrics and an analysis of the correlation between model predictions and a
kernel processing score. Where the latter showed a strong correlation for
both CNN forms to an industry standard kernel processing score.

Furthermore, this work showed promise in kernel fragmentation estima-
tion in non-separated kernel/stover images, leading to a potentially signifi-
cant decrease in measurement time.
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1. Introduction

Abstract

Efficient measurement of harvested corn silage from forage harvesters can be a criti-
cal tool for a farmer. Suboptimal fragmentation of kernels can affect milk yield from
dairy cows when the silage is used as fodder and oversized stover particles can pro-
mote mould yielding bacteria during storage due to resulting air pockets. As a forage
harvester can harvest hundreds of tonnes per hour, an efficient and robust system for
measuring quality in the field is required, however, current methods require manual
errorsome separation steps or for samples to be sent to an off-site laboratory. There-
fore, we propose to adopt Faster R-CNN with an Inceptionv2 backbone to detect
kernel fragments and oversized particles in images of corn silage taken directly after
harvesting without the need for separating particles. We explore strategies of data
sampling for specialist models, transfer learning from differing domains and tuning
the anchors in the Region Proposal Network to accommodate for changes in object
shapes and sizes. Our approach leads to significant improvements in average preci-
sion for kernel fragmentation and stover overlengths of up to 45.2% compared to a
naive model development approach, despite the challenging cluttered scenes. Addi-
tionally, our models are able to predict quality for network predictions with the Corn
Silage Processing Score (CSPS) for kernel fragmentation and a measure we introduce
for chopped stover named Overlength Processing Score (OVPS). For both scores we
obtain a strong correlation against physically measured samples with an r* of 0.66
for CSPS, 0.79 and 0.95 for OVPS at two verbal theoretical length of cut.

1 Introduction

The evaluation of quality of harvested corn silage is a critical step for a farmer.
The farmer has two key settings to adjust during corn silage harvesting with
a forage harvester. Firstly, the Processor Gap (PG), where two mill rolls com-
press and crack open kernels into fragments with a gap of a few millimetres.
Secondly, the Theoretical Length of Cut (TLOC) which controls the cut of the
stover (leaves and stalks of the plant) to a desired length by a rotating drum
consisting of a number of knives. Ensuring the corn silage is harvested to the
appropriate size is one of the most important aspects when a farmer harvests.
Corn kernels should be cracked open such that the starch content can easily
be accessed when being fed for dairy cows and the stover should be cut such
that it encourages saliva production through cud chewing such that a proper
rumen pH is maintained in the cow [1]. The stover should also be chopped
such that it allows for compact packing and storage during fermentation in
the silo. Longer pieces of stover can create pockets of air between the parti-
cles allowing for aerobic bacteria to grow which in turn can produce mould
and yeast ruining the silage [1]. A forage harvester is able to harvest massive
amounts of silage in a short period of time and therefore suboptimal ma-
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chine settings can greatly affect both the fuel consumption and the resulting
yield. Depending on the machine settings, modern forage harvesters use be-
tween 130 to 180 litres of fuel and can harvest between 200 to 300 tonnes per
hour [2]. Typically the farmer selects the machine settings based upon their
expertise and their given field conditions. However, within a field there can
be considerable variations in the corn plant dependent on numerous factors
such as moisture level and differences in plant maturity requiring adjust-
ments to the PG and TLOC. Naturally this places a large requirement on the
operator and automating this process would place lower requirements on the
farmer while aiding in optimising both yield and machine usage.

Industry standards for determining silage quality is through manual mea-
surements of the particle size distribution. For a faster measurement in the
field a farmer can utilise the Penn State Particle Separator (PSPS) [1], where
the farmer shakes three or four stacked trays each consisting of a specific
sieve gap such that the sample can be separated and subsequently weighed.
Laboratory measurements can also be conducted which require a sample of
corn silage to be sent off-site for mechanical sieving in order to gain a more
precise measurement such as with the ASABE particle separator [3]. The me-
chanical separation removes the potential human error as could occur with
the PSPS but naturally is much more time-consuming and does not allow
the farmer to gain insight into the harvester settings during harvesting. If
only the kernel fragmentation is of interest, a farmer can measure the Corn
Silage Processing Score (CSPS) [4] of kernels separated from the stover using
a Ro-Tap sieving system, here, the percentage of particles that pass a 4.75
mm sieve defines the processing quality. For the stover portions of the silage
the aim is often to measure particle lengths in order to promote physically
effective Neutral Detergent Fibre which increases chewing and healthy ru-
men pH [5]. A common metric is to measure the mean particle length of
a stover sample. Previous work has been conducted on the measurement
of the fragmentation level and estimating CSPS through computer vision
methods [6-9]. However, minimal literature exists on the measurement of
chopped stover and those previous works require manual separation such
that there is no overlap between particles [10, 11]. In this work we tackle
the much harder problem of a fully automated approach. To this end, we in
this work show the effectiveness of modern deep learning architectures for
both measuring kernel and stover particles. We adopt the same approach for
estimating CSPS for kernel fragments as in [8] where the aim is to localise
and measure all kernel fragments in the image. However, if we were also to
follow industry standards for stover measurement, such as to estimate mean
particle size or particle size distribution, detection of all relevant instances
in an entire sample would be required. Such a task is not feasible for object
recognition systems with the high levels of clutter and occlusion that occur
in non-separated samples. This challenging difference is shown in Figure B.1
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Fig. B.1: Example of harvested silage. The white outline shows the kernel fragments and all
remaining particles in the image are stover.

where kernel fragments are outlined in white and the remaining particles in
the image are stover.

Therefore, we propose to introduce measuring only large instances of
stover as overlenths and thereby addressing key quality aspects directly re-
lating to feed quality and factors that can lead to spoiled silage during stor-
age. We show an approach to estimate the portion of stover overlengths in
samples for two different verbal TLOCs, namely, 4 and 12 mm. Chopping
strategies for corn silage can differ depending on the farm based on feed-
ing and storage. Therefore, we show results for two different verbal TLOCs
rather than having a single metric. Our definition of an overlength is 1.5x
verbal TLOC and in this work we create three datasets with different verbal
TLOCs in order to evaluate this premise across multiple stover lengths. We
believe that the compromise of only estimating overlengths in the cluttered
non-separated samples can give a strong indicators to a farmer directly in
the field which can complement other metrics such as mean particle length
that require additional manual steps. Further explanation of the datasets are
covered in Section 3.1 together with the annotation process. The varying
overlength definition places different requirements on a system as it should
be able to adjust to changes in verbal TLOC. We therefore explore strate-
gies for model training in data separation for the development of specialist
models for a given verbal TLOC and adjusting parameters of the network
to tune towards specific overlength object sizes. Our exploration leads us to
show that precision and quality measurement can be significantly improved
for both overlength and kernel recognition compared to a naive model de-
velopment approach. Models are evaluated two-fold, with object recognition
metrics against manually annotated instances and against images with ac-
companying physically measured quality scores. By testing our models with
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two approaches we are able to determine model optimisation trends that im-
prove our results but also see that due to the challenging cluttered scenes
it is important to include a method completely separate of human bias in
annotation.

Our contribution is three-fold:

* We show for the first time how overlengths can be analysed automat-
ically from images without the need for separation of particles and
hence pave the way for a system that can efficiently aid the farmer in
adjusting machine settings of their forage harvester without errorsome
or time-consuming sieving methods.

* We adopt a two-stage recognition network for the tasks of kernel and
overlength recognition, namely Faster R-CNN [12] with an Inceptionv2
[13] backbone, showing the robustness of the system despite low num-
ber of annotated instances in scenes with high amounts of clutter and
occlusion.

* We show through strategies for data sampling, transfer learning and
tuning of parameters of the Region Proposal Network (RPN) signifi-
cant improvements in Average Precision (AP) and correlation against
physical measurements compared to a naive training approach.

2 Related Work

Recognition and localisation of objects for quality control is a key area of
research in computer vision. In agriculture, harvest inspection has been
explored with both classical approaches such as feature extraction in com-
bination with a trained classifier [14-19] or through deep learning systems
[20-22]. Within corn silage there is limited work for measuring the quality
using computer vision. For stover measurement there are a few that provide
a particle size distribution of the entire sample using classical computer vi-
sion and determine geometric characteristics of the particles [10, 11], however,
both require all particles to be separated and placed in a controlled setting.
Within kernel fragmentation, firstly, [6] determine the maximum inscribed
circle within fragments through classical computer vision approaches of ker-
nel samples separated from the stover and spread out on a black background
and in [7] the same approach is used to determine the fragmentation of in
situ disappearing dry matter. In [8, 9], the authors measure the fragmentation
in non-separated samples taken directly from the harvester using two-stage
recognition Convolutional Neural Networks (CNNs) to predict instance seg-
mentation and bounding-boxes, however, CSPS predicted from the networks
is evaluated against an estimated CSPS from annotations.
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The determination of particles sizes in machine vision is present in both
agriculture but also in other industries. Inspection of minerals is one such do-
main, where classical approaches to determine shape and size characteristics
have been extracted and resulting measurements compared to mechanical
sieving distributions [23-25]. Deep learning approaches through CNNs have
also been adopted for the task, such as in [26] where a Mask R-CNN was
trained to predict the location and classes of agglomerate nanoparticles from
which size information could be extracted. In [27] U-Net was adopted for
droplet size distribution in chemical engineering applications. In [28] a cus-
tom CNN has proposed to directly predict the histogram of object sizes of
images containing fly larvae.

In modern object detection, usage of region proposals is common practice
through the RPN since it was presented in Faster R-CNN [12]. In the RPN,
predefined priors, known as anchors shapes, are used to densely predict ob-
ject proposals at sliding window locations in the computed feature map. The
anchors shapes were densely set at three scales (1282, 2562, 5122) and three as-
pect ratios (1:1, 1:2, 2:1) to cover a variety of potential shapes and sizes. While
the RPN provided significant improvements and is still a robust module in an
object detection pipeline a number of methods have attempted to improve the
dense anchoring scheme. In YOLOV2 [29], the RPN was adopted as it was
found that the original YOLO made errors in terms of localisation and re-
call. However, rather than having hand-picked anchor priors, the boxes were
determined using k-means clustering with an Intersection-over-Union (IoU)
distance metric between cluster centroids and annotated training bounding-
boxes. In [30] guided anchoring was introduced in the RPN to use semantic
features to learn the location and shapes of the anchors into each level of the
feature pyramid network. RefineDet [31] used an anchor refinement mod-
ule that filters negative anchors such that the classification step is simplified
and adjusts anchors over a cascade of decreasing feature maps. In MetaAn-
chor [32] meta-learning is used in anchor generation that allows the anchor
box priors to be set at inference time rather than during training.

A number of examples exist of adjusting anchor boxes for specific applica-
tions resulting in better performance. Firstly, for pedestrian detection smaller
scale priors in [33] and the specific aspect ratio of 0.41 in [34]. For face de-
tection in [35] an aspect ratio of 1:1 was used as faces are generally square in
shape. For text detection in [36] a number of higher and wider aspect ratios
were adopted. For ship detection, [37] used hand-picked rotations and scales
in an encoder-decoder network.
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3 Methodology

This section covers the datasets used in this work for localising kernel frag-
ments and stover overlengths, both for training and evaluating models with
hand labelled annotations and for validating models against physically mea-
sured samples with relevant corn silage physical characteristics metrics. We
also give an overview of our methods for improving our models by train-
ing specialist models on subsets of data, transfer learning, adding a post-
processing filtering step and tuning anchors in the RPN for our specific tasks.
Finally, we cover how we converted predictions to corn silage metrics in order
to compare against physical samples.

3.1 Data Collection and Annotation

In this work we used separate annotated datasets for kernel fragmentation
and overlength measurement. We adopted the same kernel fragmentation
dataset as in [8, 9] consisting of 11601 kernel fragment instances annotated in
2438 RGB images. The images were captured across three separate harvesting
seasons in 2015, 2016 and 2017.

For overlength recognition we created a new dataset of RGB images of the
non-separated corn silage after harvesting with three different verbal TLOCs
producing separate size distributions of chopped stover. While it could have
been possible to extend the kernel dataset used in [8] to include overlengths
the decision was made to create a separate dataset. The original dataset
did not have variation across a large enough number of cutting lengths and
would not allow to evaluate the system over changing conditions as the ma-
chine settings are altered. Images were taken directly after harvesting with a
constant distance between the camera and silage sample allowing for a con-
version between pixels and millimetres such that a quality score could be es-
timated for instances. From these images, four datasets were defined: Small
containing images of silage harvested with a 4 mm verbal TLOC, Medium
harvested at 6 mm verbal TLOC, Large harvested at 11.5 mm verbal TLOC,
and finally All which is a combination of the images from the previous three
datasets. Figure B.2 shows an example image from each of the three size
datasets including a red circle which diameter shows the overlength defini-
tion for the given verbal TLOC shown during annotation.

Figure B.3 shows the four class definitions used in this work when differ-
entiating between overlengths. Firstly, we show the classes accepted leaves in
Figure B.3 (a) and non-accepted leaves in Figure B.3 (b) where in both cases
the leaves extend beyond the overlength indicator but there is a difference in
the classes based on the structure of the plant. For non-accepted leaves the
longest axis of the plant follows the fibre structure but for accepted leaves
the axis that exceeds does not. The definition between these types of leaves
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(@) (b)

Fig. B.2: Example of images from the datasets of different TLOCs. (a) example from Small (4
mm). (b) example from Medium (6 mm). (c) example from Large (11.5 mm). For each image the
diameter of the red circle indicates the overlength definition of 1.5xTLOC.

(@) (b) (© (d)

Fig. B.3: An example from each of the four classes from silage harvested with an TLOC of 4 mm.
(a) accepted leaves, (b) non-accepted leaves, (c) inner stalk, (d) outer stalk.

is due to the manner in which the plant is fed into the harvester. The header
of the harvester cuts near the bottom of the corn plant and feeds it from this
end into the machine where the rotating drum chops perpendicularly. As the
drum only chops across across one axis it is considered a critical error when
the leaf is too long in the axis following the fibres but not along the other.
The example in B.3 (a) can occur as the leaf is wrapped around the plant and
unravels after passing through the cutting drum. This is difficult to address
from a machine stand-point as these types of leaves are considered "accepted"
as the machine is cutting stover in the manner it is designed to cut. In Figure
B.3 (c) we show the class inner-stalk and in Figure B.3 (d) outer stalk. As the
naming denotes, these are two separate parts of the stalk plant and are dif-
ferent in terms of digestion for the dairy cows and how the compress during
storage.

Images were annotated producing bounding-boxes for each instance. Ta-
ble B.1 shows an overview of the datasets for the three TLOCs. Firstly, it can
be seen that the number of instances per image is greater for a smaller TLOC.
As a forage harvester can output hundreds of tonnes per hour this puts a
larger requirement on the the rotating cutting drum at 4 mm compared to
11.5 mm. Additionally, due to the definition there is a more stringent thresh-
old in relation to the machine setting as a 4 mm TLOC overlength is at 6 mm
compared to a 11.5 mm TLOC at 17.25 mm.
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Table B.1: Annotation statistics for instances for the three verbal TLOCs. A decreasing number
of instances occur for a larger verbal TLOC but with an increasing bounding-box size (pixels).

Accepted Non-accepted Inner Outer | Avg. Avg. major Avg. minor
TLOC || Images ~ Instances leavels leaves i stalk  stalk siz§ axig leng]th axi% length
4 163 1233 520 419 75 209 145189 216.6 94.3
6 199 904 182 559 35 122 26315 294.3 122.7
11.5 113 263 51 172 1 38 613282 485.5 179.9

Physical Samples

In addition to the annotated datasets for both kernel fragmentation and over-
lengths we used a third dataset for validation of the models. Multiple image
sets were captured across two harvested weeks (CW40 & CW43) with vary-
ing machine settings. A total of 10 image sets were captured at verbal TLOC
4 mm and 15 at 12 mm. In addition to the two different verbal TLOCs the
kernel processor was varied between image sets with roll gaps of either 1, 2
or 3 mm. For each image set a sample of corn silage was taken and physically
measured for both kernel fragmentation and overlengths. Kernel fragmenta-
tion was measured using CSPS [4] by sieving a 600g sample and determining
the percentage of particles passing 4.75 mm. The overlengths were measured
using 20-30 kg samples where the percentage passing a sieve corresponding
to 1.5x verbal TLOC gave the distribution. More specifically, samples har-
vested at verbal TLOC 4 mm were measured against a 6 mm sieve compared
to an 18 mm sieve at verbal TLOC 12 mm.

3.2 Model Training

Faster R-CNN variants for both kernel and overlengths were trained with a
number of common parameters using the TensorFlow object detection API
[38] with TensorFlow version 1.13.1 on an NVIDIA Titan XP GPU. Images
were cropped such that only the silage could be seen in the frame and resized
to 600x 1200 during training and testing. Each model variant was trained for
a total of 25,000 iterations and the iteration with the lowest validation loss
was chosen for testing. Each of the datasets were split into 70% training, 15%
validation and 15% testing. It is important to note that the All dataset for
overlengths comprises the same data as the respective sets for each specific
verbal TLOC such that the test results are comparable.

Models were optimised using stochastic gradient descent with a learning
rate of 0.002, momentum of 0.9 and a batch size of 1. A maximum of 300
proposals were sampled per image in the RPN at an IoU threshold of 0.7
for positive examples and IoU threshold below 0.3 for background with an
annotated instance. Overlapping detections from the network are removed
with an IoU threshold of 0.6 with non-maximum suppression.

Transfer learning is conducted for each of the models where weights are
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initialised from a model trained on COCO [39] available from the TensorFlow
object detection APL In the case of overlengths we additionally finetune to-
wards a specific verbal TLOC from a model trained on the All dataset initially
finetuned from COCO.

3.3 Filtering Predictions

In the case of overlengths, specialist models are trained on a subset of the
data and thereby have the overlength definition information indirectly given
to the models through the annotations. However, for models trained on the
All dataset this is not given and predictions for overlengths may be made
towards smaller objects despite the verbal TLOC being set at a larger length.
As the verbal TLOC is given by a farmer at inference time we also evaluate
incorporating this into models by removing predictions below the appropri-
ate overlength definition threshold in a post-processing step. For example,
performing inference on the Large test set we filter any predictions where the
major axis is less than 1.5x11.5 mm.

3.4 Anchor Clustering

The RPN module in Faster R-CNN has the task of finding a number of ob-
ject proposals that are likely to contain an object. The RPN is a light-weight
module and allows for more complexity to be used in the feature extraction,
classification and localisation stages. A number of parameters exist that can
aid in proposal generation including the anchor shapes and sizes. For gen-
eral object detection, such as in benchmark challenges COCO [39] or PAS-
CAL VOC [40] where object shapes can vary greatly in both shape and size,
anchors boxes are densely set to cover many scales of both square and rect-
angular boxes. However, if a dataset is more specialised the anchor boxes can
be specified accordingly aiding anchor refinement training in the RPN when
priors are closer to the "true" shape.

To determine the shape and sizes of the anchors for a model we sample all
of the annotated bounding-boxes for a given dataset. An example is shown
in Figures B.4 and B.5 where each of the three subfigures have the normalised
widths and heights of each bounding-box for the kernel and overlength All
training dataset respectively. Cluster centres defining an anchor shape are
found using k-means with the distance metric between the IoU of centroids
and annotations as in [29]. We see in Figure B.4 that the annotations for
kernels have a trend to be slighly longer along their width and sizes largely
between 0.1 to 0.2 along both axes. Figure B.5 show overlengths have a greater
variation in sizes due to the differing overlength definition. In addition, we
also see that the differences in the height and widths for an instances are
considerably larger than kernel annotations.
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Typically for larger datasets a larger number of anchors are used, for ex-
ample, the provided Faster R-CNN models in the TensorFlow object detection
API [38] have 12 anchors. However, for our specific case the optimal number
is not known, therefore, we experiment with the number of anchor boxes for
a model, as shown in Figures B.4 and B.5, where we calculate anchor cluster
centres for two anchors (a), six anchors (b), and 12 anchors (c). When cluster-
ing for a specific verbal TLOC we take the relevant subset of bounding-boxes
in Figure B.5 and tune anchors size accordingly further refining the anchor
priors and potentially narrow the requirements on RPN optimisation.

Bounding-box 2 Clusters Bounding-box 6 Clusters Bounding-box 12 Clusters
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Fig. B.4: Anchor height and widths found using k-means clustering for the kernel training set for
(a) 2 anchors, (b) 6 anchors and (c) 12 anchors. The anchor centroid determined with k-means
is shown by the red text. Each point is the normalised height and width for a bounding-box
annotation.
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Fig. B.5: Anchor height and widths found using k-means clustering for the overlength All train-
ing set for (a) 2 anchors, (b) 6 anchors and (c) 12 anchors. The anchor centroid determined
with k-means is shown by the red text. Each point is the normalised height and width for a
bounding-box annotation.

3.5 Converting Predictions to Silage Quality Measurement

Faster R-CNN outputs bounding-box coordinates together with a confidence
score for each prediction. In order to determine the quality of harvested
silage from a set of images predictions must be converted to a quality met-
ric, here, we adopt the industry standard CSPS for kernel fragmentation and
introduce the metric Overlength Particle Score (OVPS) for stover. As the dis-
tance between camera and corn silage samples is constant we can convert the

104



3. Methodology

number of pixels to millimetres for a prediction and compute the quality in
images. For each bounding-box prediction we determine the major axis of the
box and if the length is below 4.75 mm (95 pixels) the instance is considered
a correctly fragmented kernel. We estimated CSPS in two ways, by comput-
ing the percentage below the threshold by the number of instances against
all instance predictions and by the number of pixels within the bounding-
boxes against all bounding-box pixels. Taking the percentage of correctly
fragmented kernels above a confidence threshold in relation to all kernel pre-
dictions gives the estimated CSPS. Other options exist for converting pre-
dictions to the quality scores such as using the minor axis or the radius of
the maximum inscribed circle [6]. In our case initial investigations showed
scores that correlated well and were closer to the true score by thresholding
the major axis.

In the case of OVPS we aim to predict the percentage of overlengths in
a sample as an estimation of weight. For the total number of overlengths in
an image set we compute the percentage of pixels accounting for overlength
bounding-boxes over the total number of pixels in the image set. This allows
us to estimate the weight of the overlengths which can be compared to the
sieving measurements.

3.6 Computer Vision Analysis

Predictions from the deep learning models are firstly evaluated using the
COCO [39] object detection metric denoted AP which is averaged over 10
IoU thresholds between 0.5 to 0.95 with steps of 0.05. Additionally, we anal-
ysed the predictions using the PASCAL VOC [40] approach of AP at IoU 0.5
(AP@0.5) and a stricter IoU metrics at 0.75 (AP@0.75).

3.7 Statistical Analysis

For the 25 image sets the correlation was evaluated for CSPS and OVPS be-
tween the model and physical samples using Pearson’s Correlation Coeffi-
cient (PCC) and the r? coefficient of determination. Furthermore, the Root
Mean Square Error (RMSE) between the model scores and physical scores
were calculated. To measure agreement we used Lin’s Concordance Corre-
lation Coefficient (CCC) to show the capability of our model measurements
against the gold standard of physical measurements. In addition to CCC, we
also show relevant Bland-Altman plots further assessing agreement.
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4 Results

This section describes the results for kernel fragmentation and overlength
recognition using the Faster R-CNN variants. We compare our model vari-
ants against a baseline naive Faster R-CNN trained with standard parameters
define in Section 3.2. This way we can evaluate and compare against a stan-
dard practice of deep learning development of simply training on a large
dataset. The naive models are denoted Baseline for kernel fragmentation and
All for overlengths.

4.1 Kernel Fragmentation

For kernel fragmentation we aim to extend our models in comparison to [8, 9]
by adding anchor tuning to our two-stage networks. In [9] a Faster R-CNN
with Inceptionv2 was trained using a naive strategy with parameters pro-
vided from TensorFlow API [38] for kernel fragmentation on the same dataset
as this work. We name this model baseline in order to directly show the effect
of our extensions. Table B.2 shows the AP results on the test set for kernel
fragmentation. We see significant improvements using anchor tuning in all
three cases against a naive baseline Faster R-CNN. The number of anchors
tuned is shown by xa where x is the number of anchors. The model with two
anchors tuned for the task provides the best results and increases all metrics
by a number of percentage points (pp).

Table B.2: Faster R-CNN results on the kernel 151617 test set. Results are shown with against a
baseline naive training strategy and with tuning for either 2, 6, 12 anchors.

Model AP AP@0.5 AP@0.75
R-FCN [8] N/A 34.0 NA
MNC [8] N/A 36.1 NA
Baseline [9] || 25.6 519 22.3
2a 28.5 56.6 25.7
6a 27.4 55.9 24.0
12a 26.0 54.0 21.0

Table B.3 shows the correlation scores between predicted CSPS based on
instances counts below the CSPS threshold and Table B.4 for CSPS computed
with pixels below against physical CSPS over the two harvest weeks for pre-
dictions above 50% confidence. Both methods show improvements compared
to their respective baselines in terms of PCC and and r?. However, in CW43
using CSPS estimated with instance counts in Table B.3 the baseline method
performs best. Slight improvements are seen for the week in Table B.5 for 2a
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and 6a. Overall when combining measurements from both harvest weeks the
2a model with CSPS estimated based on pixels has the highest correlation.

Table B.3: CSPS estimated with instance counts correlation between model estimation and phys-
ically measured samples across two harvest weeks.

CW40 CW43 CW40+CW43
Model PCC 2 RMSE CCC | PCC 2 RMSE CCC | PCC 2 RMSE CCC
Baseline [9] || 0.68 046 812  0.62 | 0.64 041 1709 029 | 053 028 142 034
2a 0.84 070 539 080 |0.63 040 889 054 | 0.64 040 769  0.62
6a 083 069 814 067 | 061 037 2013 021 | 054 029 1642 028
12a 0.64 047 11.05 051 | 052 027 1774 023 | 052 028 1542 029

Table B.4: CSPS estimated with pixel distribution correlation between model estimation and
physically measured samples across two harvest weeks.

CW40 CW43 CW40+CW43
Model PCC 2 RMSE CCC|PCC 2 RMSE CCC | PCC 2 RMSE CCC
Baseline [9] || 073 053 3871 007 | 0.66 044 4476 0.05 | 0.64 041 4244 006
2a 079 0.62 2959 014 | 070 048 3686 0.7 | 0.66 043 4244 0.06
6a 076 058 3919 007 | 071 050 4672 0.07 | 0.64 041 4386 0.05
12a 0.66 044 3885 007 | 062 038 4419 004 | 059 035 4217 0.05

However, we observed that the Faster R-CNN models lacked small predic-
tions and considerable improvements in PCC and r?> were made when lower-
ing the confidence threshold. This can be seen in Tables B.5 and B.6 with an
optimal threshold for the 2a model appearing around 0.005 to 0.05. However,
RMSE and CCC drop significantly showing that despite strong correlation a
potential system with this model should be compensated appropriately. In
both harvest weeks we see improvements and strong correlation to physical
measurements. When decreasing the confidence threshold to this level the
correlation scores are slightly better for the pixel-based CSPS, however, com-
bining the two weeks show the same scores with 0.81 and 0.66 for PCC and r?
respectively. This final best performing model, 2a at confidence threshold of
0.05, for PCC has an associated p-value to PCC of 2.25e-5, 0.0004 and 1.04e-6
for CW40, CW43 and CW40+CW43.

Table B.5: CSPS estimated with instance counts correlation at different confidence thresholds
from the Faster R-CNN 2a model.

CW40 CW43 CW40+CW43
Model PCC 12 RMSE CCC | PCC ? RMSE CCC | PCC 2 RMSE CCC
Baseline [9] || 0.68 046 812  0.62 | 0.64 041 17.09 029 | 053 028 142 034
0.5 084 070 539 0.80 | 0.63 040 889 054 | 0.64 040 7.69  0.62
0.25 090 080 890 057 | 066 044 7.64 057 | 071 051 817 057
0.05 094 087 2535 0.19 | 078 0.61 313 010 | 0.80 0.65 29.07 0.3
0.005 091 084 1887 0.5 | 077 059 1623 017 | 0.81 066 1734 0.16
0.0005 086 075 2135 010 | 071 050 1885 0.10 | 0.77 059 19.89 0.10

In Figure B.6 we show CSPS estimated with both approaches, first, with
instance counts for the baseline scatter plot in B.6(a), Faster R-CNN with 2

107



Chapter B.

Table B.6: CSPS estimated with pixel distribution correlation at different confidence thresholds
from the Faster R-CNN 2a model.

CW40 CW43 CW40+CW43
Model PCC 2 RMSE CCC | PCC 7 RMSE CCC | PCC 2 RMSE CCC
Baseline [9] || 073 053 3871 0.07 | 0.66 044 4476 0.05 | 0.64 041 4244 0.6
0.5 079 062 2959 0.14 | 070 048 36.86 0.07 | 0.66 043 4244 0.6
0.25 088 077 2535 019 | 071 050 31.30 0.10 |0.73 053 29.07 0.13
0.05 0.95 091 2017 028 | 079 0.3 2632 0.5 | 0.81 0.65 2405 0.19
0.005 092 085 1672 032 | 077 060 20.85 020 | 0.81 0.66 1930 024
0.0005 084 071 1665 030 | 071 051 1840 023 | 0.77 059 17.72 026
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Fig. B.6: CSPS estimated with instance counts correlation for the baseline Faster R-CNN (a),
Faster R-CNN 2a (b) and Faster R-CNN 2a with a confidence threshold of 0.05 (c). CSPS esti-
mated with pixel distribution for baseline Faster R-CNN (d), Faster R-CNN 2a (e) and Faster
R-CNN 2a with a confidence threshold of 0.05 (f).

anchors in B.6(b) and Faster R-CNN with 2 anchors at a confidence threshold
of 0.05 in B.6(c). Secondly, for pixel bounding-boxes for baseline scatter plot
in B.6(d), Faster R-CNN with 2 anchors in B.6(e) and Faster R-CNN with 2
anchors at a confidence threshold of 0.05 in B.6(f). In Figures B.6(c) and B.6(f)
the strong correlation can be seen for the two weeks however concordance
between points is also lower compared to counterpart models.

Finally, we show corresponding Bland-Altman plots for the models in Fig-
ure B.6 in Figure B.7 highlighting that 2a models at a confidence of 0.05 show
a larger agreement by clustering closer together in terms of their difference,
however, show a significantly larger difference to physical CSPS. compared
to a more standard confidence threshold of 0.5.

Table B.7 and Figure B.8 show the effect of lowering the confidence thresh-
old from 0.5 to 0.05 in regards to annotation based metrics. Naturally, both
more predictions are present and smaller kernel fragments appear. However,
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Fig. B.7: Bland-Altman plots for the baseline Faster R-CNN (a), Faster R-CNN 2a (b) and Faster
R-CNN 2a with a confidence threshold of 0.05 (c). CSPS estimated with pixel distribution for
baseline Faster R-CNN (d), Faster R-CNN 2a (e) and Faster R-CNN 2a with a confidence thresh-
old of 0.05 (f).

we see that lowering the confidence threshold does not improve the precision
but does increase the recall. The annotation process is both cumbersome and
requires expert knowledge. Despite the experts annotating to the best of their
abilities we have observed variation across annotators over numerous metrics
including instances per image and average size of the instances. Therefore,
we hypothesise that as smaller kernel fragments are only annotated in some
cases the models struggle to optimise towards localising them, resulting in
lower confidence for these predictions. However, as our images are cap-
tured in a largely controlled environment lowering the confidence does not
increase the number of true false positives but only the annotated false posi-
tives. This result enhances the requirement of evaluating models in cluttered
environments not only with metrics such as AP but also with other means
independent of human annotation.

Table B.7: Precision/Recall at different confidence thresholds for the Faster R-CNN 2a model.

Conf. thresh. || AP@0.5 AR@0.5
0.5 56.40 56.30
0.25 42.79 69.31
0.05 22.43 81.43
0.005 8.83 88.21
0.0005 4.93 89.31
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(@) (b)

Fig. B.8: Example kernel fragment predictions from the 2a model with confidence threshold
0.5 (a) and 0.05 (b). Three fragments are annotated shown with the white outline significantly
lowering the precision in (b) due to incorrectly annotated false positives.

Table B.8: AP results for overlength models trained on one of the four datasets. Each model is
evaluated on the four test sets in the different column blocks.

All Small Medium Large
Model AP AP@0.5 AP@0.75 | AP AP@0.5 AP@0.75 | AP AP@0.5 AP@0.75 | AP AP@0.5 AP@0.75
All 26.0 47.7 25.4 28.0 52.9 26.2 37.9 58.2 46.4 40.5 52.6 49.5
Small 19.8 341 18.7 32.2 56.2 323 255 36.4 30.0 17 3.5 14
Medium || 17.3  26.7 26.7 144 274 13.0 36.5 55.2 454 9.1 19.6 9.6
Large 76 126 7.2 25 6.5 17 10.1 23.5 8.0 279 419 345

4.2 Overlengths

In this section, we discuss the results from the Faster R-CNN variants trained
for overlength recognition. This includes the effect of training data, filtering
of predictions based upon the overlength definition, and anchor-tuning with
k-means in the RPN.

4.3 Specialist models

First we explore the effect of the training data an overlength model is trained
on, aiming to evaluate if specialist models can be created by training on a
smaller dataset corresponding to the given verbal TLOC. In Table B.8 we
show the AP results for the four test sets in each column block for Faster R-
CNN models finetuned from COCO on the training sets All, Small, Medium,
or Large. When testing on All the best performing model is trained on the
larger All dataset containing all of the data from Small, Medium and Large.
For specific verbal TLOCs we see the model trained only on the Small dataset
is the best in terms of AP, when testing on corresponding sizes, improving
by 4.2 pp in comparison to training on All. The result of specialist models on
corresponding object sizes does not extend to the Medium and Large dataset.
The Medium-trained models performs 1.4 pp worse for AP and we see for the
Large test set the Large-trained model scores 12.6 pp lower than the All model.

The results are different when evaluating OVPS against the physical sam-
ples as shown in Table B.9. For both verbal TLOCs the Faster R-CNN trained
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in Medium has the highest correlation scores for PCC and 2, however RMSE
and CCC show better results for the models trained on the corresponding
dataset. At verbal TLOC 4 mm there is a minor improvement compared to
training on All or Small, however, at 12 mm there is significant improvement
in both PCC and r?.

Table B.9: OVPS correlation results for models trained on one of the four datasets against a
verbal TLOC of 4 mm and 12 mm.

Verbal TLOC Verbal TLOC

4 mm 12 mm
Model [ PCC 2 RMSE CCC [ PCC 2 RMSE CCC
All 0.96 092 1757 049 | 0.58 0.34 40.63 0.03
Small 0.95 090 14.92 0.58 | 041 0.17 5192 0.02
Medium || 0.97 093 31.13 017 | 0.77 0.60 2142 0.10
Large 0.86 0.74 35.09 0.07 | 0.53 028 11.79 0.13

In summary, for specialist models we see that when evaluating against
annotations a model trained on all of the data performs best except for the
small test set. Different results are seen against the physical OVPS where the
medium-trained model is best, especially at verbal TLOC 12 mm.

4.4 Filtering

While we have used the overlength definition of 1.5x verbal TLOC during
annotation the models trained on the All dataset do not have this information
directly in the model and may not be able to make this distinction when
predicting on image captured with a given verbal TLOC. Table B.10 shows
the difference in AP for the All model when predictions for the given test
set are filtered. We see minimal or no change in AP for both the Small and
Medium test set but a significant improvement for the Large test set. In this
case we see an increase of 5.4 pp for AP and 9.6 pp for AP@0.5 IoU. We
hypothesise that this is due to the skew between the three datasets with Large
having significantly less instances. Additionally, filtering in the Small test set
is arguably not relevant as the All trained model is never shown overlength
instances below this size.

Table B.11 shows the effect against the physical samples after filtering an
All-trained model. We see slight improvements on the already highly corre-
lated verbal TLOC 4 mm samples and a decrease at 12 mm for PCC and 2.
A surprising result as the AP results for the Large test set in Table B.10 saw
signficant improvements.

With filtering we can conclude from our data the results considerably im-
prove for the large test set when evaluating against annotations, however,
show little improvement at verbal TLOC 4 mm and decreases at 12 mm
against OVPS correlation.
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Table B.10: Precision results for the All model after filtering based on the overlength definition
for the three sized test sets. On each test set we show the difference in the correlation against
the model without filtering.

Test set AP AP@0.5 AP@0.75
Sl 279 526 26.1
01 -03 0.1
. 378 582 464
Medium || 01 100 +0.0
Lo 459 622 555
& +54 496 +6.0

Table B.11: OVPS correlation for the All-trained model without and with filtering applied in a
post-processing step.

Verbal TLOC Verbal TLOC

4 mm 12 mm
Model PCC 2 RMSE CCC | PCC 2 RMSE CCC
All 0.96 092 1757 049 | 0.58 0.34 40.63 0.03
All Filter || 0.97 093 1757 049 | 049 0.24 1458 0.12

4.5 Transfer Learning

In Table B.12 we show the results for the baseline All model compared to
models trained on Small with either transfer learning from COCO or from
the All-trained model on the respective three sized test sets. In this case of
finetuning from All we show the model with the respective verbal verbal
TLOC dataset followed by 4, or from COCO as coco-

We see increases in AP on both the Small and Medium test sets when
finetuning from the All model. The Smallf,; model increases by 2.1 pp to
30.1% but still performs worse than the Small model finetuned from COCO.
It appears that the AP decreases at a lower IoU as the AP@0.5 decreases by
3.7 pp whereas AP@0.75 increases by 6.4 pp. A different trend appears for
the Medium-tested models where the Medium ), sees a significant improve-
ment in comparison to the two COCO finetuned models. Finetuning from
All improves AP by 5.4 pp to 43.3% and similar increases are seen at the
two shown IoU thresholds. Finally, the Largey;,; model does see a significant
improvement when finetuning in comparison to the Large model finetuned
from COCO, but still performs slightly worse than the All trained model on
AP but with the exception of AP@0.5 increasing by 3.0 pp.

Table B.13 shows that adopting the respectively trained size models fine-
tuned from an All model on for either verbal TLOC gives an improvement
especially at 12 mm. The correlation is stronger compared to the Medium
trained model finetuned from COCO, whilst PCC and r?> improves by 0.23
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Table B.12: Precision results for different finetuning strategies. Each block evaluates on the test
set that matches the given specialist model.

Model | AP AP@0.5 AP@0.75
All 280 529 26.2
Small 322 562 323
Small ) 301 492 32.6
All 379 582 46.4
Medium 365 55.2 454
Mediumg,; || 433 63.0 50.4
All 405 526 49.5
Large 279 52.6 49.5
Large sy 38.6 55.6 43.6

and 0.32 respectively. Additionally, RMSE decreases to 2.95 and CCC is rela-
tively strong at 0.67.

Table B.13: OVPS correlation for different finetuning strategies. We include the previously well
performing Medium specialist model and show results when training with respective specialists
(Resp) for finetuning from COCO and All.

Verbal TLOC Verbal TLOC

4 mm 12 mm
Model PCC r RMSE CCC | PCC » RMSE CCC
All 0.96 092 1757 049 | 0.58 0.34 40.63 0.03
Mediumeoe, || 0.97 093 31.13 017 | 0.77 0.60 2142 0.10
Mediumfm” 0.97 093 26.67 027 | 0.63 040 29.73  0.06
Respeoco 0.95 090 1412 0.58 | 0.53 028 11.79 0.13
Resp fian 0.96 093 19.63 043 | 0.81 0.66 295  0.67

The transfer learning results show different conclusions again based on
the evaluation method. For AP we see that for the specialist models that
small is best finetuned from COCO, medium from All and large shows bet-
ter results at AP@0.5 from All but overall training with all annotations from
COCO is best. From OVPS correlation we see that taking the respective spe-
cialist model finetuned from All provides the highest correlation.

4.6 Anchor tuning

Table B.14 provides a summary of the anchor tuning results for the three
sized test sets. The AP results for each test set are grouped in a column with
a model naming denoting either being trained on All or on the corresponding
test set by the given specialist. Finally, for the All models we show the AP
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results when filtering the predictions below the overlength definition for the
given test set.

For the Small test set we see improvements for nearly all models across
the AP metrics. Regardless of finetuning strategy, specialist models with
anchor-tuning gives models that perform best, with models having two an-
chors improving AP by 5.1 pp when finetuning from COCO and by 5.7 pp
when finetuning from All. There does appear to be a difference in how well
the bounding-boxes fit the predictions objects dependent on the finetuning
strategy. Models finetuned from All generally have a higher AP@0.5 where
the best model increases by 5.6 pp, 2.7 pp more than the next best COCO-
tuned model. However, for AP@0.75 COCO models perform better where the
best result in Specialist;y, increases by 12.9 pp compared to 6.1 pp. Table B.14
also shows a difference between the finetuning strategies for the Medium test
set. COCO-tuned models trained on All perform better than the specialist
Medium variants. However, when finetuning from All the specialist models
outperform, with 6 anchors scoring highest across all three metrics, increas-
ing AP by 8.4 pp, AP@0.5 by 5.7 pp and AP@0.75 by 10.5 pp. Again, for the
Large test set we see difference between finetuning in Table B.14. Large trained
anchor-tuned models that are finetuned from All perform much better than
the counterparts finetuned from COCO. Regardless of finetuning strategy the
models trained on All are best in terms of AP, with 2 anchors appearing to be
the optimal for the Large sized test set. The model with 2 anchors and where
predictions are filtered improve the AP by 18.3 pp to 58.8% with similar in-
creased in pp to both IoU thresholds shown.

Table B.14: Anchor tuning results for variants of specialist models and differing finetuning
strategies. The three columns show the three sized test sets where precision results either match
an All-trained or corresponding sized dataset specialist-trained model. Each model is trained
and evaluated with either 2a, 6a or 12a anchors, additionally the All models also have filtering
applied. Finally, the models are grouped in rows by either finetuning on COCO or from an
All-trained model.

Small Medium Large
Model AP AP@05 AP@0.75 | AP AP@05 AP@0.75 | AP AP@0.5 AP@0.75
All 280 529 26.2 379 582 46.4 405 526 495
Finetune COCO
Ally, 29.8 487 33.0 433 544 474 515 609 58.1
Allyyfitger 30.0 49.0 33.2 436 550 475 588 713 66.0
Allg, 29.1 522 26.4 39.0 542 45.1 421 552 46.1
Allgagitter 29.0 519 26.5 39.8 555 46.1 502 682 53.1
All, 314 569 32.3 43.0 61.1 51.2 31.5 456 33.8
Allpagitier 313 566 322 138 625 521 285 412 303
Specialisty, 33.1 58.5 32.1 347 543 38.5 188 318 20.7
Specialiste, 324 558 30.2 36.4 553 44.0 20.6 373 20.9
Specialistyp, 30.8 52.7 31.8 37.1 55.1 44.8 199 34.0 14.7
Finetune All
Ally, 274 476 30.6 404 539 43.6 465 592 53.7
Allygiteer 272 469 30.5 410 551 44.1 493 63.7 56.9
Allg, 317 549 341 364 553 44.0 283 402 27.3
Allgyfitrer 315 545 339 386 548 43.0 460 60.7 45.3
Allyp, 288 522 29.6 357 488 438 285 413 30.6
Allypafitter 288 517 29.7 36.6 50.4 449 407 586 45.1
Specialisty, 33.7 558 374 427 602 52.1 245 410 30.6
Specialistg, 31.7 52.7 33.7 46.3 63.9 56.9 346 554 38.7
Specialistyy, 335 547 39.1 388 552 49.2 395 577 47.6
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In Table B.15 we show the correlation results for the models and see again
different trends compared to evaluating with annotations. The best perform-
ing model is when using the respective specialist finetuned from All for both
verbal TLOCs. Again, only slight improvements can be made at 4 mm but at
12 mm a very strong correlation can be seen with both PCC and r?. By having
two anchors tuned for the overlength task as verbal TLOC 12 mm we improve
the corresponding non-anchor tuned models in Table B.13 by 0.08 PCC and
0.13 r2. Additionally, the best performing models have an accompanying
PCC p-value of 9.02e-8 and 0.00061 for the two verbal TLOCs. Similarly to
previous correlation results the models with the highest PCC and r* do not
necessarily show the lowest RMSE or highest agreeance based on CCC.

Table B.15: OVPS correlation for the various anchor tuning models also shown in Table B.14.

Verbal TLOC Verbal TLOC

4 mm 12 mm
Model PCC 2 RMSE CCC | PCC 2 RMSE CcCC
All H 0.96 092 1757 049 \ 0.58 0.34 40.63 0.03
Finetune COCO
All2a 0.97 094 2262 030 | 0.67 045 2723 0.05
All2afilter 0.97 094 2265 030 | 041 0.17 26.05 0.12
Alléa 0.96 091 1951 036 | 0.66 044 29.76 0.04
All6afilter 0.96 091 19.63 0.36 | 0.50 025 7.57 0.25
All12a 0.96 092 1883 042 | 0.63 0.40 3358 0.03
All12afilter 0.96 092 1886 042 | 0.54 029 5.16 0.37
Specialist2a 0.94 0.89 1451 055 | 0.77 059 717 0.26
Specialist6a 0.95 0.89 1442 056 | 0.63 0.40 7.51 0.24
Specialist12a 0.94 0.88 16.19 050 | 0.81 0.65 7.24 0.26
Finetune All
All2a 0.93 0.87 2414 024 | 0.62 038 17.6 0.15
All2afilter 0.93 0.87 2418 024 | 051 026 6.02 0.31
Alléa 0.96 091 2239 033 | 0.74 054 2214 0.12
All6afilter 0.96 091 2243 033 | 0.53 029 4.67 0.41
All12a 091 0.83 25.31 020 | 0.77 059 13.8 0.09
All12afilter 091 0.83 2540 020 | 0.68 046 5.69 0.42
Specialist2a 0.97 095 1811 045 | 0.89 079 724 0.21
Specialist6a 0.97 093 20.17 040 | 0.83 0.69 541 0.45
Specialist12a 0.96 092 19.06 041 | 0.73 053 6.69 0.27

From the large number of models trained for overlengths we see the best
results for both AP and correlation with anchor tuning. When evaluating AP
we see that specialist models with either 2 or 12 anchors perform best on the
small test set, whereas for medium the specialist 6 anchors finetuned from All
scores highest and for large the All filtered with 2 anchors is best. However,
we see consistent results for OVPS correlation for a All-finetuned respective
specialist model with 2 anchors. In addition to the highest correlated across
all anchor tuning models it is also the strategy with highest OVPS correlation
across all results in this section.

Finally, corresponding Bland-Altman plots for models in Figure B.9 are
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Fig. B.9: OVPS correlation for different verbal TLOCs. The All-trained model at 4 mm (a) and 12
mm (b). Additionally, the best performing model in terms in PCC and r? Specialist2a finetuned
from All at verbal TLOC 4 mm (c) and 12 mm (d).

shown in Figure B.10. At verbal TLOC 4 mm the analysis between the two
models are largely similar, whereas at verbal TLOC 12 mm agreeance is larger
with points clustering closer together and an overall lower difference between
model estimates and physical measurement.

Lastly, we show example predictions from the three best performing mod-
els for the respective sized test sets in Figures B.11-B.13. We see high amounts
of precision, as shown in previous AP results, for each of the four classes with
predicted bounding-boxes being sized appropriately. In addition, we see that
the models have learnt to distinguish between similar classes such as ac-
cepted and non-accepted leaves where only the fibre structure is the clearest
difference between the two.
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Fig. B.10: Bland-Altman plots for different verbal TLOCs. The All-trained model at 4 mm (a)
and 12 mm (b). Additionally, the best performing model in terms in PCC and 12 Specialist2a
finetuned from All at verbal TLOC 4 mm (c) and 12 mm (d).

(@ (b)

Fig. B.11: Example predictions from the Specialist2a finetuned from All on images from the Small
test set. Predictions (a) and ground truth (b).

Fig. B.12: Example predictions from the Specialist2a finetuned from All on images from the
Medium test set. Predictions (a) and ground truth (b).
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Fig. B.13: Example predictions from the Specialist2a finetuned from All on images from the Large
test set. Predictions (a) and ground truth (b).

5 Discussion

5.1 Annotation Data

The increased correlation for CSPS found for Faster R-CNN after lowering
the confidence threshold for predictions to between 0.05 to 0.005 is in stark
contrast to the typical threshold of at least 0.5, for example, in the Tensor-
Flow object detection API [38], when visualising the standard threshold is
0.5. However, with a subjective inspection of predictions at such a low thresh-
old there does not appear to be a large number of actual false positives but
rather instances that were not annotated. This is likely due to the challeng-
ing annotation process and differing interpretations of kernel fragments be-
tween annotators. Future care could be taken to re-evaluate the annotations
in order to improve the data integrity, this process could be done manually
or by more automated approaches such as semi-supervised or active learn-
ing. After this process it would be fair to hypothesise that the computer
vision metrics would improve, however, of more interest is if the already
strong correlation would increase. While the annotation process is challeng-
ing and this results in the requirement of lowering the confidence threshold
the anchor-tuned Faster R-CNN still appear to capture the overall particle
size distribution and thereby CSPS well. Therefore, it can be argued that a
lower confidence threshold is acceptable at a less precise annotated dataset.

5.2 Algorithm Verification

In this work we evaluated the anchor-tuning method on a Faster R-CNN
network. However, it would be of interest to see if this translates to other
two-stage networks, either with a different meta-architecture such as Mask R-
CNN [41] or with a different backbone feature extractor such as ResNets [42]
or MobileNets [43]. Our initial analysis with a Mask R-CNN and Incep-
tionv2 show similar trends to what we have shown in this work, however,
our anchor-tuned Faster R-CNN still outperforms these networks. Espe-
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cially of interest would be an overall architecture with lower requirements on
complexity opening an opportunity for an embedded prototype for farmers.
While embedded hardware exists with large amounts of processing power to
run a Faster R-CNN with Inceptionv2, investigating if CSPS and OVPS corre-
late with a lower complexity model would be beneficial. A number of addi-
tional options exist in TensorFlow object detection API as explored in [9] and
additional are present in the API with TensorFlow version 2. Alternatively a
custom architecture specifically for the task optimised with TensorFlow lite
could also be an option.

5.3 Automating Corn Silage Harvesting

In this work we have shown that with tuned Faster R-CNNss there is a strong
correlation between model predictions and the quality of physically mea-
sured corn silage. However, there are still a number of open questions before
these models can be deployed in the field.

Firstly, we compute the CSPS/OVPS over all predictions in a image set,
however, in the field the models would be within a system giving feedback
to how to alter the PG and verbal TLOC. Therefore, work is required to
determine how many images are required before the models are giving a
consistent signal that can be used. An example of this problem is visualised in
Figure B.14 where we show the CSPS computed for one of our image sets for
either the past 20 predictions (a) or 100 predictions (b). The best performing
model in terms of physical correlation found a CSPS score of 80.38 over the
1697 predictions. But as can be seen in Figure B.14 the CSPS calculatation
is quite unstable with a rolling average of 20 predictions varying between 45
to 100 CSPS. When increasing the number of predictions to the past 100 the
signal is more stable but additional work is required to determine the optimal
range.

([ o ==
o~
CSPS (past 100 pred)
N ®
3 &

CSPS (past 20 pred)

0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
Predictions (t) Predictions (t)

@ (b)
Fig. B.14: Rolling average for CSPS for an image set for the past 20 predictions (a) and past 100

predictions (b). The best performing model found in this work computed a CSPS of 80.38 over
the entire image set.

Further work is also required in creating a prototype system to suggest
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how much the PG and verbal TLOC should be altered given the model pre-
dictions. As covered in Section F1 suboptimal machine settings can effect
resulting milk yield from dairy cows, promote unwanted bacteria during
packing or result in wasted fuel consumption. Future steps will be to ad-
dress the model signal can be used in a system to optimise towards farmer
requirements on for their corn silage.

6 Conclusion

We present the first work to automate the measurement of chopped stover
from corn silage harvested with a forage harvester. Our work predicts the
instances of overlengths which is dependent on a farmer’s desired stover
length based upon the verbal TLOC. Additionally, we show improvements
to previous methods of measuring kernel fragmentation in images of non-
separated corn silage. Experimental evaluation on a number of strategies
for model development led to significant improvements compared to a naive
object detection training methodology for both tasks. We evaluated the effect
of training specialist models towards a given verbal TLOC on a subset of
the data. We experimented with two transfer learning strategies showing
that in general better performance was found when a model was finetuned
from all verbal TLOCs rather than a significantly different domain. Finally,
we showed that anchor tuning significantly improved performance for both
tasks. Our approaches led to model improvements of up to 45.2% for AP.
However, evaluation against physical measurements indicated potential flaws
when only validating models with manual annotations, thereby showing that
model development and testing should be done in a complementary manner
between the two. Despite the challenging annotations, general trends for
improved models were seen for both evaluation purposes and the annotations
led to strong correlations in the models.
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7 Appendix

In this appendix we include additional investigations to those covered earlier
and published in our journal article. We investigate the effect of classifying
kernel particles based upon different axes. Additionally, for both tasks, dif-
ferent feature extractors are evaluated for Faster R-CNNs. The difference in
determining CSPS and OVPS between Faster R-CNN and Mask R-CNN is
shown. Finally, the effect of lowering the image resolution is covered for both
tasks.

7.1 CSPS Classification

In this work Faster R-CNNs [12] with Inceptionv?2 [44] backbones were trained
to predict kernel fragments across an image set with varying machine set-
tings. For each prediction, the major axis of the bounding-box was compared
against the CSPS threshold of 4.75 mm, where if the axis length is below the
threshold the prediction is deemed as sufficiently processed. Our approach
aims to mimic a sieving system, predicting if a fragment would fall through
a sieve or not. However, sieving often shakes the sample in three dimensions
and a particle may rotate such that it passes a sieve based on the minor axis.
The difference in CSPS classification is visualised in Figure B.15 for an ex-
ample fragment prediction localised with a bounding-box. Here, the same
fragment can be classified based upon a major axis length of 9.3 mm, com-
pared to a minor axis of 4.6 mm, or as an alternative, the mean of the two of
6.95 mm. In this example, if the major or mean axis is used the fragment is
classified as insufficiently fragmented, however, based on the minor axis it is
deemed sufficient.

.

.3 mm .(» mm 6.5 mm

Fig. B.15: Different axis lengths can be used to classify a predicted kernel fragment from a
bounding-box detector. Using the major or mean axis classifies fragments as insufficiently pro-
cessed with the CSPS threshold, whereas the minor classifies it as sufficiently processed.
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To evaluate the optimal axis for classification, we again train Faster R-
CNN [12] with Inceptionv2 [44] models with a baseline, and additionally
tuned with 2 anchors that are evaluated at a confidence threshold of 0.05
(2a). In Table B.16 the correlation results across the harvest weeks are shown.
As in Section 4.1, we evaluate the estimated CSPS based on counting the
percentage of particles (counts) and based on the percentage of bounding-
box pixels below the CSPS threshold (size). The table shows that the results
are not improved to that covered in the original paper, where the 2a models
with CSPS estimated based on bounding-box sizes and classified with the
major axis performs best. In both CSPS estimation approaches the correla-
tion decreases between major and minor axis classification, especially when
estimating CSPS on instance counts. Taking the mean of the two performs
slightly worse than using the major axis.

Table B.16: Correlation results for models where a fragment is classified with either the major,
minor or mean bounding-box axis. Baseline is a Faster R-CNN Inceptionv2 and 2a is a Faster
R-CNN Inceptionv2 with 2 anchors tuned and a confidence threshold of 0.05.

CW40 CW43 CW40+CW43

Model  Axis PCC 12 PCC 12 PCC 12
Counts I

Baseline Major || 0.80 0.64 | 0.72 0.52 | 0.63 0.40
2a Major || 0.94 0.87 | 0.78 0.61 | 0.80 0.65
2a Minor || 0.83 0.70 | 0.74 0.55 | 0.74 0.54
2a Mean || 0.92 0.85 | 0.71 051 | 0.77 0.59
Size H

Baseline Major || 0.87 0.75 | 0.74 0.55 | 0.73 0.53
2a Major 0.95 0.91 | 0.79 0.63 | 0.81 0.65
2a Minor || 0.88 0.77 | 0.76 0.57 | 0.74 0.55
2a Mean || 0.93 0.87 | 0.72 0.52 | 0.76 0.58

7.2 Feature extractor

In our original work we only evaluated object detectors with an Inceptionv2
[44] backbone, however, other options exist in the TensorFlow Object Detec-
tion API [38]. Therefore, we trained Faster R-CNN [12] with a ResNet50 [45]
to determine the difference between two feature extractors. The two models
have similar complexity in terms of parameters but have different architec-
tures. A ResNet is built around skip connections passing a residual function
and an Inception module is wider consisting of a number of different sized
convolutional filters. The ResNet50-based models are also trained with and
without 2 anchors tuned for the task. Following the baseline parameters in
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the TensorFlow API [38], the models were optimised using stochastic gradi-
ent descent with a learning rate of 0.003, momentum of 0.9 and a batch size
of 1. A total of 25000 training iterations was conducted and the model with
the lowest validation loss was taken for testing.

In Table B.17 the AP results for the trained models compared to those al-
ready presented with Inceptionv2 are shown. With a ResNet50 backbone the
AP results are not improved, however, there is a similar trend when anchor
tuning is added.

Table B.17: AP results comparing Faster R-CNN (FRCNN) models with an Inceptionv2 (Iv2)
and ResNet50 (R50) backbone. The 2a models are with two anchors tuned.

Model [ AP AP@05 AP@0.75
FRCNN Iv2 256 519 223
FRCNNIv22a | 285 56.6 25.7
FRCNNR50 | 245 51.1 204
FRCNN R502a | 253 515 217

In Table B.18 correlation analysis for models are evaluated at a confidence
threshold of 0.5 and 0.05. Following the results in the previous section the
fragments are only classified based on the major axis. The results can be seen
in Table B.18 for both CSPS on instance counts and bounding-box size. In
the table we see that again the model with the highest correlation is still that
determined in Section 4.1. As seen for AP, similar trends can also be seen for
the ResNet50-based models, in that correlation increases when lowering the
confidence threshold from 0.5 to 0.05 and initialising the RPN with 2 anchors.

Table B.18: Training Faster R-CNN (FRCNN) with an Inceptionv2 (Iv2) or ResNet50 (R50) shows
differences in correlation. Additionally, the confidence threshold for predictions are shown for
0.5 and 0.05.

CW40 Cw43 CW40+CW43

Model PCC 12 PCC  r? PCC 2
Counts H ‘ ‘

FRCNN1v22ac0.05 [ 094 087078 0.1 | 0.80 0.65
FRCNN R50 c0.5 078  0.61[068 046 ] 0.65 043
FRCNN R50 c0.05 087 077 [ 066 044072 051
FRCNNR502ac05 || 082  0.67 | 061 037 | 049 0.24
FRCNN R50 2a c0.05 || 0.89  0.79 | 067  0.45 | 0.54 029
Size H ‘ ‘

FRCNN1v22ac0.05 [ 0.95 091 [0.79  0.63 | 0.81 0.65
FRCNN R50 c0.5 074 054[073 053] 0.68 0.46
FRCNN R50 c0.05 088 077 [ 066 044|073 053
FRCNN R502a c05 || 0.81  0.66 | 065  0.42 | 0.67 032
FRCNN R50 2a c0.05 || 090  0.81 | 063 0.39 | 0.56 0.32
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For corresponding stover overlengths models we again see in Table B.19
that better performing models are in general found with an Inceptionv2 back-
bone. Similar to Inceptionv2, the ResNet backbone has a decrease in AP when
training a specialist model with anchor tuning.

Table B.19: AP results comparing Faster R-CNN with different feature extractors.

Small Large

Model AP AP@0.5 AP@0.75 | AP AP@0.5 AP@0.75
Train All ‘ ‘

FRCNN Iv2 280 529 262 40.5 52.6 49.5
FRCNN R50 262  48.6 26.4 324 510 41.0
Train Specialist ‘ ‘

FRCNN Iv2 2ace | 33.1 585 32.1 18.8 318 20.7
FRCNN Iv2 2a, 33.7 558 374 245 410 30.6
FRCNN R50 2acco | 28.1  47.8 30.4 163 323 10.9
FRCNN R50 2a,; | 29.6  50.7 31.8 23.6 39.6 23.9

Table B.20 shows the correlation results for different feature extractors.
With ResNet50 there is not as large an increase in the correlation when tuning
the models compared to a baseline. Overall, the best performing models is
still a specialist model with 2 anchors and finetuned from All.

Table B.20: Faster R-CNN (FRCNN) correlation with different feature extractors, namely Incep-

tionv2 (Iv2) and ResNet50 (R50), for overlength models at two TLOCs.

TLOC 4 mm TLOC 12 mm

Model PCC 12 PCC 2
Train All H \

FRCNN Iv2 | 0.96 092 [ 0.58 0.34
FRCNN R50 | 0.94 0.89 [ 0.75 0.57
Train Specialist H \

FRCNN 1v2 2acc0 || 0.94 0.89 | 0.77 0.59
FRCNN 1v2 2a,; || 0.97 0.95 | 0.89 0.79
FRCNN R50 2aoco || 0.93 0.87 | 0.77 0.59
FRCNN R50 2a,;; [ 0.96 092 [ 0.72 0.52

7.3 Box vs Mask Localisation

Estimating the CSPS using predictions found with bounding-boxes can allow
for less precise measurements as a box can overestimate the size in compar-
ison to a segmentation mask. Figure B.15 shows this for a kernel prediction
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where the instance is slightly rotated. However, by predicting masks a more
precise estimate of the size can be obtained as shown in Figure B.16. For the
same fragment different axis lengths can be estimated as a rotated bounding-
box can fit around the predicted mask. In this case each of the lengths are
shorter than the bounding-box counterpart in Figure B.15.

1 - &
9.2 mm 3.9 mm

Fig. B.16: Different axis lengths can be used to classify a predicted kernel fragment from a
segmentation mask. Using the major or mean axis classifies fragments as insufficiently processed
with the CSPS threshold, whereas the minor classifies it as sufficiently processed.

Therefore, Mask R-CNNs [41] with an Inceptionv2 [44] were trained, with
and without 2 anchors tuned and evaluated at different confidence thresh-
olds. Again, models were trained for 25000 iterations and the model with the
lowest loss was used for testing. Training parameters were used from those
provided in the API [38], where model optimisation was done with stochastic
gradient descent with a learning rate of 0.002, momentum of 0.9 and batch
size of 1.

In Table B.21 the difference in AP for kernel fragmentation between Faster
R-CNN and Mask R-CNN is shown. AP is lower when predicting masks
compared to bounding-boxes. Additionally, the Mask R-CNN model does
not improve when adding anchor tuning.

Table B.21: AP results comparing Faster R-CNN (FRCNN) and Mask R-CNN (MRCNN) models
with an Inceptionv2 (Iv2) backbone. The 2a models are with two anchors tuned.

Model \AP AP@0.5 AP@0.75

FRCNN Iv2 256 519 22.3
FRCNN Iv22a | 28.5 56.6 25.7
MRCNN Iv2 245 537 17.3
MRCNN Iv22a | 23.3 515 16.1
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Table B.22 shows the correlation results and in this case improvements
can be seen when lowering the confidence threshold and adding anchor tun-
ing compared to a baseline. As for the Faster R-CNN models in Section 7.1,
the minor axis is the worst performing in terms of correlation. Additionally,
despite the hypothesis that a segmentation mask would provide better locali-
sation this is not seen in the correlation results. Possibly this can be explained
by suboptimal training parameters or the Mask R-CNN is more challenging
to train in comparison to the Faster R-CNN models.

Table B.22: Correlation results for Mask R-CNN (MRCNN) with Inceptionv2 (Iv2) when classi-
fying fragments at different axis lengths.

CW40 CW43 CW40+CW43
Model Axis PCC 12 PCC 12 PCC 2
Counts
FRCNN Iv22a c0.05 Major [[ 094 087 [0.78  0.61 | 0.80 0.65
MRCNN 1v2 c0.5 Major [[ 061 037 [ 055 030 | 0.49 0.24
MRCNN Iv2 c0.05  Major || 0.82  0.68 | 0.65  0.42 | 0.60 0.36
MRCNN Iv22a c0.5  Major || 0.74 055 [ 0.65  0.42 | 0.59 0.35
MRCNN Iv2 2a c0.05  Major || 0.87  0.76 | 0.74  0.54 | 0.67 045
MRCNN Iv22ac0.5 Minor |[ 0.77 059 | 0.74 054 | 0.66 0.43
MRCNN 1v2 2a c0.05  Minor || 078  0.61 | 0.80  0.63 | 0.69 0.48
MRCNN Iv22a c0.5 Mean [[ 082  0.68 | 0.74 053 | 0.70 0.49
MRCNN Iv2 2a c0.05 Mean || 0.86  0.74 | 079  0.63 | 0.73 0.54
Size H ‘ ‘
FRCNN Iv22a c0.05  Major [[ 095  0.91 [ 079  0.63 | 0.81 0.65
MRCNN Iv2 c0.5 Major [[ 074 054 [ 060 036 | 0.58 0.34
MRCNN Iv2 c0.05  Major || 0.67 045 | 0.63 039 | 0.51 0.26
MRCNN Iv22ac0.5 Major || 0.70 048 [ 0.69  0.48 | 0.61 0.38
MRCNN Iv2 2a c0.05 Major || 0.87 075 | 0.77 058 | 0.72 052
MRCNN Iv2 2a c0.5  Minor || 078 0.61 | 0.78  0.62 | 0.68 0.47
MRCNN Iv2 2a c0.05 Minor || 0.81  0.66 | 0.78  0.61 | 0.70 0.49
MRCNN Iv22ac0.5 Mean || 082 067 [ 077 059 | 0.73 0.53
MRCNN Iv2 2a c0.05 Mean || 086  0.73 | 0.81  0.66 | 0.75 0.56

Mask R-CNN variants were trained in the same manner for OVPS and
the AP results can be seen in Table B.23. As shown for kernel fragmentation,
higher AP is seen with a Faster R-CNN. However, anchor tuning does provide
some improvement in comparison to a baseline Mask R-CNN.
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Table B.23: AP results comparing Faster R-CNN (FRCNN) and Mask R-CNN (MRCNN).

Small Large

Model AP AP@0.5 AP@0.75 | AP AP@0.5 AP@0.75
Train All ‘ ‘

FRCNN Iv2 28.0 52.9 26.2 40.5 52.6 49.5
MRCNNN Iv2 267 511 28.6 142 267 12.3
Train Specialist \ \

FRCNN Iv2 2ac5, | 33.1 58.5 321 18.8  31.8 20.7
FRCNN Iv2 2a, 33.7 5538 37.4 245  41.0 30.6
MRCNN Iv2 2aco | 289  54.7 28.1 149 303 14.3
MRCNN 1v2 2a,;; 315 58.8 32.3 l64 359 12.5

The OVPS correlation results for Mask R-CNN are shown in Table B.24.
There is a decrease in PCC at TLOC 4 mm and a very slight increase in
2. Whereas, for TLOC 12 mm there is an improvement in both correlation
scores when using a Mask R-CNN and tuning 2 anchors. However, different
from previous results, for TLOC 12 mm Mask R-CNN finetuning from COCO
shows significantly higher correlation than from Al

Table B.24: Difference between Faster R-CNN (FRCNN) and Mask R-CNN (MRCNN) with
Inceptionv2 (Iv2) for OVPS.

TLOC 4 mm TLOC 12 mm

Model PCC 12 PCC 12
Train All I \

FRCNN Iv2 | 0.96 0.92 | 0.58 0.34
MRCNN Iv2 | 093 0.87 [ 0.81 0.66
Train Specialist H \

FRCNN Iv2¢0c0 0.93 0.87 | 0.81 0.66
FRCNN Iv2 2a,; || 0.97 0.95 | 0.89 0.79
MRCNN Iv2 2acoco || 0.94 0.89 | 0.92 0.85
MRCNN 1v2 2a,; [[ 091 0.96 | 0.70 043

7.4 Image Resolution

In previous work [9], the image resolution was evaluated for a number of
models. It was seen for the Faster R-CNN Inceptionv2 there were slight dif-
ferences in AP and AR between an image resolution of 600x1200 and 400x730.
We now extend this to include anchor tuning and perform a correlation anal-
ysis where models are trained and evaluated at three different image resolu-
tions.
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Table B.25 again shows the slight decrease from a resolution of 600x1200
to 400x730 for kernel fragmentation, however, a significant drop in AP is
seen when at the smallest resolution. Additionally, for all image resolution
combinations we see improvements in AP when applying anchor tuning.

Table B.25: AP results for kernel fragmentation at different image resolutions.

Model AP ‘ AP@0.5 AP@0.75
FRCNN 600x1200 | 25.6 51.9 22.3
FRCNN 2a 600x1200 | 28.5 56.6 25.7
FRCNN 400x730 | 24.5 52.5 18.9
FRCNN 2a 400x730 | 26.9 55.1 22.8
FRCNN 200x365 | 15.7 39.4 9.0
FRCNN 2a 200x365 | 15.7 41.1 8.3

In Table B.26 the correlation results are shown and a significant decrease
in PCC and 12 can be seen as the resolution is lowered.

Table B.26: CSPS correlation results for Faster R-CNN (FRNN) models trained and evaluated at
three different image resolutions.

CW40 CW43 CW40+CW43
Model Image Resolution || PCC  1? PCC 12 PCC 2
Counts
FRCNN c0.5 600x1200 0.68 0.46 | 0.64 041 | 0.53 0.28
FRCNN c0.05 600x1200 0.80 0.64 | 0.72 0.52 | 0.63 0.40
FRCNN 2a c0.5  600x1200 0.84 0.70 | 0.63 0.40 | 0.64 0.40
FRCNN 2a c0.05 600x1200 0.94 0.87 | 0.78 0.61 | 0.80 0.65
Size
FRCNN c0.5 600x1200 0.73 0.53 | 0.66 044 | 0.64 0.41
FRCNN c0.05 600x1200 0.87 0.75 | 0.74 0.55 | 0.73 0.53
FRCNN 2a c0.5  600x1200 0.79 0.62 | 0.70 0.48 | 0.66 043
FRCNN 2a c0.05 600x1200 0.95 0.91 | 0.79 0.63 | 0.81 0.65
Counts
FRCNN ¢0.5 400x730 0.72 0.52 | 0.62 0.39 | 0.53 0.28
FRCNN c0.05 400x730 0.86 0.74 | 0.63 0.40 | 0.56 0.31
FRCNN 2a c0.5  400x730 0.50 0.25 | 0.55 0.30 | 0.46 0.21
FRCNN 2a c0.05 400x730 0.88 0.78 | 0.57 0.33 | 0.63 0.39
Size
FRCNN ¢0.5 400x730 0.67 0.45 | 0.70 0.50 | 0.59 0.35
FRCNN c0.05 400x730 0.85 0.73 | 0.69 0.47 | 0.65 0.42
FRCNN 2a c0.5  400x730 0.54 0.29 | 0.57 0.33 | 0.49 0.24
FRCNN 2a c0.05 400x730 0.87 0.76 | 0.64 041 | 0.67 0.45
Counts
FRCNN ¢0.5 200x365 0.78 0.60 | 0.67 0.45 | 0.55 0.31
FRCNN c0.05 200x365 0.76 0.58 | 0.62 0.39 | 0.60 0.36
FRCNN 2a c0.5  200x365 0.65 0.43 | 0.57 0.33 | 0.56 0.31
FRCNN 2a c0.05 200x365 0.80 0.63 | 0.61 0.37 | 0.59 0.35
Size
FRCNN c0.5 200x365 0.68 0.47 | 0.60 0.36 | 0.47 0.22
FRCNN ¢0.05 200x365 0.76 0.58 | 0.62 0.39 | 0.60 0.36
FRCNN 2a c0.5  200x365 0.89 0.80 | 0.60 0.35 | 0.65 0.42
FRCNN 2a c0.05 200x365 0.78 0.60 | 0.65 0.43 | 0.66 043

We also show the timings for the detectors in Table B.27 on an NVIDIA
Titan XP. It can be seen that for the average time over 100 images decreases
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as the image resolution becomes smaller. Additionally, using 2 anchors com-
pared to 12 in the baseline also decreases the timings slightly.

Table B.27: Average time per image for models at the three different image resolutions.

Model Image Resolution || Avg time (ms)
FRCNN Iv2 600x1200 0.052
FRCNN Iv22a 600x1200 0.046
FRCNN Iv2 400x730 0.044
FRCNN Iv2 2a 400x730 0.038
FRCNN Iv2 200x365 0.042
FRCNN Iv2 2a 200x365 0.039

In Table B.28 the AP results for stover overlength Faster R-CNNs can be
seen for the three image resolutions. Interestingly, the trend that the Large
test set is best when training on the All dataset is consistent for each im-
age resolution. Furthmore, we seen an increase in AP when decreasing the
resolution to 400x730.

Table B.28: AP results for overlength models at different image resolutions.

Small Large
Model AP AP@0.5 AP@0.75 | AP AP@0.5 AP@0.75
Train All
600x1200 28.0 529 26.2 40.5 52.6 49.5
400x730 254 449 24.5 514  66.7 61.7
200x365 191 389 17.2 41.0 533 46.9
Train Specialist
600x1200 337 5538 374 245 410 30.6
400x730 285 512 284 258 413 26.0
200x365 21.6 454 16.2 21.8 409 18.4

However, for OVPS correlation there is a decrease in the scores as the res-
olution is lowered as seen in Table B.29. There is a stark difference compared
to the previous table, where we see for correlation Specialist-trained models
significantly outperform the All-trained. As for earlier results, we hypothe-
size that this is due to the relatively small number of annotations for the Large

test set.
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Table B.29: OVPS correlation for different image resolutions. Models are all trained with tuning
two anchors.

TLOC 4 mm TLOC 12 mm
Image Resolution || PCC 12 PCC 12
Train All I \
600x1200 0.96 0.92 | 0.58 0.34
400x730 0.94 0.89 | 0.36 0.13
200x365 0.92 0.85 | 0.41 0.17
Train Specialist H
600x1200 0.97 0.95 | 0.89 0.79
400x730 0.96 0.92 | 0.72 0.51
200x365 0.95 0.91 | 0.57 0.32

Finally, similar timings to kernels are seen in Table B.30 as the image
resolution decreases for stover overlengths. However, the timings are slightly
higher possibly due to the larger number of classes present.

Table B.30: Timings at different image resolutions for stover overlengths with Faster R-CNN
(FRCNN).

Model Image Resolution H Avg time (ms)
FRCNN Iv2 600x1200 0.053
FRCNN Iv2 2a 600x1200 0.048
FRCNN Iv2 400x730 0.052
FRCNN Iv2 2a  400x730 0.044
FRCNN Iv2 200x365 0.046
FRCNN Iv2 2a 200x365 0.044

7.5 Conclusion

In this appendix different design choices for two-stage networks are cov-
ered for recognition of kernel fragments and stover overlengths. It is shown
that for CSPS classifying kernel fragments based on the major axis outper-
form minor and mean for both Faster R-CNN and Mask R-CNN. In addition,
bounding-boxes proved to perform better with Faster R-CNN instead of the
more precise masks from Mask R-CNN for CSPS. However, Mask R-CNN for
OVPS estimation did improve the correlation, especially as TLOC 12 mm.

It was also shown that the choice of feature extractor can be important.
Faster R-CNNs with both Inceptionv2 and ResNet50 are evaluated, where
the former provides better results by a number of percentage points in most
cases.
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Finally, the image resolution is shown to have a significant effect on the
correlation to the physical samples. In [9], the difference between 600x1200
and 400x730 image resolution was minimal with Inceptionv2 in terms of AP,
however, for the estimated quality metrics the PCC and r? dropped signifi-
cantly.

These results show that for WPCS, tuning anchors in two-stage networks
performs well with a number of design choices, however, care should be
taken when determining the final architecture.
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1. Introduction

Abstract

In this paper we present a method for efficiently measuring the particle size distribu-
tion of whole plant corn silage with a sieving-based network. Our network, SieveNet,
learns to predict the size class of predefined sieves for kernel fragments through a
novel sieve-based anchor matching algorithm during training. SieveNet improves
inference timings by 40% compared to previous approaches that are based on two-
stage recognition networks. Additionally, an estimated Corn Silage Processing score
from the network predictions show strong correlations of up to 0.93 1? against physi-
cally sieved samples, improving correlation results by a number of percentage points
compared to previous approaches.

1 Introduction

Efficient evaluation of Whole Plant Corn Silage (WPCS) is an important step
to determine if the plant is correctly harvested with a forage harvester. One
key parameter is the appropriate processing of kernels into smaller frag-
ments. The fragmentation of the corn kernels allows for more efficient and
higher quality fodder for dairy cows [1] and is achieved by altering the pro-
cessing gap in the kernel processor in the harvester. By evaluating the kernel
processing a farmer is able to react in the field to suboptimal settings or vari-
ation across their field. An efficient evaluation can be beneficial as modern
forage harvester are able to harvest multiple tonnes per hour [2]. However,
current industry standards are based upon determining the particle size dis-
tribution (PSD) of a WPCS sample with manual sieving techniques which
require potentially errorsome manual preparation steps. Examples include
the Corn Silage Processing Score (CSPS) that measures the percentage of ker-
nel fragments passing a 4.75 mm sieve [1] or the Penn State Particle Separator
that determines the distribution over three to four differently sized sieves [3].

Compared to previous similar works on evaluating WPCS our approach
is considerably simpler. Previous works have trained two-stage object recog-
nition networks in the form of bounding-box detectors or instance segmen-
tation networks for fine-grain localisation [4, 5]. Then for a set of predictions
over a number of images the length of the major axis was compared against
the CSPS quality metric. Instead in this work we propose to discard the
second stage in the two-stage networks and only adopt an altered Region
Proposal Network (RPN). We introduce the network SieveNet that aims to
mimic the sieving process that allow for measurements such as CSPS. The
network uses a novel anchor matching algorithm during training that allows
the network to learn how to classify which sieve size a kernel fragment in-
stance would lie in during sieving. Traditionally, anchors in the RPN are
used as dense bounding-box priors of varying sizes computed over the entire
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feature map producing object proposals with class-agnostic objectness scores
and box refinement deltas. This scheme is altered in SieveNet by defining
anchors based on a number of sieving sizes and during training positive an-
chors are matched using a set of criterion based on sieving. The criterion
are:

1. A matched bounding-box anchor should have a diameter smaller than
that of the ground truth diameter.

2. The matched bounding-box anchor should be the that which has the
smallest difference between the anchor diameter and ground truth di-
ameter.

3. Only a single anchor sieve size can be matched to a ground truth in-
stance.

We adopt the same dataset as the two-stage recognition networks [4, 5]
which exhibits a high amount of clutter amongst kernel fragments. An ex-
ample image from the dataset can be seen in Figure C.1 visualising annotated
kernel fragments by a white outline.

Fig. C.1: Example of WPCS with annotations of kernel fragments.

The above sieving criteria implemented on the dataset are visualised for a
single instance in Figure C.2 highlighting the difference between traditional
RPN matching [6] and our novel sieve-based matcher. In both examples a
ground truth kernel fragment bounding-box is highlighted by a dashed white
outline. In Figure C.2b, during training a positive label is given to the anchors
with an Intersection-over-Union (IoU) greater than 0.7, which in this case are
marked in green. However, in our approach in Figure C.2c two positive
examples are now marked as negatives as their diameter is greater than that
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of the ground truth. Additionally, only a single positive match is found
which is the first anchor with a smaller diameter. The only requirement we
introduce on intersection is that it must be greater than 0, therefore, in theory
as long as the three criteria above are met the intersection between anchor
and ground truth can be small.
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(a) Reference bounding- (b) Traditional RPN-based (c¢) SieveNet-based anchor
box annotation. anchor matching. matching.

Fig. C.2: Overview of matching strategies between RPN IoU (b) and SieveNet (c).

In comparison to an RPN the SieveNet is simplified in regards to network
training as bounding-box regression is not required as we are only interested
in the classification of instances into a fixed sieve class. We show in this work
that it is possible to train our SieveNet to accurately and efficiently estimate
the sieving of WPCS. Finally, compared to previous works we show com-
petitive results in comparison to physically sieved samples at a considerable
reduction in inference time.

Our contribution in this work is:

* A novel sieve-based matching algorithm.

® Show that a Region Proposal Network is able to learn to classify a spe-
cific bounding-box anchor.

¢ Improve the speed of kernel fragmentation analysis in WPCS compared
to previous methods without compromising CSPS estimation against
real-world samples.

2 Related Work

Measurement of WPCS through computer vision is limited. Overall there
have been two general methodologies; methods that first separate a sample
of WPCS such that kernel fragments can easier be localised and methods
that analyse images of samples without the need for separation. Within
the separation-based approaches, the contours of kernel fragments spread
out on a black background were found using maximally stable external re-
gions from which the maximum inscribed circle was compared to determine
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CSPS [7]. However, the manual separation steps can be cumbersome to con-
duct especially for a farmer in the field. Additionally, laboratory equipment
is required which can make the process time-consuming and does not al-
low the farmer to react to their field conditions during the harvest. To ad-
dress this a number of works have estimated CSPS on non-separated sam-
ples of WPCS. Firstly, two-stage object recognition networks in the form of
Multi-task Network Cascades and Region-based Fully Convolutional Net-
works were trained from which CSPS was estimated from instance masks or
bounding-boxes and compared against CSPS estimated from annotations [4].
A two-stage Faster R-CNN network was optimised by altering the anchor
priors in the RPN by sampling the shapes of training bounding-boxes with
k-means clustering [5]. This work also compared model estimated CSPS from
the bounding-boxes against a number of physically sieved samples showing
a strong correlation over a number of different machine settings. While the
works on non-separated samples show good correlation results the networks
exhibit a higher range of complexity making them not suitable for an embed-
ded system where processing power is limited. Additionally, the two-stage
pipeline of region proposals followed by box refinement may be superflu-
ous as the final predictions end up being compared against a single CSPS
threshold.

In other domains a number of works attempt to measure the size distri-
bution of objects. These include determining the PSD of overlapping iron
ore using hand-crafted shape and size features [8]. A U-Net based semantic
segmentation network has also been used to localise iron ore pellets [9]. The
grain size of beach pebbles were estimated using a Mask R-CNN showing
positive correlation when mapping the size results against measured sam-
ples [10]. A novel multi-task network architecture, HistoNet, has been used
to predict a count map and a histogram without the need for fine-grain local-
isation of objects in cluttered scenes [11]. This work aims to move away from
the complex pipeline found in object recognition networks and show impres-
sive results compared to a Mask R-CNN. A significant amount of the training
data is simulated which is possible due to the lower amount of variation in
colour and texture in the images.

Other examples exist in literature of the RPN being utilised to localise
objects without using the second half of the two-stage pipeline. Firstly, the
generalisation of the RPN has been analysed on a number of benchmark
datasets for multispectral person detection showing that the network could
produce good quality predictions [12]. An RPN with a custom backbone
architecture has been used to localise organs in 3D images from CT scans
[13]. The authors also included multi-class scores and together with box
refinement and fusion of 3D feature data provided accurate results.
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3 Methodology

SieveNet is built upon the RPN introduced in Faster R-CNN [6] with a
ResNet50 [14] backbone within the Pytorch Detectron2 [15] framework. The
aim of SieveNet is to efficiently determine the PSD within an RGB image
given user-defined priors giving sieve sizes. Additionally, the network fol-
lows the supervised-learning mantra and therefore requires annotated in-
stances of relevant objects in bounding-box format. The novel matching al-
gorithm between anchors and ground truth boxes moves away from a purely
Intersection-over-Union (IoU) criteria but rather matches based upon how an
instance would be sieved. For example, a kernel fragment with a diameter
of x would pass sieves which have a diameter greater than x but not those
which are smaller. Therefore, our matching algorithm finds for each ground
truth instance the anchor diameter that matches the sieving criterion defined
earlier.

3.1 Dataset

We adopt the dataset for training SieveNet first presented in the works for
performing object recognition for kernel fragmentation with two-stage net-
works [4]. The dataset contains a total of 2438 images containing 11601 an-
notated kernel fragments split over training, validation and test sets.

3.2 Anchor Matching

The matching of anchors as positive or negative samples during training in
the traditional RPN is based upon an IoU approach between the anchor and
ground truth boxes at each sliding window location. If a given anchor has an
IoU above a certain threshold with a ground truth box the anchor is labelled
as a potential positive sample, anchors with an IoU below another threshold
are labelled as negatives and finally the anchor boxes with an IoU between
the two threshold are given an ignore label. Typical threshold values defined
in the original introduction of the RPN in Faster R-CNN [6] are 0.7 for posi-
tives and 0.3 for negatives, however, these can be altered to a given use-case.
Finally, a distribution of positive and negative boxes are sampled for each
image during training with the network learning the class-agnostic probabil-
ity between object and background. As mentioned, this matching strategy is
not sufficient for efficiently estimating PSD given a sieving criteria as positive
matches can include boxes where either the anchor or ground truth has the
larger diameter. Additionally, depending on the chosen anchor prior multi-
ple anchors can be labelled as positives as long as each IoU is greater than
the chosen threshold.
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Our approach to anchor matching is first to define anchor shapes that
match a potential sieving system which could be used to estimate CSPS. A
total of five anchor sieves are chosen ranging from 1 mm to 9 mm in incre-
ments of 2 mm. Due to the constant distance between camera and samples
when capturing images in the dataset this equates to pixel ranges between 20
and 180 at increments of 20. An overview of the sieve matching is covered in
Algorithm 1. First, for a set of ground truth boxes the IoU is calculated with
the anchors at each position in the feature map. Next, for all ground truth
boxes and anchor boxes the diameters of each box is determined, for ground
truth boxes the diameter is taken is the larger of the two axes. Then for each
coordinate in the feature map with an IoU greater than zero the five anchor
diameters are compared to the given ground truth diameter and the anchor
diameters that are smaller are given a positive label. Anchor diameters that
are greater represent sieves where the instance would pass are given a nega-
tive label. Once completed for all ground truth boxes, at each coordinate with
multiple positives the positive anchors that do not have the smallest diame-
ter and are set to negatives. At this point at each coordinate with an initial
IoU greater than zero the correct sieve-based anchor is now matched. Finally,
Non-Maximum Suppression (NMS) is applied for positive anchor labels at a
threshold of 0.9 where anchors that overlap greatest with the ground truth
are prioritised for training samples.

Algorithm 1: Anchor matching algorithm for SieveNet.

Function: SIEVEMATCHER(gtboxes, anchors)
Calculate IoU(gtboxes, anchors)
Calculate diameters of GT boxes
Calculate diameters of anchor boxes
for each coordinate with IoU > 0 do
if Anchor diameter < GT diameter then
L anchor label = 0

else
L anchor label = 1

for Coordinates with multiple label == 1 do
Find smallest anchor diameter label == 1
L Anchor labels where not smallest = 0
Apply NMS at threshold 0.9 for positive anchors
return: Anchor labels ;
end function

The number of positive samples is significantly different when adopting
the matching approach compared to the IoU matching. In our networks we
do not take into account an IoU threshold and allow matches do be set as
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long as the IoU is greater than zero. This approach mimics sieving better as
a correctly sieved object may be considerably larger than the sieve/anchor
resulting in a poor IoU. An alternative to our matching method is to adopt
the Intersection-over-Area (IoA) metric in the RPN matching step. In IoA
the overlap is defined as the area of the intersection over the area of the an-
chor box. A potentially more relevant metric is our sieve matching only uses
cases where the anchor is the smaller of the two boxes. Table C.1 shows the
difference in the number of positive samples for the images in the training
set before applying NMS to find the highest quality matches. A consider-
ably larger amount of positive examples exist when using the IoA metric
compared to IoU in the RPN matching equating to on average around 88
samples compared to 10. This is likely due to smaller anchors encapsulated
by a ground truth scoring 1.0 instead of a potentially much lower score with
IoU. Finally, our approach finds 2.75x more positives than the IoU approach
despite only allowing a single anchor match at each location, however, we do
match positives independent of any intersection based metric.

Matcher  Positive Samples
RPN IoU 14026

RPN IoA 122966

SieveNet 38652

Table C.1: Number of positive samples for the different matching methods for all images in the
training set.

Finally, we perform our sieve matching at a stride of 1 in the feature map.
Other options exist, however, care should be taken dependent on the chosen
backbone architecture. In our case, with ResNet50, the backbone down sam-
ples the input image throughout the network by a number of pooling and
striding operations resulting in a feature map four times smaller. Therefore,
when applying anchor matching at a stride of 1 this equates to a stride of 8
pixels in the input. For SieveNet with ResNet50 this difference is negligible
but with a different architecture or changing the stride in the feature map
may result in lower effectiveness in the matching step.

During inference the anchor matching step is naturally not included. In-
stead, the SieveNet uses a sliding window at the stride of 1 over the feature
map and predict the probability of each anchor matching with a kernel frag-
ment. Then predictions are thresholded based upon a confidence score and
NMS thresholds predictions at an IoU of 0.05 leaving the final sieved predic-
tions.
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3.3 Model Training

The SieveNet with the anchor matching strategy presented in the previous
section are trained for a total of 25000 iterations using stochastic gradient
descent with a base learning rate of 0.025 and a batch size of four. Images
are rescaled such that the shortest axis is 600 pixels and horizontal flipping
augmentation is applied to double the amount of images. The training and
inference of the models used for the results presented in the next section are
done on an NVIDIA Titan XP GPU. During evaluation of the networks we
take the given network iteration with the lowest validation loss.

4 Results

In this section we present results from SieveNet models. This includes studies
comparing both within model SieveNet variants are against an RPN with
the classic matching algorithm. To make the results comparable between
SieveNet and the RPNs we also remove bounding-box refinement from the
RPNs. We present correlation results for models based upon the dataset of
physically sieved samples for CSPS from two harvest weeks presented in [5]
and compare against the Faster R-CNN models from the same work. The
data for the samples includes image sets and CSPS scores for a number of
harvest runs containing machine setting altering the kernel fragmentation.
For an image set we run our models over all images and estimate the CSPS
by determining the percentage of predictions that pass the 5 mm anchor.
When evaluating the models we present results with the Pearson Correlation
Coefficient (PCC), r? coefficient of determination and the Root Mean Square
Error (RMSE) comparing estimated model CSPS and physically sieved CSPS.

4.1 Matching Strategy

In Figures C.3a and C.3b example predictions from the same image are
shown for RPN trained with the IoU and IoA respectively, where in Figures
C.3c predictions for SieveNet are shown. The example predictions in Figure
C.3b show the limitations of using an IoA based approach with RPN origi-
nal matching approach. Here, any anchors that are within the bounds of a
ground truth measure as 1.0 resulting in many small anchors being matched
per ground truth. Additionally, as no bounding-box refinement is learnt
NMS cannot be used to discard multiple anchors covering the same instance.
Both RPN with the IoU metric and SieveNet show visually promising results
appearing to match anchor boxes well with kernel fragment instances.

Table C.2 shows correlation results at three different confidence thresholds
for each of the matching methods. Each approach show strong correlation
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(c) SieveNet

Fig. C.3: Example predictions from models trained on different matching strategies.

scores, the RPN methods adopting an IoU threshold shows similar results in
terms of PCC and r? compared to previous Faster R-CNN approaches. How-
ever, correlation scores decrease when adopting IoA especially for the CW43
dataset. SieveNet improves the results for both harvest weeks increasing both
PCC and 2 by a number of percentage points. For each of the approaches it
can also be seen that the confidence threshold has an effect on CSPS corre-
lation. For SieveNet there appears to be a good trade-off at confidence 0.25
show strong results for both weeks.

When evaluating the correlation results for both harvest weeks together
SieveNet does show a slight decrease compared to Faster R-CNN as shown
in Table C.3.

Figure C.4 shows a scatter plot of physical CSPS measured for each sam-
ple compared to estimated model CSPS for the image sets from CW40 and
CW43 which are also shown in Table C.2. We see the positive correlation for
all three approaches, especially strong at the values from SieveNet with well
aligned points.
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CW40 CwW43

Model PCC r* RMSE PCC > RMSE
FRCNN Baseline [5] 0.68 046 8.12 0.64 041 17.09
FRCNN 2a (conf: 0.5) [5] 0.84 0.70 5.39 0.63 040 8.89
FRCNN 2a (conf 0.25) [5] 0.90 0.80 8.90 0.66 044 7.64
FRCNN 2a (conf 0.05) [5] 0.91 0.84 1887 0.77 059 16.23
RPN IoU (conf 0.5) 0.88 078 1893 0.69 049 14.70
RPN IoU (conf 0.25) 0.89 079 1990 0.74 054 16.09
RPN IoU (conf 0.05) 0.89 079 2149 0.75 056 17.78
RPN IoA (conf 0.5) 0.82 0.67 3138 047 022 27.80
RPN IoA (conf 0.25) 0.81 0.65 31.35 0.41 0.17 27.81
RPN IoA (conf 0.05) 0.80 0.64 3134 0.38 0.15 27.73
SieveNet (conf 0.5) 0.96 093 10.12 0.74 054 7.50
SieveNet (conf 0.25) 0.95 090 1427 0.81 0.66 10.70
SieveNet (conf 0.05) 0.85 073 3111 044 0.19 27.42

Table C.2: Correlation results for previous works with Faster R-CNN (FRCNN) and our three

networks with different matching strategies for two separate harvest weeks.
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Fig. C.4: Correlation plots for the three matching strategies.

Finally, we see that in Table C.4 that SieveNet improves the inference time
by almost 40% compared to Faster R-CNN when evaluating an inference
image on an NVIDIA Titan XP GPU.
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CW40+

CW43
Model PCC 2 RMSE
FRCNN Baseline [5] 0.53 028 142

FRCNN 2a (conf: 0.5) [5]  0.64 040 7.69
FRCNN 2a (conf: 0.25) [5] 0.71 051 8.17

FRCNN 2a (conf: 0.05) [5] 0.81 0.66 17.34
RPN IoU (conf: 0.5) 0.70 049 16.50
RPN IoU (conf: 0.25) 0.75 056 17.71
RPN IoU (conf: 0.05) 0.76 0.58 19.35
RPN IoA (conf: 0.5) 0.43 0.19 29.29
RPN IoA (conf: 0.25) 0.43 0.18 29.28
RPN IoA (conf: 0.05) 0.30 0.09 29.23
SieveNet (conf: 0.5) 0.75 056 8.65

SieveNet (conf: 0.25) 0.80 0.64 1227
SieveNet (conf: 0.05) 0.48 023 27.23

Table C.3: Correlation results for previous works with Faster R-CNN (FRCNN) and our three
networks for a combined correlation over both harvest weeks.

Model Inference Time (ms)
FRCNN 2a [5] 51.1
SieveNet 34.1

Table C.4: Timings for networks on an NVIDIA Titan XP GPU.

4.2 Number of Anchors

For estimating the physical characteristics of the harvested crop, our aim was
to predict the CSPS of a sample. For CSPS only the single sieve of 4.75 mm is
required but in practice is typically done with multiple different sizes. In this
section we evaluate training a SieveNet with two anchors, one for a 4.75 mm
sieve and a smaller anchor at 1 mm capturing particles that pass the CSPS
threshold anchor.

Figure C.5 shows an example prediction from SieveNet with either two or
five anchors. At the former in Figure C.5a the restriction of not adopting box
refinement allowing for further NMS is clear. Smaller fragments passing the
larger 4.75 mm sieve that are more than double the size of the smallest anchor
have multiple predictions, similar that in when using the IoA metric in the
RPN. This effect is counteracted when training with more anchor sieves with
a consistent increment in diameter as instances are never 100% greater than
an associated sieve.

In Table C.5 the correlation results together with previously presented
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Fig. C.5: Two anchors for sieve sizes 1 mm and 4.75 mm. Five anchors for size sizes between 1
mm and 9 mm with 2 mm increments.

models are shown for SieveNet with two anchors. The results highlight what
was visualised in the image with poor correlation, especially at CW43.

CW40 CW43

Model PCC 12 RMSE PCC 12 RMSE
FRCNN Baseline [5] 068 046 8.12 064 041 17.09
FRCNN 2a (conf: 0.5) [5] 084 070 5.39 063 040 8.89
FRCNN 2a (conf 0.25) [5] 090 080 8.90 066 044 7.64
FRCNN 2a (conf 0.05) [5] 0.91 084 1887 077 059 16.23
RPN IoU (conf 0.25) 089 079 1990 074 054 16.09
RPN IoA (conf 0.25) 0.81 0.65 3135 0.41 017 27.81
SieveNet (conf 0.25) 0.95 090 1427 0.81 0.66 10.70

SieveNet two anchors (conf 0.25) 0.38 015 2942 -017 03 2332

Table C.5: Correlation for the two harvest weeks with previous results and additionally SieveNet
with two anchors.

5 Conclusion

In this work we present SieveNet, a network able to efficiently monitor WPCS
in RGB images captured directly from a forage harvester. We show that
localisation of kernel fragments is viable only with an RPN-based architecture
reducing the complexity compared to previous approaches based on two-
stage recognition networks. Additionally, we introduce an anchor matching
algorithm giving the ability to train networks to classify kernel fragments
into predefined sieve sizes. These predictions allow for estimation of CSPS
with a strong correlation against physical samples. We believe SieveNet can
be extended to other domains where the PSD is also of interest, such as
agglomerates or medical imaging, given a definition of appropriate sieve-
based anchors.
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1. Introduction

Abstract

Model selection when designing deep learning systems for specific use-cases can be
a challenging task as many options exist and it can be difficult to know the trade-off
between them. Therefore, we investigate a number of state of the art CNN models for
the task of measuring kernel fragmentation in harvested corn silage. The models are
evaluated across a number of feature extractors and image sizes in order to determine
optimal model design choices based upon the trade-off between model complexity,
accuracy and speed. We show that accuracy improvements can be made with more
complex meta-architectures and speed can be optimised by decreasing the image size
with only slight losses in accuracy. Additionally, we show improvements in Average
Precision at an Intersection over Union of 0.5 of up to 20 percentage points while also
decreasing inference time in comparison to previously published work. This result for
better model selection enables opportunities for creating systems that can aid farmers
in improving their silage quality while harvesting.

1 Introduction

Computer vision systems for quality inspection are widespread throughout
agriculture and many other industries. Deep learning has become the driving
force in many applications largely due to advantages such as potentially high
accuracy and ease of use due to the large number of open source libraries.
The common methodology for training the networks is either to adapt an
open-source network or for an author to design their own network. How-
ever, it can be difficult to choose which network is best for a specific task as it
often comes with a trade-off between complexity, accuracy and speed. There-
fore, in this work our contribution is showing a systematic approach is create
an overview over the trade-off for a specific agricultural task of corn kernel
fragment recognition from corn silage harvested from a forage harvester. In
corn silage kernels must be cracked sufficiently such that when used as fod-
der for dairy cows the starch content is easily ingested and milk yield can be
optimised [1]. An recognition system for high quality can help farmers use
their machine optimally, avoiding both quality decreasing by up to 25% and
inefficient usage of diesel fuel [2]. Furthermore, such systems can help solve
the potential food crisis as the population is expected to reach 9.1 billion in
2050 [3].

This work extends upon that done in [4] where it was shown that ker-
nel fragment shape and size characteristics could be measured with Convo-
lutional Neural Networks (CNNs) for bounding-box detection and instance
segmentation, however, only a single form of each was trained and it is un-
known if these architectures are optimal. In [5] the trade-off between speed
and accuracy was explored for CNN-based object detectors. Whilst compre-
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hensive and useful as the open-source implementations are available through
TensorFlow object detection API, networks are trained and evaluated on the
large COCO benchmark dataset [6] and it is not as clear what the trade-
off is for a specific use-case on a smaller scale like kernel fragmentation.
We provide an overview of the trade-off for the kernel recognition by train-
ing variants of three meta-architectures of increasing complexity with the
API from [5] and explore different feature extractors and input image res-
olutions. This allows us to show an approach to determine optimal model
design choices for CNN-based kernel fragment recognition.

2 Data

The data used to train and test the networks are the same as that used in [4]
and consist of RGB images of silage taken post-harvest. Typically, kernel
processing evaluation requires the separation of kernels and stover (leaves
and stalks) either through manual means as in [7, 8] followed by sieving
measurements or sieving estimation with image processing [9]. However,
the manual separation step can be cumbersome making it problematic for
a farmer whilst harvesting. Therefore, in [4] images and annotations were
collected of non-separated corn silage for a direct measurement.

The dataset consists of a total of 2043 images with 11601 kernel fragment
annotations. A notable difference in this work compared to [4] is a validation
set is added to combat overfitting whilst training by evaluating a model vari-
ant with the lowest validation loss. In [4] the data was split 60% for training
and 40% for testing, here we keep the same training set but evenly split the
original test set such that validation and test cover 20% each. For the varia-
tion of image sizes when training and testing models images are resized from
the original images dimensions of 640x1280 to either 600 x 1200, 400x730 or
200x 365 using bilinear interpolation.

3 CNN Meta-Architectures

The TensorFlow object detection API provides a number of options for meta-
architectures and includes pre-trained models with different backbone fea-
ture extractors and hyperparameters. Hyperparameters for the training of
our models remained unchanged to the configurations files provided in the
API, apart from the learning rate being decreased by a factor of 10 as only
fine-tuning is performed. Networks are trained using TensorFlow 1.13.1 on
an machine containing an NVIDIA Titan XP and GTX 1080Ti.

The first meta-architecture adopted is the Single Shot Multibox Detec-
tor (SSD) and is an efficient single-stage bounding-box detector. SSD has a
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competitive accuracy whilst running much faster than other more complex
networks. For the varying complexity of feature extraction within SSD we
adopt MobileNetv1 [10], MobileNetv2 [11] and InceptionV2 [12]. Next, we
train Faster R-CNN, a two-stage bounding-box detector that utilises the Re-
gion Proposal Network (RPN) to produce candidate proposals whose boxes
are regressed and classified. For Faster R-CNN we train variants with In-
ceptionv2, ResNet50 and ResNet101 from [13]. Lastly and most complex is
the instance segmentation network Mask R-CNN [14]. The network is an
extension of Faster R-CNN but with the added ability of producing masks
for prediction. As the RPN is also part of Mask R-CNN the network is also
able to output bounding-boxes, thus both forms will be evaluated. The fea-
ture extractors trained for Mask R-CNN are also Inceptionv2, ResNet50 and
ResNet101.

4 Results

The results in Table D.1 are based upon a subset of the COCO metrics where
the models with bounding-box predictions can be seen in first section and
segmentation models in the second section. Additionally, we show the AP@0.5
results from [4] for R-FCN [15] with ResNetl101 and the MNC [16] with
AlexNet [17]. As mentioned in Section D.2, we altered the test set such that
a validation set is also available. Therefore, the results are not calculated on
the exact same images as in [4] but we argue that the new test set is large
enough such that the results are comparable.

The results in Table D.1 are visualised in Figure D.1 where we show the
AP@0.5 in (a), AP in (b) and AR@100 in (c) all against the inference time of
the models. Firstly, we see a significant improvement in the AP@0.5 in com-
parison to the R-FCN model from [4] in addition to a decrease in inference
time for all SSD variants and some of the Faster R-CNNs and Mask R-CNNSs.
The models trained in this work have an AP@0.5 of around 20 percentage
points higher, while running at up to 5-8x faster for bounding-boxes. How-
ever, the segmentation variants proved to be slower than previous with only
the Mask R-CNN Inceptionv2 at image size 200x365 running 1.27x faster
and improving AP@0.5 by 0.6 percentage points in comparison to the MNC
model from [4]. However, improvements of up to 17.7 percentage points are
seen for more complex models but at a cost of increased inference time.

Comparing the varying meta-architecture complexity we see that there is
a slight gain in the metrics when evaluating bounding-box outputs. However,
this comes at a cost of inference time, especially between Faster R-CNN and
Mask R-CNN. Within each meta-architecture we see slight differences be-
tween feature extractors. At 600x1200 AP for SSD improves by 9.4% from
MobileNetvl to MobileNetv2 but falls for Inceptionv2, Faster R-CNN in-

159



Chapter D.

creases by 4.5% from Inceptionv2 to ResNet101 and Mask R-CNN by 3.5%
from Inceptionv2 to ResNet101. This shows that less is gained spending time
on determining the optimal architecture for feature extraction in comparison
to choosing the meta-architecture. This is in contrast to the findings in [5]
where large improvements could be made, for example, Faster R-CNN had
a 70% increase in AP on the MS COCO test set over the evaluated feature
extractors. Finally, we do see improvements in the metrics when increasing
the image size from 200x365 to 400730, but not as much when between
400x730 and 600x1200. Additionally, a significant increase in inference time
is seen for most meta-architectures when the image size is at the largest.

Lastly, an example image with predictions from the best performing model
with respect to AP and AP@0.5 can be seen in Figure D.2.
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Fig. D.1: Results from the model variants for AP@0.5 (a), AP (b) and AR@100 (c) against infer-
ence time on an NVIDIA Titan XP. Models producing bounding-box outputs are shown with a
solid line and square points and segmentation outputs are shown with a dashed line and dia-
mond points. The increase in image size is shown by an increase in the size of the respective
points.

Fig. D.2: Left: Mask R-CNN ResNet101 (400x730) predictions. Right: Ground truth annotations.
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5 Conclusions

In this work we have shown a systematic approach to train object recogni-
tion networks towards the task of kernel fragment recognition in corn silage
whilst providing an overview of the trade-off in complexity, accuracy and
speed. We show that slight improvements in AP and AR can be made by
adopting more complex meta-architectures but at a larger cost of inference
time. For all models the gain in AP and AR from a small to a medium im-
age size was considerable, however, was minimal or worse when increasing
onwards to a larger size. Minimal improvements could be made when al-
tering the feature extractor for each meta-architecture, a contrast to findings
on COCO in [5] We propose that this approach can be transferred to other
similar domains where training data can be sparse in order select an appro-
priate model and speculate that these design choices for our models could be
directly transferred to tasks with similarities in images, such as high amounts
of clutter and occlusion. The improvements in kernel fragment recognition
through better model selection open possibilities for a more efficient and ro-
bust system for farmers to obtain improved yields.
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Table D.1: Results of the models on the test set. The bounding-box outputs are evaluated are
shown in the first section followed by the segmentation outputs.

MODEL IMAGE SIZE AP  AP@0.5 AR@100 INFERENCE
TIME (ms)
R-FCN ResNet101 [4] 600x1200 NA 340 NA 101.0
SSD MobileNetV1 600x1200 20.3 435 41.8 18.8
400x730 160 349 38.9 13.8
200365 9.7 27.9 30.8 13.2
SSD MobileNetV2 600x1200 222 470 445 21.1
400x730 221 487 43.7 15.6
200x365 135 359 33.9 154
SSD InceptionV2 600x1200 193 413 39.1 24.8
400x730 19.6 463 37.9 19.6
200365 146 369 324 18.3
Faster R-CNN InceptionV2 ~ 600x1200 256 519 45.1 51.1
400x730 245 525 415 4.1
200x365 157 394 27.5 41.6
Faster R-CNN ResNet50 600x1200 245 511 45.8 96.8
400x730 20.5 445 38.0 84.8
200x365 107 292 23.3 76.2
Faster R-CNN ResNet101 600x1200 255 521 453 112.4
400x730 22.0 471 40.6 924
200365 1.1 285 229 81.9
Mask R-CNN InceptionV2 6001200 26.0 52.7 46.5 129.8
400x730 246 507 435 94.5
200x365 164  39.0 29.4 68.5
Mask R-CNN ResNet50 600x1200 264 507 492 316.6
400x730 264 512 46.5 256.8
200x365 134 300 27.0 214.7
Mask R-CNN ResNet101 600x1200 269 524 50.1 381.5
400x730 275  54.0 47.8 281.1
200x365 160 35.6 34.5 222.0
MNC AlexNet [4] 600x1200 NA 361 NA 87.0
Mask R-CNN InceptionV2 6001200 233 515 412 129.8
400x730 217  49.6 38.2 94.5
200%365 141 367 24.8 68.5
Mask R-CNN ResNet50 600x1200 23.7 498 43.6 316.6
400x730 242 507 42.0 256.8
200x365 122 301 24.8 214.7
Mask R-CNN ResNet101 600x1200 253 520 46.4 381.5
400x730 26.1 53.8 44.4 281.1
200x365 148 356 28.7 222.0

162



References

References

[1] L. Johnson, J. Harrison, D. Davidson, W. Mahanna, and K. Shinners,
“Corn silage management: Effects of hybrid, chop length, and mechani-
cal processing on digestion and energy content,” Journal of dairy science,
vol. 86, pp. 208-31, 02 2003.

[2] B. H. Marsh, “A comparison of fuel usage and harvest capacity in
self-propelled forage harvesters,” International Journal of Agricultural and
Biosystems Engineering, vol. 7, no. 7, pp. 649 — 654, 2013. [Online].
Available: https:/ /publications.waset.org/vol/79

[3] FAO, “How to Feed the World 2050,” http://www.fao.org/fileadmin/
templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_
2050.pdf (accessed February 10, 2020), 2009.

[4] C. B. Rasmussen and T. B. Moeslund, “Maize silage kernel fragment es-
timation using deep learning-based object recognition in non-separated
kernel/stover rgb images,” Sensors, vol. 19, p. 3506, 08 2019.

[5] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy
trade-offs for modern convolutional object detectors,” in 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), July 2017, pp.
3296-3297.

[6] T.-Y. Lin, M. Maire, S. Belongie, ]J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, Microsoft COCO: Common Objects in Context.
Cham: Springer International Publishing, 2014, pp. 740-755. [Online].
Available: http://dx.doi.org/10.1007 /978-3-319-10602-1_48

[7] D. Mertens, “Particle size, fragmentation index, and effective fiber: Tools
for evaluating the physical attributes of corn silages,” In: Proceedings of
the Four-State Dairy Nutrition and Management Conference, 01 2005.

[8] Penn State Extension, “Penn State Particle Separator,” https:/https://
extension.psu.edu/penn-state-particle-separator (accessed February 10,
2020), 2016.

[9] J. L. Drewry, B. D. Luck, R. M. Willett, E. M. Rocha, and ]. D. Harmon,
“Predicting kernel processing score of harvested and processed corn
silage via image processing techniques,” Computers and Electronics
in Agriculture, vol. 160, pp. 144 - 152, 2019. [Online]. Available:
http:/ /www.sciencedirect.com/science/article/pii/S0168169918311955

163


https://publications.waset.org/vol/79
http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf
http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf
http://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf
http://dx.doi.org/10.1007/978-3-319-10602-1_48
https:/https://extension.psu.edu/penn-state-particle-separator
https:/https://extension.psu.edu/penn-state-particle-separator
http://www.sciencedirect.com/science/article/pii/S0168169918311955

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

References

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017. [Online]. Available: http:/ /arxiv.org/abs/1704.04861

M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and
L. Chen, “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UTI, USA, June 18-22,
2018. IEEE Computer Society, 2018, pp. 4510-4520. [Online]. Avail-
able: http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_
MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 2818-
2826.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 770-778, 2015.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask r-cnn,” in 2017
IEEE International Conference on Computer Vision (ICCV), Oct 2017, pp.
2980-2988.

J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via
region-based fully convolutional networks,” in Advances in Neural
Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc., 2016,
pp. 379-387. [Online]. Available: http://papers.nips.cc/paper/6465-r-
fen-object-detection-via-region-based-fully-convolutional-networks.pdf

J. Dai, K. He, and J. Sun, “Instance-aware semantic segmentation via
multi-task network cascades,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016. IEEE Computer Society, 2016, pp. 3150-3158. [Online].
Available: https://doi.org/10.1109/CVPR.2016.343

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097-
1105. [Online]. Available: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf

164


http://arxiv.org/abs/1704.04861
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf
http://papers.nips.cc/paper/6465-r-fcn-object-detection-via-region-based-fully-convolutional-networks.pdf
https://doi.org/10.1109/CVPR.2016.343
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Paper E

The Challenge of Data Annotation in Deep Learning
— A Case Study on Whole Plant Corn Silage

Christoffer Bogelund Rasmussen, Kristian Kirk and Thomas B.
Moeslund

Submitted to MDPI Sensors 2021.



© 2021 Christoffer Bogelund Rasmussen, Kristian Kirk and Thomas B. Moes-
lund
The layout has been revised.



1. Introduction

Abstract

Recent advances in computer vision are primarily driven by the usage of deep learn-
ing which is known to require large amounts of data and creating datasets for this
purpose is not a trivial task. Larger benchmark datasets often have detailed processes
with multiple stages and users with different roles during annotation. However,
this can be difficult to implement in smaller projects where resources can be limited.
Therefore, in this work we present our processes for creating an image dataset for ker-
nel fragmentation and stover overlengths in Whole Plant Corn Silage. This includes
the guidelines for annotating object instances in respective classes and statistics of
gathered annotations. Given the challenging image conditions, where objects are
present in large amounts of occlusion and clutter, the datasets appear appropriate for
training models, however, we experience annotator inconsistency which can hamper
evaluation. Based upon this we argue the importance of having an evaluation form
independent of the manual annotation where we evaluate our models with physically
based sieving metrics. Additionally, instead of the traditional time-consuming man-
ual annotation approach we evaluate Semi-Supervised Learning as an alternative
showing competitive results while requiring fewer annotations.

1 Introduction

Monitoring the harvesting of Whole Plant Corn Silage (WPCS) with a forage
harvester can enable a farmer to react to varying conditions by altering key
settings in their machine in order to maximise quality. Current approaches
used by farmers are mostly based on manual sieving of samples which give
information on the particle size distribution. However, recent works [1, 2]
have shown the promise of using deep learning in the form of Convolutional
Neural Networks (CNNs) for automatic object recognition in samples taken
directly from the machine. These methods have minimal manual steps al-
lowing farmers to efficiently react in the field. However, the usage of CNNs
introduces challenges in creating image datasets as it is widely known that
models require large amounts of annotated data to train [3]. Large datasets
such as ImageNet [4] and COCO [5] have been one of the key reasons for
the progression in computer vision over the past decade. Quality and con-
sistency of the annotations is key and often this is acquired through well
defined multi-stage processes including team members who take on differ-
ent roles. Naturally, this can be a time-consuming and expensive process.
Alternative or additional methods can also be used to speed up the manual
process, including approaches such as transfer learning, weak supervision,
or Semi-Supervised Learning (SSL) [6].

The quality of the harvested crop is highly dependent on farmers us-
ing correct machine settings for their harvester to react to their field condi-
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tions [7]. Two of the key settings are the Processor Gap (PG) and Theoretical
Length of Cut (TLOC), that primary effect the fragmentation of kernels and
chopping of stover particles respectively. The PG is the gap between rotat-
ing processor rolls that compresses and cracks kernels into fragments. The
TLOC is controlled by the speed of a rotating knife drum, where a higher
speed chops the plant into smaller particles. In Figure E.1 examples from
our two forms of datasets are shown. Figure E.1(a) shows an example of
kernel fragment annotations. In this case our aim is to create an annotated
dataset containing instances of kernel fragments such that we can train a net-
work to perform object recognition and thereby estimate the quality across
images. For quality we estimate the industry standard metric Corn Silage
Processing Score (CSPS) [8] which gives a measurement of the percentage
of kernel fragments passing through a 4.75 mm sieve. A higher CSPS indi-
cates higher quality since the kernels are easier to digest when the WPCS
is used as fodder for dairy cows. Figure E.1(b) shows annotations of stover
overlength annotations. For kernel fragments the aim was to annotate and
predict all instances, however, this task was deemed to be too demanding for
stover particles as all remaining instances would have to be marked. There-
fore, we only annotated particles marked as overlengths which are classified
based on how the WPCS was harvested. Farmers can have different strategies
for the chopping of stover particles given their requirements. For example,
longer particles can promote cud chewing but shorter particles can be easier
to pack in a silo [9]. Therefore, we annotate such that we can measure a dy-
namic overlength given the farmer’s chosen TLOC. This overlength definition
is 1.5xTLOC. The WPCS in Figure E.1(b) is harvested with a TLOC of 4 mm
and therefore particles greater than 6 mm are annotated. Additionally for
stover annotations we annotated four classes covering different parts of the
plant. Figure E.1 shows that for both datasets the instances are challenging
for both a network to predict but also for annotators to annotate due to the
high amounts of clutter between particles.

(@) (b)

Fig. E.1: Examples annotations of kernel fragments (a) and for stover overlengths in (b).

While highly-defined processes can lead to a high quality dataset, it can be
an expense that is not available in all projects, especially in the early phases.
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This has been the case for our datasets for WPCS which have been used in
a number of works [1, 2, 10], however, have shown to produce promising
results. Therefore, in this work we investigate the challenges of data anno-
tation for deep learning. This includes presenting our processes for creating
an WPCS image dataset with annotated object instances through manual an-
notation. We show our guidelines for annotating datasets leading to super-
vised learning with CNNs. The resulting datasets and models show that the
methodology is viable however as the datasets scale to larger sizes through
multiple annotators the consistency falters. Annotator disagreeance is a com-
mon challenge which can be addressed with well-defined processes [3], how-
ever, this is costly to create and manage. Alternatively, the field of SSL aims
to take advantage of more efficiently gathered higher-level or noisy input to
train models [6] which we evaluate for our purpose. While extensive litera-
ture exists for the process of creating datasets for larger benchmarks, it is lim-
ited in more specific agriculture-based works. Therefore, our aim is to show
and evaluate our approach, including the challenges in building datasets for
data-driven machine learning.
Our contributions in this work are therefore threefold:

* Present our annotation process for WPCS with respect to kernel frag-
mentation and stover overlengths.

* Show an analysis of the quality and consistency of the resulting anno-
tations.

¢ Evaluate SSL for WPCS showing a considerably more efficient alterna-
tive to manual annotations for supervised learning.

2 Related Work

To the best of our knowledge there does not exist any image datasets for
WPCS. Therefore, we investigate dataset creation in regards to benchmark
datasets for both agriculture and in general object recognition. Starting with
the latter there exists a large number of public datasets in the computer vision
domain. For example, paperswithcode' lists 160, 195, and 37 for object detec-
tion, semantic segmentation, and instance segmentation, respectively. Larger
benchmark datasets have the ability to form golden standards in the com-
puter vision community and can be used to evaluate algorithms and push
overall research.

Common among them is the aim to have a dataset with high quality and
consistent annotations often over hundreds of thousands of images and hun-
dreds of potential classes. The process for creating such datasets is expensive

https:/ / paperswithcode.com/datasets

169



Chapter E.

and therefore requires an efficient and clear pipeline. Typically a team of
workers, either internal or outsourced, are instructed to annotate following
a multiple stage pipeline aimed to maximise consistency and coverage. For
example, in the ImageNet [4] object detection challenge a multi-stage so-
lution first determined which object classes were present in a given image
using a query-based algorithm to quickly traverse the 200 potential classes.
Given these image-level class definitions an annotator is given a batch of
images and instructed to draw a single bounding-box before moving to the
next image. An image continues in this process until all bounding-boxes are
annotated. Bounding-box quality and coverage are iteratively checked by
another worker and once both pass the image is accepted into the dataset.
Another multi-stage example is for the instance segmentation annotations
in COCO [5] where images are annotated in three steps. First, an annota-
tor determines if an object instance is present from a number of pre-defined
super-categories, if yes, a symbol for a each specific sub-category is dragged
and placed on a single instance. Next, each instance of every sub-category is
marked until all object instances are covered. Finally, instance segmentation
masks are annotated for each of the marked instances. During the final stage
an annotator is asked to only annotate a single mask. Additionally, they are
informed to verify previous segmentation annotations from other workers.
In LVIS [11] the creators adopt a similar iterative pipeline to COCO of first
spotting single object classes per image, followed by exhaustively marking
each instance of a given category. In the next stage instance markings are
upgraded to segmentation masks before moving on to verification. In a final
stage, negative labels are added to the image. A three stage approach is used
in Objects365 [3] where first non-suitable iconic images are filtered, iconic
images typically only have a single clear object in the middle of the image
and are deemed to be too simple. Next image-level tags are added based on
super-categories, followed by the final step of annotating all bounding-boxes
into sub-categories. There are also examples of creating datasets through less-
defined processes but rather attempt to conduct the annotations closer to the
expert knowledge, however, this is less common as the size of datasets are
becoming increasingly larger. For example, in PASCAL VOC [12] the initial
annotations were done by researchers at a single annotation event. While in
ADE20K [13] the dataset is ambitiously annotated by a single person aiming
to maximise consistency.

Common to most benchmark datasets is the usage of various roles that
often require training. The role of an annotator is naturally used in all bench-
marks and a training task is given to evaluate their ability. For example, in
ImageNet [4] annotators must pass a drawing and quality verification test. In
both tests the aim is to learn three core rules, for example, for drawing boxes
only the visible parts should be annotated as tightly as possible. Multiple
roles can add further verification such as in Objects365 [3]. Here, a course
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must to taken to learn how to become an annotator or inspector. Annotators
are trained to draw bounding-boxes and inspectors to verify all annotated
images. Furthermore, an examiner role is also included to review output
from the inspector.

Finally, the usage of a golden standard set, where annotations are veri-
fied by experts to be near 100% accurate are used throughout almost all of
the benchmarks. In LVIS [11] gold sets are added in multiple places in the
pipeline and further work is prioritised to reliable workers. In ImageNet [4]
they are used as overall quality control and also during training of annotator
and inspectors.

While procedures such as multi-stage pipelines, training and roles can be
important there also exists alternative approaches to either aid annotators or
speed-up the tasks. This can be especially useful if dataset creators do not
have a large amount of resources to implement the points covered so far. Re-
searchers have investigated how to make the process of drawing annotations
on an image more efficient. For example, Extreme Clicking was introduced
in [14] and used to annotate the Open Images dataset [15]. Extreme Clicking
allows for fast drawing by having the user click the four most extreme points
of an object. It was found to decrease the drawing time from 25.5 seconds to
7.4 seconds in comparison to traditional box dragging. Annotation tools can
also be enhanced by allowing the tool to produce annotations which a user
can adjust [16, 17]. Another alternative is weak supervision that takes lower
quality labels and is able to transfer this knowledge into the training. Such
approaches use features from models pre-trained on larger datasets to train a
classifier from or models can be finetuned towards a more specific task [6]. A
popular approach in SSL is to increase the amount of labelled data by using
pseudo labels from a fully-supervised model where a teacher network trains
a student network. This approach has been popular in classification tasks but
less so in object detection and segmentation, as the latter tasks are often more
challenging due to the often large class imbalance between background and
foreground objects [18]. However, recent works exist that aim to take these
and additional challenges into account [18, 19].

Within agriculture there exists a number of datasets for different applica-
tions. These are extensively covered in [20] and we use this work as inspira-
tion to analyse the dataset creation in similar applications to our work. For
most agriculture dataset papers there is minimal description of the process
of conducting annotation. Most simply state that object instances were an-
notated in either a bounding-box or mask format. In some cases there is a
description of an open-source annotation tool but without stating details, e.g.
the MangoNet dataset [21]. However, a few provide details on the specific
tool, including DeepSeedling [22], where a dataset of bounding-boxes for cot-
ton seedlings is collecting using MS VoTT. Also in the MineApple dataset [23]
the VIA annotation tool is used to annotate apples with bounding boxes. Fi-
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nally, in DeepFruits [24] a custom MATLAB annotation tool is produced and
has been publicly released by the authors.

As mentioned, the process for collecting and conducting annotation is
rarely covered apart from a couple of datasets. An exception is the MineAp-
ple dataset [23], here an annotation worker is first instructed how to annotate
before they can perform the task and after annotating an initial ten images
are given in-person feedback. Furthermore, verification of all annotations is
done to correct annotations from the workers. The process is also briefly
described for annotating corn tassels in [25] where annotators are given a
training page before starting and gold standard sets are used to evaluate
resulting annotations.

Lastly, a number of the datasets adopt tools that counteract manual anno-
tation. In the Orchid fruit dataset [26] a custom tool is able to train and test
in parallel during annotation, allowing to easily determine changes in accu-
racy as additional examples are added to the dataset. In the Fruit Flowers
dataset [27] the annotation tool FreeLabel [28] aided by having the worker
draw freehand on a tablet for regions that contained flowers and the tool
generated masks using region growing refinement. Finally, synthetic annota-
tion have been used for the GrassClover dataset [29], by pasting plant crops
onto background images of soil while randomly sampling rotation and scale
in addition to adding shadows to the crops.

3 Dataset Annotation

In this section we present an overview of our process for creating annotated
datasets for WPCS. Two different forms of dataset are created, one for ker-
nel fragmentation and another for stover overlengths. For each we cover
our annotation guidelines for annotators, present statistics over datasets, and
present an evaluation of the quality and consistency of annotations.

3.1 Kernel Fragmentation

As mentioned, the datasets for kernel fragmentation have been previously
used in a number of works [1, 2, 10]. The works showed for a number of
deep learning models the potential of measuring kernel fragmentation in
non-separated samples. In [2] the trained models were additionally evaluated
against physically sieved samples for CSPS, showing a strong correlation.
However, the best performing models between annotation-based metrics and
CSPS correlation were not always consistent. Therefore, in this section we
present and evaluate our process for annotating kernel fragmentation in our
images.
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Annotation Guideline

To solve the task of estimating kernel fragment quality, the aim was to anno-
tate all fragments allowing for an estimation of an industry standard such as
CSPS. This would ideally allow a system to learn and estimate from images
the differences in fragmentation given the condition present to a farmer’s
field. Figure E.2 shows fragment annotations in two cases with a clear dif-
ference in fragmentation. Both images are captured in the same field and
have an identical TLOC but with different PGs. A PG of 1 mm in E.2(a) pro-
duces a larger number of smaller fragments and fragments in total compared
to E.2(b) harvested with PG 4 mm. It is worth stating that there is not nec-
essarily such a significant difference in fragmentation, however, the general
expectation is a larger number of fragments with a smaller size as the PG
decreases.

Fig. E.2: The difference in kernel fragmentation potentially present in images between different
PGs. Both samples are harvested with TLOC of 11.5 mm but (a) had a PG of 1 mm and (b) 4
mm.

In addition to informing annotators to annotate all fragments, a number
of specific cases were also addressed that occurred due to working with non-
separated samples. Firstly, despite working with a resolution of 20 pixels to
1 mm, very small fragments in images were both difficult to annotate and to
determine if they were truly kernel fragments. Therefore, an indicator was
added to the annotation tool with a radius of 1 mm showing the minimum
size fragments should be before they are annotated. The indicator is shown
in Figure E.3 together with a zoomed in view. The indicator followed the
user’s mouse cursor and if a fragment’s axis extended beyond the diameter
the user should start the annotation process for the instance.

Another specific case is when fragments are grouped closely, here it could
be ambiguous whether these were a single fragment or where the boundary
between them should be. Therefore, a number of examples, such as Figure
E.4, was provided to annotators with the aim of providing guidance.

Finally, as we are working with non-separated samples, kernel fragments
can be partially covered by other fragments or stover. Naturally, this is not
ideal as the image is not able to provide a true description of the fragmenta-
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Fig. E.4: An example of how to annotate fragments that are grouped closely together.

tion level for these cases. A solution could be for an annotator to estimate the
true boundary, however, we determined this be difficult and potentially lead
to errors when training the data-driven models. Therefore, annotators were
instructed to only annotate the visible boundary. This is visualised in Figure
E.5 with the original image in E.5(a) and two cases of annotations of covered
fragments in E.5(b).

(@) (b)

Fig. E.5: An example of how to annotate instances that are covered by other particles.

Statistics and Evaluation

The annotation process was conducted over a number of iterations as im-
ages were gathered over harvest seasons. Therefore, we have split the data
into a number of datasets that are named based on the harvest year. These
could be used either individually or combined for a larger dataset during
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model development. An overview of the annotation statistics for each har-
vest season can be seen in Table E.1, showing the machine setting the silage
was harvested with (PG and TLOC), total number of images annotated, to-
tal instances annotated and average instances per image. The statistics are
summarised for each PG, as this machine setting has the largest effect on
fragmentation within a dataset. Additionally, if there are multiple harvest
sequences of the same PG, these statistics are summarised in a single row
where the number in the parenthesis shows the total number of sequences.
Firstly, we can see that 2017 dataset has a significantly larger number of to-
tal images and instances compared to the three other datasets. While the
annotation process was completed over a number of years, a comprehensive
effort was made after this harvest to build a large dataset resulting in a skew
towards this harvest. Secondly, the average number of annotated instances
per image varies across the datasets, for example, between 2 to 8 instances in
2016 and 2017. Furthermore, a significant increase is seen in 2015 with 8 to
15 instances and in 2018 with 10 to 28 instances.

Table E.1: Annotation statistics for the images captured over four different harvest seasons.

PG H TLOC Images Anno Insts Insts per Img
2015 H

1(2) 9 90 1333 14.8
2 (1) 9 21 189 9.0
3(1) 9 37 402 10.31
4 (1) 9 39 300 8.11
Total 187 2224 11.89
2016 ||

1(14) || 4 131 762 5.82
2(2) 4 18 110 6.11
3(2) 4 19 82 4.32
4(1) 4 11 58 5.27
Total 205 1118 5.45
2017 ]|

1(2) 4 152 967 6.36
2 (2) 4 127 458 3.61
3(2) 4 359 901 2.51
35(2) | 4 126 442 3.51
12 12 290 1200 4.14
2(2) 12 289 1909 6.61
3(2) 12 111 927 8.35
35(2) || 12 171 435 2.54
Total 1972 8270 4.19
2018 H

1) 6 20 616 28.00
2(1) 6 20 567 25.77
3(1) 6 20 507 25.35
4(1) 6 20 472 23.60
1(1) 115 20 448 22.40
2(1) 11.5 20 361 18.05
3(1) 11.5 20 238 11.90
4(1) 11.5 20 264 10.56
Total 169 3473 20.55
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The differences in annotations are highlighted in Figure E.6 with the av-
erage size of annotated instances (a) and average number of instances per
image (b) for each sequence. The expectation, at least within a harvest year,
is that in general a smaller PG should produce smaller and more fragments
compared to larger PG. For the datasets from 2015, 2016 and 2017 this trend
is not overly clear in Figure E.6. However, the annotations from 2018 were
done as a direct attempt to address this through a sanity check with a high
requirement on annotation quality from a single annotator. This resulted in
both a considerable increase in the average number of instances per image,
as seen in Table E.1 and a clearer trend over PGs in corresponding Figures
E.7(a) and E.7(b). Additionally, in these figures it can be seen the effect of
the TLOC, where a shorter length affects fragments with smaller size and
increase in instances.
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Fig. E.6: Median size of annotations for sequences across PGs (a). Average number of annotated
instance for sequences across PGs (b).
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Fig. E.7: Statistics for annotations from 2018. Median size of annotations for sequences across
PGs (a). Average number of annotated instance for sequences across PGs (b).
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3.2 Stover Overlengths

In this section we cover the annotation process and statistics for determining
stover quality. As covered in [2], we diverge from the kernel fragmentation
strategy presented in the previous section and rather only aim to localise
stover deemed as overlengths. An overlength per our definition is when a
particle is 1.5x TLOC or larger [2].

Annotation Guideline

The differing overlength definition was visualised to the annotators through
a red circle indicator as seen in Figure E.8. The indicator could be used to see
if an instance should be annotated based on if it exceeded beyond the radius
along any axis. The size of the red indicator is 1.5x TLOC for a given image.

Fig. E.8: Differences in image content and annotations for three TLOC. In (a) samples are har-
vested with 4 mm, (b) with 6 mm and (c) with 11.5 mm. For each image the overlength definition
of 1.5xTLOC is shown by diameter of the red circle.

In addition to informing how to annotate an overlength particle the an-
notators were given similar instructions as those to kernel fragments. These
include only annotating the visible portion of instances and annotating indi-
vidual instances when multiple are tightly grouped. Finally, the annotators
were given a number of example annotations aiming to cover both the inter-
and intra-class variance. Figure E.9 shows two examples of each class from
image sequences captured at TLOC 4 mm. In Figure E.9a-b the accepted
leaves class is shown, which occurs when an instance is an overlength but
only based on the axis length that is perpendicular to the leaf structure. In
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Figures E.9¢-d, the counterpart to the previous class non-accepted leaves is
presented. In this case the axis which follows the leaf structure exceeds the
overlength definition. Figures E.9e-f shows examples of inner stalks which
often has a sponge-like texture. Lastly, Figures E.9g-h covers two examples
of outer stalks where there can be some variance in the colour.

(e) ® (g (h)

Fig. E.9: Overlength class examples, accepted leaves (a-b), non-accepted leaves (c-d), inner stalk
(e-f), and outer stalk (g-h). Annotations examples are all from images captured of WPCS har-
vested at a TLOC of 4 mm.

Statistics and Evaluation

The final annotations used in [2] were done by a single annotator and an
overview of the annotation statistics can be seen in Table E.2. The table shows
that in general there are more instances with a smaller TLOC, in addition to
instances having a smaller size. Additionally, with the larger TLOC of 11.5
mm the annotations are limited for some classes, such as inner stalk.

Table E.2: Annotation statistics for the overlength dataset. Table also used in [2].

A NA Inner Outer | Avg. Avg. major Avg. minor
TLOC || Images  Instances leaves leaves stalk  stalk sizg axii7 leng]th axi§ length
4 163 1233 520 419 75 209 145189 216.6 94.3
6 199 904 182 559 35 122 26315 294.3 122.7
115 113 263 51 172 1 38 61328.2 4855 179.9

Before defining the dataset shown in Table E.2 and used in [2], an initial
annotation iteration was done by three annotators on images harvested with
a TLOC of 4 mm. As seen for kernels, we observe an inconsistency between
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the annotators on metrics such as the number of instances and average size
which we show in Table E.3 and across the overlength classes in Table E.4.

Table E.3: Annotation statistics for overlengths for three different annotators. Each numbered
sequence contains images harvested with the same machine settings.

I Avg. insts | Avg. Avg. major Avg. minor
mages Instances . . . :

per image | size axis length  axis length
Annotator 1
Seql 37 73 1.97 33056.85 322.33 140.05
Seq2 32 57 1.78 36415.78  360.33 124.02
Seq3 31 102 3.29 25180.66 292.98 124.02
Annotator 2
Seql 37 124 3.35 2542353 294.71 126.33
Seq2 32 180 5.62 20969.54 262.65 111.25
Annotator 3
Seql 37 271 7.32 17105.99 234.34 102.44
Seq2 32 256 8.0 18098.88  232.60 111.25
Seq3a 31 227 7.32 18025.16 234.55 111.41
Seq3b 31 222 7.16 18427.43  242.06 110.28

Table E.4: Class instances annotated by the three annotators for stover overlengths.

Annotator A Leaves NA Leaves [Stalks O Stalks
Annotator 1 | 122 46 7 7
Annotator 2 | 82 98 10 24
Annotator 3 | 418 330 65 157

We also had the annotators annotate some overlapping images over the
three sequences. In Seql and Seq2 a total of 10 and 5 images were annotated
respectively by all three persons. Whereas, in Seq3 5 images were annotated
by both annotator 1 and 2. An analysis of the inter-rater agreement using
Cohen’s Kappa coefficient [30] confirms that there is little agreement as seen
in Table E.5. Cohen’s Kappa is a statistic that can measure the reliability of
two persons annotating the same instances while taking into account that the
agreement could be by chance. We define an annotation to be an agreement
when two polygon annotations have an Intersection-over-Union (IoU) greater
than 0.5. Table E.5 shows that for each sequence pair, the agreement scores 0
which can be interpreted as no agreement. Additionally, in the right portion
of the table we show for a given annotator the number of annotated instances
and the number of agreed annotations per counterpart annotator.

Based upon the above observations we perform an additional experiment
to highlight the potential pitfalls of using inconsistent annotations by training
two different models. Firstly, we focus on how well the model performed in
terms of precision and recall. But also on what effect this has when evaluating
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Table E.5: Cohen Kappa Score between each annotator pair with a single annotator as reference
annotator (left most column). Additionally, the total number of instances per reference annotator
with counts of overlap where IoU is greater than 0.5 for each sequence.

Cohen Kappa Count IoU >0.5

Al A2 A3 | InstCnt A1 A2 A3
Seql 0 0 25 1 0
Seq2 0 0 6 0 0
Seq3 0 na | 15 na 15
A2 Al A3 | InstCnt A2 Al A3
Seql 0 0 62 7 4
Seq2 0 0 23 3 1
Seq3 na na | na na na
A3 Al A2 | InstCnt A3 Al A2
Seql 0 0 78 9 6
Seq2 0 0 37 4 3
Seq3 0 na | 39 3 na

with a test set if annotations are not consistent in training. It can be challeng-
ing to optimise a model when annotations are not consistent. However, it is
also difficult to determine if alterations to a model improve or worsen if the
basis of false positives and true positives are incorrect during testing. There-
fore, models were trained on the two datasets of different consistency, namely
a Faster R-CNN [31] with an Inceptionv2 [32] backbone using transfer learn-
ing from COCO using the TensorFlow Object Detection API [33]. This is the
same training strategy used for baseline overlength models in [2].

In Table E.6 we show Average Precision (AP) and Average Recall (AR)
results based on COCO standards [5] on a test set with inconsistent anno-
tations. For each metric we show two values, the upper is a model trained
on inconsistent annotations from all three annotators and the lower trained
on consistent annotations from Annotator 3. In both cases the annotations
are split 70% for training, 15% for validation and 15% for testing. Addition-
ally, the splits from Annotator 3 were the same across both datasets to ensure
comparable results. Table E.6 shows when looking at all classes that the
model trained on consistent data performs in general a number of percent-
age points (p.p.) higher but scores lower on AR when more predictions are
allowed. There is a clear difference between the two models when evaluat-
ing inner stalk predictions, here, the model trained on consistent data scores
between 20 to 30 p.p. higher.

Clearer results can be seen when evaluating on the consistent test set in
Table E.7. Increases in AP can be seen for the consistent-trained model, with
AP@0.75 rising by almost 15 p.p.. For individual classes significant increases
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Table E.6: Results on test set with inconsistent annotations from the three annotators. For each
metric results from two models are shown trained on different sets of data, upper is that on the
inconsistent and below is trained on consistent.

Class AP AP@05 AP@0.75 AR@1 AR@10 AR@100
ALY 0T g sas s b s
A Leaves (107) ig; :ZZ igg i;i g;g Zi
NA Leaves (59) ;(7)(9) gi; Zi ;zg 3(5)2 ggg
ISwls () |57 763 302 aas s saa
OSals (O | 100 e o0 m3 2 297

are seen for all classes except outer stalks in terms of AP.

Table E.7: Results on test set with consistent annotations from the one annotator. For each
metric results from two models are shown trained on different sets of data, upper is that on the
inconsistent and below is trained on consistent.

Class AP AP@0.5 AP@0.75 AR@1 AR@10 AR@100
ANGE) 507 @0 s4  me 460 69
A Leaves (64) iéi Zgg ig; igi i(S)z 2;;
NA Leaves (43) iig i:g ;gg gi ggg giz
ISl (0 | &0s s g0 w0 es0 1
oswks@) |27 BT i a1 s o

Tables E.6 and E.7 show the importance of having consistent data when
training models but also evaluating them. In both tables it can be seen that
in general the model trained on consistent annotations have a higher AP
compared to the inconsistent counterpart. Also, for the inconsistent model
in Table E.7 the AP metrics are increased significantly in comparison to Table
E.6. Therefore, if the model was evaluated on inconsistent annotations a
conclusion could be made that the model performs poorly.
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4 Semi-Supervised Learning

Due to the challenges and inconsistencies between annotators we perform
investigations into the potential of using SSL to complement manual annota-
tion for our dataset. We adopt the Unbiased Teacher methodology [18] due to
their recent improvements with SSL for object detection. SSL has not been as
extensively used in object detection tasks in comparison to classification, as
there is often being a significant bias towards background in comparison to
foreground. Therefore, the usage of pseudo labelling between a teacher and
student network can be prone to learning a bias towards easier objects. How-
ever, with the Unbiased Teacher [18] the authors identify that in two-stage
recognition networks, such as Faster R-CNN, the overfitting occurs in the
classification heads for both the Region Proposal Network and final multi-
class classification. The approach proposes to train a student and teacher
mutually where the student learns from the teacher via highly augmented
images and the teacher learns slowly from the student with an Exponential
Moving Average (EMA). In addition to EMA, the framework adopts focal
loss to concentrate on more challenging examples in order to lower the bias
towards easier examples. The framework has a number of parameters that
must be tuned in order to allow the two networks to improve together. Firstly,
a confidence threshold that defines which predictions from the teacher are
passed as annotated examples to the student. Second, the number of unsu-
pervised images per iteration to create pseudo labels from. A variable con-
trolling how much weight the unsupervised examples have when calculating
loss. Finally, a number of burn-in iterations must be set where the teacher
network is trained in order to provide a solid baseline before performing SSL.

We evaluate the usage of SSL by training teacher-student networks on
two different annotated datasets together with a large number of unanno-
tated images for kernel fragmentation. This includes the 151617 dataset pre-
sented earlier and used in a number of previous works [1, 2, 10] and a subset
only including annotations from 2016. The 151617 training set includes 1393
images containing 6907 instances and the 2016 subset has 115 images with
675 instances. Our unsupervised portion of the SSL dataset are 7888 images
from a harvest captured in 2019. Finally, we evaluate our SSL-trained models
with both object detection metrics and correlation analysis against physically
sieved CSPS samples first presented in [2]. For a stronger evaluation we use a
new test set compared to previous WPCS works, adopting the sanity checked
annotations from 2018 presented in Table E.1 and Figure E.7. This way we al-
low for less precise annotations during the training process but test networks
against annotations of higher quality.

Our teacher-student networks follow the investigations done in [18] which
are a Faster R-CNN [31] with an ResNet50 [34] Feature Pyramid Network [35]
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backbone. Networks are trained on an NVIDIA Titan XP GPU using the
Detectron2 framework [36]. The networks are trained for at total of 50000
iterations with a learning rate of 0.01 using Stochastic Gradient Descent with
an initial burn-in of 10000 iterations. We use an EMA of 0.9996, following the
value from the original authors which we also empirically determined to lead
to stable results. A lower EMA would allow the student to contribute more
during updating of the teacher network and may cause worse performance
due to too noisy labels [18]. Finally, we also train baseline Faster R-CNN
models in a fully supervised manner to compare our SSL models against.

In Table E.8 the results can be seen for a number of different teacher-
student variants, additionally, the baseline model can be seen in the first row
where the parameters for SSL are not applicable. The remaining rows show
SSL training runs with all combinations of the three key SSL parameters.
The confidence threshold for pseudo labels is set between 0.1 to 0.7 with
0.2 increments. The number of unsupervised images per iteration and how
much weight to place on the unsupervised loss is set at either 1 or 4. For each
SSL-trained model we evaluate the AP and Pearson’s Correlation Coefficient
(PCC) with the network iteration with the lowest validation loss. Also shown
in the table is that two SSL training runs diverged early and therefore results
are not shown. In regards to AP metrics we see that SSL models trained with
a bounding-box confidence threshold of either 0.3 or 0.5 improve results in
comparison to the baseline model. The best performing model for AP and
AP@0.5 are seen with a confidence threshold of 0.5, using 4 unsupervised
images and an unsupervised weight of 4. Concretely, the AP is improved by
3.55 p.p. and AP@0.5 by 6.2 p.p.. At the more stringent AP@0.75 the network
trained with the same parameters apart from a confidence threshold of 0.3,
has a slight improvement with 4.51 p.p.. The PCC analysis can be seen in the
three right-most columns in Table E.8 and we see that the best performing
models for AP does not translate to improvements in PCC. However, the
PCC is improved for CW43 by 0.04 and when combining the two harvest
weeks by 0.07.

In Table E.8 we applied SSL in combination to the 151617 dataset which
required a relatively large amount of effort in obtaining the initial 6907 anno-
tated object instances. Therefore, in Table E.9 we investigate whether much
less effort can be used and therefore only use the annotations from 2016 con-
taining 675 instances. The unsupervised portion is extended to also include
the images from 2015 and 2017 from the 151617 dataset. This means that
1.4% of the dataset in Table E.9 is annotated compared to 15.1% in Table
E.8. The baseline model shows a considerable drop in AP and PCC in com-
parison to previous results. For example, AP decreases by 12.23 p.p. and
15.78 p.p. to 4.97 in comparison to the baseline and best performing model
using 151617 as supervised labels. However, the teacher-student training
with additional unsupervised data improves the baseline by a large margin.
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Table E.8: Results for SSL-trained models for models with various hyper-parameters on the
151617 annotated dataset together with unannotated images from a harvest from 2019. Addi-
tional results also shown for baseline fully supervised models in the first rows.

Train Unsup. Bbox Unsup Unsup | AP AP@0.5 AP@0.75 | PCC PCC PCC
Set Set Thresh Images Weight CW40 CW43 CW40+43
151617 [2] NA NA NA NA NA NA NA 0.95 0.79 0.81
151617 NA NA NA NA 1720 32.15 15.96 0.94 0.75 0.68
151617 2019 0.1 1 0.5 15.57 27.73 16.16 0.88 0.73 0.72
151617 2019 0.1 1 4 - - - - - -
151617 2019 0.1 4 0.5 1749 31.36 17.40 0.86 0.76 0.71
151617 2019 0.1 4 4 - - - - - -
151617 2019 0.3 1 0.5 17.85 31.92 17.78 0.93 0.72 0.75
151617 2019 0.3 1 4 1993 36.02 19.64 0.81 0.74 0.67
151617 2019 0.3 4 0.5 1795 32.32 17.66 0.92 0.71 0.72
151617 2019 0.3 4 4 19.73 35.15 20.47 0.85 0.69 0.65
151617 2019 0.5 1 0.5 19.79 35.86 20.32 0.90 0.79 0.70
151617 2019 0.5 1 4 17.78 34.85 15.45 0.83 0.73 0.62
151617 2019 0.5 4 0.5 19.66 36.45 18.54 0.88 0.72 0.65
151617 2019 0.5 4 4 20.75 38.35 19.99 0.88 0.72 0.63
151617 2019 0.7 1 0.5 1556 27.82 15.36 0.88 0.63 0.63
151617 2019 0.7 1 4 15.36 28.13 15.13 0.77 0.58 0.59
151617 2019 0.7 4 0.5 1547 2848 14.84 0.86 0.60 0.58
151617 2019 0.7 4 4 13.58 24.37 13.22 0.77 0.55 0.56

The SSL model trained with 0.7 confidence threshold, 4 unsupervised im-
ages and an unsupervised weight of 4, increases AP by 12.69 p.p, AP@0.5 by
26.52 p.p. and AP@0.75 by 10.19 p.p. The same model increases the PCC for
both harvest weeks from 0.56 to 0.64. However, this improvement appears to
be present largely for the first week as better PCC can be seen for another
teacher-student training at 0.1 bounding-box threshold. Overall the AP and
PCC results are not improved in comparison to those in Table E.8, however,
significant effort in annotation could have been saved using this approach.

5 Discussion

Despite implementing annotations guidelines and using subject-matter ex-
perts as annotators we founds variation and inconsistencies. This shows both
the difficult task of annotating our images and of manual annotation in gen-
eral. The annotations could likely be improved with increased processes such
as multiple annotation iterations per image/harvest and gold standard sets.
However, these could be costly to implement and be time-consuming. We
investigated a single alternative to manual annotation through a teacher-
student training framework. Others could be of interest, such as an anno-
tation tool aiding through automatic annotation.

Despite annotation inconsistency we still see a strong correlation in our
models and in previous work. Therefore we suggest that the dataset is still
suitable for training but care should be taken when evaluating models with
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Table E.9: Results for SSL-trained models for models with various hyper-parameters on the 2016
annotated dataset together with unannotated images from harvests from 2015, 2017 and 2019.
Additional results also shown for baseline fully supervised models in the first rows.

Train Unsup. Bbox Unsup Unsup | AP AP@0.5 AP@0.75 | PCC pPCC PCC

Set Set Thresh Images Weight CW40 CW43 CW40+43
2016 NA NA NA NA 497  7.39 6.05 0.70 0.54 0.56
2016  1517+2019 0.1 1 0.5 11.95 24.02 9.65 0.72 0.65 0.63
2016  1517+2019 0.1 1 4 - - - - - -
2016  1517+2019 0.1 4 0.5 1424 2851 11.51 0.70 0.76 0.59
2016  1517+2019 0.1 4 4 12.00 2243 11.32 0.74 0.66 0.65
2016  1517+2019 0.3 1 0.5 13.67 27.15 10.89 0.70 0.57 0.52
2016 151742019 0.3 1 4 - - - - - -
2016  1517+2019 0.3 4 0.5 1328 27.90 9.35 0.85 0.55 0.62
2016 151742019 0.3 4 4 13.53 24.15 13.31 0.84 0.66 0.70
2016 151742019 0.5 1 0.5 15.05 29.60 12.30 0.73 0.64 0.56
2016 151742019 0.5 1 4 - - - - - -
2016 151742019 0.5 4 0.5 16.98 33.60 13.98 0.83 0.70 0.71
2016  1517+2019 0.5 4 4 16.62 32.75 14.16 0.79 0.65 0.58
2016  1517+2019 0.7 1 0.5 12.34 21.14 13.52 0.82 0.55 0.64
2016  1517+2019 0.7 1 4 13.92 27.88 11.91 0.85 0.61 0.58
2016  1517+2019 0.7 4 0.5 9.67 16.23 10.59 0.74 0.59 0.64
2016  1517+2019 0.7 4 4 17.66  33.91 16.24 0.90 0.61 0.64

annotation-based metrics such as AP. Instead, this should be done in con-
junction with physically-sieved estimates such as CSPS.

In our datasets, especially for kernel fragments, bias has been attempted
to be counteracted by including images from multiple different harvest sea-
sons and machine settings. There is likely considerable variation in WPCS
and the resulting images. If a system were to be evaluated across thousands
of farms all over the world, care should be taken for additional datasets to
take this into account. For examples, in Figures E.10 we show the UMAP [37]
embeddings of a random sample of up to 250 images from our images over
the multiple harvests. We see that the RGB embeddings do cluster and this
information could be utilised.

6 Conclusion

The majority of deep learning methods are reliant on annotation. This can
be difficult and expensive for more specific applications, such as within agri-
culture. Annotation process is often not covered in such datasets making it
difficult to reproduce or evaluate the research fully. Therefore, the aim of
this work was to describe a concrete case and thereby illustrate the actual
challenges and how we have addressed them.

In this work we have presented for WPCS our annotation process, statis-
tics and an analysis of our datasets which is not often done in specific use-
cases within agriculture. Manual annotation is often a challenging and time-
consuming task which has been the case in our dataset seen by variations
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UMAP Embedding of WPCS
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Fig. E.10: UMAP Embeddings of various RGB images captured during different harvests.

in statistics for the annotations between annotators and between harvest sea-
sons.

We evaluate the usage of SSL, with a teacher-student approach as an
extension to manual annotations. Our SSL-trained object detectors showed
promise by increasing AP but no significant alteration when evaluating CSPS
against physical samples. However, we did see significant improvements
when using the approach on a much smaller annotated set from a single
harvest season.

We hypothesise that a combination of increased processes and further al-
ternative tools can significantly decrease the annotation cost as larger datasets
would be required to cover additional variations in farms. We believe that ex-
ploring challenges in smaller datasets is a crucial step in all domains. Being
aware or addressing them to improve the overall quality is crucial for success,
whether it be training successful models or having the ability to evaluate
them with annotation-based metrics.
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1. Introduction

Abstract

In recent years, companies, such as Intel and Google, have brought onto the market
small low-power platforms that can be used to deploy and run inference of Deep
Neural Networks at a low cost. These platforms can process data at the edge, such
as images from a camera, to avoid transfer of large amount of data across a network.
To determine which platform to use for a specific task, practitioners usually compare
parameters, such as inference time and power consumption. However, to provide a
better incentive on platform selection based on requirements, it is important to also
consider the platform price. In this paper, we explore platform/model trade-offs, by
providing benchmarks of state-of-the-art platforms within three common computer
vision tasks; classification, detection and segmentation. By also considering the price
of each platform, we provide a comparison of price versus inference time, to aid quick
decision making in regard to platform and model selection. Finally, by analysing the
operation allocation of models for each platform, we identify operations that should
be optimised, based on platform/model selection.

1 Introduction

Within the years that followed 2012, researchers were focused on develop-
ing Deep Neural Networks (DNNs) that were accurate and generalised well.
Each year, the top-1 error on the large ImageNet dataset, used within object
classification, gradually decreased [1, 2]. As other computer vision (CV) tasks
gained more interest, such as object detection and semantic segmentation, ac-
curacies on benchmark datasets would increase each year [3, 4]. However, re-
cently, focus has shifted towards more practical usage of DNNs. Today, low-
ering the network complexity while maintaining a high accuracy is largely
prioritised. Novel architectures are developed that contain fewer parame-
ters [5, 6], and larger networks are quantified to speed up inference. The most
common datatype for DNNs today is the 32-bit floating point (FP32), how-
ever, using quantification techniques, networks can operate on 16-bit floating
point (FP16), or even 8-bit integers, with almost no loss in precision [7].
Following the trend within academia of developing DNNs, companies
are developing hardware to run these networks. This hardware, furthermore,
should be able to process incoming data with low latency. Several cloud so-
lutions, offered by big companies, such as Amazon’s Amazon Web Services
(AWS) [8], have emerged that can train and run models online. Furthermore,
Internet of Things (IoT) have resulted in products that require smaller and
cheaper computers, which can run trained models at the edge. As a result of
this demand, companies like Intel and NVIDIA have brought onto the market
edge platforms that deploy and run network inference at limited costs [9, 10].
These platforms can, for example, be integrated with a camera to process data
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directly at the source. In the last few years, several minor and large compa-
nies have brought onto the market their own edge platforms, combined with
software packages to optimise pre-trained models before deployment. These
platforms are able to run models within a variety of CV tasks, including
object classification, detection and segmentation.

In this work, we evaluate edge platforms on common CV tasks, including
object classification, object detection and semantic segmentation. We evaluate
DNN models of different precision and complexity within each task, to show
and compare inference timings between high-precision complex models and
medium-precision/simple models when the batch size is varied. For better
comparisons between platforms, we evaluate a high-end GPU and use it as
reference. Furthermore, we calculate the number frames per second (FPS)
based on the inference timings, and include the retail price of each platform
to calculate an FPS cost. The FPS cost is a measure to identify the cost effec-
tiveness of a certain platform/model combination, using a specific batch size.
Additionally, comparing retail price and FPS, we propose a framework which
aid the optimal platform/model selection, depending task and budget/speed
requirements. Finally, we compare the distribution of DNN operations across
platforms and models to identify the parts of a DNN on each platform that
result in a higher FPS costs. These investigations allow us also to evaluate
different CV tasks over the edge platforms and conclude on the best platform
for a given use-case in terms of value for money, budget and FPS.

Previous works have studied models of different complexities [11-13],
however, these publications aim to provide analyses of the speed/accuracy
trade-off between models. On the other hand, works have been published
that evaluates and compares different edge platforms [14, 15], but these
works do not take into consideration the price of different platforms. By
including the price of the platforms, we are able to provide a simple and ex-
tensive overview of the FPS cost, which can be used by companies to select
the optimal platform/model combination depending on their requirements,
resources and the given CV task.

2 Related Work

2.1 Object Classification

In the last couple of years, works have been published that compare classifi-
cation models and their performances. Canziani, Culurciello and Paszke [12]
analysed inference time, power consumption and system memory utilisation
for models of different complexity, depending on the batch size. However,
all tests were performed on a single NVIDIA Jetson TX1, and only complex
models were considered. Biano et al. [11] extended the work of [12] by in-
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cluding several additional CNNs, while also performing the evaluation on
an NVIDIA Titan X GPU, but considered the same parameters. Meanwhile,
Velasco-Montero et al. [16] evaluated models of different complexities, im-
plemented in different frameworks, on a low-power Raspberry Pi 3 model
B, and considered accuracy, throughput and power consumption to find a
subset of optimal model/framework combinations for real-time deployment.

More recently, Almeida et al. [14] conducted an evaluation of several clas-
sification models, including those in [11], but also less complex models. Fur-
thermore, they considered five different platforms, including an edge plat-
form. Similarly to [11, 12], they compared inference time and accuracy be-
tween models, but rather than having a single plot from all platforms, the
comparison was performed per platform to identify differences and similar-
ities between the platforms with respect to the handling of the networks.
While the work provides insight on how to build up an architecture based on
the platform, it does not consider the cost of using a certain platform.

2.2 Object Detection

Huang et al. [13] performed a comparison of three popular object detectors by
changing the feature extractor, to analyse the change in accuracy/speed /memory
trade-off. Liu et al. [17] presented a more extensive survey of object detec-
tors, where less complex detectors were also considered. However, the survey
does not include a speed/accuracy analysis between the presented detectors.

To our knowledge, no published work compare speed/accuracy and price
across several platforms, including edge platforms.

2.3 Semantic Segmentation

Few works have been published in benchmarking of semantic segmentation
networks. Guo et al. [18] provide an overview of different architectures
with the purpose of identifying strengths, weaknesses, and challenges of
current work. A more general survey by Garcia-Garcia et al. [3] was pub-
lished that presents the key ideas behind segmentation networks and pro-
vide an overview of previously proposed architectures with focus on, among
other things, accuracy and efficiency. While they provide a comprehensive
overview, they do not directly compare models.

2.4 Platform Benchmarks

Only few works compare performance of models of different complexities
across difference platforms. Trindade et al. [19] evaluated two popular frame-
works, Caffe [20] and TensorFlow [21] and compared performance, with re-
spect to training time, between a GPU and NUMA CPU. A more extensive
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evaluation of frameworks was presented by Zhang, Wang and Shi [22] who
performed the evaluation on different platforms where inference time, mem-
ory footprint and energy consumption was evaluated. Blouw et al. [15] mea-
sured inference time and energy consumption across different platforms with
respect to batch size, and analysed the speed and energy cost per inference as
a function of the network size. However, they only evaluated platforms on a
single custom architecture. Finally, Pena et al. [23] focused on low-power de-
vices, by evaluating object classification models and frameworks with respect
to inference time and power consumption.

To our knowledge, only a single previous publication compares different
platforms across different tasks, which is the aim this work. Ignatov et al.
[24] considered mobile platforms containing chips that are manufactured by
major chipset companies. The chips were evaluated in nine tests, including
two image recognition tests using MobileNet and Inception V3, respectively,
and a memory limitation test to identify the maximum allowed image size
for inference before running out of memory. Instead, we perform evaluation
of edge platforms across different common CV tasks, consider the retail price
of the platforms, and analyse the consequence of DNN operations across
platforms.

3 Platform Evaluation

This section presents an overview of our methodology for evaluating the
edge platforms. Specifically, we present the evaluation procedure to ensure
comparable results between platforms, choice of deep learning framework,
and overview of selected models and platforms.

3.1 Model Overview

The choices for method and models are based upon differences in the com-
plexity of feature extractors dependent on the difficulty of a given task to-
gether with their performance on leading benchmark challenges. For each
of the three tasks covered in this survey, models at up to three different lev-
els of complexity are evaluated. For all tasks, complexity is defined as the
number of Giga Floating Point Operations (GLOPS). For simplicity, we adopt
pre-trained networks available in the official TensorFlow [21] framework. An
overview of the models for each task can be seen in Table F.1.

Classification

We adopt MobileNetV1 [25] as the small, ResNet50 [26] as a medium, and
InceptionResNetV2 [27] as the larger more complex network. An overview
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Model Year GFLOPS* Top-1 [%]
MobileNetV1 [25] 2017 1.15 70.9
ResNet50 [26] 2015 6.97 75.2
InceptionResNetV2 [27] 2017 26.36 80.4
mAP [%]
SSD MobileNetV1 [25] 2015 2.49 21
SSD InceptionV2 [13] 2017 9.63 24
mlIOU [%]
DeepLabV3 MobileNetV2 [6] 2018 17.69 75.32
DeepLabV3 Xception65 [28] 2017 354 82.20

* As measured in TensorFlow

Table E1: Overview of models over the three tasks. Top-1 accuracy is based on the ImagenNet
classification task [29]. mAP is based on the COCO detection task [30]. mIOU is based on the
VOC 2012 segmentation task [31].

of the classification models described can be seen in the top portion in Table
F1.

Object Detection

For benchmarking object detection networks, we use the SSD [32] with the
distinction between the complexity of the SSD networks being done by switch-

ing the feature extractor. The middle portion in Table F.1 summarises our
choices for the two feature extractors with varying complexity, namely, MobileNet-
V1 and InceptionV2.

Semantic Segmentation

We adopt DeepLabV3 [28] for evaluating semantic segmentation networks.
An overview of model backbone choices for evaluation of DeepLabV3 is
shown in the bottom portion of Table E.1, which in this case is MobileNetV2
and Xception65.

3.2 Platform Overview

This section introduces the platforms evaluated across the various classifi-
cation, object detection and segmentation models. An overview of some of
the key specifications for the platforms can be seen in Table F.2, covering
the number of cores, clock frequency, memory, Thermal Design Power (TDP)
and price. We include a CPU, the Intel i7-7700K, since a GPU solution, occa-
sionally, may not be possible due to price or space restrictions. Further, we
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include two low-power edge devices, the Intel NCS and NCS2, that can per-
form inference of DNN models. The NCS devices have the form of USB sticks
and must be connected to a host machine for inference. Additionally, we in-
clude an NVIDIA Jetson TX2, which requires more power, compared to the
NCS devices, but is more powerful. Finally, we include a reference, NVIDIA
GTX 1080, to which we can compare our evaluation of edge platforms.

Platform Cores Clock Freq. (GHz) Memory (GB) TDP (W) Price* ($)
i7-7700K 4 42 64 91 350
Intel NCS 12%% 0.6 0.5 1 69
Intel NCS2 16%* 0.7 0.5 1 75
NVIDIA GTX 1080 2560%** 1.6 8 180 580
NVIDIA Jetson TX2 256%%* 13 8 7.5 560

* Price per 01/09/2020 [33] ** SHAVE cores *** CUDA cores

Table E.2: Overview of evaluated platforms, including the reference GTX 1080.

3.3 Evaluation Overview

In case of the TX2, models run in three settings; (1) in the standard Tensor-
Flow format, (2) by maximising the clock speed on the TX2, (3) and by op-
timising the models with the TensorRT (TF-TRT) package [34], which trans-
forms and optimises the models, for example by fusing layers, such as Con-
volution and ReLU. Additionally, the precision of the model is changed from
FP32 to FP16, with minimal loss in accuracy. To run inference on the NCS
and NCS2, models are converted to an Intermediate Representation (IR), con-
sisting of an xml file to describe the model topology and a bin file contain-
ing model weights and biases. This is accomplished using the OpenVINO
toolkit [35], developed by Intel. Similarly to TF-TRT, this is done by fusion of
certain layers of the network, such as Convolution and BatchNormalisation
or removing layers that are not used at test time, for example, the dropout
layer. Likewise, the precision of the model is changed to FP16 in order to
speed up inference and make the model compatible.

Evaluations are performed using TensorFlow 1.10.1 for most platforms.
Additionally for the NCS and NCS2, OpenVINO 2018_R5 is used to optimise
and run evaluation. However, TensorFlow 1.8 is used in case of TX2 as this
is compatible with TensorRT 4.0.1, which is required to optimise models to
TRT. To accelerate performance on TX2 and GTX 1080, we use CUDA 9.0
with CUDNN 7.0. The GTX 1080 and i7-7700k are evaluated on a machine
containing 64GBs of RAM, running Ubuntu 16.04, while NCS and NCS2 are
evaluated on a machine consisting of an i7-6700HQ CPU @ 2.60GHz and
16GBs of RAM. In all cases, evaluations are executed in Python 3.5.2.

The evaluations are run on images from the ImageNet dataset [2]. N
images are loaded, where N is the batch size, and resized accordingly to
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the input size of the model. For NCS and NCS2, the batch size corresponds
to the number of sticks that are run in parallel, asynchronously. We run
inference for 100 iterations and calculate the mean inference time per image
based on the total inference time and batch size. We evaluate inference time
using batch sizes {1, 2, 3, 4, 8, 16, 32, 64, 128}, in case of NCS and NCS2,
we evaluate inference time using 1, 2, 3 and 4 sticks in parallel. The entire
evaluation procedure is summarised in Algorithm 1.

Algorithm 1: Evaluation procedure

Input: model_name, batch_size, platform, imagepath ;
Output: mean_in ference_time ;
model <+ load(model_name) ;
if plat form == tx2 trt || plat form == NCS then
L model <+ convert_model (model) ;

images < read_images(batch_size, imagepath) ;
i+ 0;
total_time < 0 ;
while i < 100 do
start_time « time() ;
run_in ference(model, images) ;

time()—start_time |

inference_time < Fafch size ;

i+—i+1;
total_time < total_time + inference_time ;

mean_inference_time < “’”’1’% ;

4 Experimental Results

We perform experiments to conclude on the optimal model/platform selec-
tion within each task. Extensive plots are provided to aid selection based on
platform price, inference time, and batch size. First, we plot the FPS cost in
relation to the FPS of the difference platforms across the models of different
complexities. The FPS cost is calculated as the retail price divided by the
number of FPS for at given platform/model combination. Additionally, we
plot price against FPS in order to show potential speeds based on concrete
price points. Finally, we plot the top operation allocations for each platform
to further understand the differences between the platforms. Since many of
the plots show large numerical differences between platforms we plot values
on a logarithmic scale.

199



Chapter E.

4.1 Classification

Figure F.1 shows the FPS cost for the three classification models over the plat-
form variants. An increasing batch size is shown by an increasing diameter of
the bubbles representing the platforms. It is clear that the NCS2 is the most
cost friendly edge platforms between batch size 1 to 4. A difference in the
NCS and NCS2 to the other platforms is the consistent costs over batch size
as the number of sticks increases accordingly, whereas for the TX2 variants
and GTX 1080 we see lower FPS cost as batch size increases. The i7 FPS cost
does not change over batch sizes but does decrease as the number of cores is
increased. The TX2 TRT does become competitive in comparison to the NCS2
for our medium complexity ResNet50 model at larger batch sizes.
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Fig. F1: FPS cost of classification models based on batch size and FPS. MobileNetV1 (a),
ResNet50 (b) and InceptionResNetV2 (c).

Looking at the FPS for a given price point together with FPS cost in Fig-
ure F.2 we are able to determine the trade-off between model complexity, FPS
and price budget for batch sizes 1 and 4. With these figures, if the budget
is known for a deep learning system, it is possible to infer how complex a
model can be run and at what speed. Additionally, in these figures we depict
the three models and their complexity by the size of the bubble. The lowest
complexity MobileNetV1 is shown by the smallest diameter and most com-
plex InceptionResNetV2 by the largest. For batch size 1 in Figure F.2 (a) and
(c) the NCS and NCS2 are able to provide a relatively high FPS over the three
model complexities for a low price point, furthermore, this is highlighted
by the lower FPS cost. However, at batch size 4 the i7 CPU becomes more
comparable in terms of price and, in the cases with less complex models and
increased number of cores, have similar FPS to the NCS and NCS2.
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Fig. F2: Comparison of FPS cost (a) & (b) and retail price (c) & (d) based on FPS, for batch
sizes one (a) & (c) and four (b) & (d). Small bubbles indicate MobileNetV1, middle-size bubbles
indicate ResNet50, and large bubbles indicate InceptionResNetV2.

4.2 Object Detection

Again, we see in Figure F.3 that the NCS2 has the best FPS cost for the two
SSD models, however, the NCS is competitive when MobileNetV1 is used as
the backbone. In addition, despite the decreasing FPS cost as number of cores
increase for the i7, or by increasing batch size and optimising for TX2 TRT,
these variants are in general less viable for object detection purposes due to
their overall FPS cost and lower FPS.
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Fig. E.3: FPS cost of SSD MobileNetV1 (a) and SSD InceptionV2 (b) based on batch size and FPS.

Regarding the concrete price point and FPS cost, Figure F.4 shows that
the NCS2 is the best trade-off at batch size 1 at a lower price and high FPS,
additionally, the FPS cost is comparable to that of the GTX 1080. At batch
size 4 the i7 is more competitive, especially as the number of cores increases
but still has a lower FPS than the NCS2 where it is able to obtain impressive
amounts of FPS at almost 50 FPS with InceptionV2 and around 80 FPS with
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MobileNetV1. The FPS cost is again similar to that of the GTX 1080 for both
SSD networks.
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Fig. F4: Comparison of FPS cost (a) & (b) and retail price (c) & (d) based on FPS, for batch
sizes one (a) & (c) and four (b) & (d). Small bubbles indicate SSD MobileNetV1 and middle-size
bubbles indicate SSD InceptionV2.

4.3 Semantic Segmentation

It was only possible to run the DeepLabV3 models at batch size 1 due to
memory constraints across the platforms. Figure F.5 shows that none of the
edge platforms could run the models near real-time. For the DeepLabV3
with MobileNetV2 the NCS had a considerably lower FPS cost compared to
the other platforms. Whereas, with Xception65 NCS2 was the best but still at
a high FPS cost.
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Fig. E5: FPS cost based of DeepLabV3 models based on batch size and FPS at batch size one.
DeepLabV3 MobileNetV2 (a) and DeepLabV3 Xception65 (b).

Figure F.6 shows that the NCS and NCS2 have a low price point but also
a low FPS. Only the TX2 and TX2 MAX for the MobilenetV2 variant show
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promise with almost 5 FPS but at price point similar to the of the GTX 1080.
FPS cost depends on the complexity of the model, for the lower complex
DeepLabV3 with MobileNetV2 the NCS is the clear cheapest, whereas, with
Xception65 as the backbone FPS cost is largely similar but with NCS2 as the
cheapest option.
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Fig. E.6: Comparison of FPS cost (a) and retail price (b) based on FPS at batch size one. Small
bubbles indicate DeepLabV3 MobileNetV2 and middle-size bubbles indicate DeepLabV3 Xcep-
tion65.

4.4 Comparison of Tasks

We compare results from Figures F.2, F.4 and F.6 to conclude which platforms
are more suited for specific tasks. If multiple NCS2 are combined, the plat-
form is favourable in terms of both speed and price, to run classification or
detection, independent of model complexity. Having a single NCS2, FPS per-
formance on detection is still comparable to running TX2 TRT at batch size
one, however, on classification TX2 TRT outperforms NCS2 in FPS. For both
tasks, however, the FPS cost of NCS2 is still much lower. Nonetheless, on
both classification and detection, TX2 TRT compares favourable to TX2 and
TX2 MAX. Finally, segmentation is more suitable for the i7 or TX2, however,
at a higher price compared to NCS2.

4.5 Inference Analysis

In order to understand more about the differences between the platforms we
investigate the allocation of operations for the models. We use the Tensor-
Flow profiler for the GTX 1080, TX2 and i7, whereas for the NCS and NCS2
we use the Deep Learning Workbench in OpenVINO. For each we visualise
the operations as the top five and combine the remaining timings into one
which we denote as Other. We only show the timings for the MobileNet vari-
ants from our three tasks in Figures F.7-F9 as similar trends were seen for
the other backbones. The top-5 operations are largely the same for the GTX
1080 and TX2. We see that the TX2 TRT bundles a significant number of
operations in TRTEngineOp for the classification model but not so much for
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the SSD variant. For all three tasks for the NCS and NCS2 a large portion
is spent on the Convolution operation. Finally, the i7 is similar to that og the
GTX 1080 and TX2 but does not show any type of convolution in the top-5.

MobileNetV1 Operation Allocations

Other BiasAdd Pooling Convolution Permute MaxPool Sub Transpose
Mul Softmax TRTEngineOp Const M edge 289 arg input 0_0
B DepthwiseConv2dNative Relu6 M FusedBatchNorm M Conv2D
100% 2.10 24.78 20.46 41.29 20.86 36.61
—
o
=}
k= 50%
=
<
Q
S
= 25%
0% L O e
GTX1080 TX2 TX2-TRT NCS NCS2 i7
Platform

Fig. E7: Operation allocation for MobileNetV1. Numbers above bars indicate total time in ms.

5 Conclusion

In this work, we have evaluated different edge platforms within object clas-
sification, object detection and semantic segmentation. We have analysed
the FPS cost together with batch size and budget to aid decision making of
platform/model selection. Finally, we have analysed allocation of DNN op-
erations. As a reference, all results of the edge platforms was compared with
evaluations performed on a GTX 1080.

On classification, TX2 TRT is the optimal choice if a model runs at batch
size one, and only speed is a requirement. However, if budget is limited,
the NCS2 comes out as the better choice. Further, this is also the case for
larger batch sizes, where the combination of multiple NCS2 is both cheaper
and faster than compared to TX2, while being only slightly more expensive
than the i7. For detection, a similar pattern is shown. However, at batch
size one, differences between NCS2 and TX2 TRT in terms of FPS are much
less, making the NCS2 favourable, independent of the number of sticks pur-
chased. Finally, edge platforms are not yet suited for semantic segmentation,
since only the GTX 1080 shows real-time inference timings. On the other
hand, if real-time inference is not a requirement, either the NCS or NCS2 is
the optimal choice in a strict budget, while TX2 is optimal in case of speed
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SSD MobileNetV1 Operation Allocation

BiasAdd DepthwiseConv2dNative Other M Concat Sigmoid M Reshape Permute

Relu6 DetectionOutput Convolution B Minimum TRTEngineOp M Where
B FusedBatchNorm M GatherV2 Relu Sub M Slice M Conv2D
100% 7.96 67.75 71.96 102.50 59.67 83.79
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Fig. E8: Operation allocation for SSD MobileNetV1. Numbers above bars indicate total time in
ms.

requirements.

Analysing the allocation of DNN operation across platform/model com-
binations, we have shown that several operations in detection and segmenta-
tion models should be made compatible with TensorRT to increase FPS, thus,
reduce the FPS cost, while primarily Convolution and Relu operations should
be optimised for NCS and NCS2 to speed up inference.
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