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Abstract

With the rise of Industry 4.0 and its technologies, manufacturing companies
have many new opportunities and methods to optimise their business. Larger
enterprises commonly have dedicated teams to explore new technologies and
take advantage of them. They have the benefits of in-house knowledge and
financial resources. Small and medium-sized enterprises (SMEs) do not have
these benefits. They often lack knowledge of what new technologies are avail-
able and how to use them, and even more so, they lack financial resources.
Some of these technologies are the internet of things (IoT) and artificial intel-
ligence (AI), which have shown many benefits for manufacturing companies.
Nonetheless, even with the addressed benefits, SMEs general neglect these
technologies.

This PhD investigates the topic of AI and IoT within SMEs. Firstly this
is done by a literature review of AI and IoT used in SMEs. This literature
review discovered different patterns, and thus, more research on why and
how SMEs could use these technologies was conducted.

The PhD proposes two different types of AI architectures for SMEs. The
first one is an easy-to-use machine learning platform where all the complex
model parameters are hidden from the operator. The other is a novel ap-
proach to building an arbitrary machine’s health indicator, again with the
underlying model hidden from the operator. The PhD also contributes with
a new publicly available dataset and general guidelines on anonymising such
datasets.

Implementing IoT infrastructure can be done in numerous ways. This
PhD study presents a field study on how it can be done at an SME. Further
experiments are conducted on how this data can be used to control critical
process control parameters. Finally, the perspective and implications of the
company are also presented.
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Resumé

Med Industri 4.0 og alle teknologierne der følger med, har produktionsvirk-
somheder mange nye muligheder og metoder til at optimere deres forret-
ning. Større virksomheder har ofte dedikerede teams til at udforske nye
teknologier og drage fordel af dem. De har f.eks. fordelene med mere intern
viden og er økonomiske ressourcemæssigt stærke. De små og mellemstore
virksomheder (SMV’er) har ikke disse fordele. De mangler ofte viden om,
hvilken type nye teknologier der er tilgængelige, og hvordan de kan bruges,
og ydermere er de ressourcemæssigt svage. Nogle af teknologierne er inter-
net of things (IoT) og kunstig intelligens (AI), som har vist sig at have mange
fordele for produktionsvirksomheder. Ikke desto mindre forsømmer SMV’er
generelt disse teknologier.

Denne Ph.D. undersøger emnet AI og IoT inden for SMV’er. Det startes
med en litteraturreview af kunstig intelligens og IoT brugt i SMV’er. Denne
litteraturreview opdagede forskellige mønstre, og derfor blev der udført mere
forskning i, hvorfor og hvordan SMV’er kunne bruge disse teknologier.

Ph.D.’en kommer med to forskellige bud på AI-arkitekturer til SMV’er.
Den første er en nem at bruge maskinlæringsplatform, hvor alle de kom-
plekse modelparametre er skjult for operatøren. Den anden er en ny tilgang
til, hvordan man kan bygge en sundhedsindikator til en vilkårlig maskine,
igen med den underliggende model skjult for operatøren. Ph.D.’en bidrager
også med et nyt offentligt tilgængeligt datasæt sammen med generelle ret-
ningslinjer for, hvordan man kan anonymiserer datasæt.

Implementering af IoT-infrastruktur kan gøres på mange måder. Dette
Ph.D.-studie præsenterer et feltstudie i, hvordan det kan gøres i en SMV.
Derudover, udføres der eksperimenter i, hvordan disse data kan bruges til
at kontrollere kritiske processtyringsparametre. Til sidst præsenteres også
perspektivet og hvilke implikationerne der har for virksomheden.
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Preface

Normally, the preface is the last thing you will write in a book. You will use
it to write how you ended up writing the book, what your motivation was
and justify your authorship. This part I will try to make short. Before writing
the conclusion and abstract, I write this preface, reflecting upon the thesis
and the PhD itself. I got into doing a PhD by a collection of different factors I
would never be able to sum up – although some factors had greater influence
than others. To quote Mike Shinoda’s song “Remember the Name”: . . . This
is 10 percent luck, 20 percent skill, 15 percent concentrated power of will, 5 percent
pleasure, 50 percent pain. . . this is what a PhD could be described as. While
the exact percentage is probably off, the level of luck is a significant factor
for me even to be given this opportunity. In general, people who reach great
success seldom acknowledge the level of luck. I have doubted that I was fit
for a PhD position, sometimes even being afraid of being called a fraud. If
it is some miniature version of the impostor syndrome or just the good old
danish “Jantelov” playing mind tricks, I do not know. What I know is that
a lot of effort and time was spent reading papers, writing papers, re-writing
papers, conceptualising, programming, fixing bugs, learning and teaching
others. Reflecting upon it all fills me with joy, and now that eight years (three
bachelor years, two master years, three PhD years) of presence at Aalborg
University is coming to an end, it is an emotional feeling.

With that brief summary of how I ended up doing a PhD out of the way,
I will spent the rest of this “free space” to address something important.
With the digitalisation and the fast knowledge sharing possibilities of the
21st century, the research community is still anchored in the past. This is
not an attack on all the researchers out there; quite the opposite. So much
excellent research is being conducted and published every day around the
globe. Researchers built their research on prior research to, e.g. improve
technology or understand complicated behaviour. All in all, research is a
foundation for improving the quality of life for all people on earth – even
though some research is only focused on, e.g. improving SMEs in Denmark.
The different government bodies know this, and they pour a considerable
amount of money into research. Since the research is for the common good

xvii
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and a large percentage is paid from government bodies, the ordinary Joe
should be able to read this research, right? No, as it is now and always has
been, research is for the few. It is for the researchers who research at wealthy
research institutions and can afford to buy the costly publisher outlets. If you
work at a less wealthy research institute, you might not have access to all of
the publishers. Even more so, if you are a private person, you depend on
whether researchers paid extra to the publisher to make it open access or if
the researchers made it available by sharing e.g. a pre-print. While the peer
review process is paramount for securing research integrity, it is not mutually
exclusive with the open access principles. I will be the first to admit that I
have not exclusively published in open access, but I encourage my fellow
researcher to do better than me. I encourage them to do what is necessary to
make their research public and look further than simple outlets metrics such
as impact factor – which again is a bad name for a flawed metric.
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Reader’s Guide

This PhD thesis is written as a collection of papers. The thesis starts with
Part I, which will present the general motivation for the thesis, followed by
the research question and state of the art. In Part II, dedicated chapters are
presented for each of the papers, which gives an extended summary and con-
nects it to the relevant research question. The part ends with the conclusion
in Chapter 11. Lastly, in Part III all of the papers are presented. As stated, this
PhD is a collection of papers though some are already published, and some
are in press or under review. The extended summaries can be read without
reading the papers though some general background and details will be left
out. Throughout the thesis, when referring to a paper belonging to this thesis,
it would look like this: [Paper A|[1]]. The first part (Paper A) is a hyperlink
to the included paper in Part III. The second part ([1]) is a hyperlink to the
actual reference in the bibliography, along with the rest of the references used
in this thesis. The appended papers follow the style of the outlet but have
been cropped to fit the thesis. A glossary and acronyms list can be found in
the Glossary chapter in the end of Part II.

This one is for all my home boys

Emil Blixt Hansen
Aalborg University, November 13, 2022
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Part I

Introduction
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Chapter 1

Motivation

Since the start of the 2010s, the manufacturing sector has started the transfor-
mation of how they can improve their business. This includes changing the
manufacturing process with the maturity of technologies such as 3D printing,
robotics and information technologies (IT). The collection of these technolo-
gies is often referred to as the fourth industrial revolution or Industry 4.0.
The whole concept of Industry 4.0 began in Germany at the Hanover fair in
2011 under the German name Industrie 4.0. The name Industrie 4.0 is polyse-
mous since, in the beginning, it meant the strategic decision by the German
government to enhance the competitiveness of their manufacturing sector [8].
It was also meant as a synonym for the fourth industrial revolution, which
is what is currently being used today. As seen in Figure 1.1, the other in-
dustrial revolutions centred around a revolution of new technologies (steam
power, electricity and computers). Industry 4.0 is more a product of new IT
technologies, business methods and a pull from customers [9, 10].

Since Industry 4.0 is more of an evaluation containing different technolo-
gies and methods, a clear global definition does not exist. However, some
technologies are often referred to as the main contributors. This can be cyber-
physical system (CPS) [12], internet of things (IoT) [13], and smart factories
[14]. In Figure 1.2, a suggestion of nine essential technologies of Industry 4.0
can be seen from Boston Consultancy Group (BCG). These technologies have
been widely used in larger enterprises [15], however, the same cannot be said
for small and medium-sized enterprises [16].

1.1 Small and Medium-sized Enterprises

A small and medium-sized enterprise (SME) defines a company or enter-
prise with certain characteristics. An SME is sometimes called a small and
medium-sized business (SMB). Even though there is a slight distinguish be-

3



Chapter 1. Motivation

Fig. 1.1: The four industrial revolutions. Adopted from BRICS [11].

tween enterprise and business, they are often used interchangeably and thus
no distinguishing is made between SME and SMB in this thesis. Moreover,
SMEs include all company types in different sectors such as manufacturing,
agriculture and services. In this thesis, the focus is on the manufacturing
industry; thus, when an SME is described, it is a manufacturing SME unless
specified otherwise. As stated, to be qualified as an SME, the company has
to have a certain set of characteristics. The characteristics are different de-
pending on the geographical location. For example, in Australia, different
requirements depend on the government agency. For some Australian gov-
ernment agencies, the company has to have less than 200 employees while
others it is 250 employees. The same goes for turnover, where for some, it is
below A$ 20 million and for other government agencies, it is below A$ 150
million [18]. In the USA, there exist no clear definite either [19]. The Euro-
pean Commission has defined a specific set of characteristics which defines
an SME [20]. These characteristics can be seen in Table 1.1.

Table 1.1: The European Commission definition of an SME. The Turnover and Total Balance

columns only requires one of them to be fulfilled and M denotes millions [20].

Category Staff Turnover or Total Balance

Medium < 250 ≤ e 50 M ≤ e 43 M
Small < 50 ≤ e 10 M ≤ e 10 M
Micro < 10 ≤ e 2 M ≤ e 2 M

4



1.1. Small and Medium-sized Enterprises

Fig. 1.2: The nine technologies transforming the manufacturing paradigm identified by BCG.
Adopted from BCG [17].

1.1.1 Manufacturing Industry

The manufacturing industry is about turning raw material (or partly finished
product) into a finished product. When the term manufacturing industry or
manufacturing sector is used, it is mainly used to encompass all the com-
panies that manufacture physical goods in some way. Humans have manu-
factured items for millenniums [21], but only within the last few centuries
breakthroughs have happened that changed how manufacturing is thought
of and used. As stated at the beginning of this chapter, these breakthroughs
are often referred to as the industrial revolutions as shown in Figure 1.1. Even
though we are in the fourth industrial revolution, companies still strive to im-
prove their respective production. The motivations depend on each company,
but it can commonly be cost and lead time reduction and quality increase.
Not surprisingly, how this can be accomplished depends on the company
and their motivation. Some of the focus areas could be material selection,
value chain management, business models and process optimisation.

5



Chapter 1. Motivation

When automation is applied in a manufacturing company, it typically fol-
lows the automation pyramid scheme, as seen in Figure 1.3. The automation
pyramid is a visual example of how different parts of the company’s automa-
tion stack integrate. The bottom layer, field level, is where all of the low-level
hardware is placed. This includes sensors, actuators, valves and motors. The
next layer, control level, primarily consists of devices which control the devices
from the field level. These are mainly programmable logic controllers (PLCs)
and proportional integral derivative (PID) controllers. On top of the control
level, a supervisory level is commonly used. This level interacts directly with
the operators through human-machine interfaces (HMIs). Moreover, super-
visory control and data acquisition (SCADA) systems can be used to control
and monitor multiple controllers. The next level, planning level, is where
manufacturing, including its resources, is planned and monitored. Com-
monly, this is done with a manufacturing execution system (MES). The final
level, management level, is where all of the company’s resources are managed.
This is often done with an enterprise resource planning (ERP) system. These
five levels is part of the ANSI/ISA-95 Enterprise-Control System Integration (also
known as IEC/ISO 62264) standard [22]. Even though the standard explains
how the different layers are connected and what they contain, it is still up
to the individual company to adopt it. Moreover, research within the man-
ufacturing field is starting to question the pyramid structure with the rise of
Industry 4.0 and its subsequent technologies [23–25].

Fig. 1.3: The automation pyramid for a classical manufacturing company. Adopted from Rah-
man et al. [26].

With the advancement of IT technologies and Industry 4.0, manufacturing
companies are faced with new challenges. Khan and Turowski [27] found the
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three main challenges for manufacturing companies to be:

Data integration:

When data is collected throughout a company, they are often collected
in different ways. Therefore, it is possible that data silos occurs. These
data silos make it difficult for a company to utilise the data benefi-
cially. Furthermore, this challenges the real-time inspection of machin-
ery. Analysing the data is done on a per-need basis; thus, a significant
effort is put into gathering the data and analysing it each time.

Process flexibility:

With the reduced life cycle of new products, more requirements for the
different processes are made. The problem is that much equipment and
machinery are not designed for the needed flexibility. It is also a prob-
lem from the software perspective regarding sensor data and database
management.

Security:

Since companies have an ever-growing inventory of smart devices, be
it phones, tablets, computers, or sensors, the topic of cyber security is
also a growing concern. Companies must keep their devices updated
regarding software and have a structured plan for their IT infrastruc-
ture.

Even though Khan and Turowski’s identified challenges are not explicitly
focused on SMEs, the same issues apply to them, albeit even more so.

1.1.2 Opportunities and Challenges

An SME, compared to larger enterprises, has different sets of characteristics
and thus different opportunities and challenges. Various studies have found
several characteristics of manufacturing SMEs that bring them opportunities.
These characteristics have been described as the role of the SME’s manager
and the short hierarchical line [28]. And also, the working environment of
SMEs is, in general, welcoming entrepreneurship with the inherent culture
and informal environment [29, 30]. This means that an SME often has less
bureaucracy and, therefore, less time from idea to action.

The challenges for manufacturing SMEs in Industry 4.0 is often condensed
down to lack of knowledge, technology awareness limitation, and financial
limitation [31]. These challenges coexist with the already manufacturing chal-
lenges identified by Khan and Turowski. With these SME-specific challenges,
different government authorities, consultancies and research institutions are
providing aid differently. For example, the EU have the initiative I4MS1 to

1https://i4ms.eu/
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expand digital innovation of manufacturing SMEs. Here, SMEs can apply
for financial and technical support. In Denmark, the Danish authorities have
Innovation Fund Denmark2 where companies can apply for financial support
for, e.g. digitalisation projects. Besides financial support, initiatives such as
the danish MADE3 are constructed to bring digital innovation to manufactur-
ing companies in Denmark through collaboration between the industry and
research institutions. Moreover, specifically tailored towards manufacturing
SMEs is the Innovation Factory North (IFN) project [32]. This project focuses on
bringing awareness of Industry 4.0 to SMEs and demonstrating and utilising
said technologies.

This PhD study is a part of the IFN project. Subsequently, this means that
the focus is on the manufacturing SMEs primarily located in the northern part
of Denmark. As the IFN project revolves around the challenge regarding lack
of technology awareness, this project will focus on that. Thus the financial
aspect and managerial level are only briefly touched upon.

1.2 Internet of Things

The internet of things (IoT) covers the subject of devices that are intercon-
nected with each other. In this case, devices are physical equipment such as
sensors, computers or other hardware with software. A device is an IoT de-
vice when it can communicate with other devices over a network protocol. In
the industry, IoT is often called the industrial internet of things (IIoT). BCG
also ranks IIoT as one of the pillars of Industry 4.0. While IIoT is tailored
towards the industrial industry, there is no real difference between it and IoT.
Thus for this PhD thesis, the IoT term will be used.

As stated, for IoT to work, it requires both the a physical device with
software and a communication protocol. Even though internet is in its name,
it does not need access to the whole internet. A local network can be sufficient
for the task. IoT devices commonly connect to a cloud solution where the
data is stored. Such a cloud solution can be placed locally or remotely. With
a cloud solution, it is possible for the company to both gain insight into the
production and act according to changes within the data. A large amount
of data collected in the cloud is often called big data. An IoT and cloud
infrastructure can be built differently. An example of a method is the service-
oriented architecture for IoT as shown in Figure 1.4.

Implementing IoT within a manufacturing company is generally agreed
upon to benefit the company, although the same benefits are hard to calculate
[34]. These benefits come in different forms and depend on the individual

2https://innovationsfonden.dk/en/p/grand-solutions
3https://en.made.dk/
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Fig. 1.4: Example of a service-oriented architecture for IoT. Adopted from Li et al. [33].

company and its implementation. Fantana et al. [34] have identified numer-
ous such as:

• Right information providing or collecting

• Visibility identification and location tracking

• Reduced production losses

• New type of maintenance and lifetime approaches

In a white paper, McKinsey estimated that IoT within the manufacturing
sector would bring $ 1.2 to $ 3.7 trillion per year from 2025 [35], further
highlighting the potential.

1.3 Artificial Intelligence

When BCG created the nine pillars of Industry 4.0, they did not use the term
artificial intelligence (AI). It was part of the Big Data and analytics pillar. Since
then, AI has become a much more utilised and sought-out technology [36].
The term itself, AI, is ambiguous and covers many different methods and
applications. Overall AI can be split up in to two major categorise, artificial
narrow intelligence (ANI) and artificial general intelligence (AGI). AGI is where
the program has a general intelligence level, i.e. it is not specifically trained
for one task. This is the AI often depicted in science fiction. AGI is not close
to being a reality even though research is ongoing [37]. Currently, all of the
breakthroughs in AI have been happening in the ANI category. That is when
an AI is specifically trained or applied to one task. In Figure 1.5, an overview
of different areas AI can be applied to is shown.

From Figure 1.5, it should be noted that machine learning is depicted as an
area along with, e.g. vision and speech. Machine learning is the commonly
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Fig. 1.5: An overview of all the topics covered by artificial intelligence.

used tool to apply AI in different areas. Machine learning is commonly used
to describe classical methods such as support vector machines (SVM) and
regression methods such as ordinary least squares (OLS). More recently, the
subdivision of machine learning called deep learning has become the more
prominent method. Deep learning uses artificial neural networks (ANN) to
mimic the human brain’s workings. ANN is also often just called neural
networks (NN). With the general advancement in IT technologies, such as
the rapidly increased compute power available and the increasing data avail-
able, NNs have succeeded in outperforming the classical machine learning
methods when enough data is available [38, 39]. In Figure 1.6, an overview
of the different machine learning techniques is shown. Machine learning
is often characterised into three paradigms: supervised, unsupervised, and
reinforcement learning.

Supervised leaning:

Supervised learning methods are used when the training data also con-
sist of labels. These labels can either be class labels (classification prob-
lem) or values to predict (regression). Supervised learning is typically
used in image classification, system value forecasting and natural lan-
guage processing (NLP) problems.

Unsupervised leaning:

Unsupervised is used data is present without a specific label. This can
be a clustering method that tries to split the data into underlying classes
based on the data. It can also be dimensionality reduction to reduce
the amount of data available. Common use cases are recommender
systems, big data visualisation, and anomaly detection.
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Reinforcement learning:

Reinforcement learning is used when e.g. a sequence of decisions is re-
quired. This is commonly done with an agent which is learning by per-
forming actions in an environment and thus gets rewarded/punished
for its actions. This method is commonly used in navigation, robot
manipulation and real-time decision-making.

The examples of each of the three paradigms are not exclusive since the same
problem can be solved with more than one paradigm depending on the set-
ting and problem formulation.

Fig. 1.6: The three paradigms of machine learning along with their methods and applications.

As shown, the topic of AI covers many different areas and methods. For
the rest of this thesis, when the term AI is used, it mainly concerns the ma-
chine learning topic. Moreover, no directly distinguish is made between deep
learning and machine learning. This is because deep learning is a part of ma-
chine learning, and thus the latter term is mainly used.
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Chapter 2

Research Questions and

Approach

Based upon the background described in the prior chapter, this section will
outline the research questions for this thesis. This section will also explain
the research methodology and how the rest of the PhD thesis is structured.
Moreover, this section will describe the different scientific paper publications
and submissions conducted as a part of this thesis. Lastly, a description of
how the knowledge gained during the PhD has been disseminated.

2.1 Research Questions

As described in Chapter 1, this PhD thesis consists of three main topics: AI,
IoT and manufacturing SMEs. Three research questions are composed to
conduct further research on these three topics. These research questions also
consist of sub-research questions to elaborate the questions further.

RQ1: What is the current state of IoT and AI adoption in SMEs?

RQ1.1: On what level of integration is the current IoT and AI
solutions in SMEs?

RQ1.2: What are the challenges the SMEs face when integrating
IoT and AI solutions?

RQ1.3: Why should the SMEs adopt the use of IoT and AI and
what are the benefits?

RQ2: How can modern digital solution be designed to aid the adoption
within SMEs?
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RQ2.1: What are the challenges of using and sharing data for
SMEs and why should they do it?

RQ2.2: How can an algorithm be designed to overcome the chal-
lenges of the SME and thus be used without expert knowledge?

RQ3: How can IoT and AI solutions be integrated in an SME to enhance
the production?

RQ3.1: What is the preferred starting methodology for SMEs be-
ginning their utilisation of IoT and AI?

RQ3.2: How can an IoT and AI setup be at an SME, both hardware
and software-wise?

These research questions are answered by combining the contributed pa-
pers found in Part III and the research summary in Part II. Specifically, the
research questions are answered with the following papers:

RQ1: is answered in Paper A, E and G

RQ1.1: is answered in Paper A and E

RQ1.2: is answered in Paper A, E and G

RQ1.3: is answered in Paper A and E

RQ2: is answered in Paper B, C, D and F

RQ2.1: is answered in Paper C and F

RQ2.2: is answered in Paper B and D

RQ3: is answered in Paper A, B and G

RQ3.1: is answered in Paper A and G

RQ3.2: is answered in Paper B and G

2.2 Research Methodology

The main research methodology used in this PhD study was design science
research (DSR). While the research in this PhD thesis was conducted itera-
tively, the next iteration was always created on gaps identified in the prior
work. In DSR, the main focus is to enhance knowledge by creating innova-
tive artefacts for real-world problems [40]. Different forms of DSR exist, but
they all consist of the same general steps to carry it out. The basic steps in-
clude the following phases: background phase, design phase, demonstration
phase and evaluation phase. Peffers et al. [41] defined the following 6 steps:
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identify, define, design, demonstrate, evaluation and communicate. While the re-
search conducted in this thesis did not follow the specific steps by Peffers,
its core ideas were used. That is, the research directions for this PhD thesis
was identified and defined through the first research question (RQ1). The next
two research questions were established with the research found in RQ1. Re-
search question 2 (RQ2) focuses on the IoT and AI design element for SMEs.
This research question follows the design and demonstrate steps. The last re-
search question (RQ3) is focused on how such implementation at an SME
could look along with evaluation. Therefore, RQ3 is focused on the last steps
such as demonstration and evaluation. The last step, communication, is done
primarily through this thesis.

The order of the research questions closely resembles how the research
was conducted in this PhD. However, there are some overlaps between the
papers and research questions.

2.3 PhD. Study Publications and Submissions

The papers published and submitted for this PhD thesis can be seen in Ta-
ble 2.1. The paper’s dedicated letter is shown in the table, along with each
paper’s title and objectives.

Table 2.1: The papers published in this thesis along with the objectives.

Paper Name Objectives

A Artificial intelli-
gence and internet
of things in small
and medium-sized
enterprises: A survey
[Paper A|[1]]

Identify and present an overview of the current state
of AI and IoT in SMEs according to the scientific lit-
erature. Analyse the drivers behind the implemen-
tation and what made the different implementations
successful. Finally, it presents directions for future
research within the area.

B Concept of easy-to-
use versatile artifi-
cial intelligence in
industrial small &
medium-sized enter-
prises [Paper B|[2]]

Design and demonstrate how an easy-to-use AI sys-
tem could be like in an industrial context. The design
was focused on not requiring expert knowledge to
use and set up, along with how the architecture could
handle different types of machine learning problems.
It was tested on two other datasets, one from AAU
smart laboratory1 and one from an industrial part-
ner.

Continued on next page

1https://www.smartproduction.aau.dk/Laboratory/
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Table 2.1 – continued from previous page

Paper Name Objectives

C A new authentic
cloud dataset from
a production facility
for anomaly detec-
tion [Paper C|[3]]

Data was collected and shared in a new publicly
available dataset. The data was collected at a real
production site and contained errors during opera-
tion. The dataset was made public to help fill the
publicly available production-related datasets gap.

D A data-driven mod-
ular architecture
with denoising
autoencoders for
health indicator
construction in a
manufacturing pro-
cess [Paper D|[4]]

A modular approach to construct a health indicator
(HI) value for an arbitrary process. The modular ap-
proach does not require historical data before initial
setup and is not built to a specific process as it is
data-driven. It is designed to be modular in the sen-
sor input aspect, regarding numbers and types.

E Artificial intelligence
and machine learn-
ing [Paper E|[5]]

Basic explanation of AI and machine learning and
showcasing different use cases from different compa-
nies.

F On the topic of
anonymising pro-
duction data for
machine learning
[Paper F|[6]]

Explaining the need and idea behind anonymising
data. Focuses on specific types of data categories re-
lated to data gathered in a production environment.
A six-step approach is presented to make it more
straightforward for others to anonymise a production
dataset.

G An in-depth inves-
tigation of machine
learning and IoT
adoption at a man-
ufacturing SME:
A field study [Pa-
per G|[7]]

A demonstration and evaluation of an IoT and AI
setup implemented at a Danish manufacturing SME.
The IoT setup is described and discussed on both
software and hardware level. The AI part is imple-
mented to control critical control parameters and is
tested on data collected over six months. A company
perspective is also presented and discussed.

As the research is conducted with DSR, most of the papers are built on
knowledge and gaps identified in the prior work. To give a better overview
of which papers are built on top of which, see Figure 2.1 for an illustration.

2.4 PhD. Knowledge Dissemination

During the PhD study, one important aspect of the research was also con-
ducted, namely knowledge dissemination. Besides publications and confer-
ences, knowledge dissemination was conducted in the following ways:

• Bachelor level teaching

• Bachelor and master student supervision
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Fig. 2.1: The thought and knowledge flow between the papers.

• External lecture

• Sparing partner for various companies in IFN

During the PhD, different teaching activities were carried out. The teach-
ing activities were conducted at UCN for bachelor students in the software
engineering education. As they are purely software students, the teaching
was centred around AI, the manufacturing industry and Industry 4.0. The
motivation behind it was to give the students a broader knowledge of applied
AI and the challenges and opportunities within the manufacturing industry.

Supervision was conducted both at UCN and AAU. The supervision was
centred around different topics such as software testing, robotic manipula-
tion, data collection and artificial intelligence. Some of the students managed
to publish their work. In one project, the students created a virtual reality in-
terface for remote robot manipulation [42], and in another, the students built
an industrial omnidirectional mobile robot platform [43]. Another student
group performed the data collection and initial analysis of the data, which
was later published as the open dataset AICD [Paper C|[3]].

An external lecture was conducted at the yearly danish datamatikerlærer
foreningen2 (computer science teacher’s association) gathering. The lecture
concerned AI and Industry 4.0, along with ongoing research and an outlook
into the future.

2https://www.dmlf-cms.dk/

17



Chapter 2. Research Questions and Approach

Lastly, as this PhD study was conducted under the IFN project, differ-
ent types of knowledge dissemination were conducted in that context. The
IFN project’s main goal is to bring awareness, demonstrate and bring inter-
nal changes to the participating companies. For IFN, most dissemination was
consulting the companies with their problems. The problems were commonly
either digitisation or digitalisation of their production, whereas paperless pro-
duction was a common trend. Moreover, a demonstration of how machine
learning can be used for production data and with actual company data was
also carried out.

2.5 Outline of Thesis

This thesis is concerning the three main topics of IoT, AI and SMEs with three
subsequent research questions. To fully understand the current state of the
art within the two technologies, IoT and AI, and certain advancements within
manufacturing, Chapter 3 presents the state of the art. After that, the thesis
moves into Part II Research Summary, which covers all publications made and
answers the research questions. Part II is structured such that each publica-
tion has its own chapter, as Chapter 4 concerns Paper A, Chapter 5 concerns
Paper B and so forth. Each chapter in the Research Summary has the same
structure. They start with informing what paper it covers and which research
question it answers, following general information for that specific paper and
research area. After that, an extended abstract is presented, describing the
key background information, methods and results. Each chapter ends with
an implications section, which connects the paper with the research questions
and describes what it means in the broader scope. As these chapters describe
the same information which is presented in the papers, repetition of context,
phrasing, results, figures, and tables are to be expected.
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State of the Art

Before answering the three research questions, it is paramount to understand
the state of the art. As the motivation for SMEs has been established in Chap-
ter 1, this chapter will focus on the two technologies, IoT and AI, and trends
in the manufacturing sector. Specifically, to answer the research question,
this chapter will investigate different aspects of the technologies regarding
architecture, usages and different deployment types. Both of these topics en-
compass many different sub-areas; thus, only relevant areas will be described
in this chapter. The context of SMEs in regard to the technologies will not be
considered in this chapter.

3.1 Internet of Things

The internet of things (IoT) can have different architectural layouts depending
on various factors. Kumar et al. [44] summed it up to a four-stage setup.
The first stage was the sensor and actuation layer, where all the interaction
with the real world happens regarding sensing and interaction. The second
stage is where the data acquisition happens, and data is transformed in a
meaningful manner and then distributed further. The third stage is edge
computing, where local analysis and interaction with the data, such as AI
methods, happens. The fourth and final stage is the cloud storage, where data
is archived, and long-term statistics and analysis is performed. An overview
of these four stages can be seen in Figure 3.1.

3.1.1 Sensors

One integral part of IoT is sensors and actuators. Sensors are small devices
which can measure physical events such as pressure, light, temperature and
weight. Wireless sensor networks (WSN) have gained traction with the rise

19



Chapter 3. State of the Art

Fig. 3.1: An example of how an IoT architecture can be setup. Adopted from Kumar et al. [44].

of IoT [45]. WSN sensors are small sensors with limited processing power
and wireless communication protocols built in. These sensors are generally
applied in an application where the infrastructure is limited and is generally
decided by the implementation. Li and Kara [46] describe how WSN is an
essential part of IoT in an Industry 4.0 context. They demonstrate that WSN
should be used as the sensing layer, corresponding to Kumar et al. [44] stage
1. They argue that this would reduce the initial investment cost compared
to traditional methods where the analogue sensors are directly attached to
a data acquisition computer. Kandris et al. [47] presented a comprehensive
review of WSN where they identified three main areas it can be used in an
industrial context. These were logistics, robotics and machine health moni-
toring.

Within the manufacturing sector, machinery is often used as long it is fea-
sible. Consequentially this means that some machinery can be several years
old and thus might not be compatible with modern methods and technolo-
gies such as IoT. Therefore, companies can retrofit new sensors to compensate
for it. Jaspert et al. [48] presented a systematic review of smart retrofitting in
manufacturing. They found that the main drivers were to ensure competitive-
ness, increase efficiency, market responsiveness and regulations compliance.
An example of sensors used is an accelerometer for equipment state [49]. Ac-
celerometer and temperature sensors have also been used in conjunction for
health monitoring [50] and with the correlating PLC data [51]. An example
of attaching an energy sensor to a CNC machine also gets insight into the
machine’s overall equipment effectiveness (OEE) [52].
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3.1.2 Communication Protocols

For sensors to connect and be used for other than local measurement a com-
munication medium is required. Physical communication can either be wire
or wireless. Historically, wired has been the go-to method for stability, la-
tency and security reasons. However, with the ongoing need for more inter-
connected sensors and devices, connecting the sensors by wire can become
infeasible, and thus wireless communication protocols are used [53].

Besides the commonly used WiFi, there exist many other protocols. These
range from low-power and low-throughput standards such as ZigBee and Z-
Wave [54] and high-power and high-throughput such as 5G [55]. Protocols
such as LoRa also deliver long-range, and low-power consumption [56].

To send the sensor readings, typically, a higher abstraction level is needed
on top of the already mentioned network protocols. Here different types of
communication protocols can be used. For many years protocols like Mod-
bus, Profibus and Profinet have been used as the communication protocol
between PLCs and other devices. Nonetheless, with the expansion of new
devices, other communication protocols are gaining traction. OPC UA is an
example of a communication protocol which is being used. It is found to
integrate well into communication between classical machinery (e.g. CNC
machines) and PLCs with low sampling rate [54]. It also has the semantic
modelling of the data, making it easier to interpret the data. Within man-
ufacturing, the messaging protocol MQTT is also being used. It has the
benefit of being widely used, and thus it can be implemented on a wide
variety of devices [54]. This makes it suitable as the communication plat-
form for retrofitted sensors. MQTT lacks semantic data modelling compared
to OPC UA, making it harder to scale and understand in complex scenarios
[57].

3.1.3 Databases

In manufacturing, databases are commonly used in most of the automation
pyramid. The data can be stored in the same database or multiple databases
according to the subsequent automation layer. Databases have existed for
many decades, and while their main objective of storing data has stayed the
same, the way it is done and the usage of the data have changed [58]. Now
there are different databases for different types of data and usages, which the
users operate through a database management system (DBMS). A relational
database where SQL is used to query data is commonly used in the industry
to store data. This data can e.g. be inventory, work info and events. Where
relational databases use tables and relations to structure the data, NoSQL
(often called Not only SQL) can work with many different database models.
These types can e.g. be relational, graph, and documents [59]. With the rise
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of Industry 4.0 and IoT, data collection has also risen, and when a lot of data
is collected, it is often called big data. The data collected is now also contin-
uously data from various sources such as temperature, vibration, and events.
These types of measurement are often associated with time, thus called time
series data. As time series data can be collected with a high frequency, it can
be beneficial to use dedicated time series databases to store it. These time
series databases are constructed in such a way that it requires less space and
computing power to store and read the data, along with other built-in meth-
ods for reading the data, such as mean aggregation over a certain window
period. An example of a time series database is InfluxDB, one of the most
popular time series databases [60].

Besides databases with accompanying DBMSs, other storage mediums
exist. Examples of these mediums are Excel, HDF5, CSV, Zarr and JSON
files. These mediums are often just a single file with no direct interaction
method like DBMS. Instead, they are commonly used to share the data or
train, e.g. machine learning algorithms.

3.1.4 The Cloud

A cloud solution is where the data is stored on a server, commonly at a cloud
provider. Besides acting as an offsite backup, it is possible to inspect, analyse
and act upon the data. As seen in Chapter 1, BCG sees the cloud as an entire
pillar of Industry 4.0 by itself. In a manufacturing context, the cloud can also
be referred to as cloud-based manufacturing (CBM). CBM can be described
as a network of manufacturing models which use on-demand access to a
shared pool of diverse and distributed manufacturing resources. Here it is
used to create temporary, re-configurable CPS that can improve efficiency
and lower the cost of product lifecycles in response to customer demand
[61]. A cloud solution can be designed as service-oriented architecture (SOA),
which, e.g. makes components reusable and thus reduce costs [62]. Often the
cloud providers offer different types of services in the type of infrastructure
as a service (IaaS), platform as a service (PaaS) and Software as a service
(SaaS) [63]. The three *aaS distinguish the level of control/manageable items
between the customer (the company paying for the service) and the provider.
In IaaS, the provider only manages the infrastructure, i.e. servers, networks
and virtualisation. The customer then handles the rest. In PaaS, the provider
also handles the OS and middleware for the servers. Here the user only
is responsible for deploying and maintaining the application they need. In
SaaS, the provider takes care of the entire stack, making it the easiest to use
for the customer but also the least flexible of them. An overview of this in
Figure 3.2 is shown.

Additionally to the cloud solution, companies are also bringing some of
the functionality locally, this is called fog computing. Fog computing can per-
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Fig. 3.2: Management of IaaS, PaaS SaaS. Adopted from Saraswat and Tripathi [64].

form calculations and sensor data selection before being sent to the cloud.
Thus it is possible to decrease the amount of data sent to the cloud, which
can reduce the cost [65]. It is also possible to act on the data quicker than
because of the reduced latency compared to the cloud. AI models have also
been deployed in the fog, which both impact the increased response time and
enhanced security regarding the computation happening on site [66].

3.2 Artificial Intelligence

With increased interest in artificial intelligence (AI) and the possibility it
brings, much research and advancement have happened in the last decade.
Examples of advancement are IBM Watson beating human opponents in
Jeopardy, AlphaGo Zero beating the prior version AlphaGo Lee without
training on labelled data, and Tesla’s self-driving hardware being imple-
mented in all of their vehicles since 2016 [67]. As stated at the start of this
thesis, the AI topic is vast and covers many different sub-areas. For this PhD
thesis, it would be irrelevant to describe all of them; thus, only the relevant
areas would be described.

3.2.1 Image Classification

Within AI, image classification and object detection have various use cases,
such as quality inspection of solar cells [68] and autonomous train stopping
[69]. When image classification is the objective, convolutional neural network
(CNN) is the go-to method as it mainly outperforms other methods such as
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ANN and SVM [70]. A CNN network normally consists of one or more con-
volutional layers and sub-sampling layers (e.g. max-pooling) to reduce the
dimensions. Following the convolutional and sub-sampling layers, normal
fully connected layers (also known as dense layers) would be placed. In this
type of setup, the convolution layers will learn the features of the training
data, e.i. they would indirectly perform the feature extraction, and then the
fully connected layers would perform the classification. A common exam-
ple of this network is AlexNet which was a breakthrough with the use of
deep CNN trained on GPUs [71]. In Figure 3.3, a graphical representation of
AlexNet can be seen.

Fig. 3.3: AlexNet architecture. Adopted from Krizhevsky et al. [71].

Since AlexNet, many types of CNN architecture with different techniques
have emerged. Iandola et al. [72] presented SqueezeNet, which has the same
accuracy as AlexNet but with a significant lower model size. They achieved
this by replacing the fully connected layers with global average pooling and
their module named fire module. He et al. [73] introduced residual blocks
which ease the training of deep networks. This idea of the residual block
was used by [74] to build ResNeXt. Dosovitskiy et al. [75] used transform-
ers to perform image classification, which achieved similar or better results
compared to state-of-the-art CNN architectures. Besides image classification,
object detection is the objective of locating an object within the image and
image segmentation finds all the pixels which belong to the object. Exam-
ples of object detection is YOLO (you only look once) [76] and SSD (single
shot multibox detector) [77]. Meta AI has created image segmentation named
Mask R-CNN, allowing users to estimate other aspects such as human poses
[78].

3.2.2 Time Series Classification and Regression

As described in Section 3.1.3, a time series is a measurement with associ-
ated time stamps or is collected over time. If more than one measurement is
available, this is referred to as multivariate time series. See Figure 3.4 for an
illustration of a multivariate time series. Within research, time series classi-
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fication and regression have been used to classify hand motions of surgeons
[79] and forecasting, e.g. energy consumption [80].

Fig. 3.4: Time series data.

CNN architectures have also been used in time series classification, as it
is possible to represent the time series as an image and apply the successful
CNN methods [81]. Fawaz et al. [82] showed that transfer learning in CNN
time series classification problems could be beneficial and a hurdle if the cor-
rect dataset is not used. They identified that the dataset used for pretraining
should be similar to the target dataset. A commonly used architecture for
time series is a recurrent neural network (RNN). They work in the way that
each cell in the RNN layers remembers prior information and, depending on
the method, can share information bi-directionally. One of the most used
RNNs is long short-term memory (LSTM) [83]. They have e.g. been used
to forecast petroleum production through a neural network of LSTMs [84].
Essien and Giannetti [85] proposed stacked convolutional-LSTM layers with
bidirectional stack LSTM layers time series forecasting for industrial machin-
ery.

3.2.3 Anomaly Detection

Anomaly detection covers the subject of detecting anomalies in the applied
area. These areas can be detecting spam emails and faulty bearings in ma-
chinery. One-class support vector machines (SVM) have been used to outper-
form other classical machine learning methods in network intrusion detection
[86]. More recently, with NNs, autoencoders (AE) have become a successful
method in anomaly detection. As shown in Figure 3.5, an AE works by com-
pressing the input data through the encoder part into a code part (also called
latent space). Then the data is decompressed through the decoder into an
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output matching the input. If the AE is only trained on good/correct data,
then the reconstruction loss would become high if abnormal data is present.
The use of AE as anomaly detection is further described in Chapter 7. Saku-
rada and Yairi [87] showed that an AE could outperform a linear principal
component analysis (PCA) and a kernel PCA. Denoising autoencoders (DAE)
is where noise is added to the network, typically through methods such as
dropout. DAE has, e.g. been used to detect anomalies in wind turbines
[88]. Variational autoencoders (VAE) are another type of AE, where the la-
tent states are the statistical features mean and variance, and thus it describes
a probability distribution of the input. VAE has also been successfully used
in anomaly detection [89].

Fig. 3.5: An autoencoder with the three parts encoder, decoder and code.

3.3 Manufacturing

So far, the subjects covered in this chapter have been done in a general sense
and in relation to the industry. Aside from the general introduction given
in Chapter 1, specific industry-relevant advancement is further investigated
here.

3.3.1 Predictive Maintenance

Maintenance is a crucial factor in any production. Failure to perform main-
tenance on equipment can lead to them failing unexpectedly and thus create
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unforeseen downtime and potential damage to products and machinery. Do-
ing maintenance too often can also lead to unnecessary maintenance costs in
terms of personnel and equipment costs, along with unnecessary downtime.
Commonly, four analytics levels are described as descriptive, diagnostic, pre-
dictive and prescriptive [90]. How these four levels can be interpreted can be
seen in Figure 3.6. These levels can also be applied in a maintenance context,
e.g. PLC alarms can be descriptive or diagnostic. Predictive maintenance is
when the maintenance process is performed in a predictive manner in some
way, e.g. with expertise or machine learning. Prescriptive analytics is where
the system can alter its settings to get the desired output. PWC [91] found
in 2017 that only 3% of the companies in the survey did not perform any
predictive maintenance, while 63% did it with visual inspections and instru-
ment readouts. Only 22% used real-time condition monitoring with alerts
at specific values. At last, only 11% used regression and machine learning
methods based on big data to predict maintenance. Zonta et al. [92] pre-
sented a comprehensive literature review concerning predictive maintenance
in Industry 4.0. They found that data-driven approaches is the most promis-
ing approach based on the increasing level of data collection. Moreover, if
the objective is to make a time-based prediction, such as remaining useful life
(RUL), data-driven approaches are needed because of the need for historical
data. In another survey of predictive maintenance by Çinar et al. [93], they
observed the same as Zonta et al. [92], but also argued that future directions
for predictive maintenance are:

• Automating predictive maintenance may be made possible by using
intelligent data collecting systems to extract real-time data.

• Combining more than one machine learning model can provide better
predictions.

• Machine learning models implemented in the cloud can be further stud-
ied.

• Combining classification and anomaly detection algorithms can main-
tain the classification precision while keeping anomaly detection. This
could reduce the need for larger datasets.

3.3.2 Health Indicator

One method to perform predictive maintenance is with health indicators (HI).
HI is a number describing the specific machine’s general “health”. This num-
ber could be in percentage, where 100% means the machine is fully func-
tional. Then when the machine is used, and parts are worn down, its health
will decrease. HI, scores have been constructed for bearings with RNNs with
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Fig. 3.6: The four analytic capabilities. Adopted from [90].

HI mapped to the range 0 to 1 [94]. The same bearing dataset what also
used to construct HI score using CNN [95] and CNN with residual blocks
followed by an RNN layer [96]. While these examples were all data-driven,
examples of using expert knowledge of the system also exist [97]. Lei et al.
[98] presented a comprehensive review of HI and RUL prediction. Among
the different ways of constructing the HI score, they also discussed using
health stages, which breaks up health into stages. Here it is possible to have,
e.g. two stages (healthy or unhealthy) or three stages (healthy, degradation
or critical). The HI score is often used to estimate the RUL, as seen in [94, 98].
However, all of them assume either that historical run-to-failure data already
exist or simulation thereof. Hu et al. [99] proposed an RUL prediction with
now historical data with the use of Kalman filtering and particle filters, and
physical models.

3.3.3 Open Innovation

Sharing ideas and knowledge between companies is a practice with its ori-
gins in high-tech companies [100]. This practice is called open innovation and
has grown in popularity along with Industry 4.0. Open innovation has also
seen a rise in popularity within SMEs where two areas are specifically in
focus: technology exploitation and technology exploration [101]. Technol-
ogy exploitation refers to enhancing technological capabilities externally, and
technology exploration refers to gathering external knowledge and drawing
benefits from it, technological-wise. Researchers have proposed local open
innovation networks for SMEs, which evolve both SMEs companies, the pub-
lic sector, universities and research institutions [100, 102]. This methodology
of local open innovation neatly follows the core idea behind the IFN project
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described in Section 1.1.2. Besides all the benefits, SMEs are also holding
back on embracing the open innovation idea. Leckel et al. [102] identified
the concerns as the protection of intellectual property (IP) and the lack of
resources, money and knowledge.
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Chapter 4

The State of AI and IoT in

SMEs

The first paper, Paper A, is titled: Artificial intelligence and internet of things
in small and medium-sized enterprises: a survey. The paper was submitted and
published at the Journal of Manufacturing System, Elsevier in 2021. The
paper relates to RQ1 and RQ3 and answers them through the sub-questions:

RQ1.1: On what level of integration is the current IoT and AI solutions
in SMEs?

RQ1.2: What are the challenges the SMEs face when integrating IoT
and AI solutions?

RQ1.3: Why should the SMEs adopt the use of IoT and AI and what
are the benefits?

RQ3.1: What is the preferred starting methodology for SMEs beginning
their utilisation of IoT and AI?

As this paper was the first paper written for this PhD thesis, it was meant as
a means to lay the foundation for the subsequent papers. The paper was car-
ried out as a structured literature review to understand how AI and IoT are
used in SMEs. As this chapter is an extended abstract of the mentioned pa-
per, [Paper A|[1]], repetition of context, phrasing, results, figures and tables
are to be expected and is from that source.

4.1 Extended Abstract

33



Chapter 4. The State of AI and IoT in SMEs

Introduction and Method

When Industry 4.0 is discussed, the nine technology pillars by BCG’s are of-
ten mentioned. These pillars include technologies such as IoT and AI [17].
While larger enterprises exploit these technologies, SMEs often lack the re-
sources and knowledge to create a dedicated strategy for this transformation
[103]. Real-time communication through IoT, big data, and analytics have
been identified as some of the main drivers of Industry 4.0 in SMEs. These
are said to bring new insight into the productions [17, 104]. A study by
Moeuf et al. [28] showed that 90% of an expert group concur that IoT is es-
sential for the industrial performance of SMEs and more than 55% agree that
big data is essential to enhancing business performance. None of the experts
said that SMEs possess the knowledge and skills necessary to use AI. Lastly,
75% of the experts said that research teams should encourage the adoption of
Industry 4.0 in SMEs. As stated, SMEs have certain characteristics compared
to larger enterprises. This study sums the characteristics up as follows:

• Culture and leadership

• Process innovation

• Company strategy

• Customer relationship

• Flexible and informal environment

To better understand SMEs and the technologies before the structured litera-
ture review, the study described both SMEs, AI and IoT. These descriptions
are similar to what was already described in the motivation (Chapter 1) and
state of the art (Chapter 3) chapters of this thesis.

The structured literature review was conducted on Scopus and Web of
Science. For the search, the following search query was used:

“Small and Medium Sized Enterprise” and “Internet of Things”; “Small and
Medium Sized Enterprise” and “The Cloud”; “Small and Medium Sized En-
terprise” and “Machine Learning”; “Small and Medium Sized Enterprise” and
“Deep Learning”; “Small and Medium Sized Enterprise” and “Neural Net-
works”; “Small and Medium Sized Enterprise” and “Artificial Intelligence”;
“Small and Medium Sized Enterprise” and “Digital Twin”;

A certain set of criteria was needed for the search results to be deemed rel-
evant for the study. These inclusion criteria were especially relevant in this
study as the search query included broad terms such as artificial intelligence.
The criteria can be seen in Table 4.1.
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Table 4.1: Criteria of inclusion. DT: digital twin [Paper A|[1]].

No. Criteria Reason for inclusion

1 SME The publication has to be relevant for SMEs.
2 IoT/AI/DT Industry 4.0 is a collection of different tech-

nologies and thus different terminologies are of-
ten used; however, the publications should fall
within at least one of these technologies

3 2010 - 2019 Industry 4.0 as a terminology was first used by
the German government in 2011 [105] and since
these technologies also first started to be relevant
at that time, the publications should be post-
2010.

4 Manufacturing The publications should be relevant to the man-
ufacturing industry.

5 English material Because of the global aspect of Industry 4.0 and
a way to avoid national biases, only English ma-
terial is considered.

Results

Since some of the terms are general, many misfits were captured. Initially,
155 publications were captured; out of those, only 37 were deemed relevant.
The review process can be seen in Figure 4.1. During 2010-2019 the study
showed an increased frequency of relevant publications, illustrating the in-
creased interest. Along with the increased interest, Europe and Asia were
the continents with the most publications. The literature review revealed five
areas which had a high focus. These were: IoT, AI, cloud, digital twin and
business. The distribution of these five focus areas can be seen in Figure 4.2.

The IoT focus area found that the term IoT was often also used as a syn-
onym for Industry 4.0. From the publications which did use IoT, it has been
used to decrease energy consumption [106], machine monitoring and utili-
sation [107, 108], and room heat control [109]. Low-cost IoT solution was
also the focus, where some communication means such as OPC UA and Zig-
bee were used [110, 111]. Other surveys found that the IoT adoption level
is still low [112] and that the push for IoT solutions often comes from in-
ternal motivation [113, 114]. Within the AI focus area, only a handful of
publications used or discussed AI. Thereof, only two publications used AI
directly relevant to the production with machinery status detection [107] and
climate and lightning control [109]. Digital twins were the focus area with
the least amount of publications with only one use case in textile production
[106]. The cloud was the focus area that attracted the most publication. The
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155 Publications identified from electronic
database searches

- 141 Scopus
- 14 Web of Science

86 Publications excluded
- Business focus
- Non-SME
- Teaching
- Finance

69 Potentially publications identified by title,
keywords, and abstract screening

7 Publications excluded
- No access

62 Publications for full screening

25 Publications excluded
- No manufacturing focus
- No IoT or AI focus

37 Publications accepted

Fig. 4.1: The systematic literature review approach [Paper A|[1]].

study found that the cloud mainly covered the sub-areas of cloud comput-
ing, decision support systems (DSS), ERP, MES and security. Where study
has stated that manufacturing SMEs should focus on ERP with DSS [115],
whereas another study gave an example of how it could be designed [116].
It has been found that SMEs are especially vulnerable to cyber-attacks, with
research showing that up to 91% of the attacks are external attacks [117, 118].
Moreover, it has also been found that the current cloud solutions are unsuit-
able for SMEs, and thus, specifically tailored solutions should be made [119].
Within the business focus area, it was found that the innovation process is of-
ten started internally within the SMEs [114]. Moreover, it has also been found
that SMEs should be ready to adopt new business models to stay competitive
[120] and thus embrace ideas such as open innovation [121].

Besides the found focus areas, the study also tried to map the character-
istics of SMEs to the publications. Unfortunately, many of the publications
did not state what the motivations behind the adoption were. Some were
surveys, and some only focus on the technological aspect. Therefore, only
a few were able to map to a characteristic. One of the characteristics that
worked as the main driver was process innovation. This motivation was
mainly to reduce cost [106, 110], increase production transparency [107] and
shorten changeover time [122]. The other characteristic found by the study
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Fig. 4.2: The five identified focus areas [Paper A|[1]].

was company strategy. It was found that SMEs have changed their strategy
to meet new markets [121], and most changes in company strategy comes
from internal influence [114].

Conclusion

The literature review showed that cloud solution is one of the most used
Industry 4.0 technologies in SMEs, even though other studies call for more
SME-tailored versions. It also found that IoT is a slow adoption level and
is primarily machine-wise implementation, e.i. only a single machine is
connected. AI has the lowest level of adoption, even though successful im-
plementations exist. Only a few studies exist on the characteristics aspects;
thus, more research is needed in the area to better understand SMEs’ driving
forces.

One of the reasons why cloud solutions are the most adopted Industry
4.0 technology is that it is comparable easy to both get started with and un-
derstand the benefits. This finding agrees with Moeuf et al. [28]. Therefore,
future research should focus on making IoT and AI easier for SMEs to utilise
by reducing the complexity and need for expert knowledge.
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4.2 Implications

Understanding the current state of AI and IoT in SMEs is paramount to lay
the road ahead. The paper summarised the use of these technologies in SMEs
over the last decade, where a clear pattern of increased interest was shown.
Moreover, it serves as a foundation for the following research in this PhD
study. While technology-wise, only a few were mentioned, such as OPC-
UA and Zigbee as communication protocols, the study showed that most
of the changes from the SMEs come from within. Since the changes come
from within, the SMEs are potentially more invested in the technology and
thus have a higher chance of success. The motivation ties well with the IFN
project as companies are signing up by themselves and are invested in gain-
ing knowledge about Industry 4.0. When it comes to using IoT, the majority
were machine-wise implementation, which is a great starting point but can
be complicated to scale throughout the factory. The area of AI is even less
utilised within SMEs. A conclusion can be made that knowledge of AI and
IoT and more accessible methods are needed if SMEs are expected to take
advantage of them. It can, e.g. be done through external collaboration with
other SMEs or research institutions. The contributions of this paper can be
summarised as follows:

1. The current adoption and integration of IoT and AI in SMEs are low
but rising.

2. Digital twins are not feasibly for SMEs at the current time.

3. The use of AI and IoT shows promising results, both in larger enter-
prises and SMEs.

4. IoT and AI solutions should be made more easily available for SMEs to
increase adoption.
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Concept of AI-Box in SMEs

The second paper, Paper B, is titled: Concept of easy-to-use versatile artificial
intelligence in industrial small & medium-sized enterprises. The paper was sub-
mitted for presentation at the 30th International Conference on Flexible Au-
tomation and Intelligent Manufacturing (FAIM2021) in 2021. Afterwards, it
was published in Procedia Manufacturing, Elsevier. The paper relates to RQ2

and RQ3 and answers them through the sub-questions:

RQ2.2: How can an algorithm be designed to overcome the challenges
of the SME and thus be used without expert knowledge?

RQ3.2: How can an IoT and AI setup be at an SME, both hardware and
software-wise?

This paper explores how a software architecture concept can be made to
give AI capabilities to SMEs. Specifically, the software is deployed on an
NVIDIA Jetson, and all the classical machine learning architecture setups are
hidden from the user. The concept is tested on two datasets, one from the
AAU smart laboratory and one from an industrial partner. As this chapter
is an extended abstract of the mentioned paper, [Paper B|[2]], repetition of
context, phrasing, results, figures and tables are to be expected and is from
that source.

5.1 Extended Abstract

Introduction and Concept

As larger enterprises are using the technologies from Industry 4.0 [123, 124],
SMEs have not had the same boost where e.g. maturity assessment is not
suited for SMEs [125]. There exists smart devices which individually try to
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solve different aspects on a higher level of abstraction. These devices can be
OEE monitoring1, live data-streaming2 and visual inspection3. To contribute
to the development of these smart devices and bring easy-to-use AI devices
to SMEs, this study presents the concept behind the AI-Box. The AI-Box
concept is built with three use cases in mind:

1. False alarm with a visual inspection

2. Audible error detection

3. Unknown error detection through vibration signals

The operators would train these three use cases without them knowing it by
answering questions through the web browser. The AI-Box is intended to be
connected to the PLC, and thus the operator controls both the machine and
the training process of the models. The hardware for the AI-Box, an NVIDIA
Jetson AGX Xavier, was chosen. The Jetson have a built-in GPU with CUDA
cores, making it suitable for NN deployments and possible to train models
directly on it. Python 3.6 was chosen for the software for rapid development,
along with Django to handle the web interface and Tensorflow 2.0 for the
NN framework. Two different types of internal architectures were used. The
first one was the model-view-controller (MVC) [126]. The MVC keeps the
underlying model (in this case, both NN and program information) filtered
for the user so only the correct information is presented and accessible. To
keep the AI-Box flexible and easy to implement new NN models and sensor
inputs, the second architecture was based on the layer pattern architecture.
This pattern enables each component to be independent and thus only used
to communicate in between. In Figure 5.1, the system architecture for the
AI-Box can be seen. Here the top GUI layer is where the operator interacts
with the AI-Box. The global state handler ensures that the different aspects,
such as the attached devices, are in a correct state. The model handler ini-
tialises the correct parameters in both the loop controller and the sensor handler
along with their intercommunication. The loop controller handles how the NN
model is running along with the training data. The sensor handler handles the
communication with the correct sensor.

Experiments

To test the AI-Box, two different types of experiments were conducted. Use
case experiments and NN model architecture experiments.

The use case experiments tested the first type of use case (False alarm with
visual inspection). One experiment was conducted at an industrial partner,

1Factbird https://blackbird.online/product-overview/
2M-Box https://www.monitor-box.com/
3DTI Vision Box https://www.dti.dk/quality-control-and-vision/38108
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Fig. 5.1: The system architecture of the AI-Box. The green squares indicate that they are static
models, the blue is databases, and the red is non-static model depended layers [Paper B|[2]].

and one was conducted at the FESTO CP factory at AAU smart laboratory.
The industrial partner has a robot which picks layers of goods from a pallet
and places it elsewhere. Between each layer, a slip-sheet is placed to keep
the pallet steady. Sometimes, this slip-sheet is stuck under the layer, and no
alarm is triggered. The AI-Box was placed beside the robot with a webcam
mounted to it. Then the AI-Box started to take images beneath the picked-
up layer. The NN was chosen to be the CNN architecture AlexNet [71].
After the first 30 captured images, the loop controller was triggered to start
training. On each batch in training, a random generator was used to apply
augmentation to each image to compensate for the low sample size. There
is a probability of 0.6 that one or more augmentation is performed on each
image. The available augmentations are brightness, contrast, flipping, hue,
saturation, quality change, rotation, blurring, and cropping. A total of 87
samples were captured. The same procedure was followed at the FESTO CP
factory, where it instead was to distinguish between black and blue phone
cases. Here 41 samples were collected.

The second experiment was conducted to identify the most suitable CNN
architecture and to test the augmentation method. The study tested three
different types: AlexNet [71] , ResNeXt [74] and SqueezeNet [72]. Some small
changes were made to AlexNet and ResNeXt to make them able to fit into the
memory of the Jetson. The architecture of all three can be seen in Table 5.1.
The models were tested on the same dataset from the FESTO CP factory with
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only 41 samples. Eight were used for the validation set, and a larger dataset
from the industrial partner with a total of 1050 images, where 210 were used
for validation. The experiments were tested with two different learning rates
(0.001 and 0.0001) and were only allowed to run for 200 epochs. This was
done to validate the quick learning requirement for the AI-Box. Thus, two
different learning rates were tested.

Table 5.1: The different specifications for the implemented architectures. For AlexNet, a dropout
is placed after all convolutional operations. In ResNeXt, no-bias is used in the convolutional
operations. All models use Adam optimiser with default hyperparameters [Paper B|[2]].

AlexNet ResNeXt SqueezeNet

2 x Conv(32,3,1) ZeroPad(3) Conv(96,7,2)
MaxPool(2) Conv(64,7,2) MaxPool(3)
Conv(64,3,1) BatNorm(1.001e-5) 2 x F.Module(16,64,64)
MaxPool(2) ZeroPad(1) F.Module(64,128,128)

Conv(128,3,1) MaxPool(3) MaxPool(3)
MaxPool(2) 3 x R.Block(64,1,32) F.Module(32,128,128)
Dense(128) 3 x R.Block(128,2,32) 2 x F.Module(48,192,192)
Dense(68) 3 x R.Block(256,2,32) F.Module(64,256,256)
Dense(2) 2 x R.Block(512,2,32) MaxPool(3)

GlobalAvgPool F.Module(64,256,256)
Dense(2) Conv(2,1,1)

GlobalAvgPool

Parameters

16,888,226
Parameters

22,576,706
Parameters

736,450

Results

The results from the experiment at the industrial partner showed that the
test accuracy started to converge at 100% accuracy after 2 minutes of training
on the Jetson. The FESTO CP Factory test showed it started to converge at
100% after only 17 epochs. In both tests, augmentation was used on the
training data, while no augmentation was done on the test data. Because of
the shallow data availability, the test data was the same as the training data
in these two experiments. This is visible in training and test accuracy where
the test data (no random augmentation) converged at 100% and the training
data (random augmentation) never converged at 100%.

The results from the three different architectures showed that not all of
the models and combinations of data were able to learn. Most noticeable
were AlexNet, which outperformed the two others. Only one experiment did
not converge, industrial partner data, high learning rate and no augmenta-
tion. Other results were that ResNeXt could learn the larger, more complex
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industrial partner dataset but not the small FESTO CP dataset. SqueezeNet
was only able to learn the industrial dataset with a low learning rate. The
random augmentation, as expected, prolonged the learning rate but enabled
some of the models to learn the data.

Conclusion

The study showed that the concept of the AI-Box can be deployed in different
scenarios and handle two different vision datasets. Moreover, the underlying
concept works in an intended way with setup and control over the AI-Box
and models. The experiments showed that currently, AlexNet is the most
suited with random augmentation applied. As the study’s main focus was
the concept of the design and use case of the AI-Box, more work is needed
further test the different aspects. This includes handling the other use cases
and data types. Better functionality could also be added to the vision part.
One example of such enhancement is the use of Grad-CAM [127]. With Grad-
CAM, the operator can see what part of the images the model is learning
and thus act upon it if it learns a wrong part of the images such as the
background.

5.2 Implications

The AI-Box is an architectural concept of how a small smart device can be
built for manufacturing SMEs. This study showed that it is possible to de-
sign such a smart device, which hides the underlying model and data han-
dling from the operator. In contrast, the model is still able to perform on a
satisfactory level. The experiments show the usability in two environments
and validate the suited CNN model. Moreover, it also showed how random
augmentation could increase the performance of a model. The users of the
system were fond of the idea of hiding the underlying NN model and archi-
tecture of the operator. It resolved in that the industrial partner took the next
step and incorporated a part of the system into their product. The contribu-
tions of this paper can be summarised as follows:

1. It is possible to design and use an NN device tailored towards non-
experts.

2. For shallow datasets, simple models like AlexNet outperform more
complex models.

3. Image augmentation is a favourable method, especially with a shallow
dataset.
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Chapter 6

Public Dataset from a

Production Facility

Paper C has the title A new authentic cloud dataset from a production facility
for anomaly detection. The paper was submitted to and presented at CARV
2021, and was afterwards published in: Towards Sustainable Customization:
Bridging Smart Products and Manufacturing Systems, Springer. The paper
relates to RQ2 by answering the following sub-question:

RQ2.1: What are the challenges of using and sharing data for SMEs and
why should they do it?

This paper presents a new open dataset called authentic industrial cloud data
(AICD). The paper starts by presenting the reasons behind the new dataset,
along with how it was collected. Furthermore, a baseline experiment with
the dataset is presented. The AICD dataset is available for download at:
https://www.kaggle.com/emilblixthansen/aicd-dataset. As this chapter
is an extended abstract of the mentioned paper, [Paper C|[3]], repetition of
context, phrasing, results, figures and tables are to be expected and is from
that source.

6.1 Extended Abstract

Introduction and Data Collection

It is well known that a larger dataset benefits training machine learning mod-
els and even more so in training NNs [128, 129]. With big data, the publicly
available datasets greatly benefits new research methods and improves per-
formance in the different sectors. Nonetheless, with the available datasets,
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only a few are relevant to the manufacturing industry [130–132]. Even though
these datasets are relevant to the manufacturing industry, they have some
drawbacks. The main drawback is that the data is augmented in different
ways. The augmentation are manually introduced faults [130], run-to-failure
is simulated [132] or the complete dataset is simulated [131]. Thus there is
a gap for publicly available multivariate authentic manufacturing datasets,
which this study contributes to in the form of authentic industrial cloud data
(AICD).

The presented AICD concerns a pick-and-place operation of large items
performed by a robot manipulator. The robot handles various goods, and
sometimes, the robot drops the goods. The main objective is to identify when
the robot is about to drop an item. This will enable the robot to stop its
operation and thus avoid downtime in the form of cleanup. The data was
extracted from an existing cloud solution from one robot in an operating
production in Europa. The data was extracted with an interval of 10 ms and
took place over a time span of 2 days. Before the data could be published,
it was a requirement from the company that the data was anonymised. This
was done by changing the names of some of the PLC tags and not disclosing
which exact robot type, production and whereabouts. Moreover, the dates in
the dataset have also been altered. The sensor readings have not been altered;
thus, the data integrity is still present.

Dataset Content

The final dataset is distributed in CSV file format and split into five files. The
data is also available in a Python pickle file for quicker loading into Python.
The data is structured in a classical way, with each column being a feature
(PLC tag in this case), and each row is a sample with 10 ms between them.
As one of the purposes of this dataset is to be authentic to how data is out
in the industry, no preprocessing has been conducted. Moreover, the data is
not split up into train and test sets. One feature indicates that the dataset
is meant to be used to discover when a drop is happening. The feature
called Alarm.ItemDroppedError is set to 1 when a drop has been detected. In
Figure 6.1 the dropped signal is highlighted over three measurements. The
dataset contains in total of 16,990,692 samples of 96 features.

Baseline Experiment and Results

A baseline experiment was conducted to demonstrate how the AICD can be
used. The objective of the experiment was to demonstrate the detection of
drops. This was done through a DAE with LSTM layers. Only data from the
first CSV file was used for the training dataset. The training data was pre-
processed, so measurements 2 minutes before and after a drop was removed.
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Fig. 6.1: All 16.9 million sensor measurements from three different sensors, measuring suction,
vibration, and pressure. The red lines are when the drop detection sensor has been triggered
[Paper C|[3]].

Moreover, features with static data and features rising to infinity were also
removed, leaving the training data with 48 features. The training data was
then standardised with Equation 6.1, where z is the standardised data, x is
the original training data, μ and s are the mean and standard deviation of
the training data, respectively. The test data was chosen to be the fourth CSV
file, where the same features were removed from and was standardised with
Equation 6.1, where μ and s are the values from the training data.

z =
x − μ

s
(6.1)

For the training of the DAE, the loss function was chosen to be the mean ab-
solute error (MAE) and was trained with Adam optimiser [133] for 40 epochs.
After the training and an inspection of the MAE distribution, a threshold of
0.9 was chosen as the boundary to flag drops.

The test result can be seen in Figure 6.2. In Figure 6.2a, the training and
test data are combined, and the test data start where the green Item Dropped
line starts. It can be seen that every time the item dropped is 1, the loss
value also exceeds the threshold line. A closer inspection of the first drop
can be seen in Figure 6.2b. Nonetheless, there are also a high amount of false
positives, and thus the baseline experiment can be improved.
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(a) Combined train and test data. (b) The snapshot of the first drop in the test data.

Fig. 6.2: The MAE loss is illustrated in blue, the red line is the threshold of 0.9, and the green
line starts with the test data and is the binary item dropped signal. Both figures and captions
are from [Paper C|[3]].

Conclusion

The study presented a new publicly available manufacturing dataset named
AICD. At the time of publishing, it is one of the only real-world manufac-
turing datasets focused on anomaly detection and does not contain any aug-
mented or simulated failures. As identified by Wuest et al. [134], there is a
need for more available relevant data to overcome challenges in using ma-
chine learning in a manufacturing context.

6.2 Implications

As this paper shows, along with others, there is a need for more manufac-
turing datasets. Moreover, those existing datasets are often augmented or
simulated in some manner. As the company requested, the data should be
anonymised before it could be published. At the time of writing the paper, no
such guidelines exist tailored toward manufacturing data. Lastly, this paper
contributed to an authentic publicly available dataset, which was recorded at
an actual operational manufacturing site. The contributions of this paper can
be summarised as follows:

1. Summarised the lack of authentic manufacturing publicly available dataset.

2. A newly available dataset in the form of AICD.

3. The need for better guidelines on how to anonymise manufacturing
data.
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Chapter 7

Data-driven Modular HI

Paper D has the title A data-driven modular architecture with denoising autoen-
coders for health indicator construction in a manufacturing process. The paper
has been submitted to the open-access journal IEEE Access, IEEE. The paper
relates to RQ2 and answers it through the following sub-question:

RQ2.2: How can an algorithm be designed to overcome the challenges
of the SME and thus be used without expert knowledge?

This paper presents a novel method of construction health indicators (HI) for
machinery in a manufacturing setting named ModularHI. Firstly, the paper
gives an introduction to why HI is relevant. Hereafter the system architecture
is explained in depth. ModularHI is tested on two different types of datasets
with a total of 13 different experiments. As this chapter is an extended ab-
stract of the mentioned paper, [Paper D|[4]], repetition of context, phrasing,
results, figures and tables are to be expected and is from that source.

7.1 Extended Abstract

Introduction and System Architecture

With Industry 4.0 and its technologies, SMEs often have the drawback of old
equipment, which negatively impacts them in regards to their competitive-
ness and innovation [135]. The topic of prognostics and health management
(PHM) concerns the area of monitoring of equipment. One such method is
with HI, which estimated the health of machinery or process and can, in gen-
eral, be created by three methods: model-based, data-driven, or hybrid [136].
The model-based approach is made by using the system’s physical proper-
ties to calculate its health, i.e. the underlying systems and properties are
needed to calculate it. The data-driven approach is calculated using relevant
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sensor readings and typically historical data to calculate the HI score. The
hybrid approach is a mixture of both. AE is commonly used for constructing
an HI score, and DAE has also been shown to outperform other methods
in multivariate time series reconstruction problems [137]. As SMEs gener-
ally lack knowledge and resources within the area of Industry 4.0 it can not
be assumed that they can set up an HI system for each of their machines.
Therefore, a general purpose easy-to-use data-driven HI system would ben-
efit them. This paper presents ModularHI, which is a data-driven modular
HI scoring system. ModularHI is not built with a single type of machine in
mind. Instead, it works with an arbitrary number of sensor types and inputs
through the built-in modular architecture. Moreover, it does not require his-
torical data during set-up. The only requirement is that the machine is fully
functional and has recently been maintained. As ModularHI is built to aid
SMEs and is data-driven, it is not expected to outperform specific engineered
HI systems. Instead, it is meant as a tool for SMEs and alike. ModularHI
is built with three types of states: setup, burn-in and inference and consists of
two main parts: component models and the aggregator. The overall execution
flow can be seen in Figure 7.1.

Fig. 7.1: The execution flow of the three states: setup, burn-in, and inference [Paper D|[4]].

The setup state is for the first stage of the execution flow. Here the different
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sensors for the machinery are specified. This specifies which component
models to use. In this state, the initial data collection is also started, and when
enough data has been collected, the burn-in state is started. The first step of
the burn-in state is to train the component models. When each model has been
“burned in”, each component model’s boundaries are calculated. With the
individual boundaries calculated, a joint HI (HIj) is calculated for the entire
system. Hereafter, the inference state is executed as a continues operation.
When a new data sample is collected, a new HI score is calculated first for
each component model and then HIj. The HI scores are then checked against
the boundaries, and if any exceed them, an alarm is published, indicating
maintenance could be needed.

As ModularHI was built to be used by SMEs, it is also built to handle dif-
ferent data types. This is why it consists of the so-called component models.
Each selected sensor input has its dedicated component models specifically
for that type of measurement data. These different component models are
already pre-trained on a relevant dataset, which should improve their perfor-
mance through the method of transfer learning [138]. For ModularHI, the HI
scores for each component model were chosen to be calculated with individ-
ual DAEs. Since each component model handles univariate data, the size of
each DAE is also limited in the number of parameters. Moreover, as the data
is time series data, the DAEs were built with LSTM layers. The general DAE
architecture can be seen in Table 7.1.

Table 7.1: The LSTM DAE for the component models [Paper D|[4]].

Layer type Specification

Input Shape (batch size, window size, 1)
LSTM 8 units, returned sequence
Dropout Probability 0.5
LSTM 4 units
Repeat vector 8 times
LSTM 4 units, returned sequence
Dropout Probability 0.5
LSTM 8 units, returned sequence
Output Time distributed of window size

Even though all the different sensor inputs uses the same DAE architec-
ture, they are as stated individual pre-trained on relevant data. This means
that temperature sensors are pre-trained on other temperature data and the
same is true with e.g. vibration. The HI score for each component model
is based upon the MAE of the reconstruction of the input-signal as seen in
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Equation 7.1.

HIm
k =

1
n

n

∑
i=1

|xi − x̃i| . (7.1)

HIm is the HI score of the k’th component model m of M component models
for a certain setup case. Here x referrers to a vector of sensor measurement
with a window-size n. x̃ is the reconstructed measurements with the same
window-size n. Each component model has its own upper-boundary. This
boundary is calculated in the burn-in state by finding the standard deviation
σ from the sample mean. The boundary is then set to 9 σ and the lower is set
to 0 as MAE is a non-negative real number.

The aggregator’s main task is to combine all of the component models HI
score and calculate the joint HI (HIj). It also evaluates both the HI scores
from the component models and joint HI against the boundaries. For this
study, it was chosen that HIj was calculated as mean of all the component
models N HI scores:

HIj =
1
N

N

∑
i=1

HIm
i (7.2)

In order to give the operators more influence over the system it is possible to
specify weights for each component models HI score. This can be beneficial
if the operator know that e.g. the temperature measurement is crucial for the
stability of the machinery. Thus HIj is calculated as Equation 7.3. By default,
all the weights are set to 0.5 and thus HIj is calculated as Equation 7.2.

HIj =
∑N

i=1 wi · HIm
i

∑N
i=1 wi

(7.3)

The upper-boundary for HIj is calculated during the burn-in state as 9 σ after
all the component models finished their HI calculations. Where σ is cal-
culated from the sample mean of all HIj scores from the burn-in state. In
the inference state for each new data point xt all of the component models
will use a sliding window of the last n samples including the new sample
x = {xt−n+1, . . . , xt}. Hereafter, all HIm HI scores will be used to calculated
the systems current HIj. When HIj is calculated all of the boundaries are
checked to check if any is exceeded. If any boundary is exceeded an alarm is
published. In Figure 7.2 this inference state is visualised.

Experiments

To validate ModularHI, a relevant dataset was needed. Unfortunately, the
amount of suitable manufacturing datasets is limited; thus, the two jet en-
gines dataset from NASA was chosen. Specifically, CMAPSS [131] and N-
CMAPSS [132]. These were deemed relevant as they have continuous mea-
surements until failure with various different sensor readings and types. The
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Fig. 7.2: The combination of the different component models and the aggregator from CMAPSS
T7 [Paper D|[4]].

CMAPSS dataset contains a single number for each sensor per flight until
failure. The N-CMAPSS contains sensor measurements throughout complete
flights (including ascending and descending) until failure.

For the CMAPSS dataset, the experiments were only conducted with sin-
gle jet engine recordings from the dataset. The study used the data from
engine number 1 from the dataset FD001, which contains 220 samples. The
hyperparameters for ModularHI are mainly the burn-in period and window-
size. For the experiments on CMAPSS, these were chosen as 78 and 8, re-
spectively. The dataset contains temperature readings and other time series
data types (e.g. flow and pressure). The component models for the tem-
perature sensors were pretrained on the temperature readings from the his-
toric weather dataset1. The other component models were pretrained on
accelerometer data from smart laboratory at AAU. A total of 8 tests were
performed on the CMAPSS dataset, as can be seen in Table 7.2. The first
two tests examine the usability of ModularHI, where the sensors have clear
degradation in them. Tests 3, 6 and 8 examine ModularHI when there is a
mix of sensors that have degradation and some that do not. Tests 4 and 7 test

1https://www.kaggle.com/budincsevity/szeged-weather
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the same but with applied weights to the sensors with degradation. Lastly,
test 5 is with a single sensor with no clear degradation.

Table 7.2: The eight test setups for CMAPSS dataset. Each sensor has its own model; if several
sensors are mentioned together with only one model, then all sensors have that type of model.
The same is true with the assigned weights. The model T is pre-trained temperature data and C
is a generic model pre-trained on accelerometer data [Paper D|[4]].

Tests Sensors Models Weights

CMAPSS - T1 T50 T 0.5
CMAPSS - T2 T30, T50 T 0.5
CMAPSS - T3 T2, T30, T50 T 0.5
CMAPSS - T4 T2, T30, T50 T 0.6, 0.2, 0.2
CMAPSS - T5 P15 C 0.5
CMAPSS - T6 P15, T2, T50 C, T, T 0.5, 0.5, 0.5
CMAPSS - T7 P15, T2, T50 C, T, T 0.2, 0.2, 0.6
CMAPSS - T8 P2, P15, epr, farB,

Nf_dmd, PCNfR_dmd,
T50

T50: T, Rest: C 0.5

To test ModularHI on a more complex dataset, the second dataset is the
N-CMAPSS. Once again, only a single engine was chosen, which was engine
number 2 from dataset DS01. As the N-CMAPSS contains both ascend and
descend, there is a high variance in the data. ModularHI is built to detect
deviation from the stable operation. Thus the study decided only to keep the
cruising path between 20,000 and 30,000 feet along with a minimum of 1024
observations. The cleaned dataset contained four sensor measurements, and
the first 105,876 was chosen as the burn-in period. A window-size of 1024
was chosen. A total of five tests on the dataset were conducted. As the data
changed abruptly between flights, all mini-batches only contained one flight.
The tests conducted can be seen in Table 7.3. The first two tests were only on
a single measurement, whereas test 2 had clear degradation. Tests 3 and 4
had more sensors, and the last test utilised different weights.

Results

For the experiments for the CMAPSS dataset, the first two tests could detect
the degradation and publish alarms. Test 2 result of HIj can be seen in Fig-
ure 7.3. Here it can be seen that the MAE reconstruction loss, e.i. the HI, is
starting to grow, indicating a degradation. It can also be seen that an alarm
is published at time-step 212. Tests 1, 3, 4, 5, 6 and 7 could detect the degra-
dation in time. Test 8 contained seven measurements, but only one (T50) had
a visual degradation. Test 8 also detected degradation as T50 exceeded its
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Table 7.3: The five test setups for N-CMAPSS dataset. Each sensor has its own model; if several
sensors are mentioned together with only one model, then all sensors have that type of model.
The same is true with the assigned weights. The model T is pre-trained temperature data and C
is a generic model pre-trained on accelerometer data [Paper D|[4]].

Test Sensors Models Weights

N-CMAPSS - T1 T40 T 0.5
N-CMAPSS - T2 SmLPC C 0.5
N-CMAPSS - T3 T40, SmLPC, SmHPC T, C, C 0.5
N-CMAPSS - T4 T2, SmLPC T, C 0.5
N-CMAPSS - T5 T2, SmLPC, SmHPC T, C, C 0.6, 0.2, 0.2

Fig. 7.3: The HIj result from Test 2. The green vertical line indicates the end of the burn-in state.
The horizontal red lines indicate the calculated HIj boundaries. The orange area is when an
alarm is published [Paper D|[4]].

boundary, which triggered the aggregator to publish an alarm. Moreover,
test 8 HIj also exceeded its boundaries at time-step 243.

For the N-CMAPSS dataset, ModularHI detected a few instances of bound-
ary crossing and degradation in the HIj for tests 3 and 5. However, it was not
nearly as stable in publishing the alarm as was the case with the CMAPSS
dataset.

Conclusion and Future Work

The study proposed the novel method ModularHI to construct HI values for
an arbitrary machine. The experiments on the CMAPSS showed that the
system is applicable to a machine which has a general stable baseline with
low variance. The experiments and the more complex dataset, N-CMAPSS,
showed that the system is currently not applicable to a system with a high
variance in the sensor readings. As of this study, two main aspects could
use more research, which are the two hyperparameters: burn-in period and
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window-size. For these tests, they were set based on knowledge about the
data. However, that can not be assumed to be possible for SMEs. Therefore,
methods should be implemented to do this automatically. Future research
should also focus on the design of the boundary, which currently is fixed to
9 σ. Currently, the model has only been tested on classical time series data.
For future work, ModularHI should also be tested on other data types, such
as image data in conjunction with sensor data. ModularHI should also be
tested in a real production environment and data to validate it further. Lastly,
other methods for the aggregator could be investigated to handle the data. In
principle, the aggregator could be any form of function approximation, such
as an NN. With the results of CMAPSS, ModularHI showed it could be used
to construct suitable HI scores for devices without expert knowledge and is
thus a start in aiding SMEs for better PHM methods.

7.2 Implications

The paper proposed a novel method of constructing HI scores for arbitrary
machinery. ModularHI is a further extension of the underlying architec-
ture presented in [Paper B|[2]]. It is meant as a method for SMEs to get
PHM functionality within their production without having experts within
that field. This will enable SMEs in the future to deploy such systems with
low effort and monitor their process more closely, which would reduce their
downtime and cost. ModularHI is not designed to beat other methods engi-
neered for specific devices but to be more versatile. The experiments showed
it works as expected on a “simple” CMAPSS dataset. It can also detect
degradation and publish alarms even when multiple sensors do not register
any changes. Nonetheless, ModularHI struggled in detecting degradation in
more “complex” datasets with high variance in the data, such as N-CMAPSS,
and thus is not suited for all types of machinery. The contributions of this
paper can be summarised as follows:

1. A novel method of constructing HI scores for an arbitrary machinery.

2. Completely data-driven method and does not require expert knowledge
nor historical data to use and thus is suited for SMEs.

3. Built-in modules were both component models, and the aggregator can
be changed.
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Use Cases of AI in

Manufacturing

Paper E has the title Artificial intelligence and machine learning. The paper has
been submitted and published as a book chapter to the book The Future of
Smart Production for SMEs, Springer in 2022. The book chapter relates to
RQ1 and answers it through the following sub-questions:

RQ1.2: What are the challenges the SMEs face when integrating IoT
and AI solutions?

RQ1.3: Why should the SMEs adopt the use of IoT and AI and what
are the benefits?

This book chapter is for the book The Future of Smart Production for SMEs,
where its main contribution is to give a short overview of what AI has been
used for within the industry. It briefly introduces AI and machine learning,
followed by examples of AI in SMEs and larger enterprises. As this chapter
is an extended abstract of the mentioned paper, [Paper E|[5]], repetition of
context, phrasing, results, figures and tables are to be expected and is from
that source.

8.1 Extended Abstract

Introduction

It is known that the use of AI is expanding across different sectors, including
manufacturing. AI is used in different fields such as planning, computer
vision and robotics. To use AI within these fields often machine learning is
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used as the main tool. In order to solve a problem with machine learning,
the following three components are needed:

• A decision process

• An error function

• An optimiser

The first component, the decision process, is the algorithm’s output, e.g. from
an NN. Then the error function is used to calculate the difference between the
output and the true value. Lastly, the optimiser is used to minimise this differ-
ence by making changes to the decision process. It is, in general, required to
have a large amount of data to get satisfactory results with machine learning.
Though there are newer methods to reduce the required hardware and data
[139].

Use cases of AI

The results of the survey [Paper A|[1]] found that only in five publications
of AI was utilised or discussed in a manufacturing SME context. One of the
reasons for it was that SMEs focus more of their knowledge and resources on
easier-to-use technologies such as IoT and cloud solutions [28]. It has been
identified by Watney and Auer [140] that with AI, SMEs can get benefits
from, e.g. predictive maintenance and quality control. Nevertheless, once
again, the lack of real-world integration in SMEs is mainly due to the lack of
knowledge and resources [141]. To overcome this, pilot projects are suitable
starting methods for SMEs. These pilot projects would preferably be with
business partners, consultancy companies or research institutes. Afterwards,
the companies can start to be independent with the gained knowledge and
set up their own AI group [142].

In a survey from Brosset et al. [143], different use cases of AI in manu-
facturing companies were described. For example, Bridgestone used AI to
achieve 15% more uniformity in their tire production. Nokia installed cam-
era surveillance at the production and used AI to alert if any irregularities
occurred. A McKinsey article also described how a cement factory used AI to
control different processes and thus relied less on operator expertise. A study
of using AI in an SME suggested using open alliances with non-competing
SMEs to set up a test-driven environment to enhance the knowledge of AI.
The study also suggested to start using solvable problems and low-cost areas
[144].
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8.2 Implications

The book chapter presented both different use cases of AI in manufacturing
and the challenges SMEs is faced with. The book chapter works in con-
junction with [Paper A|[1]] as a background paper for SMEs. Mainly, the
book chapter presented the challenge of lack of knowledge and expertise
within the field of AI and machine learning. The main suggestion in the book
chapter was to collaborate with companies and research institutions. More-
over, the suggestion is to start pilot projects on low-cost operations and gain
knowledge from them. The contributions of this paper can be summarised
as follows:

1. The paper gives an overview of AI in manufacturing.

2. Gives an insight that SMEs lack knowledge and resources to implement
AI in their production.
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Chapter 9

Anonymising and Sharing

Production Data

Paper F has the title On the topic of anonymising production data for machine
learning. The paper has been submitted to Journal of Intelligent Manufactur-
ing, Springer. The paper relates to RQ2 and answers it through the following
sub-question:

RQ2.1: What are the challenges of using and sharing data for SMEs and
why should they do it?

This paper discusses the topic of why it is important for companies, including
SMEs, to share data. It gives perspectives from other sectors and viewpoints
from manufacturing companies. Therefrom, the paper discusses how and
why data could be anonymised to preserve intellectual properties (IP) and
presents a six-step general guideline for anonymising data. Lastly, experi-
ments with the guidelines are conducted to compare the results before and
after anonymisation. As this chapter is an extended abstract of the men-
tioned paper, [Paper F|[6]], repetition of context, phrasing, results, figures
and tables are to be expected and is from that source.

9.1 Extended Abstract

Introduction and Company Perspective

With AI and NN, large datasets are often needed to train the models. As
Industry 4.0 has increased focus, the use of AI in manufacturing continues to
grow in interest. However, there exists only a few relevant datasets for the
manufacturing industry [3, 131, 132, 145] and thus a void of manufacturing
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dataset is present. To understand the lack of manufacturing dataset, it is re-
quired to know the thought process of companies. It has been shown that
companies are willing to share their data with business partners, and this
mentality is expected to grow [146, 147]. When it comes to share data with
third parties and thus not knowing who sees and use the data, the companies
are more reluctant. As of this paper, no study on the topic has been con-
ducted. Based on experiment with realising the AICD dataset [Paper C|[3]]
and collecting data for [Paper G|[7]], some general thought processes can be
described. The main fear is that company IP gets unintentionally distributed
to the competition. On the other hand, they also said that they want others
to see the data as they expect it could benefit them.

Data anonymisation is not a new practice as it has been conducted for
years in, e.g. the health sector. Currently, companies with a business within
the European Union should focus on general data protection regulation (GDRP)
[148]. The GDPR rules are paramount for companies to apply even though
they have shown to be challenging for sharing and anonymising data [149,
150]. As stated, different types of methods and studies in anonymising data
within the health sector have been conducted [151–153]. Nonetheless, the
study found no prior studies addressing sharing and anonymising manu-
facturing data regarding machine learning. The research gap for missing
datasets from the manufacturing industry has already been established [134,
154].

Anonymisation Guidelines

Before any collection and anonymisation of data for machine learning, it is
beneficial to define the problem which is to be solved. This would also make
it easier for the companies to select what type to collect and anonymise it.
As the guidelines in this study are general, it is impossible to set specific
guidelines. Instead, different data categories are discussed.

Personal data

As mentioned, the GDPR rules are paramount, especially when dealing
with personal data. If the company deems personal data crucial for the
dataset, the correct measures must be assured. This can, e.g. by specify-
ing unique IDs per operator. This ID should not be used elsewhere, so
it should not be, e.g. the salary number. Moreover, if the person’s sex,
age or education is required, it can be necessary to split it into groups
if the dataset is not large enough.

Product data

Information regarding the product could be relevant to the dataset.
Therefore, the study advises including it. If the company does not
want the real product name and information to be present, it should be
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anonymised. This can be done by changing the product’s name and its
variations. It is advised to make the anonymised product name so that
it is known what the product is and its functionality. If measurements
are necessary and the company does not want the real measurements
to be disclosed, they can be altered with, e.g. multiplying the same
constant to them all, thus still keeping the integrity of the data.

Machine configuration data

Information regarding machine configuration could also be relevant to
the dataset. If the machine has different configurations during pro-
duction, this information is relevant for the produced product. As the
configuration settings are often discrete values, they can be anonymised
by getting it a name which represents the setting. If the data is contin-
uous data, it can again be anonymised by multiplying a constant to it.
If the dataset contains PLC tags, they should also be changed such that
they indicate what they do. An example of a dataset where the PLC tag
names were changed is [Paper C|[3]].

Time series sensor data

If the dataset contains values from sensor readings, it is probably time
series data. One important characteristic of time series is temporal
information. This information is paramount to preserve in a dataset
meant for machine learning. Prior research has argued it is not possible
to create a data-driven anonymisation algorithm for time series data
[155]. Thus the study argues that the time series itself should not be
altered, but the information surrounding it should, e.g. PLC tag name.
If the company is not satisfied with that amount of anonymisation, it is
possible to anonymise the time series data by including only statistical
features such as standard deviation, kurtosis and skewness.

Image data

Image classification and object detection can be useful for companies.
Companies could be more reluctant to share image data as there could
be a lot of information and possible IPs. The study does not recommend
altering the images as this could lead to unknown behaviour. Instead,
the images should be screened for personal data and IPs and removed
accordingly. Moreover, it is recommended to alter the file names of the
images and remove/alter the embedded meta-data.

Sound data

Sound recording can be useful in manufacturing, e.g., detecting a ma-
chine failure. The recordings can be stored in files such as FLAC and
MP3. If the data is stored in these types of files, it is important to
remove/alter the file names and embedded meta-data. Moreover, the
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recordings should be screened for personal data, such as a person say-
ing some personal information or IPs in the recordings. If the company
does not want to share the raw data, they could share the derived fea-
tures, such as the spectrogram or fast Fourier transform. It should be
noted that it can be possible to reconstruct the sound from these fea-
tures.

Video data

As video data contain images and sound, the guidelines described there
also apply to video. The companies should ensure that no personal data
is in the footage, along with removing/altering the embedded meta-
data. Depending on the objective, only footage of the process or product
of interest is recommended to avoid other irrelevant information.

This study presents a six-step general guideline based on the guidelines for
the different data categories and what is done in other sectors. The high-
lighted six-step guidelines below is quoted from this study, On the topic of
anonymising production data for machine learning, [Paper F|[6]].

1. Define the problem

Define the problem which the dataset should solve.

2. Inspect for sensitive personal information

Investigate if the dataset contains any personal information. If that
is the case, investigate relevant legislation (e.g. GDPR) and act ac-
cordingly. If personal information is present, get approval to include
it.

3. Remove sensitive personal information

Remove the information that is in contradictions against the legisla-
tion and does not have personal approval.

4. Inspect for IPs

Inspect the datasets for company IPs. This can be classified docu-
ments, pictures etc.

5. Anonymise

Anonymise the data which is not to be shared openly. Only
anonymise the features that contain IP information regarding the
suggestions of the specific data types. This includes changing PLC
tag names and removing samples if necessary.

6. Re-check

Perform steps 2-3 again to make sure nothing was missing. More-
over, check for hidden information such as meta-data in files such
as images and check file names for unwanted information.
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Experiments and Results

The study conducted two experiments on public datasets to demonstrate the
six-step guidelines. Each experiment was conducted in two trials, one with-
out anonymisation and one with. All of the data preprocessing conducted in
both experiments were the same for the original and anonymised datasets.

The first experiment was concerning time series and anomaly detection. The
dataset used was NASA Bearing [145]. Only data from the first test was
used, which was preprocessed down to 2156 samples from 8 sensors. The
study performed one of the anonymisation guidelines of time series data,
specifically to calculate the statistical features. The statistical features were
calculated on a per-sample basis. The statistical features calculated were:
mean value, median value, min value, max value, skewness, kurtosis and
standard deviation. The datasets were split into training and test data and
standardised according to Equation 6.1. A DAE was chosen as the anomaly
detection model with the architecture shown in Table 9.1. The loss function
was MAE with Adam optimiser, and the experiments were trained for 100
epochs with 32 as the batch size. Since this is an anomaly detection problem,
the test data consists of data where the bearing starts to fail. Thus, the MAE
(reconstruction loss) is expected to rise towards the end. In Figure 9.1, the
MAE can be seen for both the original and anonymised data. It can be seen
that both of them spike at the error in the end, and for the first 600 samples,
the two trials follow each other.

Table 9.1: The architecture of the DAE model. Batch in the output size column specifies the batch
size of the training. 8* in the output size column is the 8 features from the original dataset. For
the anonymised dataset, it would be 7 instead [Paper F|[6]].

Operation layer Activation Output size

Dense Leaky ReLu (Batch, 8*)
Batch Normalisation - (Batch, 8*)
Dense Leaky ReLu (Batch, 8)
Dropout of rate 0.2 - (Batch, 8)
Dense Leaky ReLu (Batch, 4)
Dropout of rate 0.2 - (Batch, 4)
Dense Leaky ReLu (Batch, 8)
Batch Normalisation - (Batch, 8)
Dense - (Batch, 8*)

The second experiment concerns structured data and classification and uses
the data from the Vehicle dataset1. The Vehicle dataset contains data from
used vehicles sold along with different characteristics of said vehicles, e.g.

1https://www.kaggle.com/datasets/nehalbirla/vehicle-dataset-from-cardekho
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(a) Snippet of first 600 samples. (b) Complete test set.

Fig. 9.1: The MAE of test data from both the original and the anonymised dataset [Paper F|[6]].

transmission type, fuel type and the number of owners. This experiment’s
objective was to classify if the vehicle had one owner or more. The column
Name was removed from the dataset and Fuel and Seller type were changed
into one-hot encoding. Lastly, Transmission was changed to Boolean data type
describing if the vehicle had a manual transmission or not. The anonymisa-
tion was done by changing the column names such that selling_price is price
and km_driver and so on. Moreover, the values in price and year a constant
was added to them. Specifically, a value of 10,000 was added to the price
and two years to the year column. The datasets were randomly shuffled and
split into training and test sets and standardised according to Equation 6.1.
The study used a fully connected NN as the model, which can be seen in
Table 9.2. The model was trained with the Adam optimiser for 100 epochs
with a batch size of 32. The loss function was categorical cross-entropy.

The test showed an accuracy of 74.7% on the original dataset and 74.8%
for the anonymised. Thus the models achieved equal performance on the two
datasets.

Conclusion

As presented by this study, the topic of anonymising production data is
sparse. The first thing companies should do is to figure out what problem
the dataset should solve. With this knowledge, they are better equipped to
determine what kind of data is needed and how to anonymise it. The three
main things they should focus on when anonymising the data are keeping
the data’s integrity, IPs and GDPR for personal data. This study encour-
ages researchers and companies to share the production data to fill the gap
of missing datasets. Moreover, research should focus on finding the drivers
behind companies sharing their data, as this is a research gap.
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Table 9.2: The architecture of the NN model. The batch value in the output size column specifies
the batch size of the training [Paper F|[6]].

Operation layer Activation Output size

Dense Leaky ReLu (Batch, 16)
Dropout of rate 0.4 - (Batch, 16)
Dense Leaky ReLu (Batch, 32)
Dropout of rate 0.4 - (Batch, 32)
Dense Leaky ReLu (Batch, 32)
Dropout of rate 0.4 - (Batch, 32)
Dense Leaky ReLu (Batch, 16)
Batch Normalisation - (Batch, 16)
Dense Softmax (Batch, 2)

9.2 Implications

This paper presented a six-step general guideline for anonymising produc-
tion data to be shared. The paper identified the lack of research within a
couple of areas. Firstly, the lack of research on how production data should
be anonymised. Secondly, the lack of research related to the drivers from
the companies in regards to why they would want to share their data. The
paper dealt with manufacturing in general, but since the lack of research
within the area is lacking, the same can be said for SMEs. As prior studies
have shown, the need to cooperate through, e.g. open innovation is a benefit.
Therefore SMEs sharing their data could benefit them as well as the research.
In summary, the contributions of this paper can be summarised as follows:

1. Identified the lack of research on how to anonymise manufacturing
data.

2. Identified the research gap of the drivers behind companies sharing
their data.

3. Proposed six-step general guidelines for anonymising manufacturing
data for machine learning.
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Chapter 10

Field Study of Machine

Learning and IoT in an SME

The final paper of this PhD thesis, Paper G, has the title: An in-depth investi-
gation of machine learning and IoT adoption at a manufacturing SME: a field study.
The paper was submitted in 2022 to the 32nd International Conference on
Flexible Automation and Intelligent Manufacturing (FAIM), Elsevier. The fi-
nal paper relates to RQ1 and RQ3 and answers them through the following
sub-questions:

RQ1.2: What are the challenges the SMEs face when integrating IoT
and AI solutions?

RQ3.1: What is the preferred starting methodology for SMEs beginning
their utilisation of IoT and AI?

RQ3.2: How can an IoT and AI setup be at an SME, both hardware and
software-wise?

This paper is a field study investigating how an IoT setup can look at a
manufacturing SME. The IoT setup is shown and discussed with regards to
both hardware and software. Furthermore, the data captured through the
IoT setup was used to train an NN model to control crucial process param-
eters. Lastly, the perspective from the company is discussed regarding the
added benefits and the change in working methodology. As this chapter is
an extended abstract of the mentioned paper, [Paper G|[7]], repetition of
context, phrasing, results, figures and tables are to be expected and is from
that source.

69



Chapter 10. Field Study of Machine Learning and IoT in an SME

10.1 Extended Abstract

Introduction and Production Setup

It is known that manufacturing SMEs are often faced with challenges due
to globalisation [156–158]. To overcome some of these, SMEs have started
backshoring their business to increase quality and development control [159,
160]. For SMEs to enhance the quality and control their processes IoT is a
viable method, even though the adoption is low [Paper A|[1]], [28].

This field study was conducted at a manufacturing SME producing the
latex teat for baby pacifiers. The SME produce the teat in two sizes named
1 and 2 through the latex dipping method [161]. The latex dipping method
involves three main steps: preheat of pacifier forms, dipping the forms in
latex, and vulcanising the latex in an oven. An illustration of how the oven
works at the SME can be seen in Figure 10.1. The pacifier forms are preheated
in two water tubs and are afterwards submerged into a latex tub. The latex
then attaches itself to the form, which is then vulcanised in the oven. Finally,
the vulcanised pacifiers are ejected from the forms. One problem is that, since
latex is a natural product, there are material variations between each barrel,
and throughout each batch, the properties also change. To compensate for
these changes, the operators currently control the following parameters:

• Water tubs temperature.

• Latex cooler temperature.

• Dipping time.

The two different pacifier sizes each have their target weight which is cur-
rently measured just after the latex dipping, i.e. the raw weight. The opti-
mal weight target would be the finished product, but since the latex dipping
method takes ∼1 hour, it is not feasibly to use. To summarise the produc-
tion and in collaboration with the company, the following challenges and
limitations were identified:

1. There is no general information displayed to the operators in regard to
the machine’s performance and stability.

2. Handover between shifts is limited as it is based on memory.

3. There is no historical IT data collected from the production, which lim-
its, e.g. batch traceability.

4. Operator experience and general guidelines are used to control the con-
trol parameters.

5. The control parameters are chosen based on the raw weight.
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Fig. 10.1: An overview of how the latex dipping production at the SME [Paper G|[7]].

IoT Infrastructure

For the IoT infrastructure, factors such as cost, security, stability, compati-
bility and what cloud solution to use were considered. As it was unknown
exactly what kind of benefits could be expected, the cost was the primary
focus. An overview of the IoT setup can be seen in Figure 10.2.

A local computer was chosen as the cloud system, mainly because of the
low cost and added freedom of the hardware and software used. The com-
puter was an Intel NUC mini PC with the Linux distribution Ubuntu installed
as the operating system. The main database was InfluxDB because majority
of the data is time series. Moreover, InfluxDB integrates with the dashboard
program Grafana, which was chosen to be the platform where information
would be displayed to the operators. Lastly, the main communication plat-
form was selected to be MQTT, with Mosquitto as the MQTT broker. The
data transferred over MQTT were designed to be in the InfluxDB scheme.
Thus the data can be written into the database. All programs were installed
as Docker containers to enable easy handling, version control and backup.

To monitor and control the latex machine, sensors are needed. The latex
machine already had attached sensors, and more required to be retrofitted.
For example, additional PT100 temperature sensors needed to be attached to
the oven. The PT100 sensors were connected to two ESP32 microcontrollers,
which transmit the readings over MQTT. Moreover, an ESP32 with BME280
climate sensors were also placed close to the latex machine. The PLC on
the latex machine could send its PLC tag values over MQTT directly. There-
fore, the PLC sent data such as latex tub temperature readings and operation
mode. Lastly, to control the process, three tablets were placed to measure the
weights throughout the production cycle. Manual measurements were made
once every hour when the latex machine was running normally.

The two water tubs for preheating the pacifier forms were controlled man-
ually on each device. Therefore a temperature control system was created. The
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temperature control system was created with Python and Pyside6 as the GUI.
It communicated with the two water tub heaters through serial communica-
tion. The operators then see and change the temperature in this program,
and the program sends the data over MQTT to the cloud. When a new barrel
of latex is received at the production, an operator tests its temperature, vis-
cosity, and pH value. An overview of all the sensor measurements is shown
in the Table 10.1.

Fig. 10.2: The IoT infrastructure deployed at the SME. LAN/WAN communication is both over
WiFi and Ethernet, depending on the device. The virtual network is deployed in the Docker
environment enabling the Docker containers of secured inter-communication [Paper G|[7]].

For the IoT system to benefit the operators, business intelligence (BI) so-
lutions were implemented. Specifically, a central screen was placed in the
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Table 10.1: The different sensor values and measurements used in this project along with the
total number of each measurement [Paper G|[7]].

Measurement Unit Amount Interval (s)

Climate - humidity % 1 60
Climate - temperature ◦C 1 60
Climate - pressure hPa 1 60
Oven temperature ◦C 6 60
Pacifier size - 1 10
Latex tub temperature ◦C 3 10
Latex cooler - temperature ◦C 1 1
Latex cooler - set temperature ◦C 1 1
Water tubs - temperature ◦C 2 1
Water tubs - set temperature ◦C 2 1
Water tubs - power % 2 1
Batch - viscosity cP 1 -
Batch - pH pH 1 -
Batch - temperature ◦C 1 -

production for the operators. This screen showed a Grafana dashboard for
the last 24 hours of production with relevant information such as batch num-
ber, incidents etc. This removed the problem between shifts as historical
events were now on the screen.

Experiments and Results

To further enhance the production, it would be beneficial if the three main
control parameters were not operated by experience but based on data. Un-
fortunately, the dipping time data was not present in the database; thus, only
the water tubs and latex cooler could be estimated. The sensor data, weight
measurement and batch specifications were collected over six months. The
data was extracted within a window of 10 minutes and only when the latex
machine was running. Moreover, now that a data-driven model controls the
control parameters, the target weight is chosen to be the finished vulcanised
teat. All of the data up to each measurement of the vulcanised teat was mean
aggregated to get a snapshot of what the settings and measurements were
leading to that exact weight. The final training and test data were then the
mean aggregated data with the specified final weight and the target temper-
ature settings for the water and latex tubs. This gave in total a dataset of 2213
samples before the data was split into train and test. Afterwards, the data
were standardised according to Equation 6.1.

The NN model chosen was a 1D CNN, designed to be able to run in
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a Docker container in the local cloud. The CNN model’s architecture can
be seen in Table 10.2. The Adam optimiser was chosen as the optimiser
function, and the mean squared error (MSE) function as the loss function.
The training was conducted with a batch size of 32, and the model would
first stop training when no improvement happened to the loss function in
40 epochs. Two experiments were conducted. The first experiment was with
all the data in sequential order, e.i. the same order it was collected in. The
second experiment was with the data randomly shuffled across all batches.
Both experiments had a training and test data split of 80% and 20%.

Table 10.2: The architecture of our CNN model. The two convolutional layers also use L2 kernel
regularisers and no padding. The con The Batch value in the output size column specifies the
batch size of the training. The abbreviations are Activ. is Activation, L.ReLu is Leaky ReLu and
Norm. is Normalisation [Paper G|[7]].

Layer Activ. Filters Kernel Stride Output

Input layer - - - - (Batch, 22, 1)
Conv1D L.ReLu 32 5 2 (Batch, 9, 32)
Dropout (0.2) - - - - (Batch, 9, 32)
Conv1D L.ReLu 64 5 2 (Batch, 3, 64)
Dropout (0.2) - - - - (Batch, 3, 64)
Dense L.ReLu 32 - - (Batch, 3, 32)
Batch Norm. - - - - (Batch, 3, 32)
Flatten - - - - (Batch, 96)
Dense - 2 - - (Batch, 2)

The results of the sequential data experiment can be seen in Figure 10.3. The
training was completed after 183 epochs and had a test MSE loss of 5.158. It
can be seen in the figures that the prediction follows the true value at the
beginning of the test, but towards the end, it starts to deviate. This could be
that a new batch was started at that point, which has new properties that the
model has not seen before.

The results of the shuffled data experiment can be seen in Figure 10.4. The
training was completed after 231 epochs and had a test MSE loss of 0.563. It
can be seen in the figures that the predicted value follows the true closely
throughout the test data, which the comparably low MSE also indicates.
These results suggest that more measurements are still needed for a stable
system since the sequential data experience problems when a new batch was
introduced.
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(a) Water temperature. (b) Latex temperature.

Fig. 10.3: The sequential experiment for the water tub and latex tub set temperature. The pre-
dicted set temperature is plotted on top of the true values. Both figures are from [Paper G|[7]].

(a) Water temperature. (b) Latex temperature.

Fig. 10.4: The shuffled experiment for the water tub and latex tub set temperature. The predicted
set temperature is plotted on top of the true values. Both figures are from [Paper G|[7]].

Discussion and Conclusion

From the identified challenges and limitations, the first three were solved
with the implementation of the IoT infrastructure, the cloud system and the
BI implementation. The last two regarding the control parameters are meant
to be solved with the NN model. As the experiments showed, currently, not
enough data is available to take over this control from the operator fully.
The dipping time is missing from the dataset, which could also lead to the
control system’s instability. Lastly, as the data collected is only from the
winter season, the change in climate during the summer is not present in
the dataset and could affect the performance. However, when implemented,
the NN model would make it possible for the operators to specify a target
weight for the pacifiers, and thus the SME is not dependent on the operators’
experience.

Though the IoT system is functional as of the implementation, there are
some drawbacks. The hardware itself is not enterprise-level, which could
prematurely fail. The Intel NUC is not running with redundancy, meaning
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the entire operating system is compromised if the SSD fails. Nonetheless, all
of the Docker containers configuration and the database is currently backup
every night of the site. As InfluxDB was chosen as the main database, e.g.
batch numbers are not stored by best practices as it is not a time series value.
The same is true for the manually typed comments the operators enter in the
system.

Such an IoT implementation in any company can be hard to calculate
the return on investment. Listening to the experience of the company gives
an insight into their viewpoint. They especially say it has transformed their
business throughout the organisation. On the production floor, the handover
is now done more knowledgeable with the added screen. The operators can
now see what happened before their shift and discuss any events. The ad-
ministration now has insight into their entire production, where they can see
a detailed overview throughout all of the batches produced. If any events
happen, they can go back in time to see what happened during the produc-
tion of that specific batch. The company states that they are now making
data-driven decisions, and the added transparency and traceability the IoT
system provides has enhanced their production. They also expect the NN
model to improve the quality of the pacifiers and free up operating hours
when implemented.

10.2 Implications

The final paper presented a field study on how IoT and AI can be imple-
mented in a manufacturing SME. The paper showed that a comprehensive
and stable IoT infrastructure could be achieved with low-cost hardware and
mainly open-source/free software programs. The downside of this approach
is that a skilled person is required to set up all of the hardware and soft-
ware, with the hardest part is making sure everything communications cor-
rectly. Moreover, it also showed that companies need to brace themselves on
retrofitting sensors and change, e.g. PLC codes, to get high benefits. Lastly,
the paper showed that relative simple NN models could potentially control
crucial control parameters with enough data collected. While it is hard to
estimate how valuable an IoT infrastructure is, the company said it brought
a lot of value in the form of available information. The company now has
a data-driven decision mentality and is actively seeking new ways of con-
necting and making parts of the production “smarter”. They agree that the
most challenging part was how and where to get started, but new ideas and
possibilities quickly appear once done. In summary, the contributions of this
paper can be summarised as follows:

1. Low-cost hardware and software can be used to build a beneficial IoT
infrastructure.
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2. Skilled personnel is still needed to make such a system work.

3. Companies should be open to retrofit sensors and change, e.g. PLC
codes.

4. AI methods are doable and can bring value to an SME production even
with a simple IoT infrastructure.
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Chapter 11

Conclusion

This chapter summarises and concludes the research questions presented in
Section 2.1 along with presenting future work. Based on the conclusions from
the research questions, some general concluding remarks and is presented.

11.1 Research Contribution Summary

This section summarises the three research questions from Chapter 2 and
answers them by the sub-questions.

RQ1: What is the current state of IoT and AI adoption in
SMEs?

RQ1.1 On what level of integration is the current IoT and AI solutions in

SMEs?

It was shown in [Paper A|[1]], IoT and AI are less utilised compared
to other Industry 4.0 technologies, such as cloud solutions. From the
perspective of IoT and AI, IoT is the more utilised one. The way
IoT is utilised is, in general, on a machine-wise level. With the few
instances of AI, it was only a basic control scheme for lighting and
detecting of machine status. The same status of AI in SMEs was
identified by [Paper E|[5]], which also showed some possibilities of
AI for SMEs, such as predictive maintenance.

RQ1.2 What are the challenges the SMEs face when integrating IoT and

AI solutions?

With the expected benefits of both IoT and AI, the low level of adop-
tion indicates that something must be missing. Both in [Paper A|[1]]
and [Paper E|[5]] it was shown that it is too hard and complicated
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for SMEs in general to implement IoT and AI. SMEs often lack the
resources and knowledge of how and why to implement these tech-
nologies in their production or product. In the field study [Paper G|[7]],
the challenges were further highlighted with the effort needed to im-
plement said technologies. These challenges were, e.g. retrofitting
sensors, managing the infrastructure, and directly changing the PLC
code of existing equipment.

RQ1.3 Why should the SMEs adapt the use of IoT and AI and what are

the benefits?

The expected benefits of using AI and IoT in SMEs are many. Mainly
it can be split into two categories where the first is increasing profit,
and the other one is increasing production knowledge. Both [Pa-
per A|[1]] and [Paper E|[5]] identified that the possibilities of AI
and IoT, such as predictive maintenance and better quality control,
is achievable and can reduce e.g. costs for the SMEs. Moreover,
they also showed that production transparency is achievable, which
would increase the SMEs’ knowledge of their production.

RQ2: How can modern digital solution be designed to aid the
adoption within SMEs?

RQ2.1 What are the challenges of using and sharing data for SMEs and

why should they do it?

Identified in [Paper C|[3]], there is a gap of manufacturing datasets
to train and develop machine learning algorithms. This is a chal-
lenge as it makes it harder to train relevant manufacturing mod-
els. A contribution to fill this gap was made with the AICD dataset.
However, for more companies to share their data, general guidelines
are needed to help this process. One of the needed guidelines is
anonymising a dataset for machine learning collected at a produc-
tion. In [Paper F|[6]] a contribution was presented in a six-step gen-
eral guidelines for anonymising production data. It was also iden-
tified that more research is needed to understand the companies’
desire to share their data.

RQ2.2 How can an algorithm be designed to overcome the challenges of

the SME and thus be used without expert knowledge?

As shown, the topic of AI involves a lot of different sub-areas. This
thesis proposed two algorithms in [Paper B|[2]] and [Paper D|[4]] to
overcome the challenges of SMEs. [Paper B|[2]] proposed a generic
AI-Box architecture. It showed it is possible to design and use a sys-
tem which hides all the expert parts of training and deploying NN
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to the operator. Moreover, it showed it could be designed modularly
so that the specific model and sensors can be chosen at creation with
little knowledge from the operator. In [Paper D|[4]], an architecture
focused on constructing HI for an arbitrary machine was presented.
The presented algorithm ModularHI is designed such expert knowl-
edge is not required, nor is historical data. It is modular in the sense
it is not fixed to a certain number of inputs, nor is it fixed to a spe-
cific sensor type. Both of the two contributions address the major
challenges for SMEs, they are designed to be easy to use.

RQ3: How can IoT and AI solutions be integrated in an SME
to enhance the production?

RQ3.1 What is the preferred starting methodology for SMEs beginning

their utilisation of IoT and AI?

It was found in [Paper A|[1]] that the push for changes in SMEs of-
ten comes from within the company itself. It was also found that
companies should collaborate with SMEs and research institutes to
gather knowledge and experience within the field. The paper also
states that starting with a machine-wise IoT implementation is a vi-
able option as it both adds benefits for that specific machine and the
gained experience. The field study from [Paper G|[7]] showed an
example of a low-cost implementation of an IoT centred around local
cloud storage. From the perspective of the company and the stability
observed, it is a viable solution to start with.

RQ3.2 How can an IoT and AI setup be at an SME, both hardware and

software-wise?

The proposed AI-Box from [Paper B|[2]] addresses one way an AI
solution could be built and set up at an SME. It consists of a mini-PC
with dedicated GPU and thus accelerated AI capabilities, and with
its designed web interface, it can be versatile deployed in produc-
tion. Its software architecture allows it to be re-configurable to many
different objectives without the need for AI expert knowledge. In
[Paper G|[7]] an example of an IoT infrastructure is presented. The
low-cost architecture shows that achieving a stable and reliable IoT
infrastructure with standard consumer sensors and ESP32 microcon-
trollers is possible. The communication medium with MQTT was
able to handle all of the sensor traffic. The local cloud system with
the programs installed in Docker containers made it easier to man-
age and back up the different programs. Lastly, using InfluxDB and
Grafana added significant benefits for the SME with easily available
information.
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11.2 Concluding Remarks and Future Work

This PhD study was centred around the conjugation of two broad technolo-
gies (AI and IoT) and a certain type of companies (SMEs). This PhD showed
that the use of IoT and AI is limited in SMEs, though the interest in the sub-
jects are still on the rise. The main reason it is limited, is that SMEs generally
lack knowledge of the field and have resource constraints. This was also ob-
served during interaction with the IFN project companies. It is recommended
both by this PhD study and other researchers that SMEs seek out the possi-
bility for open innovation and collaborate more with other SMEs, research
institutions and consultancies. This type of collaboration will enhance their
knowledge which was found to be one of the SMEs’ drawbacks. It was also
found that a suitable method for SMEs to start with these technologies is to
select a single machine. They could use this machine as their testing envi-
ronment for new technologies, which would give them knowledge of said
technology and enhance the machine. Implementing IoT in such a way is
called machine-wise IoT implementation, and it was found to be a common
way for SMEs to implement IoT. This PhD found a gap regarding the Indus-
try 4.0 drivers of SMEs. More research is needed to understand SMEs’ needs
and drivers. This would help future research in developing more suitable
SME solutions.

This PhD has proposed two methods of AI designed with SMEs in mind.
The first one was the general architecture of the AI-Box and the second one
was a data-driven HI architecture called ModularHI built on top of the under-
lying architecture of the AI-Box. The AI-Box was designed to be a standalone
device with NN capabilities. The main concept was to hide the complex part
of machine learning by only exposing the needed information, such as data
type, classification or regression problem, and sensor input. Moreover, it
was built so that new models and sensors could be added without changing
the program. The two experiments performed with the AI-Box showed that it
was feasible to have such a standalone device and that the company was fond
of the idea. ModularHI was a continuation of this mindset of hiding the un-
derlying model for construction of HI for machinery. The experiments with
that model also showed it was possible to construct such an HI system on a
dataset with low variance in its signal. More research is needed to enhance its
capabilities to more complex data with high variance and change. The liter-
ature also showed the significant lack of publicly available datasets from the
manufacturing system, along with guidelines on sharing and anonymising
them. This PhD thesis both provided such a dataset and proposed anonymi-
sation guidelines. While both have their contributions, more datasets and re-
search into anonymisation and sharing manufacturing data are still needed.
The two concepts, AI-Box and ModularHI, show the usability of hiding the
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complexity of general machine learning problems. It enables SMEs to take
advantage of these technologies, which are quickly advancing. While this
system will not outperform specifically engineered systems, it will bring ben-
efits for SMEs nonetheless.

The PhD study concluded with a field study of IoT and AI implemen-
tation, which put the theoretical and practical experience to the test. The
field study showed that SMEs could implement a low-cost IoT architecture
both from a hardware and software perspective. Moreover, with the collected
data, it is possible to control crucial control parameters within the produc-
tion. From a company perspective, the IoT implementation gave many bene-
fits. One benefit was the gained production knowledge where the company
knows when a batch is produced and under which circumstances. Knowl-
edge sharing between shifts was also improved. The company now makes
decisions based on the available data instead of experience and gut feelings.
Lastly, the most significant change is that the company went from not know-
ing where and how to start, to seeing many different opportunities with IoT
and AI. More field studies should be conducted to better map the most suit-
able IoT architectures and AI models.

More easy-to-use devices are needed for more SMEs to adopt IoT and AI.
As shown in the field study, it is possible to create such an architecture. How-
ever, it still requires an expert to set it up and connect all devices. Moreover,
in the future, SMEs should brace the idea of altering already existing ma-
chinery by, e.g. retrofitting sensors or changing the PLC code. In retrospect,
IoT and AI have come a long way since the beginning of the fourth industrial
revolution. As these technologies mature, it is expected to be more accessible
for SMEs. It should also be expected for SMEs that their operators and gen-
eral staff would have a higher knowledge of IT systems to take advantage of
said technologies.
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Glossary

Autoencoder A machine learning algorithm which tries to recreate its
input. It can be used as both a compression tool and a
recreation tool. In this thesis, it is mainly used to detect
anomalies.

Artificial intelli-

gence

An ambiguous term describing a collection of differ-
ent methods and technologies which enables computers
to perform objectives normally requiring human intelli-
gence.

Cyber-physical

system

A system where the physical aspect is highly integrated
with software for, e.g. controlling and monitoring.

Data silo When data is collected and stored at a machine without
an infrastructure to send the data to other relevant parties
in the company.

Deep learning Part of machine learning where the mathematical model
imitates how humans learn using neural networks.

Digitisation Changing from physical information into a digital one.

Digitalisation Changing the digitisation into a more inter-connected
system to improve, e.g. a business.

Industry 4.0 The fourth industrial revolution consists of many new IT
technologies and a digitalisation transition.

Industrial inter-

net of things

The industrial term for the internet of things is com-
monly used in industrial settings such as a manufactur-
ing site.

Industrial revolu-

tion

A rapid shift within the manufacturing sector based on
new available technologies or methods.
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Glossary

Internet of things Physical objects or devices which can connect to each
other and share information. The devices can, e.g. be
equipped with sensors or have computing power.

Fog computing A computer which acts as a middleman between the
cloud and the production to provide faster computation
and reduce the data sent to the cloud. AI models can also
be deployed here to reduce latency and increase security.

Machine learning A subset of AI which allows a program to learn a specific
outcome without being explicitly programmed to do so.

Process A manufacturing process of changing a product either
as the physical change or the associated equipment con-
ducting the change.

Product The product produced at the process.

Retrofit The process of attaching new equipment such as sensors
to existing machinery.

Smart factory A manufacturing factory where different digitalisation
methods are used to enhance the factory.

Temporal infor-

mation

The underlying information present in time series data.
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Acronyms

AAU Aalborg University

AE autoencoder

AI artificial intelligence

AICD authentic industrial cloud data

ANN artificial neural network

BCG Boston Consultancy Group

CNN convolutional neural network

DAE denoising autoencoder

DBMS database management system

DSR design science research

DSS decision support systems

GDPR general data protection regulation

GUI graphical user interface

IaaS infrastructure as a service

IIoT industrial internet of things

IoT internet of things

IP intellectual properties

IT information technology
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Acronyms

LSTM long short-term memory

MAE mean absolute error

MSE mean squared error

MVC model-view-controller

NLP natural language processing

NN neural network

PaaS platform as a service

PCA principal component analysis

PHM prognostics and health management

PLC programmable logic controller

SaaS software as a service

SOA service-oriented architecture

SVM support vector machines

UCN University College of Northern Denmark

WSN wireless sensor networks
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1. Introduction

The topic of artificial intelligence, or its commonly used ab-

breviation, AI, is used in more and more sectors and is only

expected to grow [1, 2]. More specifically, the use of the AI

sub-category machine learning is showing tremendous poten-

tial with the different breakthroughs throughout the 2010s in,

e.g. image data [3], and can now reach and outperform humans

in games [4]. With quickly advances in AI and machine learn-

ing, the manufacturing industry is also looking towards these

technologies. AI, along with other new technologies such as

Big Data and 3D printing, is categorised under the name Indus-

try 4.0 [5]. Large enterprises have already begun using these

technologies within their products and production [6, 7]. More-

over, the use of machine learning has also been exploited in

welding and robotic context [8, 9]. Most of the research and de-

∗ Corresponding author. Tel.: +45 42494707

E-mail address: ebh@mp.aau.dk (Emil Blixt Hansen).

veloped solution on the market is concerning big enterprises or

research, and there is a lack of focus on the small- and medium-

sized enterprises (SMEs). The lack of focus on SMEs is also

evident in a study from 2018, which showed that the current

maturity assessment for Industry 4.0 is not suitable for SMEs

[10]. Gartner’s steps of analytics can be used to reflect on how

advanced analytic capabilities a company has [11]. It includes

four steps: descriptive, diagnostic, predictive, and prescriptive,

where SMEs generally is placed on the first step descriptive.

The descriptive step specifies that the system can describe what

the problem is but nothing else. The step of predictive analyt-

ics is a step that would benefit the industry; hence they would

be able to predict equipment failure and maintenance. With In-

dustry 4.0, different companies have created smart devices that

enables manufactures to monitor their production, OEE, and

live data. Examples of such devices are the Factbird by Black-

bird [12] and M-Box by Monitor-Box [13]. Within research, the

Danish Institute of Technology has created what they call Vi-

sion Box, which brings 2D and 3D quality inspections to man-

ufactures with the use of deep learning [14]. Research exists in

the context of visual inspection of production to find faults [15]

2351 9789© 2020 Th A th P bli h d b El i Ltd
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Abstract

In this paper, the concept of what we call AI-Box is presented. This concept is targeting small and medium-sized enterprises within the

manufacturing industry sector. The AI-Box aims to bring technologies from Industry 4.0 to them, with the use of easy-to-use and versatile

implementation. Preliminary experiments have been conducted at Aalborg University and at an industrial partner to solve vision tasks, which

would be too expensive with conventional vision techniques. Moreover, three different convolutional neural networks were tested to find the best-

suited architecture. The three networks tested were the simple AlexNet, the complex ResNeXt, and small and complex SqueezeNet. Our results

show that it is possible to solve the classification problem in a few epochs. Furthermore, with the use of augmented data, the performance can

be improved. Our preliminary results also showed that the simpler convolutional neural network architecture from AlexNet yields a better result

when classifying simple data.
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Capture image

Save data &

update model

Is error

correct?

Production

line

Camera AI-Box Web GUI

Error

Yes

No

Yes control signal

No control signal

Fig. 1: A use case example of the AI-Box. The line between the camera and the AI-Box represent a physical USB connection between the two. The dashed line

between the monitor and the AI-Box illustrates a wireless connection between the GUI and AI-Box.

and distribute the computation in between other edge nodes,

also known as fog computing [16].

In this paper, we present the concept of what is called AI-

Box. The AI-Box enables manufacturing SMEs to utilise the

Industry 4.0 technologies of machine learning and IoT without

them needing software engineers for setup and maintenance.

Firstly in Section 2 three examples of use cases are described.

In Section 3, the concept of the AI-Box is described and in Sec-

tion 4 preliminary experiments are described. Finally, in Sec-

tion 5, the conclusion and future work for the project are de-

scribed.

2. Use case description for SMEs

Before introducing the underlying architecture, it is essential

to have an understanding of what kinds of problems the AI-Box

aims to solve. This section contains three hypothetical cases

describing different use cases of the AI-Box at industrial SMEs.

Use case 1: False alarm
A company is producing plastic gears, and after they

come out of the mould, sometimes there is leftover mate-

rial on the cut teeth. This leftover material is not crucial

to be removed at this stage. Still, the production triggers a

false alarm, hence the production is temporarily stopped

until an operator acknowledges the false error. Here the

AI-Box will be set up with a camera pointing at the place

from where the alarm was triggered and is connected to

the relevant PLC out- and inputs. Each time the alarm

occurs a picture is taken and is labelled depending on the

input from the operator. When enough data is collected,

the AI-Box starts to train on the data, and when it has

trained enough, it can take over control and operate the

PLC inputs by itself. This type of operation is illustrated

in Fig. 1.

Use case 2: An audible error
At a production line, an experienced operator can hear

when a tool should be changed but is unable to see it. The

AI-Box is connected to a microphone that would monitor

the utilisation. The operator will record the tool sound

under normal operation and under a situation where the

tool is in a condition where it should be changed. The

AI-Box will learn this signature and will create an alert

when the tool is about to be worn down. This will help

inexperienced operators with performing tool change and

helper monitor the machine.

Use case 3: Unknown error occurs
At a production line sometimes an operation fails, but

no alarms are created. However, it is believed that it can

be measured through vibration, and thus an accelerator

sensor is attached to the place where the operation fails.

The AI-Box is then set into an outlier detection mode,

and here it will then create an alarm if the vibration is at

an abnormal level.

These three use cases are examples of the different aspects of

the AI-Box, but not limited to. An input could also be temper-

ature, magnetic or video feeds. The AI-Box can, therefore, be

summed up to the following key features:

• Simple to deploy and use

• Various built-in machine learning models

• Read and write PLC signals

• Handle different types of measurement data

Together, these features will enable SMEs to find and solve

problems in there production, which they are unable to solve

with traditional means.

3. Concept framework & architecture

The AI-Box concept consists of a complex architecture in-

volving hardware and software. To give a better overview, the

section is split up in hardware, software, and the internal system

architecture.

2
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3.1. Hardware

The main hardware for the AI-Box is the computer that trains

and deploys the network for any given task. It should be bal-

anced between cost, performance, and deployability, where the

latter means it should be small, lightweight and not depend-

ing on a vast amount of peripherals. An NVIDIA Jetson AGX

Xavier was chosen as the main hardware component [17] since

it is small, not too expensive and it has a dedicated GPU with

CUDA cores and thus enabling GPU hardware to accelerate

deep learning performance. Even though the recommendation

is that the Xavier is meant for deployment only, it can still be

used to train on. Webcam and microphone are connected di-

rectly through a USB port while sensors such as accelerometer

and temperature sensor, is connected through the GPIO pins on

the Xavier.

Fig. 2: The setup screen of a new model, where the algorithm is chosen, the

number of classes there are, and the input device are chosen too.

3.2. Software

Rapid development was deemed a paramount aspect of cre-

ating the AI-Box. Therefore, the primary programming lan-

guage used was Python 3.6 with Tensorflow 2.0 as the deep

learning framework. Moreover, as one of the requirement was

the reduced use of peripherals, a web-based interface was cho-

sen as the best solution, here Django 3.0 was chosen. Through

the web-interface of the AI-Box, the operator will make the ini-

tial setup for the problem at hand, which include specifying if,

e.g. it is a camera that should be used (see Fig. 2). This setup

screen enables the operator to set up the right deep learning

architecture without he/she knowing it. Moreover, the classes

that can be selected is a yes/no scenario or an outlier instance.

When the model has been created, a running view is displayed

Fig. 3: The running screen shows the status and current accuracy. Moreover,

when a new sample is captured, it will ask the operator to label it.

(see Fig. 3) to the operator. Here, the operator can see relevant

information, such as current accuracy. Also, when a new sample

is taken, and the AI-Box has not trained enough, or the model

is not confident enough of the class, the operator is asked. The

operator’s decision then labels the sample and is saved in the

sample database. The database storing all of the data has cho-

sen to be a Zarr database [18]. Moreover, the web-interface also

contains a view of all created models along with details view,

such that the operator can view and change parameters of the

model.

3.3. Architecture

The internal architecture of the model is firstly based on the

web interface architecture model-view-controller (MVC) [19].

The MVC architecture is native to Django and is thus automat-

ically implemented. The complexity of the AI-Box requires an

additional architecture design to handle the state of the device,

the deep learning models, and its associated data. This addi-

tional architecture is loosely based on the layered pattern ar-

chitecture, where each layer has a different level of abstraction

and serves the layers above and below it. In Fig. 4 the sys-

tem can be seen. The top layer is the GUI where the opera-

tor interacts with the AI-Box, depending on what is displayed

and interacted with, the information is pulled from the SQLite3

database from Django. When the operator changes the state

of the device (e.g. starting a model) the global state handler
ensures to initialise the correct parameters depending on the

model information stored in the SQLite3 database. The model
handler is a singleton python class that handles initialisation

of the loop controller and the sensor handler, moreover, it also

handles their intercommunication. The loop controller is where

3
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the deep learning is handled. The dataset is read from the Zarr

database and is handling the learning of the model and when to

stop to avoid overfitting. It also initialises the actual deep learn-

ing model by calling the respected ML model class. The sensor
handler controls the setup, retrieves the data from the sensor. It

also starts the sensor driver for the corresponding sensor. This

driver performs the low-level data collection and preprocessing

before it is sent upstream to the sensor handler. With this ar-

chitecture, it is a simple procedure to add a new deep learning

model without breaking the system. Moreover, potentially new

sensor inputs can also be added to the system.

GUI

Global State

Handler

Model Handler

Loop Controller

ML Model

Sensor Handler

Sensor

SQL3

Zarr

Fig. 4: The system architecture of the AI-Box. The green squares indicate that

they are static models, the blue is databases, and the red is non-static model

depended layers.

4. Experiment

To validate that it was possible to train and utilise the AI-

Box and it would be feasible in an SME, two experiments were

conducted. Firstly it was tested at an industrial partner, and sec-

ondly, locally at Aalborg University.

4.1. Experiment at industrial partner

The experiment was conducted at an industrial partner spe-

cialising in palletizing solutions. A known problem at their pal-

letizer machine is that slip-sheets gets stuck under the picked up

layer and no alarm is activated. The AI-Box was placed beside

the palletizer, and a webcam was mounted in the corner of the

palletizer pointing towards the surface area beneath the picked

up layer. The palletizer picked up a layer of cardboard boxes

with no slip-sheet below it. Different types and looks of slip-

sheets were then placed under the picked-up layer, and images

were taken of them. Moreover, images were also captured with

no slip-sheets present. The deep learning model used was a sim-

ple convolutional neural network (CNN) based on AlexNet [3].

In Fig. 5, the resulting train and validation accuracy is shown.

It can be seen that the model converge quickly, with the first

100% test accuracy at epoch 36, which took 37 seconds. After 2

minutes, the test accuracy started to converge. The training first

starts after 30 unique samples have been acquired, moreover,

all training data was randomly augmented on the fly to increase

the variations in the relatively small dataset. There is, in total,

nine possible types of augmentation to be performed on each

sample, and they are brightness, contrast, flipping, hue, satura-

tion, quality, rotation, blurring, and cropping. On each sample,

there is a probability of 0.6 that a random augmentation is ap-

plied which is evaluated after each performed augmentation.

In Fig. 6, the probability for the number of augmentation per

sample is shown. Because of the small dataset, the validation

accuracy is the same data as the training just without augmen-

tation applied. Throughout this test, a total of 87 samples was

captured.
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Fig. 5: The train and validation results of the slip-sheet detection at the indus-

trial partner. The train and validation lines are averaged over 20 runs.

4.2. Experiment at FESTO CP Factory

Besides the test at the industrial partner, a test at the FESTO

CP Factory line located at Aalborg University was also con-

ducted. The FESTO CP Factory line serves as a learning factory

of Industry 4.0 for students and researches at Aalborg Univer-

sity, and it produces smartphones mock-ups. The test had two

purposes:

1. Test the applicability of the AI-Box

2. Test the implemented model on a different environment

The objective was to classify whether a blue case or a black case

was present at the conveyor. In Fig. 7, the two classes, is shown.

The AI-Box was connected to a power outlet and connected to

4
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Fig. 6: The probability for the number of augmentations applied to each sample.

The values are calculated from historical data from the slip-sheet test.

the LAN of the FESTO CP Factory. Then a webcam was placed

at the line and connected to the AI-Box. The AI-Box was turned

on, and the URL of the AI-Box was entered in a browser on a

laptop. Here the interface of the AI-Box was shown. A new

model in the interface was created, and the AI-Box was started

and waiting for new image data. In total, 41 samples were col-

Fig. 7: The view from the AI-Box webcam of the classification object, with a

size of 256x256 pixels. The left side is a black case, and the right is a blue case.

lected at the line and, as with the slip-sheet experiment, the

training first started after 30 collected samples. The same deep

learning model architecture was used, and the result can be seen

in Fig. 8. In this experiment, the same premises applied as with

the slip-sheet detection, because of the shallow sample size the

training data had randomly performed augmentation to it, and

the validation data was the same dataset just with no augmen-

tation applied. The results showed that after just 17 epochs, the

validation started to converge, which only took 35 seconds after

the training began.

4.3. Comparison of CNNs

There exist many high performing CNNs [20]. To select the

right one for the AI-Box can be a challenge. Our requirements
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Fig. 8: The train and validation results of the cover detection at FESTO CP

Factory. The train and validation lines are averaged over 20 runs.

for the model was high general performance and low com-

plexity. Bianco et al. [20] compared the top of the line CNNs

on both a desktop GPU and an Nvidia Jetson TX1. Their re-

search showed that ”there is not a linear relationship between
model complexity and accuracy”. For the AI-Box three archi-

tectures was chosen to be tested, AlexNet [3], ResNeXt [21],

and SqueezeNet [22]. They all three represent diferent apspects

of the CNN research:

AlexNet: Is a now classical CNN architecture with convo-

lutional layers, max-pooling for feature extraction and

fully connected layers for classification. Compared to

more modern architectures, AlexNet has a simple layout

though with many trainable parameters.

ResNeXt: Is a more modern CNN built on the idea of residual

blocks from He et al. [23]. It contains multi-stacked resid-

ual blocks which counteract vanishing gradients. Com-

pared to AlexNet, its architecture is more complicated,

and it also has more trainable parameters.

SqueezeNet: Is the last CNN considered in this paper.

SqeeuzeNet is meant to be a lightweight model where its

fire modules which reduce and expand the image helps

with keeping the number of parameters down. It has no

fully connected layers in the end for classification but re-

lies on the last convolutional layer to do the classification

and extract them with a last global average-pooling layer.

These three architectures have all been altered slightly, mainly

to reduce memory footprint, and thus all are a custom im-

plementation in Tensorflow 2.0 and Python 3.6. The changes

for AlexNet is that there is no local response normalization
and reduced convolutional and fully connected layers. ResNeXt

changes are mainly the filters for the residual block is halved

and some removed. The SqueezeNet is already a rather small

model (memory-wise), and thus the only alterations are the

changes of the last convolution to match the output classes.
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Fig. 9: The validation plot for the different models. The lines are averaged over 20 samples.

In Tab. 1 the architecture of the implemented models are pre-

sented. The models were verified with the dataset of the cov-

Table 1: The different specifications for the implemented architectures. For

AlexNet a dropout is placed after all convolutional operations. In ResNeXt no-

bias is used in the convolutional operations. All models use Adam optimiser

with default hyperparameters.

AlexNet ResNeXt SqueezeNet
2 x Conv(32,3,1) ZeroPad(3) Conv(96,7,2)

MaxPool(2) Conv(64,7,2) MaxPool(3)

Conv(64,3,1) BatNorm(1.001e-5) 2 x F.Module(16,64,64)

MaxPool(2) ZeroPad(1) F.Module(64,128,128)

Conv(128,3,1) MaxPool(3) MaxPool(3)

MaxPool(2) 3 x R.Block(64,1,32) F.Module(32,128,128)

Dense(128) 3 x R.Block(128,2,32) 2 x F.Module(48,192,192)

Dense(68) 3 x R.Block(256,2,32) F.Module(64,256,256)

Dense(2) 2 x R.Block(512,2,32) MaxPool(3)

GlobalAvgPool F.Module(64,256,256)

Dense(2) Conv(2,1,1)

GlobalAvgPool

Parameters
16,888,226

Parameters
22,576,706

Parameters
736,450

ers from the FESTO CP Factory with a total of 41 samples

and 53/47 class distribution. Eight samples were taken from

the 41 samples as validation data. Secondly, the models were

also tested on a larger dataset from the industrial partner with a

total of 1050 images and a class split of 80-20, where 210 sam-

ples were selected as validation data. It should be noted that

the validation data was only used in inference mode and was

not used to change hyper-parameters. The comparison test was

conducted to test the three models and to test if data augmenta-

tion increases the performance, and lastly how the learning rate

affected the model. The test was only allowed to run for 200

epochs to validate the needed quick learning. In Fig. 9 the re-

sult is shown. From the results, we made several observations:

• AlexNet is the overall best performer, with the only time

it did not learn was slip-sheet detection with a high learn-

ing rate and no data augmentation.

• ResNeXt is able to learn the larger dataset in a few

epochs, whereas it did not learn the smaller dataset within

the 200 epochs.

• SqueezeNet was only able to learn the larger dataset with

a low learning rate and with the use of augmented data.

• A lower learning rate, as expected, halts the learning, but

it is also observed that the higher learning rate does not

find a sufficient minimum in time.

• Performing random augmentation to the data also de-

creased the learning rate slightly but also enabled some

of the models to learn the dataset because of the added

variation to the data.

• AlexNet is located in between the two others regarding

the number of trainable parameters, it is the less com-

plex of the three, with only convolutional, max pooling

and fully connected layers. Our results show that a less

complicated CNN architecture performs better on a less

complicated problem (few classes).

5. Conclusion and future work

In this paper, our focus was to describe the current work be-

ing done on what is named the AI-Box. The AI-Box serves as

a versatile easy to use deep learning device which can aid in-

dustrial SMEs to enhance part of their production that will oth-

erwise be too costly/difficult. In its current form, only images

are possible to be classified, and experiments were conducted

to gain a better understanding of what type of deep learning

model is required. The conclusion was that a less complicated

CNN showed to be beneficial for small dataset along with an

6
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additional augmentation of the sample data. Moreover, the two

experiments conducted showed that the AI-Box is versatile and

functional in an expected manner regarding setup and perfor-

mance.

For future work, regarding the image models, it could be of

interest to investigate the use of methods such as Grad-CAM

[24] to visualise what in the image is learned. This will improve

the easy to use for operators and ensure that the model learns

the correct features of the image. As of now, all the models are

trained from scratch, so for better performance and faster learn-

ing transfer learning should be implemented. Besides the image

models, deep learning models that should classify sound, vibra-

tion, and temperature should also be implemented and tested

where recurrent neural networks should be tested. Moreover,

outlier detection for all the different sensor inputs should also

be exploited for use cases which do not have specific classes. A

crucial task to solve is the preprocessing of data. As of now, the

image data is reasonably easy to preprocess:

1. Reduce the size and convert to a three-dimensional matrix.

2. Add to the Zarr database along with the label.

3. Normalise the image between 0-1 before use.

For time-series data, this is a more complicated matter. Here

different techniques as slicing the time-series data into short

frames for classification can be used. Moreover, the various fea-

tures such as the spectrogram, MFCC spectrogram and the time

domain waveform should be investigated. These aspects need

to be addressed in future work, and the core idea of the AI-Box

is still the easy-to-use and versatility. Therefore, these feature

selection should be made without the knowledge of the user

through methods such as principal component analysis. Fur-

thermore, more tests should be performed with different opera-

tors to verify the versatility and easy to use of the AI-Box with

different data and classification objectives.
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Abstract. As technology advances and modern Industry 4.0 solutions
are becoming more widespread, the need for better-suited datasets is ris-
ing. The commonly used datasets for training machine learning focus on
simple data of often publicly available information. Within the industry,
there is only a handful of datasets publicly available to use. In this paper,
we present a new authentic industrial cloud data (AICD) dataset col-
lected from an actual operating pick-and-place machine handling items
with variations in shape, size, and weight. The AICD dataset contains
various analogue sensor values and states of the machine, collected from
an existing cloud solution. Within the data, an error is present when the
machine fails. Therefore, this dataset is suited for testing and developing
predictive maintenance and anomaly detection algorithms to be used in
the industry. Moreover, the paper also presents a baseline implementa-
tion as a performance indicator for future models.

Keywords: Machine learning · Big data · Dataset · Anomaly
detection · Predictive maintenance

1 Introduction

With the materialisation of Industry 4.0 and its subsequent technologies, there is
a need for more open datasets focusing on industrial applications. Specifically, to
use machine learning and deep learning methods, a large dataset is often required
for successful results [1,2]. With the rise of big data, more datasets have been made
available. However, many of them are often not in the manufacturing domain, such
as MNIST [3], California Housing Prices [4], ImageNet [5], and IMDB Reviews [6].
These datasets are meant for different machine learning topics such as machine
vision (MNIST, ImageNet), prediction (California Housing Prices), and natural

c© Springer Nature Switzerland AG 2022
A.-L. Andersen et al. (Eds.): CARV 2021/MCPC 2021, LNME, pp. 415–422, 2022.
https://doi.org/10.1007/978-3-030-90700-6_47
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language processing (IMDB Reviews). In a production environment, it can be ben-
eficial to discover a malfunction before it happens, such that the production can
be stopped and maintenance can be carried out. This is called predictive mainte-
nance, and it has economic potential, e.g. reduce downtime and lifetime extension
of old assets [7]. Even with the economic potential, the adoption of the broader
scope of artificial intelligence in, e.g. small and medium-sized enterprises (SMEs)
is lacking [8].

Currently, there exist datasets that are tailored to the manufacturing envi-
ronment. Purohit et al. [9] published an extensive sound dataset, with recordings
of both functional and malfunctioning valves, fans, sliders, and pumps. More-
over, the C-MAPSS jet engine dataset from NASA is also commonly used [10].
The C-MAPSS dataset contains different sensor measurements and settings for
multiple jet engines over a lifetime. In 2021 a new version of the popular dataset
was released, which is more extensive compared to the original [11]. The new
C-MAPSS dataset contains complete simulated flights of different lengths. More-
over, the initial data is collected at real commercial aeroplanes, and the run-to-
failure is simulated in C-MAPSS. These three datasets are suitable for data
scientists to explore machine learning methods. However, one of the shortcom-
ings of them is that they are all artificial in some way. The sound dataset [9]
contains actual recordings, but the recordings of anomalies are artificially intro-
duced and thus is not a real failure. Moreover, the popular original C-MAPSS
[10] is completely simulated with added sensors noise. The newer version [11]
addresses this by starting with real recordings and simulating the remaining
time to failure. Eduardo Oliveira [12] published in 2017 a dataset from a real
mining operation of silica. This dataset does not concern malfunction but the
prediction of silica concentration to improve the manufacturing process.

In this paper, we introduce a new authentic industrial cloud data (AICD)
public dataset from an actual production process, where the failures are not sim-
ulated. In Sect. 2, the production process and the data collection are elaborated,
and in Sect. 3, the content of the dataset is explained. In Sect. 4, a baseline model
is presented, and in Sect. 5, the conclusion is described. The AICD dataset can
be found at: https://www.kaggle.com/emilblixthansen/aicd-dataset

2 Data Collection

2.1 The General Use Case

The use case concerns a pick-and-place operation of large items with variations
in shape, size and weight. The operation is carried out by a machine, with a tool
containing different components to carry out the operation successfully. The tool
is also equipped with sensors to measure the various components and a safety
sensor to detect if the picked item is dropped. Items are occasionally dropped
since the machine handles a wide variety of products throughout a shift. When
an item is dropped, the production line needs to be stopped, and cleanup of
the dropped item is required before the machine can continue its operations.
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Therefore, if the machine could detect if an item is about to be dropped, it
could stop the operation and avoid dropping the item.

2.2 Data Extraction

The data extraction process took place on a machine at a real production located
in Europe. The data was collected on and off over the course of two days. The
data was collected at an interval of 10 ms through the already existing cloud
solution.

2.3 Anonymising Production Data

The machine and its operation contain vital company information. Therefore, the
exact information regarding the machine and its whereabouts are not disclosed
within the paper. Moreover, information within the dataset has also been altered.
This includes dates and the column names within the dataset. However, there
have been no alterations to the exact data within the dataset, and thus keeping
its integrity.

Fig. 1. All 16.9 million sensor measurements from three different sensors, measuring
suction, vibration, and pressure. The red lines are when the drop detection sensor has
been triggered.

3 Dataset Content

The AICD dataset is distributed in a CSV file format and is split into five
CSV files because of the size of the dataset. Moreover, a compressed Python
Pickle file containing the same data is also distributed. All recordings are from
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Fig. 2. Scatter matrix of the tree sensor values from Fig. 1. Correlation between the
different sensor values is shown along with a histogram of each sensor value along the
diagonal.

the same machine. One of the purposes of the presented dataset is to make an
authentic dataset open to the community of machine learning engineers within
the industry. Henceforth, the different challenges are also present. The challenges
include preprocessing the data, where our dataset is not preprocessed; thus, there
are no training and test set. The data is not split into drops and no-drops. When a
drop has happened, a binary signal goes high (Alarm.ItemDroppedError), which
should be used to indicate a drop. Moreover, this trigger can also be used to
isolate the data before a drop which can be used to train an algorithm to learn
when a drop is about to happen.

The AICD dataset contains 96 columns of various data and data types. The
first three columns are machine-uptime in nanoseconds, date, and timestamp.
The remaining 93 columns are features based on sensors, machine status, and
time recordings. Since the dataset is not preprocessed, some features are trivial
where either they do not change in value or accumulate to infinity. In Fig. 1,
three examples of the dataset are shown, along with indications for when a drop
has happened. From the figure, it is not visible that the drop is correlated with
these sensors measurements, henceforth, the challenges with this multivariate
dataset. Moreover, in Fig. 2 the correlation between the three sensor values is
shown. From the figure, it can be seen that there is a correlation between, e.g.
VibrationValue and IO.ToolTemperature, where the vibration is prone to rise
with the increased temperature.
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The dataset has 16,990,692 rows, and since no preprocessing has been made,
some of the rows contain null values. An overview of all the different columns
can be found in the README.md file along with the dataset.

4 Baseline Experiment

To demonstrate the usage of the dataset and test our initial hypothesis, we
present a minimal baseline experiment. The purpose of the experiment is to
detect anomalies in the dataset when a drop is happening. Because this dataset
consists of multivariate time series data, a neural network LSTM (Long Short
Term Memory, [13]) autoencoder is selected as the method. LSTM has been
successfully deployed in time series problems [14–16] and autoencoder in anomaly
detection [17,18]. Furthermore, together they have been successful in solving
time dependant anomaly detection [19,20]. In Table 1, our model architecture
is shown. The experiment was conducted in Python 3.6, and the model was
created with Tensorflow 2.2. The LSTM layers of the model use the default
hyperparameters from Tensorflow, and the complete script can be found in the
file baseline experiment.py along with the dataset.

Table 1. The used LSTM autoencoder architecture.

Layer (type) Output shape Param #

Input (InputLayer) (None, 1, 48) 0

Encoder (LSTM) (None, 1, 16) 4160

Encoder (Dropout) (None, 1, 16) 0

Encoder (LSTM) (None, 8) 800

Code (RepeatVector) (None, 1, 8) 0

Decoder (LSTM) (None, 1, 8) 544

Decoder (LSTM) (None, 1, 16) 1600

Output (TimeDist) (None, 1, 4) 816

Total trainable params: 7920

Before the model could be trained, the data needs to be preprocessed. For this
experiment, where the objective is anomaly detection, the data has been split
into training and test data, where the training data is from the Data1.csv file
where drops have been removed from that file. Moreover, all rows two minutes
before and after the detected drops were also removed. The test set entails data
from the Data4.csv file. Only 48 columns were kept for training and testing, and
the rest were removed either because they contained no unique values or rose
to infinity. The training data was standardised by Eq. 1, where x is the training
matrix, μ is the corresponding mean vector, and s is the standard deviation
vector. The test data also applied Eq. 1, but used μ and s from the training set.

z =
x− μ

s
(1)
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Fig. 3. The MAE training loss distribution.

The training loss function was chosen to be the Mean Absolute Error (MAE).
The training was done in 40 epochs with Adam optimiser [21]. The training loss
distribution can be seen in Fig. 3. Based upon the training loss distribution, a
threshold of 0.9 was chosen to flag an anomaly. Thus, if the loss exceeds 0.9, an
anomaly has occurred.

To compare the train and test data, the MAE loss has been combined in
Fig. 4a. The test data starts where the green item dropped line starts. It can be
seen that there are anomalies exceeding the threshold without a drop; this further
emphasises the challenges present for data scientists working with production
data. To further validate that the baseline model does learn, a closer inspection
of the first drop from the test dataset is carried out. In Fig. 4b a snapshot of
the drop is shown. Here it is visible that the drop is measurable in the MAE
loss. The model has an MAE value of 0.24767 on the complete test set. The
MAE score can serve as a baseline score for future anomaly experiments with
the dataset.

(a) Combined train and test data. (b) The snapshot of the first drop in the
test data.

Fig. 4. The MAE loss is illustrated in blue, the red line is the threshold of 0.9, and the
green line starts with the test data and is the binary item dropped signal.
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5 Discussion and Conclusion

In this paper, we presented a new cloud dataset named AICD. The data was
collected at an operational running production environment and contained 96
different data features, and a total of 16,990,692 samples was collected. Along
with this new public available dataset, we presented a baseline experiment of
drop detection to demonstrate the dataset usage and compare futures improve-
ments. The AICD dataset and the baseline experiment can be found at: https://
www.kaggle.com/emilblixthansen/aicd-dataset

Wuest et al. [22] identified acquisition and availability of relevant data to be
some of the challenges there is in using machine learning in a production setting.
This works contribution is a publication of a public relevant dataset within the
sparse field op production relevant dataset. As this dataset is collected live at
a running production environment and is not preprocessed, we believe it is one
of the few production datasets that mostly resemble how data collection in a
real production would look like. Therefore, this dataset can bring research from
academia closer to the actual challenges from the industry and thus enhance the
impact of said research. We encourage researchers to use this dataset to learn
the challenges of a real production and develop and research new methods for
anomaly detection and forecasting. This can further aid the progression of big
data and analytics domain of Industry 4.0.
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Abstract

Within the field of prognostics and health management (PHM), health indica-
tors (HI) can be used to aid the production and, e.g. schedule maintenance
and avoid failures. However, HI is often engineered to a specific process
and typically requires large amounts of historical data for set-up. This is
especially a challenge for SMEs, which often lack sufficient resources and
knowledge to benefit from PHM. In this paper, we propose ModularHI,
a modular approach in the construction of HI for a system without histori-
cal data. With ModularHI, the operator chooses which sensor inputs are
available, and then ModularHI will compute a baseline model based on
data collected during a burn-in state. This baseline model will then be used
to detect if the system starts to degrade over time. We test the ModularHI
on two open datasets, CMAPSS and N-CMAPSS. Results from the former
dataset showcase our system’s ability to detect degradation, while results
from the latter point to directions for further research within the area. The
results shows that our novel approach is able to detect system degradation
without historical data.
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1. Introduction

The manufacturing industry has seen an increased interest in modern IT
technologies to enhance their production. These technologies are commonly
described as Industry 4.0. Nonetheless, many of the processes use old equip-
ment, which often lacks sensors and communication protocols to be used
with technologies of Industry 4.0, such as big data and analytics [1]. A study
also found that the use of old equipment negatively impacts the competi-
tiveness and innovation of a small and medium-sized enterprises (SME) [2].
Prognostics and health management (PHM) concerns the topic of monitoring
and health indication of machinery. The health indicator (HI) part is con-
cerned with estimating the health of machinery. The HI can be constructed
differently depending on the equipment and setting, and an important de-
sign choice is whether the HI is to be model-based, data-driven, or hybrid [3].
Model-based models takes the system’s underlying information into accounts
using mathematical models or other descriptions of the system behaviour.
The data-driven approach is where the HI score is not built on top of system
information, but rather learned from data. Lastly, the hybrid approach is
a combination of the other two. In this work we focus on the data-driven
approach. Within this category, there are different ways the HI can be con-
structed, and examples include signal processing and statistical techniques,
including time series domains using time-domain or frequency-domain feature
[4, 5]. The continued development in deep learning has resulted in several
approaches to construct HI through deep learning. A variant of autoencoders
(AE) is for instance commonly used [6, 7]. Experiments from Zhao et al. [7]
showed that denoising autoencoders (DAE) outperformed other methods for
multivariate time series reconstruction problems, whereas [8] constructed a
convolutional neural network (CNN) to construct the HI directly.

Within the PHM domain, estimating the remaining useful life (RUL) of
a given machinery can be beneficial. RUL estimation is often based on the
HI score, but the RUL estimates will then typically rely on historical data of
failures to estimate the relationship between HI and RUL. Ensemble learn-
ing with time dependant degradation weights has been shown to generate
accurate RUL predictions [9], while [10, 11] used an adaptive denoising algo-
rithm to make feature extraction and compute the RUL of aircraft engines.

∗Corresponding author, Fibigerstræde 16, 9220 Aalborg East, Denmark
Email address: ebh@mp.aau.dk (Emil Blixt Hansen)
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Moreover, it has been shown that utilising semi-supervised learning can im-
prove the performance of RUL prediction [12]. A combination of ARIMA
and LSTM models has been proposed to increase performance in anomaly
detection and forecasting [13].

The use of HI for PHM is often engineered to the specific machine/task,
and furthermore requires that sufficient data of the machine is available to
construct the HI. However, SMEs does not in general have this available to
them; when it comes to Industry 4.0, they are often behind larger enterprises
and do not have the knowledge to use technologies such as artificial intelli-
gence (AI) [14]. Previous work has focused on how to make these technologies
more available for SMEs, focusing on ease of use. For instance, Hansen et al.
[15] described a framework and conducted tests within image classification
problems.

To make HI scoring easy-to-use for SMEs, it is not feasible to assume that
the HI scoring system is particularly engineered to each specific machine used
by the SME. On the contrary, it should be possible for an operator to set
up the framework without understanding the underlying algorithms. Fur-
thermore, since a production process typically consists of multiple different
machinery and equipment, it could be beneficial for the SME not to be limited
to a specific engineering application. Therefore, ModularHI is not limited
to specific sensor input types. Instead it uses a modular divide-and-conquer
strategy, which is in-line with current thinking in AI. For instance, Deep-
Mind [16] presented PathNet, a scalable modular network suited for transfer
learning between different tasks in 2017. Here small neural network models
together form a larger network. The work was later extended by Stepwise
PathNet [17]. These works demonstrate that modularity play a central role
within deep learning to enhance the overall performance.

In this paper we present ModularHI, a novel approach to construct
an HI score for an arbitrary machinery based on the available sensor inputs.
ModularHI is aimed at, but not limited to, use cases within the production
sector. Our working hypothesis is that while it is infeasible to engineer
health monitoring solutions for each machine, it is still beneficial to monitor
a machine’s health even if the employed system is less accurate than a tailor-
made solution would have been. The goal is thereby to provide a low-cost
and generally applicable HI monitoring system for SMEs, that can enable
them to start benefitting from Industry 4.0 technologies. The rest of the
paper is structured as follows. In section 2 the algorithm and components
of ModularHI is explained. In section 3 two different tests scenarios are

3



described and in section 4 the results are shown. Furthermore, in section 5
and section 6 the discussion and conclusion is presented, respectively.

2. System architecture

ModularHI aims to support a broad set of use cases, and is not en-
gineered for specific tasks. We have therefore split the execution into three
states: setup, burn-in, and inference. The general execution flow of Modu-
larHI’s three states is shown in Figure 1. Besides the execution flow, the
underlying system comprises two main parts: the component models and the
aggregator. The execution flow and the two main parts are discussed next.

Figure 1: The execution flow of the three states: setup, burn-in, and inference.

2.1. Execution flow

In the first state, setup state, the different models and their specific input
are configured. The models are called component models, and are further
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described in section 2.2. Furthermore, the initial data collection also takes
place in this state. When enough data is collected, the execution goes to the
burn-in state.

The burn-in state is where the component models are fitted to the col-
lected datasets. We will assume that the data describes the monitored system
in its optimal performance state, preferably directly after machine mainte-
nance. When each component model has been sufficiently trained on their
individual datasets, the components model can calculate a real-time health
indicator (more on this in section 2.2). In the inference state the component
model will monitor its own status, and posts an alarm if the HI value is
deemed to be outside its acceptable region. First, however, the acceptable
region must be established. While several methods can be used to determine
this acceptable region, we use a simple strategy in this paper. We monitor
the HI during the burn-in state, calculate the standard deviation of the cal-
culated HI during this period, and define the acceptable region for the HI
to between zero and nine times the calculated standard deviation. Finally
we define the HI at the system level. This is done by the aggregator model,
which collects and combines the HI values from the component models. The
combination is named the joint HI (HIj), represents the overall system’s HI
score, and has its own acceptable region. Again, the region is defined by nine
standard deviations calculated during the burn-in stage. The combinations
of the different component models is further described in section 2.3. Next,
the execution enters the third state, the inference state.

The inference state is where the ModularHI is executed on new data.
Here a continuous collection of data occurs, and every time a new data point
is collected, it is executed through the models. This includes calculating
the current HI score comparing the new datapoint to data collected during
the burn-in state. After that, HIj is calculated, and all of the boundaries
are checked. If at least one boundary is crossed, the system is assumed to
either be in a faulty state or sliding towards it, indicating that maintenance
or inspection is recommended. This therefore results in an alarm state being
published.

2.2. Component models

ModularHI has been designed with simplicity of use in mind. To handle
different sensor categories, with different data types and data dimensions, we
therefore designed specific models per sensor type. Hence, each sensor has its
own model, specifically designed for that measurement type. It follows that
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component models are specifically trained for a certain type of measurement
(e.g., a specific model for temperature data).

As mentioned above, there are different ways of constructing a HI score.
One of the requirements for ModularHI is that it should be modular and
handle a different mixture of sensor inputs. Therefore, it is infeasible to
train a separate model to generate the system’s HI score for each possible
scenario. Instead, ModularHI consists of individual component models,
each outputting a HI score based on a single stream of data. To enable these
HI scores to be comparable to each other throughout the different sensor
inputs, we have chosen the DAE [7] as our go-to model type. Since the com-
ponent models are designed to only handle univariate time series, the model
size is limited. In the experiments reported in this paper, we have chosen to
use a DAE with LSTM layers to capture the time perspective in the data.
The DAE architecture is the same across all sensors and all experiments,
and can be seen in Table 1. We note that the same core modelling approach
could be used to analyse other streaming data like sound or video simply by
adapting the DAE to handle that data-type.

Table 1: The LSTM autoencoder.

Layer type Specification
Input Shape (batch size, window size, 1)
LSTM 8 units, returned sequence
Dropout Probability 0.5
LSTM 4 units
Repeat vector 8 times
LSTM 4 units, returned sequence
Dropout Probability 0.5
LSTM 8 units, returned sequence
Output Time distributed of window size

Currently, this DAE architecture is used for all time series sensor input,
such as temperature, vibration, etc. Even though all models have the same
architecture, they are independently pre-trained on a relevant dataset. This
application of transfer-learning reduces the data-requirements during system
setup, reduces the compute required for training the model during burn-in,
and improves the model’s performance [18].

The HI score is based on the mean absolute error (MAE) during recon-
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struction of the input-signal:

HImk =
1

n

n∑

i=1

|xi − x̃i| . (1)

Here HImk refers to the HI score of the k’th component modelm (out of the set
of M component models for a specific setup case), x is a vector of measure-
ments of window-size n and x̃ is the corresponding reconstructed measure-
ments also of size n. As stated earlier, each model has its own upper-bound
calculated by taking the mean of the HI of burn-in and finding standard devi-
ation σ from the sample mean. Specifically, the upper boundary is specified
by 9 σ and the lower is set to 0 (since MAE is a non-negative real number).

2.3. Aggregator

The objective of the aggregator is to combine the information from the
component models to give a system-wide HI, which we call the joint HI
(HIj). We note that HIj can be calculated in many different ways, rang-
ing from simple aggregations like maximum or sum to increasingly complex
combinations, e.g., represented by a deep neural network. As ModularHI
is designed for ease-of-use within a wide range of application areas, to be
data-driven, and to not require engineering input to define the aggregation
function, we choose to let each sensor contribute equally to HIj by default.
The joint health indicator is now simply the average of the N components’
HI scores:

HIj =
1

N

N∑

i=1

HImi (2)

Nevertheless, if an operator knows that some sensor is more critical to the
stability of a system, they can specify weights w for each sensor input. An
example of this could be that the operator knows that the system starts to
be unstable when the system temperature rises. The operator will then give
the temperature sensor input a higher weight the the others. Thus the HIj

will be more acceptable to changes from the temperature sensor. The HIj is
then calculated by a weighted average as seen in Equation 3. By default all
the weights are specified as 0.5, hence they are all equal and the HIj will be
calculated as Equation 2.

7



HIj =

∑N
i=1 wi · HImi∑N

i=1 wi

(3)

ModularHI calculates the upper-bound for HIj at 9 σ during the burn-
in state. This is done when all component models have finished their burn-in
step. Then Equation 3 is calculated to find all of the HIj from the burn-in
period to calculate the sample mean and thus the corresponding σ.

When the burn-in state is completed, the cycle of the inference state is
executed. For a new data point xt all component models will run a win-
dow of the last n samples including the new data point, such that x =
{xt−n+1, . . . , xt}. After that, all calculated HIm values will be used to calcu-
late the current HIj. With the new HIj all boundaries are checked such that
if any boundary is crossed in their respected HI, an alarm is published. An
illustration of the inference state of ModularHI can be seen in Figure 2
where test 7 from section 3.1 is shown.

Figure 2: The combination of the different component models and the aggregator from
CMAPSS T7.
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3. Experiments

To validate the use of ModularHI, we needed to test it on a relevant
dataset. This dataset should preferably contain multiple different sensors (to
validate the modularity), include recordings from a steady-state (to enable
the initial data collection), and have a continuous data steam eventually lead-
ing to a faulty state. Finally, it would be beneficial if the dataset was relevant
to production applications, either being extracted from one or similar to a
process that could exist in one. The MIMII dataset, which contains various
recordings of failure of processes [19] is one potential candidate. However,
it does not contain continuous recording from steady-state to failure, and
does not include information such as vibration. A dataset collected from a
real production line containing various different sensors and faulty states was
presented in [20]. Unfortunately, this dataset consists mainly of operations
failures and not process failures. NASA published the jet engine degradation
dataset CMAPSS in 2008 [21]. This dataset contains simulated jet engines
monitored until failure, where each data point is an aggregated value from one
flight. More recently, they released an updated version, named N-CMAPSS
[22]. This dataset contains various sensor values from the same setting.
The main difference is that data in N-CMAPSS is collected throughout the
flights and includes both ascent and descent. Moreover, the initial states of
the flights are collected at actual flights, and only the run to failure is sim-
ulated. Hence, N-CMAPSS is a larger and more complex dataset compared
to the original CMAPSS. We have chosen to test ModularHI against both
CMAPSS and N-CMAPSS. We chose both datasets because both of them
have a continuous data stream from steady-state until failure. Moreover,
the two datasets symbolise two different levels of complexity. The available
datasets also show the lack of available authentic production datasets which
can be used in our case. Thus the two CMAPSS datasets are the closest to
an actual production dataset with their continuous data stream of various
sensors.

3.1. CMAPSS dataset test

The original CMAPSS dataset consists of multiple flights, which are com-
monly used for RUL predictions [10, 11]. Here, however, we useModularHI
to generate a HI and determine if the equipment/process is in steady oper-
ation. Therefore, our test will only consist of a single jet engine (engine
number 1 from the dataset FD001). Besides which sensors to use, we also
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need to decide on two hyperparameters: the duration of the burn-in period
and the window size used by the autoencoder. Since engine number 1 only
has 220 recordings, a burn-in period of 78 is chosen as it includes a stable
amount of data. A window size of 8 was chosen as it should capture enough of
the temporal data. We remark that the relatively small dataset used during
burn-in is sufficient due to the auto-encoder being pre-trained on a separate
dataset. The component model concerning temperature is pre-trained on
historical weather data1 and the component models concerning generic time
series data is pre-trained on accelerometer data collected at Aalborg Univer-
sity. The general purpose of pre-training the networks is to train them to
reproduce the input; the underlying characteristics of the individual sensor
data will then be learned during the burn-in state.

Table 2: The eight test setups for CMAPSS dataset. Each sensor has its own model; if
several sensors are mentioned together with only one model, then all sensors have that
type of model. The same is true with the assigned weights. The model T is pre-trained
temperature data and C is a generic model pre-trained on accelerometer data.

Tests Sensors Models Weights
CMAPSS - T1 T50 T 0.5
CMAPSS - T2 T30, T50 T 0.5
CMAPSS - T3 T2, T30, T50 T 0.5
CMAPSS - T4 T2, T30, T50 T 0.6, 0.2, 0.2
CMAPSS - T5 P15 C 0.5
CMAPSS - T6 P15, T2, T50 C, T, T 0.5, 0.5, 0.5
CMAPSS - T7 P15, T2, T50 C, T, T 0.2, 0.2, 0.6
CMAPSS - T8 P2, P15, epr, farB, Nf dmd, PCNfR dmd, T50 T50: T, Rest: C 0.5

We conducted eight tests on the data from Engine number 1, each with
a different combination of sensors and weights (refer to Equation 3). The
test-cases are described in Table 2. Moreover, the values for the sensors are
plotted in Figure 3. The eight tests are conducted to validate various aspects
of ModularHI. Tests 1 and 2 examine the usability of ModularHI with
inputs where degradation is present. Test 5 considers what happens when
degradation is not clearly present. Tests 3, 6 and 8 look at a combination
of sensor with “informative” and “uninformative” sensor values with equal
weights. Finally, Tests 4 and 7 (inference state visualised in Figure 2) high-
light the same when a larger weight has been applied to the “informative”
measurements.

1https://www.kaggle.com/budincsevity/szeged-weather
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Figure 3: The nine used sensor from CMAPSS engine number 1 used, only in sensor T30
and T50 is the degradation visible with an upward trend.

3.2. N-CMAPSS dataset test

Besides the original CMAPSS data, we also tested ModularHI on the
more complex N-CMAPSS dataset. Since N-CMAPSS consists of multiple
flights of different lengths, we chose flight number 2 from dataset DS01.
These flights comprised of data from flights over 3000 feet. All the flights
include ascend from 3000 feet, cruise altitude and descending to 3000 feet.
Flight number 2 describe class three flights, meaning all flights is over 5 hours
long [22]. The sensor readings and flight settings are subject to high variance
during a flight’s ascend and descend. Since the focus of ModularHI is
to be able to detect deviations from stable operation, we have filtered out
the ascending and descending parts of the flights. Moreover, only cruise
parts between 25,000 and 30,000 feet were included during the burn-in state.
Furthermore, we only included flights where the cruise part had a minimum
of 1024 observations (as we used window-size n = 1024 for the autoencoders).
The cleaned file consists of 4 sensors, and the first 105,876 readings are used
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for the burn-in state.

Table 3: The five test setups for N-CMAPSS dataset. Each sensor has its own model; if
several sensors are mentioned together with only one model, then all sensors have that
type of model. The same is true with the assigned weights. The model T is pre-trained
temperature data and C is a generic model pre-trained on accelerometer data.

Test Sensors Models Weights
N-CMAPSS - T1 T40 T 0.5
N-CMAPSS - T2 SmLPC C 0.5
N-CMAPSS - T3 T40, SmLPC, SmHPC T, C, C 0.5
N-CMAPSS - T4 T2, SmLPC T, C 0.5
N-CMAPSS - T5 T2, SmLPC, SmHPC T, C, C 0.6, 0.2, 0.2

We conducted five tests of the cleaned DS01 engine 2 data. All of them
had a sliding window size of 1024 and was tested in batches of 256. To combat
the abrupt changes in the values when going from a single cruise to another,
we only trained with mini-batches where one cruise was involved. The differ-
ent tests, along with their models and weights are reported in Table 3. A plot
of the used sensors after data cleaning can be seen in Figure 4. While some of
the sensors in Figure 4 show signs of degradation (see, in particular, SmLPC),
the apparently noisy variations in the readings dominate the signals. The
dataset is therefore particularly challenging for ModularHI, where we for
simplicity assume that all data during the burn-in period is from stable op-
eration of the equipment/process. From just plotting the dataset, one should
therefore expect that the monitoring system will be more challenged by this
dataset than from the previous one.

As with the CMAPSS dataset, the five tests were conducted to test dif-
ferent aspects of ModularHI. Tests 1 and 2 was to see the effect of using
only a single sensor, where one of them (Test 2) had a clear degradation.
Tests 3 and 4 use multiple sensor values, and Test 5 employs sensors with
different weights.

4. Results

The component models were learning until there was no improvement in
the validation loss for 25 consecutive epochs, and at that time the weights
from the epoch with the lowest validation loss was used.
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Figure 4: The 4 used sensor from N-CMAPSS engine number 2. Only in sensor SmLPC
is the degradation clearly visible with an downwards trend.

4.1. CMAPSS dataset result

The first two tests, Tests 1 and 2, examined the system when degradation
is visually present in the sensor readings. Since T50 is included in both
tests, the results are almost identically. The result from Test 2 reported in
Figure 5 show that HIj reacts at time-step 212. The two component models
first publish alarms at step 221 and 252 for sensor T50 and T30, respectively.

In Test 7, we used sensors T50, T2, and P15. Sensor T50 displays a clear
degradation in the sensor values, while sensor P15 only has a small alteration
in the data, and T2 is static. The results can be seen in Figure 6, and show
that sensor T2 and P15 do not indicate any depredations, neither does their
HI score. However, since sensor T50 crosses its upper-bound an alarm is
published. We also note that HIj exceeds its upper bound even though two
sensors do not indicate a degradation.

Test 8 was conducted to see if a majority of non-contributing sensor values
will prevent HIj to detect that one sensor measures a degradation. Therefore,
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(a) T30 sensor value and HI. (b) T50 sensor value and HI.

(c) HIj for T30 and T50.

Figure 5: The result from Test 2. The green vertical line indicates the end of the burn-in
state. The horizontal red lines indicate the calculated boundaries. The orange area in the
HIj is when an alarm is published.
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(a) T2 sensor value and HI. (b) T50 sensor value and HI.

(c) P15 sensor value and HI. (d) HIj for T2, T50, and P15.

Figure 6: The result from Test 7. The green vertical line indicates the end of the burn-in
state. The horizontal red lines indicates the calculated boundaries. The orange area in
the HIj is when an alarm is published. The HI score from Figure 6a is below the upper
boundary line.
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Figure 7: The result from Test 8. The green vertical line indicates the end of the burn-in
state. The horizontal red lines indicates the calculated boundaries. The orange area in
the HIj is when an alarm is published.

this test includes one sensor with the degradation evident (T50) and six
without (P2, P15, epr, farB, Nfdmd, and PCNfRdmd). The HIj results in
Figure 7 show that an alarm is published before HIj crosses its boundary.
This is initiated by the sensor T50 crosses its upper-bound. Moreover, it can
also be seen that HIj itself crossed its boundary at time 243.

4.2. N-CMAPSS dataset result

We now focus on the more challenging N-CMAPSS dataset. Here, Test
3 was designed to examine ModularHI with multiple sensors. We chose
sensors T40, SmLPC, and SmHPC, and gave them equal weight. The results
in Figure 8 show that the only component model that indicates a degradation
is the SmLPC sensor. After the burn-in state, HIm for this sensor is rising
and exceeds its upper bound in the end. The same trend is also present in
the aggregator where HIj is approaching the upper-bound. The two alarms
are published when SmLPC crosses its boundary.

Test 5 was conducted to testModularHI when a higher weight is applied
to one measurement, and sensor T2 was given a higher weight than the other
two sensors (SmHPC and SmLPC) in this test. The T2 sensor values and
its HI score can be seen in Figure 9 along with the HIj. Due to its higher
weight, T2 highly impacts HIj, moreover, multiple alarms are published.
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(a) SmHPC sensor value and HI. (b) SmLPC sensor value and HI.

(c) T40 sensor value and HI. (d) HIj for SmHPC, SMLPC, and T40.

Figure 8: The result from test 3 of the N-CMAPSS dataset. The green vertical line
indicates the end of the burn-in state. The horizontal red lines indicates the calculated
boundaries. The orange area in the HIj is when an alarm is published.

(a) T2 sensor value and HI. (b) HIj for SmHPC, SmLPC, and T2.

Figure 9: The result from test 5 of the N-CMAPSS dataset. The green vertical line
indicates the end of the burn-in state. The horizontal red lines indicates the calculated
boundaries. The orange area in the HIj is when an alarm is published.
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5. Discussion

The tests showed successful results on the original CMAPSS dataset.
Each test was able to detect the degradation within the dataset and suc-
cessfully publish an alarm at an appropriate time. ModularHI succeeded
regardless of how many non-degradation sensors were included to complicate
the endeavour. This must be partially attributed to the system design, as a
single HIm crossing its boundary is sufficient to publish an alarm. The tests
on the more complex N-CMAPSS dataset were not as successful, as alarms
only were published when a single sensor value crossed its boundary. Fur-
thermore, sensor T2 triggered an alarm during Test 5 even though no clear
degradation trend can be seen from that sensor.

The component models used in this paper are built around the idea that
one model should learn the underlying characteristics of a specific sensor. We
have pre-trained our models to speed up the training process, i.e., related to
the data collection and learning in the burn-in state. All the univariate
models are sharing the same DAE architecture (Table 1). A direction for
future research is to evaluate the performance of different architectures when
applied to univariate data, potentially reflecting what sensor the data orig-
inates from. Some sensors output multivariate data streams, and while we
hypothesise that a DAE architecture similar to what is currently used for
univariate data could also work for multivariate streams, this is so far not
thoroughly tested. Similarly, specific DAE models should also be made for
images, videos, and sound to handle those types of sensor inputs. Another
issue is how to model correlated sensor values. Vibration can, for instance,
be measured by both a 3 degree of freedom (DoF) and 6 DoF accelerometers.
To detect increasing levels of vibration it could be beneficial to analyse read-
ings from both sensors together. The current version of ModularHI has
traded such fidelity in the model for simplicity, but the performance gains of
combining correlated signals into component-overarching models should be
investigated.

The aggregator handles all HI-values from the component models and de-
cides when an alarm should be published. One specific challenge is that the
main objective is that it should be data-driven. Therefore, the aggregator
should internally work out its optimal behaviour during the burn-in state.
Currently, the aggregator’s HI value is a weighted average of those from the
component models, and no computational work is done to find a better ag-
gregation formula. Nevertheless, since we can use a weighted average, it is
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possible to get at least some expert knowledge into the system by tweaking
the weights. If doing so, we take a step away from an entirely data-driven
approach, and move towards a hybrid approach. Another idea is to find, e.g.,
a neural network that uses the component models’ HIm-values to generate
HIj. This would enable the aggregator to learn the different characteristics
and dependency of all the components models and thus understand the con-
nection between sensor values, but would increase the data-requirements to
initialise the system.

Currently, the boundaries from both the component models and the ag-
gregator are calculated by the 9’th standard deviation from the HI mean dur-
ing the burn-in state. While this boundary was successful in the CMAPSS
dataset as described in section 4.1, it was less successful for the N-CMAPSS
dataset. This was partly because the DAE models used to calculate each
component’s HI value were not successful in faithfully reproducing the input-
signal during the burn-in state. As a consequence, we saw a larger variabil-
ity in HIm, leading to rather large standard deviation during burn-in, and
therefore to a less responsive behaviour for our monitoring system. A so-
lution could be a locally adaptive boundary that is based on the historical
HI scores and changes as each new score is calculated. This would make
the boundaries dynamic, but potentially also prevent the detection of slowly
developing problem situations.

When working with time-series data in neural networks, the way data is
presented to the model is extremely important. We use a rolling window in
our implementation, and fix the window-size based on the available data and
the speed of the underlying dynamics. This choice, while difficult to make,
can influence the results dramatically. If the window-size is too small the
model cannot learn the temporal information, and if it is too-large the result
can be a prolonged training time and a reduction in available data batches
reducing the learning quality. We used a window size of 8 for the CMAPSS
test, and 1024 the N-CMAPSS dataset, as the dataset contained more data
and high variation throughout the dataset. To reduce the sensitivity wrt.
this parameter one could try to define the window size dynamically based on
the amount of data collected in the burn-in state along with other statistical
characteristics such as standard deviation, skewness, etc.

While other implementations of HI split them up into multiple zones
compared to the severity (see, e.g., [23]), we have chosen to have only one
type of alarm. This was done to avoid scenarios where a system would fail in,
e.g. warning state instead of in a critical state. Other researchers based their
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zoning on historical data, which is not assumed to be present in our case.
Finally, it would be beneficial for the operators to have an RUL estimation,
but to the best of our knowledge there is still no method available to produce
reliable RUL estimates without historical data available.

To utiliseModularHI in practice, a few things are considered paramount
to be in place. Firstly, each component model is assumed to be already pre-
trained on relevant datasets. The operator will then place and select the
sensor inputs through a GUI where he would define the stable period for
the burn-in to occur. When the burn-in period is finished, the system will
atomically go into the inference state. While we in this paper performed
tests on the publicly available datasets CMAPSS and N-CMAPSS, they are
not the ideal use case. ModularHI was designed with more generic man-
ufacturing systems in mind, such as punching machines, drill presses, CNC
and bending machines. These types of systems are more comparable to the
CMAPSS dataset since the system is not as complex as the data represented
in the N-CMAPSS dataset. Nonetheless, as it is now, ModularHI does not
distinguish between different part numbers, e.i. ModularHI has no way of
knowing if the machine is currently producing a part it was not present in
the burn-in state.

6. Conclusion and future work

In this paper we presented ModularHI, a novel modular architecture
for constructing a HI in a production process. Our work does not require any
historical data, as the DAE is fitted during a stable process on-site. More-
over, the operators choose the sensors available/required, and ModularHI
does not require any knowledge of the type of machinery. The system is
data-driven, easy-to-use and modular, and these design-choices make Mod-
ularHI suitable for SMEs that do not have the resources to invest in PHM
solutions that large enterprises do.

We tested our contribution on two open datasets, CMAPSS and N-
CMAPSS. All the tests on the CMAPSS dataset successfully published an
alarm and detected the degradation in the underlying process. This indicates
our novel approach of using a combination multiple of individual trained
DAEs aggregated together is able to produce an HI score and degradation
detection without any prior historical data. This will benefit SMEs as it has
been shown that they often lack the resources and knowledge to invest in
large PHM solutions.
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The test of the N-CMAPSS was not as successful in detecting the degra-
dation as on the CMAPSS tests. This is because of the higher complexity
within that dataset since it contains different flights of different lengths and
altitudes; state changes that influence the data substantially. We tried to
overcome this problem by limiting the data to cruise flights above 10,000
feet, but found that this was not enough to make the data sufficiently sta-
ble. One could try to limit this specific dataset to have different models for
the different stages of flights. Nonetheless, this is out of scope for Modu-
larHI since it is focused on a more “stable” system, which does not change
extensively throughout its execution.

For future work, ModularHI should be tested on real production data
with various sensors to validate it in its intended settings. Moreover, tests
should be carried out with both images and sound as the component models.
More research should be conducted on each component model to ensure the
correct architecture for each model. A more automatic system for choosing
the window size should also be researched to make the system more easy-to-
use. Lastly, more research within the aggregator should be conducted to see
if it can learn more from the component models instead of aggregating the
results as it is now.
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1 Introduction

With the ever-expanding digitalisation, more information or data is generated and

is available within the digital ecosystem. The expansion of available data and the

increased competition caused by globalisation contribute to why manufacturers are

looking for more advanced methods to optimise their production and products. The

general usage of artificial intelligence (AI) within different fields is expanding. As

part of Industry 4.0, AI is also gaining interest within the industrial sector, where

companies are expanding and trying different usages of AI, both within their pro-

duction and as a product or service. Nonetheless, the term artificial intelligence is

ambiguous and is a collection of many different methods and fields of statistics,

data- and computer science. When the term AI is used as a tool, often it refers to

artificial narrow intelligence (ANI), which indicates a specific field or problem an

AI is applied to. Whereas the term artificial general intelligence (AGI) refers to an

AI which succeeds in multiple fields and is closer to human beings type of intelli-

gence. Examples of ANI is voice assistants like Google Assistant and Siri and image

recognition like Google Lens. Moreover, AI’s like DeepMind’s AlphaGo is also an

ANI. As of this paper, there exist no examples of an AGI yet. Thus, we will only

refer to ANI when we use AI from here on.
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AI is often utilised fields such as robotics, planning, computer vision, natural

language processing, expert system etc. The tool used to solve the challenges within

these fields is often machine learning and deep learning in recent years. Deep learn-

ing is a subset of machine learning which utilises artificial neural networks to learn a

given problem. To apply machine learning to a problem generally, three components

is required:

• A decision process

• An error function

• An optimiser

The decision process is a set of calculations where the algorithm makes a best guess

on what the output should be. The error function (also known as loss function) then

calculates the error between the guess and the correct answer if present. At last, the

optimiser minimises this error function to improve the decision process; and then

the cycle continues until stopped.

Depending upon the task, machine learning can be split into three different

paradigms. The three paradigms are supervised learning, unsupervised learning and

reinforcement learning.

Supervised learning:
It is used when the problem has a specific and known class or outcome, often re-

ferred to as a label. This can, e.g. be image recognition and classification. More-

over, it can also be used to solve regression problems such as predicting future

sales.

Unsupervised learning:
Unsupervised can be used to find unknown patterns in a dataset and to reduce

the dimension of a large dataset. Moreover, it can be used to detect faults e.g. a

machinery through methods such as autoencoders.

Reinforcement learning:
It is often used where a more dynamic approach is suited, where, e.g. labels

can be hard to obtain. The reinforcement agent learns from the action it takes

within the environment it is deployed. The training of an agent often requires

a simulation environment since the agent learns through the means of trial and

error. Reinforcement learning can be beneficial in cases of planning where the

environment is more dynamic.

In general, it is required to either have a substantial amount of data or the ability

to create/collect it to produce a good result with machine learning. This is especially

true when dealing with the best-performing algorithms and models. Nonetheless,

since this field is seeing a rapid involvement, new methods focusing on how differ-

ent ways to optimise the algorithms, both for shorter training time, more energy-

efficient and dedicated hardware (Reuther et al., 2019). Companies are also releas-

ing either products with build in AI and machine learning or having it as a part of

their toolbox for manufacturers, such as Microsoft Azure.
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2 The use of AI in SMEs

In 2021 a survey found a low adoption of AI in SMEs, where only five publications

utilised AI in SMEs related to the manufacturing industry (Hansen and Bøgh, 2021).

It showed that all though limited, that the SMEs was more focused on the internet of

things (IoT), cloud solutions and relevant business opportunities. One of the reasons

behind the higher adoption of IoT and cloud solutions is that they are easy to use

(Moeuf et al., 2020). This also indicates that SMEs, in general, lack the knowledge

and resources to use AI themselves; however, researchers are researching methods

to make AI more easy-to-use, applicable and tailored towards manufacturing com-

panies, including SMEs.

Within an SME, there are numerous ways AI can bring value (Watney and Auer,

2021). Some of them are predictive maintenance, resource optimisation, quality con-

trol, and logistics. Which subfield of AI is used depends on whether it is predictive

maintenance, logistics or one of the other problems AI is applied on. This also leads

to one of the shortcomings of AI, e.i. the knowledge required to have a successful

integration. Normally AI projects are engineered to the specific task, either in-house

or by a consulting company. Which further indicates the challenges and knowl-

edge required for implementation. Therefore, the problem is more present in SMEs

where, in general, the expertise and resources is a constraint (Welte et al., 2020).

Henceforth, pilot projects are a way for SMEs to get started with AI, either in col-

laboration with a research institution or an AI consultancy company. Thereafter, the

SMEs have gained knowledge of AI in connection with their business. Then can

start to build up their own internal AI specialist or group (Ng, 2020).

3 Use cases of AI

As stated in the previous section that the adoption of AI in SMEs is low, it is pos-

sible to look at large enterprises to understand how AI can be used. A survey from

Brosset et al. (2019) describe how Bridgestone uses an AI to tune its tire production

based upon 480 sensor inputs. It resulted in a 15% more uniformity tire produc-

tion. Moreover, Nokia implemented a camera surveillance system of the production

line, which monitors the production, and if any inconsistency occurs, an operator is

alerted. It is not only the manufacturing process AI is used within; Kellogg’s has an

AI which aids consumers in selecting a recipe they want. Also, logistics and supply

chain, along with inventory management, have examples of AI use cases. Some of

these use AI to optimise the orders and planning, while also examples of communi-

cation with partners with the help of natural language processing.

Charalambous et al. (2019) from McKinsey analytics also published an article

where a cement manufacture improved their process. The problem was that the op-

erators had a lot of expertise, and when they went on retirement, it was complicated

to replace them with new operators. Therefore they applied AI to control the differ-

ent processes, and thus the expert knowledge is not lost when an operator retires.
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A study from 2021 also showed a use case where an SME wanted to have an

remaining useful life (RUL) estimation of a critical component (Iftikhar and Nord-

bjerg, 2022). The study came with different suggestions to SMEs and how to adapt

machine learning within their company. The suggestions included the need to join

an alliance with non-competing SMEs, consultancies and research institutions in a

test-driven environment to enhance the knowledge of the field. Moreover, they also

suggested starting with the areas where the problem is solvable and where it is most

suitable from a cost perspective.
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