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ENGLISH SUMMARY 

In Denmark, approximately 5000 patients are diagnosed with lung cancer each year. 

The histopathological subgroup of non-small cell lung cancer (NSCLC) accounts for 

80% of the cases, and half of the patients have incurable metastatic disease at 

diagnosis. Since 2015, immune checkpoint inhibitors (ICIs) have revolutionized the 

treatment of patients with advanced NSCLC, without targetable molecular alterations, 

based on improved response rates and overall survival (OS) in randomized controlled 

trials (RCTs). However, subgroups of patients with poor performance status (PS), 

high age and comorbidity are underrepresented in the RCTs but frequently treated in 

daily clinical cancer care. Therefore, study I and II investigated the ICI efficacy in 

patients with advanced NSCLC treated in daily clinical care. The selection of patients 

for ICI-treatment relies on the programmed death-ligand 1 (PD-L1) tumor proportion 

score, but the predictive value of PD-L1 is limited and complementary biomarkers are 

warranted. Therefore, study III investigated new predictive biomarkers of ICI 

efficacy. 

Paper I describes study I. In the nationwide study I, the impact of ICI-implementation 

on OS and the efficacy of first-line (1L) ICI was assessed in Danish patients treated 

in daily clinical cancer care. The median OS (mOS) increased with 5.2 months and 

the 3-year OS rate increased from 6% to 18% after ICI-implementation. However, in 

ICI-treated patients, the 3-year OS rate was 29%. In a cohort of 579 patients treated 

with 1L ICI. The mOS of 18.3 months was lower than demonstrated in the RCTs. PS 

≥1, bone metastases, and liver metastases were significantly associated with impaired 

OS. Around one fifth of the patients discontinued ICI due to early progressive disease 

(PD) within approximately 4 months.  

Paper II describes study II. In the nationwide study II, the efficacy of second- or 

subsequent line ICI was assessed in 840 Danish patients treated in daily clinical cancer 

care. PS ≥1, male sex, bone metastases, and liver metastases were significantly 

associated with impaired  OS. The mOS of 12.2 months was comparable to that 

demonstrated in the RCTs. As shown in study I, around one fifth of the patients 

discontinued ICI due to early PD within approximately 4 months. 

Paper III describes study III. In study III, potential predictive baseline characteristics 

and gene expression profiling (GEP) of durable clinical benefit (DCB) was assessed. 

DCB was observed in half of the 123 included ICI-treated patients. Absence of liver 

metastases and high absolute lymphocyte count (ALC) were associated with DCB, 

and an ALC above 1.0 109/l may be predictive of DCB. GEP-assessed PD-L1 

correlated strongly with PD-L1 assessed by immunohistochemistry and with 

treatment line. JAK/STAT loss signature scores were higher in patients with DCB and 

dendritic cell, myeloid, and TGF-β signature scores were higher in patients without 

DCB. 
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In conclusion, this dissertation provides information on ICI efficacy in a nationwide 

cohort of Danish patients with advanced NSCLC treated with ICI in daily clinical 

cancer care. The OS increased after the implementation of ICIs in Denmark. 

Furthermore, the survival was comparable to or slightly lower than the survival 

demonstrated in the RCTs, but subgroups of patients with poor PS, bone-, and liver 

metastases may not derive benefit. High ALC was associated with DCB, but the 

predictive value should be assessed in larger independent cohorts. GEP could be 

clinically relevant in PD-L1 assessment and four gene expression signatures were 

associated with DCB. However, the GEP-cohort was small, and the findings should 

be investigated in a larger prospective study.  
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DANSK RESUME 

I Danmark bliver omkring 500 patienter diagnosticeret med lungekræft hvert år. Den 

histopatologiske subgruppe af ikke-småcellet lungekræft (NSCLC) udgår 80% af 

tilfældene og halvdelen af patienterne har metastatisk sygdom på diagnosetidspunktet. 

Siden 2015 har immune checkpoint hæmmere (ICI) revolutioneret behandlingen af 

patienter med avanceret NSCLC, uden targetérbare mutationer, baseret på forbedrede 

responsrater og overlevelse (OS) i randomiserede kontrollerede forsøg (RCT). Der er 

dog subgrupper af patienter med dårlig performance status (PS), høj alder og 

komorbiditet som ofte er underrepræsenterede i RCT’erne, men udgør en stor andel 

af de patienter som behandles i daglig klinisk praksis. Derfor har vi i studie I og II 

undersøgt effekten af ICI hos patienter med avanceret NSCLC som er behandlet i 

dagligt klinisk praksis. Udvælgelsen af patienter til behandling med ICI er baseret på 

programmed death-ligand 1 (PD-L1) tumor proportion score, men den prædiktive 

værdi af PD-L1 er begrænset og supplerende biomarkører er nødvendige. Derfor har 

vi i studie III undersøgt nye prædiktive biomarkører for effekten af ICI. 

Artikel I beskriver studie I. Studie I var et nationalt studie hvor vi undersøgte 

betydningen af ICI-implementering for OS og undersøgte effekten af første linje (1L) 

ICI hos danske patienter behandlet i daglig klinisk praksis. Den mediane OS (mOS) 

steg med 5.2 måneder (mdr) og 3-års OS raten steg fra 6% til 18% efter ICI-

implementering. Hos patienter behandlet med ICI var 3-års OS raten dog 29%. I en 

kohorte på 579 patienter behandlet med 1L ICI var PS ≥1, knogle- og lever metastaser 

signifikant associeret med forringet overlevelse. Den mediane OS på 18.3 mdr var 

kortere end demonstrereret i RCT’erne. Omkring en femtedel af patienterne stoppede 

ICI på grund af tidlig progression indenfor cirka 4 mdr. 

Artikel II beskriver studie II. Studie II var et nationalt studie med 840 danske patienter 

hvor vi undersøgte effekten af ICI givet i anden eller senere behandlingslinje i daglig 

klinisk praksis. OS var signifikant forringet hos patienter med PS ≥1, knogle- og 

levermetastaser og hos mænd. Den mediane OS på 12.2 mdr var sammenlignelig med 

den som blev demonstreret i RCT’erne. Som vist i studie I, stoppede omkring en 

femtedel af patienterne deres ICI på grund af tidlig progression indenfor cirka 4 mdr. 

Artikel III beskriver studie III. I studie III undersøgte vi potentielt prædiktive baseline 

karakteristika og gen ekspressions profilering (GEP) for durable clinical benefit  

(DCB). Halvdelen af de 123 inkluderede ICI-behandlede patienter havde DCB. 

Fravær af lever metastaser og højt absolut lymfocyttal (ALC) var associeret med 

DCB, og ALC over 1.0 109/l er muligvis prædiktivt for DCB. GEP-bestemt PD-L1 

var stærkt korreleret med PD-L1 bestemt ved immunhistokemi og med 

behandlingslinje. JAK/STAT loss signatur scores var højere hos patienter med DCB 

og dendrit celle, myeloid og TGF-β signatur scores var højere hos patienter uden 

DCB. 
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Afslutningsvis bidrager denne afhandling med information om effekten af ICI i en 

national kohorte af danske patienter med avanceret NSCLC behandlet med ICI i 

daglig klinisk praksis. Den samlede overlevelse steg efter implementering af ICI-

behandling. Desuden var overlevelsen i vores studier sammenlignelig med eller lidt 

dårligere end overlevelsen i RCT’erne, men subgrupper af patienter med dårlig PS, 

knogle- og lever metastaser har muligvis ikke glæde af ICI-behandling. Højt ALC var 

associeret med DCB, men den prædiktive værdi bør undersøges i større uafhængige 

kohorter. GEP kan være klinisk relevant til bestemmelse af PD-L1 og fire gen 

ekspressions-signaturer var associeret med DCB. GEP-kohorten var dog lille og 

resultaterne bør undersøges i et større prospektivt studie. 
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CHAPTER 1. INTRODUCTION 

Worldwide, lung cancer is the second most common cancer diagnosis, and the leading 

cause of cancer death 4. In Denmark, the number of lung cancer cases was 5,004 in 

2021 5. In 2017-2019, the 5-year survival rate was 26% regardless of histopathology, 

disease stage, and treatment intention 6. However, in patients with metastatic disease, 

the prognosis is poor with a 5-year survival rate of 8% 7. The lung cancer diagnosis 

includes several histopathological subtypes, which are roughly categorized into two 

groups as non-small cell lung cancer (NSCLC) or small-cell lung cancer. The majority 

of patients are diagnosed with NSCLC (80-90%), with adenocarcinomas and 

squamous cell carcinomas being the most common subtypes 8, 9. 

The main aetiological factor in lung cancer is tobacco consumption, and around 85% 

of lung cancer cases are attributable to smoking 10. Currently, lung cancer incidence 

and mortality rates are higher in transitioned compared to transitioning countries 4. 

However, the global trends in smoking prevalence change, and may reflect the future 

global distribution of lung cancer incidence and mortality rates 11. Furthermore, the 

female-to-male lung cancer incidence ratio increases in most countries, which is 

primarily driven by an increase in female incidence of adenocarcinomas 9. However, 

the change also reflects global smoking patterns according to sex 12. Other factors that 

may contribute to lung cancer carcinogenesis include genetic susceptibility, poor diet, 

occupational exposures, and air pollution 13.  

Symptoms of lung cancer can be directly and/or indirectly related to the tumor, but 

symptoms may not exist. The most frequent symptoms include persistent coughing, 

haemoptysis, dyspnoea, hoarseness, pain (typically chest, bone, shoulder, spine, and 

head), unintended weight loss, fatigue, finger clubbing, and superior vena cava 

syndrome. Rarely, lung cancer presents as Horner’s syndrome (Pancoast tumors) or 

as paraneoplastic syndromes 14. To improve the diagnostic process, the Danish 

Ministry of Health introduced the cancer patient pathways in 2007 15. Despite this 

initiative, around half of the patients have metastatic disease at time of diagnosis, and 

around 20% of all patients diagnosed with lung cancer do not receive any 

antineoplastic treatment 16.  

Malignant tumors are classified according to the disease extent by the internationally 

accepted standard for cancer staging, the Union for International Cancer Control’s 

(UICC) Tumor, Node, Metastasis (TNM) classification of Malignant Tumors. The T 

category describes the primary tumor site and size, the N category the regional lymph 

node involvement, and the M category the extent of distant metastatic spread 17. The 

combination of the T, N, and M evaluation determine the final tumor stage. According 

to national NSCLC treatment guidelines, patients with localized disease (stage I, II, 

IIIa without N2 disease) may be offered surgery with or without adjuvant platinum-

based chemotherapy (CTx) or stereotactic body radiotherapy (SBRT) for stage I-IIb 
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18, 19. The majority of patients with locally advanced disease (stage III) are offered 

curatively intended treatment; surgery and/or combined CTx and radiotherapy (CRT) 
20. However, some stage III patients are not suitable for curative treatment, and they 

may similarly to stage IV patients be offered palliative systemic antineoplastic 

treatment or best supportive care (BSC) 21. This dissertation focuses exclusively on 

patients without curative treatment options. The single term ‘advanced NSCLC’ is 

used to classify these patients throughout this dissertation. 

The histopathological classification of NSCLC, particularly adenocarcinomas, has 

changed considerably during the last decade 22. These changes are caused by progress 

in molecular genetics and emerging targetable driver-mutations, translocations, gene-

fusions and predictive biomarkers, which enable more personalized treatment with 

higher response rates, lower toxicity, and improved survival compared to empirical 

treatment without biomarker enrichment (Figure 1.1) 21, 23, 24.  

Figure 1.1 Potential actionable molecular alterations in lung adenocarcinoma 25

 

Modified version from ‘Emerging therapeutic agents for non-small cell lung cancer’ by R. Chen et al. 25  

The terms ‘prognostic’ and ‘predictive’ are widely used to describe the relationship 

between a biomarker or clinical feature and the clinical outcome of interest. A 

prognostic factor or biomarker is associated with the clinical outcome in the absence 

of treatment or when standard treatment is applied 26, 27. A predictive factor or 

biomarker is associated with response or lack of response to a particular treatment 26, 

27. For NSCLC, prognostic factors can be divided into patient characteristics, tumor 

features, and biological factors. The most significant factors include disease stage and 

number and location of metastatic sites, performance status (PS), weight loss, sex, 

age, comorbidity, and standard laboratory variables like haemoglobin, lactate 

dehydrogenase, albumin, and white blood cell count 28, 29. Prognostic molecular 

characteristics have also been proposed during time, including P53 and Ki-67, and 

new biological factors continue to emerge 29. 
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CHAPTER 2. BACKGROUND 

2.1 PALLIATIVE TREATMENT EVOLUTION OF ADVANCED NSCLC IN 

DENMARK 

Until the 1990’s, no evidence-based systemic treatment options existed for patients 

with advanced lung cancer, and the median overall survival (mOS) was only 4-5 

months 30. With the option of palliative platinum-doublet CTx, the mOS improved to 

8 months 30, 31. For the following 20 years, only minor progress was seen, with the 

addition of second-line (2L) docetaxel and pemetrexed, first-line (1L) combination 

therapy with the vascular endothelial growth factor-inhibitor bevacizumab or 

pemetrexed, and maintenance pemetrexed or bevacizumab after 1L platinum-doublet 

CTx (Figure 2.1) 32-37.  

Figure 2.1 Palliative treatment evolution of advanced NSCLC in Denmark 38, 39 

 

NSCLC, non-small cell lung cancer; 1L, first-line; 2L, second-line; ≥2L, second- or subsequent-line; CTx, 

chemotherapy; sq, squamous; ALK, anaplastic lymphoma kinase; EGFR, epidermal growth factor receptor; 

TKI, tyrosine kinase inhibitor; RET, rearranged during transfection; ROS1, c-ros oncogene 1  

Around year 2010, an era of personalized medicine commenced with the 

implementation of tyrosine kinase inhibitors (TKIs) for the treatment of patients 

harbouring epidermal growth factor receptor (EGFR)-mutations or anaplastic 

lymphoma kinase (ALK)-translocations 40-43. However, only around 12% and 5% of 

patients harbour a targetable EGFR-mutation or ALK-translocation, respectively 44, 45. 

Notably, EGFR-mutation frequency varies across different ethnicities and are more 

frequent in never smokers. 
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In the past six years, immune-checkpoint inhibitors (ICIs) have changed the treatment 

paradigm for patients with advanced NSCLC without specific druggable molecular 

alterations, owing to improved response rates and survival compared to CTx in 

randomized controlled trials (RCTs) (Table 2.2) 46-50.  

Table 2.2 Clinical outcomes in the pivotal RCTs with nivolumab or pembrolizumab 

monotherapy 46-50. 

  mOS                                   

months  

(95%CI) 

  

1-year 

OS rate, %               

(95% CI) 

  

mPFS                           

months 

(95%CI) 

  

ORR                                                    

% (95% CI) 

  All patients 
PD-L1 

≥50% 

Checkmate 017 47           

Nivolumab  9.2 (7.3 – 13.3) 42 (34 – 50) 3.5 (2.1 – 4.9) 20 (14 – 28)   

Docetaxel  6.0 (5.1 – 7.3) 24 (17 – 31) 2.8 (2.1 – 3.5) 9 (5 – 15)   

Checkmate 057 46          

Nivolumab  12.2 (9.7 – 15.0) 51 (45 – 56) 2.3 (2.2 – 3.3) 19 (15 – 24)  

Docetaxel  9.4 (8.1 – 10.7) 39 (33 – 45) 4.2 (3.5 – 4.9) 12 (9 – 17)  

Keynote 010 48           

Pembro 2 mg/kg/3w 10.4 (9.4 – 11.9) 43 (NR) 3.9 (3.1 – 4.1) 18 (NR) 30 (NR) 

Pembro 10 mg/kg/3w 12.7 (10.0 – 17.3) 52 (NR) 4.0 (2.7 – 4.3) 18 (NR) 29 (NR) 

Docetaxel  8.5 (7.5 – 9.8) 35 (NR) 4.0 (3.1 – 4.2) 9 (NR) 8 (NR) 

Keynote 024 49, 50          

Pembro 200 mg/3w 26.3 (18.3 – 40.4) 70 (62 – 77) 10.3 (6.7 – NR) 45 (37 – 53)  

Platinum CTx*  13.4 (9.4 – 18.3) 55 (46 – 62) 6.0 (4.2 – 6.2) 28 (21 – 36)  

 

* 66% crossover rate 

Clinical outcomes in anti-PD-1 clinical trials of patients with advanced NSCLC.  

Pembro, pembrolizumab; w, weeks; CTx, chemotherapy; n, number; PD-L1, programmed death-ligand 1; 

mOS, median overall survival; CI, confidence interval; OS, overall survival; mPFS, median progression-

free survival; NR, not reported  

 

The ICI-revolution in NSCLC was commenced by the approval of the anti-

programmed cell death-1 (PD-1) antibody, nivolumab in previously treated, squamous 

NSCLC patients in September 2015 in Denmark, following the results from the 

Checkmate 017 trial 38, 47. Subsequently nivolumab was approved by Danish 

authorities for previously treated non-squamous NSCLC patients with a programmed 

death-ligand 1 (PD-L1) tumor proportion score (TPS) >1% 38, 46. The approval of 

another anti-PD-1 antibody, pembrolizumab, followed in NSCLC patients with PD-

L1 >50% in the 1L regimen, and in NSCLC patients with PD-L1 >1% treated with 

ICIs in second- or subsequent-lines (≥2L) 38, 48, 49. In 2019-2021, the combination 

regimens with pembrolizumab, carboplatin and pemetrexed or paclitaxel/Nab-
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paclitaxel was approved by Danish authorities in the 1L treatment for patients with 

non-squamous NSCLC and PD-L1<50%, and for patients with squamous NSCLC and 

PD-L1 1%-49% 51-55 (Figure 2.1). Atezolizumab, an anti-PD-L1 antibody, was 

approved for a very short period in 2018 by Danish authorities, for unselected patients 

with previously treated advanced NSCLC 56, 57. However, the Danish approval for 

patients with non-squamous NSCLC and PD-L1 TPS <1% was withdrawn by the 

authorities due to cost-benefit considerations58.  

2.2 RANDOMIZED CONTROLLED TRIALS  

The approval of new drugs is typically based on results from RCTs. Due to the high 

internal validity in RCTs, subgroups of patients treated in routine clinical practice are 

often underrepresented. These subgroups include patients with PS ≥2, older age, and 

severe comorbidity. The median age of lung cancer patients included in the ICI-RCTs 

was around 61 years, which contrasts the median age of 70 years in Nordic NSCLC 

patients (Table 2.3) 59, 60. Furthermore, the unequal sex distribution in international 

RCTs and real-world studies (RWS) reflects the low female-to-male NSCLC 

incidence ratio in most countries, which is less representative of the Nordic NSCLC 

population (Table 2.3) 61-63. Thus, RWS may provide additional information on the 

effectiveness in these patients. 

Table 2.3 Patient and treatment characteristics in the pivotal RCTs with nivolumab 

or pembrolizumab monotherapy 46-50. 

Characteristics 

Checkmate 017 47  

(phase III) 

Checkmate 057 46 

(phase III) 

Nivolumab  

3 mg/kg/2w 

Docetaxel  

75 mg/m2/3w 

Nivolumab  

3 mg/kg/2w 

Docetaxel  

75 mg /m2/3w 

All patients, n 135 137 292 290 

Median age, years 62 64 61 64 

Age, n (%) 

  ≥70 years 
  ≥75 years 

NR 
11 (8) 

NR 
18 (13) 

NR 
20 (7) 

NR 
23 (8) 

Sex, n (%) 

  Male 

  Female 

111 (82) 

24 (18) 

97 (71) 

40 (29) 

151 (52) 

141 (48) 

168 (58) 

122 (42) 

PS, n (%) 

  0 

  1 

  ≥2 

27 (20) 

106 (79) 

0 

37 (27) 

100 (73) 

0 

84 (29) 

208 /71) 

0 

95 (33) 

194 (67) 

0 

NSCLC histopathology, n (%) 

  Squamous 

  Non-squamous 

135 (100) 

0 

137 (100) 

0 

0 

292 (100) 

0 

290 (100) 

Metastatic sites, n (%) 

  Brain/CNS 

  Liver 

 
9 (7) 

NR 

 
8 (6) 

NR 

 
34 (12) 

NR 

 
34 (12) 

NR 
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  Bone NR NR NR NR 

PD-L1 TPS, n (%) 

  Negative 
  ≥1% 

  1-49% 

  ≥50% 
  Not reported 

54 (40) 
63 (47) 

NR 

NR 
NR 

52 (38) 
56 (41) 

NR 

NR 
NR 

108 (47) 
123 (53) 

NR 

NR 
NR 

101 (45) 
123 (55) 

NR 

NR 
NR 

Prior lines of palliative 

therapy, n (%) 

  1 
  2 

  ≥3 

 

 

135 (100) 
0 

0 

 

 

137 (100) 
0 

0 

 

 

256 (88) 
35 (12) 

0 

 

 

259 (89) 
31 (11) 

0 

Treatment 

  No. of doses, median 

  Median TTD, months 

8 

NR 

3 

NR 

6 

NR 

4 

NR 

Characteristics 

Keynote 010 48  

(phase II/III) 

Keynote 024 49, 50 

(phase III) 

Pembro  

2 mg/kg/3w 

Pembro  

10 mg/kg/3w 

Docetaxel  

75 mg/m2/3w 

Pembro 

200 mg/3w 

Platinum  

CTx* 

All patients, n 344 346 343 154 151 

Median age, years 63 63 62 65 66 

Age, n (%) 

  ≥70 years 
  ≥75 years 

NR 
NR 

NR 
NR 

NR 
NR 

NR 
NR 

NR 
NR 

Sex, n (%) 

  Male 

  Female 

212 (62) 

132 (38) 

213 (62) 

133 (38) 

209 (61) 

134 (39) 

92 (60) 

62 (40) 

95 (63) 

56 (37) 

PS, n (%) 

  0 

  1 

  ≥2 

112 (33) 

229 (67) 

3 (1) 

120 (35) 

225 (65) 

1 (<1) 

116 (34) 

224 (65) 

2 (1) 

54 (35) 

99 (64) 

NR 

53 (35) 

98 (65) 

NR 

NSCLC histopathology, n 

(%) 

  Squamous 
  Non-squamous 

76 (22) 
240 (70) 

80 (23) 
244 (71) 

66 (19) 
240 (70) 

29 (19) 
125 (81) 

27 (18) 
123 (82) 

Metastatic sites, n (%) 

  Brain/CNS 

  Liver 
  Bone 

56 (16) 

NR 
NR 

48 (14) 

NR 
NR 

48 (14) 

NR 
NR 

18 (12) 

NR 
NR 

10 (7) 

NR 
NR 

PD-L1 TPS, n (%) 

  Negative 

  ≥1% 
  1-49% 

  ≥50% 

  Not reported 

0 

344 (100) 
205 (60) 

139 (40) 

0 

0 

346 (100) 
195 (56) 

151 (44) 

0 

0 

343 (100) 
191 (56) 

152 (44) 

0 

NR 

NR 
NR 

154 (100) 

NR 

NR 

NR 
NR 

151 (100) 

NR 

Prior lines of palliative 

therapy, n (%) 

  1 
  2 

  ≥3 

243 (71) 
66 (19) 

27 (8) 

235 (68) 
69 (20) 

34 (10) 

235 (69) 
75 (22) 

29 (8) 

NR  
NR  

NR 

NR  
NR  

NR 
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* 66% crossover rate 

** For the safety population 

Baseline characteristics in anti-PD-1 clinical trials of patients with advanced NSCLC.  

Pembro, pembrolizumab; w, weeks; CTx, chemotherapy; n, number; PS, performance status;  NSCLC, non-

small cell lung cancer; CNS, central nervous system; PD-L1, programmed death-ligand 1; TPS, tumor 

proportion score; TTD, time-to-treatment discontinuation; NR, not reported  

 

2.3 REAL-WORLD ICI TREATMENT 

At PhD study initiation, minor real-world studies (RWS) with nivolumab 

demonstrated survival comparable to results from the RCTs, however, impaired 

survival was observed in subgroups of patients with poor PS and brain-, bone- and 

liver metastases 64-71. The Italian expanded access program included pretreated 

patients receiving nivolumab, and suggested sustained efficacy in older patients, 

patients with brain metastases, and never-smokers 72-74. Other RWS also concluded 

that older patients seemed to benefit from ICI-treatment but may be more vulnerable 
73, 75, 76. Lung cancer patients frequently have comorbidity, which may affect the 

treatment schedule and clinical outcome in ICI-treated patients 77, 78. Despite the 

proposed prognostic impact of comorbidity and  metastases at specific locations, these 

data were not reported in the RCTs, and scarcely assessed in RWS.  

At PhD study initiation, no larger RWS of Nordic populations had been reported. 

Furthermore, the impact of real-world ICI-implementation on the OS of  NSCLC 

patients had only been scarcely investigated 79, 80. Additionally, the annual reports 

from the Danish Lung Cancer Registry (DLCR) revealed no remarkable increases in 

1-year survival rates for lung cancer patients in the years post-approval ICI 81-83.  

2.4 CANCER IMMUNOLOGY AND ICI 

The importance of cancer immunology has become more and more apparent. Around 

year 2000 the hallmarks of cancer were described and 10 years later they were  

expanded to include immunological features of the tumor and tumor 

microenvironment (TME) (Figure 2.3) 84, 85.  

Figure 2.3 The hallmarks of cancer 85. 

Treatment 

  Median doses, n 

  Median TTD, months 

NR 

4** 

NR 

4** 

NR 

2** 

11 

7 

4 

4 
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Modified version from ‘Hallmarks of Cancer: The Next Generation’ by D. Hanahan and R. Weinberg 85. 

(With permission, RightsLink license 5424120442733) 

Different immune cells are present in the TME, and both pro- and antitumorigenic 

effects coexist 86. This paradoxical dual action of the immune system in cancer 

development is referred to as ‘immunoediting’, which proceed through three phases: 

elimination, equilibrium, and escape 87, 88. These immunological mechanisms are 

elicited by the interplay of innate and adaptive immune mechanisms. Chronic 

inflammation is associated with a poor prognosis and impacts every step in the 

tumorigenesis 86, 89. The innate immune mechanisms also play a role in NSCLC, and 

elevated baseline neutrophil count has been significantly associated with shorter OS 
90. However, the density of tumor-associated neutrophils, has not been significantly 

associated with disease-free survival or OS, whereas the intra-tumoral neutrophil-to-

lymphocyte ratio (NLR) in resected NSCLC has been associated with increased risk 

of recurrence and poor OS 91, 92. In recent years, the main focus has been on the 

adaptive immune system, and more precisely the distribution of tumor-infiltrating 

lymphocytes (TILs). High levels of CD8+, CD3+ og CD4+ in tumor nest or tumor 

stroma have been associated with improved OS in lung cancer patients, whereas 

high level of FOXP3+ T cells in tumor stroma is a poor prognostic factor 93. With 

different immune-based metrics, tumors can be characterized as T-cell inflamed 

(hot) or non-T-cell inflamed (cold), which correlates with the clinical outcome 94, 95.  
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The function of the immune checkpoints CTLA-4 and PD-1 was discovered by Honjo 

and Allison in the mid-late 1990’s 96-99; discoveries that recently were honoured with 

the Nobel price award. Immune checkpoints can be stimulatory or inhibitory, and their 

function is to regulate the immune system which is crucial for self-tolerance100. The 

immunoinhibitory receptor PD-1, is expressed on activated t-cells, B-cells and 

myeloid cells 97. Initially, the PD-L1 was reported to be a member of the B7 gene 

family, that was expressed on antigen-presenting cells and normal tissue 98. The 

engagement of PD-1 by PD-L1 causes inhibition of T-cell receptor-mediated 

lymphocyte proliferation and cytokine release 98. In 2002, the role of PD-1/PD-L1 

interaction in tumor immunity was elucidated, and suggested that tumor expression of 

PD-L1 could be a potential mechanism of immune escape 99. Furthermore, T-cell 

antitumor response was reactivated by in vivo administration of anti-PD-1 antibodies 

which was also demonstrated in phase I trials (Figure 2.4) 99, 101-103. Due to the 

expression of the immune checkpoints on normal tissues, ICI-treatment may lead to 

immune-related adverse events (irAEs) 104.  

Figure 2.4 Mechanisms of anti PD-1/PD-L1 immune-checkpoint inhibition 105 

 

Credit to the U.S. Food and Drug Administration (FDA) for the free copy license.  

PD-1, programmed death-1; PD-L1, programmed death-ligand 1  



LEARNING FROM THE PAST: OPTIMIZING FUTURE USE OF IMMUNE CHECKPOINT INHIBITORS IN ADVANCED 
NON-SMALL CELL LUNG CANCER 

26 

2.5 BIOMARKERS FOR ICI IN NSCLC 

A biomarker can be defined as:  

“any substance, structure, or process that can be measured in the body or its products, 

and influence or predict the incidence of outcome or disease” 106. 

 

Since the introduction of specific targeted therapies, predominantly TKIs, the clinical 

decision-making has become dependent upon evidencing addiction of the tumor to a 

given molecular pathway and/or oncogene. Expression of PD-L1 assessed through 

immunohistochemistry (IHC), has been the major initial molecular determinant of 

clinical benefit from the ICIs targeting PD-1 and PD-L1. In the pivotal RCTs, superior 

outcomes were demonstrated in ICI-treated populations across different levels of PD-

L1 TPS compared to CTx 46-50, 56, 107, 108. Concordance studies suggest that the different 

PD-L1 IHC assays associated with nivolumab, pembrolizumab and durvalumab 

(assays 28-8, 22C3 and SP263) produce comparable results 109. In contrast, the assay 

used for atezolizumab (assay SP142) stains fewer tumor cells and the assay used for 

avelumab stains more tumor cells (assay 73-10) 109-112. The expression of PD-L1 is 

considered induced in response to INFγ released by activated T cells, and 

consequently known to vary both spatially and temporally 111. The nature of PD-L1 

as a constitutive and adaptive biomarker, and the presence on both tumor and immune 

cells makes it a poor predictor of ICI efficacy 113-115. Therefore, the use of PD-L1 as a 

predictive biomarker has some limitations 

 

Predictive ICI biomarkers identify patients as responders or non-responders pre-

treatment. A potential underlying treatment resistance can be defined as primary or 

acquired/secondary and is defined by the best overall response, duration of drug 

exposure, and the time of progression (Figure 2.5) 116, 117. However, the underlying 

resistance mechanisms may contribute and co-occur in both primary and acquired 

resistance 116. 

Figure 2.5 Resistance to immune checkpoint inhibitors 116  
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The definition of primary and acquired resistance to immune checkpoint inhibitors is based on the best 

overall response, duration of drug exposure, and the time of progressive disease (PD). Primary resistance 

exists when the best overall response is PD or stable disease (SD) for less than 6 months. Acquired or 

secondary resistance exists when PD occurs after initial prolonged (Prl) stable disease (SD) (> 6 months), 

long-term (Lt) partial response (PR), or complete response (CR) 117. (With permission, RightsLink license 

5424111006415)    

Some of the factors that affect the efficacy of PD-1/PD-L1 ICIs include 1) the 

presence of non-synonymous mutations (which may differ between subclones) 2) the 

transcription of these genetic changes into potential neoantigens 3) the presentation 

of neoantigens to the immune system 4) the presence of a pro-inflammatory, 

permissive microenvironment 5) the dominant mechanism of immune evasion and 6) 

the degree of drug exposure and baseline resistance 118. Different ‘cancer 

immunograms’ have been proposed as potential predictors of response to ICIs in 

different solid tumors 119, 120. The cancer immunograms encompass known aspects of 

tumor, TME, the immune system, and host interactions such as tumor foreignness, 

general immune status, immune cell infiltration, absence of immune checkpoints, 

absence of soluble inhibitors, absence of inhibitory tumor metabolism, environmental 

(host-related) factors, and tumor sensitivity to immune effectors 119, 120. Other 

predictive tumor classifications and models include the T cell inflamed ‘hot’ or non-

T cell inflamed ‘cold’ tumor classification 95, 121, the ‘immunoscore’ defining 

lymphocyte population and their location in relation to tumor 122, and the ‘response 

score’ including tumor mutational burden (TMB) and RNA sequencing 123. Some of 

the host-related factors which have been associated with ICI efficacy include body 

mass index (BMI) and gut microbiome 124, 125. The background for this comprehensive 

approach is the unsatisfying predictive value of the currently FDA-approved ICI-

biomarkers PD-L1, microsatellite instability (MSI) , and TMB 126, 127. ICI biomarkers 

are investigated in different biological compartments such as histological or 
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cytological tissue samples, blood, and faeces, which require application of a variety 

of companion diagnostics with different degrees of invasiveness. Despite the 

comprehensive biomarker research, no biomarker or model exist, with a sufficient 

potential to predict ICI efficacy on an individual level. This implies administration of 

ineffective and toxic treatment to a large proportion of patients. 

2.6 DIAGNOSTIC BIOPSIES AND  BIOMARKER ANALYSES IN 

ADVANCED NSCLC  

The histopathological subtype of  NSCLC in patients with primarily advanced disease, 

is typically determined by immunohistochemical staining of fine- or core-needle 

biopsies from primary or metastatic lesions 128. It is well known, that only scarce 

material is available from these small NSCLC samples, and the increased need for 

multiple molecular testing is challenging 129, 130.  

Besides subtyping of NSCLC, IHC is routinely performed for the assessment of PD-

L1 TPS and ALK- and ROS1 rearrangements. In situations with faint or doubtful ALK- 

or ROS1 staining by IHC, fluorescence in situ hybridization (FISH) analysis is 

performed to confirm the result 130. However, these multiple IHC-analyses and 

potential FISH-confirmations are tissue-consuming, despite the use of initial reflex 

block cutting to avoid recutting the block 130.   

Previously, EGFR-mutations were detected by PCR-based technologies. However, 

next generation sequencing (NGS) is established as a standard diagnostic method, in 

order to obtain information on targetable driver mutations, TMB and MSI 131. NGS 

enables comprehensive testing of multiple DNA variants at the same time, and panel 

sizes vary according to the number of genes included. NGS also covers RNA 

sequencing, which enables quantification of gene expression, detection of gene 

fusions, and measurement of allele-specific expression at the same time. Therefore, 

RNA sequencing is currently being implemented as a routine method to obtain 

information on ALK-, ROS1, and RET rearrangements. 

Due to the growing knowledge of the interaction between the tumor cells, TME, 

immune system and host-related factors, new methods emerge in the pursuit of 

predictive ICI biomarkers. One of the emerging methods, the nCounter® PanCancer 

IO 360™ panel is a 770 gene expression panel covering the interplay between the 

tumor, TME and immune response 132. The panel provides potentially predictive 

biological signatures for ICI, can be performed with RNA derived from formalin-

fixed paraffin-embedded (FFPE), and requires a sample input of only 50 ng 132, 133. 

Therefore, the ability to use FFPE-specimens and small sample inputs indicates 

feasibility in routine clinical diagnostics of patients with advanced NSCLC.   
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CHAPTER 3. AIMS OF THE 

DISSERTATION 

The overall aim of the dissertation was to analyse the effectiveness of ICIs in a Danish 

nationwide real-world cohort of patients with advanced NSCLC, and the potential 

survival changes after the implementation of ICIs in Denmark. This included a special 

attention to patients underrepresented in the RCTs. Furthermore, in a prospective 

study, we aimed to assess the feasibility of applying multiple methods on diagnostic 

tissue samples, to uncover possible biomarkers predictive of ICI efficacy. The three 

studies should bridge clinical and basic research and exploit the experience from 

previously treated patients to improve the outcome of future patients. 

The specific aims of the studies were: 

3.1 STUDY I-II 

1. To report on OS and PFS in a consecutive population of patients with incurable, 

advanced or metastatic NSCLC treated with ICIs in any treatment line.  

2. To uncover prognostic clinical factors for OS, with a special attention to the 

subgroups of patients who were underrepresented in the RCTs. 

3. To report on treatment data, including treatment line, reasons for ICI 

discontinuation, treatment duration, irAEs, and hospitalization due to irAEs. 

4. Additionally, in study I, to compare the OS of patients receiving first line, 

palliative, systemic, antineoplastic treatment before and after the implementation 

of ICIs in Denmark.     

3.2 STUDY III 

1. To assess the impact of baseline characteristics on durable clinical benefit (DCB) 

in patients with advanced NSCLC treated with ICIs in routine clinical cancer care. 

2. To investigate the association between DCB and peripheral absolute lymphocyte 

count (ALC), absolute neutrophil count (ANC), and NLR. 

3. To assess the feasibility of gene expression profiling (GEP) in routine clinical 

cancer care.  

4. uncover predictive gene expressions for DCB in patients with advanced NSCLC 

treated with ICIs  in routine clinical cancer care. 
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CHAPTER 4. MATERIAL AND 

METHODS 

4.1 STUDY I-II 

 

4.1.1.1 Study I: First-line treatment 

Study I included patients with incurable stage III-IV NSCLC, without EGFR mutation 

or ALK translocation, who started 1L systemic, antineoplastic treatment from 1 

January 2013 to 1 October 2018. The data was extracted from the DLCR and from 

electronic health records (EHRs) 1. 

 

The DLCR is a national clinical registry and a part of the Danish Clinical Quality 

Program (RKKP) 134, 135. The DLCR gathers data from the participating departments 

(the departments of lung medicine, thoracic surgery, and clinical oncology), the 

National Patient Registry, the Danish Civil Registration System (CPR), and the 

Danish Pathology Registry 134. Baseline demographics and clinical data are included 

in the DLCR, however, data on PS and metastatic sites, and details regarding systemic 

antineoplastic treatment is lacking.  

The DLCR dataset was separated into a DLCR pre-approval cohort and a DLCR post-

approval cohort (Figure 4.1) 1. The in-between cohort of 3,177 patients were excluded 

to minimize the impact of second-line ICI implementation in September 2015. From 

institutional records, the DLCR data set was supplemented with retrospectively 

identified patients who started 1L ICI treatment from 1 March 2017 to 1 October 2018 

(named the ICI cohort). In order to stratify the DLCR post-approval cohort by type of 

antineoplastic treatment, the DLCR post-approval cohort was matched with the ICI 

cohort (Figure 4.1) 1.  

 

Figure 4.1 Flowchart showing the generation of the Danish Lung Cancer Registry 

(DLCR) cohorts before and after the approval of immune checkpoint inhibitors (ICIs) 
1 
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Treatment data from the electronic health records (EHRs) were applied on the DLCR post-approval cohort 

to divide patients into the DLCR-chemotherapy (CTx) and DLCR-ICI cohorts. Due to missing and 

inaccurate data in the DLCR, 97 ICI-treated patients identified from institutional records were not registered 

in the DLCR 

4.1.1.2 Study II: Second- or subsequent-line treatment 

Study II included patients with incurable stage III-IV NSCLC who started second- or 

subsequent-line ICI treatment from 1 September 2015 to 1 October 2018. The patients 

were retrospectively identified from institutional records 2. 

 

4.1.2.1 Definitions, covariates, and clinical endpoints  

In Danish Oncological Lung cancer Group (DOLG) a working group defined the 

included variables and endpoints. First-line treatment was defined as the first 

palliative, systemic antineoplastic treatment administered after 1) the initial NSCLC 

diagnosis without any curative treatment option or 2) at relapse ≥6 months after the 
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end of curatively intended treatment for NSCLC 1. ICI doses were either a fixed 

pembrolizumab dose of 200 mg or 2 mg/kg every three weeks in any treatment line, 

or a nivolumab dose of 3 mg/kg every two weeks in ≥2L 1, 2. ICIs were administered 

for a maximum of two years. The index date was the first ICI administration date, and 

the censoring date for patients still alive was 1 March 2020. The date of progressive 

disease (PD) was the date of radiologically verified PD. In the absence of 

radiologically verified PD, the date of the first clinical evidence of PD was used. For 

patients still alive, the last follow-up date was defined as the date of the last EHR-

documented patient activity 1, 2.  Baseline patient characteristics at the initiation of ICI 

treatment were obtained, and included sex, age, Eastern Cooperative Oncology Group 

(ECOG) PS, smoking status, and comorbidity according to Charlson Comorbidity 

Index Score (CCIS). In cases where PS were described as a range, such as PS 0-1, the 

highest value was recorded. Baseline disease characteristics included disease stage 

according to the American Joint Committee on Cancer and the UICC TNM 

classification, metastatic sites, NSCLC histopathological subtype, EGFR-mutation 

status, ALK rearrangement status, and PD-L1 TPS. PD-L1 TPS was categorized as 

negative (<1%), 1-49%, and ≥50% 1, 2. Treatment data included ICI drug name, 

number of treatment line, treatment duration, reasons for ICI discontinuation, types of 

immune-related adverse events (irAEs), and irAEs leading to hospitalization or death. 

The types of irAEs were categorized as pneumonitis, hepatitis, skin toxicity, 

endocrinopathy, diarrhoea/colitis, and ‘others’. The categorized irAEs were recorded 

as individual covariates. Furthermore, data on antineoplastic treatment administered 

prior to or after ICI treatment was obtained 1, 2. The clinical endpoints were OS, PFS, 

time-to-treatment discontinuation (TTD), and reasons for ICI discontinuation. TTD 

was defined as the time from the index date to the date of last ICI administration 1, 2. 

4.1.2.2 Data collection from Electronic Health Records  

Clinical and treatment data of ICI-treated patients were manually collected from 

EHRs and stored in local databases at every department of oncology 1, 2. Afterwards, 

the local data sets were extracted, covariates were aligned, and the data was gathered 

into one nationwide data set 1, 2. The nationwide data set was completed by ensuring 

that the inclusion criteria were met. Quality control was performed on each covariate 

according to duplets, order of dates, missing values, and concordance between related 

covariates, such as disease stage and metastatic sites. In Denmark, four different EHR-

systems were used at the time of data collection. The date of death was automatically 

and immediately referred from the CPR, likewise with data from the Danish Pathology 

Registry. 

 

 

Descriptive statistics were performed 1, 2. Among subgroups, differences in baseline 

categorical variables were tested with the chi-square test, while the Wilcoxon rank-
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sum test was used to compare median age differences 1, 2. In study I, the TNM stage 

was not considered in the comparison of DLCR cohorts due to a large proportion of 

missing values. Correction for multiple testing was not performed. A p-value of 0.05 

was considered the threshold of statistical significance, and a confidence interval (CI) 

of 95% was used 1, 2.  

OS, PFS and TTD were analysed using Kaplan-Meier (KM) estimates, and the log-

rank test was used to test for differences according to baseline characteristics. Age-

related background mortality was not considered in the survival analyses. The reverse 

KM estimate was used to calculate the median follow-up time 1, 2.  

Multivariable Cox regression analyses were performed to adjust for multiple 

covariates and possible confounders and were extended with an interaction between 

histopathology and sex. TNM stage was excluded from the survival analyses of ICI-

treated patients due to the interaction with metastatic sites 1, 2.  

For each of the baseline categorical variables, the assumption of proportional hazard 

functions was assessed using visual inspection of the log-minus-log survival curves, 

and formally tested by the Grambsch-Therneau proportional hazard test with survival 

times transformed by the KM estimate. Average hazard ratios were estimated using 

weighted univariable and multivariable Cox regressions, due to the violation of the 

assumption by PS in study I and by PS, bone-, liver-, adrenal- and distant lymph node 

metastases, histopathology, and EGFR mutation status in study II 1, 2. 

For KM estimates and Cox regressions, age was categorized as <75 years and ≥75 

years, and CCIS was categorized as CCIS 0–1 and CCIS ≥2 136. However, in study II, 

comorbidities that were present in more than 5% of the cases, were included in the 

weighted univariable Cox regression analysis, to assess the survival impact of each 

comorbidity 1, 2.  

All analyses were carried out using R version 4.0.2 (R Core Team, Vienna, Austria) 
137. The survival package was used to assess the assumption of proportional hazard 

functions, the ggsurvplot package for the visualization of KM estimates, and the 

coxphw package for the weighted Cox regression analyses 1, 2. 

4.2 STUDY III 

 

The study was a clinical, prospective, observational, and explorative study. The study 

population included patients with advanced NSCLC, that were considered candidates 

for palliative ICI treatment in any treatment line and started ICI treatment from August 

2018 to September 2019. The patients were included at the Department of Oncology, 

Aalborg University Hospital (UH) (ClinicalTrials.gov NCT03658460) 3. 
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A complementary cohort of 65 patients included from July 2018 to June 2020 at 

Zealand University Hospital, Næstved, fulfilled the inclusion criteria, and were added 

to increase the amount of baseline tissue samples (ClinicalTrials.gov NCT03512847) 
3. 

Inclusion criteria:  

• Confirmed diagnosis of NSCLC in core needle biopsy (CNB) or fine needle 

aspiration 

• Age ≥18 years  

• ECOG PS ≤2 

• Candidate for ICI treatment 

• Understand and accept oral and written information 

• Signed written informed consent. 

Exclusion criteria:  

• Candidate for treatment with curative intend (surgical/oncological)  

• Other synchronous cancer 

• Positive EGFR mutation status or ALK-rearrangement. 

 

Baseline characteristics were prospectively registered and included sex, age, PS, 

weight, height, synchronous cancer, and smoking status. Additionally, disease 

characteristics included TNM stage (International Association for the Study of Lung 

Cancer 8th edition), with metastatic sites recorded in stage IV disease, NSCLC 

histopathological subtype, and PD-L1 tumor TPS. Treatment data was also collected 

and included ICI treatment line, ICI start- and stop date, reason(s) for ICI 

discontinuation, and subsequent systemic antineoplastic treatment. Baseline ALC and 

ANC was recorded and the NLR was derived 3.  

The primary endpoint was DCB defined as PFS >6 months. PFS was calculated from 

the date of the first ICI-administration (index date) to the date of PD, death, or last 

follow-up or censoring. Response evaluation was described according to the Response 

Evaluation Criteria in Solid Tumors (RECIST) version 1.1. The date of the last 

radiological response evaluation was used as the last follow-up date. No patients were 

lost to follow up. Furthermore, OS was calculated from the index date to the date of 

death or data cut-off 3. 

 

Personal data was processed according to the Danish Health Act, the Committee Act, 

sections 10 and 11 of the Data Protection Act, as well as the General Data Protection 
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Regulation 138-141. The database and research biobanks were registered on the North 

Denmark Region record to the Danish Data Protection Agency 142. All clinical study 

data was collected and managed using REDCap electronic data capture tools hosted 

at the North Denmark Region 143, 144. Diagnostic FFPE-samples were stored in a 

research biobank at the Departments of Pathology at Aalborg UH and Vejle Hospital, 

University Hospital of Southern Denmark. 

 

4.2.4.1 Routine diagnostics 

Diagnostic tissue samples were used as baseline samples. Morphological examination 

and immunohistochemistry (IHC) were performed to establish the cancer diagnosis 

and histopathological subtype. PD-L1 TPS was assessed by IHC with the 22C3 

pharmDx antibody stained on the Dako Omnis platform and was categorized as <1%, 

1-49%, and ≥50% 3. NGS was routinely performed with the TruSight® Tumor 

15 assay (Illumina) for patients included at Aalborg University Hospital and 

GeneRead QIAact AIT Panel for patients included at Zealand University Hospital, 

Næstved. NGS assessed EGFR, BRAF, KRAS and ERBB2 status. ALK rearrangements 

were also assessed by IHC, and additional fluorescence in situ hybridization (FISH) 

was performed to confirm the presence/absence of ALK rearrangements 3. 

4.2.4.2 Gene expression profiling 

Prior to GEP, the average tumor percentage on haematoxylin-eosin stained slices of 

5µm thickness, was evaluated by a pathologist. Additionally, RNA quality control 

was performed leading to a final cohort of 25 patients with samples suitable for GEP 

(Figure 4.2) 3. 

Figure 4.2 Flowchart of baseline diagnostic tissue samples prior to gene expression 

profiling 3 
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n, number of patients; QC, quality control; GEP, gene expression profiling 

GEP was performed using the nCounter® PanCancer IO360™ panel (NanoString 

Technologies, Inc.). Total ribonucleic acid (RNA) was extracted manually from 10x5 

µm sections from FFPE samples using the miRNeasy FFPE kit (Qiagen). An input 

amount of 300 ng RNA was used for each sample during NanoString analysis. Prior 

to hybridization, the extracted RNA was eluted in 13 µl RNAase-free water and RNA 

concentrations was determined by using the Qubit 3 Flourometer (InvitrogenTM). The 

purified RNA was stored at -80°C and only samples with RNA concentrations 

≥60ng/ul were included in the final GEP cohort 3, 145. The technical integrity of the 

nCounter® profiling assay underwent further quality control (QC). The sample input 

and reaction efficiency were assessed in each sample by using the geometric mean of 

housekeeper genes. Furthermore, QC according to imaging, binding density, positive 

control linearity, and limit of detection was performed. The final GEP cohort included 

data from samples that passed all QCs 3. 
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4.2.4.3 Next generation sequencing 

The TruSight® Oncology 500 (TSO500; Illumina) gene panel was used for 

sequencing analysis. DNA was extracted from 10x5 µm sections from FFPE samples 

with the Maxwell® 16 FFPE Plus LEV DNA Purification Kit (AS1135) 3. The 

extraction was performed on the Maxwell® 16 MDx instrument according to the 

manufacturer’s protocol, and the extracted DNA was eluted in 35 µl nuclease-free 

water and stored at -20°C. DNA concentrations were determined by using the Qubit 

3 Flourometer (InvitrogenTM) 3. DNA concentrations ≥3,33ng/ul qualified for 

inclusion into the final GEP cohort. Library preparation was performed using the 

TruSight® Oncology 500 reagent kit according to the manufacturer’s protocol and the 

samples were run on the NextSeqTM 550 instrument (Illumina®) 146 3. Passing of all 

sequencing QCs qualified for further analysis. The TSO500 Local Run Manager 

TruSight® Oncology 500 v2.2 Analysis Module was used to generate TMB and MSI 

scores 147 3. The TSO500 TMB algorithm was used to calculate TMB, which was 

defined as eligible variants/effective panel size. Eligible variants were defined as the 

total number of somatic synonymous and non-synonymous coding variants (variant 

frequency ≥5%, coverage >50X). The effective panel size was defined as the total 

coding region successfully sequenced (coverage >50X). The TMB-high cut-off was 

10 mutations/Mb 3. The TSO500 MSI algorithm, which assesses microsatellite sites 

for evidence of instability, was used to calculate the MSI score. The MSI score was 

defined as the number of unstable MSI sites/total number of assessed MSI sites 147. 

The MSI-high cut-off was 20% 3.   

Due to differences in primary study aims, GEP was the first study method applied on 

samples from patients enrolled at Aalborg UH, whereas NGS with TSO500 gene panel 

was the first method applied on the Næstved cohort.     

 

4.2.5.1 Descriptive statistics, logistic regression and survival analyses 

Comparisons of patients receiving 1L or ≥2L ICI was performed with ANOVA tests 

(continuous variables) and Fisher’s exact tests (categorical variables). Median 

peripheral lymphocyte counts were used for the comparisons 3. 

Logistic regression analysis was used to assess the association between baseline 

characteristics and DCB. Brain-, bone-, and liver metastases were included as the only 

metastatic sites due to the known prognostic impact on survival in NSCLC. Secondly, 

multivariable logistic regression analysis included age, sex, PS, PD-L1, and factors 

significantly associated with DCB in the univariable logistic regression analysis. Wald 

test p-values and profile likelihood confidence limits were reported 3. 
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OS analysis was performed with a Cox proportional hazards model. Only patients 

receiving 1L ICI treatment (n=96) were included, due to significant differences in 

selection criteria for ICI and prognostic baseline characteristics according to treatment 

line. Univariable and multivariable Cox regression analyses were performed, and age, 

sex, PS, and factors significantly associated with OS in the univariable analyses were 

included in the multivariable Cox regression analysis. One patient with missing ALC 

was excluded 3. 

ALC as a predictor for DCB was used to draw a ROC curve. The optimal ALC cut-

off for predicting DCB was found by using a Two-sample Kolmogorov–Smirnov plot 
148. This optimal cut-off was defined as the ALC cut-off value that yielded the 

maximal difference between the cumulative density of ALC in the DCB 

negative/DCB positive group. Subsequently, the optimal ALC cut-off was used to 

dichotomize the ALC 3.  

P-values <0.05 were considered statistically significant. No adjustments for multiple 

testing were performed. Statistical analyses were performed with R version 4.2.1 137. 

4.2.5.2 Differential expression of genes 

Gene expression analyses were performed to identify differentially expressed genes 

for response (DCB vs. no DCB). Gene counts were normalised to log2 counts per 

million using the function Voom (Limma R package) and the trimmed mean of M-

values (TMM) method from the R package edgeR 149, 150. A linear model was fit to 

each gene adjusting for biological factors associated with DCB using the R package 

limma 149. The Benjamini–Hochberg false discovery rate (FDR) was used to correct 

for multiple testing. An FDR <0.05 was considered statistically significant. The gene 

expression patterns of genes with a p-value <0.05 were further explored using the 

ComplexHeatmap package 151. The package was applied to cluster the patients and 

the genes using hierarchical clustering based on euclidean distance. ANOVA test was 

used to assess to the association between the categorical IHC-derived PD-L1 TPS and 

the continuous GEP-derived PD-L1 (CD274) 3. 

4.2.5.3 Gene expression signatures 

Differences in gene expression signature scores according to DCB were evaluated. 

Gene expression signature scores were calculated as a weighted linear combination of 

the included genes’ expression values normalized to stable housekeeper gene 

expression as described by the manufacturer 152 3. A linear model was fit to each gene 

adjusting for NSCLC histopathological subtype and ALC using the R package limma 
149. FDRs <0.05 were considered statistically significant 3. 
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CHAPTER 5. ETHICS 

5.1 STUDY I-II 

Due to the retrospective nature of the studies and the use of routinely collected data, 

informed patient consent was waived by the Danish Patient Safety Authority (ID 3-

3013-2162/1). The studies were reported to the Danish Data Protection Agency (ID 

2017-80). 

5.2 STUDY III 

The study was approved by the Regional Committees on Health Research Ethics of 

the North Denmark Region (N-20180010) and Region Zealand (SJ-662) and reported 

to the Danish Data Protection Agency (ID 2017-80 and REG-006-2018)). The Ethics 

Committees considered that the applied study methods did fulfil the criteria of 

extensive mapping of the human genome. Before enrolment, written informed consent 

was obtained from all the participants. The study was conducted according to the 

principles of Good Clinical Practice, Good Laboratory Practice and the Declaration 

of Helsinki I and II 153, 154. 
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CHAPTER 6. RESULTS 

6.1 STUDY I-II 

 

6.1.1.1 DLCR cohorts in study I 

The baseline characteristics for the DLCR pre- and post-approval cohorts were 

compared. Over time, a significant increase in median age from 68 to 70 years, in 

proportion of female patients from 46.9% to 50.2%, and in proportion of 

adenocarcinomas from 53.3% to 58.8% was observed 1. TNM stage was missing in 

69 and 246 patients (4.2% and 12.0%, respectively)  in the pre- and post-approval 

cohort, respectively.  

The baseline characteristics for the post-approval DLCR-CTx and DLCR-ICI cohorts 

were also compared. The DLCR-ICI cohort included a significantly higher proportion 

of females than the DLCR-CTx cohort (58.3% vs. 47.7%) 1. Additionally, significant 

differences in the distribution of the NSCLC histopathological types were found, with 

higher proportions of adenocarcinomas and “other” in the DLCR-ICI cohort, and 

higher proportions of squamous cell carcinomas in the DLCR-CTx cohort 1. TNM 

stage was missing in 206 and 40 patients in the DLCR-CTx and DLCR-ICI cohort, 

respectively.  

 

6.1.1.2 Patients treated with ICI 

Baseline characteristics for ICI-treated patients identified from institutional records 

were obtained 1, 2. Information on prior treatment with curative intention and palliative 

RT was recorded for 1L ICI-treated patients1. Information on EGFR mutation status 

was recorded for ≥2L ICI-treated patients 2.  

For patients treated with 1L ICI, the median age was 70 years and 58% were females 
1. Small subgroups existed for smoking status (never smokers n=26 (4%), unknown 

smoking status n=21 (4%)), PD-L1 status (<50% n=23 (4%), unknown n=4 (0.7%), 

and prior treatment with curative intention (surgery and CRT n=16 (3%)) 1.  

For patients treated with ≥2L ICI the median age was 68 years and 49% were females 
2. Small subgroups existed for PS (missing n=21 (2%)), smoking status (unknown 

n=21 (2%)), and EGFR mutation (yes n=25 (3%))2. Furthermore, PD-L1 and EGFR 

mutation status was unknown in 29% and 33%, respectively 2. Male patients had a 

significantly higher age, more comorbidities and more frequently had squamous cell 

carcinomas compared to female patients 2. Specific comorbidities according to CCI 

were registered 2. 
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Due to the study definition of 1L systemic palliative treatment, 12 patients (2%) 

received nivolumab in 1L 1. Of patients who received ≥2L ICI, one forth (24%) 

received ICI-treatment in third line, and 12% in fourth or subsequent line 2.  

For patients treated with ICI in 1L or ≥2L, the mTTD was 4.8 months and 3.2 

months, respectively 1, 2. Regardless of treatment-line, around half of the patients 

ended ICI due to PD; 50-56% within six cycles and 79-80% within 12 cycles (Figure 

6.1). Of alle patients, 10-15% discontinued ICI due to poor PS 1, 2. 

 

Figure 6.1 Treatment-discontinuation due to progressive disease in patients treated 

with first-line (A) or second- or subsequent-line (B) ICI 1. 

 
 

Proportion of patients who discontinued ICI due to progressive disease according to number of ICI cycles 

received. A) 1L ICI treatment (n = 250) B) ≥2L ICI treatment (n = 461). Patients with ongoing ICI-treatment 

were not included in this analysis. At time of analysis, 12-36 ICI cycles were administered to these patients.  

No., number; ICI, immune checkpoint inhibitor 

 

 

ICI discontinuation due to irAEs was observed in around one fourth of all patients 1, 

2. Of the patients who received 1L ICI, 67% received no systemic anticancer therapy 

after ICI-discontinuation 1.  

 

 

6.1.3.1 Survival before and after the implementation of ICIs  

The survival comparison of patients who received 1L systemic antineoplastic 

treatment before (pre-approval cohort) and after (post-approval cohort) the 

implementation of ICIs showed an increase in mOS with 3.2 months, and a two- and 
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three-fold increase in 2- and 3-year OS rates, respectively (Table 6.1)1. The mOS of 

patients who received 1L CTx or ICI in the post-approval increased with 1.7 months 

and 11.2 months, respectively, compared to the mOS in the pre-approval cohort (Table 

6.1) 1. Compared to the pre-approval cohort, the 1-, 2- and 3-year OS rates in the post-

approval DLCR-ICI cohort increased from 31% to 64%, 12% to 42%, and 6% to 29%, 

respectively (Table 6.1)1.  

Table 6.1 Survival of patients with advanced NSCLC treated with first-line systemic 

antineoplastic treatment before and after the introduction of ICIs 1 

 

Median overall survival (mOS), 1-, 2-, and 3-year overall survival (OS) rates with 95% confidence interval 

(CI) before and after the approval of ICI treatment (the pre-approval cohort 01/01/2013 – 08/01/2014 and 

the post-approval cohort 03/01/2017 – 10/01/2018).  

NSCLC; non-small cell lung cancer; DLCR, Danish Lung Cancer Registry; n, number of patients; CTx, 

chemotherapy; ICI, immune checkpoint inhibitor 

 

6.1.3.2 Kaplan-Meier analyses of ICI-treated patients 

The mOS for patients treated with 1L and ≥2L ICI was 18.3 months (95% CI; 16.0 – 

21.3) and 12.2 months (95% CI; 10.8 – 13.8 ), respectively (Figure 6.3) 1, 2. In 1L, 

male sex, PS 1 and PS ≥2 (Figure 6.2), never smoking, presence of bone- and liver 

metastases, and prior palliative radiotherapy (RT) were significantly associated with 

shorter mOS (Figure 6.3) 1. In ≥2L, male sex, PS 1 and PS ≥2 (Figure 6.2), presence 

of bone- and liver metastases, non-adenocarcinoma histopathology, PD-L1 <50% or 

unknown, and positive EGFR-mutation status were significantly associated with 

shorter mOS (Figure 6.3) 2. 

Figure 6.2 Overall survival for patients treated with 1L or ≥2L according to 

performance status 1, 2 

 

DLCR cohorts n (%) 
mOS, months  

(95% CI) 

1-year OS  

% (95% CI) 

2-year OS  

% (95% CI) 

3-year OS  

% (95% CI) 

Pre-approval 

cohort 
1,658 (100) 7.8 (7.4 – 8.2) 31 (29 – 33) 12 (10 – 14) 6 (5 – 7) 

Post-approval 

cohort  

   CTx 

   ICI 

2,055 (100) 

1,573 (77) 

482 (23) 

11.0 (10.2 – 11.9) 

9.5 (8.9 – 10.3) 

19.0 (16.0 – 22.0) 

48 (46 – 50) 

43 (40 – 45) 

64 (60 – 68) 

27 (25 – 29) 

22 (21 – 25) 

42 (38 – 47) 

18 (16 – 20) 

14 (12 – 17) 

29 (24 – 35) 
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A) Patients treated with 1L ICI B) Patients treated with ≥2L ICI  

ECOG, Eastern cooperative oncology group; PS, performance status; OS, overall survival 

 

Figure 6.3 Median overall survival in months according to baseline characteristics of 

ICI-treated patients 

ICI cohort 1L Log-rank 

test 
≥ 2L Log-rank 

test 

All patients 18.3 (16.0 – 21.3) 
 

12.2 (10.8 – 13.8) 
 

Age 

   <75 years 

   ≥75 years 

19.6 (16.5 – 23.1) 

15.6 (12.8 – 23.6) 

0.13 

 

12.9 (11.3 – 14.3) 

9.9 (8.2 – 14.0) 

0.08 

 
Sex 

   Male 

   Female 

15.2 (13.0 – 18.3) 

21.5 (18.0 – 25.1) 

0.03 

 

 

10.0 (9.0 – 11.7) 

15.1 (13.4 – 17.2) 

< 0.0001 

 
ECOG PS 

   0 

   1 
   ≥2 

28.0 (21.5 – NR) 

14.6 (12.7 – 19.0) 
12.8 (7.6 – 16.1) 

< 0.0001 
 

22.1 (18.8 – 28.5) 

12.2 (10.7 – 13.8) 
4.5 (3.2 – 5.7) 

< 0.0001 
 

CCIS 

   0–1 
   2+ 

 

19.0 (15.9 – 23.1) 
17.2 (15.3 – 23.5) 

 

0.85 
 

 

13.1 (11.0 – 14.4) 
11.3 (9.5 – 14.2) 

0.52 
 

Smoking status 

  Never 
  Current/former 

  Unknown 

10.6 (7.8 – 19.6) 
19.3 (16.6 – 23.4) 

- 

0.01 

 

8.3 (6.2 – 13.7) 
12.8 (11.0 – 14.2) 

- 

0.32 

 

TNM stage 

   III 

   IV 

 
20.2 (14.6 – 29.0) 

17.7 (15.8 – 21.4) 

0.39 

 

 
15.7 (12.9 – 17.9) 

11.6 (10.3 – 13.5) 

0.07 

 

Brain metastases 

   Yes 

   No 

17.1 (8.2 – 24.1) 

19.0 (16.0 – 21.7) 

0.16 

 

12.3 (10.8 – 14.3) 

12.0 (7.6 – 14.2) 

0.53 

 

Bone metastases 

   Yes 

   No 

12.0 (9.5 – 14.9) 

21.5 (19.0 – 24.9) 

< 0.0001 

 

13.7 (12.0 – 16.0) 

9.0 (7.2 – 11.0) 

0.00 

 
Liver metastases 

   Yes 

13.4 (6.0 – 21.4) 

19.0 (16.1 – 22.5) 

0.00 

 

13.8 (12.3 – 16.1) 

6.8 (4.3 – 8.3) 

< 0.0001 
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   No 

Adrenal metastases 

   Yes 

   No 

15.8 (12.5 – 24.1) 

19.0 (16.4 – 21.5) 

0.23 

 

12.9 (11.2 – 14.3) 

10.3 (8.1 – 13.7) 

0.65 

 

Distant lymph node 

metastases 

   Yes 

   No 

19.6 (15.7 – 25.0) 

17.6 (15.3 – 20.5) 

0.65 

 

12.0 (10.6 – 13.8) 

13.1 (9.8 – 16.7) 

0.18 

 
NSCLC histopathology 

   Adenocarcinoma 

   Squamous cell carcinoma 
   Other 

19.6 (16.4 – 24.0) 

16.0 (12.1 – 20.2) 
19.1 (9.33 – NR) 

0.33 
 

13.7 (11.5 – 16.7) 

11.0 (9.6 – 13.2) 
10.4 (6.5 – 16.9) 

0.01 
 

PD–L1 

   Negative 
 ≥ 1% and < 50% 

   <50 % 

   ≥50 % 
   Unknown 

NA 
NA 

14.9 (9.3 – NR) 

18.3 (16.0 – 21.5) 
NA 

 

0.80 

 
 

 

9.3 (7.7 – 12.9) 
12.3 (10.0 – 15.4) 

NA 

16.7 (12.8 – 19.9) 
11.0 (9.0 – 13.4) 

0.00 

 
 

EGFR mutation 

   No 
   Yes 

   Unknown 

NA 
NA 

NA 

NA 

 

13.2 (11.0 – 16.2) 
8.2 (6.1 – 13.5) 

11.8 (9.9 – 14.3) 

0.02 

 

Treatment line 

   2 

   3 

   4 
   ≥5 

NA 

NA 

NA 
NA 

NA 

 
 

12.1 (10.5 – 14.0) 

14.0 (11.0 – 16.9) 

8.8 (7.5 – 16.3) 
10.6 (6.0 – NR) 

0.66 

 
 

Prior treatment with 

curative intention 

   Surgery +/- adj. CTx 

   CRT 
   Surgery and CRT 

   None 

 

19.4 (13.8 – NR) 

18.3 (13.7 – NR) 
24.4 (9.8 – NR) 

18.0 (15.8 – 21.3) 

0.72 
 

 

 

NA 

NA 
NA 

NA 

NA 
 

 

Prior palliative RT 

   Yes 

   No 

 
13.8 (10.1 – 21.8) 

19.0 (16.1 – 22.5) 

 
0.03 

 

 
NA 

NA 

NA 

 

Median overall survival (mOS) in months with 95% confidence interval (CI) according to baseline 

characteristics. Log rank tests for Kaplan-Meier OS estimates are added.  

ICI, immune checkpoint inhibitor; n, number of patients; ECOG PS, Eastern Cooperative Oncology 

Group performance status; CCIS, Charlson Comorbidity Index Score; TNM, tumor-node-metastasis 

classification of malignant tumors; NSCLC, non-small cell lung cancer; PD-L1, programmed death-

ligand 1; EGFR, epidermal growth factor receptor; adj. CTx, adjuvant chemotherapy; CRT, 

chemoradiotherapy; RT, radiotherapy; NR, not reached; NA, not available. 

 

The mPFS for patients treated with 1L and ≥2L ICI was 8.2 months (95% CI; 7.2 – 

9.3) and 5.2 months (95% CI; 4.5 – 5.9), respectively 1, 2. In 1L, PS 1 and PS ≥2, never 

smoking, and the presence of bone metastases were significantly associated with 

shorter PFS 1. In ≥2L, male sex, PS 1 and PS ≥2, never smoking, presence of liver 

metastases, PD-L1 <50% or unknown status, and positive EGFR-mutation status were 

significantly associated with shorter PFS 2. 
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The mTTD for patients treated with 1L and ≥2L ICI was 4.8 months (95% CI; 4.1 – 

5.5) and 3.2 months (95% CI; 2.8 – 3.6), respectively 1, 2. In 1L, PS 1 and PS ≥2, and 

the presence of bone metastases were significantly associated with a shorter TTD 1. 

In ≥2L, male sex, PS 1 and PS ≥2, presence of bone- and liver metastases, absence of 

distant lymph node metastases, PD-L1 <50% or unknown, and positive EGFR-

mutation status were significantly associated with a shorter TTD 2. 

The only statistically significant factor associated with both TTD, PFS and OS across 

all treatment lines was PS. The mTTD, mPFS, and mOS according to ICI treatment-

line and PS are shown in Table 6.2. 

Table 6.2 Median TTD, mPFS and mOS according to ICI treatment-line and PS 

mTTD; median time-to-treatment discontinuation; mPFS, median progression-free survival; mOS, median 

overall survival; CI, confidence interval; 1L, first-line; ≥2L, second- or subsequent-line; PS, performance 

status 

The 2-year OS rates for patients with PS ≥2 was 34% and 11% in 1L and ≥2L, 

respectively.  

For patients treated with ≥2L ICI, univariable Cox regression analysis included 

specific comorbidities present in >5% of the cases, and they had no significant 

association with OS. 

6.1.3.3 Multivariable Cox regression analyses of ICI-treated patients 

In 1L, PS 1 (HR=1.88, 95% CI; 1.45 – 2.42) and PS ≥2 (HR=2.21, 95% CI; 1.52 – 

3.21) compared to PS 0, liver metastases (HR=1.45, 95% CI; 1.01 – 2.08), and bone 

metastases (HR=1.75, 95% CI; 1.37 – 2.24) were significantly associated with poorer 

OS 1. Interaction analysis between sex and histopathology showed that male patients 

with squamous cell carcinomas had a significantly poorer OS, compared to male 

patients with adenocarcinomas. Furthermore, in patients with squamous cell 

carcinomas, males had a significantly poorer OS than females 1. 

In ≥2L, male sex (HR=1.35, 95% CI; 1.11 – 1.62), PS 1 (HR= 1.88, 95% CI; 1.52 – 

2.33) and PS ≥2 (HR=4.15, 95% CI; 3.13 – 5.5) compared to PS 0, liver metastases 

 mTTD  

months (95% CI) 

mPFS  

months (95% CI) 

mOS  

months (95% CI) 

1L 

  PS 0 

  PS 1 

  PS  ≥2 

6.9 (5.1 – 9.7) 

4.3 (3.5 – 5.5) 

2.8 (1.4 – 4.2) 

11.0 (8.5 – 13.9) 

7.7 (6.4 – 8.8) 

6.0 (3.3 – 8.7) 

28.0 (21.5 – NR) 

14.6 (12.7 – 19.0) 

12.8 (7.6 – 16.1) 

≥ 2L 

  PS 0 
  PS 1 

  PS  ≥2 

6.0 (5.1 – 7.8) 
3.3 (2.8 – 3.8) 

1.1 (0.7 – 1.4) 

8.9 (7.0 – 11.1) 
5.4 (4.7 – 6.5) 

2.0 (1.7 – 2.6) 

22.1 (18.8 – 28.5) 
12.2 (10.7 – 13.8) 

4.5 (3.2 – 5.7) 
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(HR= 1.72, 95% CI; 1.34 – 2.22), and bone metastases (HR=1.27, 95% CI; 1.03 – 

1.58) were associated with poorer OS, while PD-L1 ≥50% compared to negative PD-

L1 status (HR=0.69, 95% CI; 0.48 – 0.98) was associated with improved OS 2. The 

interaction analysis between sex and histopathology showed a significantly poorer OS 

in male patients with adenocarcinoma, compared to female patients with 

adenocarcinoma 2.  

6.2 STUDY III 

 

A total of 123 patients were included. The median age was 67 years, and 56% of the 

patients were males. NSCLC subtypes were squamous cell carcinoma in 24% and 

adenocarcinoma in 68%, and 80% (n=98) had PD-L1 ≥50% 3. PS, PD-L1 TPS, 

NSCLC subtype, lung and peripheral lymph node metastases were significantly 

different between patients receiving ICI in 1L and ≥2L 3. ICI was administered in 1L 

(n=96) or ≥2L (n=27), and was primarily discontinued due to PD (55%) or toxicity 

(27%). Around half of the patients (49%) received post-ICI systemic antineoplastic 

treatment 3.  

GEP was performed in 25 (33%) of all patients with a baseline histological biopsy 

(Figure 4.2). Significantly more patients with GEP had squamous cell carcinomas and 

received ≥2L ICI compared to those without GEP 3.  

 

DCB was observed in 49% (n=60) and did not significantly differ in 1L compared to 

≥2L (51% vs. 41%, p=0.40). The presence of liver metastases was significantly 

associated with not achieving DCB (30% vs. 12%, p=0.02) and ALC above median 

was significantly associated with DCB (p=0.01) 3. In univariable logistic regression 

analyses liver metastases (OR 0.31, p=0.01) and ALC (OR 2.05, p=0.02) were 

significantly associated with DCB. In multivariable logistic regression analysis liver 

metastases (OR 0.36, p=0.046) and ALC (OR 1.95, p=0.038) remained significantly 

associated with DCB 3.  

A ROC curve analysis was made to investigate the predictive potential of ALC as a 

single biomarker for DCB, and this yielded an AUC of 0.63 (Supplementary Figure 

S4). An optimal cut-point of 1.0 109/l was found, corresponding to the 25% quartile, 

and using ALC dichotomised at this cut-point as a predictive biomarker for DCB 

resulted in a false positive rate of 0.64 and true positive rate of 0.90. DCB was 

observed in 21% of all patients with an ALC below the optimal cut-point of 1.0 109/l, 

and in 57% of all patients with an ALC above the optimal cut-point (Figure 6.3) 3. 
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Figure 6.3 Bar chart presenting the relationship between peripheral lymphocyte 

counts and durable clinical benefit 3 

 

The patients (n=122) were categorized as ALC low or ALC high, separated by the optimal ALC cut-point 

of 1.0 109/l. The values in the bars represent the absolute number of patients in each group. ALC was 

missing in one patient. 

DCB, durable clinical benefit; ALC, absolute lymphocyte count 

 

Comparison of gene expressions between patients with and without DCB revealed 53 

genes with a p-value <0.05, including PD-L1 (CD274) (p=0.03). However, no genes 

were significant after adjustment for multiple testing (no FDR <0.05). A strong 

association between the categorical PD-L1 TPS assessed by IHC and the continuous 

PD-L1 (CD274) derived by GEP was identified (p=0.00013). Furthermore, PD-L1 

(CD274) was differentially expressed between patients receiving 1L and ≥2L ICI 

(p=0.0017) (Figure 6.4) 3. 
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Figure 6.4 The association between PD-L1 (CD274) derived by gene expression 

profiling and A) PD-L1 assessed by immunohistochemistry and B) treatment line 3    

Boxplots of log2 normalized expression of PD-L1 for A) three levels of PD-L1 assessed by IHC 

(p=0.00013) and B) treatment line (p=0.00017). 

PDL1, programmed death-ligand 1; IHC, immunohistochemistry; 1L, first-line treatment; ≥2L, treatment 

in second- or subsequent line 

 

Hierarchical clustering of the 53 differentially expressed genes with a p-value <0.05 

showed that two clusters separated the patients with and without DCB except for two 

patients, and an intermediary heterogeneous cluster consisted of patients with or 

without DCB 3. 

Figure 6.5 Hierarchical clustering of the 53 differentially expressed genes with a p-

value <0.05 3 
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Heatmap of gene expression z-scores for genes with a p-value <0.05 and patients with DCB compared to 

those without DCB. The patients (columns) (n=25) and the genes (rows) are clustered using hierarchical 

clustering based on euclidean distance. The dendrograms visualize the order of the clustering. In the top, 

three annotation rows are added to indicate each patients DCB status, NSCLC histopathological subtype, 

and ALC. A p-value is listed for each row. The p-values for NSCLC subtype and ALC compare DCB vs. 

no DCB using a Fisher’s exact test and unpaired t-test, respectively. The p-value in front of the genes derive 

from the gene expression test 3. 
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The gene expression signature scores in patients with and without DCB were 

compared. No signature scores had an FDR <0.05. However, four signatures had 

unadjusted p-values <0.05. The dendritic cell (DC) (p=0.025, log2FC= -0.92), 

myeloid (p=0.024, log2FC= -0.80), and TGF-β (p=0.047, log2FC= -0.92) signature 

scores were higher in patients without DCB and the JAK/STAT loss signature scores 

(p=0.005, log2FC= 1.41) were higher in patients deriving DCB 3.  

 

Data from the TSO500 gene panel was available in only 42% (n=51) of the patients 

(n=123), and in only 24% (n=6) in the final GEP cohort. In the total cohort, 20% 

(n=24) had TMB-high tumor samples, and TMB status was not associated with DCB 

in the univariable logistic regression analysis. No patients had MSI-high tumor 

samples, and MSI status was not included in the statistical analyses 3.   
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CHAPTER 7. DISCUSSION 

7.1 SURVIVAL BEFORE AND AFTER ICI IMPLEMENTATION 

Study I demonstrated increased long-term survival after the implementation of ICIs, 

for patients receiving 1L systemic antineoplastic treatment (Table 6.1) 1. The 

magnitude of the survival-improvement was most likely driven by the implementation 

of ICIs, since no other large changes in diagnostics, treatment or palliative care was 

introduced in this time period. The TNM stage was missing in a larger proportion of 

patients in the DLCR post-approval cohort, and according to the annual reports from 

the DLCR, the proportion of patients with TNM stage IV decreased from 2015 to 

2017-2018 1, 5. However, the missing TNM stages were primarily in the DLCR-CTx 

cohort and would not impact the OS in the DLCR-ICI cohort 1. Furthermore, the 

proportion of female patients and adenocarcinomas increased 1, 5. Though, it should 

be noticed that the proportion of patients without a TNM-classification and with the 

pathology classification ‘not otherwise specified’ decreased in the same time period 

indicating an improvement in TNM-classification and pathology diagnostics 5. 

Recently, Italian and Canadian studies also demonstrated improved survival in 

patients with advanced NSCLC treated with 1L systemic antineoplastic treatment 

after ICI implementation 155, 156. Patients who did not receive any treatment were not 

included in this dissertation, and still accounts for approximately 20% of patients 

diagnosed with lung cancer 5.  

7.2 PATIENT POPULATIONS, PROGNOSTIC AND PREDICTIVE 

CLINICAL FACTORS 

The approval of new drugs is based on results from the RCTs, however, only around 

30% of patients with advanced NSCLC treated with ICIs in daily clinical practice 

meet the in- and exclusion criteria in the pivotal ICI-RCTs 157. In study I and II, around 

20% of the patients aged ≥75 years, 20% were PS ≥2, and around one third had 

moderate-to-severe comorbidity according to CCIS 1, 2.  Those subgroups are typically 

underrepresented in RCTs. A review of clinical features affecting survival in ICI-

RCTs suggested that OS could be affected by sex, PS, bone- and liver metastases, and 

smoking status 158. Additionally, a meta-analysis of ICI-RWS including previously 

treated patients, demonstrated that the ORR, PFS, and mOS were comparable to 

results from the RCTs after adjustment for PS, age, liver- and CNS-metastases 159. In 

both study I and II, PS 1 and PS ≥2, bone metastases, and liver metastases were 

associated with a significantly shorter OS 1, 2.  

 

PS ≥2 was associated with a significantly shorter mTTD and mPFS in both 1L and 

≥2L, with a mPFS of only 2.0 months in ≥2L 1, 2. Furthermore, the mOS in ≥2L was 
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significantly poorer; only 4.5 months 1, 2. Therefore, the clinical benefit in patients 

with PS ≥2 is questionable, particularly in patients receiving ≥2L ICI. However, some 

patients with PS ≥2 became long-term responders (2-year OS rates of 34% and 11% 

in 1L and ≥2L, respectively), and the upfront identification of those patients who 

derive benefit remains a challenge. If patients with PS ≥2 are considered unsuitable 

for ICI treatment by the physician, standard CTx or BSC could be a better solution for 

the patient. No recent data on survival in CTx-treated patients with PS ≥2 is available; 

hence it is difficult directly to compare ICI- and CTx treatment in this patient 

population. In 2002, Schiller et al. demonstrated a mOS of 3.9 months in patients with 

PS ≥2 treated with a 1L platinum-doublet CTx regimen 31. In 2004, Hanna et al. 

randomized patients for 2L pemetrexed or docetaxel and demonstrated a mOS of 3.6 

months and 2.2 months, respectively, in patients with PS ≥2 33. Compared to these old 

studies, ICI-treatment may clinically benefit patients with PS ≥2.  

We showed that PS 0 was associated with a high mOS in patients treated with ICI in 

both 1L (28.0 months) and ≥2L (22.1 months) compared to the pivotal RCTs 1, 2, 46-50. 

However, the RCTs did not report on ICI-efficacy and survival in patients with PS 0 

compared to PS 1. In our studies, the mOS difference between PS 0 and PS 1 was 

around 13 months in 1L and 10 months in ≥2L, which emphasizes the prognostic 

importance of PS in daily clinical practice, and the potential introduction of bias when 

patients with PS 0 and PS 1 are categorized and analysed as one cohort in RWS, and 

potentially in RCTs. In the multivariable Cox regressions PS 0 was the reference 

covariate, hence the statistical difference between PS 1 and PS ≥2 was not assessed. 

However, the KM curves showed significant differences in OS according to PS 

(Figure 6.2). In 1L, the KM curve of PS 1 approximated that of PS ≥2, which  could 

indicate a clinical misclassification of PS ≥2 as PS 1 in patients treated with 1L ICI. 

This could be explained by the approval of 1L ICI for patients with PS 0-1 only. This 

migration in PS classification has not previously been reported, and the usual 

comparison of efficacy and survival between patients with PS 0-1 and PS ≥2 may be 

affected by this phenomenon. This issue could also exist in RWS of other 1L 

treatments approved only for patients with PS 0-1 and would decrease the true 

endpoint differences between PS 0-1 and PS ≥2.   

 

In study I and II, disease stage was not included in the analyses due to the interaction 

with metastatic sites. Bone- and liver metastases were associated with a significantly 

impaired survival 1, 2. In study I and II, 28% and 26% had bone metastases, 

respectively; however, the extent of bone tumor burden was not recorded. Bone 

metastases in patients with advanced NSCLC have been associated with a ‘cold’ 

tumor immune phenotype and attenuated ICI efficacy 160. However, improved 

outcomes have been observed with the addition of bisphosphonates and/or 

combination therapy of ICI and CTx 161. The presence of liver metastases has also 

been negatively associated with survival in other RWS and RCTs 2, 158, 162. This may 
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be explained by lower CD8+ T-cell infiltration in liver metastases compared to other 

metastatic lesions, and increased PFS has been observed in liver metastases with 

combined PD-L1 TPS ≥1% and CD8+ T-cell infiltration 163. 

Other metastatic sites such as brain metastases did not significantly impact OS 1, 2. 

Similar results have been demonstrated in other RWS 164. However, impaired PFS has 

been observed in patients with brain metastases which may be explained by 

downregulation of an immune gene expression signature in brain metastases 

compared to primary biopsies 165, 166. Local treatment of identified and/or symptomatic 

brain metastases with surgery, whole brain RT or SBRT before ICI treatment could 

explain the insignificant OS impact of brain metastases. Furthermore, it has been 

demonstrated that age <70 years, adenocarcinoma histopathology, previous cranial 

radiation therapy (≥3 months prior to ICI initiation), and brain metastases present at 

diagnosis were associated with increased intracranial disease control 167. Despite the 

large incidence and prognostic impact of metastatic burden and specific metastatic 

sites, particularly bone metastases, they have rarely been reported in the RCTs (Table 

2.3) 161, 168. However, the Checkmate 9LA RCT, which included patients with stage 

IV or recurrent NSCLC randomized for either nivolumab plus ipilimumab and 

platinum-based CTx or CTx alone, have reported on bone metastases which may pave 

the way for reporting on metastatic sites in future RCTs 169. 

 

In both study I and II, KM estimates showed impaired OS in male compared to female 

patients 1, 2. However, in multivariable Cox regression analyses the impaired OS in 

males only remained significant in those receiving ICI as ≥2L treatment. Additionally, 

interaction between sex and NSCLC histopathological subtype was observed in both 

1L and ≥2L 1, 2. Improved OS in females with adenocarcinomas was observed already 

in the pre-ICI era 170. At the same time, the excess risk for male patients was reduced 

by 80% when adjusting for known prognostic factors (treatment-related factors, 

lifestyle- and tumor characteristics) 171. Subsequently, sex-associated differences in 

immune responses, including immune features associated with ICI efficacy, have been 

described; however, divergent results have been observed in NSCLC 172, 173.  

 

In study III, high baseline ALC was significantly associated with DCB regardless of 

treatment line and with OS in patients treated with 1L ICI 3. Additionally, the optimal 

cut-point of 1.0 109/l defined in study III is easily applicable in daily cancer care. 

However, study III was hypothesis-generating and the predictive value of an ALC cut-

point of 1.0 109/l should be verified in independent cohorts. Peripheral immune cells, 

including ALC, have also been associated with ICI efficacy in other studies. High pre- 

and post-ICI peripheral lymphocyte counts, the distribution of lymphocyte subsets 

combined with PD-1 expression on T-cells before ICI treatment, and the dynamics of 
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exhausted T cells during ICI treatment have been associated with improved survival 

in patients with NSCLC 174, 175. The most extensively investigated peripheral immune 

cell biomarker is NLR, which was not significantly associated with DCB in study III 
3. Low baseline NLR and early dynamics in NLR or derived NLR have been 

associated with improved survival in ICI-treated patients with NSCLC 176-178. A post 

hoc analysis of the phase III OAK trial showed that NLR was more strongly associated 

with OS in patients treated with ICI compared to CTx, indicating a predictive potential 
179. 

7.3 ICI TREATMENT CHARACTERISTICS 

ICI treatment discontinuation due to progressive disease was observed in half of the 

patients in both study I and II. Notably, half of those patients discontinued the 

treatment within 6 cycles, corresponding to approximately 4 months (Figure 6.1) 1, 2. 

Hence, more than 25% of all the ICI-treated patients derived no DCB when defined 

as PFS <6 months. A recent real-world multicentre study of patients with NSCLC 

treated with nivolumab found BMI <25, ECOG PS >1, NLR >2.91, and concomitant 

treatment with antibiotics and glucocorticoids to be associated with early treatment 

discontinuation defined as less than 6 ICI cycles 180. Additionally, study I showed that 

only around one third of the patients received post-ICI systemic antineoplastic 

treatment 1. Another RWS showed that 22% of the patients receiving 1L ICI received 

subsequent line systemic antineoplastic treatment during the study period 181. This 

likely reflects some cases of long-term response to ICI, but for the majority of patients 

ineligibility for further systemic treatment. The high proportion of patients with early 

progressive disease underline the importance of choosing the right treatment for the 

right patient at the right time. In study I and II, information on irAEs were 

retrospectively obtained by manual data extraction from EHRs. In other previous 

RWS, data on irAEs have been inconsistently collected and managed. In a few RWS, 

irAEs have been retrospectively graded according to the Common Terminology 

Criteria for Adverse Events (CTCAE) based on EHRs 182. However, this approach is 

associated with data collection bias, and should not be directly compared with 

prospectively CTCAE-graded irAEs in the RCTs. Unfortunately, no international 

consensus on reporting of irAEs in RWS exists.   

7.4  RESPONSE EVALUATION AND ENDPOINT DEFINITIONS 

The comparison of studies remains challenging. RWS are heterogenous according to 

patient populations, but also according to definitions of covariates and clinical 

endpoints. In study I and II, the clinical endpoints were OS, PFS, and TTD with PD 

definition based on both CT-scans and the physician’s decision. The definitions were 

chosen due to the inconsistent use of the RECIST in routine cancer care. Furthermore, 

Griffith et al. demonstrated that real-world progression-based endpoints correlated 

with OS, and that a clinician-anchored approach combined with radiology reports 

were more optimal than RECIST for characterizing progression from  EHR-data 183, 
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184. Due to the heterogeneity in endpoint-definitions used in the RWS, a redefinition 

of real-world endpoints in ICI-trials has been suggested 184, 185. In particular the 

definition of SD is ambiguous in both RWS, RCTs, and biomarker studies, and the 

definition in ICI trials may include both a survival- and a tumor growth parameter 186. 

Additionally, terms like DCB, early progressive disease, long-term responders and 

long-term survivors are widely used, but no scientific guidelines describe those 

definitions, which complicate direct comparisons of study results.  

7.5  RANDOMIZED CONTROLLED TRIALS VS REAL-WORLD STUDIES 

The RCTs have high internal validity and provide ideal conditions to measure 

efficacy; the true biological effect of a treatment 187, 188. On the other hand, the phase 

IV or RWS have high external validity and measure effectiveness; the beneficial effect 

observed, when the treatment is used for patients treated in daily cancer care 187, 188. 

Increased emphasis has been put on treatment effectiveness in typical RCT-ineligible 

patients, and at the ESMO congress in September 2022, the IPSOS study late-breaking 

abstract was presented 189. The IPSOS study included patients, ineligible for 1L 

platinum-based CTx and 1L clinical trials, and the participants were randomized for 

atezolizumab (an anti-PD-L1 antibody) or single agent CTx (2:1). The median age 

was 75 years (31% ≥80 years), 72% were male, and 82% had ECOG PS ≥2 189. 

Compared to single agent CTx, atezolizumab significantly improved the 2-year OS 

rate (24.3% vs 12.4%), ORR, median duration of response, and OS across PD-L1 

levels, PS and histopathology 189. These results are comparable to our results from 

study I and II, showing that more male patients had a poor PS and more comorbidity, 

and that some 1L ICI treated patients with PS ≥2 achieved long term responses 1, 2. 

The data confirms the advantages of both RCTs and RWS and the synergy between 

the two study designs. 

7.6  BIOMARKER ANALYSES AND FEASIBILITY 

The focus on clinical applicability of RCT results, also accounts for biomarker studies. 

In biomarker research, the participants and the investigated samples must reflect the 

target population and the intended use of the biomarker(s) 190. Currently, ICIs are 

mainly used in advanced or metastatic NSCLC and therefore, biomarker studies 

should include patients with advanced/metastatic disease and the biological material 

used for the biomarker assessment should resemble the samples used in the routine 

diagnostic framework. 

The demand for multiple biomarker-testing in NSCLC is rapidly increasing owing to 

the continued discovery of new druggable alterations. Different predictive models for 

ICI efficacy have been proposed, however, the application of multiple detection 

techniques on scarce tissue samples remains a challenge in routine clinical settings129, 

191. Despite the improved response rates and OS with biomarker-driven therapy, the 

MYLUNG consortium pragmatic study demonstrated that less than 50% of diagnostic 
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non-squamous NSCLC tissue samples are analysed for both EGFR, ALK, ROS-1, PD-

L1 and BRAF status 192. Additionally, NGS testing occurred in less than 50% of the 

cases 192. Another study demonstrated that 27% of NSCLC tissue samples were 

analysed simultaneously for both EGFR, ALK, ROS-1 and PD-L1 status, and 

sufficient tissue was available in only 25% of the included cases 193. In study III, the 

proportion of FFPE samples suitable for GEP was 33% (25/74). Furthermore, only 

50% of the patients had histological tissue samples. The low GEP success rate in study 

III, was caused by low RNA concentrations and poor RNA quality, probably due to 

thin tissue sections with low proportions of intact cells 3, 145. Despite mimicking the 

target population and intended use of the biomarker, study III was a small non-

randomized and explorative study, and careful interpretation of the GEP results is 

highly encouraged. Validation cohorts from the Cancer Genome Atlas is typically 

used in NSCLC biomarker studies; however, primarily resections from patients with 

early-stage disease are included. Currently no large-scale GEP of advanced-stage 

NSCLC exists 194.  

Recently, a more efficient and tissue-sparing approach to cancer diagnosis and 

biomarker testing has been proposed called the “Combiome” 195. This diagnostic 

framework aimed at reducing sequential biomarker testing, and thereby increase the 

proportion of patients with complete biomarker-testing leading to improved 

treatment-selection, response rates and survival for all cancer patients. However, this 

‘Combiome’ setup is expensive, may not be necessary for all patients, and patient 

eligibility criteria for the ‘Combiome’ framework should be discussed before clinical 

implementation. 

7.7  GENE EXPRESSION PROFILING 

In study III, PD-L1 (CD274) was negatively correlated with LTBP1 (p<0.05). LTBP1, 

latent transforming growth factor beta binding protein, maintain TGFβ (TGFB1) in a 

latent state and release TGFβ to the TME mediated by integrins or cleavage 196, 197. 

TGFB1 is a pleotropic cytokine which inhibits anti-tumor immune activity and 

promotes tumor growth and survival when present in the TME 198. A new TGFβ-

dependent signalling pathway, the MRTF-A-NF-κB/p65 axis, mediates PD-L1 

transcription leading to tumor immune evasion 199. The inverse correlation between 

LTBP1 and PD-L1 found in our study, could be explained by this signalling pathway. 

A pre-clinical study in anti-PD-1 refractory mice showed profound anti-tumor 

response and improved survival when combining an anti-PD-1 antibody with a 

selective inhibitor of latent TGFB1 200. In the current study, TGFβ signatures were 

also higher in patients without DCB. Clinical investigation of dual inhibition of TGFβ 

and PD-(L)1 is ongoing in many solid tumors including NSCLC 201.  

TAP1, transporter associated with antigen processing 1, correlated positively with 

PD-L1 (CD274) in study III (p<0.05). TAP1 and PD-L1 are controlled by the 

JAK/STAT pathway upon interferon gamma (INF-γ) exposure 202. Additionally, 
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JAK/STAT loss signature scores were found to be higher in patients with DCB in  

study III. Previously, impaired INF-γ signalling pathways and JAK/STAT mutations 

in tumor cells have been associated with impaired ICI efficacy in patients with 

malignant melanoma 203, 204. On the other hand, JAK/STAT-mediated chronic 

inflammation in pancreatic cancer impaired cytotoxic T-cell activation and decreased 

anti-PD-1 efficacy, and inhibition of STAT3-mediated immunosuppression in the 

TME may be a complementary immunotherapy target 205, 206. The JAK/STAT pathway 

plays an essential role in the differentiation of T-helper cells, and JAK/STAT 

inhibition in Tregs has shown downregulation of Foxp3 207, 208. Hence, the JAK/STAT 

function is cell specific and the impact of JAK/STAT loss on ICI-efficacy seems to 

be cell-dependent. In study III, the JAK/STAT loss signature, defined by the 

manufacturer, was not restricted to a specific cell type, and could represent 

JAK/STAT pathways in both tumor cells and immune cells in the TME. INF-γ has 

pleiotropic impact on ICI efficacy, and recent GEP of ICI-sensitive and ICI-resistant 

tumor cells revealed a strong association between INF-induced ICI resistance and 

expression of the TNF-receptor regulating gene Ripk1; hence, this may become a 

future treatment target in ICI-resistant patients 209. 

In study III, DC signature scores were higher in patients without DCB, which may 

reflect a primary resistance mechanism consisting of abundant but inactivated DC 

cells in those patients. DCs are key antigen presenting cells that play an essential role 

in initiation of T-cell responses against tumor 210. However, STAT3 inhibits DC 

maturation, immature DCs generally induce immune tolerance, and tumors may 

disrupt normal DC function leading to tumor immune evasion 206, 210. The myeloid 

signature measure key marker and effector genes of myeloid lineage immune cells, 

and in study III these signature scores were higher in patients without DCB. Myeloid 

cells in the TME include tumor-associated macrophages (TAMs), tumor-associated 

neutrophils, and myeloid-derived suppressor cells (MDSCs) which all facilitate tumor 

cell growth and invasion and suppress adaptive immune responses 211, 212. ITGAE also 

known as CD103 correlated positively with PD-L1 (CD274) in study III. ITGAE 

interacts with E-cadherin and promotes cytolytic T-cell responses against tumor, and 

ITGAE-expressing CD8+ T-cells have been associated with improved response to ICIs 
213, 214.  

7.8  OTHER PROPOSED BIOMARKERS OF ICI EFFICACY 

A wide range of biomarkers have been proposed to predict ICI efficacy. The interplay 

between many factors related to the tumor cells, immune system, TME, and host is 

complex as roughly illustrated in Figure 7.1. Therefore, multi-omics approaches for 

the prediction of clinical endpoints in ICI-treated patients with NSCLC have been 

suggested 215. 

Figure 7.1 Overview of proposed biomarkers of ICI efficacy  
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Tumor-intrinsic factors such as NSCLC driver mutations and gene rearrangements 

including EGFR, HER2, ALK, ROS1, RET and MET are predominantly associated 

with impaired response to ICIs 216. However, KRAS and BRAF V600E mutations are 

associated with improved OS, whereas the co-occurrence of KRAS and STK11 or 

KEAP1 mutations impairs the ICI efficacy 216-219. This mechanism could be explained 

by the association of STK11 and KEAP1 mutations with distinct immunophenotypes 

in KRAS mutant but not in KRAS wild type lung adenocarcinomas 219. However, a 

large RWS found STK11 and KEAP1 to be poor prognostic factors regardless of 

treatment type 220. Additionally, the expression of co-inhibitory receptors such as 

TIM-3, LAG-3, and TIGIT may contribute to ICI resistance, and clinical trials 

targeting those checkpoints are ongoing (such as NCT04140500 and NCT03708328 

on ClinicalTrials.gov) 221-223. However, double ICI therapy has not yet been 

implemented as a routine treatment of patients with NSCLC in Denmark. 

Most recently, an artificial-intelligence-powered spatial analysis of TILs defined three 

immune phenotypes; inflamed, immune-excluded, and immune-dessert based on TIL-

density in cancer epithelium and cancer stroma 224. The immune phenotypes were 

significantly associated with ICI response and not with chemotherapy response which 

supports their predictive value in relation to immunotherapy 91, 224. Additional GEP 

revealed enrichment of CD8+ T cells, memory T cells, memory B cells, and M1 

macrophages in the inflamed phenotype and enrichment of M0 macrophages, naïve B 
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and FOXP3 cells in the immune-excluded phenotype. Enrichment of M2 

macrophages, neutrophils, and CD68+ cells was observed in the immune-dessert 

phenotype 224.  

The TME comprise a complex interplay between different regulatory mechanisms 

which also affect the function of the tumor cells and the TILs. Other immune cells 

such as natural killer cells, DCs, B cells, MDSCs, and TAMs also play important roles 

in tumor evolution 225. Furthermore, cancer-associated fibroblasts, cytokines, 

chemokines, metabolites, hypoxia and lactate affect the function of both tumor and 

immune cells in the TME 226. Recently, targeting TAM receptors has been proposed 

as a novel  therapeutic target to overcome ICI resistance 227.  

The association between gut microbiome and ICI efficacy has been investigated, and 

abnormal gut microbiome and use of antibiotics have been associated with primary 

ICI resistance 228. This may be explained by the association between gut bacteria and 

peripheral immune cell dynamics 229.  

The one aim to perform these biomarker studies is to improve the quality of life and 

survival of patients with NSCLC. However, statistical considerations according to 

biomarker discovery and validation remain crucial in establishing the application of 

biomarkers into routine cancer care 190. 
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CHAPTER 8. STRENGTHS AND 

LIMITATIONS 

8.1 STUDY I-II 

 

The major strength of these studies is the nationwide character and the substantial 

inclusion of all consecutive patients with advanced NSCLC treated with ICI in 

Denmark. Due to the equal and free access to health care (including ICIs within the 

framework of national guidelines) for all Danish patients, the risk of selection bias is 

minimal. Furthermore, the large sample sizes allowed for subgroup analyses of 

patients that are usually underrepresented in the RCTs, but widely treated in routine 

clinical cancer care, such as patients with PS ≥2, moderate-to-severe comorbidity, 

organ metastases, and age ≥75. Because of the Danish CPR system, the completeness 

of follow-up is very high. Data from the DLCR enabled the OS comparison before 

and after the implementation of ICIs, which was not previously investigated for this 

patient population 1, 2. Additionally, this study strengthened the national research 

collaboration within DOLG, and paved the way for future similar nationwide studies. 

 

The retrospective study design implies a lack of data accuracy and completeness. This 

is particularly related to the CTx cohorts from the DLCR (study I) and to patients 

treated with ≥2L treatment (study II). The validity of data on comorbidity, smoking 

status, PS, toxicity, and tumor response evaluation may be reduced due to the 

retrospective design. Data on potential confounders including laboratory data, 

concomitant use of glucocorticoids or antibiotics, and BMI was not obtained 1, 2. Study 

I and II were not appropriate for causal inference, partly due to the low internal 

validity 230. This would require application of inference methods such as propensity 

score matching of the patients in our studies and participants in the ICI-RCTs, of the 

pre- and post-approval DLCR cohorts, and of the DLCR-ICI and DLCR-CTx cohorts. 

However, propensity score matching of the DLCR cohorts were considered futile due 

to the unequal distribution of missing data on disease stage, and lack of information 

on significant prognostic factors such as PS and metastatic sites. Furthermore, no 

direct comparison of the results in study I and II (1L vs ≥2L) should be made because 

of minor differences in study definitions and covariates, and primarily due to the lack 

of statistical comparisons. The optimal design for studying ICI effectiveness is 

randomization in a real-world setting, however, observational prospective or 

retrospective studies are less prone to selection bias, less resource-intensive and hence 

more feasible 231. 
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8.2 STUDY III 

 

The patients were treated in daily clinical practice, were consecutively included, and 

the tissue samples used for GEP were routine diagnostic samples. Both factors 

increase the external validity and the possibility to clinically implement a potential 

new biomarker. Thus, the biomarker study complied with the clinical context; patients 

with unresectable, incurable advanced NSCLC treated with ICIs and availability of 

only scarce tissue samples. The bridge between basic science and clinical research 

enable to correct for potential confounding prognostic and/or predictive clinical 

factors in the assessment of new biomarkers. The comparison of patients with and 

without GEP showed the representativeness of the GEP cohort and possible 

differences in patients who are eligible for GEP in routine clinical practice. No 

patients were lost to follow-up. 

 

The final number of samples that qualified for GEP was small, which affected the 

probability to discover significant gene expression signatures according to DCB. Most 

patients treated with ≥2L ICI, had received CTx between the time of diagnostic tissue 

sampling and the initiation of ICI treatment, which could affect the gene expression 

and hence the predictive or prognostic value. Furthermore, heterogeneity according to 

biopsy site (primary tumor versus distant metastasis), NSCLC histopathological 

subtype, TNM stage, and PS could affect biomarker performance. Additionally, we 

did not have a validation cohort and randomization between ICI and CTx has become 

difficult due to the wide approval of ICI-based 1L regimens. The final analysis did 

not include criteria on treatment duration or a minimum duration of survival. The 

study specific methods were applied after routine diagnostic testing; hence the 

histological material was scarce and of poor quality. RNA amplification could have 

been performed in low input samples leading to increased Qubit concentrations prior 

to hybridization. The pathological evaluation was performed after study termination, 

and the number of included patients were not based on tissue samples suitable for 

GEP and NGS. The blood samples could have contained more known prognostic and 

potential predictive/prognostic values such as CRP, lactate dehydrogenase, and 

additional differential counting of blood cells. 
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CHAPTER 9. CONCLUSIONS 

In advanced NSCLC patients without EGFR mutations or ALK rearrangements 

receiving 1L systemic antineoplastic treatment, the mOS and long-term survival have 

improved after the implementation of ICI treatment in Denmark. The mOS increased 

from 7.8 months before ICI-approval to 11.0 months after ICI-approval. This increase 

was primarily driven by the patients treated with 1L ICI, since the mOS in this cohort 

reached 19.0 months compared to 9.5 months in patients receiving 1L CTx 1. The 

previously almost unknown phenomenon of long-term survival in patients with 

advanced NSCLC was observed in patients receiving 1L ICI, with a 3-year OS rate of 

29% compared to only 6% in patients receiving 1L CTx before the ICI-

implementation in Denmark 1.  

Compared to the pivotal anti-PD-1 RCTs, the mOS was lower in patients treated with 

≥2L ICI, but comparable in patients treated with 1L ICI. In fact, the mOS of patients 

with PS 0 was higher compared to the RCTs in both 1L and ≥2L ICI 1, 2. PS was the 

only significant prognostic factor for both mTTD, mPFS, and mOS regardless of ICI 

treatment line. The subgroup of patients with PS ≥2 is heterogeneous and includes 

patients with very early progression but also long-term survivors 1, 2. Therefore, ICI 

treatment of patients with PS ≥2 should be carefully considered.   

The presence of bone- and liver metastases were significantly associated with 

impaired OS regardless of ICI treatment line whereas age ≥75 years and comorbidity 

according to CCI were not 1, 2. Therefore, metastatic sites should be reported in future 

RCTs. ICI treatment is also an option in patients with high chronological age. 

In study I, II, and III approximately half of the patients discontinued ICI due to PD 1-

3. In study I and II, PD occurred within 6 ICI cycles in half of the patients 1, 2. Hence, 

20-25% of all ICI-treated patients experienced PD within around 4 months, and those 

patients may rather benefit from other treatment options if they could be identified up 

front 1, 2. 

Study III was a hypothesis-generating biomarker study that included 123 patients with 

advanced NSCLC treated with ICI in first- or subsequent treatment line in routine 

clinical cancer care. Around half of the patients had DCB 3. Absence of liver 

metastases and high ALC were significantly associated with DCB, and an ALC above 

1.0 109/l may predict DCB in patients with advanced NSCLC treated with ICI in daily 

cancer care 3. GEP was performed in 25 of the patients. GEP-assessed PD-L1 was 

highly correlated with IHC-assessed PD-L1 and treatment line, which indicate a 

clinical relevance of GEP in routine diagnostics 3. Higher JAK/STAT loss signature 

scores were observed in patients with DCB whereas higher DC, myeloid and TGF-β 

signature scores were observed in patients without DCB 3. However, no single gene 

expressions or gene expression signatures were significantly associated with DCB 
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when adjusting for multiple testing. The low proportion of GEP-suitable tissue 

samples should be considered in future GEP-studies that include routine diagnostic 

biopsies from patients with advanced NSCLC.  
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CHAPTER 10. FUTURE PERSPECTIVES 

RWE is increasingly used for marketing authorization applications and extensions of 

indications for already authorized treatments and helps to identify areas that require 

further investigation 232. Based on experience from this dissertation, international 

guidelines should be devised in order to improve the RWE, including harmonization 

and standardization of real-world study designs (sample size, prospective data 

recording, etc.) and definitions of covariates, endpoints, and statistical methods. 

Furthermore, revision of the CONSORT statement could increase the transparency 

and transferability of RCT results, and thereby improve the applicability for clinicians 

using ICI treatment in daily cancer care.  

As demonstrated in this dissertation, PS remains the major prognostic OS factor in 

patients with NSCLC, and PS misclassification by the physicians may occur. Detailed 

analysis of factors contributing to poor PS could be performed and a more nuanced 

and standardised PS evaluation should be developed and validated. Afterwards, 

interventions to improve the outcome for poor PS patients should be prioritized. 

Improvement of the DLCR according to oncology data and indicators is warranted, 

and this work is prioritized and ongoing. Furthermore, the cross-regional and cross-

sectorial health IT infrastructure should be harmonized, which includes effortless data 

sharing between the EHRs and the RKKP. This could partly be facilitated by 

structured real-time registration of clinical, molecular, and patient-reported outcomes 

and quality of life data in EHRs for both clinical and research use.  

Investigation of predictive ICI biomarkers including resistance biomarkers should be 

ongoing. The biologically relevant gene expression signatures should be validated in 

future larger studies. Comparison of gene expression signatures in early and advanced 

stage NSCLC, metastatic and primary lesions, and pre- and post-treatment biopsies 

may add knew knowledge to the biological mechanisms of ICI response and 

resistance. Furthermore, future biomarker studies should consider the daily clinical 

practice according to the intention-to-treat patient populations based on 

national/international treatment guidelines. However, in order to obtain sufficient 

biological material for multiple biomarker-testing in routine cancer care and for 

concomitant biomarker research, the diagnostic work-up for patients with advanced 

NSCLC should be optimized. Additionally, comparison with control cohorts should 

be considered in order to distinguish between prognostic factors in NSCLC and 

predictive biomarkers for ICI efficacy.
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Simple Summary: The expected change in overall survival (OS) in patients with advanced non-small
cell lung cancer (NSCLC) after the clinical implementation of immune checkpoint inhibitor therapy
(ICI) has not been substantially investigated in large real-world cohorts outside randomized con-
trolled trials (RCTs). In this nationwide study, we compared OS before and after the implementation
of ICI and found that 3-year OS tripled from 6% to 18%. Patients receiving ICI had a lower OS than
demonstrated in RCTs, except for patients with performance status (PS) 0. More than a fifth of the
patients progressed early within the first six ICI cycles. Adverse prognostic factors were PS ≥ 1 and
metastases to the bone and liver.
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Abstract: Background The selection of patients with non-small cell lung cancer (NSCLC) for immune
checkpoint inhibitor (ICI) treatment remains challenging. This real-world study aimed to compare
the overall survival (OS) before and after the implementation of ICIs, to identify OS prognostic
factors, and to assess treatment data in first-line (1L) ICI-treated patients without epidermal growth
factor receptor mutation or anaplastic lymphoma kinase translocation. Methods Data from the
Danish NSCLC population initiated with 1L palliative antineoplastic treatment from 1 January 2013
to 1 October 2018, were extracted from the Danish Lung Cancer Registry (DLCR). Long-term survival
and median OS pre- and post-approval of 1L ICI were compared. From electronic health records,
additional clinical and treatment data were obtained for ICI-treated patients from 1 March 2017
to 1 October 2018. Results The OS was significantly improved in the DLCR post-approval cohort
(n = 2055) compared to the pre-approval cohort (n = 1658). The 3-year OS rates were 18% (95% CI
15.6–20.0) and 6% (95% CI 5.1–7.4), respectively. On multivariable Cox regression, bone (HR = 1.63)
and liver metastases (HR = 1.47), performance status (PS) 1 (HR = 1.86), and PS ≥ 2 (HR = 2.19) were
significantly associated with poor OS in ICI-treated patients. Conclusion OS significantly improved
in patients with advanced NSCLC after ICI implementation in Denmark. In ICI-treated patients,
PS ≥ 1, and bone and liver metastases were associated with a worse prognosis.

Keywords: real-world evidence; cancer immunotherapy; immune checkpoint inhibitors; anti-PD-1;
first-line treatment; non-small cell lung cancer; advanced lung cancer; clinical prognostic factors;
overall survival; Danish registry

1. Introduction

Lung cancer remains the leading cause of cancer-related death worldwide; in Den-
mark, lung cancer is one of the most common cancer types with an annual incidence of
approximately 5000 cases [1]. Non-small cell lung cancer (NSCLC) accounts for more than
80% of the cases; most Danish patients present with stage IIIB–IV disease at diagnosis
and have poor 5-year survival rates of 3% [2]. During the past 5 years, treatment with
immune-checkpoint inhibitors (ICIs) has transformed the advanced NSCLC treatment
landscape. Improved OS was observed in patients receiving ICIs in the second or later
lines of treatment [3–5]. Furthermore, in the first-line (1L) randomized controlled trials
(RCTs), KEYNOTE-024 and KEYNOTE-042, the median overall survival (mOS) improved
to 26.3 and 20 months with ICIs compared to 14.2 and 12.2 months with chemotherapy
(CTx), respectively [6–8]. These results led to the approval of 1L ICI treatment in Denmark
on 1 February 2017. Programmed Death-Ligand 1 (PD-L1) is currently used as a predictive
biomarker for ICI treatment. PD-L1 ≥ 50% is the cut-off for 1L ICI monotherapy based on
RCTs that enrolled patients with different PD-L1 cut-offs [5]. However, the efficacy of ICIs
in highly selected patients included in the RCTs may not be reproducible in patients treated
in a routine clinical setting because of the impact of patient-, provider-, and system-related
factors [9,10]. Therefore, real-world studies (RWS) on ICIs in consecutively treated patients
have focused on patient-related factors (age, Eastern Cooperative Oncology Group (ECOG)
performance status (PS) ≥ 2, and brain metastases) [11]. These studies indicate that patients
aged > 70 years have an mOS comparable to that of younger patients [12]. In addition,
patients with brain metastases have an mOS comparable to that of patients without brain
metastases [13,14]. By contrast, PS ≥ 2 has been associated with significantly reduced
mOS, independent of treatment line, and a systematic review demonstrated a pooled mOS
hazard ratio (HR) of 2.72 compared to PS 0–1 [15,16]. RWS indicate significantly reduced
response rates and impaired mOS in patients with bone metastases (BoM) compared to
those without [17,18]. This suggests a reduced ICI effect in patients with BM; however,
more data from RCTs and larger RWS are warranted. The expected change in overall
survival (OS) in patients with advanced NSCLC after the clinical implementation of ICIs
has only been sparsely investigated [19,20].
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This nationwide RWS aimed to compare the OS before and after the implementation
of 1L ICI in patients with advanced NSCLC without epidermal growth factor receptor
(EGFR) or anaplastic lymphoma kinase (ALK) molecular alterations. Furthermore, the aim
was to uncover prognostic factors for OS and report on treatment data in patients treated
with 1L ICI.

2. Material and Methods

2.1. Patients

2.1.1. Cohorts from the Danish Lung Cancer Registry (DLCR)

The DLCR, a part of the Danish Clinical Quality Program (National Clinical Registries),
includes data automatically transferred from other national registries [21,22]. From the
DLCR, baseline demographics and clinical data were extracted for patients with NSCLC,
without EGFR/ALK molecular alterations, who started 1L palliative antineoplastic treat-
ment from 1 March 2013 to 1 October 2018 (n = 6890) (Figure 1; Figure S1). This cohort
was separated into a DLCR pre-approval cohort, comprising patients who started treatment
before the approval of ICIs in any line (1 March 2013 to 1 August 2014; n = 1658), and a
DLCR post-approval cohort, comprising patients who started treatment after the approval
of 1L ICI in Denmark (1 March 2017 to 1 October 2018; n = 2055). To minimize the impact
of second-line ICI (implemented in Denmark in September 2015), patients who started
1L treatment between 2 August 2014 and 28 February 2017 (n = 3177), were excluded
(Figure 1).

Figure 1. Flowchart showing the generation of the Danish Lung Cancer Registry (DLCR) cohorts
before and after the approval of immune checkpoint inhibitors (ICIs). Treatment data from the
electronic health records (EHRs) were applied on the DLCR post-approval cohort to divide patients
into the DLCR-chemotherapy (CTx) and DLCR-ICI cohorts. Due to missing and inaccurate data in the
DLCR, 97 ICI-treated patients identified from institutional records were not registered in the DLCR.
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2.1.2. ICI Cohort Identified from Electronic Health Records (EHRs)

Data on PS and metastatic sites, and antineoplastic treatment details are lacking in
the DLCR. To obtain these data on the 1L ICI-treated patients, the nationwide ICI cohort
of consecutive patients initiating 1L ICI-treatment between 1 March 2017 and 1 October
2018 (n = 579) in all oncology departments administering ICIs in Denmark (n = 11) was
identified. EHRs were reviewed in order to obtain clinical and treatment data on the
ICI-treated patients.

2.1.3. Matching of the DLCR Post-Approval Cohort and the EHR-Identified ICI Cohort

Stratification according to systemic antineoplastic treatment in the DLCR post-approval
cohort was accomplished by matching with the EHR-identified ICI cohort. A match of 83%
was observed, and the ICI-treated patients in the DLCR post-approval cohort were identified
(DLCR-ICI cohort, n = 482). Thus, 97 patients identified from institutional records were not
included in the DLCR post-approval cohort (mismatch; Figure 1). According to the national
treatment guidelines at that time, the standard 1L treatment of the remaining patients in
the DLCR post-approval cohort was platinum-doublet CTx (DLCR-CTx cohort; n = 1573)
(Figure 1).

Hence, two different ICI cohorts were identified. The DLCR-ICI cohort that was used
in the analyses comparing the OS before and after the implementation of 1L ICI, and the
EHR-identified ICI cohort that was used in the detailed analyses of ICI-related clinical
outcomes and treatment data.

2.2. Data Management of the EHR-Identified ICI Cohort

Due to our study definition of 1L treatment (first palliative treatment after NSCLC
diagnosis or at relapse ≥ 6 months after curatively intended treatment), 12 patients (2%)
received nivolumab (3 mg/kg every 2 weeks). ICI doses were prescribed according to
Danish guidelines at the time, with a fixed pembrolizumab dose at 200 mg or 2 mg/kg
every 3 weeks for a maximum of 2 years. Individual ICI dose intensities (mg/kg/time)
were not recorded [23]. The reasons for ICI discontinuation were recorded, and the types
of immune-related adverse events (irAEs) leading to ICI discontinuation were recorded.
Additionally, hospitalization due to irAEs was recorded as a dichotomous variable (yes/no).
Radiologic assessments according to the Response Evaluation Criteria in Solid Tumors
were not consistently available. Therefore, the date of disease progression was defined
as the date of radiologically-verified progressive disease (PD). If no radiological PD was
evident, the date of PD was defined as the first clinical evidence of PD leading to ICI
discontinuation. The index date was defined as the date of the first ICI administration. For
patients still alive, the censoring date was 1 March 2020, and the date of last follow-up was
defined as the last EHR-documented patient contact. Time-to-event measures were OS,
progression-free survival (PFS), and time to treatment discontinuation (TTD).

2.3. Statistical Methods

2.3.1. The DLCR Cohorts

The chi-square test was used to test for differences in categorical baseline characteris-
tics between the pre- and post-approval cohorts, similarly to the DLCR-CTx and DLCR-ICI
cohorts. The TNM stage was not considered due to the large proportion of missing values
in the DLCR. Kaplan–Meier (KM) estimates were used to assess OS, and the log-rank test
was used to compare the estimated survival curves.

2.3.2. The EHR-Identified ICI Cohort

KM estimates were used to assess OS, PFS, and TTD, and log-rank tests were used
to test for differences according to baseline characteristics. In the survival analyses, the
Charlson Comorbidity Index Score (CCIS) was categorized as 0–1 and ≥2. Smoking status
was excluded from the analyses due to a limited number of “never smokers” and the
heterogenous smoking patterns in the “former smoking” group. TNM stage was excluded
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as a covariate from the survival analyses because of its interaction with metastatic sites.
The remaining baseline characteristics were included as covariates and, for each of them,
the assumption of proportional hazard function was assessed. Since the ECOG PS violated
the assumption, weighted univariable and multivariable Cox regressions were used [24].
Multivariable Cox regression analysis was extended with an interaction between sex and
histopathology. Survival analyses were not adjusted for age-related background mortality.
The median follow-up was calculated using the reverse KM estimate.

All analyses were performed using R version 4.0.2 (R Core Team, Vienna, Austria) [25].
The survival- and ggsurvplot-packages were used to construct the KM estimates, and the
coxphw package was used to perform the weighted Cox regressions.

3. Results

3.1. The DLCR Cohorts

3.1.1. Baseline Characteristics

Comparing baseline characteristics between the DLCR pre-approval (n = 1658) and
post-approval (n = 2055) cohorts showed a significant increase in the median age (from 68
to 70 years, p < 0.0001) (Table S1). Compared to the pre-approval cohort, the post-approval
cohort comprised a significantly higher proportion of female patients (50.2% vs. 46.9%,
p = 0.05) and adenocarcinomas (58.8% vs. 53.3%, p < 0.0001) (Table S1). Additionally, signif-
icant differences in TNM stage was found (p < 0.0001) before and after the implementation
of ICIs; however, large differences in missing values were also observed (the post-approval
cohort n = 246, the pre-approval cohort, n = 69) (Table S1). No differences in CCIS were
found (Table S1).

The DLCR-ICI cohort (n = 482) had a larger proportion of female patients than the
DLCR-CTx cohort (n = 1573) (58.3% vs. 47.7%, p < 0.0001) (Table S2). Significant differences
were found in the distribution of NSCLC histopathology, with a higher proportion of squa-
mous cell carcinomas in the DLCR-CTx cohort, and higher proportions of adenocarcinomas
and “other” in the DLCR-ICI cohort (Table S2).

3.1.2. OS before and after the Implementation of ICIs

Significant differences were seen in OS between the DLCR cohorts (p-value < 0.0001),
with notable differences in mOS, and 1-, 2-, and 3-year survival rates (Figure 2 and Table 1).
The greatest survival improvement was observed in patients receiving ICIs with a mOS
increase from 7.8 months (95% CI 7.4–8.2) to 19.0 months (95% CI 16.0–22.0), 1-year OS rate
from 31% to 64%, 2-year OS rate from 12% to 42% and 3-year OS rate from 6% to 29%.

Table 1. Survival of patients with advanced NSCLC treated with systemic antineoplastic treatment before and after the
introduction of ICIs.

DLCR Cohorts n (%)
mOS (Months)

(95% CI)
1-Year OS (%)

(95% CI)
2-Year OS (%)

(95% CI)
3-Year OS (%)

(95% CI)

Pre-approval cohort 1658 (100) 7.8 (7.4–8.2) 31 (29–33) 12 (10–14) 6 (5–7)
Post-approval cohort 2055 (100) 11.0 (10.2–11.9) 48 (46–50) 27 (25–29) 18 (16–20)
CTx 1573 (77) 9.5 (8.9–10.3) 43 (40–45) 22 (21–25) 14 (12–17)
ICI 482 (23) 19.0 (16.0–22.0) 64 (60–68) 42 (38–47) 29 (24–35)

Median overall survival (mOS), 1-, 2-, and 3-year overall survival (OS) rates with 95% confidence interval (CI) before and after the approval
of ICI treatment (the pre-approval cohort 1 January 2013–1 August 2014 and the post-approval cohort 1 March 2017–1 October 2018).
NSCLC; non-small cell lung cancer; DLCR, Danish Lung Cancer Registry; n, number of patients; CTx, chemotherapy; ICI, immune
checkpoint inhibitor.

3.2. The EHR-Identified ICI Cohort

3.2.1. ICI Efficacy

The baseline characteristics of the EHR-identified ICI-treated patients (n = 579) are
presented in Table 2.
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Figure 2. Overall survival (OS) of patients in Denmark before and after the approval of first-line
immune checkpoint inhibitor (ICI). The survival of patients treated with chemotherapy (CTx) before
the approval (pre) was compared to survival of patients treated with either CTx or ICI after the
approval (post (CTx) and post (ICI)). DLCR, Danish Lung Cancer Registry.

Table 2. Baseline characteristics, ICI cohort.

Baseline Characteristics n (%)

All patients 579

Age, median years (range) 70 (45–88)
<75 441 (76)
≥75 138 (24)

Sex
Male 246 (42)
Female 333 (58)

ECOG performance status
0 194 (34)
1 295 (51)
≥2 90 (15)

CCIS
0 (none) 217 (37)
1 (mild) 169 (29)
2 (moderate) 103 (18)
3+ (severe) 90 (16)

Smoking status
Current 189 (33)
Former 343 (59)
Never 26 (4)
Unknown 21 (4)
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Table 2. Cont.

Baseline Characteristics n (%)

TNM stage and metastatic sites
III 109 (19)
IV a 470 (81)
Brain 38 (7)
Bone 162 (28)
Liver 63 (11)
Adrenal 86 (15)
Distant lymph nodes 174 (30)

NSCLC histopathology
Adenocarcinoma 409 (71)
Squamous cell carcinoma 135 (23)
Other b 35 (6)

PD-L1
Negative
≥1% and <50%

3 (0.5)
20 (3.5)

≥50% 552 (95.3)
Unknown 4 (0.7)

Prior treatment with curative intention
Surgery ± adj. CTx 39 (7)
CRT 46 (8)
Surgery and CRT 16 (3)
None 478 (82)

Prior palliative RT c

Yes 71 (12)
No 508 (88)

a Patients may be registered with more than one metastatic site; b ‘Other’ includes NSCLC NOS (not otherwise
specified) and adenosquamous carcinoma; c Prior palliative radiotherapy for NSCLC (primary lesion or metastatic
site). n, number of patients; ECOG, Eastern Cooperative Oncology Group; CCIS, Charlson Comorbidity Index
Score; TNM, tumor-node-metastasis classification of malignant tumors; NSCLC, non-small cell lung cancer; PD-L1,
programmed death-ligand 1; adj. CTx, adjuvant chemotherapy; CRT, chemoradiotherapy; RT, radiotherapy.

ICI was administered following the primary diagnosis in 477 (82%) patients. The
remaining patients received ICI after curatively intended surgery +/− adjuvant CTx
(n = 39; 7%), chemoradiotherapy (CRT) (n = 46; 8%), or both (n = 16; 3%). PD-L1 was
unknown or <50% in 27 patients (4.7%). The treatment data and reasons for treatment
discontinuation are shown in Table 3.

At the censoring date, 38 patients (7%) were still on ICI treatment. The median follow-
up period was 27.2 months (95% CI 26.7–28.2), and the median TTD was 4.8 months (95%
CI 4.1–5.5) (Table S3).

PD was the most common reason for ICI discontinuation (n = 250, 46%), and half
of the patients discontinued ICIs within six cycles (Figure S2). More reasons for ICI
discontinuation were irAEs only (28%), poor PS (11%), completion of 2 years ICI (7%), and
“other reasons” (9%) (Table 3). Following ICI treatment, systemic antineoplastic treatment
was administered to 179 patients (33%). Of these patients, 28% received ≥ 2 treatment lines.

3.2.2. Clinical Outcomes

The mOS was 18.3 months (95% CI 16.0–21.3); 15.2 (95% CI 13.0–18.3) in male and 21.5
(95% CI 18.0–25.1) in female patients. The mOS for patients with PS 0 was 28 months (95%
CI 21.5–NR) compared to the 14.6 (95% CI 12.7–19.0) and 12.8 months (95% CI 7.6–16.1) in
patients with PS 1 and PS ≥ 2, respectively. In patients with BoM, the mOS was 12.0 months
(95% CI 9.5–14.9) compared to the 21.5 months (95% CI 19.0–24.9) in patients without. The
mPFS was 8.2 months (95% CI 7.2–9.3); 7.1 (95% CI 6.0–8.5) in male and 8.8 (95% CI 7.9–11.8)
in female patients. The mPFS for patients with PS 0 was 11.0 months (95% CI 8.5–13.9)
compared to the 7.7 (95% CI 6.4–8.8) and 6.0 (95% CI 3.3–8.7) in patients with PS 1 and
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PS ≥ 2, respectively. In patients with BoM, the mPFS was 5.7 months (95% CI 4.4–7.8)
compared to the 9.4 months (95% CI 8.1–12.0) in patients without.

Table 3. ICI treatment and irAEs.

Treatment Characteristics n (%)

All patients 579
Median number of cycles (range) 7 (1–41)
Median days on treatment a (range) 127 (1–826)
Ongoing ICI treatment b 38 (7)
ICI discontinuation 541 (93)

ICI discontinuation due to c:
PD 250 (46)
Poor performance status 62 (11)
Two years of ICI d 39 (7)
IrAEs e 170 (31)
Pneumonitis 41 (8)
Hepatitis 31 (6)
Skin 10 (2)
Endocrinopathy 18 (3)
Diarrhea/colitis 37 (7)
Other f 52 (10)
IrAE only g 150 (28)
Other reasons 51 (9)

Hospitalization due to irAE 135 (23)
Grade 5 toxicity (death) 12 (2)

a Median time of ICI treatment = time to treatment discontinuation (TTD). b At date of censoring. c Each patient
could be registered with more than one cause of treatment discontinuation. d Patients who received at least
2 years of ICI treatment. e Each patient could be registered with more than one type of irAE as a cause of
treatment discontinuation. Percentage (in parentheses) describes the proportion of patients who stopped ICI
because of the specific irAE compared to all patients who discontinued ICI (n = 541) f “Other” are not specified
irAEs. g Proportion of patients with irAE as the only cause of treatment discontinuation. ICI, immune checkpoint
inhibitor; irAE, immune-related adverse event; n, number of patients; PD, progressive disease.

For information on mOS and mPFS according to all baseline characteristics see
Table S5.

In patients with PS 0–1, the estimated 3-year OS rate was 33% (95% CI 28–39) compared
to the 25% (95% CI 16–39) in patients with PS ≥ 2. Furthermore, the mTTD for patients
with PS ≥ 2 was 2.8 months (95% CI 1.4–4.2) (Table S3).

3.2.3. Prognostic Clinical Factors

KM estimates and log-rank tests showed that the OS was significantly reduced in male
patients and in patients with PS ≥ 1, BoM, and/or liver metastases, and in patients who
had received prior palliative RT (Table S4 and Figure S3). Baseline metastases in the brain,
adrenal glands, and/or distant lymph nodes, age ≥ 75 years, CCIS ≥ 2, or prior curative
treatment for NSCLC did not significantly affect OS (Table S5 and Figure S3). In the multi-
variable Cox regression analysis, PS 1 (HR = 1.86; 95% CI 1.44–2.39; p < 0.001) and PS ≥ 2
(HR = 2.19; 95% CI 1.5–3.18; p < 0.001), relative to PS 0, BoM (HR = 1.75; 95% CI 1.36–2.23;
p < 0.001), and liver metastases (HR = 1.44; 95% CI 1.0–2.07; p = 0.05) remained indepen-
dent of poor prognostic factors (Figure 3). Compared to patients with primary metastatic
disease, patients with a relapse after prior curative treatment (surgery ± adjuvant CTx,
curative CRT, or surgery + CRT) did not have a significantly improved OS.
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Figure 3. Weighted multivariable Cox regression analysis with forest plots showing average hazard ratios (HR) according to
baseline characteristics. ECOG PS, European Cooperative Oncology Group performance status; CCIS, Charlson Comorbidity
Index Score; RT, radiotherapy; CTx, chemotherapy; CRT, chemoradiotherapy.

In the interaction analysis of sex and histopathology, male patients with squamous cell
carcinoma had significantly poorer survival than those with adenocarcinoma (HR = 1.70;
95% CI 1.18–2.47; p = 0.01). Univariable Cox regression results are given in Table S5.

4. Discussion

This nationwide Danish study was based on a consecutive cohort and demonstrated
a significantly improved 3-year OS rate of 29% in 1L ICI-treated NSCLC patients com-
pared to the 6% in those treated with 1L CTx before ICI implementation. However, more
patients with PS ≥ 2 may have been treated with 1L CTx than 1L ICI as the Danish ICI
recommendation applies to patients with PS 0–1 only. To our knowledge, this is the first
RWS of patients with NSCLC without EGFR/ALK molecular alterations that included
both large ICI cohorts and comparative cohorts since ICI treatment was implemented. An
increase in OS in CTx-treated patients was also observed, possibly due to subsequent ICI
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treatment, earlier diagnosis (including potential lead time bias), stage migration owing
to improved staging diagnostics, improved palliative care, changes in histopathological
subtypes, advances in molecular testing, and sex distribution over time [26,27]. Those
with PS ≥ 2 accounted for 15% of the ICI cohort in our RWS; however, these patients were
not included in previous RCTs. This may partly explain the lower 3-year OS rate and
mOS compared to those obtained in the KEYNOTE-024 and KEYNOTE-042 trials [6–8].
Furthermore, the poor OS of ICI-treated PS 1 patients in our study, could reflect a possible
misclassification of PS 2 patients as PS 1 patients because 1L ICI was approved only for
patients with PS 0-1. This issue complicates the comparison of PS data with other studies;
however, this potential bias is not addressed in other RWS. In contrast, the mOS of PS 0
patients in our study was 28 months, comparable to that of patients in the KEYNOTE-024
study [6,7]. In line with other ICI RWS, we found PS ≥ 2 and liver metastases to be poor
prognostic factors for OS [15–18,28]. Generally, the population of patients with PS 2 is het-
erogeneous and has worse clinical conditions due to comorbidities, higher tumor burden,
or both [28,29]. Patients with BoM accounted for 28% in our study and had significantly
worse mOS compared to patients without BoM. BoM has not been reported in RCTs and
is rarely reported in other RWS [17,18]. However, this information is essential because
the immune and skeletal systems are closely linked; for example, the receptor activator
of nuclear factor-κB ligand (RANKL) stimulation suppresses T-cell killing and enhances
immunosuppression in the bone tumor microenvironment [30,31]. Unfortunately, our RWS
did not include information on the administration of bone-modifying agents. Clinical
studies of the RANKL-inhibitor, denosumab, combined with ICIs are ongoing [32,33]. In
our study, prior curative treatment did not significantly affect OS. However, tumor burden
and the site of metastases at relapse, as well as the treatment strategy for oligometastatic
relapse could affect the OS in these patients.

The majority of patients in our study were female (58%), as opposed to other RCTs
and RWS, which reflects the higher proportion of female smokers in Denmark compared to
that in other countries [34,35]. Furthermore, the proportion of female patients with NSCLC
increased during the observed period.

A significant challenge with antineoplastic treatment (including ICIs) may be primary
tumor resistance to treatment. In our study, 22% of patients experienced PD within six
ICI cycles (i.e., 4.2 months of treatment). Various factors such as different PD-L1 intervals,
inter- and intra-tumoral PD-L1 heterogeneity, host-immune-related mechanisms, and
unidentified mutations such as STK11, along with currently unknown factors are possible
explanations for early PD [36–38]. Those patients could potentially derive benefit from
other 1L treatment options. Furthermore, pseudoprogression could be misinterpreted
as PD in some cases. To optimize response evaluation in ICI-treated patients, the use of
immune (i) RECIST could be implemented as a standard in the real-world setting as well
as in the RCTs [39]. Additionally, a standardization of response evaluation could improve
the comparability of ICI efficacy in RWS and RCTs.

RWS provide information on effectiveness in everyday clinical practice as they include
patient subgroups not reported or included in RCTs [9,11]. Furthermore, new hypotheses
can be generated from the RWS results. A major strength of this study is the substantial
nationwide cohort, which provides new information on large consecutive subgroups seen
in daily clinical practice, such as patients with PS ≥ 2, moderate-to-severe comorbidity,
organ metastases, and age > 75 years. Furthermore, in the Danish Healthcare System,
all patients have equal and free access to therapy, including ICIs (within the framework
of national guidelines), thus lowering the risk of selection bias. The limitations of our
study, and particularly related to the CTx-cohorts, are similar to those of other RWS with a
retrospective design, which is the lack of data completeness and data accuracy.

Based on our results, some main questions still need to be answered to optimize the
future ICI treatment of patients with advanced NSCLC. Primary resistance mechanisms in
patients with early PD need to be further explored. In future RCTs, a higher representation
of patients from daily clinical practice, and information on known prognostic factors such as
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metastatic load and location, is warranted. Prospective ICI investigations should focus on:
differences between RCTs and routine care; complementary tools to assess patients’ daily
living activities, frailty, and reasons leading to poor PS; possible differences between male
and female patients. Furthermore, the optimal registration and research use of real-time
clinical, molecular, and patient-reported data need to be established.

5. Conclusions

In this comprehensive nationwide study, we demonstrated that both the mOS and the
long-term survival of real-world patients with advanced EGFR- and ALK negative NSCLC,
treated with systemic antineoplastic treatment, has improved since the implementation of
ICIs in Denmark. The survival of ICI-treated patients was lower than demonstrated in the
RCTs, except for PS 0 patients. More than every fifth patient showed early PD within six
cycles of ICI, and this group of patients especially may benefit from alternative treatments,
if they could be identified upfront. PS ≥ 1, and bone and liver metastases were found
to be significantly associated with worse mOS. Sex, CCIS, and age ≥ 75 years did not
significantly affect the mOS.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13194846/s1, Figure S1: Criteria applied to the DLCR dataset, Figure S2: ICI treatment
discontinuation due to progressive disease, Figure S3: Kaplan–Meier curves for the EHR-identified
ICI cohort according to age, bone metastases, performance status, and sex and histopathology, Table
S1: Comparison of baseline characteristics in the DLCR pre- and post-approval cohorts, Table S2:
Comparison of baseline characteristics in the post-approval DLCR-CTx and DLCR-ICI cohorts, Table
S3: Time to treatment discontinuation (TTD), Table S4: Median OS and PFS according to selected
baseline characteristics of ICI-treated patients, Table S5: Univariable Cox regression analysis.
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ABSTRACT

Background: Immune checkpoint inhibitors (ICIs) are implemented as standard treatment for patients
with advanced non-small cell lung cancer (NSCLC) in first-line and subsequent-line treatment.
However, certain subgroups such as patients with older age, poor performance status (PS), and severe
comorbidity are underrepresented in the randomized controlled trials (RCTs). This study aimed to
assess overall survival (OS), treatment data, and clinical features affecting second- or subsequent-line
ICI efficacy in an unselected, Danish, nationwide NSCLC population.
Methods: Patients with advanced NSCLC who started nivolumab or pembrolizumab as second-line or
subsequent-line treatment between 1 September 2015, and 1 October 2018, were identified from insti-
tutional records of all Danish oncology departments. Clinical and treatment data were retrospectively
collected. Descriptive statistics and survival analyses were performed.
Results: Data were available for 840 patients; 49% females. The median age was 68 years (19% were
�75 years), 19% had PS �2, and 36% had moderate to severe comorbidity. The median OS (mOS) was
12.2months; 15.1months and 10.0months in females and males, respectively. The median time-to-treat-
ment discontinuation (mTTD) and median progression-free survival (mPFS) was 3.2 and 5.2months,
respectively. Patients with PS �2 had a mOS of 4.5months, mTTD of 1.1month, and mPFS of 2.0months.
In multivariable Cox regression analysis, male sex (HR ¼ 1.35, 95% CI 1.11–1.62), PS >0 (PS 1, HR ¼ 1.88,
95% CI 1.52–2.33; PS �2, HR ¼ 4.15, 95% CI 3.13–5.5), liver metastases (HR ¼ 1.72, 95% CI 1.34–2.22),
and bone metastases (HR ¼ 1.27, 95% CI 1.03–1.58) were significant poor prognostic OS factors.
Conclusions: Danish real-world patients with advanced NSCLC treated with second- or subsequent-
line ICI had an OS comparable to results from RCTs. Women, frail and older patients constituted a
higher proportion than in previous RCTs. Clinical features associated with poor OS were male sex, PS
�1 (in particular PS �2), bone-, and liver metastases.
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Background

Lung cancer is the leading cause of cancer-related mortality

and morbidity worldwide, with a five-year survival rate rang-

ing from 6% in advanced stages to 59% in early stages [1].

In the Nordic countries, the lung cancer mortality has

declined since the 1980s, due to improved diagnostics and

treatment strategies [2]. The latter include the implementa-

tion of immune checkpoint inhibitors (ICIs) as standard ther-

apy, and despite the rapidly increasing use of first-line ICI as
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monotherapy or in combination with chemotherapy, some

patients are ineligible for these regimens and may still be

offered second-line ICI treatment [3–11]. The pivotal random-

ized controlled trials (RCTs) had strict inclusion and exclusion

criteria, not comparable to a real-world setting; thus, select-

ing patients for ICI treatment in a daily clinical setting

remains challenging due to the lack of evidence in certain

subgroups. These subgroups include patients with an old

age, poor Eastern Cooperative Oncology Group (ECOG) per-

formance status (PS), and severe comorbidity. Furthermore,

the sex distribution in most international RCTs and real-world

studies (RWS) is unequal, and thus less representative of the

Nordic population, where NSCLC incidences are equal in

men and women [2,12–14]. The median age of lung cancer

patients in RCTs is 61 years; however, the median age in

newly diagnosed Nordic patients with NSCLC is approxi-

mately 70 years [3–5,15,16]. Thus, older patients and particu-

larly patients aged �75 years, are greatly underrepresented

in RCTs [15,17]. Lung cancer patients with PS �2 also consti-

tute a substantial proportion of patients receiving oncologic

treatment in the daily clinical setting [18]. Nevertheless, frail

patients with poor PS are typically underrepresented or not

included in RCTs. Organ metastases are present in more than

50% of lung cancer patients at the time of diagnosis, and

metastases to the brain, liver, and bone have been associ-

ated with impaired overall survival (OS) [1,19]. Moreover,

comorbidity is frequent in lung cancer patients, and may

affect their treatment and clinical outcome [20–22]. However,

neither level of comorbidity nor location of metastatic sites

are reported in the RCTs [3–5].

The primary aim of the present study was to report on OS

in a Danish, comprehensive, consecutive population with

advanced NSCLC, treated with ICIs in second-line or subse-

quent-line treatment. This implies a special attention to, and

a comparison with RCTs of, the potential predictive or prog-

nostic clinical features characterizing the subgroups of

patients who are underrepresented in RCTs. These include

those with higher age, poor PS, and more comorbidity. The

secondary aims were to assess reasons for ICI discontinuation

(including immune-related adverse events (irAEs)), treatment

duration, and progression-free survival (PFS).

Methods

Study design and patients

A retrospective, nationwide real-world study (RWS) approved

by the Danish Patient Safety Authority was conducted.

Consecutive patients with NSCLC who received nivolumab or

pembrolizumab in second-line or subsequent-line of pallia-

tive treatment between 1 September 2015, and 1 October

2018, were identified from institutional records. Data were

collected from all (n¼ 11) Danish oncology departments.

Data collection and data management

Data were manually extracted from the electronic health

record (EHR) systems. Clinical data were collected and stored

in local databases at every oncology department. Covariates

from the local databases were aligned according to variable

names, values, and labels, and data were gathered into one

dataset. Furthermore, data quality control was performed for

each covariate. If the PS was described as a range, such as

PS 1–2, in the EHR, the highest value was captured [18].

Specific irAEs causing ICI discontinuation, and hospitalization

and death due to irAEs were recorded. The disease stage

and metastastic sites at ICI treatment initiation were retro-

spectively evaluated by reviewing baseline computed tomog-

raphy (CT) scan reports.

Variables and endpoints

Baseline characteristics at ICI initiation included sex, age, PS,

comorbidity according to Charlson Comorbidity Index Score

(CCIS), smoking status, histopathological NSCLC subtype,

TNM stage, metastatic locations, programmed death-ligand 1

(PD-L1) tumor proportion score (TPS), and epidermal growth

factor receptor (EGFR) mutation status. When calculating the

CCIS, the actual lung cancer diagnosis was excluded.

Treatment data included the ICI drug, ICI start- and stop

date, number of cycles administered (one cycle equals one

administered dose), treatment line, and reasons for ICI dis-

continuation. These reasons were categorized as progressive

disease (PD), poor PS, irAEs, and “other” reasons.

Hospitalization and death due to irAEs were also recorded.

The irAE types that were present at ICI discontinuation were

recorded and classified as pneumonitis, hepatitis, skin tox-

icity, endocrinopathy, diarrhea/colitis, and ‘other toxicity’.

Treatment could be discontinued for more than one reason,

and more than one type of irAE could be present at treat-

ment discontinuation. Patients received either nivolumab

3mg/kg every two weeks, pembrolizumab 2mg/kg every

3weeks, or pembrolizumab 200mg every three weeks.

Individual dose intensities (mg/kg/time) were not recorded

[23]. The dates of progression and death were obtained from

the EHRs. The progression date was defined as the date of

the first clinical evidence of progressive disease (PD) (clinical

examination leading to discontinuation of ICI) or radiological

PD as verified by a CT and/or magnetic resonance imaging

(MRI). The index date was the date of the first ICI administra-

tion, and the censoring date was 1 March 2020. The date of

treatment discontinuation was the date of the last ICI admin-

istration. For living patients, the last follow-up date was

defined as the date of the last patient contact in the EHRs.

The primary aim was to asses OS, including investigation of

predictive or prognostic clinical features. The secondary aims

were to assess reasons for ICI discontinuation, treatment dur-

ation, and PFS.

Statistical methods

To compare baseline characteristics between sexes and PS

groups, chi-square tests were used for the categorical varia-

bles, while the distributions of age were compared using

Wilcoxon rank-sum test. No correction for multiple testing

was performed. Kaplan–Meier (KM) estimates stratified by
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baseline variables and log-rank tests were used to assess OS,

time to treatment discontinuation (TTD) and PFS. The median

follow-up time was calculated using the reverse KM estimate.

To adjust for multiple covariates and potential confounders,

a multivariable Cox regression analysis was performed.

Initially, the assumption of proportional hazard functions was

assessed for each of the baseline categorical variables by vis-

ual inspection of the log-minus-log survival curves and for-

mally tested using the Grambsch-Therneau proportional

hazard test with survival times transformed by the KM esti-

mate. PS, bone-, liver-, adrenal- and distant lymph node

metastases, histopathology, and EGFR mutation status vio-

lated the proportional hazards assumption. Therefore, aver-

age hazard ratios were estimated by weighted Cox

regression [24]. Weighted univariable and multivariable Cox

regression models were used for analysis of the association

between OS and all the baseline categorical variables (except

for TNM stage). Comorbidities that were present in >5% of

the cases, were included in the weighted univariable Cox

regression analysis. For the KM estimate and Cox regressions,

CCIS was categorized as CCIS 0–1 and CCIS �2 [25].

A p-value of 0.05 was defined as the threshold of statis-

tical significance. All analyses were performed using R ver-

sion 4.0.2 (R Core Team, Vienna, Austria) [26]. The survival

package was used to assess the assumption of proportional

hazard functions, the ggsurvplot package for visualizing KM

estimates, and the coxphw package for the weighted Cox

regression analyses.

Results

Baseline characteristics

We identified 841 consecutive patients. No patients were lost

to follow up. A single patient harboring an ALK translocation

was excluded, leaving 840 patients with a median follow-up

time of 34.7months (95% confidence interval (CI) 33.2–35.9)

eligible for analysis.

The median age was 68 years, with 19% �75 years, and

5% �80 years. A total of 19% of the patients (n¼ 158) had

PS �2, 57% (n¼ 479) had PS 1, and 22% (n¼ 182) had PS 0.

PS was missing in 2% of the patients (n¼ 21). Distant meta-

stases were present in 86% of the patients. CCIS �2 was

observed in 36% (n¼ 301) of the patients. The prevalence of

specific comorbidities according to CCIS is summarized in

Supplementary Table 1. The baseline characteristics of the

patients are summarized in Table 1.

Male patients had a higher age (p¼ 0.001) and more

comorbidities (p< 0.0001) than females. Squamous cell carci-

nomas were more frequent among male (49%) than female

patients (23%) (p< 0.0001). Brain metastases were more

prevalent in women than in men (p< 0.0001)

(Supplementary Table 2).

Patients with baseline PS �2, compared to PS 0–1, con-

sisted of more male patients (58%, p¼ 0.046), and received

fewer nivolumab/pembrolizumab cycles (2/3 vs. 7/8)

(Supplementary Table 2).

ICI Treatment

At the censoring date, 99% (n¼ 831) had discontinued ICI.

ICI treatment characteristics are demonstrated in Table 2.

The median TTD (mTTD) was 3.2 (95% CI 2.8–3.6) months.

In patients with PS �2, the mTTD was 1.1 (95% CI 0.7–1.4)

month compared to 3.3 (95% CI 2.8–3.8) and 6.0 (95% CI

5.1–7.8) months in PS 1 and PS 0 patients, respectively.

Clinical outcomes

The mOS was 12.2 (95% CI 10.8–13.8) months, and the 1-

and 2-year OS rates were 50% (95% CI 47–54) and 30% (95%

CI 27–33), respectively (Table 3). The estimated three-year OS

rate was 20% (95% CI 17–23). The mOS was 15.1 and

10.0months in female and male patients, respectively. The

Table 1. Baseline characteristics.

Baseline characteristics n (%)

All patients 840 (100)
Sex

Male 432 (51)
Female 408 (49)

Age, median; range 68; 22�89
Age
<75 years 677 (81)
�75 years 163 (19)

ECOG PS
0 182 (22)
1 479 (57)
�2 158 (19)
Missing 21 (2)

Charlson Comorbidity Index Score (CCIS)
0 (no) 332 (40)
1 (mild) 207 (25)
2 (moderate) 154 (18)
�3 (severe) 147 (17)

Smoking status
Current 238 (28)
Former 535 (64)
Never 46 (6)
Unknown 21 (2)

TNM stage
III 116 (14)
IV 724 (86)

Metastatic sitesa

Brain 95 (11)
Bone 221 (26)
Liver 133 (16)
Adrenal 127 (15)
Distant lymph nodes 233 (28)

NSCLC histopathology
Adenocarcinoma 485 (58)
Squamous cell carcinoma 303 (36)
Otherb 52 (6)

EGFR mutation
No 537 (64)
Yes 25 (3)
Unknown 278 (33)

PD-L1 status
Negative 72 (9)
�1% and< 50% 233 (28)
�50% 290 (35)
Unknown 245 (29)

aPatients may be registered with more than one metastatic site.
b
‘Other’ includes NSCLC NOS (not otherwise specified) and adenosqua-
mous carcinoma.
n: number of patients; ECOG PS: Eastern Cooperative Oncology Group per-
formance status; NA: not available; TNM: tumor-node-metastasis classification
of malignant tumors; NSCLC: non-small cell lung cancer; EGFR: epidermal
growth factor receptor; PD-L1: programmed death-ligand 1.
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mOS for patients with PS �2 was 4.5months compared to

12.2 and 22.1months in patients with PS 1 and PS 0, respect-

ively (Table 3). The mPFS was 5.2 (95% CI 4.5–6.9) months

(Table 3), and 2.0months in patients with PS �2.

Prognostic clinical features

Kaplan-Meier estimates demonstrated that OS was reduced

in men (p< 0.0001), in patients with PS >0 (p< 0.0001), and

in patients with bone (p¼ 0.003) and/or liver metastases

(p< 0.0001) (Figure 1).

Age �75 years, comorbidity according to CCIS, and the

presence of brain metastases at ICI initiation were not signifi-

cantly associated with impaired OS (Supplementary Table 3).

In multivariable Cox regression analysis, male sex (HR ¼

1.35; 95% CI 1.11–1.62), liver metastases (HR ¼ 1.72; 95% CI

1.34–2.22), and bone metastases (HR ¼ 1.27; 95% CI

1.03–1.58) remained statistically significant poor prognostic

factors. Likewise did PS �2 (HR ¼ 4.15; 95% CI 3.13–5.50)

and PS 1 (HR ¼ 1.88; 95% CI 1.52–2.33) compared to PS 0.

Age �75 years (HR ¼ 0.99; 95% CI 0.8–1.23), and the pres-

ence of brain metastases at ICI initiation (HR ¼ 1.1; 95% CI

0.82–1.47) did not significantly affect OS (Figure 2). EGFR

mutation status and PD-L1 TPS were unknown in 33% and

29% of cases, respectively. PD-L1� 50% was associated with

an improved OS (HR ¼ 0.69; 95% CI 0.48–0.98).

Extension of the multivariable Cox regression with inter-

action between sex and histopathology demonstrated a sig-

nificantly poorer OS in patients with adenocarcinoma, if they

were male rather than female, while no difference in OS

were seen between sexes for patients with squamous cell

carcinoma (Supplementary Table 5).

Kaplan-Meier estimates demonstrated that factors associ-

ated with a poor PFS were male sex (p¼ 0.006), ECOG PS >0

(p< 0.0001), no history of smoking (p¼ 0.03), liver metasta-

ses (p< 0.0001), a positive EGFR mutation status (p¼ 0.004),

and PD-L1< 1% (p< 0.0001) (Supplementary Table 4).

Discussion

Several subgroups have been underrepresented in RCTs, and

therefore, focus is increasingly placed on the importance of

gathering clinically relevant data from RWS, which typically

represent a more unselected treatment population. However,

different global health care systems affect the populations

included in RWS. In Denmark, according to the Danish

Health Care Act, all patients are offered treatment according

to national treatment guidelines, irrespective of their income,

education, and residential and socioeconomic status, which

minimizes the risk of selection bias in Danish studies [27].

Treatment with ICIs is expensive and holds a potential risk of

causing severe irAEs. Thus, characterizing a large cohort of

real-life patients in detail may contribute with important

knowledge helping clinicians make more evidence-based

decisions on whether to offer patients ICI or not.

In this large nationwide NSCLC study of real-world ICI efficacy,

the mOS and the 1-year OS rate were comparable to results

from previous anti-PD-1 clinical trials of pretreated patients

[3–5,28,29]. An improved mPFS compared to results from the

RCTs, could be explained by differences in PFS definition [3–5].

Lung cancer incidence and mortality remain higher in

males than females in some countries [30,31]. However, in

agreement with the narrowing gap in the lung cancer inci-

dence between sexes in Nordic countries, half of the patients

in our study were females, as opposed to a lower proportion

reported in comparable RCTs and RWS [2,13,14]. In RCTs, ICI

significantly improved OS in both men and women com-

pared to chemotherapy, however, the benefit seemed to be

higher in men [7,13]. In this study, PS �2, higher CCIS, and

squamous cell carcinomas were more frequent in males as

compared to females. Despite adjusting for these factors,

male patients with adenocarcinomas had a worse OS than

female patients with adenocarcinomas.

In our study, the median age was 68 years, which is

5–7years older than patients included in the anti-PD-1 RCTs,

and more comparable to the age of real-world lung cancer

patients [3–5,15,16]. Especially data on patients aged �75 years

is lacking in RCTs. However, in our study they constituted 19%

of patients, compared to only 7%–8% in previous RCTs [3,4].

Even with this greater proportion of older patients, the mOS

was comparable to results from previous clinical trials and RWS,

Table 2. ICI treatment characteristics.

Treatment characteristics n (%)

All patients 840 (100)
Treatment line
2 536 (64)
3 205 (24)
4 68 (8)
�5 31 (4)

Treatment
Nivolumab 444 (53)
Pembrolizumab 396 (47)

Median number of ICI cyclesa; range
Nivolumab 6; 1–64
Pembrolizumab 6; 1–37

ICI treatment durationa;
Median days; range 98; 1–961
mTTD months; 95% CI 3.2; 2.8–3.6

Ongoing ICI treatmentb 10 (1)
ICI discontinuation due toc:
PD 461 (56)
Poor PS 126 (15)
irAEsd 179 (22)
Pneumonitis 47 (6)
Hepatitis 19 (2)
Skin toxicity 27 (3)
Endocrinopathy 15 (2)
Diarrhea/colitis 40 (5)
Other toxicity 51 (6)

irAEs onlye 150 (18)
Other reasonsf 145 (17)
Hospitalization due to irAEs 135 (16)
Death due to irAEs 8 (1)
aPatients with ongoing ICI treatment (n¼ 10) not included.
bAt date of censoring.
cEach patient could be registered with more than one cause of treatment-
discontinuation.
dEach patient could be registered with more than one type of irAE as a cause
of treatment-discontinuation.
eProportion of patients with irAE as the only cause of treatment
discontinuation.
f
‘Other reasons’ are not specified irAEs.
n: number of patients; ICI: immune checkpoint inhibitor; mTTD: median time
to treatment discontinuation; PD: progressive disease; PS: performance status;
irAEs: immune-related adverse events.
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as age did not significantly affect OS [3,4,28,29,32,33]. Our data

demonstrate that ICI should not be excluded as a treatment

option because of high chronological age.

As opposed to the RCTs, the proportion of PS �2 patients

in our study (19%) reflects the overall fraction of patients with

NSCLC and PS �2 [18]. Thus, compared to the RCTs, our study

included more frail and heavily pretreated patients, with more

than one third receiving third-line or further subsequent-line ICI

treatment [3–5]. Nevertheless, the mOS of patients with PS �2

was comparable to results from clinical trials, pooled analyses

and other RWS [28,29,34]. In contrast to this, the PePS2 study

assessed the efficacy of pembrolizumab in 60 patients with PS

�2, and reported a mOS of 12.1months in previously treated

patients [35]. However, since the mPFS was only 2.0months

and the mTTD was only 1.1month in our study, the clinical

benefit of ICIs is very limited in most of these patients. On the

other hand, we report a mOS of 22.1months in patients with

PS 0, which is comparable to the mOS of PS 0–1 patients

treated with first-line ICI in RCTs [6,36]. This illustrates that PS 0

patients may benefit particularly from ICIs, even when

Table 3. Overall and progression-free survival according to sex and performance status.

Survival mOS months (95% CI) mPFS months (95% CI) one-year OS rate % (95% CI) Two-year OS rate % (95% CI)

All patients 12.2 (10.8–13.8) 5.2 (4.5–5.9) 50 (47–54) 30 (27–33)
Male 10.0 (9.0–11.7) 4.4 (3.7–5.3) 44 (40–49) 25 (21–30)
Female 15.1 (13.4–17.2) 6.4 (5.2–8.1) 57 (53–62) 34 (30–39)
PS 0–1 15.3 (13.5–16.8) 6.3 (5.4–7.5) 57 (53–61) 35 (31–38)
PS �2 4.5 (3.2–5.7) 2.0 (1.7–2.6) 26 (20–34) 11 (7–17)

mOS: median overall survival; mPFS: median progression-free survival; CI: confidence interval; PS: performance status.

Figure 1. OS stratified by ECOG PS, sex and histopathology, liver metastases and bone metastases. OS: overall survival; ECOG PS: Eastern Cooperative Oncology
Group performance status; F: female; M: male; A: adenocarcinoma; S: squamous cell carcinoma.
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administered in subsequent lines. However, the mOS of PS 0

and PS 1 patients, has not been compared in RCTs and rarely

in RWS of second-line ICI [3–5,37,38].

A large proportion of the patients in our study had metastatic

disease (86%), which is representative of the palliative NSCLC

population. However, in most RCTs, information regarding meta-

static sites is rarely available, despite the known prognostic

impact [3–5,28,29]. In the present study, bone- and liver metasta-

ses were significant poor prognostic factors for OS, whereas brain

metastases did not affect OS. This is comparable to results from

other RWS [19,39–42]. In most patients, brain metastases are sta-

ble at ICI initiation due to previous local therapy with radiother-

apy or neurosurgery. In our study, not all patients had a MRI of

the brain prior to ICI initiation, thus the actual number of patients

with brain metastases, as opposed to those with liver metastases,

were not known at baseline. These factors may explain the lack

of impact on OS of brain metastases. Poor PS, liver and bone

metastases er known poor prognostic factors, and based on our

results, it is difficult to assess whether these patients actually

could benefit from ICI compared to best supportive care or subse-

quent line chemotherapy. However, our results imply that careful

consideration should be made before administering ICI to particu-

larly patients with PS �2.

In accordance with another RWS, no association between

comorbidity and OS was observed [42]. However, comorbid-

ities are rarely reported in RWS of ICI-treated patients with

advanced NSCLC.

Strengths and limitations

The strengths of this study are the inclusion of a nationwide

unselected population of all Danish patients with NSCLC

treated with ICI in second-line or further subsequent line, the

completeness of follow-up for all patients, and the large

sample size, allowing for strong subgroup analyses. The

study had some limitations. The retrospective nature of the

study, reduced the validity of the comorbidity data, which

preferably should be prospectively collected. Likewise for

smoking status, ECOG PS, grade of toxicity by the Common

Toxicity Criteria (CTC), and tumor response evaluation

according to Response Evaluation Criteria in Solid Tumors

[43,44]. Laboratory data and data regarding potential con-

founders such as prior or concomitant glucocorticoid and

antibiotic administration and body mass index were also not

obtained [44–46].

Figure 2. Weighted multivariable Cox regression analysis, with forest plots showing average hazard ratios (HR). CI: confidence interval; ECOG PS: Eastern
Cooperative Oncology Group performance status; CCIS: Charlson Comorbidity Index Score; NSCLC: non-small cell lung cancer; EGFR: epidermal growth factor recep-
tor; PD-L1: programmed death-ligand 1
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Conclusion

The OS of ICI-treated patients in our study, was comparable

to the OS demonstrated in RCTs [3–5]. Women accounted for

half of the patients in this Danish cohort, making the results

from this cohort especially comparable to other countries

(including Nordic countries) with a high proportion of female

NSCLC patients eligible for ICI. Furthermore, our results

showed that older age did not affect ICI efficacy, and ICIs

should not be excluded as a treatment option, due to high

chronological age. Patients with PS �2 had only very limited

effect of ICI with a very poor prognosis, thus careful consid-

eration should be made on an individual basis when offering

ICIs to this subgroup. Data on metastatic sites should be

available in future RCTs, because of the prognostic impact

on OS and in order to improve the comparison between

future RCTs and RWS.
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Abstract:  16 

Background: Not all patients with advanced NSCLC benefit from immune checkpoint inhibitors 17 

(ICIs). Therefore, we aimed to assess the predictive potential of gene expression profiling (GEP), 18 

peripheral immune cell counts, and clinical characteristics. Methods: The primary endpoint of this 19 

prospective, observational study was durable clinical benefit (DCB) defined as progression-free sur- 20 

vival >6 months. In a subgroup with histological biopsies of sufficient quality (n=25), GEP was per- 21 

formed using the nCounter® PanCancer IO 360 panel. Results: DCB was observed in 49% of 123 22 

included patients. High absolute lymphocyte count (ALC) and absence of liver metastases were 23 

associated with DCB (OR=1.95, p=0.038 and OR=0.36, p=0.046, respectively). GEP showed clustering 24 

of differentially expressed genes according to DCB, and a strong association between PD-L1 as- 25 

sessed by GEP (CD274) and immunohistochemistry (IHC) was observed (p=0.00013). The TGF-β, 26 

dendritic cell, and myeloid signature scores were higher for patients without DCB whereas the 27 

JAK/STAT loss signature scores were higher for patients with DCB (unadjusted p-values <0.05). 28 

Conclusions: ALC above 1.0 109/l and absence of liver metastases were significantly associated with 29 

DCB in ICI-treated patients with NSCLC. GEP-derived signatures may be associated with clinical 30 

outcome and PD-L1 could be assessed by GEP rather than IHC. 31 

Keywords: cancer immunotherapy; immune checkpoint inhibitors; non-small cell lung cancer; ad- 32 

vanced lung cancer; biomarkers; gene expression analysis; lymphocyte count; liver metastases   33 

 34 

1. Introduction 35 

Immune checkpoint inhibitors (ICIs), anti-Programmed Death-(Ligand)-1 (PD-(L)1) 36 

antibodies, have revolutionised the treatment of patients with advanced non-small cell 37 

lung cancer (NSCLC). Randomised controlled trials (RCTs) have demonstrated improved 38 

overall response rates, progression-free survival (PFS) and overall survival (OS) com- 39 

pared to standard chemotherapy in patients treated with first- or subsequent-line ICI 40 

monotherapy [1-5]. Furthermore, a subgroup of patients becomes long-term responders 41 

with improved 3- and 5-year survival rates in both RCTs and daily cancer care [6-8]. In 42 

Denmark, according to national guidelines, the selection of patients with advanced 43 

NSCLC for ICI-based treatment is dependent on the PD-L1 tumor proportion score (TPS) 44 

[9]. However, PD-L1 TPS has shown limited potential as a single predictive biomarker of 45 
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response to ICIs. In patients with squamous NSCLC treated with subsequent-line (≥2L) 46 

ICI, no significant survival differences between PD-L1 negative and PD-L1 positive pa- 47 

tients were observed, and around 40% of patients treated with first-line (1L) ICI and PD- 48 

L1 TPS ≥90% do not respond [1, 10]. Therefore, complementary biomarkers have been 49 

proposed, and may be related to both tumor cells, tumor microenvironment (TME), the 50 

immune system, and other host factors. Besides PD-L1 TPS, microsatellite instability 51 

(MSI)/ mismatch repair deficiency and tumor mutational burden (TMB) have been ap- 52 

proved by the Food and Drug Administration (FDA) [11, 12]. Due to the continuous and 53 

dynamic nature of TMB, no gold-standard method or cut-off value exists [13]. Consensus 54 

guidelines exist for MSI due to the clinical role in cancers associated with Lynch syndrome 55 

[14]. In NSCLC though, the prevalence of MSI-high and TMB-high status is only approx- 56 

imately 1% and 15%, respectively, and they are not yet incorporated into clinical guide- 57 

lines in NSCLC [15, 16].  58 

Other comprehensively investigated clinical factors with prognostic value and a pos- 59 

sible association with ICI efficacy include the immune phenotypes, the presence of tumor- 60 

infiltrating lymphocytes (TILs), and their relative abundance and location [17]. In addi- 61 

tion, an INFγ-related 18-gene mRNA, T-cell inflamed gene expression signature (TIS) has 62 

been associated with improved ICI response across different tumor types [18]. The 18- 63 

gene TIS was also applied to The Cancer Genome Atlas (TCGA) RNA-sequencing dataset, 64 

showing high median TIS scores in NSCLC resections [19]. Gene expression profiling 65 

(GEP) holds the potential to integrate the investigation of biomarkers related to tumor 66 

cells, TME and immune cells simultaneously. Furthermore, GEP can be performed with a 67 

relatively low amount of RNA with good quality and hence should not require large tissue 68 

samples or resections [18]. However, few studies of GEP in routine clinical practice of 69 

patients with advanced NSCLC have been performed [20]. Peripheral blood biomarkers 70 

have been associated with ICI efficacy such as neutrophil-to-lymphocyte-ratio (NLR), lac- 71 

tate dehydrogenase, and absolute lymphocyte count (ALC) [21, 22]. A post hoc analysis 72 

of the phase III OAK trial showed predictive value of NLR in ICI-treated patients com- 73 

pared to patients treated with chemotherapy [23]. Furthermore, high pre- and post- ICI 74 

treatment peripheral lymphocyte count has been associated with improved survival in 75 

patients with NSCLC [24]. To increase the predictive value, and hence to improve the se- 76 

lection of patients for ICI treatment, different immunograms and models have included 77 

multiple of the proposed biomarkers [25-27]. Although none of the proposed biomarkers 78 

or predictive models have been implemented in the clinical treatment guidelines for pa- 79 

tients with NSCLC, the clinical variables and gene expression signatures have shown 80 

promising predictive potential. 81 

In this study, we aimed to assess the impact of gene expressions, clinical features, 82 

and peripheral immune cell counts on durable clinical benefit (DCB) in patients with ad- 83 

vanced NSCLC treated with ICIs in routine clinical cancer care. 84 

2. Materials and Methods 85 

2.1 Study design and patients 86 

The study was a real-world prospective, observational and explorative study. The 87 

study population consisted of consecutively included patients with advanced NSCLC, 88 

who received at least one cycle of anti-PD-1 or anti-PD-L1 monotherapy as 1L or ≥2L of 89 

treatment. Patients with EGFR-mutations, ALK-rearrangements, or curative treatment op- 90 

tions were excluded. 91 

At the Department of Oncology, Aalborg University Hospital, 58 patients were in- 92 

cluded regardless of treatment line. The patients were included from August 2018 to Sep- 93 

tember 2019 (ClinicalTrials.gov NCT03658460). An additional cohort of 65 patients treated 94 

with 1L ICI was included at the Department of Clinical Oncology and Palliative Care, 95 

Zealand University Hospital, Naestved. These patients were included from July 2018 to 96 
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June 2020 (ClinicalTrials.gov NCT03512847). Treatment criteria, monitoring and follow- 97 

up were similar at the two recruiting departments. 98 

 99 

2.2 Data collection and data management 100 

Baseline characteristics were prospectively collected including age, sex, eastern co- 101 

operative oncology group (ECOG) performance status (PS), smoking status, BMI, and 102 

TNM stage (IASLC 8th edition) with additional information on metastatic sites in case of 103 

stage IV disease. Furthermore, information on biopsy modalities, NSCLC histopathologi- 104 

cal subtype, and PD-L1 TPS was recorded. From baseline peripheral blood samples, the 105 

ALC and absolute neutrophil count (ANC) were obtained and the NLR was derived 106 

(ANC/ALC).  107 

Patients received ICI treatment according to the national treatment guidelines at that 108 

time; pembrolizumab 2mg/kg/3w or 200 mg/3w, atezolizumab 1680 mg/4w, or nivolumab 109 

3 mg/kg/2w [28, 29]. Information describing the patient’s treatment was collected, which 110 

included treatment line, ICI treatment duration, reasons for ICI discontinuation, ICI treat- 111 

ment beyond progression, and post-ICI systemic antineoplastic treatment.  112 

CT scans were performed every 8-9 weeks for treatment response evaluation and 113 

were described according to the Response Evaluation Criteria in Solid Tumors (RECIST) 114 

version 1.1. The primary clinical endpoint was durable clinical benefit (DCB) defined as 115 

progression-free survival (PFS) >6 months. PFS was calculated from the first ICI-admin- 116 

istration date (index date) to the date of progressive disease (PD), death, or the last follow- 117 

up or censoring date. The last follow-up date was defined as the date of the last radiolog- 118 

ical response evaluation. No patients were lost to follow up. Furthermore, OS was calcu- 119 

lated from the index date to the date of death or the date of data cut-off. The censoring 120 

date was March 1, 2022 for patients treated at Zealand University Hospital, and May 1, 121 

2022 for patients treated at Aalborg University Hospital.  122 

 123 

2.3 Tissue samples and routine diagnostics 124 

The tissue samples were routinely performed histological or cytological diagnostic 125 

biopsies, formalin-fixed and paraffin-embedded (FFPE). In most of the patients receiving 126 

≥2L ICI, systemic antineoplastic treatment was administered between the time of tissue 127 

sampling and the date of first ICI administration (n=25; 93%). The routine diagnostic 128 

framework included morphological examination and immunohistochemistry (IHC) to es- 129 

tablish the cancer diagnosis and determine the histopathological subtype of NSCLC. 130 

Standard assessment of PD-L1 TPS was performed by IHC with the 22C3 pharmDx anti- 131 

body stained on the Dako Omnis platform. PD-L1 TPS was categorized as <1%, 1-49%, 132 

and ≥50%. Next generation sequencing (NGS) was routinely performed with the Tru- 133 

Sight® Tumor 15 assay (Illumina) (patients included at Aalborg University Hospital) or 134 

GeneRead QIAact AIT Panel (patients included at Zealand University Hospital, 135 

Naestved) to assess EGFR, BRAF, KRAS and ERBB2 status. ALK rearrangements were 136 

routinely assessed by IHC, and in cases with inconclusive or positive IHC, additional flu- 137 

orescence in situ hybridization (FISH) was performed to confirm the presence/absence of 138 

ALK rearrangements. 139 

 140 

2.4 Gene expression profiling 141 

Prior to GEP, the tumor percentage was estimated in histological samples by a 142 

pathologist. After excluding patients with cytology only, insufficient tissue, failing quality 143 

controls (QC) or failed analysis the final GEP-cohort consisted of 25 patients (Figure 1). 144 

 145 

Figure 1. Flowchart of baseline tissue samples prior to gene expression profiling 146 
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 147 
 148 
The trajectory of tissue samples selected for gene expression profiling (GEP). 149 
n, number of patients; QC, quality control 150 
 151 

 152 

Histological samples were analysed using a 770-gene expression panel, the nCoun- 153 

ter® PanCancer IO 360 panel (NanoString Technologies, Inc.). According to the recom- 154 

mendations of the manufacturer, extraction of total ribonucleic acid (RNA) was per- 155 

formed manually on 10x5 µm sections from FFPE samples using the miRNeasy FFPE kit 156 

(Qiagen). The extracted RNA was eluted in 13 µl RNAase-free water and the RNA con- 157 

centrations were determined by using the Qubit 3 Flourometer (InvitrogenTM). The puri- 158 

fied RNA was stored at -80°C. Only samples with an RNA concentration ≥60ng/ul were 159 

included in the final GEP cohort. An input amount of 300 ng RNA was used for each 160 

sample during Nanostring analysis. Hybridization was performed using the nCounter® 161 

PanCancer IO360 gene expression panel (NanoString Technologies, Inc.). The technical 162 

integrity of the nCounter® profiling assay underwent further QC assessment. The sample 163 

input and reaction efficiency were assessed by the geometric mean of housekeeper genes 164 

in each sample. A minimum geometric mean count of 32 housekeeper genes was required 165 

for analysis, and geometric mean counts of 32-100 were considered borderline. Further- 166 

more, the nCounter® profiling assay was assessed according to imaging, binding density, 167 

positive control linearity, and limit of detection. To correct for cartridge differences, back- 168 

ground correction and data normalization were performed before the final data analysis. 169 

The final analysis included data from samples that passed all QC steps. 170 

 171 

2.5 Next generation sequencing 172 

TMB and MSI status was assessed by NGS. DNA was extracted from 10x5 µm sec- 173 

tions from FFPE samples using the Maxwell® 16 FFPE Plus LEV DNA Purification Kit 174 

(AS1135). Only samples with a DNA concentration ≥3,33ng/ul were included in the final 175 

GEP cohort. The TruSight® Oncology 500 (TSO500; Illumina) gene panel was used for 176 

sequencing analysis. Library preparation was performed using the TruSight® Oncology 177 

500 reagent kit according to the manufacturer’s protocol and the samples were run on the 178 

NextSeqTM 550 instrument (Illumina®) [30]. Only samples that passed all sequencing QCs 179 

were included for further analysis. The TSO500 Local Run Manager TruSight® Oncology 180 
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500 v2.2 Analysis Module was used to generate TMB and MSI scores [31]. TMB was de- 181 

fined as the number of eligible variants divided by the effective panel size. The TMB-high 182 

cut-off was 10 mutations/Mb. The MSI score was defined as the number of unstable MSI 183 

sites divided by the total number of assessed MSI sites [31]. The MSI-high cut-off was 20%.  184 

   185 

2.6 Statistical analyses 186 

2.6.1 Descriptive statistics, logistic regression, and survival analyses 187 

Comparisons of patients receiving ICI treatment in 1L or ≥2L were performed with 188 

ANOVA tests for the continuous variables and Fisher’s exact tests for the categorical var- 189 

iables. Fisher’s exact test was chosen to account for the expected low values. Median val- 190 

ues of ALC, ANC, and NLR were used for the comparisons. 191 

Logistic regression analysis was used to assess factors associated with DCB. First, 192 

univariable logistic regression analyses were conducted with DCB as the dependent var- 193 

iable and each of the baseline characteristics as the independent variable. Brain-, bone-, 194 

and liver metastases were included as the only metastatic sites due to the known prog- 195 

nostic impact on survival in NSCLC. Secondly, multivariable logistic regression analysis 196 

was conducted and included age, sex, PS, and PD-L1 and factors significantly associated 197 

with DCB in the univariable logistic regression analysis. Wald test p-values and profile 198 

likelihood confidence limits were reported. 199 

A Cox proportional hazards model was used for the OS analysis. Analyses were re- 200 

stricted to patients receiving 1L ICI treatment (n=96), due to significant differences in se- 201 

lection criteria for ICI and prognostic clinical and pathological factors according to treat- 202 

ment line. Univariable Cox regression analyses were performed for baseline characteris- 203 

tics. Subsequently, a multivariable Cox regression analysis was performed including age, 204 

sex, PS, and factors significantly associated with OS in the univariable analyses. One pa- 205 

tient with missing ALC was excluded from the multivariable model. Schoenfeld residuals 206 

revealed no significant nonproportionality in the multivariable model, indicating that the 207 

assumption of proportional hazards was reasonable.  208 

A ROC curve using ALC as a predictor for DCB was drawn. A Two-sample Kolmo- 209 

gorov–Smirnov plot was used to find the optimal ALC cut-off for predicting DCB [32]. 210 

This optimal cut-off was determined as the cut-off value of the ALC that yielded the max- 211 

imal difference between the cumulative density of ALC in the DCB negative/DCB positive 212 

group. Subsequently, this cut-off was used to dichotomize the ALC. 213 

P-values <0.05 was considered statistically significant, and no adjustments for multi- 214 

ple testing were performed. Statistical analyses were performed with R version 4.2.1 [33]. 215 

 216 

2.6.2 Bioinformatics 217 

        218 

       Differential expression of genes 219 

Gene expression analyses were performed to identify differentially expressed genes 220 

for response (DCB vs. no DCB). First, gene counts were normalised to log2 counts per 221 

million using the function Voom (Limma R package) and the trimmed mean of M-values 222 

(TMM) method from the R package edgeR [34, 35]. Next, a linear model was fit to each 223 

gene adjusting for biological factors associated with DCB using the R package limma [34]. 224 

The p-values were corrected for multiple testing using Benjamini–Hochberg false 225 

discovery rate (FDR). Significant differentially expressed genes were identified using FDR 226 

cutoff of 5%. The patterns of the gene expression of genes with a p-value below 0.05 were 227 

further explored using the ComplexHeatmap package [36]. The package was applied to 228 

cluster the patients and the genes using hierarchical clustering based on euclidean 229 

distance. ANOVA test was used to assess to the association between the categorical IHC- 230 

derived PD-L1 TPS and the continuous GEP-derived PD-L1 (CD274). 231 

 232 
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                                Gene expression signatures      233 

Differences in gene expression signature scores according to DCB were also evalu- 234 

ated. Gene expression signature scores were calculated as a weighted linear combination 235 

of the included genes’ expression values normalized to stable housekeeper gene expres- 236 

sion as described by the manufacturer [18]. As in the gene expression analysis, a linear 237 

model was fit to each gene adjusting for biological factors associated with DCB using the 238 

R package limma [34]. The p-values were using FDR, and FDR <0.05 was considered sta- 239 

tistically significant. 240 

 241 

3. Results 242 

 3.1. Baseline patient characteristics  243 

The study included 123 patients. Overall, 44% of patients were female, and the me- 244 

dian age was 67 years (range: 46-86). ICI was administered in 78% of the patients as 1L 245 

and 22% as ≥2L. Significant differences in PS, PD-L1 TPS, NSCLC histopathological sub- 246 

type, lung and peripheral lymph node metastases were observed between patients treated 247 

with 1L and ≥2L ICI. No significant differences in median ALC (p=0.33), ANC (p=0.84), 248 

and NLR (p=0.21) were observed according to treatment line (Table 1).  249 

 250 

Table 1. Baseline characteristics and peripheral immune cell counts according to treat- 251 

ment line 252 

Baseline characteristics  
1L 

n (%) 

≥2L 

n (%) 

Total 

n (%) 
p-value 

Patients 96 (78) 27 (22) 123 (100)  

Age, median years (range) 66 (46-86) 70 (52-83) 67 (46-86) 0.12 

Sex 

   Male 

   Female 

52 (54) 

44 (46) 

17 (63) 

10 (37) 

69 (56) 

54 (44) 

 

0.51 

Performance status  

   0 

   1 

   ≥2 

 

38 (40) 

48 (50) 

10 (10) 

 

1 (4) 

16 (59) 

10 (37) 

 

39 (32) 

64 (52) 

20 (16) 

 

 

<0.001 

Smoking status 

   Current 

   Former 

   Never 

 

30 (31) 

64 (67) 

2 (2) 

 

12 (44) 

15 (56) 

0 (0) 

 

42 (34) 

79 (64) 

2 (2) 

 

0.37 

BMI, median (range) 25 (16-41) 23 (18-40) 24 (16-41) 0.36 

TNM stage  

   III 

   IV 

 

14 (15) 

82 (85) 

3 (11) 

24 (89) 

17 (14) 

106 (86) 

 

0.76 

Metastatic sitesa 

   Brain 

   Bone 

   Liver 

   Adrenal glands 

 

8 (8) 

28 (29) 

18 (19) 

23 (24) 

 

2 (7) 

5 (19) 

8 (30) 

7 (26) 

 

10 (8) 

33 (27) 

26 (21) 

30 (24) 

 

1.0 

0.33 

0.29 

0.81 
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   Distant lymph nodes 

   Lung 

   Pleurab 

   Soft tissuec 

   Other    

9 (9) 

19 (20) 

35 (37) 

5 (5) 

22 (23) 

7 (26) 

14 (52) 

8 (30) 

0 (0) 

2 (7) 

16 (13) 

33 (27) 

43 (35) 

5 (4.1) 

24 (20) 

0.05 

0.002 

0.65 

0.59 

0.10 

NSCLC subtype 

   Adenocarcinoma 

   Squamous cell carcinoma 

   Otherd 

69 (72) 

17 (18) 

10 (10) 

15 (56) 

12 (44) 

0 (0) 

84 (68) 

29 (24) 

10 (8) 

 

0.008 

PD-L1 

   <1% 

   ≥1% and <50% 

   ≥50% 

0 (0) 

1 (1) 

95 (99) 

10 (37) 

14 (52) 

3 (11) 

10 (8) 

15 (12) 

98 (80) 

<0.001 

 

Blood values, median (range)* 

   ALC (109/l) 

   ANC (109/l) 

   NLR 

 

1.42 (0.30-3.60) 

6.60 (2.90-36.3) 

4.40 (1.16-34.7) 

 

1.27 (0.43-2.99) 

6.78 (3.14-16.2) 

4.40 (1.99-37.7) 

 

1.40 (0.30-3.60) 

6.70 (2.90-36.3) 

4.40 (1.16-37.7) 

 

0.33 

0.85 

0.21 

a) Patients could be registered with more than one metastatic site. Each metastatic site was recorded as a cate- 253 
gorical variable (yes or no), and the p-values reflect the distribution of the two levels for each metastatic site.  254 
b) ‘Pleura’ included pleural fluid 255 
c) ‘Soft tissue’ included cutis, subcutis and muscles 256 
d) ‘Other’ included NSCLC NOS (not otherwise specified) and sarcomatoid carcinoma  257 
* ALC and NLR were missing in one patient treated with 1L ICI 258 
n, number of patients; BMI, body mass index; TNM, tumor-node-metastasis classification of malignant tumors; 259 
NSCLC, non-small cell lung cancer; PD-L1, programmed death-ligand 1; ALC, absolute lymphocyte count; 260 
ANC, absolute neutrophil count; NLR, neutrophil-to-lymphocyte ratio 261 

 262 

3.2 Treatment characteristics  263 

The median time to treatment discontinuation was 105 days (range 1-763), without 264 

significant differences between 1L and ≥2L (p=0.14). ICI treatment was discontinued due 265 

to PD (n=68; 55%), toxicity (n=33; 27%), completion of 2 years of ICI treatment (n=10; 8%), 266 

poor PS (n=8; 7%), death (n=4; 3%), and/or ‘other’ reasons (n=19; 15%). ‘Other reasons’ 267 

included lack of compliance, patient’s choice, comorbidity, or high dose steroid. ICI treat- 268 

ment discontinuation could be registered with more than one reason. Systemic antineo- 269 

plastic treatment after ICI-discontinuation was administered in 49% of the patients (n=60), 270 

without statistically significant difference according to treatment line. Treatment beyond 271 

PD was observed in 11 patients (9%). Swimmer plot showing the course of individual 272 

patients from the initiation of ICI treatment is shown in Supplementary Figure S1.  273 

 274 

3.3 Predictive factors of durable clinical benefit  275 

DCB was observed in 49% (n=60) of all patients and did not significantly differ in 1L 276 

compared to ≥2L (51% vs. 41%, p=0.40). A comparison of patients with and without DCB 277 

showed that the presence of liver metastases was significantly associated with not achiev- 278 

ing DCB (30% vs. 12%, p=0.02) and ALC above median was significantly more frequent in 279 

patients with DCB (p=0.01).  280 

Likewise, in the univariable logistic regression analysis liver metastases (OR 0.31, 281 

p=0.01) and ALC (OR 2.05, p=0.02) were significantly associated with DCB (Figure 2 and 282 

Supplementary Figure S2). In multivariable logistic regression analysis liver metastases 283 

(p=0.046) and ALC (p=0.038) remained significantly associated with DCB (Figure 2). The 284 
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increased rate of DCB in patients with PD-L1 ≥1% did not reach statistical significance 285 

(Figure 2). 286 

 287 

Figure 2. Multivariable logistic regression analysis assessing the association between base- 288 

line characteristics and durable clinical benefit.  289 

  290 
Multivariable logistic regression showing significant positive association between high median absolute lym- 291 
phocyte count (ALC) and durable clinical benefit (DCB) and negative association between liver metastases and 292 
DCB. 293 
N, number of patients; PS, performance status; PD-L1, programmed death-ligand 1  294 

 295 

A ROC curve analysis was made to investigate the predictive potential of ALC as a 296 

single biomarker for DCB, and this yielded an AUC of 0.63 (Supplementary Figure S4). 297 

An optimal cut-point of 1.0 109/l was found, corresponding to the 25% quartile, and using 298 

ALC dichotomised at this cut-point as a predictive biomarker for DCB resulted in a false 299 

positive rate of 0.64 and true positive rate of 0.90. DCB was observed in 21% of all patients 300 

with an ALC below the optimal cut-point of 1.0 109/l, and in 57% of all patients with an 301 

ALC above the optimal cut-point (Figure 3). 302 

 303 

Figure 3. Bar chart presenting the relationship between peripheral lymphocyte counts and 304 

durable clinical benefit  305 

  306 
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All patients (n=122) were categorized as ALC low or ALC high, separated by the optimal ALC cut-point of 1.0 307 
109/l. The numbers in the bars represent the absolute number of patients in each group. ALC was missing in one 308 
patient. 309 
DCB, durable clinical benefit; ALC, absolute lymphocyte count 310 

 311 

The mOS was 19.2 months (95%CI 0.33-41.7) and 12.5 months (95%CI 0.16-40.8) in 312 

patients treated with 1L and ≥2L ICI, respectively (p=0.09). Increased ALC was also asso- 313 

ciated with improved OS in multivariable Cox regression analysis of patients treated with 314 

1L ICI (Supplementary Figure S3). 315 

 316 

3.4 The GEP subpopulation 317 

3.4.1 Baseline and treatments caracteristics and clinical outcomes 318 

GEP was feasible in 33% (n=25) of all patients with diagnostic histological biopsies 319 

(n=74) (Figure 1). The comparison of baseline characteristics and peripheral immune cell 320 

counts in patients with and without GEP showed significantly more squamous cell carci- 321 

nomas in the GEP cohort (p=0.007) (Supplementary Table S5). Significantly more patients 322 

with GEP received ICI in ≥2L (p=0.03) compared to patients without GEP. No significant 323 

differences in time to treatment discontinuation, DCB, and mOS were observed between 324 

the patients with and without GEP (Supplementary Table S6).  325 

 326 

3.4.2 Gene expression analyses  327 

Comparison of gene expression between patients with DCB and without DCB re- 328 

vealed 53 genes with a p-value below 0.05 (Supplementary Table S7). PD-L1 (CD274) was 329 

one of those genes (p=0.03), however, no genes were significant after adjustment for mul- 330 

tiple testing (no FDR below 0.05). Pearson correlation of PD-L1 with genes differentially 331 

expressed between DCB and no DCB, showed a significant negative correlation with 332 

LTBP1 (p<0.05) and positive correlation with TAP1 and ITGAE (p<0.05). A highly signifi- 333 

cant association between the categorical PD-L1 TPS assessed by IHC and the continuous 334 

GEP-derived PD-L1 (CD274) was identified (p=0.00013). Furthermore, PD-L1 (CD274) 335 

was differentially expressed between patients receiving 1L and ≥2L ICI (p=0.0017) reflect- 336 

ing the treatment inclusion criteria (Figure 4). 337 

 338 

Figure 4. The association between PD-L1 (CD274) derived by gene expression profiling 339 

and A) PD-L1 assessed by immunohistochemistry and B) treatment line  340 

Boxplots of log2 normalized expression of PD-L1 for A) three levels of PD-L1 assessed by IHC (p=0.00013) and 341 
B) treatment line (p=0.00017). 342 
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PDL1, programmed death-ligand 1; IHC, immunohistochemistry; 1L, first-line treatment; ≥2L, treatment in sec- 343 
ond- or subsequent line 344 
   345 

The patterns of the expression of the 53 genes with a p-value <0.05 were explored, 346 

and hierarchical clustering showed that two clusters separated the patients with and with- 347 

out DCB except for two patients. An intermediary heterogeneous cluster consisted of pa- 348 

tients with or without DCB (Figure 5).  349 

   350 

  Figure 5. Hierarchical clustering of genes with a p-value below 0.05. 351 

 352 

 353 

Heatmap of gene expression z-scores for genes with a p-value <0.05 in comparison between DCB vs. no DCB. 354 
The patients (columns) (n=25) and the genes (rows) are clustered using hierarchical clustering based on euclidean 355 
distance. The dendrogram added to the top and to the left visualize the order of the clustering. In the top three 356 
annotation rows are added to indicate each patient’s DCB status, NSCLC subtype, and ALC. Finally, a p-value 357 
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is listed for each row. The p-value for NSCLC subtype and ALC compares DCB vs. no DCB using a Fisher’s exact 358 
test and unpaired t-test, respectively. The p-value in front of the genes derives from the gene expression test. 359 

 360 

The gene expression signature scores in patients with DCB and without DCB were 361 

compared. These analyses identified no signatures with FDR <0.05; however, four signa- 362 

tures had an unadjusted p-value <0.05. The TGF-β (p=0.047, log2FC= -0.92), dendritic cell 363 

(DC) (p=0.025, log2FC= -0.92) and myeloid (p=0.024, log2FC= -0.80) signature scores were 364 

higher for patients without DCB whereas the JAK/STAT loss signature scores (p=0.005, 365 

log2FC= 1.41) were higher for patients with DCB.  366 

 367 

3.5 Next generation sequencing  368 

TMB and MSI were available in only 42% (n=51) of all the patients (n=123), and 47% 369 

(n=24) of the analysed tissue samples were TMB-high. NGS was feasible in only 24% (n=6) 370 

of patients in the GEP subpopulation. No tumor samples were MSI-high, and therefore 371 

MSI status was not included in the analyses.   372 

4. Discussion 373 

This prospective study included 123 consecutive patients with advanced NSCLC 374 

treated with ICI in routine clinical cancer care. The association of baseline characteristics, 375 

peripheral immune cell counts, and GEP was assessed with DCB being the primary clini- 376 

cal endpoint. No consensus on DCB definition exists and we defined DCB as PFS>6 377 

months to increase comparability with other GEP studies in NSCLC [37, 38]. The DCB was 378 

similar regardless of treatment line allowing for analysis of predictive factors for DCB in 379 

the combined population. Additionally, the time to treatment discontinuation, as a proxy 380 

for dose intensity, and mOS were similar regardless of treatment line.  381 

4.1  Liver metastases and peripheral immune cell counts  382 

As demonstrated in other real-world studies and RCTs, the presence of liver metas- 383 

tases was negatively associated with DCB and OS in our study [39-41]. A study of patients 384 

with malignant melanoma, showed that liver metastases had significantly lower T-cell 385 

infiltration and increased TIM-3 expression than lung and lymph node metastases [42]. A 386 

recent study in NSCLC also demonstrated that the CD8+ T-cell infiltration was lower in 387 

liver metastases compared to other metastatic lesions, and that combined PD-L1 TPS ≥1% 388 

and CD8+ T-cell infiltration in liver metastases increased PFS [43]. These biological mech- 389 

anisms may contribute to the poorer ICI efficacy in patients with liver metastases.  390 

An increase in ALC was significantly associated with DCB and improved OS in our 391 

study. We also found that an ALC of 1.0 109/l was the most optimal cut-point for predict- 392 

ing DCB, and confirmatory studies in independent, larger populations are warranted, as 393 

this variable is easily obtainable in routine clinical cancer care. High pre- and post-ICI 394 

peripheral lymphocyte counts, and specific subsets of peripheral lymphocytes have also 395 

been associated with improved outcome in ICI-treated patients with NSCLC, whereas 396 

lymphopenia has been associated with impaired survival [24, 44, 45]. Additionally, a 397 

lower percentage of peripheral lymphocytes in NSCLC has been observed in male patients 398 

and patients with bone- and liver metastases and has been associated with poor survival 399 

regardless of NSCLC histopathological subtype and disease stage [46].  400 

In contrast, no association between ANC or NLR and DCB or OS was found in our 401 

study. A meta-analysis showed that a higher NLR was associated with poorer OS in ICI- 402 

treated patients with lung cancer; however, other factors such as NSCLC subtype may 403 

impact the predictive value of NLR [47]. A recent study demonstrated that lung adeno- 404 

carcinomas had more effector and activated T cells and fewer Treg cells compared to lung 405 

squamous cell carcinomas assessed by single-cell RNA sequencing from surgical resec- 406 

tions [48].  407 

4.2  GEP and PD-L1 assessment  408 
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Since NSCLC histopathological subtype and lymphocyte counts may interact and 409 

impact the GEP, the analyses of gene- and gene expression signatures were adjusted for 410 

NSCLC histopathological subtype and ALC. However, no significant differentially ex- 411 

pressed genes or signatures were found when adjusting for multiple testing (no FDRs be- 412 

low 0.05). Despite the lack of significant FDRs, a clustering tendency of differentially ex- 413 

pressed genes was observed according to DCB (Figure 4) and indicates that certain gene 414 

expression phenotypes may be associated with DCB in ICI-treated patients with advanced 415 

NSCLC.    416 

Notably, a strong association between the categorical PD-L1 TPS assessed by IHC 417 

and the continuous GEP-derived PD-L1 (CD274) was identified. Furthermore, PD-L1 418 

(CD274) was differentially expressed between patients receiving 1L and ≥2L ICI, which 419 

correspond to the different PD-L1 cut-offs in treatment guidelines in patients with ad- 420 

vanced NSCLC [9]. These findings indicate a clinical relevance of GEP in treatment deci- 421 

sions, and GEP eliminates the intra- and inter observer differences in the IHC assessment 422 

of PD-L1 [49].  423 

4.3  GEP in ICI-treated patients with advanced NSCLC 424 

Most NSCLC gene expression studies rely upon surgically resected early-stage tu- 425 

mors with large tissue resections, and thus may not be comparable to gene expressions in 426 

ICI-treated patients with advanced stage disease [19, 50]. Only few GEP studies have in- 427 

cluded patients with advanced NSCLC treated with ICI in routine clinical care. One other 428 

study used the same panel and included both histological and cytological samples [37]. 429 

However, no comparison between the two sample types was performed according to 430 

RNA quality or differences in intratumor gene expressions [37]. Two GEP studies on ICI- 431 

treated patients with NSCLC have shown that DC66b expression was associated with 432 

poor OS [51] and high immune cell scores (T cells, NK-cells and M1 macrophages) were 433 

associated with DCB, respectively [37, 38]. Another study found INF- and antigen pro- 434 

cessing/presentation signatures to be positively associated with PFS in adenocarcinomas 435 

and TME signatures to be associated with PFS in squamous cell carcinomas [52]. However, 436 

adjustment for baseline clinicopathological factors prior to the gene expression analyses 437 

have not been consistently performed, which may confound the true predictive associa- 438 

tion with ICI efficacy of the proposed gene expressions. Furthermore, the comparison of 439 

different GEP studies is very challenging due to the small sample sizes and differences in 440 

disease stage, NSCLC subtypes, tissue sample types, sample sites (primary or metastatic, 441 

and which metastatic location), RNA preparation, GEP panels, statistical analyses and 442 

endpoint definitions. Currently, no large GEP datasets of advanced stage NSCLC cancer 443 

cohorts are available for validation.  444 

In our study, only 25 patients were included in the GEP cohort. This low number of 445 

suitable samples was primarily due to low concentration and quality of RNA, which may 446 

be explained by the thin sections (5 µm) holding a lower percentage of intact cells and 447 

more fragmented RNA compared to larger sections (10-20 µm) [53]. Therefore, the imple- 448 

mentation of GEP in routine diagnostics requires improved RNA quality and revision of 449 

the diagnostic framework as suggested by Hirsch et al. [54]. In the GEP cohort, most pa- 450 

tients treated with ≥2L ICI had received chemotherapy in between the time of the diag- 451 

nostic tissue sampling and ICI initiation. A pre- and post-chemotherapy gene expression 452 

analysis of 29 paired samples has shown that the average expression of CTLA4, LAG3, 453 

TNFRSF18, CD80 and FOXP3 in an immune module were significantly decreased in post- 454 

chemotherapy samples, and dynamic changes in INF-γ expression were observed [55]. 455 

Additionally, INF-γ expression has been associated with improved outcome in ICI-treated 456 

patients [18, 55-57]. However, the direct impact of previous chemotherapy on ICI efficacy 457 

has not been assessed in clinical cohorts. 458 

4.4 Gene expression signatures 459 

No gene expression signatures were significantly associated with DCB when adjust- 460 

ing for multiple testing. However, DC, myeloid and TGF-β signature scores were higher 461 
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in patients without DCB and JAK/STAT loss signature scores were higher in patients with 462 

DCB.  463 

DCs are important antigen presenting cells that contribute to initiation of anti-tu- 464 

moral T-cell responses [58]. However, immature DCs generally induce immune tolerance, 465 

and tumors may induce immune evasion by disruption of normal DC function [58, 59]. 466 

Myeloid cells in the TME include tumor-associated macrophages (TAMs), tumor-associ- 467 

ated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs) which promote 468 

tumor cell growth and invasion and suppress immune responses [60, 61]. TGFβ (TGFB1) 469 

in the TME inhibits immune activity against tumor and promotes tumor growth and sur- 470 

vival [62]. Clinical investigation of dual inhibition of TGFβ and PD-(L)1 is ongoing in 471 

many solid tumors including NSCLC [63].  472 

The JAK/STAT pathway plays an essential role in the differentiation of T-helper cells, 473 

and JAK/STAT inhibition in Tregs has shown downregulation of Foxp3 which attenuates 474 

the immunosuppressive function [64, 65]. Hence, the JAK/STAT function is cell specific 475 

and the impact of JAK/STAT loss on ICI-efficacy seems to be cell-dependent. However, in 476 

our study, the JAK/STAT loss signature, defined by the manufacturer, was not restricted 477 

to a specific cell type and the association with ICI efficacy remains unknown.   478 

4.5  Strengths and limitations 479 

The main strength of this study was the clinical relevance according to the target 480 

population (advanced/metastatic NSCLC) and treatment setting (palliative ICI treatment). 481 

Furthermore, patients were consecutively included, clinical data completeness was high, 482 

and no patients were lost to follow up. Only histological biopsies were used for GEP to 483 

increase the likelihood of the tumor, TME, and immune response biology to be repre- 484 

sented in the samples. Additionally, RNA amplification on low quality samples was not 485 

performed, to avoid the risk of amplification bias on these samples.  486 

The main limitation of this study was the low number of patients included in the GEP 487 

cohort (n=25) due to the poor RNA quality. Furthermore, the DCB impact of chemother- 488 

apy on GEP prior to ICI treatment was not assessed. The potential interaction between 489 

peripheral ALC and other baseline characteristics, such as NSCLC histopathological sub- 490 

type, metastatic sites, sex, and age was also not assessed in this study.  491 

 492 

5. Conclusions 493 

In patients with advanced NSCLC treated with ICIs in routine clinical cancer care, 494 

high ALC and absence of liver metastases were significantly associated with DCB. PD-L1  495 

assessed by GEP was highly correlated with IHC-assessed PD-L1 and treatment line, in- 496 

dicating a clinical relevance of GEP. DC, myeloid and TGF-β signature scores were higher 497 

in patients without DCB and JAK/STAT loss signature scores were higher in patients with 498 

DCB. However, with the current clinical diagnostic framework GEP is only feasible in one 499 

third of the patients.  500 
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