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SUMMARY

This dissertation comprises three self contained chapters on the analysis of long

memory. Long memory deals with the study of series with autocorrelations declining

at a slower pace than for ARM A processes. In particular, shocks to series that show

long memory tend to remain relevant for longer periods of time. Thus, the presence of

long memory in the series has implications for modelling, estimation, and forecasting.

This dissertation contributes to all of these branches of analysis.

In the first chapter, coauthored with Niels Haldrup, we study one of the main

theoretical motivations behind the presence of long memory in time series data.

Granger (1980) showed that if a series is the result of cross-sectional aggregation of

persistent micro units with random coefficients, then it will show hyperbolic decaying

autocorrelations. That is, the resulting series will show long memory in the covariance

sense. We extend this result to other definitions of long memory considered in the

time series literature. Furthermore, via Monte Carlo simulations, we examine the

finite sample properties of the cross-sectional aggregation result. We find that the

cross-section dimension must increase at a similar rate as the sample size for the long

memory result to hold. Moreover, the degree of memory tends to be exaggerated in

finite samples, particularly for low degrees of memory. By computing the autocorrela-

tion function of a fractionally differenced cross-sectional aggregated series, we show

that the long memory generated by cross-sectional aggregation does not belong to

the ARF I M A class of processes. Nonetheless, the fractionally differenced series has

absolutely summable autocorrelation function and thus it belongs to the class of short

memory processes.

The second chapter examines the performance of the ARF I M A class of models

when forecasting long memory series generated by sources other than ARF I M A

models. We use the Model Confidence Set approach of Hansen, Lunde, and Nason

(2011) to compare the forecasting performance of ARF I M A model specifications

against ARM A and high-order AR models when modelling long memory time series.

As sources of memory, we consider cross-sectional aggregation of persistent micro
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units (Granger, 1980), and the inclusion of shocks of random duration (Parke, 1999).

We find that the ARF I M A class of models is well suited for forecasting long memory

at long horizons, while being competitive at shorter horizons. Moreover, we compare

the forecasting performance of the heterogenous autoregressive model (H AR) of Corsi

(2009) against unconstrained same-order AR models and find that the restrictions

imposed by the H AR model improves forecasting performance at long horizons and

for higher degrees of memory, at the cost of reduced forecasting performance at short

horizons.

The third and final chapter, coauthored with Daniela Osterrieder and Daniel

Ventosa-Santaulària, analyzes the estimation of an unbalanced regression product of

an induced long memory corruption in the data. In Finance, the Capital Asset Pricing

Model (C AP M) implies that financial market participants care about risk and adjust

their return expectations accordingly. That is, expected returns can be explained by risk.

Typically, this relation is modelled by a linear equation relating a risk measure against

expected returns. Nonetheless, risk measures are found to possess long memory, while

the expected returns are short memory; thus implying an unbalanced regression. In

this context, we propose a Data Generating Process (DGP ) that is able to capture this

phenomenon. We assume that the risk series observed are corrupted by a long memory

component product of breaks or cross-sectional aggregation. We show that the OLS

estimate of this regression is inconsistent, but standard inference is possible. To obtain

a consistent slope estimate, we propose a method that filters the long memory error

component without fractional differencing. We prove that the product of a short

memory process and a long memory process eliminates the long memory behavior.

We then propose to use this device in an IV setting to obtain consistent estimators.

Furthermore, we prove that Sargan’s test for instrument validity remains valid in this

unbalanced set-up. Applying the procedure to the prediction of daily returns on the

S&P 500, our empirical analysis confirms return predictability and a positive risk-return

trade-off.
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DANISH SUMMARY

Denne afhandling består af tre kapitler, der fokuserer på analyse af tidsseriedata med

lang hukommelse – long memory. Long memory i tidsserier kommer til udtryk ved at

autokorrelationsfunktionen for processen aftager meget langsomt, (langsommere end

for ARM A processer) således, at observationer målt langt tilbage i tid tenderer til at

være forholdsvis højt korreleret med observationer målt i dag. Sådanne egenskaber

har vigtige implikationer for økonometrisk modellering, estimation og prognosefrem-

skrivninger. Denne afhandling beskæftiger sig med alle disse emner.

I det første kapitel med Professor Niels Haldrup som medforfatter belyser vi en af

de teoretiske motivationer for tilstedeværelsen af long memory. Granger (1980) har vist,

at hvis en observeret tidsserieproces er fremkommet ved aggregering over mange

dynamiske mikroenheder og parametrene for de bagvedliggende mikroprocesser

er trukket fra en Beta-fordeling, så vil den aggregerede proces udvise long memory

målt ved en hyperbolsk aftagende autokorrelationsfunktion. Vi viser, at også andre

definitioner af long memory er opfyldt for at aggregeringsargumentet vil holde. Vi

undersøger aggregeringsresultatets implikationer i små stikprøver målt i både cross-

section og tidsserie-dimensionen, og vi dokumenterer, at et betydeligt antal observatio-

ner i begge dimensioner er nødvendigt for at kunne måle de teoretiske egenskaber.

Endelig viser vi, at selvom den underliggende proces vil følge en fraktionel Brownsk

bevælgelse i grænsen, så har den fraktionelle differens af processen en meget komplice-

ret dynamik der i særdeleshed ikke kan modelleres som en lineær ARM A proces.

Dette resultat har mulige implikationer for parametrisk modellering af long memory

processer.

Det andet kapitel i afhandlingen ligger i forlængelse af analyserne i Kapitel 1. Her

undersøges specielt, hvorledes ARF I M A klassen af processer er brugbar for fremtidige

prediktioner, når den bagvedliggende kilde til long memory er enten en cross-section

aggregeret tidsserie proces (med long memory som diskuteret ovenfor) eller som en

såkaldt “Error Duration Model” der fremkommer ved aggregering af stød, der alle

har en begrænset stokastisk levetid, se Parke (1999). For en bred klasse af ARF I M A
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processer benyttes “Model Confidence Set” til at beskrive, hvilke modelspecifikationer

der bedst synes at beskrive data målt ved modellernes forecast-egenskaber. Vi finder, at

ARF I M A modeller specielt egner sig til langsigts-prediktioner og klarer sig nogenlunde

for en kortere tidshorisont. Vi finder også, at restringerede (lange) AR modeller, såkaldte

H AR modeller, specielt egner sig til forecast på langt sigt og knap så godt på kort sigt.

Det tredje og sidste kapitel har et lidt andet fokus. Kapitlet har Daniela Osterrieder

og Daniel Ventosa-Santaulària som medforfattere. Vi fokuserer på estimation af såkaldte

ubalancerede regressionsmodeller, når persistensen af de underliggende variable

kan karakteriseres ved en kombination af long memory og short memory processer.

I finansiering implicerer den såkaldte C AP M model, at investorer tager højde for

aktivers risiko og tilpasser deres forventninger til afkast hertil. Sammenhængen mellem

et mål for risiko og forventet afkast modelleres typisk ved en lineær regression. Imidler-

tid finder man ofte, at risikomålet udviser long memory, imens det forventede afkast er

short memory, hvilket er baggrunden for den ubalancerede regression. Vi foreslår en

modelramme, der kan håndtere dette problem. Vi antager, at risikoserien er kontamine-

ret med støj, der udviser long memory forårsaget af f.eks. strukturelle skift eller cross-

section aggregering. Under disse antagelser vises OLS at føre til inkonsistente parame-

terskøn. Men det er stadig muligt at lave standard inferens. Vi foreslår en IV metode,

der filtrerer fejlkomponentet med long memory uden at tage en fraktionel differens af

serien. Vi viser, at Sargans test for instrument-validitet forbliver gyldigt i den model, vi

benytter. Sluttelig anvender vi metoden til forudsigelse af daglige afkast for S&P500.

Studiet bekræfter afkast-prediktabilitet og en positiv risiko-forventet afkast-trade-off.
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CROSS-SECTIONAL AGGREGATION

Niels Haldrup

Aarhus University and CREATES

J. Eduardo Vera-Valdés

Aarhus University and CREATES

1



2 CHAPTER 1. LONG MEMORY AND CROSS-SECTIONAL AGGREGATION

Abstract

It is commonly argued that observed long memory in time series and financial variables

can result from cross-sectional aggregation of dynamic heterogenous micro units. In

this paper, we demonstrate that the aggregation argument is consistent with a range of

different long memory definitions. In a simulation study, we show however that both

the cross-section and time dimensions have to be rather large to reflect the true implied

memory when using commonly used estimators, especially when the theoretical

memory is not too high. Finally, we show that even though the aggregated process

will converge to a generalized fractional Brownian motion in the limit, the fractionally

differenced series will still have an autocorrelation function that exhibits hyperbolic

decay, but at a rate that still ensures summability. The fractionally differenced series is

thus I (0) but standard ARF I M A modelling may be invalid when the long memory is

caused by aggregation.
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1.1 Introduction

Without specifically talking about long memory, the study of this concept in time series

goes back to Granger (1966) in his article about the spectral shape near the origin for

economic time series variables. He found that long-term fluctuations, if decomposed

into frequency components, are such that the amplitudes of the components decrease

smoothly with decreasing period (Granger, 1966, p. 155). This certainly applies for

non-stationary I (1) processes and more generally for the class of fractionally integrated

processes as demonstrated by Granger and Joyeux (1980). Such processes have long

lasting correlations that decay hyperbolically instead of the standard geometric decay

characterizing ARM A processes.

This kind of behavior, along similar findings in other scientific areas, has given

rise to several definitions of long memory. In this study, following Guégan (2005), we

consider five definitions of long memory.

Definition. Let xt be a stationary time series with autocovariance function γx (k) and

spectral density function fx (λ), and let d ∈ (0,1/2), then xt has long memory

(i) in the covariance sense if γx (k) ≈Cx k2d−1 as k →∞ with Cx a constant

(ii) in the spectral sense if fx (λ) ≈C f λ
−2d as λ→ 0 with C f a constant

(iii) in the rate of the partial sum sense if Var(
∑T

t xt ) ≈Cv T 1+2d as T →∞ with Cv a

constant

(iv) in the self-similar sense if m1−2d Cov(x(m)
t , x(m)

t+k ) ≈ Cmk2d−1 as k,m →∞ where

x(m)
t = 1

m (xtm−m+1 +·· ·+xtm) with m ∈N, m/k → 0, and Cm a constant

(v) in the distribution sense if Xn(ξ) =σ−1
n

∑bnξc
t=1 xt

d→ BH (ξ), whereσ2
n = E[(

∑n
t=1 xt )2],

ξ ∈ [0,1], BH (ξ) is a fractional Brownian motion, H = d +1/2, and
d→ denotes weak

convergence in D[0,1], the space of real-valued functions that are continuous from

the right on [0,1), and with finite limits from the left on (0,1]

where g (x) ≈ h(x) as x → x0 means that g (x)/h(x) converges to 1 as x tends to x0, and
b·c denotes the integer value of its argument.

Definition (i i ) is the feature considered by Granger (1966) in his study of the typical

spectral shape for economic variables. The behavior of the spectrum near the origin is

also used in the construction of one of the most popular estimators for long memory

due to Geweke and Porter Hudak (1983) who proposed an estimation procedure based

on semiparametric regression around the zero frequency.
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Diebold and Inoue (2001) based their work on spurious long memory on definition

(i i i ). They showed that structural breaks or regime switching schemes can be confused

with long memory by focusing on the rate at which the variance of partial sums grows

in time. Their paper demonstrates that certain stochastic processes are long memory

by one definition but not necessarily by other definitions.

Definitions (i v) and (v) are largely based on the work of Mandelbrot and Van Ness

(1968) for fractals. They defined the self-similarity condition and showed that the

fractional Brownian motion in particular has this property.

Finally, definition (i ), concerned with the behavior of the autocorrelation function

for large lags, was one of the motivations behind the ARF I M A model due to Adenstedt

(1974), Granger and Joyeux (1980), and Hosking (1981). They extended the ARM A

model to account for fractional differencing. That is, for a stationary fractional process

(1−L)d A(L)xt = B(L)εt , (1.1)

where εt is a white noise process, d ∈ (−1/2,1/2), and A(L), B(L) are polynomials

in the lag operator, L, with no common roots, all outside the unit circle. They used

the standard binomial expansion to decompose (1−L)d in a series with coefficients

π j = Γ( j +d)/(Γ(d)Γ( j +1)) for j ∈N. Using Stirling’s approximation, it can be shown

that these coefficients decay at a hyperbolic rate (π j ≈ j d−1 as j →∞), which in turn

translates to slowly decaying autocorrelations.

It is well known that ARF I M A processes are long memory by definitions (i )

through (i i i ), and an analogous derivation as in the proof of Theorem 1 below shows

that it is also long memory in the self-similar sense, definition (i v). Moreover, a scaled

partial sum of an ARF I M A process converges to fractional Brownian motion, see for

instance Davydov (1970) and Davidson and de Jong (2000). Thus, in the time series

literature this has become the canonical construction for modelling long memory.

Even though the ARF I M A model seems to be an appropriate specification to study

long memory, the source underlying its dynamic features is still not clear. Physical

(turbulence, see for instance Kolmogorov (1941)), as well as psychological reasons

(Pearson (1902) personal equation), have been used to explain the presence of long

memory. More recently, Parke (1999) proposed the error-duration model which relies

on a decomposition of the time series into the sum of a sequence of shocks of stochastic

magnitude and duration. He shows that if only a small proportion of the errors survive

for large periods of time, then the resulting series shows long memory in the covariance

sense, definition (i ). Nonetheless, given the nature in which the data is collected, one

of the main arguments often given in economics to why the data seems to have long

memory features is due to cross-sectional aggregation. It is also commonplace to see
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arguments for cross-sectional aggregation motivating the presence of fractional long

memory in real data.

Granger (1980), in line with the results of Robinson (1978) on random AR(1)

models, showed that cross-sectional aggregation of AR(1) processes with random

coefficients could produce long memory. Using a Beta distribution for the generation

of cross-sectional AR(1) coefficients, he showed that, as the cross-sectional dimension

goes to infinity, the autocovariance function exhibits hyperbolic decay, rather than

the standard geometric rate characterizing ARM A processes. Thus, cross-sectional

aggregation can produce long memory in the covariance sense, definition (i ).

In this paper we focus on the aggregation argument leading to long memory. We

address the particular specification considered by Granger because the Beta distribu-

tion is a rather flexible specification but the analysis could be extended to other

aggregation schemes. We demonstrate that this aggregation scheme implies that

the aggregated series is long memory using all the definitions considered in this

paper. Since the aggregation result is an asymptotic property, we conduct a Monte

Carlo simulation study to quantify how aggregation can lead to long memory in

finite samples. The theoretical degree of memory of the aggregated series is tied

to a particular parameter of the Beta distribution which affects the density mass

around one. The simulations show that both the time series and the cross section

dimensions have to be significant for the theoretical degree of memory to apply. Finite

samples will still exhibit long memory but the estimated memory parameter can be

rather large compared to its theoretical value, especially when the memory is only

of moderate degree. In the third part of the paper, we focus on the extent to which

the memory implied by aggregation can be removed by fractional differencing. In

particular, we are interested in how ARF I M A type of long memory models can be

useful for practical model building. It occurs that the fractionally differenced series,

using the theoretical degree of differencing, does remove the long memory of the

process. The resulting series has absolutely summable autocorrelations and thus it is

I (0) by the definition of Davidson (2009). However, the fractionally differenced series

will still have autocorrelations that decay hyperbolically, and hence will decay slower

than what an ARM A specification will be able to fit. This feature is most dominant

when the degree of memory is moderate as opposed to being close to non-stationarity,

d ≥ 0.5. Our findings may have implications for the argument that is often given for

estimating ARF I M A models, namely that the observed long memory of time series

can occur due to cross-sectional aggregation.

In section 2, the Granger aggregation scheme is presented and the features of

the aggregated series are examined using the different long memory definitions that
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we consider. Section 3 presents the simulation study, and finally section 4 derives

the features of fractional differencing of cross-sectionally aggregated long memory

processes. The final section concludes.

1.2 Long Memory and Cross-Sectional Aggregation

Consider the random AR(1) process given by:

xi ,t =αi xi ,t−1 +εi ,t , (1.2)

where εi ,t is a white noise process independent of αi with E[ε2
i ,t ] = σ2

ε, ∀t ∈ Z and

α2
i ∼B(α; p, q) with p, q > 1 and B(α; p, q) is the Beta distribution with density:

B(α; p, q) = 1

B(p, q)
αp−1(1−α)q−1 for α ∈ (0,1), (1.3)

where B(·, ·) is the Beta function.

Robinson (1978) proved that the process given by (1.2) admits a variance-covariance

stationary solution. Furthermore, the unconditional autocorrelation function of this

process shows hyperbolic decay. However, the process is not ergodic in the sense that

random samples will depend on the realization of αi .

Granger (1980) proposed1 to consider the cross-sectional aggregation of series

generated by (1.2). The cross-sectional aggregated series is defined by:

xt = 1p
N

N∑
i=1

xi ,t , (1.4)

where εi ,t is a white noise process with E[ε2
i ,t ] =σ2

ε ∀i ∈ {1,2, · · · , N }, ∀t ∈Z and {αi }N
i=1

are i .i .d . with α2
i ∼B(α; p, q) with p, q > 1 ∀i ∈ {1,2, · · · , N } and B(α; p, q) as in (1.3).

Furthermore, εi ,t is independent from αi ∀i ∈ {1,2, · · · , N }, ∀t ∈Z.

Note that considering (1.4) instead of (1.2) solves the ergodicity violation by elimi-

nating the dependence of the autocorrelation function on the particular realization of

the autoregressive coefficient. Intuitively, note that if N is large enough, samples from

(1.4) will have similar realizations of {αi }N
i=1 and thus will have similar autocorrelation

functions.

Granger showed that, as N →∞, the autocorrelations of xt decay at a hyperbolic

rate and hence generates long memory in the covariance sense according to definition

1Granger also considered the case with dependence across series and allowing for different variances
across the cross-sectional units; for clarity, we will focus on the scenario under independence and equal
variance.
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(i ) with parameter d = 1−q/2. Taking q ∈ (1,2), the long memory generated falls in the

stationary range, d ∈ (0,1/2). We will focus on this range for the rest of the analysis.

In Theorem 1, we extend the long memory result to definitions (i i ) through (i v).

Theorem 1. Let xt be defined as in (1.4) then, as N →∞, xt has long memory with

parameter d = 1−q/2 in the sense of definitions (i ) through (i v).

Proof: See appendix.

Theorem 1 shows that a cross-sectional aggregated series of infinitely many AR(1)

processes with squared autoregressive coefficients from a Beta distribution has long

memory with long memory parameter d = 1−q/2. Note that the parameters p, q are

shape parameters of the Beta distribution. In particular, q affects the density around

one and thus the probability of adding near unit-root AR(1) processes. Furthermore, it

appears that the value of p plays no role for this result as N →∞. As a consequence,

Granger conjectured that asymptotically the memory only depends on the behavior of

the distribution of the autoregressive coefficient near one. In Figure 1, we plot the beta

distribution (1.3) for p = 1.4 and different values of q . As can be seen, the closer q is to

one, the more density mass concentrates around one; which, as shown in Theorem 1,

translates to a greater degree of memory in the cross-sectionally aggregated series, xt .

Figure 1.1. Beta distribution.

Granger’s result has been extended by, among others, Oppenheim and Viano

(2004), allowing for AR(s) processes (with s ≥ 1) and Linden (1999) changing the Beta

distribution to the Uniform; note that in Granger’s setting the Uniform distribution was

ruled out given that p, q > 1. Under the scenario of Oppenheim’s et al., the aggregated

series exhibits seasonal behavior along with long memory.
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Granger’s finding about the dependence of the result on the behavior of the

distribution near one was further discussed by Zaffaroni (2004). He showed that if

the distribution of the autoregressive coefficient, αi , belongs to a family of absolutely

continuous distributions on [0,1), depending upon a real parameter b ∈ (−1,∞), with

density

G(α;b) ∼ cb(1−α)b as α→ 1−,

where 0 < cb <∞ and 1− denotes the limit from the left, then the aggregated series,

letting N →∞, will be long memory. Moreover, the more dense the distribution ofαi is

around one, the greater the degree of long memory of the aggregate. Both the Uniform

and Beta distributions are members of this family of distributions. Thus, the specific

parametric assumption regarding the distribution of the autoregressive coefficient is

not needed for the long memory result to apply, but as we will see below, it allows us

to have closed-form expressions for one of the main results in the paper. Additionally,

Zaffaroni (2004) extended the result for cross-sectional aggregation to general ARM A

processes of finite order.

In Theorem 1, we showed that cross-sectional aggregation satisfies long memory

by definitions (i ) through (i v). We now argue that under one additional condition on

εi ,t , the scaled partial sum of cross-sectional aggregated series converges to fractional

Brownian motion; that is, it has long memory in the distribution sense, definition (v).

ARF I M A processes are fractional differenced ARM A processes after adopting

the (1−L)d filter. The M A series resulting from expansion of the (1−L)d filter has

hyperbolically decaying coefficients of the form π j = Γ( j +d)/(Γ(d)Γ( j +1)) for j ∈N
and this produces a series with hyperbolic decaying autocovariances. We can generalize

this construction to series that still show hyperbolic decaying coefficients, yet, the

coefficients do not come from the fractional difference operator as defined above.

We call these processes generalized fractional processes (see Davidson and de Jong

(2000)).

We prove in Lemma 1 that if εi ,t are i .i .d ., cross-sectional aggregated processes

can be expressed as a generalized fractional process.

Lemma 1. Let xt be defined as in (1.4) and assume that εi ,t is an i .i .d . process, then, as

N →∞, xt can be expressed as

xt =
∞∑

j=0
φ jνt− j ,

where ν j ∼ N (0,σ2
ε) are independent and φ j =

(
B(p + j , q)/B(p, q)

)1/2 , ∀ j ∈N.

Proof: See appendix.
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Lemma 1 relies on the fact that, when N goes to infinity, the Central Limit Theorem

can be applied. In this sense, it is in line with the work of Davidson and Sibbertsen

(2005) who show that cross-sectional aggregated non-linear processes of appropriate

form have linear representations in the sense of having M A(∞) representations. Note

also that in Lemma 1 we could obtain a similar result if εi ,t is not i .i .d . but satisfies

Lyapunov’s condition. Furthermore, the resulting series inherits the uncorrelated

property of εi ,t and, given normality, they are independent.

By Stirling’s approximation, we can show that the coefficients in the representation

decay at a hyperbolic rate, φ j ≈ j−q/2 = j d−1 as j →∞ with d = 1−q/2, but without

being associated with the fractional differencing parameters, π j , defined above. Thus,

cross-sectional aggregated processes are generalized fractional processes. In Section

1.4, we will detail the study of the relationship between cross-sectional aggregated

long memory processes and ARF I M A processes.

Theorem 2 argues that the scaled partial sum of cross-sectional aggregated processes

converges to fractional Brownian motion.

Theorem 2. Let xt be defined as in (1.4) and assume that εi ,t is an i .i .d . process, then,

as N →∞, xt has long memory in the sense of definition (v) with parameter d = 1−q/2.

Proof: See appendix.

Theorem 2 is in line with the results from Zaffaroni (2004) when restricting the

analysis to the Beta distribution. In this context, the parametric assumption allows

us to find closed-form solutions for the variance terms. This in turn translates into

closed-form expressions for the coefficients of the generalized fractional process. Given

this, note that Theorem 2 follows directly from the developments of Davydov (1970)

and Davidson and de Jong (2000).

In summary, Theorems 1 and 2 show that a cross-sectional aggregated series has

long memory by all the definitions considered. However, although the coefficients of

the M A representation decay hyperbolically, they are different from those arising from

inversion of a fractional difference filter.

1.3 Finite Sample Study

In order to analyze the finite sample properties of Granger’s aggregation result, which

holds asymptotically, we conducted a Monte Carlo simulation experiment. Note that

if we do not consider enough AR(1) processes in the cross-sectional dimension, the

resulting series may not have long memory as predicted theoretically. Granger (1990)

proposed a division between cross-sectional aggregation in small scale, involving sums
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of a few time series variables, and large scale, involving the sums of very many variables.

In particular, Chambers (1998) shows that when the number of variables is not large,

the aggregation result can not be obtained. Nonetheless, the numerical finite sample

implications of these conclusions should be quantified.

To shed some light on this question we generate xt as in (1.4) under different

parametric settings focusing on three main dimensions: the density of the auto-

regressive coefficient near one determined by the parameter q ; the sample size T ; and

the cross-sectional dimension N , that is, the number of AR(1) processes aggregated

over.

The simulation proceeds as follows for R replications:

• Sample the N autoregressive coefficients from the density function, equation

(1.3).

• Generate the individual AR(1) series of size T , equation (1.2), using the sampled

coefficients. The error terms, εi ,t , are sampled from independent standard

normals.

• Aggregate the individual series cross-sectionally according to equation (1.4).

• Estimate the long memory parameter by the GPH estimator, see Geweke and

Porter Hudak (1983). For robustness, we also consider the local Whittle estimator

of Robinson (1995) and Künsch (1986) [LW ], and the bias-reduction method

for the GPH estimator suggested by Andrews and Guggenberger (2003) using

second degree [AN D(2)] and fourth degree polynomials [AN D(4)].

We use these estimators of the long memory parameter since they do not depend on

a full parametric assumption. The importance of this will be made clearer in Section 1.4

when discussing the relationship of cross-sectional aggregated series with ARF I M A

processes.

Throughout, we have used a bandwidth of T 0.5 for all estimators as it is standard in

the literature. As it is well known, the bandwidth affects the bias-precision trade-off.

Results with different bandwidths are available upon request showing this trade-off;

notwithstanding, the main conclusions maintain. Moreover, for reasons of space, we

present simulations for p = 1.4 throughout, so that the density for the autoregressive

coefficient takes the form shown in Figure 1.1. For robustness we have tried different

values of p, available upon request, with similar qualitative results despite minor

quantitative differences.

To analyze the importance of the density around one on the aggregation result,

we report in Table 1.1 the results from the simulations for different values of q in

(1.3), which is related to the degree of long memory d = 1−q/2. We have conducted
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R = 10,000 replications with T = N = 10,000. Additionally, for comparison, we also

simulate 10,000 F I (d) series using the exact algorithm of Jensen and Nielsen (2014).

Table 1.1. Mean and standard deviation in parentheses of the estimated long memory parameter.
T = N = R = 10,000. The last three columns show comparable F I (d) processes simulated
according to Jensen and Nielsen (2014) algorithm.

Theoretical Cross-sectional aggregated F I (d)
d GPH LW AN D(2) AN D(4) GPH LW AN D(2) AN D(4)

0.475 0.5117 0.5067 0.4967 0.4920 0.4818 0.4779 0.4840 0.4849
(0.0711) (0.0563) (0.1126) (0.1463) (0.0710) (0.0565) (0.1116) (0.1467)

0.45 0.4894 0.4840 0.4731 0.4671 0.4566 0.4519 0.4582 0.4606
(0.0718) (0.0544) (0.1139) (0.1499) (0.0700) (0.0550) (0.1128) (0.1471)

0.4 0.4442 0.4409 0.4255 0.4186 0.4029 0.4034 0.4045 0.4051
(0.0723) (0.0598) (0.1135) (0.1482) (0.0699) (0.0563) (0.1120) (0.1465)

0.35 0.4041 0.4031 0.3826 0.3744 0.3536 0.3504 0.3542 0.3541
(0.0722) (0.0578) (0.1127) (0.1482) (0.0698) (0.0572) (0.1104) (0.1449)

0.3 0.3633 0.3601 0.3394 0.3295 0.3017 0.3012 0.3040 0.3043
(0.0723) (0.0564) (0.1155) (0.1508) (0.0693) (0.0529) (0.1102) (0.1453)

0.25 0.3251 0.3254 0.2965 0.2829 0.2529 0.2480 0.2532 0.2529
(0.0730) (0.0619) (0.1159) (0.1520) (0.0702) (0.0531) (0.1104) (0.1442)

0.2 0.2887 0.2882 0.2573 0.2434 0.2009 0.1946 0.2012 0.2013
(0.0738) (0.0613) (0.1183) (0.1552) (0.0700) (0.0566) (0.1112) (0.1464)

0.15 0.2547 0.2517 0.2198 0.2075 0.1512 0.1458 0.1509 0.1519
(0.0730) (0.0619) (0.1173) (0.1529) (0.0694) (0.0537) (0.1107) (0.1454)

0.10 0.2252 0.2253 0.1888 0.1753 0.1004 0.0957 0.1022 0.1029
(0.0741) (0.0615) (0.1174) (0.1536) (0.0683) (0.0561) (0.1103) (0.1448)

0.05 0.1938 0.1953 0.1569 0.1422 0.0500 0.0457 0.0494 0.0493
(0.0748) (0.0611) (0.1181) (0.1550) (0.0692) (0.0550) (0.1104) (0.1472)

Note. The estimators considered are GPH , Geweke and Porter Hudak (1983), LW , the local Whittle estimator
of Robinson (1995) and Künsch (1986), AN D(2) and AN D(4) are the bias corrected GPH tests of Andrews
and Guggenberger (2003) using second degree and fourth degree polynomials, respectively.

The table shows that for large degrees of memory the estimates are close to the

theoretical values but rather distant when the memory is low. Moreover, the estimates

are rather robust to the estimation procedure. Thus, it shows that the density of the

autoregressive coefficient plays a key role in finite samples. It suggests that using

cross-sectional aggregation as a way to simulate long memory works poorly when

dealing with a small memory index, d . In contrast, Table 1.1 shows that fractional

differencing remains precise for all values of d . In particular, note that for a sample size

of 10,000 and using 10,000 AR(1) series, the cross-sectional aggregated series tends

to show a larger degree of memory than the asymptotic result implies, and that of a

comparable F I (d) process.2 This, coupled with the computational load required to

generate the aggregated series, suggests that the aggregation scheme is dominated by

exact fractional differencing.

2We need a sample size T and cross-sectional dimension N of more than 100,000 to obtain results that
mimic the F I (d) simulations.



12 CHAPTER 1. LONG MEMORY AND CROSS-SECTIONAL AGGREGATION

Moving on to analyze the importance of the cross-sectional dimension, we present

in Figure 1.2 box-plots from simulations with a sample size of T = 10,000 while varying

the cross-sectional dimension N . For ease of exposition, we only present results for

four theoretical degrees of long memory with the GPH estimation method.

Figure 1.2. Box-plot of the GPH long memory estimator for different levels of aggregation.
T = R = 10,000. In each box the central mark is the median, the edges of the box are the 25th
and 75th percentiles and the whiskers extend to the 95% coverage assuming symmetry.

Figure 1.2 allows us to see how the long memory parameter evolves while increasing

the cross-sectional dimension. It further shows the dependence of the result on the

density of the autoregressive coefficient and the implied theoretical memory d . The

larger the degree of memory (the denser the Beta distribution around one) the better

we can approximate the asymptotic result. For small values of N , the figures show

that the median is below the theoretical value in all cases, which is line with the result

by Chambers (1998) on small scale aggregation. It can also be seen that the memory

parameter is generally imprecisely estimated when N is relatively small. Moreover, the
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box-plots show that the cutoff between small and large scale aggregation varies with

the density of the autoregressive coefficients. In general, with a sample size of 10,000,

for larger degrees of memory, we need at least 250 AR(1) series so that the median of

the simulations is close to the theoretical values, while for smaller degrees of memory,

as Table 1.1 showed, we are still far away even with 10,000 AR(1) series. Moreover,

much estimation uncertainty is still present in all cases.

Finally, to study the interaction between the sample size and the cross-section

dimension, Figure 1.3 presents the heat-maps of the mean of the GPH estimated

parameters for 1,000 replications minus their theoretical values while varying T and

N . We consider four theoretical values of d ∈ {0.45,0.35,0.25,0.15}.

Figure 1.3. Heat-map of the mean of the GPH estimator for R = 1000 replications minus the
theoretical value; T, N ∈ {50,100,250,500,750,1000,2500,5000,7500,10000}.

The figure shows the interaction between the cross-sectional dimension and the

sample size. For smaller sample sizes, we are always overshooting the true long memory

parameter. This suggests that when working with a small sample size, the estimators

do not have enough information to discern the true nature of the process. On the

other hand, as the sample size T increases, more cross-sectional units are needed

to approximate the asymptotic result. Thus, it quantifies the cutoff between small
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and large scale aggregation. This indicates that if we were to use aggregation as a

way to simulate long memory we need to increase the cross-sectional dimension

proportionally to the sample size, with the associated computational cost that it

implies.

In summary, we find that the aggregation scheme to generate long memory can

be rather imprecise and generally requires many time series observations and many

cross-sectional units. In particular for small values of d .

1.4 Cross-Sectional Aggregation and ARFIMA processes

Theorems 1 and 2 together with Lemma 1 show that cross-sectional aggregated pro-

cesses share key properties with ARF I M A processes. Both processes satisfy all of

the definitions of long memory considered in this paper, and both have M A(∞)

representations with hyperbolic decaying coefficients.

These shared properties may explain why several authors have assumed that

cross-sectional aggregated processes are of the ARF I M A type. For instance, Balcilar

(2004) and Gadea and Mayoral (2006) refer to cross-sectional aggregation as a possible

explanation behind long memory found in inflation and fit ARF I M A models using

parametric methods.

Granger (1980), in his original article, also noted that although aggregated series

were not ARF I M A, the ARF I M A specification could provide a good approximation.

Others have suggested that the long memory of the cross-sectional aggregated

series can be eliminated by fractional differencing. Diebold and Rudebusch (1989)

allude to aggregation as the origin of long memory in output. They estimate the

long memory parameter by the GPH method, fractionally difference the series, and

subsequently estimate an ARM A model. Kumar and Okimoto (2007), refer aggregation

as the motive behind long memory and use the Shimotsu and Phillips (2005) estimator

for the long memory parameter. This method relies on fractional differencing.

Recall from (1.1) that an ARF I M A process is a fractionally differenced ARM A

process. Thus, if we were to take a d-th difference, (1−L)d , of an ARF I M A(a,d ,b)

process, we would recover the underlying ARM A(a,b) process. However, as Lemma

1 shows, the cross-sectional aggregated process is a generalized fractional process.

Thus, it may not appear from fractional differencing. As a way to give an answer to this

question, Theorem 3 presents the autocovariance function of a fractionally differenced

cross-sectionally aggregated process.

Theorem 3. Let yt = (1−L)d xt where xt is defined as in (1.4) with N →∞ and γy (k) =
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E [yt yt−k ] ∀k ∈N. Then,

γy (k) = γ∗(k)

B(p, q)

[
B(p, q −1)

(
F1(k)−1

)+B(p + 1

2
, q −1)F2(k)

]
,

where

γ∗(k) =σ2
ε

Γ(1+2d)

Γ(−d)Γ(1+d)

Γ(−d −k)

Γ(1+d −k)
,
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ε
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where F [·] is the generalized hypergeometric function.

Proof: See appendix.

Two main points can be drawn from Theorem 3.

First, looking at the resulting autocovariance function, we find that it retains some

memory even for large lags. In particular, it does not belong to the class of autocovari-

ance functions for linear ARM A processes. This has implications for modelling and

estimation. In particular, Maximum Likelihood estimators rely on the fact that the

resulting series after differencing is of the ARM A type. The properties of the Quasi-

Maximum Likelihood estimation of ARF I M A models when the underlying process is

a generalized fractional process remain an open question.

Second, note that as the proof of Theorem 3 shows, in reality we are calculating

the autocovariance function of cross-sectionally aggregated ARF I M A(1,−d ,0) series.
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Hence, the individual series are antipersistent with parameter −d , and the cross-

sectionally aggregated AR processes are overdifferenced. The autocovariance function

of the overdifferencing filter (1−L)d is given by γ∗(k) in Theorem 3, which is a negative

function in k.

Figure 1.4 displays the shape of the autocovariance function for the fractionally

differenced cross-sectionally aggregated process γy (k), the autocovariance of the

antipersistent component γ∗(k), and its ratio τ(k) := γy (k)/γ∗(k).

Figure 1.4. Autocovariance function for the fractionally differenced cross-sectionally aggregated
series γy (k), the I (−d) process γ∗(k) (left scale), and its ratio τ(k) (right scale). p = 1.4, q = 1.05
so that d = 0.475.

The following Corollary shows that the function τ(k) is a negative slowly varying

function in k and thus the autocovariance of the fractionally differenced cross-section-

ally aggregated process shows hyperbolic decay.

Corollary 1. As k →∞, γy (k) ≈ τ(k)k−1−2d , where τ(k) is a slowly-varying function

in the sense that, for c > 0, limk→∞τ(ck)/τ(k) = 1. Moreover, the autocorrelations are

absolutely summable, that is,
∑∞

i=0 |ρy (k)| =∑∞
i=0 |γy (k)/γy (0)| <∞.

Proof: See appendix.

As seen in Figure 1.4 and proved in Corollary 1, the autocovariance function γy (k)

decays at a hyperbolic rate similar to the rate for antipersistent processes. However,

the sign of the function is positive as opposed to antipersistent processes, which is a

feature induced by the cross-sectional aggregation. Despite the hyperbolic rate, the

decay is still fast in the sense that the autocorrelations are summable and hence satisfy

the condition for I (0) considered by Davidson (2009).
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Figure 1.5. Autocovariance functions for the fractionally differenced cross-sectionally
aggregated series γy (k) for p = 1.1 and q ∈ {1.2,1.4,1.6,1.8}.

From the expression of γy (k) given in Theorem 3, note that autocovariances for

finite k depend on the parameters p and q associated with the Beta distribution. Figure

1.5 displays the autocovariance functions for p = 1.4 and q ∈ {1.2,1.4,1.6,1.8}. Small

values of q (and hence large memory) result in relatively small autocovariances for

finite k. As q increases, and hence memory declines, the fractionally differenced series

tend to have rather significant autocovariances for small as well as for moderately large

lags.3 This will clearly have a major impact on the properties of estimated parametric

models of the ARF I M A type which in general will be misspecified.

1.5 Conclusions

In many empirical studies, long memory is modelled as ARF I M A processes and

often the motivation used in this research relies on the Granger (1980) argument

that cross-sectional aggregation can lead to long memory. In this paper, we argue

that both ARF I M A processes and long memory processes generated according to

Granger’s aggregation scheme satisfy a range of long memory definitions. Despite these

similarities, the two classes of processes have features that are somewhat different. First

of all, one should be aware that cross-sectional aggregation leading to long memory is

an asymptotic feature that applies for both the cross-sectional and the time dimensions

tending to infinity. In finite samples, and for moderate cross-sectional dimensions, the

observed memory of the series can be rather different from the theoretical memory.

3We also constructed graphs similar to Figure 1.5 while varying p. They show that the autocovariances
increase in size as p increases.
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Moreover, the aggregation result seems to be most apparent when the memory tends to

be relatively high, and hence the Beta distribution has concentrated mass around one.

Secondly, we have shown that when taking a fractional difference of a cross-sectionally

aggregated long memory process, the resulting process is not an ARM A process.

The fractionally differenced process has autocorrelations that are summable and the

process is I (0) according to Davidson’s (2009) definition, but the autocorrelations still

decay at a hyperbolic rate rather than a geometric rate. Especially when the memory is

moderate the autocorrelations are more persistent than observed in ARM A processes.

Granger (1980) noted that cross-sectional aggregated long memory processes are

likely to be well approximated as ARF I M A processes in most cases. Our study shows

that care should be taken regarding this common belief. In many cases, ARF I M A

specifications will not provide a satisfactory description of the short run dynamics

even though the long memory can be effectively removed by fractional differencing.
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1.7 Appendix

Proof of Theorem 1

Let xt be defined as in (1.4).

To prove (i ), note that xt has zero mean and thus its variance is given by

γx (0) = E [x2
t ] = E

(
1p
N

N∑
i=1

xi ,t

)2
= 1

N
E

(
N∑

i=1
xi ,t

)2


= σ2
ε

N

N∑
i=1

E

[
1

1−α2
i

]
,

where the third equality follows from the independence assumption.

Note that ∀i ∈ {1,2, · · · , N }, unconditionally,

E

[
1

1−α2
i

]
=

∫ 1

0

1

1−x

xp−1(1−x)q−1

B(p, q)
d x =

∫ 1

0

xp−1(1−x)q−2

B(p, q)
d x = B(p, q −1)

B(p, q)
,

which shows that each series has long memory in the covariance sense. Yet, as previously

discussed, (1.2) is not ergodic in the sense that realizations depend on the draw of

αi . To solve the ergodicity violation we consider the cross-sectional aggregated series

noting that,

lim
N→∞

1

N

N∑
i=1

E

[
1

1−α2
i

∣∣∣∣∣αi

]
=

∫ ∞

−∞
1

1−α2
i

dαi = E

[
1

1−α2
i

]
,

so thatγx (0) =σ2
εB(p, q−1)/B(p, q) regardless of the conditioning on the autoregressive

coefficients.

As for the autocovariances, similar calculations show that

γx (k) = E [xt xt−k ] = σ2
ε

N

N∑
i=1

E

 αk
i

1−α2
i

=σ2
ε

B(p +k/2, q −1)

B(p, q)
,

for k ∈N, which, by Stirling’s approximation,

γx (k) =σ2
ε

B(p +k/2, q −1)

B(p, q)
=σ2

ε

Γ(q −1)

B(p, q)

Γ(p +k/2)

Γ(p +q +k/2−1)
≈σ2

ε

Γ(q −1)

B(p, q)
k1−q .

So that the aggregated series shows hyperbolic decaying autocovariances γx (k) ≈
Cx k1−q . That is, long memory in the covariance sense with parameter d = 1−q/2.
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To prove (i i ), note that given the autocorrelation function ρx (k) = γx (k)/γx (0) with

γx (k),γx (0) computed above, Theorem 1.3 in Beran, Feng, Ghosh, and Kulik (2013)

shows that the spectral density has a pole in the origin.

To prove (i i i ),

V ar

(
T∑

t=1
xt

)
= 1

N
E [(x1 +x2 +·· ·+xT )2]

= E [x2
1 +·· ·+x2

T +2(x1x2 +·· ·+xT−1xT )]

= T E [x2
1]+2E

(
T∑

t=2
x1xt +·· ·+

T∑
t=T−1

x1xt

)
= T E [x2

1]+2
(
(T −1)E [x1x2]+·· ·+E [x1xT ]

)
= 2

(
T

2
+2

(
(T −1)γx (1)+·· ·+γx (T −1)]

))
≈ 2Cx

(
(T −1)+ (T −2)21−q +·· ·+ (T −1)1−q

)
= 2Cx

T∑
t=1

(T − t )t 1−q ≈ T 3−q = T 1+2d ,

where in the previous to last line we have used the asymptotic behavior calculated in

(i ).

Finally, to prove (i v), we need to analyze the series while considering temporal

aggregation. Let m ∈N and define

x(m)
i = 1

m
(xi m−m+1 +·· ·+xi m),

for i = {1,2, · · · }. That is, let x(m)
i be a temporal aggregation of xt at level m. Then, note

that ∀t ∈N and for large k ∈N

E [x(m)
t x(m)

t+k ] = 1

m2 E [(xtm−m+1 +·· ·+xtm)(x(t+k)m−m+1 +·· ·+x(t+k)m)]

= 1

m2 E [xtm−m+1x(t+k)m−m+1 +·· ·+xtm−m+1x(t+k)m +·· ·+xtm x(t+k)m︸ ︷︷ ︸
m2 terms

]

= 1

m2

γx (km)+·· ·+γx (km +m −1)+·· ·γx (km)︸ ︷︷ ︸
m2 terms

 .

Factorizing terms and replacing γx (| j − i |) for its asymptotic behavior calculated in (i ),

E [x(m)
t x(m)

t+k ] = 1

m2

(
γx (km −m +1)+·· ·+mγx (km)+·· ·+γx (km +m −1)

)
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≈ Cx

m2

(
(km −m +1)1−q +m(km)1−q +·· ·+ (km +m −1)1−q

)
,

dividing both sides by k1−q ,

1

k1−q E [x(m)
t x(m)

t+k ] ≈ Cx

m2

(
m1−q +·· ·+mm1−q +·· ·+m1−q

)
= Cx

m2 (1+·· ·+m +·· ·+1)m1−q

= Cx

m2 m2m1−q =Cx m1−q ,

where in the first line we used that m/k → 0 as k →∞.

Thus, with d = 1−q/2, m1−2d Cov(x(m)
t , x(m)

t+k ) ≈C k2d−1 as k,m →∞, m/k → 0.

Proofs of Lemma 1 and Theorem 2

Let xt be defined as in (1.4). Using the infinite series representation of each AR(1)

process defined as in (1.2) note that xt can be written as

xt =
∞∑

j=0

(
1p
N

N∑
i=1

α
j
i εi ,t− j

)
.

Given the additional assumption on εi ,t− j , the classical Central Limit Theorem holds

sideways and thus, ∀ j ∈N,

1p
N

N∑
i=1

α
j
i εi ,t− j ∼N(0,σ2

εB(p + j , q)/B(p, q)),

We have used analogous derivations as in the proof above to obtain the variance terms.

Note in particular that, in contrast to the proofs of Zaffaroni (2004), the parametric

assumption on the distribution of the autoregressive coefficient allows us to obtain

closed-form expressions for these terms.

The above suggests an infinite series representation for the aggregated process of

the form

xt =
∞∑

j=0
φ jνt− j ,

where ν j ∼ N (0,σ2
ε) and φ j =

(
B(p + j , q)/B(p, q)

)1/2 , ∀ j ∈ N. Note that ν j inherits

the white noise properties of εi ,t− j . Moreover, given Stirling’s approximation, the

coefficients show a hyperbolic rate of decay with parameter d = 1−q/2, that is, φ j ≈
j−q/2 = j d−1 as j →∞.
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Once we have proved that the cross-sectional aggregated series can be expressed

as a generalized fractional process, Theorem 2 is a direct consequence of Theorem 4.6

in Beran et al. (2013).

Proof of Theorem 3 and Corollary 1

Let yt = (1−L)d xt where xt is defined as before, then

E [y2
t ] = E

[(
(1−L)d xt

)2
]
= E

(
(1−L)d 1p

N

N∑
i=1

xi ,t

)2


= E

 1

N

(
N∑

i=1
(1−L)d xi ,t

)2
= 1

N
E

[
N∑

i=1

(
(1−L)d xi ,t

)2
]

,

where the last equality is due to independence across units. Note that the term (1−
L)d xi ,t is an ARFIMA(1,−d ,0); thus the variance of yt depends on the expected value

of the AR(1) coefficient of an ARF I M A(1,−d ,0) process.

Let γi (k) = E
[

(1−L)d xi ,t (1−L)d xi ,t−k

]
be the autocovariance function of (1−

L)d xi ,t . From Sowell (1992) we know that for k ∈N

γi (k|αi ) = γ∗(k)
1

1−α2
i

(
F [{−d +k,1},1+d +k;αi ]+F [{−d −k,1},1+d −k;αi ]−1

)
,

where

γ∗(k) =σ2
ε

Γ(1+2d)

Γ(−d)Γ(1+d)

Γ(−d −k)

Γ(1+d −k)
,

is the autocovariance function of an I (−d) process with innovations with variance σ2
ε

and F [·] is the hypergeometric function.

Thus,

γy (k) = E
[
γi (k|αi )

]
= E

[
γ∗(k)

1−α2
i

(
F [{−d +k,1},1+d +k;αi ]+F [{−d −k,1},1+d −k;αi ]−1

)]

= γ∗(k)

B(p, q)

[∫ 1

0
(1−x)q−2xp−1F [{−d +k,1},1+d +k; x

1
2 ]d x+

∫ 1

0
(1−x)q−2xp−1F [{−d −k,1},1+d −k; x

1
2 ]d x −

∫ 1

0
(1−x)q−2xp−1d x

]

= γ∗(k)

B(p, q)

[
B(p, q −1)

(
F1(k)−1

)+B(p + 1

2
, q −1)F2(k)

]
,
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where

F1(k) := F

{
1, p,

1−d +k

2
,
−d +k

2

}
,

{
p +q −1,

2+d +k

2
,

1+d +k

2

}
,1

+

F

{
1, p,

1−d −k

2
,
−d −k

2

}
,

{
p +q −1,

2+d −k

2
,

1+d −k

2

}
,1


F2(k) := −d +k

1+d +k
∗

F

{
1, p + 1

2
,

1−d +k

2
,

2−d +k

2

}
,

{
p +q − 1

2
,

2+d +k

2
,

3+d +k

2

}
,1


+ −d −k

1+d −k
∗

F

{
1, p + 1

2
,

1−d −k

2
,

2−d −k

2

}
,

{
p +q − 1

2
,

2+d −k

2
,

3+d −k

2

}
,1

 .

Note that in the calculations above we have used∫ 1

0
F [{a,1},b; x

1
2 ]xp−1(1−x)q−2d x =

∫ 1

0

[ ∞∑
i=0

(a)i

(b)i
x

i
2

]
xp−1(1−x)q−2d x

=
∞∑

i=0

[
(a)i

(b)i

∫ 1

0
xp−1+ i

2 (1−x)q−2d x

]
=

∞∑
i=0

[
(a)i

(b)i
B

(
p + i

2
, q −1

)]
.

Now,

∞∑
i=0

[
(a)i

(b)i
B

(
p + i

2
, q −1

)]
=

∞∑
i=0

 (a)i

(b)i

Γ(p + i
2 )Γ(q −1)

Γ(p +q −1+ i
2 )


= Γ(q −1)

∞∑
i=0

 (a)i

(b)i

Γ(p + i
2 )

Γ(p +q −1+ i
2 )


= Γ(q −1)

 ∞∑
i=0

[
(a)2i

(b)2i

Γ(p + i )

Γ(p +q −1+ i )

]
+

∞∑
i=0

 (a)2i+1

(b)2i+1

Γ(p + 1
2 + i )

Γ(p +q − 1
2 + i )



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= Γ(q −1)

 Γ(p)

Γ(p +q −1)

∞∑
i=0

[
(a)2i

(b)2i

(p)i

(p +q −1)i

]
+

Γ(p + 1
2 )

Γ(p +q − 1
2 )

∞∑
i=0

 (a)2i+1

(b)2i+1

(p + 1
2 )i

(p +q − 1
2 )i




= B
(
p, q −1

) ∞∑
i=0

[
(a)2i (p)i

(b)2i (p +q −1)i

]
+

B

(
p + 1

2
, q −1

)
a

b

∞∑
i=0

 (a +1)2i (p + 1
2 )i

(b +1)2i (p +q − 1
2 )i


= B

(
p, q −1

) ∞∑
i=0

 ( a
2 )i ( a+1

2 )i (p)i

( b
2 )i ( b+1

2 )i (p +q −1)i

+

B

(
p + 1

2
, q −1

)
a

b

∞∑
i=0

 ( a+1
2 )i ( a+2

2 )i (p + 1
2 )i

( b+1
2 )i ( b+2

2 )i (p +q − 1
2 )i


= B

(
p, q −1

)
f1 +B

(
p + 1

2
, q −1

)
a

b
f2,

where

f1 = F

{
1, p,

a

2
,

a +1

2

}
,

{
p +q −1,

b

2
,

b +1

2

}
,1

 ,

f2 = F

{
1, p + 1

2
,

a +1

2
,

a +2

2

}
,

{
p +q −1,

b +1

2
,

b +2

2

}
,1

 ,

(z)i := Γ(z+i )
Γ(z) is the Pochhammer symbol, and noting that (a)2i = ( 1

2 )−2i ( a
2 )i ( a+1

2 )i ,

i ∈N.

For the corollary note that γy (k) can be written as

γy (k) = γ∗(k)

B(p, q)

−B(p, q −1)+
∞∑

i=0

(
Γ(−d +k + i )Γ(1+d +k)

Γ(−d +k)Γ(1+d +k + i )

)
B(p + i /2, q −1)

+
∞∑

i=0

(
Γ(−d −k + i )Γ(1+d −k)

Γ(−d −k)Γ(1+d −k + i )

)
B(p + i /2, q −1)

 .
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Let

τ(k) := 1

B(p, q)

−B(p, q −1)+
∞∑

i=0

(
Γ(−d +k + i )Γ(1+d +k)

Γ(−d +k)Γ(1+d +k + i )

)
B(p + i /2, q −1)

+
∞∑

i=0

(
Γ(−d −k + i )Γ(1+d −k)

Γ(−d −k)Γ(1+d −k + i )

)
B(p + i /2, q −1)

 ,

and note that, by Stirling’s approximation, for large k and c > 0, Γ(1+d +ck)/Γ(−d +
ck) ≈ (ck)1+2d ,Γ(−d+ck+i )Γ(1+d+ck+i ) ≈ (ck)−1−2d and analogous approximations

for the terms in the second series show that

τ(ck) ≈ 1

B(p, q)

[
−B(p, q −1)+2

∞∑
i=0

B(p + i /2, q −1)

]
.

This, in turn, shows that limk→∞τ(ck)/τ(k) = 1.

Hence, for large k,

γy (k) = τ(k)γ∗(k) ≈ τ(k)k−1−2d ,

where limk→∞τ(ck)/τ(k) = 1.

Finally, note that
∑∞

i=0 |ρy (k)| =∑∞
i=0 |γy (k)/γy (0)| ≈∑∞

i=0 k−1−2d = ζ(−1−2d) where

ζ(z) is the Euler-Riemann zeta function which converges for z < 1.
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Abstract

Most forecasting comparison studies for long memory processes assume that the series

are generated by ARF I M A processes. We assess the performance of the ARF I M A

model when forecasting long memory series where the long memory generating

mechanism may be different from an ARF I M A process. We consider Granger’s cross-

sectional aggregation, and Parke’s error duration model as possible long memory

generating mechanisms. We find that ARF I M A models produce similar forecast

performance compared to high-order AR models at shorter horizons. As the forecast

horizon increases, the ARF I M A models tend to dominate in terms of forecast perfor-

mance. Hence, ARF I M A models are well suited for long horizon forecasts of long

memory processes regardless of how the long memory is generated. Additionally,

we analyze the forecasting performance of the heterogenous autoregressive model

(H AR) which imposes restrictions on high-order AR models. We find that the structure

enforced by the H AR model produces better long horizon forecasts than AR models

of the same order, but at the price of inferior short horizon forecasts in some cases.
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2.1 Introduction

In the long memory time series literature the ARF I M A class of models remains to be

the most popular given its appeal of bridging the gap between the stationary ARM A

models and the non-stationary ARI M A model with a unit root. Some effort has been

directed to assess the performance of the ARF I M A type of models when forecasting

long memory processes.

For instance, Ray (1993) calculates the percentage increase in mean-squared error

(MSE) from forecasting F I (d) series with AR models. He argues that the MSE may

not increase significantly, particularly when we do not know the true long memory

parameter. Crato and Ray (1996) compare the forecasting performance of ARF I M A

models against ARM A alternatives and find that ARF I M A models are in general

outperformed by ARM A alternatives.

Looking at real data, Martens, van Dijk, and de Pooter (2009) show that for daily

realized volatility for forecast horizons of up to twenty days, it seems to be beneficial to

use a flexible high-order AR model instead of a parsimonious but stringent fractionally

integrated model specification. On the other hand, Barkoulas and Baum (1997) find

improvements in forecasting accuracy when fitting ARF I M A models to Eurocurrency

returns series, particularly for longer horizons. By allowing for larger data sets of both

financial and macro variables, and considering larger forecast horizons, Bhardwaj and

Swanson (2006) find that ARF I M A processes generally outperform ARM A alternatives

in terms of forecasting performance. Thus, there does not seem to be any consensus

regarding the empirical evidence using a forecast metric.

One thing that most forecasting comparison studies have in common is the under-

lying assumption that long memory is generated by an ARF I M A process. There

are two dominant theoretical explanations for the presence of long memory in the

time series literature: cross-sectional aggregation of dynamic persistent micro units

(Granger, 1980), and that shocks may be of random duration (Parke, 1999). Neither

of these sources of long memory imply an ARF I M A specification. Nonetheless, the

question of whether an ARF I M A specification serves as a good approximation for

forecasting purposes remains.

In this paper, we assess via Monte Carlo simulations the forecast performance

of ARF I M A model specifications when the long memory series are generated by

other sources than ARF I M A processes. We find that ARF I M A models produce

comparable forecast performance as high-order AR models at short and medium

forecast horizons. As the forecast horizon increases, the ARF I M A models tend to

produce better forecasting performance. Hence, ARF I M A models are well suited

for long horizon forecast of long memory regardless of the underlying generating
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mechanism.

This paper proceeds as follows. In Section 2.2, we present the long memory gener-

ating processes to be considered in the simulation study. Section 2.3 describes the

design of the Monte Carlo analysis used for the forecasting analysis. Sections 2.4 and

2.5 present and discuss the results from the forecasting analysis, while Section 2.6

concludes.

2.2 Long Memory Generating Processes

In this section, we present the selected processes that generate long memory. All

processes considered are long memory in the covariance sense. In contrast to other

definitions of long memory, the definition in the covariance sense relates to the rate of

decay of the autocorrelations, which the models try to mimic. Thus, the covariance

sense is a sensible definition of long memory for forecasting purposes.

2.2.1 The ARFIMA Model

As a benchmark, we include in the study the pure ARF I M A process due to Granger

and Joyeux (1980), and Hosking (1981). They extended the ARM A model to include

fractional dynamics by considering the process

φ(L)(1−L)d xt = θ(L)εt , (2.1)

where εt is a white noise process, d ∈ (−1/2,1/2), φ(L) and θ(L) are polynomials in

the lag operator with no common roots, all outside the unit circle. They used the

standard binomial expansion to decompose the fractional difference operator (1−L)d

in a series with coefficients π j = Γ( j + d)/(Γ(d)Γ( j + 1)) for j ∈ N. Using Stirling’s

approximation, it can be shown that these coefficients decay at a hyperbolic rate,

which in turn translates to slowly decaying autocorrelations. Thus, xt has long memory

in the covariance sense.1

It is well known that ARF I M A processes are long memory by all definitions

typically considered in the literature, and are relatively easy to estimate by Maximum

Likelihood. Thus, this has become the canonical construction for modelling and

forecasting long memory in the time series literature.

For the Monte Carlo simulations, we consider ARF I M A(1,d ,0) processes as a way

to incorporate both long and short term dynamics.

1In this work, we focus on the definition of long memory in the covariance sense. See among others,
Guégan (2005) and Haldrup and Vera-Valdés (2015) for other, often equivalent, definitions of long memory.
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2.2.2 Cross-Sectional Aggregation

Granger (1980), in line with the work of Robinson (1978) on autoregressive processes

with random coefficients, showed that aggregating AR(1) processes with coefficients

sampled from a Beta distribution can produce long memory. He considered N series

generated as

xi ,t =αi xi ,t−1 +εi ,t i = 1,2, · · · , N ;

where εi ,t is a white noise process with E [ε2
i ,t ] =σ2

ε ∀i ∈ {1,2, · · · , N }, ∀t ∈Z. Moreover,

α2
i ∼B(α; p, q) with p, q > 1, and where B(α; p, q) is the Beta distribution with density

given by

B(α; p, q) = 1

B(p, q)
αp−1(1−α)q−1 for α ∈ (0,1),

with B(·, ·) the Beta function. Furthermore, define the cross-sectional aggregated series

as

xt = 1p
N

N∑
i=1

xi ,t .

Granger showed that, as N →∞, the autocorrelations of xt decay at a hyperbolic

rate with parameter d = 1−q/2. Thus, xt has long memory in the covariance sense.

The cross-sectional aggregation result has been extended in different ways, inclu-

ding to allow for general ARM A processes, and to other distributions. See for instance,

Oppenheim and Viano (2004), Linden (1999), and Zaffaroni (2004).

Haldrup and Vera-Valdés (2015) show that, although the long memory can be

removed by fractional differencing, the resulting series does not belong to the class of

linear ARM A processes. The question addressed in this paper is whether an ARF I M A

specification is useful for forecasting purposes.

For the Monte Carlo analysis, we generate long memory by cross-sectional aggrega-

tion of both AR(1), and ARM A(1,1) processes, the latter as a way to allow more short

term dynamics in the specification.

2.2.3 Error Duration Model

Parke (1999) introduced the error duration model where he showed that if the series is

the result of the sum of shocks of stochastic duration, then the resulting series would

exhibit long memory in the form of hyperbolic decaying autocorrelations.

In particular, let εs be a series of i .i .d . shocks with mean zero and finite variance

σ2. Assume that the shock εi has a stochastic duration ni ≥ 0 time periods, and thus

surviving from period i until period i +ni . Let pk be the probability that event εi
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survives until period i +k, take gi ,t to be the indicator function for the event that the

error εi survives until period t , and define the xt series as

xt =
t∑

s=−∞
gs,tεs .

Then, if pk ∼ k−2+2d as k →∞, xt will have long memory in the covariance sense.

By properly choosing the error survival probabilities, Parke showed that the auto-

correlation function will decay at a rate similar to F I (d) processes. However, the

resulting series has dichotomic coefficients that do not correspond to a fractional

integrated specification, and thus, it is not an ARF I M A process.

We follow Parke’s specification in the Monte Carlo simulations and consider error

survival probabilities that mimic those of the F I (d) model.

In Table 2.1, we summarize the different long memory generating mechanisms to

be analyzed.

Table 2.1. Long Memory Generating Processes

ARF I M A(p,d , q)

(DGP 1)

φ(L)(1−L)d xt = θ(L)εt

φ(z) = 1−φ1z −·· ·−φp zp

θ(z) = 1+θ1z +·· ·+θq zq

(1−L)d =
∞∑

s=0

Γ(s −d)

Γ(−d)Γ(s +1)
Ls

Cross-Sectional Aggregation of AR(1)

(DGP 2)

xt = 1p
N

N∑
i=1

xi ,t

xi ,t =αi xi ,t−1 +εi ,t

αi ∼B(α; p, q); p, q > 1

Cross-Sectional Aggregation of ARM A(1,1)

(DGP 3)

xt = 1p
N

N∑
i=1

xi ,t

xi ,t =αi xi ,t−1 +εi ,t +θεt−1

αi ∼B(α; p, q); p, q > 1

Error Duration Model

(DGP 4)

xt =
t∑

s=−∞
gs,tεs

gs,s+k =
{

0 w.p. 1−pk

1 w.p. pk

pk = k2d−2
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As previously noted, all processes considered in the Monte Carlo analysis are long

memory in the covariance sense; that is, they have autocorrelation functions showing

hyperbolic decay. This can be seen in Figure 2.1 where we plot the autocorrelation

function for the four processes when generating long memory with long memory

parameter d = 0.4. The figure shows that the autocorrelation function for all processes

remain significant at large lags.

Figure 2.1. Autocorrelation function for the four processes considered with d = 0.4. The specific
parameter specifications chosen for the graphs are presented in Appendix A.

2.3 Monte Carlo Analysis

In this section, we describe the Monte Carlo simulations comparing the forecasting

performance of ARF I M A models against ARM A and high-order AR models on long

memory series generated by the schemes described in Section 2.2.

2.3.1 Forecast Evaluation

We use the Model Confidence Set (MC S) approach of Hansen et al. (2011) to assess

the forecasting performance of the selected models. From an initial set of models, the

methodology allows us to obtain the superior set at a given confidence level. In this

sense, the MC S is well suited to compare the forecast performance of a large set of

competing models.

The MC S algorithm proceeds as follows. From a starting set of competing model,

M0, we search for the set of superior models at forecast horizon h, M∗, defined by

M∗ = {i ∈M0 | E(d h
i , j ) ≤ 0 ∀ j ∈M0},
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where d h
i , j is the loss differential between models i and j .

We obtain M∗ by sequential elimination. For all long memory generating processes,

we fit the competing models in the starting set for a sample size T . The models are

indexed by i ∈ {1,2, . . . ,m}, and the out of sample forecast from model i is denoted by

ŷ i
T+k , ∀k ∈ {1, . . . ,h}. We rank the models according to their expected loss using one of

two loss functions: the mean square error (MSE), LSQ

(
yT+k , ŷ i

T+k

)
=

(
yT+k − ŷ i

T+k

)2
,

and the mean absolute deviation (MAD), L AD

(
yT+k , ŷ i

T+k

)
=

∣∣∣yT+k − ŷ i
T+k

∣∣∣.
We then define the loss differential between models i and j by

d k
i , j = LM

(
yT+k , ŷ i

T+k

)
−LM

(
yT+k , ŷ j

T+k

)
,

for = SQ, AD ; i , j ∈ {1,2, . . . ,m}.

At each step, we eliminate the worst performing model. We continue with the

process until we can not reject the null hypothesis of equal loss differentials for all

models in the set; that is,

H0 : E(d k
i , j ) ≤ 0 ∀i , j ∈M .

The null is tested by using either the range statistic, TR , or the semiquadratic

statistic, TSQ , defined by

TR = max
i , j∈M

|d̄i , j |(
v̂ar (d̄i , j )

)1/2
TSQ = ∑

i 6= j

(d̄i , j )2(
v̂ar (d̄i , j )

)1/2
.

In the Monte Carlo analysis, we present the proportion of times each model is

contained in M∗ for each forecast horizon.

Additionally, as another measure of forecast performance, we compute both the

out of sample root mean square error (RMSE), and the out of sample root mean

absolute deviation (RM AD) given by

RMSE i
h =

(
1

h

h∑
k=1

(
yT+k − ŷ i

T+k

)2
)1/2

RM AD i
h =

(
1

h

h∑
k=1

∣∣∣yT+k − ŷ i
T+k

∣∣∣)1/2

,

where h and ŷ i
s are defined as above. We report the mean of both RMSE and RM AD

across all replications.

2.3.2 Model Selection

As a first step, we use the Bayesian Information Criterion (B IC ) to select the number

of lags in both the ARF I M A and ARM A models. The validity of the B IC for the class
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of processes with fractional differencing was proven by Beran, Bhansali, and Ocker

(1998). The authors show that for this class of processes, the penalty term must tend to

infinity simultaneously with the sample size. Thus, the Akaike Information Criterion is

not consistent while the B IC is.

We allow for a maximum of two lags at both components of the ARF I M A model,

while the maximum was set to four for the ARM A model. Furthermore, we also allow

for a first difference in the ARM A specifications. We use Maximum Likelihood for

the estimation of both classes of models with parameter specifications as reported in

Appendix A.

Results from the lag selection exercise, presented in Appendix B, show that not

many lags are selected for the ARF I M A specification for either component. This

suggests that the short term component is not that persistent once we control for the

long memory behavior. For the ARM A specification, perhaps not surprisingly, more

lags are selected due to the fact that we are not controlling for the long memory

behavior via estimation of the fractional memory d . Nonetheless, the maximum

number of lags selected by the B IC is two.

Following the results from the lag selection exercise, we present the competing

models for the forecasting analysis in Table 2.2. These constitute the starting set, M0,

for the MC S approach explained above.

Table 2.2. Starting Set M0

F I (d) ARM A(1,1) H AR(3)
ARF I M A(1,d ,0) ARM A(2,1) AR(22)
ARF I M A(0,d ,1) ARM A(1,2) AR(30)
ARF I M A(1,d ,1) ARM A(3,3) AR(50)
ARF I M A(2,d ,1) ARM A(4,4) I (1)

In addition to the preferred models from the lag selection exercise, we also consider

high-order AR processes, AR(30) and AR(50). Moreover, given the success of the

H AR(3) model of Corsi (2009) on mimicking long memory behavior,2 we include both

the unconstrained AR(22), and the H AR(3) models.

The H AR(3) model is a constrained AR(22) given by

xt = a0 +a1x( f )
t−1 +a2x(w)

t−1 +a3x(m)
t−1 +εt ,

where x( f )
t−1 = xt−1, x(w)

t−1 = 1
5

∑5
i=1 xt−i and, x(m)

t−1 = 1
22

∑22
i=1 xt−i .

2See for instance, Andersen, Bollerslev, and Diebold (2007) and Chiriac and Voev (2011).
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The H AR specification has been used to model financial data, and reflects that

different agents respond to uncertainty at distinct horizons. In this context, the three

components of the model seek to capture the daily (x( f )
t ), weekly (x(w)

t ), and monthly

(x(m)
t ) levels of uncertainty.

Note that including the H AR(3) model allows us to extend Corsi’s (2009) results in

several directions. In particular, we make comparisons against a larger set of models;

and we use the MC S approach, which is better suited for comparisons between

multiple alternatives. Also, we remove the uncertainty regarding the presence of long

memory in the data by comparing the performance of the H AR model in simulated

long memory series; whereas Corsi used real data.

2.3.3 Monte Carlo Design

The simulations for the forecasting exercise proceed as follows for R replications:

• Generate series of size T + h using the long memory generating processes

considered, Section 2.2, Table 2.1. The model calibrations are reported in Table

2.7 in Appendix A.

• Fit by Maximum Likelihood the competing models in the starting set M0, Table

2.2, for a sample size T .

• Construct forecasts from each model for horizons h ∈ {5,10,30,50,100,300}.

• Determine the MC S and compute the RMSE and RM AD .

After the R replications, we report the proportion of times each model is contained in

the MC S, and the mean values of RMSE and RM AD , for each forecast horizon.

Throughout, we use a large sample size of T = 1,000 to reduce estimation error.

We consider values of the long memory parameter in the (0,1/2) range to produce

stationary series and avoid having to take first differences. Furthermore, given the rise

of climate econometrics studies keen on producing really long forecasts, we consider

it relevant to evaluate forecast performances to horizons as far as h = 300, which

correspond to twenty-five years of monthly forecasts.

2.4 Results

2.4.1 DGP 1

As a benchmark, we present in Table 2.3 and Figure 2.2 the results from the Monte

Carlo analysis for an ARF I M A(1,d ,0) process, DGP 1, for d = 0.3. The table and figure

present the results for the M AD loss function and the TR statistic. Throughout, for
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ease of exposition, we focus on the M AD loss function; nonetheless, tables using the

MSE loss function, reported in Appendix C, show similar results.

Table 2.3. Mean of the RM AD and proportion of times the model is in the MC S using the M AD
loss function and the TR statistic at a 95% confidence level.

DGP 1 h=5 10 30 50 100 300

d = 0.3 RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S

F I (d) 0.937 0.109 0.964 0.118 0.984 0.171 0.988 0.193 0.995 0.259 1.004 0.315

ARF I M A(1,d ,0) 0.933 0.029 0.962 0.028 0.983 0.026 0.988 0.034 0.994 0.035 1.003 0.055

ARF I M A(0,d ,1) 0.933 0.031 0.961 0.030 0.982 0.025 0.987 0.028 0.994 0.039 1.003 0.078

ARF I M A(1,d ,1) 0.935 0.009 0.963 0.011 0.983 0.018 0.988 0.028 0.994 0.025 1.003 0.053

ARF I M A(2,d ,1) 0.935 0.020 0.963 0.019 0.984 0.033 0.989 0.026 0.995 0.033 1.004 0.061

ARM A(1,1) 0.944 0.130 0.975 0.137 0.995 0.138 0.999 0.128 1.002 0.107 1.007 0.092

ARM A(2,1) 0.937 0.023 0.966 0.027 0.988 0.013 0.993 0.025 0.999 0.024 1.006 0.045

ARM A(1,2) 0.938 0.036 0.968 0.032 0.990 0.039 0.995 0.037 1.000 0.034 1.006 0.043

ARM A(3,3) 0.937 0.032 0.967 0.034 0.988 0.026 0.993 0.019 0.999 0.025 1.007 0.048

ARM A(4,4) 0.938 0.040 0.967 0.042 0.988 0.035 0.993 0.037 0.999 0.030 1.007 0.063

H AR(3) 0.936 0.039 0.965 0.045 0.986 0.043 0.992 0.049 0.998 0.084 1.006 0.159

AR(22) 0.939 0.075 0.967 0.070 0.988 0.042 0.992 0.038 0.998 0.037 1.005 0.047

AR(30) 0.941 0.073 0.970 0.072 0.989 0.076 0.993 0.067 0.998 0.060 1.005 0.071

AR(50) 0.948 0.143 0.976 0.127 0.994 0.123 0.997 0.111 1.000 0.099 1.006 0.116

I (1) 1.036 0.212 1.076 0.208 1.113 0.193 1.125 0.183 1.151 0.162 1.200 0.126

Figure 2.2. Proportion of times the top performing models are in the MC S at a 95% confidence
level when forecasting DGP 1 with different degrees of memory at several horizons.
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We can see that ARF I M A models are the preferred specification for all forecast

horizons measured by the RM AD criterion, which is not surprising given that DGP 1 is

an ARF I M A process. Furthermore, the I (1) model seems to give the worst performance

by the RM AD criterion. Noting that the RM AD is a measure across all replications, it

suggests that when the I (1) is not in the confidence set, its forecasts behave badly.

Turning to the MC S criterion, note that the no-change I (1) model gives the best

forecast performance for short horizons. Nonetheless, we find that high-order AR and

ARM A models perform quite well when forecasting a true ARF I M A process for short

forecast horizons. In particular, the AR(50) and ARM A(1,1) give better performance

than ARF I M A specifications for forecast horizons h = 5, and h = 10. Yet, for larger

forecast horizons, the F I (d) model is the preferred one, and its relative performance

increases with the forecast horizon. The superior performance of the F I (d) model

compared to the correct ARF I M A(1,d ,0) specification may be explained given the

small value of the autoregressive coefficient. It suggests that the F I (d) model seems

to capture enough information for forecasting purposes in the long horizon once the

short memory component fades away.3 The table is in line with the findings of previous

studies on forecasting long memory generated by ARF I M A processes for short and

medium forecast horizons, while extending the analysis to larger forecast horizons and

by the inclusion of the MC S criterion.

Furthermore, Figure 2.2 allows us to further contrast the performance of high-order

AR models and ARF I M A models.4 The figure shows that for h = 5 and h = 10, the

AR(50) produces better or similar forecast performance than the F I (d) model. As the

forecast horizon increases, the F I (d) models tend to lead in forecast performance.

Thus, it seems to indicate that, for DGP 1, ARF I M A models are well suited to make

forecasts for medium and long horizons, while high-order AR models work well at

short forecast horizons.

Finally, the figure allows us to compare the H AR(3) model against the AR(22)

model. Note the crossing in preferred model between the AR(22) and H AR(3) models

as the forecast horizon and degree of memory increase. The figure shows that for

h = 5, the AR(22) model is always on top of the H AR(3) model. As the forecast horizon

increases, the preferred model changes from the AR(22) to the H AR(3) model for

higher degrees of memory. For instance, for h = 50, the crossing happens at d = 0.3;

while for h = 100, the cross occurs sooner at d = 0.2. That is, the structure imposed

by the H AR(3) specification improves forecasting performance for higher degrees of

memory and for the larger forecast horizons, at the cost of lower performance at small

3Results allowing more short-term dynamics are presented in Appendix D.
4For ease of exposition, we present a subset of the top performing models in the figures; nonetheless,

we present plots with all competing models in Appendix E.
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horizons.

Overall, Table 2.3 and Figure 2.2 extend the findings of previous studies on forecast-

ing long memory when the long memory is generated by ARF I M A processes. That

is, high-order AR models are good alternatives for shorter forecast horizons; while

ARF I M A models are better suited for large forecast horizons. Moreover, the constraints

imposed by the H AR model improve forecasting performance over the unconstrained

same-order AR model only for higher degrees of memory and longer forecast horizons.

2.4.2 DGP 2

Results from the Monte Carlo analysis for the cross-sectional aggregated AR(1) proce-

sses, DGP 2, are presented in Table 2.4. The table presents the results for the M AD

loss function and the TR statistic with long memory parameter d = 0.3.

Table 2.4. Mean of the RM AD and proportion of times the model is in the MC S using the M AD
loss function and the TR statistic at a 95% confidence level.

DGP 2 h=5 10 30 50 100 300

d = 0.3 RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S

F I (d) 1.027 0.172 1.088 0.134 1.161 0.136 1.192 0.135 1.228 0.149 1.267 0.206

ARF I M A(1,d ,0) 1.019 0.036 1.084 0.034 1.159 0.037 1.191 0.037 1.227 0.038 1.266 0.062

ARF I M A(0,d ,1) 1.020 0.046 1.085 0.039 1.159 0.032 1.191 0.047 1.227 0.059 1.266 0.105

ARF I M A(1,d ,1) 1.019 0.020 1.084 0.028 1.161 0.048 1.192 0.045 1.227 0.041 1.266 0.072

ARF I M A(2,d ,1) 1.019 0.007 1.086 0.019 1.164 0.024 1.196 0.040 1.230 0.060 1.268 0.071

ARM A(1,1) 1.029 0.095 1.097 0.121 1.184 0.142 1.216 0.132 1.243 0.107 1.275 0.084

ARM A(2,1) 1.022 0.032 1.089 0.034 1.172 0.026 1.205 0.016 1.235 0.028 1.272 0.049

ARM A(1,2) 1.026 0.024 1.093 0.026 1.178 0.036 1.212 0.035 1.241 0.033 1.274 0.037

ARM A(3,3) 1.026 0.024 1.092 0.028 1.173 0.022 1.205 0.026 1.237 0.030 1.275 0.054

ARM A(4,4) 1.024 0.025 1.090 0.028 1.171 0.023 1.204 0.023 1.235 0.029 1.273 0.060

H AR(3) 1.021 0.017 1.087 0.019 1.168 0.052 1.203 0.059 1.236 0.077 1.275 0.173

AR(22) 1.023 0.060 1.089 0.050 1.168 0.033 1.201 0.038 1.233 0.033 1.271 0.040

AR(30) 1.025 0.070 1.092 0.063 1.171 0.047 1.203 0.042 1.234 0.037 1.271 0.035

AR(50) 1.032 0.145 1.097 0.142 1.177 0.120 1.208 0.105 1.237 0.112 1.273 0.071

I (1) 1.075 0.227 1.164 0.235 1.275 0.222 1.326 0.220 1.387 0.208 1.479 0.191

Focusing on the MC S criterion, note that the I (1) model is contained in the MC S

the most for forecasts horizons up to 100, followed by the AR(50), ARM A(1,1), and

F I (d) models. For the largest horizon, h = 300, the F I (d) model is the one contained

in the MC S the most. Nonetheless, the I (1) model still appears in the MC S quite often

even though d = 0.3 and hence the series is stationary by construction. Moreover,

the H AR(3) model replaces the ARM A(1,1) model in the top three at the largest

forecast horizon. This finding is particularly compelling when compared against the
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Figure 2.3. Proportion of times the top performing models are in the MC S at a 95% confidence
level when forecasting DGP 2 with different degrees of memory at several horizons.

unconstrained AR(22). The additional structure imposed by the H AR model on the

autoregressive coefficients works well for really large horizons, while providing slightly

worse forecast performance for shorter horizons. Furthermore, while the AR(50)

behaves well for the smaller forecast horizon, its performance decays as the horizon

increases.

Looking at the RM AD criterion, note that the preferred models for all forecast

horizons always belong to the ARF I M A class of models. On the other hand, the I (1)

model is the worst performing according to this criterion, which seems to suggest poor

average forecast performance.

We can see the effect that the degree of long memory has on the results in Figure

2.3. We plot the proportion of times the models are contained in the MC S for different

degrees of memory, for all forecast horizons.

The figure extends the findings in Table 2.4. It shows the good performance of the

ARM A(1,1) and AR(50) models for short and medium forecast horizons, providing

similar results to the F I (d) specification. Furthermore, when the forecast horizon

is large, the figure shows the increase in relative forecast performance of the F I (d)

model. Also, the plot shows the good performance of the H AR(3) model for really large

forecast horizons. In particular, while the performance in small forecast horizons is

inferior in comparison to the unconstrained AR(22), the constrains seem to introduce
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the additional structure needed for making good long horizon forecasts.

Overall, Table 2.4 and Figure 2.3 indicate that the ARF I M A class of models are

a viable alternative for making forecasts when working with long memory series

generated by DGP 2, particularly when the forecast horizon is large. On the short

memory alternatives, the AR(50) and ARM A(1,1) models are well suited for smaller

forecasting periods, while the H AR(3) model starts to show good performance at larger

horizons.

2.4.3 DGP 3

In Table 2.5, we present the results from the Monte Carlo analysis for the cross-sectional

aggregated ARM A(1,1) processes, DGP 3, for long memory parameter d = 0.3.

Table 2.5. Mean of the RM AD and proportion of times the model is in the MC S using the M AD
loss function and the TR statistic at a 95% confidence level.

DGP 3 h=5 10 30 50 100 300

d = 0.3 RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S

F I (d) 0.912 0.120 0.940 0.120 0.968 0.130 0.979 0.110 0.989 0.097 1.005 0.101

ARF I M A(1,d ,0) 0.909 0.019 0.939 0.023 0.967 0.019 0.979 0.020 0.989 0.028 1.005 0.042

ARF I M A(0,d ,1) 0.909 0.024 0.939 0.025 0.968 0.054 0.979 0.061 0.989 0.086 1.005 0.125

ARF I M A(1,d ,1) 0.915 0.021 0.945 0.017 0.978 0.038 0.992 0.058 1.006 0.069 1.019 0.097

ARF I M A(2,d ,1) 0.916 0.025 0.946 0.040 0.980 0.062 0.994 0.071 1.009 0.079 1.022 0.107

ARM A(1,1) 0.911 0.031 0.940 0.037 0.972 0.055 0.985 0.060 0.995 0.063 1.009 0.066

ARM A(2,1) 0.911 0.013 0.940 0.007 0.971 0.019 0.984 0.020 0.995 0.025 1.009 0.044

ARM A(1,2) 0.911 0.007 0.940 0.010 0.971 0.012 0.984 0.014 0.995 0.015 1.009 0.026

ARM A(3,3) 0.912 0.049 0.941 0.047 0.972 0.039 0.984 0.040 0.994 0.047 1.009 0.054

ARM A(4,4) 0.912 0.061 0.941 0.064 0.972 0.064 0.984 0.056 0.995 0.052 1.010 0.055

H AR(3) 0.910 0.094 0.939 0.076 0.971 0.070 0.984 0.072 0.995 0.100 1.011 0.174

AR(22) 0.915 0.078 0.944 0.064 0.972 0.057 0.983 0.047 0.993 0.044 1.009 0.044

AR(30) 0.917 0.088 0.945 0.082 0.973 0.065 0.984 0.065 0.994 0.066 1.008 0.072

AR(50) 0.925 0.157 0.954 0.147 0.981 0.113 0.989 0.117 0.996 0.105 1.009 0.104

I (1) 1.027 0.214 1.053 0.242 1.096 0.207 1.117 0.192 1.142 0.165 1.195 0.155

We see that the models that minimize the RM AD criteria are mainly ARF I M A

specifications. In particular, the RM AD values are close across low-order ARF I M A

specifications. For the ARF I M A(1,d ,1) and ARF I M A(2,d ,1) models, the RM AD

criterion is slightly worse, and thus suggesting that some overfitting may be occurring.

Furthermore, once again, the I (1) model gives the worst performance according to the

RM AD criterion.

Turning to the MC S criterion, note first that the no-change model I (1) is contained

in the MC S the most for horizons up to 100. Yet, the H AR(3) seems to provide good
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Figure 2.4. Proportion of times the top performing models are in the MC S at a 95% confidence
level when forecasting DGP 3 with different degrees of memory at several horizons.

forecast performance for larger horizons, being the one contained in the MC S the

most for h = 300. The performance of the H AR(3) model is particularly noteworthy

when compared with the performance of unconstrained high-order AR alternatives

at long horizons. Furthermore, note the good performance of the AR(50) when the

forecast horizon is small, it beats all fractional differenced alternatives for h = 5 and

h = 10; nonetheless, its performance decays as the forecast horizon increases.

For the fractional difference specifications, note the increase in forecast perfor-

mance of the ARF I M A(0,d ,1) model as the forecast horizon increases. For h = 300, it

is the second preferred model. Moreover, it increases in relative performance against

the pure F I (d) model as the forecast horizon increases. This points to the gains that

can be made by controlling the additional short memory dynamics introduced in

DGP 3 relative to DGP 2 with a higher order ARF I M A model. Thus, the increase in

complexity seems to be beneficial at longer forecast horizons.

We present the proportion of times each model is contained in the MC S for

different values of the theoretical long memory parameter in Figure 2.4.

The figure shows that the good performance of the AR(50) model at shorter

horizons extend to all degrees of memory. As the forecast horizon increases, fractional

differenced alternatives start to improve in relative terms. Thus, the high-order AR

and ARF I M A models are good complementary candidates for forecasting DGP 3 at
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short and long forecast horizons, respectively.

Finally, the figure shows that the good performance of the H AR(3) model at the

longest forecast horizon extends to all the degrees of memory considered, while

providing similar forecasting performance than the AR(22) at shorter horizons.

2.4.4 DGP 4

Table 2.6 presents the results from the Monte Carlo analysis for processes generated

using the error duration model, DGP 4, for long memory parameter d = 0.3.

Table 2.6. Mean of the RM AD and proportion of times the model is in the MC S using the M AD
loss function and the TR statistic at a 95% confidence level.

DGP 4 h=5 10 30 50 100 300

d = 0.3 RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S

F I (d) 1.097 0.130 1.123 0.126 1.131 0.162 1.133 0.193 1.136 0.217 1.140 0.277

ARF I M A(1,d ,0) 1.075 0.038 1.105 0.037 1.120 0.041 1.124 0.035 1.130 0.042 1.136 0.063

ARF I M A(0,d ,1) 1.074 0.028 1.109 0.028 1.130 0.027 1.137 0.023 1.145 0.029 1.156 0.059

ARF I M A(1,d ,1) 1.067 0.012 1.100 0.012 1.118 0.009 1.123 0.021 1.129 0.021 1.135 0.037

ARF I M A(2,d ,1) 1.067 0.012 1.100 0.016 1.118 0.025 1.123 0.021 1.129 0.031 1.135 0.041

ARM A(1,1) 1.077 0.129 1.109 0.110 1.125 0.089 1.129 0.082 1.133 0.073 1.137 0.071

ARM A(2,1) 1.074 0.031 1.108 0.040 1.125 0.043 1.128 0.042 1.133 0.043 1.137 0.050

ARM A(1,2) 1.070 0.018 1.103 0.020 1.120 0.024 1.125 0.030 1.130 0.030 1.136 0.044

ARM A(3,3) 1.069 0.023 1.102 0.025 1.119 0.033 1.124 0.033 1.130 0.040 1.136 0.065

ARM A(4,4) 1.070 0.043 1.103 0.033 1.119 0.039 1.124 0.050 1.130 0.047 1.135 0.079

H AR(3) 1.076 0.100 1.106 0.104 1.121 0.086 1.126 0.095 1.131 0.099 1.137 0.145

AR(22) 1.077 0.052 1.108 0.062 1.122 0.074 1.126 0.066 1.131 0.057 1.136 0.065

AR(30) 1.078 0.074 1.109 0.077 1.124 0.094 1.126 0.089 1.131 0.085 1.136 0.096

AR(50) 1.085 0.146 1.116 0.149 1.131 0.138 1.133 0.125 1.134 0.134 1.137 0.143

I (1) 1.212 0.164 1.261 0.161 1.298 0.116 1.309 0.095 1.324 0.089 1.371 0.068

We can see from the table that the ARF I M A class of models provide the best

performance measured by the RM AD criterion for all forecast horizons, while the best

performance by the MC S criterion for h = 30 and bigger. That is, the F I (d) model is

the one contained the most in the MC S for medium and long forecast horizons, while

remaining competitive at shorter horizons.

Focusing on short memory alternatives, note the relatively good performance of

the AR(50) model for all forecast horizons. The AR(50) model is always in the top

three. Thus, even though the F I (d) model is the clear winner as the forecast horizon

increases, high-order AR models can produce good forecasts for DGP 4. Moreover,

contrasting the performance of the H AR(3) model against the AR(22) model, the table

shows the gains in performance of imposing some structure into the higher-order AR
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Figure 2.5. Proportion of times the top performing models are in the MC S at a 95% confidence
level when forecasting DGP 4 with different degrees of memory at several horizons.

models when the forecast horizon is large.

Figure 2.5 presents the proportion of times the models are contained in the MC S

when forecasting DGP 4 for different degrees of memory. The figure shows the relative

performance increase of the F I (d) model over high-order AR models as both the

degree of memory and the forecast horizon increase. Also, note that the H AR(3) model

is always on top, if slightly for medium horizons, of the unconstrained AR(22) model.

Overall, Table 2.6 and Figure 2.5 show compelling evidence in favor of using the

ARF I M A model to make forecasts of processes generated by the error duration model,

DGP 4.

2.5 Discussion

The results from the Monte Carlo simulation can be further analyzed in the context of

the bias-variance trade-off typically studied in regression analysis.

All processes considered in this paper are long memory in the covariance sense,

see Figure 2.1. Hence, the models are fitted to capture the information contained in

the autocorrelation function and use it for forecasting purposes. In other words, the

models select {ai }T
i=0 in the representation xt = a0 +∑k

i=1 ai xt−i , where k is the order

of the autoregressive representation, with the aim of replicating the autocorrelation
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function.

ARF I M A and ARM A models differ in terms of the rate of decay of the coefficients

ai . ARF I M A models impose a hyperbolic rate by the fractional differencing operator

(1−L)d , see equation 2.1. Thus, ARF I M A models need just one parameter to establish

the infinite list of coefficients, and are hence of low variance. Nonetheless, the uncer-

tainty surrounding the estimation of the long memory parameter may introduce some

bias.

As an alternative, high-order AR models are more flexible by choosing each coeffi-

cient separately. Hence, they can reduce the bias of the coefficients assigned, but suffer

from increased variance given the number of parameters estimated. This is particularly

important in the scenario of having small samples for estimation, something we

abstract from in this study. Given the uncertainty associated to estimating more

parameters, we would expect the performance of high-order AR models to deteriorate

in short series. Yet, as the Monte Carlo analysis shows, this flexibility can produce

good forecasts at shorter horizons, particularly when the degree of memory is small.

Nonetheless, AR models lose forecasting power as the forecast horizon gets larger. We

could increase the order of the autoregressive process to produce better long horizon

forecasts, but the estimation becomes unstable.

In this context, H AR models are a compromise between the rigid ARF I M A and

flexible high-order AR model specifications. They incorporate high-order autoregres-

sive specifications while greatly restricting the number of parameters to be estimated.

This arrangement allows the H AR model to provide similar forecast performance at

medium forecast horizons as same-order unrestricted AR models, while providing

better long horizon forecasts. Yet, H AR models suffer a forecast performance loss at

shorter horizons. This can be seen better in Figure 2.6 where we show the average

number of times two high-order AR processes and their comparable H AR specifica-

tions are contained in the MC S when forecasting DGP 1. In particular, we show a

H AR(4) given by

xt = a0 +a1x( f )
t−1 +a2x(w)

t−1 +a3x(m)
t−1 +a4x(b)

t−1 +εt ,

where x( f )
t−1 = xt−1, x(w)

t−1 = 1
5

∑5
i=1 xt−i , x(m)

t−1 = 1
22

∑22
i=1 xt−i , and x(b)

t−1 = 1
50

∑50
i=1 xt−i .

Note that the H AR(4) model is a constrained AR(50).

The figure displays the similar performance between constrained and uncon-

strained autoregressive processes of the same order for medium forecast horizons.

Furthermore, it shows the increase in relative performance for the constrained versions

at larger forecast horizons. Nonetheless, this increase in forecast performance comes

at the price of inferior performance at shorter horizons. In particular, for h = 5 and
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Figure 2.6. Proportion of times the models are in the MC S at a 95% confidence level when
forecasting DGP 1 with different degrees of memory at several horizons. For the plots, the
starting set contains only the six models shown.

h = 10, the unconstrained AR models give better performance than equivalent order

H AR alternatives for all degrees of memory.5

The bias-variance trade-off has been a topic of great interest in the literature

of regressions with a high number of covariates. It thus would be compelling to

adapt shrinkage and sparse methods to lag selection in the context of long memory

forecasting. This line of inquiry is left open for future research.

2.6 Conclusions

This paper evaluates the forecasting performance of ARF I M A models when the

memory is generated from sources different from the ARF I M A model.

We find that high-order AR models produce comparable forecasts as ARF I M A

models at shorter horizons. As the forecast horizon increases, the ARF I M A models

tend to dominate in terms of forecast performance. Hence, ARF I M A models are

well suited for long horizon forecasts of long memory, regardless of the generating

mechanism. In particular, we find that if the long memory is generated by the error

duration model, the F I (d) model produces the best forecast performance at medium

5Appendix F shows that this result extends to the other DGPs considered.
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and large horizons for all degrees of memory, while remaining competitive at shorter

horizons.

Additionally, by making a compromise between flexibility and complexity, we

find that the structure imposed by the H AR model induces a tradeoff in forecast

performance at different forecast horizons. In other words, the H AR model produces

better long horizon forecasts, similar medium horizon forecasts, and similar or inferior

short horizon forecasts, than same-order AR model specifications.
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2.8 Appendix

A Parameters

Overall
εt ∼ i .i .d .N (0,1) ∀t
T = 1000; R = 1000

DGP 1 φ1 = 0.2
DGP 2 N = 10,000; p = 1.4
DGP 3 N = 10,000; p = 1.4; θ = 0.5
DGP 4 pk = (Γ(k +d)Γ(2−d))/(Γ(k +2−d)Γ(d))

Table 2.7. Parameters for the Monte Carlo simulations

B Lag Selection Exercise

Model d ARF I M A ARI M A
AIC B IC AIC B IC

DGP 2 0.2 (1,1) (1,0) (4,3) (2,1)
[0.21] [0.38] [0] [0]

0.4 (2,1) (1,0) (2,1) (2,1)
[0.10] [0.46] [0] [0]

DGP 3 0.2 (0,1) (0,1) (3,3) (1,1)
[0.38] [0.40] [0] [0]

0.4 (0,1) (0,1) (4,4) (1,1)
[0.45] [0.46] [0] [0]

DGP 4 0.2 (0,1) (0,1) (3,4) (1,1)
[0.10] [0.10] [0] [0]

0.4 (0,1) (0,1) (4,4) (1,2)
[0.27] [0.26] [0] [0]

Table 2.8. Lag selection for the AR and M A components. We show the preferred model for each
criteria from 1,000 replications using a sample size of 1,000. Below, the mean of the associated
order of integration estimated is presented.
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C MSE Loss Function
Table 2.9. Mean of the RMSE and proportion of times the model is in the MC S using the SQ
loss function and the TR statistic at a 95% confidence level.

DGP 1 h=5 10 30 50 100 300

d = 0.3 RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S

F I (d) 1.074 0.096 1.148 0.125 1.204 0.174 1.218 0.214 1.236 0.257 1.261 0.325

ARF I M A(1,d ,0) 1.069 0.025 1.144 0.033 1.204 0.028 1.217 0.032 1.234 0.025 1.259 0.051

ARF I M A(0,d ,1) 1.067 0.026 1.143 0.024 1.202 0.027 1.216 0.033 1.234 0.030 1.259 0.069

ARF I M A(1,d ,1) 1.071 0.013 1.146 0.012 1.204 0.019 1.218 0.023 1.235 0.030 1.259 0.042

ARF I M A(2,d ,1) 1.072 0.019 1.147 0.024 1.206 0.023 1.221 0.027 1.238 0.038 1.261 0.066

ARM A(1,1) 1.089 0.142 1.171 0.155 1.233 0.138 1.242 0.117 1.252 0.111 1.267 0.081

ARM A(2,1) 1.075 0.019 1.152 0.024 1.215 0.014 1.229 0.016 1.245 0.021 1.266 0.047

ARM A(1,2) 1.078 0.032 1.157 0.034 1.221 0.038 1.234 0.043 1.247 0.038 1.265 0.042

ARM A(3,3) 1.076 0.033 1.153 0.025 1.214 0.033 1.229 0.035 1.245 0.029 1.267 0.041

ARM A(4,4) 1.079 0.048 1.155 0.039 1.214 0.037 1.228 0.038 1.245 0.038 1.268 0.066

H AR(3) 1.074 0.030 1.150 0.039 1.211 0.054 1.227 0.050 1.244 0.091 1.265 0.161

AR(22) 1.080 0.075 1.156 0.076 1.214 0.044 1.228 0.035 1.243 0.030 1.264 0.026

AR(30) 1.087 0.067 1.164 0.060 1.218 0.057 1.230 0.055 1.244 0.056 1.264 0.054

AR(50) 1.100 0.147 1.175 0.120 1.230 0.119 1.240 0.105 1.250 0.088 1.266 0.089

I (1) 1.303 0.230 1.414 0.211 1.521 0.196 1.555 0.179 1.629 0.159 1.769 0.124

Table 2.10. Mean of the RMSE and proportion of times the model is in the MC S using the SQ
loss function and the TR statistic at a 95% confidence level.

DGP 2 h=5 10 30 50 100 300

d = 0.3 RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S

F I (d) 1.281 0.174 1.455 0.152 1.670 0.138 1.765 0.146 1.877 0.156 2.000 0.216

ARF I M A(1,d ,0) 1.264 0.028 1.444 0.031 1.667 0.036 1.763 0.039 1.875 0.037 1.999 0.048

ARF I M A(0,d ,1) 1.268 0.035 1.447 0.029 1.667 0.041 1.763 0.053 1.875 0.064 1.999 0.091

ARF I M A(1,d ,1) 1.264 0.024 1.446 0.035 1.672 0.052 1.766 0.041 1.876 0.048 1.999 0.067

ARF I M A(2,d ,1) 1.265 0.013 1.450 0.010 1.680 0.028 1.776 0.036 1.883 0.059 2.005 0.062

ARM A(1,1) 1.287 0.089 1.480 0.130 1.734 0.144 1.832 0.142 1.921 0.108 2.026 0.072

ARM A(2,1) 1.272 0.034 1.463 0.033 1.702 0.026 1.801 0.021 1.898 0.025 2.017 0.050

ARM A(1,2) 1.279 0.027 1.469 0.030 1.718 0.033 1.820 0.027 1.915 0.028 2.024 0.028

ARM A(3,3) 1.280 0.023 1.466 0.023 1.705 0.026 1.802 0.029 1.903 0.025 2.025 0.050

ARM A(4,4) 1.277 0.028 1.462 0.021 1.698 0.020 1.798 0.022 1.899 0.030 2.020 0.053

H AR(3) 1.270 0.024 1.454 0.028 1.690 0.051 1.795 0.059 1.902 0.084 2.025 0.168

AR(22) 1.273 0.050 1.459 0.050 1.690 0.035 1.790 0.038 1.893 0.032 2.015 0.030

AR(30) 1.280 0.073 1.469 0.062 1.699 0.050 1.795 0.031 1.894 0.030 2.014 0.037

AR(50) 1.293 0.136 1.481 0.128 1.716 0.104 1.810 0.098 1.904 0.097 2.018 0.058

I (1) 1.406 0.242 1.664 0.238 2.002 0.216 2.169 0.218 2.373 0.211 2.689 0.190
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Table 2.11. Mean of the RMSE and proportion of times the model is in the MC S using the SQ
loss function and the TR statistic at a 95% confidence level.

DGP 3 h=5 10 30 50 100 300

d = 0.3 RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S

F I (d) 1.014 0.126 1.086 0.136 1.162 0.125 1.191 0.123 1.219 0.104 1.263 0.093

ARF I M A(1,d ,0) 1.010 0.023 1.083 0.019 1.160 0.024 1.190 0.018 1.219 0.018 1.263 0.053

ARF I M A(0,d ,1) 1.010 0.019 1.083 0.033 1.161 0.050 1.191 0.075 1.220 0.086 1.263 0.136

ARF I M A(1,d ,1) 1.055 0.014 1.153 0.018 1.310 0.037 1.422 0.060 1.604 0.076 1.566 0.104

ARF I M A(2,d ,1) 1.061 0.038 1.152 0.046 1.356 0.064 1.493 0.067 1.734 0.076 1.698 0.099

ARM A(1,1) 1.015 0.028 1.088 0.037 1.171 0.061 1.204 0.061 1.234 0.054 1.272 0.066

ARM A(2,1) 1.015 0.010 1.087 0.014 1.170 0.023 1.203 0.025 1.233 0.027 1.272 0.039

ARM A(1,2) 1.015 0.009 1.087 0.012 1.170 0.015 1.203 0.017 1.233 0.021 1.272 0.022

ARM A(3,3) 1.017 0.032 1.089 0.045 1.171 0.041 1.203 0.046 1.232 0.043 1.272 0.047

ARM A(4,4) 1.016 0.065 1.089 0.056 1.170 0.059 1.203 0.049 1.234 0.041 1.273 0.052

H AR(3) 1.011 0.094 1.085 0.091 1.168 0.073 1.201 0.073 1.234 0.106 1.275 0.186

AR(22) 1.022 0.076 1.095 0.058 1.171 0.050 1.201 0.040 1.230 0.041 1.271 0.038

AR(30) 1.024 0.097 1.097 0.085 1.175 0.067 1.203 0.061 1.230 0.068 1.270 0.061

AR(50) 1.044 0.154 1.118 0.123 1.192 0.119 1.215 0.102 1.235 0.094 1.271 0.094

I (1) 1.286 0.215 1.357 0.228 1.476 0.195 1.534 0.185 1.604 0.162 1.755 0.151

Table 2.12. Mean of the RMSE and proportion of times the model is in the MC S using the SQ
loss function and the TR statistic at a 95% confidence level.

DGP 4 h=5 10 30 50 100 300

d = 0.3 RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S

F I (d) 1.470 0.128 1.554 0.134 1.597 0.153 1.610 0.191 1.624 0.215 1.637 0.268

ARF I M A(1,d ,0) 1.419 0.043 1.508 0.031 1.565 0.028 1.585 0.031 1.607 0.043 1.626 0.046

ARF I M A(0,d ,1) 1.471 0.025 1.600 0.024 1.736 0.035 1.805 0.033 1.912 0.039 2.126 0.060

ARF I M A(1,d ,1) 1.397 0.007 1.495 0.010 1.560 0.017 1.582 0.016 1.605 0.027 1.625 0.033

ARF I M A(2,d ,1) 1.399 0.015 1.497 0.017 1.561 0.024 1.582 0.021 1.606 0.024 1.625 0.035

ARM A(1,1) 1.420 0.136 1.517 0.124 1.579 0.099 1.597 0.084 1.615 0.080 1.629 0.067

ARM A(2,1) 1.414 0.029 1.514 0.033 1.578 0.045 1.596 0.045 1.614 0.045 1.629 0.056

ARM A(1,2) 1.405 0.015 1.502 0.020 1.566 0.029 1.587 0.028 1.608 0.030 1.627 0.042

ARM A(3,3) 1.404 0.027 1.501 0.029 1.565 0.029 1.585 0.034 1.607 0.043 1.626 0.064

ARM A(4,4) 1.406 0.040 1.503 0.041 1.565 0.043 1.584 0.047 1.607 0.053 1.626 0.070

H AR(3) 1.423 0.096 1.511 0.105 1.570 0.092 1.590 0.101 1.611 0.109 1.629 0.148

AR(22) 1.422 0.041 1.515 0.062 1.572 0.067 1.590 0.061 1.610 0.059 1.627 0.066

AR(30) 1.426 0.076 1.520 0.076 1.576 0.086 1.591 0.086 1.611 0.083 1.628 0.077

AR(50) 1.442 0.147 1.536 0.149 1.595 0.138 1.609 0.117 1.620 0.109 1.630 0.115

I (1) 1.786 0.176 1.945 0.146 2.072 0.117 2.108 0.105 2.162 0.091 2.315 0.063
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D ARFIMA(1,d,1)
Table 2.13. Mean of the RM AD and proportion of times the model is in the MC S using the
M AD loss function and the TR statistic at a 95% confidence level.

φ1 = 0.2;θ1 =−0.6 h=5 10 30 50 100 300

d = 0.3 RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S RM AD MC S

F I (d) 0.889 0.078 0.893 0.083 0.897 0.075 0.898 0.065 0.900 0.062 0.902 0.072

ARF I M A(1,d ,0) 0.886 0.025 0.890 0.027 0.895 0.025 0.897 0.019 0.899 0.021 0.901 0.029

ARF I M A(0,d ,1) 0.885 0.034 0.889 0.033 0.894 0.030 0.896 0.029 0.899 0.027 0.901 0.046

ARF I M A(1,d ,1) 0.884 0.027 0.888 0.041 0.894 0.057 0.896 0.075 0.898 0.112 0.901 0.175

ARF I M A(2,d ,1) 0.884 0.034 0.889 0.035 0.894 0.050 0.896 0.058 0.898 0.076 0.901 0.120

ARM A(1,1) 0.889 0.054 0.893 0.050 0.897 0.040 0.898 0.041 0.900 0.041 0.902 0.052

ARM A(2,1) 0.886 0.029 0.890 0.022 0.895 0.022 0.897 0.025 0.899 0.033 0.901 0.045

ARM A(1,2) 0.886 0.017 0.890 0.015 0.895 0.019 0.897 0.023 0.899 0.025 0.901 0.037

ARM A(3,3) 0.886 0.050 0.890 0.056 0.895 0.055 0.896 0.049 0.899 0.059 0.901 0.078

ARM A(4,4) 0.886 0.078 0.890 0.082 0.895 0.098 0.897 0.096 0.899 0.092 0.901 0.109

H AR(3) 0.885 0.046 0.889 0.058 0.895 0.060 0.897 0.060 0.899 0.070 0.902 0.104

AR(22) 0.889 0.093 0.893 0.085 0.896 0.091 0.898 0.086 0.900 0.082 0.902 0.077

AR(30) 0.892 0.096 0.896 0.104 0.898 0.114 0.899 0.112 0.900 0.104 0.902 0.100

AR(50) 0.896 0.196 0.900 0.186 0.903 0.176 0.903 0.171 0.902 0.165 0.902 0.157

I (1) 1.050 0.144 1.051 0.122 1.057 0.088 1.063 0.089 1.074 0.081 1.106 0.058

E All Competing Models
Figure 2.7. Proportion of times the models are in the MC S at a 95% confidence level when
forecasting DGP 1 with different degrees of memory at several horizons.
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Figure 2.8. Proportion of times the models are in the MC S at a 95% confidence level when
forecasting DGP 2 with different theoretical degrees of memory at several horizons.

Figure 2.9. Proportion of times the models are in the MC S at a 95% confidence level when
forecasting DGP 3 with different degrees of memory at several horizons.
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Figure 2.10. Proportion of times the models are in the MC S at a 95% confidence level when
forecasting DGP 4 with different degrees of memory at several horizons.

F HAR 4

Figure 2.11. Proportion of times the models are in the MC S at a 95% confidence level when
forecasting DGP 2 with different degrees of memory at several horizons. For the plots, the
starting set contains only the six models shown.
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Figure 2.12. Proportion of times the models are in the MC S at a 95% confidence level when
forecasting DGP 3 with different degrees of memory at several horizons. For the plots, the
starting set contains only the six models shown.

Figure 2.13. Proportion of times the models are in the MC S at a 95% confidence level when
forecasting DGP 4 with different degrees of memory at several horizons. For the plots, the
starting set contains only the six models shown.
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Abstract

Predictive return regressions with persistent regressors are typically plagued by (asymp-

totically) biased/inconsistent estimates of the slope, non-standard or potentially

even spurious statistical inference, and regression unbalancedness. We alleviate the

problem of unbalancedness in the theoretical predictive equation by suggesting a data

generating process where returns are generated as linear functions of a lagged latent

I (0) risk process. The observed predictor is a function of this latent I (0) process, but

it is corrupted by a long memory noise. Such a process may arise due to aggregation

or unexpected level shifts. In this setup, the practitioner estimates a misspecified,

unbalanced, and endogenous predictive regression. We show that the OLS estimate of

this regression is inconsistent, but standard inference is possible. To obtain a consistent

slope estimate, we then suggest an instrumental variable approach and discuss issues

of validity and relevance. Applying the procedure to the prediction of daily returns

on the S&P 500, our empirical analysis confirms return predictability and a positive

risk-return trade-off.
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3.1 Introduction

Returns on financial markets are risky. Investors in financial markets are uncertain

about the future value of their investment. Modern portfolio theory (Markowitz, 1952)

and the Capital Asset Pricing Model (C AP M ) of Sharpe (1964) and Lintner (1965) imply

that financial market participants care about risk and adjust their return expectations

accordingly. Translating the latter statement into a standard dynamic C AP M-type

argument (see e.g. Glosten, Jagannathan, and Runkle, 1993; Bollerslev, Osterrieder,

Sizova, and Tauchen, 2013), expected aggregate market returns, rt , can be described as

Et (rt+1) = γω2
t , (3.1)

where γ can be thought of as a risk aversion parameter, which according to risk return

trade-off theory is expected to be > 0, and ω2
t is the local variance of returns with

t = 1,2, . . . ,T .

Equation (3.1) implies that given a measure for ω2
t , returns on the market should

be predictable. To investigate the empirical validity of this implication by a statistical

linear regression, the researcher needs to identify a proxy for the unobservable local

return variance or market risk, ω2
t . One approach popular in the literature is to find a

set of state variables that are assumed to carry information about the unobservable risk,

and hence expected returns. Typical predictor variables include the dividend to price

ratio (Campbell and Shiller, 1988a; Fama and French, 1988; Cochrane, 1999), the book

to market ratio (Lewellen, 1999), the price earnings ratio (Campbell and Shiller, 1988b),

interest rate spreads (Fama and French, 1989), and/or the consumption level relative to

income and wealth, cay (Lettau and Ludvigson, 2001)1. A second commonly relied on

methodology is to model ω2
t = Vart (rt+1) explicitly, and estimate its dynamics jointly

with the predictive regression within the (G)ARC H −M framework (Engle, Lilien, and

Robins, 1987; Engle and Bollerslev, 1986). The recent availability of high-frequency

stock market observations has opened a third possibility to proxy for risk, by employing

nonparametric techniques to construct realized variance measures (see e.g. Andersen,

Bollerslev, Diebold, and Ebens, 2001).

Whichever proxy the researcher decides to chose, they all seem to share the

common feature of strong time series persistence. The term spread, measured as

the monthly difference between a ten year bond yield and a short-term interest rate

by Campbell and Vuolteenaho (2004) and Diebold and Li (2006), has a first-order

autocorrelation well above 0.9. The same measure for the price earnings ratio is

almost equal to one. Stambaugh (1999) and Lewellen (2004) discover a similarly high

1An extensive list of typical predictor variables can be found in Campbell (2000).
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correlation estimate for the dividend to price ratio. The latter further reports first-order

autocorrelation estimates of 0.99 for the book to market ratio and the earnings price

ratio. In the second framework above, the ARC H coefficient or the sum of the ARC H

and the G ARC H term are typically found to be close to one (for a summary, see

e.g. Bollerslev, Chou, and Kroner, 1992). Similarly, the realized variance measures

exhibit strong temporal dependence (see e.g. Bollerslev, Tauchen, and Sizova, 2012,

and references therein).

The apparent persistence in the proxy for ω2
t , i.e. the regressor in a predictive

return regression, causes econometric problems with estimation and inference that

mostly arise due to the correlation between the innovations in the predictor and

returns. Firstly, ordinary least squares (OLS) estimation produces a biased and/or

inconsistent slope estimate of the predictive regression. If regressors are assumed I (0)

with autoregressive dynamics, Stambaugh (1986, 1999) describes the small-sample

bias in the OLS estimate. Successively, for instance Kothari and Shanken (1997) and

Lewellen (2004) derive estimates that correct for the bias. A large stream of literature

describes the regressor dynamics as local to unity (LU R) processes (see e.g. Campbell

and Yogo, 2006, and Jansson and Moreira, 2006), thus violating the I (0) assumption. In

this setup, the OLS slope estimate has an asymptotic second order bias (Phillips and

Lee, 2013). It is not obvious how to correct for the presence of this asymptotic bias since

the localizing coefficient cannot be consistently estimated (Phillips, 1987). Torous and

Valkanov (2000) further show that if the volatility of the regressor’s innovation scaled

by the prediction coefficient relative to the volatility of the return innovation decreases

sufficiently fast as T →∞, i.e., at rate T −o with o > 1, then the OLS slope estimate of

the predictive regression is even inconsistent.

A related econometric problem concerns the statistical inference on the predictabil-

ity of returns. Within a LU R framework, the t-statistic corresponding to the null

hypothesis (H0) that the regressor contains no predictive information about returns

does not converge to the usual normal asymptotic distribution. Similarly, if the regressor

instead is assumed to be a fractionally integrated process, I (d), Maynard and Phillips

(2001) show that t-statistics have nonstandard limiting distributions. Based on the

work of Campbell and Yogo (2006), Cavanagh, Elliott, and Stock (1995), and Stock

(1991), who impose the former LU R-type data generating process (DGP ) on the

regressor, researchers have relied on confidence intervals computed using Bonferroni

bounds. Predictability tests relying on this methodology are known to be conservative.

A potentially severe drawback of this approach is that the confidence intervals have

zero coverage probability if the regressor is stationary, as has been recently shown by

Phillips (2014). IV X filtering due to Magdalinos and Phillips (2009) (see also Phillips
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and Lee, 2013; Gonzalo and Pitarakis, 2012) constitutes an alternative method that

resolves the econometric problems of (asymptotic) bias and nonstandard inference in

predictive regressions. The underlying idea is to filter the predictor to remove its strong

temporal dependence and use the resulting series as an instrument in an instrumental

variable (IV ) regression. The modified variable addition method of Breitung and

Demetrescu (2015), where a redundant regressor is added to the predictive regression,

is a further means to achieve standard statistical inference.

A third issue arising in predictive return regressions with persistent regressors

that has received less attention is the unbalanced regression phenomenon (see e.g.

Banerjee, Dolado, Galbraith, and Hendry, 1993). The studies on predictive regressions

with regressor dynamics different from I (0) can be classified into two sets. The first

set assumes a DGP where returns are generated as noise, that is under H0 (see e.g.

Maynard and Phillips, 2001). In this setup returns are I (0), whereas regressors are

not, making a predictive regression unbalanced in theory. The second set of studies

(see e.g. Torous and Valkanov (2000)) imposes a return DGP under the alternative

hypothesis of predictability (H1). In this case returns inherit the persistence of the

regressor, and hence are not I (0). The predictive regression is balanced in theory. Yet,

these implications stand in stark contrast to both economic and financial models of

expected returns, as well as ample empirical evidence that returns are I (0) processes.

It follows that predictive regressions in these frameworks are likely to be unbalanced in

practice. The alternative DGP of Phillips and Lee (2013) that the authors present in the

appendix is one notable exception. Small (or local) deviations from the null hypothesis

are explicitly allowed while preserving regression balancedness. Another exception is

given in Maynard, Smallwood, and Wohar (2013), who assume a DGP where returns

are linearly related to the fractional difference of the regressor rendering returns I (0).

Our work addresses all three econometric issues; that is, bias/consistency, statistical

inference, and regression balancedness. We cast our approach in the fractionally

integrated modelling framework. There is substantial evidence that observed proxies

for risk can be described as I (d) processes, thus possessing long memory. For daily and

weekly NASDAQ data on the log price dividend ratio, Cuñado, Gil-Alana, and Perez de

Garcia (2005) find an estimate of d ≈ 0.5. Instead of relying on (G)ARC H models

to describe ω2
t = Vart (rt+1), Baillie, Bollerslev, and Mikkelsen (1996) suggest using a

fractionally integrated G ARC H (F IG ARC H) model and find that d is larger than zero

but smaller than one for the conditional exchange rate volatility. Similarly, it is well

documented that realized variance measures can be modelled as fractionally integrated

processes (see, among others, Ding, Granger, and Engle (1993), Baillie et al. (1996),

Andersen and Bollerslev (1997), Comte and Renault (1998), Bollerslev et al. (2013)).
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Motivated by these empirical regularities, we suggest a DGP that linearly relates returns

to a latent I (0) predictor, ω2
t . However, the observed regressor is corrupted by an

additive long memory component. Such a DGP can be justified by the aggregation

idea of Granger (1980) or the presence of structural breaks. Our approach archives

balancedness under both hypothesis, the presence as well as the absence of predictabil-

ity, yet a linear regression of returns on the observed regressor remains unbalanced.

We show that in this case the OLS estimate in inconsistent, but standard statistical

inference based on the t-statistic can be conducted. To cope with the inconsistency,

we propose a method that filters the long memory error component without fractional

differencing. We prove that the product of a short memory process and a long memory

process eliminates the long memory behavior. We then propose to use this device in

an IV regression. We prove that the IV estimate is consistent and the corresponding

t-statistic is normally distributed. Furthermore, we discuss methods to establish the

validity and the relevance of the instruments.

In our empirical application, we demonstrate that our methodology can be used to

evaluate intraday return predictability using realized and options-implied variances.

We identify two instruments that are closely related to the variance risk premium and

the jump component of the stock price process. We find empirical evidence that the

latter two are valid and relevant instruments for the options-implied variance of the

S&P 500. The IV regression of returns on this proxy for risk results in a positive and

significant predictability, providing evidence for a positive risk return trade-off.

3.2 DGP and the Unbalanced Predictive Regression

We propose a simple framework that allows for a balanced DGP of the prediction

target under the null and the alternative hypothesis, while retaining the problem of

regression unbalancedness of the type I (0)/I (d) in the empirical prediction model.

We assume that the DGP of the true predictor variable, x∗
t , is I (0). Throughout the

remainder of this work, we assume that x∗
t is unobserved or latent. Further, we assume

that there is a function of the true predictor, xt = f (x∗
t ), that is observable. Yet, this

variable is corrupted by a fractionally integrated noise, which implies that the observed

xt is I (d). The target, yt , typically thought of being returns of a risky financial asset, is

generated as an I (0) predictive function of x∗
t with prediction coefficient β and level α,

such that Et (yt+1) =α+βx∗
t . Equations (3.2)-(3.5) detail the assumed DGP .

x∗
t = εt (3.2)

xt = x∗
t + zt (3.3)

yt = α+βx∗
t−1 +ξt (3.4)
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zt = (
1−L

)−d
ηt , (3.5)

where εt is independently and identically distributed (i .i .d .) with mean zero and

variance σ2
ε, and zt is stationary fractionally integrated process with 0 < d < 1/2, such

that (1−L)d zt = ηt . L is the usual lag operator and ηt ∼ i .i .d . (0,σ2
η). The variance

of zt is σ2
z = σ2

η
Γ(1−2d)

(Γ(1−d))2 . Finally, ξt ∼ i .i .d . (0,σ2
ξ
). Much of the existing work in the

field of predictive regressions imposes the assumption that the true predictor, x∗
t , and

the observable predictor, xt , are the same or perfectly correlated. In view of equation

(3.1) this would imply that market risk, ω2
t , were observable. A very different model is

considered by Ferson, Sarkissian, and Simin (2003) and Deng (2014). They demonstrate

the risk of spurious inference in predictive regressions, where the expected (demeaned)

return βx∗
t is assumed to be independent of xt . Note that both setups can be viewed as

extremes of our DGP , where the first scenario arises if σ2
η = 0, and the second scenario

occurs if β= 0 and/or σ2
ε = 0. Instead of imposing these extreme setups, we consider

the predictor in our model to be imperfect. Similarly to Pastor and Stambaugh (2009)

and Binsbergen and Koijen (2010), we assume that the observed variable xt contains

relevant information about the expected return, but it is imperfectly correlated with

the latter.

We motivate the assumption that observed regressors are corrupted measures of

expected returns by the aggregation result of Granger (1980). Assume that the observed

variable xt in (3.3) is composed of an aggregation of persistent micro units xi ,t . The

predictive regression for returns is typically evaluated for indices; that is, an aggregation

of several assets, where the predictor variable would for instance be the dividend to

price ratio of an index, the conditional volatility of an index, etc. All of these processes

can be viewed as examples of aggregation. Assume that xi ,t follows a DGP given by

xi ,t =φi xi ,t−1 +ϑi wt +ζi ,t ,

where wt and ζi ,t are independent ∀ i . ζi ,t are white noise with variance ς2
i . In addition,

there is no feedback in the system, i.e. xi ,t does not cause wt . Thus, xi ,t can be viewed

as i = 1,2, . . . , N micro units of a process that are driven by their own past realizations,

a common component, wt , and an idiosyncratic shock, ζi ,t .

Further, assume that the parameters φ, ϑ, and ς2, are drawn from independent

populations, and that φ ∈ (0,1) is distributed as2

dF (φ2) = 2

B(p, l )
φ2p−1

(
1−φ2

)l−1
dφ2 p, l > 1,

2See Beran, Feng, Ghosh, and Kulik (2013), pp. 85-86.
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where B(·, ·) denotes the beta function. If we sum the micro units, xi ,t , we obtain

xt =
N∑

i=1
ϑi

∞∑
j=0

φ
j
i wt− j +

N∑
i=1

∞∑
j=0

φ
j
i ζi ,t− j ,

where xt =∑N
i=1 xi ,t . Granger (1980) shows that xt ∼ I (δx ), with δx = max(1−l +δw ,1−

l /2), where wt ∼ I (δw ). Hence, if we assume that l = 2(1−d) and δw = 1−2d , then xt

will be long memory of the order d , i.e. δx = d ∈ (0, 1
2 ). Furthermore, xt is generated by

two components; the first element is a function of the common component wt , which

will be integrated of the order zero. This can be compared to the variable x∗
t in (3.3).

The second component is a function of the idiosyncratic error terms ζi ,t , which will be

integrated of the order d . This second component can be compared to our variable zt

in the DGP of xt in (3.3). Obviously, in comparison our framework (3.2)-(3.5) is slightly

less general, as we make the additional assumption that the innovations of x∗
t and zt

are i .i .d .

A different way to motivate our DGP for the observable xt is to think of it as the sum

of an expected and an unexpected component. The expected component is correctly

centered at the true signal x∗
t . The unexpected component is driven by a process

that has (unpredictable) breaks in the level, zt . The argument that the persistence

in observed risk measures may be due to changes in the mean is not new in the

literature. For instance, Lettau and van Nieuwerburgh (2008) provide evidence for

such structural level changes in the dividend to price ratio, the earning to price ratio,

and the book to market ratio. They argue that these patterns could arise as a result

of permanent technological innovations that affect the steady-state growth rate of

economic fundamentals.

To demonstrate how unexpected structural level breaks can generate long memory

dynamics in zt , we adopt the framework of Diebold and Inoue (2001). Let st be a

two-state Markov chain, i.e. a random variable that can assume values 1 or 2. st is

independent of x∗
t . Define

P =
(

P
{

st = 1|st−1 = 1
}

P
{

st = 1|st−1 = 2
}

P
{

st = 2|st−1 = 1
}

P
{

st = 2|st−1 = 2
} )

=
(

P1,1 1−P2,2

1−P1,1 P2,2

)
.

Further assume that εt is a vector of size (2×1), given by

εt =
{

(1 0)′ if st = 1

(0 1)′ if st = 2
.

Now let zt =
(
%1, %2

)′
εt , %1 6= %2. That is zt is a variable that either has level %1 or %2,

depending on the realization of the Markov chain. We assume that P1,1 = 1− c1T −δ1 ,
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P2,2 = 1− c2T −δ2 , δ1,δ2 > 0, and c1,c2 ∈ (0,1), and w.l.o.g. that δ1 ≥ δ2. If it holds that

δ1 < 2δ2 < 2+δ1, then it follows by Diebold and Inoue (2001) that zt ∼ I (d), where

d = δ2 − 1
2δ1 and d ∈ (0, 1

2 ). In addition, if the parameters satisfy the restriction that

%1 =−%2
c1
c2

T δ2−δ1 then the unconditional mean of zt , given by3

E(zt ) = %1
(
1−P2,2

)+%2
(
1−P1,1

)
2−P1,1 −P2,2

,

is equal to zero. This is in line with our proposed DGP of zt in (3.5). As before, our DGP

(3.2)-(3.5) is marginally less general. We impose that zt is a fractional noise, whereas

the resulting zt from the regime switching framework above could have more general

I (d) dynamics.

To summarize, our proposed DGP (3.2)-(3.5) is consistent with the assumption of

imperfect predictors. The imperfection is due to an I (d) noise term that corrupts the

true signal. This is in line with either viewing the observed predictor as a aggregation of

micro units, or assuming that there are unexpected breaks in its level. Our framework

further is consistent with the implication of economic/financial models and the

empirical evidence that returns are I (0). The DGP also incorporates the possibility of

return predictability, which is justified by financial models such as (3.1). Finally, our

setup allows for strongly persistent observed financial risk factors, which is in line with

much of the empirical evidence.

To evaluate the predictability of yt , the correct regression to estimate would be

to regress yt on x∗
t−1. Yet, x∗

t−1 is not observed by the researcher. We assume that the

researcher runs the following misspecified and unbalanced regression

yt = a +bxt−1 +et . (3.6)

This motivates a further feature of our model (3.2)-(3.5). It is a stylized empirical fact

that the residuals of (3.6) and the residuals of a time-series model for the predictor

are correlated. Consider for instance the regression of stock returns on the dividend

to price ratio and an autoregressive model of order one, AR(1). The residuals of the

former and the latter typically exhibit a strong negative correlation. Our DGP naturally

incorporates this property. To see this, we re-write the DGP of yt in (3.4) as

yt =α+βxt−1 +
(−βzt−1 +ξt

)
. (3.7)

Given our DGP , it follows that the regression residuals of (3.6) are composed of

two elements, that is, et =−βzt−1 +ξt . Thus, et will be naturally correlated with the

3See e.g. Hamilton, 1994, p. 684.
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innovation in xt . More precisely, the covariance between the two error terms is given

by

Cov(et , zt ) =−βσ2
z

d

1−d
. (3.8)

The covariance (3.8) is different from zero, as long as the alternative hypothesis holds,

i.e. x∗
t−1 predicts yt with β 6= 0, the long-memory noise term is not constant, i.e. σ2

η 6= 0,

and d ∈ (0, 1
2 ). This proves that the regression suffers from an endogeneity problem. As

we will see, this have repercussions for estimation.

3.3 Ordinary Least Squares Estimation

We describe the implications of regression unbalancedness and endogeneity, where

the latter is caused by the correlation between the innovations in the observed noisy

regressor and the target, on the OLS estimation and inference. Define two matrices X
and y of size (T −1)×2 and (T −1)×1, respectively by

X ≡
(

1 1 . . . 1

x1 x2 . . . xT−1

)′
(3.9)

y ≡
(

y2 y3 . . . yT

)′
. (3.10)

Theorem 1 summarizes our results for both hypotheses, the presence and absence of

return predictability from x∗
t−1.

Theorem 1. Let x∗
t , xt , and yt be generated by (3.2), (3.3), and (3.4), respectively.

Estimate regression (3.6) by OLS, resulting in

b̂OLS ≡
(
â, b̂

)′ = (
X′X

)−1 (
X′y

)
.

Let
P→ denote convergence in probability, and

D→ convergence in distribution. Then, as

T →∞:

1. If β= 0

â
P→α T 1/2b̂

D→N

0,
σ2
ξ

σ2
ε+σ2

z


T −1/2ta

P→ α

σξ
tb

D→N
(
0,1

)
.
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ta = â/
p

Var(â) and tb = b̂/
√

Var(b̂) denote the t-statistics associated with â and

b̂, respectively, and N (·, ·) is the normal distribution. In addition, it holds that

s2 P→σ2
ξ

, where s2 = (T −3)−1 ∑T
t=2 ê2

t is the variance of the OLS residuals.

2. If β 6= 0

â
P→α b̂

P→β
σ2
ε

σ2
ε+σ2

z

T −1/2ta
P→ α(

σ2
ξ
+β2 σ2

εσ
2
z

σ2
ε+σ2

z

)1/2
T −1/2tb

P→ βσ2
ε(

β2σ2
εσ

2
z +σ2

ξ
(σ2

ε+σ2
z )

)1/2
,

where s2 P→σ2
ξ
+β2 σ2

εσ
2
z

σ2
ε+σ2

z
.

A proof of Theorem 1 can be found in Appendix A. A crucial result for the proof of the

Theorem is the asymptotic distribution of the product of a long memory noise against

an I (0) process which we compute in Lemma 1. Once that distribution is obtained, the

proof of the Theorem follows a standard procedure finding expressions much in line

to the usual ones of OLS estimation under short memory measurement error.

The first part of the theorem summarizes the case in which the researcher estimates

a predictive regression for unrelated variables in an unbalanced regression framework.

In this situation, the OLS slope estimate b̂ correctly converges to zero and to a normal

distribution at the usual rate T −1/2. Figure 3.1 compares the empirical distribution

of b̂ from 200,000 simulations with continuous uniformly distributed errors to the

theoretical asymptotic distribution from Theorem 1. Even for small samples of size

T = 250, the former closely approximates the latter.

In the second part of Theorem 1, we derive the asymptotic inference for the

unbalanced regression framework under the alternative hypothesis that there is pre-

dictability from x∗
t−1 on yt . In this case, OLS produces an inconsistent estimate for

β. Table 3.3 summarizes the simulated small sample behavior of the relative bias

b̂/β, with errors drawn from t-distributions. These values range from 0.17 to 0.69,

which implies a substantial bias towards zero of the OLS slope estimate. The table

also demonstrates that the bias is not merely present in small samples, as often the

relative bias with T = 1,000 is larger than or equal to the corresponding value with

T = 250, all else equal. Finally, Table 3.3 shows that b̂/β is independent of σξ and β,

but it decreases with increasing d and ση, and increases with increasing σε. This is

fully in line with the theoretical results in Theorem 1. Figure 3.2 plots the empirical

average value of b̂ for different sample sizes, T , from 200,000 simulations of the DGP
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(3.2)-(3.5) with t-distributed errors, proving graphical support for the analytical results

in the theorem. Taken together, this implies that a non-zero linear relation between the

dependent and the independent variable cannot be consistently estimated by OLS.

The results reveal that the OLS estimate has an asymptotic bias towards zero, which

implies that the researcher would underestimate the implied predictive power from

x∗
t−1 on yt . This finding stands in contrast to the conclusions in Stambaugh (1986, 1999)

and Lewellen (2004). Assuming that the covariance between the prediction-regression

residuals and the innovations in the predictor is negative, the latter conclude that there

is a positive finite-sample bias in the OLS prediction estimate stemming from the

endogeneity. Hence, if there is positive predictability the researcher will overestimate

its magnitude. The problem is somewhat more severe in our setup, as b̂ may not

merely suffer from a bias, but rather is an inconsistent estimate. Given our assumptions,

regression (3.6) is unbalanced in addition to being endogenous. The dependent variable

is I (0), whereas the independent variable exhibits long memory, I (d). The OLS approach

attempts to minimize the sum of squared residuals in the misspecified regression (3.6).

This can be achieved by eliminating the memory in et , i.e. by letting b̂ → 0. This finding

is consistent with Maynard and Phillips (2001).

The t-statistic associated with b̂ converges asymptotically to a standard normal

limiting distribution that is free of nuisance parameters under the null hypothesis that

β = 0. Small sample simulations with t-distributed errors in Table 3.3 support this

conclusion. The size of a simple t-test on the parameter is always very close to the

nominal size of 5%. Figure 3.1 shows that even for small sample sizes the t-statistic

approximates the asymptotic distribution closely. Under the alternative hypothesis, the

t-statistic tb diverges asymptotically at rate T 1/2. Figure 3.2 supports this conclusion

from Theorem 1, plotting the empirical average value of T −1/2tb for different sample

sizes, T , from 200,000 simulations of the DGP (3.2)-(3.5) with t-distributed errors.

The implication of these results is that one can draw valid statistical inference on the

significance of β. A t-test has sufficient asymptotic power to reject the null hypothesis.

In other words, with T sufficiently large, the researcher would eventually reject the

hypothesis that the parameter is equal to zero. The latter result makes clear that

even in the unbalanced and misspecified regression framework considered here, the

t-statistic can be considered a useful tool to draw inference on the significance of

the predictability of yt from a latent x∗
t−1. Table 3.3 provides small sample simulation

evidence for this conclusion. Drawing DGP errors from a t-distribution, we find that a

t-test generally has good power. Exception from this happen mostly for small sample

sizes, T = 250, a small absolute value of β, and large d . The worst case scenario occurs

when σξ =ση = 1.73, σε = 1.13, d = 0.49, and T = 250. This is not surprising, as in this



3.3. ORDINARY LEAST SQUARES ESTIMATION 71

case the signal-to-noise ratio of the predictor, S ≡σε/σz , is equal to 0.1615, and hence

rather small. In addition, the relation between yt and x∗
t−1 is blurred by a noise term,

ξt , that is more volatile than the predictor itself. All else equal, the power increases in

|β|, in σε, and in T ; it decreases in d , σξ, and ση.

The finding that statistical inference in our unbalanced and endogenous regression

framework is not spurious may be somewhat surprising. Generally, these two phenom-

ena when occurring jointly imply a nonstandard limiting distribution of the t-statistic

under the null hypothesis. For fractionally integrated regressors, this result can be

found in Maynard and Phillips (2001); the case of LU R regressors is derived in Cavanagh

et al. (1995). Note, however, that given our DGP (3.2)-(3.5), the regressor is no longer

endogenous under the assumption thatβ= 0, that is Cov(et , zt ) = 0. From the literature

focusing on the traditional I (0)/I (1) unbalanced regression setup with exogenous

regressors and i .i .d . innovations, we know that the t-statistic is well behaved and

converges to a standard normal random variable, as shown in Noriega and Ventosa-

Santaulària (2007) and successively in Stewart (2011). Theorem 1 proves that the same

result holds true in our I (0)/I (d) specification.

A further implication of Theorem 1 is that the level of the conditional mean of

yt , α, can be consistently estimated by the OLS estimate, â, independently of the

true value of β. Its associated t-statistic, ta , diverges at rate T 1/2. Thus, asymptotically

the researcher would correctly reject the null hypothesis that α = 0 when the null

hypothesis is false, based on a simple t-test.

To summarize, the t-statistic corresponding to an OLS estimate represents a means

to identify the non-existence of a linear relationship between a random variable and its

lagged latent predictor. Yet, in the present I (0)/I (d) setup with unobserved regressors,

OLS yields an inconsistent estimate of such a linear relationship. To cope with the

problem of unbalanced regressions, Maynard et al. (2013) suggest to fractionally filter

the regressor; fractional differencing has also been applied by Christensen and Nielsen

(2007). In this paper, we opt for a different solution to cope with the problem for several

reasons. Firstly, the application of the fractional filter to the predictor requires the

knowledge of d . As d in not know a priori, the researcher has to estimate it, which

introduces an additional degree of uncertainty. Secondly, fractionally differencing the

regressor is only a useful approach if the assumed DGP for yt follows:

yt =α+β(
1−L

)d x̃t−1 +ξt , (3.11)

with x̃t being a pure fractionally integrated process. We argue that it is difficult to justify

a DGP as (3.11) from an economic and financial viewpoint. In a traditional I (0)/I (1)

framework, i.e. d = 1 in (3.11), the filter
(
1−L

)d applied to x̃t−1 would imply that yt is

driven by the short-run changes of lagged x̃t , instead of by its level. In the fractionally
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integrated setup with d ∈ (0, 1
2 ), yt in (3.11) would be determined by a “hybrid” of

levels and changes in the predictor. This is not in line with many economic-financial

models. Let yt be the continuously compounded return on a risky financial asset, or

the logarithmic dividend growth; for instance, the Dynamic Gordon Growth Model

states that under rational expectations the logarithmic dividend to price ratio in levels

should have predictive ability for future returns and/or dividend growth. It follows that

the true predictor, x̃t−1, cannot be a fractional difference. Similarly, assume yt is the

change in the foreign exchange spot rate and let the predictor be the forward premium;

the Forward Rate Unbiasedness theory implies that the expected changed in spot rates

is linearly related to the level of the forward premium.

Finally, in our assumed DGP , yt is related to the level of a lagged latent x∗
t , which is

corrupted by a persistent error. Fractional differencing in this setup cannot help solving

the unbalanced regression problem. Even if d were known, filtering the observed xt−1

by
(
1−L

)d would imply an over-differencing of the true signal x∗
t−1. This would suggest

that yt were driven by an anti-persistent predictor.

3.4 Instrumental Variable Estimation

To alleviate all of the above concerns, we instead propose to estimate the linear

relationship by an instrumental variable (IV ) approach. Assume that the researcher has

access to a valid and relevant I (0) instrument, i.e. a variable that is strongly correlated

with x∗
t−1 but not with the fractional noise, zt−1, and the innovation ξt

4. Theorem 2

summarizes the asymptotic properties of an IV estimation of equation (3.6).

Theorem 2. Let x∗
t , xt , and yt be generated by (3.2), (3.3), and (3.4), respectively. Assume

there exist K instruments

qk,t = ρk x∗
t +υk,t , k = 1,2, . . . ,K , (3.12)

where υk,t ∼ i.i.d. (0,σ2
υk

) and ρk 6= 0 ∀k. Further define

Q ≡



1 1 . . . 1

q1,1 q1,2 . . . q1,T−1

q2,1 q2,2 . . . q2,T−1
...

. . .
. . .

...

qK ,1 qK ,2 . . . qK ,T−1



′

. (3.13)

4Notice that by equation (3.7) it must hold that an instrument that is neither correlated with zt−1 nor
with ξt will by definition also be unrelated to the error term of the unbalanced regression (3.6), et .
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Estimate regression (3.6) by IV using qk,t as instruments for xt . The IV estimate is given

by

b̂IV ≡
(
â, b̂

)′ = (
X′Q

[
Q′Q

]−1 Q′X
)−1 (

X′Q
[
Q′Q

]−1 Q′y
)

.

Then, as T →∞:

1. If β= 0

â
P→α T 1/2b̂

D→N

0,
σ2
ξ

(
σ2
ε

∑K
k=1

ρ2
k

σ2
υk

+1

)
σ4
ε

∑K
k=1

ρ2
k

σ2
υk


T −1/2ta

P→ α

σξ
tb

D→N
(
0,1

)
,

where s2 P→σ2
ξ

.

2. If β 6= 0

â
P→α b̂

P→β

T −1/2ta
P→ α(

σ2
ξ
+β2σ2

z

)1/2
T −1/2tb

P→β


σ4
ε

∑K
k=1

ρ2
k

σ2
υk(

σ2
ξ
+β2σ2

z

)(
σ2
ε

∑K
k=1

ρ2
k

σ2
υk

+1

)


1/2

,

where s2 P→σ2
ξ
+β2σ2

z .

The proof of Theorem 2 can be found in Appendix A. Analogously to the proof of

Theorem 1, a crucial development for the proof of Theorem 2 is the distribution of the

product of a long memory process against a short memory one computed in Lemma 1.

As the Lemma shows, using I (0) instruments helps in eliminating the long memory

behavior of the measurement error, this is the key insight behind the positive results

for IV estimation.

Theorem 2 shows that in the absence of predictability, the IV estimate b̂ converges

to a normal distribution with zero mean at the standard rate T −1/2. Figure 3.3 shows

that even if T = 250, b̂ approaches the theoretical asymptotic distribution. More

importantly, Theorem 2 demonstrates that IV estimation results in a consistent

estimate for β. Hence, under the maintained assumption that the DGP follows (3.2)-

(3.5), the predictive power of a latent variable x∗
t−1 on yt can be correctly inferred if the

researcher finds a relevant and valid instrument for the former. Figure 3.4 supports this
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conclusion, plotting the average IV estimate b̂ over 200,000 simulations for increasing

T . The simulation results in Table 3.4 further show that the relative bias, b̂/β, is

very close to one even for small to moderate sample sizes. Across the set of chosen

parameter values, the relative bias is bound between 1 and 1.05, when simulated errors

are drawn from standard normal distributions. Finally,α can be consistently estimated

by IV , as Theorem 2 proves.

Theorem 2 further implies that the statistical significance of β can be correctly

inferred from a simple t-test. Under the null hypothesis that H0 :β= 0, the t-statistic of

the IV estimate b̂, tb , converges to a standard normal distribution, as the simulations

in Figure 3.3 confirm. Table 3.4 summarizes the small sample behavior of a t-test.

Overall, the size of the test is close to the nominal level of 5%, but on average the test

seems somewhat undersized. Nevertheless, the size approaches 5% as T increases, as

|ρ| and hence |Corr(qk,t , x∗
t )| increases, and as σε increases, all else equal. We find the

lowest nominal size of approximately 3% for the scenario where σξ =ση =συ = 1.73,

σε = 1.13, d = 0.49, and T = 250. As mentioned in Section 3.3, this is to be expected as

in this case S is small.

Contrasting the size of the t-test on the significance of β of the IV estimator in

Table 3.4 with the corresponding size for the OLS estimator in Table 3.3, we can thus

observe that the overall size of the former is smaller than the latter. This does not come

as a surprise as the IV estimator is generally less efficient than the OLS. Standard

errors of the former are comparably slightly larger, leading to a small underrejection

of the null hypothesis. It should be noted that, in our setup, there seems to be no risk

of detecting predictability too often. This stands in contrast to the usual worry in the

literature that predictability tests with persistent regressors may be (heavily) oversized,

as pointed out by Elliott and Stock (1994) and Campbell and Yogo (2006) among others,

or may even lead to spurious conclusions (Ferson et al., 2003).

Assuming that the variables follow our proposed DGP (3.2)-(3.5), we conclude that

size is not an issue in our setup. Yet, the power of the OLS t-test on the significance

of β in the previous section may be insufficient, especially when T is small and d is

large. OLS hence implies some risk of the researcher not detecting predictability when

it is present. Estimation by IV also alleviates this concern. The power of the t-test is

very close to 100% across the scenarios that we consider in the simulations in Table

3.4. Asymptotically, tb diverges at rate T 1/2 under H1 : β 6= 0 as shown in Theorem 2;

Figure 3.4 depicts the convergence behavior of the statistic.

3.4.1 Instrument Relevance

As is generally the case, the instrument may not be irrelevant or too weak. To see

this, let qk,t = υk,t in Theorem 2 and estimate regression (3.6) by IV using qk,t as



3.4. INSTRUMENTAL VARIABLE ESTIMATION 75

instruments. Then, as T →∞, b̂ =Op (1).

To demonstrate that choosing an irrelevant instrument can lead to very undesirable

properties of the IV estimation, we simulate an instrument as in (3.12) with ρ1 = 0.

Table 3.5 shows the the size, power, and relative bias of the resulting IV estimator

and the corresponding significance test, when errors are drawn from continuous

uniform distributions. The size of a standard t-test on the significance of the prediction

coefficient is approximately zero. Similarly, the power of the test is very low, ranging

between 0.31% and 14.87%. The lack of power is not a small sample problem, as our

simulations show that the power uniformly decreases as T increases, suggesting that

asymptotically the probability to reject is zero. This implies that the researcher will

tend to conclude that there is no predictability, independent of whether it is present or

absent.

The low size and power properties signify that the t-statistic, tb , is too small in

absolute value if the instrument is irrelevant. This may be the result of a too small value

of |b̂| and/or of a too large volatility of the estimate,
√

Var(b̂). Table 3.5 summarizes the

relative bias, b̂/β, which deviates wildly from the reference point of 1. IV estimation

with an irrelevant instrument may lead to overestimation, underestimation, or even

estimation with the incorrect sign. The relative bias covers a wide range, from -24.52

to 14.72, and the bias is independent of T . Hence, we cannot conclude that |b̂| is too

small in absolute value. The low size and power of t-test is therefore mostly a result of

a very high variance of the estimator.

To conclude, estimating (3.6) by IV with an irrelevant instrument leads to an

inconsistent and inefficient estimator. To avoid such an outcome, we suggest a simple

testing procedure. Assume that the researcher has identified a candidate instrument.

Recall that the instrument follows the DGP given in (3.12), qk,t = ρk x∗
t +υk,t . As x∗

t is

unobserved, the researcher cannot simply regress the instrument on x∗
t to conduct

inference on the value of ρk and thus on the instrument relevance. Instead, qk,t can be

regressed on the observed xt by OLS. By Theorem 1, it holds that the slope coefficient

of this regression is an inconsistent estimate of ρk , yet valid statistical inference using

a t-test can be carried out. Thus, relying on a simple OLS t-test, the researcher can

infer whether the instrument is statistically irrelevant.

3.4.2 Instrument Validity

Besides being relevant, the instruments qk,t−1 further need to be valid. For an instru-

ment to be valid, it may not be correlated with the residuals of the IV regression of

equation (3.6), et . To summarize the consequences of IV estimation with an invalid

instrument in finite samples, we simulate two types of invalid instruments. The first
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instrument is correlated with zt−1, i.e., with the fractionally integrated noise. We draw a

random series µt−1 from a standard normal distribution with zero mean and variance

σ2
µ, and construct the instrument as in (3.12) with

υk,t−1 =µt−1 +κk zt−1. (3.14)

This invalid instrument is correlated with et and it is integrated of the order d , I (d).

Henceforth, we refer to such instruments as invalid of type 1. Table 3.6 shows size

and power properties, as well as the relative bias of an IV estimation of (3.6) with this

instrument. The power of a t-test is close to 100% across the considered scenarios.

Even when d is large, the researcher will still reject an incorrect null hypothesis in at

least 98.60% of the cases. Similarly, the test is correctly sized at 5%. Thus, even when

the instrument is invalid and I (d), statistical inference on β using the t-test from the

IV estimation can be conducted. Yet, the IV estimate b̂ is biased towards zero. As

this bias does not disappears with increasing T , we conclude that b̂ is inconsistent.

The simulated relative bias, b̂/β, ranges from 0.38 to 0.77. Thus, using such an invalid

instrument with innovations given by (3.14) leads to the same outcome as when

estimating regression (3.6) by simple OLS.

In practice, it is fairly straightforward for the researcher to avoid invalid instruments

of type 1, i.e., that are correlated with zt−1 as in (3.14). As they will be integrated of the

order d , a simple statistical test for the presence of a fractional root can be relied on.

Examples are the Lagrange-Multiplier tests of Robinson (1994) or Tanaka (1999), which

test for an integration order d under the null hypothesis against the alternative of an

integration order smaller (or larger) than d . The fractional Dickey-Fuller test of Dolado,

Gonzalo, and Mayoral (2002) is another possibility that is easy to implement.

We construct a second type of instrument in Table 3.6, which is correlated with

ξt , and hence correlated with et and integrated of the order zero, I (0). We call this

second form of instrument invalidity type 2. The innovations of this instrument qk,t−1

are simulated as

υk,t−1 =µt−1 +κkξt . (3.15)

Table 3.6 shows that choosing such an instrument can have very severe consequences.

The size of a t-test on the significance of the prediction coefficient is approximately

100%. The power of the test is also close to 100% in most instances, yet in extreme cases

it may drop down to as low as 2.12%. The researcher would therefore be tempted to

reach the exact opposite conclusion than what it should be. If there is no predictability,

one will always erroneously conclude that there is. Conversely, if there is very strong

predictability, i.e., β is bounded far away from zero, we may fail to reject β= 0. The

latter is especially true if d is large, T is small, σξ is small, and ση is big.
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If the invalid instrument has innovations given by (3.15), the estimation of (3.6)

by IV further is strongly inconsistent. The relative bias in Table 3.6, b̂/β, shows that

when β=−2, b̂ is negative but it strongly underestimates the magnitude. When β= 3,

b̂ is positive yet it overestimates the magnitude. Finally, when β= 0,5 the estimate b̂ is

positive. We conclude that b̂ in this case has a significant positive bias; as it does not

decrease as T increases, the estimate is inconsistent.

In practice, using an invalid instrument of type 2 should be avoided at all costs. A

common approach to test for the validity of an instrument is to rely on Sargan’s J test

(Sargan, 1958). Corollary 1 summarizes the asymptotic behavior of the J test for our

DGP .

Corollary 1. Let x∗
t , xt , and yt be generated by (3.2), (3.3), and (3.4), respectively.

Assume there exist K instruments, generated by (3.12). Estimate the following second

stage regression by OLS

ê = Q$+v, (3.16)

where ê are the regression residuals from regression (3.6) by IV . $ is a (K + 1) OLS

coefficient vector and v is a vector of innovations. Compute the uncentered R2 of

regression (3.16) as R2
u = 1− v̂′v̂

ê′ê . Define a test statistic for the validity of the instruments

as

J ≡ T R2
u .

Then, as T →∞:

J
D→χ2

(K−1).

A proof of Corollary 1 can be found in Appendix A. The corollary shows that even

though the true predictor, x∗
t−1 is not observable, we can still test whether qk,t is a

(in)valid instrument of type 2 for the former. The statistical inference on the J -statistic

can be based on the standard χ2 distribution. To evaluate the finite sample properties

of the test, we conduct Monte Carlo experiments with 200,000 repetitions. Table

3.7 shows different parameter combinations with K = 2, drawing innovations from

t-distributions. The simulations are set in a challenging scenario, where we let

Corr([q1,t−1, q2,t−1]′, x∗
t−1) = [0.85, 0.1]′. Thus, there is only one strongly relevant

instrument, whereas the second instrument is weakly relevant at best.

The simulation results in Table 3.7 suggest that the J -test is correctly sized at

a nominal level of 5%. The test is marginally oversized, with a maximal size of 5.9%

5These estimates are not reported here to save space. The results are available from the authors upon
request.
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across all scenarios, only when S is small and β 6= 0. The power of the test is fair for

small values of T = 250, and is generally good or very good when we let T increase

to 1,000. Across all scenarios the power is substantially larger when β= 0 than when

β 6= 0. This finding is not surprising, as êt → ξt when β= 0, and hence there is a very

clear relation between qk,t−1 with innovations as in (3.15) and êt . By the same logic, if

β 6= 0 then êt →−βzt−1 +ξt , and hence the signal ξt becomes more prominent in êt

as d decreases, ση decreases, and/or σξ increases, thus increasing the power of the

test. Finally, the power of the test decreases as we let Corr([q1,t−1, q2,t−1]′,ξt ) decrease

from [0.5, −0.6]′ to [−0.4, 0.3]′.
We conclude that there is almost no risk of overrejecting instrument validity in

finite samples when the instrument is valid of type 2. However, there is a small chance

to erroneously conclude that an invalid instrument is valid, due to insufficient power

in (very) small samples. To safeguard against this, we recommend that the researcher

chose a conservative confidence level, for instance 10%.

3.5 Predicting Returns on the S&P 500

To exemplify that the suggested approach from the previous sections can help alleviate

some of the concerns in empirical asset pricing, we predict daily returns, rt+1, t =
1,2, . . . ,T , on the S&P 500 stock market index. We consider the data period from

February 2, 2000 until April 25, 2013, resulting in T = 3325 observations. We assume

that risk or uncertainty in the financial market, i.e. ω2
t in (3.1), can be proxied by

observable variance measures. Our first risk proxy is the realized return variance,

RVRL,t , computed on the basis of intradaily observations spaced into 5-minute intervals.

Under certain regularity conditions, RVRL,t converges to the daily quadratic variation

of returns, as shown by Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002),

and Meddahi (2002). Our second measure is the bipower variation, BVRL,t , of Barndorff-

Nielsen and Shephard (2004), which converges to the integrated variance of returns.

The three series, rt , RVRL,t , and BVRL,t , are obtained from the Oxford-Man Institute’s

“Realised Library”6. As a final proxy for ω2
t , we consider the volatility index, V I XCBOE,t .

It is a measure for the risk-neutral expectation of return volatility over the next month,

and as such can be viewed as the options-implied volatility. We obtain the series

V I XCBOE,t , which is traded on the Chicago Board of Options Exchange (CBOE), from

the WRDS database. We transform the data series into monthly variance units by

vi x2
t =

30

365
V I X 2

CBOE,t .

6Available at http://realized.oxford-man.ox.ac.uk/.

http://realized.oxford-man.ox.ac.uk/
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Whereas vi x2
t is related to the return variation over a month, the raw series RVRL,t and

BVRL,t measure daily variation. To align the three measures, we modify the latter two

as follows.

r vt =
22∑

i=1

RVRL,t−i+1 ×1002 +


ln
P (open)

t−i+1

P (close)

t−i

×100


2


bvt =
22∑

i=1

BVRL,t−i+1 ×1002 +


ln
P (open)

t−i+1

P (close)

t−i

×100


2
 .

It is well known that the three variance series exhibit strongly dependent dynamics that

closely resemble fractionally integrated processes (see e.g. Bollerslev et al., 2013, and

references therein). At the same time, asset returns, especially at the daily frequency

level, are known to exhibit almost no serial correlation. This renders a regression of the

following type unbalanced.

rt+1 = a +bxt +et+1, (3.17)

where for the remainder of this section xt is either r vt , bvt , or vi x2
t . To avoid any

overlap between daily returns, rt+1, and the realized variance and bipower variation

measures, we define returns as intraday net returns7

rt =
[

P (close)
t −P (open)

t

P (open)
t

]
×100.

To provide evidence that regression (3.17) is indeed unbalanced for our data set, we

estimate the respective fractional integration order, di , of the four series, r vt , bvt ,

vi x2
t , and rt , jointly.

It is common to rely on semiparametric techniques for the estimation of di , as

they permit the researcher to assess the long-memory behavior of the process close to

frequency zero, while allowing for some unparameterized dynamics at intermediate or

high frequencies. There are two commonly used classes of semiparametric estimators;

the log-periodogram estimators introduced by Geweke and Porter-Hudak (1983) and

the local Whittle estimators, originally developed by Künsch (1987). We rely on the

latter class, since it is more robust and efficient, as pointed out by Henry and Zaffaroni

(2002). The exact local Whittle (EW ) due to Shimotsu and Phillips (2005) is particularly

attractive, since it is consistent and asymptotically normally distributed for any value

7All estimation results in this section remain virtually unchanged if we rely on daily close-to-close
returns, instead. Here we only report the results for intraday returns; outcomes with close-to-close returns
are available from the authors upon request.
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of di . Nielsen and Shimotsu (2007) derive a multivariate version of the EW , which we

apply for the joint estimation of dr v , dbv , dvi x2 , and dr
8.

Table 3.8 summarizes our results. The realized variance and the bipower variation

are integrated of the order I (0.35) and I (0.34), respectively. At a 5% significance level,

we reject that di = 0 and di = 1 for both series, yet we fail to reject that di = 0.5.

The point estimate for the memory of the volatility index, vi x2
t , is somewhat higher,

d̂vi x2 = 0.44. However, according to the t-test of Nielsen and Shimotsu (2007) for the

equality of di , we cannot reject that the three variance series are integrated of the

same order. Intraday returns in turn are integrated of the approximate order zero,

and we fail to reject di = 0. The t-tests for H0 : di = d j indicate the we reject the

hypothesis that variance series and returns are integrated of the same order, which

makes regression (3.17) unbalanced. For further evidence of the apparently distinct

dynamics of the three variance series and stock returns, see also Figure 3.5, where we

plot the autocorrelations of the four processes. Whereas shocks to daily returns die

out immediately, shocks to r vt , bvt , and vi x2
t are highly persistent. As opposed to

the stationary return process, it takes many lags to revert the effect of a shock to the

variance.

One shortcoming of the approach above is that the EW is not explicitly robust to

the presence of additive perturbations, which are present in three variance processes,

r vt , bvt , and vi x2
t , under the maintained assumption that xt follows a short-memory

signal plus a long-memory noise process as (3.3). To robustify our approach, we further

rely on the trivariate version of the modified EW estimator of Sun and Phillips (2004)

(T EW ). Let X t ≡ [r vt , bvt , vi x2
t ]′. The underlying assumption of the T EW estimation

approach in our setup is that the spectral density of X t at frequency λ is given by

fX (λ) ∼ DτD ′+ ιH as λ→ 0+,

where D = (diag[λ−dr v , λ−dbv , λ−dvi x2 ]), and τ is a diagonal matrix with elements

fηi (0). Hence, we assume that the fractional-noise series, zt ,i , are uncorrelated across

the three variance measures. H is a (3 × 3) matrix of ones; thus we impose that

the signal x∗
t = ω2

t is the same for r vt , bvt , and vi x2
t , and has variance 2πι. We

estimate the respective fractional order of integration of the three series jointly with

the ratio τ/ι, by concentrated T EW -likelihood. We find that d̂r v =0.36, d̂bv =0.46,

d̂vi x2 =0.33. The exact asymptotic properties of the T EW are unknown, yet Sun and

Phillips (2004) conjecture that the distribution is normal and that standard errors

8The consistency and asymptotic properties of the EW estimator rely on the knowledge of the true
mean of the data generating process. As this value is not known in practical applications, we modify the EW
to account for this uncertainty, relying on the two-step feasible EW estimator of Shimotsu (2010).
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are bound between [0.11,0.15]. The estimates for di are thus different from zero and

statistically indistinguishable from the non-robust estimates in Table 3.8. From the

point estimates for τ/ι, we can compute the implied signal-to-noise ratio; we find

Sr v =50.12, Sbv =24.28, and Svi x2 =15.44. This suggests that the variation in the

signal is strong relative to the volatility in the fractionally integrated noise for all three

variance series9.

Next we investigate the consequences of ignoring the regression unbalancedness

and instead estimating the prediction regression by OLS. Table 3.9 outlines the results.

If we predict daily returns on the S&P 500 by r vt , the prediction coefficient is very

close to zero and it is statistically insignificant. Similarly, if we evaluate the unbalanced

regression (3.17) with xt = bvt , we obtain a very small and insignificant slope estimate.

Yet, when we use the vi x2
t series to predict returns, we find a positive b̂ = 0.15×10−2 and

it is significantly different from zero. The estimated coefficient is very small, however,

and we know from Theorem 1 that the estimate is inconsistent.

To alleviate the problems associated with the unbalanced OLS regression, we

define a set of instruments for IV estimation. To that end, note that there is substantial

evidence that there is a linear long-run relation between r vt and vi x2
t that is I (0). For

instance, Bandi and Perron (2006) and Christensen and Nielsen (2006) find evidence

of fractional cointegration between the two series. Furthermore, if the cointegrating

vector is equal to [−1, 1]′, then the resulting cointegrating series corresponds to the

monthly version of the variance risk premium, vr pt , as defined by Bollerslev, Tauchen,

and Zhou (2009). The latter argue that vr pt may be viewed as bet on pure volatility; as

such it is reasonable to expect that the measure is closely liked to the local variance

in (3.1), ω2
t = x∗

t , that we are aiming at proxying with the instrument. Bollerslev et al.

(2009) and Bollerslev et al. (2013) also present evidence that vr pt can predict aggregate

market returns, which is further motivation for considering the measure to be a relevant

instrument in our framework.

Besides the cointegrating relation between r vt and vi x2
t , we expect that there

is a long-run relation between r vt and bvt , as both series measure the monthly

integrated variance of stock returns. Following the arguments in Barndorff-Nielsen

and Shephard (2004), Andersen et al. (2007), and Huang and Tauchen (2005), the

cointegrating relation between r vt and bvt represents the contribution of price jumps

to the variance if the cointegrating vector is equal to [1, −1]′. For instance, Andersen

et al. (2007) find that the jump component exhibits a much lower degree of persistence

than the two series r vt and bvt , providing evidence for a fractional cointegration

9We expect the confidence bands for the estimates for S to be very wide, and hence their values have
to be interpreted with care and rather viewed as indicative. The reason is that the likelihood function for the
T EW becomes flat in (τ/ι)−1 when T →∞, as shown by Hurvich, Moulines, and Soulier (2005).
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relation. Jumps are closely related to stock market volatility; Corsi, Pirino, and Reno

(2010) and Andersen et al. (2007), among others, find that the former is an important

predictor of the latter. Therefore we anticipate jumps to be a relevant instrument for

ω2
t = x∗

t .

We investigate the potential cointegration relation by a restricted version of the

co-fractional vector autoregressive model of Johansen (2008, 2009) and Johansen and

Nielsen (2012), given by

∆d X t =ϕ
[
θ′

(
1−∆d

)
X t

]
+

n∑
i=1

Γi∆
d

(
1−∆d

)i
X t +ut . (3.18)

We rely on model (3.18) because it allows us to identify a cointegration relation between

the variables, while at the same time explicitly accounting for possible dynamics at

higher frequencies, which may be present due to the overlapping nature of r vt and

bvt
10. Given the identification problems of the model (see, Carlini and Santucci de

Magistris, 2013), we initially fix the cointegration rank r = 2 and estimate (3.18) by

restricted maximum likelihood. Subsequently, we test for cointegration. For d̂ = 0.38

(SE(d̂)=0.10) and n = 3 we find the cointegrating matrix estimate

θ̂′ =
(

1 −1.1938 0

−1.0111 0 1

)
.

Johansen (2008) states that model (3.18) has a solution and θ′X t ∼ I (0) if the following

conditions are satisfied. Firstly, r needs to be smaller than 3. The value of the likelihood

ratio (LR) statistic of Johansen and Nielsen (2012) that provides a test for H0 : r ≤ 2

against r ≤ 3 is equal to 3.7709; thus we fail to reject the null hypothesis. Secondly,

it must hold that |ϕ′
⊥

(
I3×3 −∑n

i=1Γi

)
θ⊥| 6= 0. In our estimation this value is equal

to -1.46, i.e. different from zero. Thirdly, the roots c of the characteristic polynomial

|(1− c)I3×3 −ϕθ′c − (1− c)
∑n

i=1Γi c i | = 0 must be either equal to one or ∉ a complex

disk Cd . Figure 3.6 shows that all roots fulfill this final condition. We conclude that we

have identified two instruments

qt =
(

q1,t

q2,t

)
= θ̂′X t , (3.19)

that are integrated of the order zero. Hence, qt are not invalid instruments of type 1 as

described in Section 3.4.2, that is, qt is not correlated with the I (d) noise term, zt .

10The Matlab code for the maximum-likelihood estimation of the parameters of model (3.18) has been
provided by Nielsen, Popiel, et al. (2014).
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If we estimate a restricted version of our benchmark co-fractional model, where

θ(2,1) = −1 and θ(1,2) = −1, we obtain a LR statistic of 6.6354, which implies that we

reject the restriction. Whereas the second cointegrating relation, q2,t , is essentially

the variance risk premium of Bollerslev et al. (2009), q1,t differs slightly from the

pure jump contribution, i.e., the squared jump sizes over one month. More precisely,

q1,t ≈∑22
i=1

∑Nt−i+1
j=1 ψ2

t−i+1, j −0.19bvt , where ψt , j is the size of the j th jump on day t ,

and Nt denotes the total number of jumps in a day. Noting that |r vt −bvt | ≥ |q1,t | for

more than 95% of the total observations in our sample, q1,t thus reduces the absolute

value of the jump component by 0.19bvt , that is, it sets it closer to zero. This can

be viewed as a crude approximation to the standard approach of only considering

significant jumps (see, for instance, Tauchen and Zhou, 2011 and Andersen et al., 2007).

Relying on the method outlined in Section 3.4.1, we now investigate whether the two

instruments are relevant. Regressing q1,t on r vt , bvt , and vi x2
t , respectively, we find

the corresponding t-statistics, tρ̂1 , to be equal to -6.54, -12.31, and -3.33. The jump

instrument is a relevant instrument for the unobserved stationary component of all

three variance series. Carrying out the same analysis for q2,t , we find the respective

values for tρ̂2 to be equal to -11.42, -11.98, 14.11, suggesting that also the variance risk

premium instrument is strongly relevant.

Table 3.9 lists the outcomes of the IV estimations of regression (3.17), using q1,t

and q2,t from (3.19) as instruments. If we predict intraday returns with r vt , we find a

negative prediction coefficient, b̂ =−0.013, that is statistically significant. This finding

stands in contrast to the OLS estimation result, where we discover that r vt does not

contain an I (0) component that significantly predicts returns. The solution to this

puzzle can be found in the the J -test for instrument validity of type 2. The J -statistic

is equal to 13.73, which is well above the χ2
(1) critical value at any commonly considered

confidence level. Hence, the jump instrument and the variance risk premium instru-

ment for the unobserved stationary component in r vt are invalid. From the simulations

in Table 3.6, we know that if the instrument(s) are invalid of type 2, the researcher is

likely to find predictability even though there is none. This explains why we erroneously

conclude that there is significant return predictability in the series r vt from the IV

estimation. Furthermore, the slope estimate b̂ is known to have an asymptotic upward

bias. Thus, given our results on OLS estimation and the fact that the instruments

are invalid for IV estimation, we find evidence that r vt does not carry predictive

information for daily returns on the S&P 500. Mainly, given that the instruments are

invalid we should not trust the IV results, while we know that we can draw valid

statistical inference on the significance of coefficients estimated by OLS. For the bvt

series, the results in Table 3.9 are qualitatively the same.
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Finally, we consider vi x2
t as a predictor. The OLS estimation results imply that

there is a positive predictability from vi x2
t on rt+1, but the prediction-coefficient

estimate of 0.15×10−2 is asymptotically biased towards zero. If we instead predict

rt+1 by vi x2
t using the two identified instruments and IV estimation, we obtain a

statistically significant slope estimate of b̂ = 0.13×10−1. This estimate is almost nine

times larger than the corresponding inconsistent OLS estimate. The J -statistic is

equal to 1.41. As this value is smaller than the corresponding χ2
(1) critical value, even

if we consider a significance level of 20%, we conclude that jump and the variance

risk premium are valid instruments in this case. Hence, we find strong evidence that

there is an unobservable I (0) component, x∗
t =ω2

t , contained in the vi x2
t series that

positively predicts future daily stock returns, but that is corrupted by a fractionally

integrated noise term, zt . The risk-return trade-off thus is positive.

3.6 Concluding Remarks

This paper presents a novel DGP that accounts for many theoretical and empirical

features of the return prediction literature, such as persistence in the observed predictors

and the stationary noise-type behavior of returns. Assuming that the practitioner

estimates a misspecified and unbalanced predictive regression, where the regressors

are imperfect measures of the true predictor variable, we show that OLS estimation of

the predictive regression results in inconsistent estimates for the prediction coefficient.

Nevertheless, standard statistical inference based on t-tests remains valid. To avoid

the problem of obtaining an inconsistent estimate for the prediction coefficient, we

propose a method that filters the long memory error component without fractional

differencing. We prove that the product of a short memory process and a long memory

process eliminates the long memory behavior. We then propose to use this device in an

IV regression. If the practitioner has access to a valid and relevant I (0) instrument, IV

estimation results in a consistent estimate for the predictive coefficient and standard

statistical inference on predictability can be carried out.

Our paper is closely related to the work on predictive regressions with IV X filtering

of Magdalinos and Phillips (2009) and Phillips and Lee (2013), where the predictor

is assumed to have LU R dynamics. Similarly to our approach, the underlying idea

is to find an instrument that is less persistent that the regressor and use it in an

IV regression. They show that consistency of the prediction estimate and standard

statistical inference can be achieved in this framework,11 which is in line with our

11Note that the framework of Phillips and Lee (2013) permits multivariate regressors and discusses
multi-period predictions, which we do not consider in this work.
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conclusions. From a theoretical viewpoint, Phillips and Lee (2013) also explicitly

addresses the issue of an unbalanced regression and their extended framework present-

ed in the appendix permits local deviations from H0 while retaining balancedness.

Important differences to our work are that our setup allows for unrestricted deviations

for the null hypothesis of no predictability. Our theoretical predictive equation remains

balanced for any value of the prediction coefficient. Secondly, whereas Phillips and

Lee (2013) assume that the true predictor is observed, we view regressors as imperfect.

Lastly, the instrument in Magdalinos and Phillips (2009) and Phillips and Lee (2013) is

easy to find, as it is a filtered version of the predictor itself, and it is relevant and valid

by definition. In our setup, the practitioner has to find an instrument and subsequently

test for instrument relevance and validity. To that end, we discuss methodologies to

investigate instrument relevance and validity.

Finally, we apply the methods outlined in this paper to the investigation of the

predictability of daily returns on the S&P 500 stock market. Relying on an analysis

of fractional cointegration, we provide one suggestion of how an I (0) instrument

can be identified. We find evidence of significant return predictability and a positive

risk-return trade-off, using the suggested IV approach.
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3.8 Appendix

A Proofs

Lemma 1. Let at and bt be two independent processes given by at =φ(L)εt and bt = (1−
L)−dηt where φ(L) =∑∞

i=0φi Li with
∑∞

i=0 i |φi | <∞, φ(1) 6= 0 and (1−L)d =∑∞
i=0γi Li

with γi = Γ(i +d)/(Γ(d)Γ(i +1)), 0 < d < 1
2 and εt ∼ i .i .d .(0,σ2

ε), ηt ∼ i .i .d .(0,σ2
η).

Define Zt = at bt ; then, T −1/2 ∑T
t=1 Zt /σ̄

D→N (0,1) where σ̄2
T := var [T −1/2 ∑T

t=1 Zt ] →
σ̄2 as T →∞.

Proof:
Let at , bt and Zt be as above and let Ft be the σ-algebra generated by {εt ,ηt ,εt−1,

ηt−1, · · · }. Note that, given independence, Zt is a stationary ergodic process and that

{Zt ,Ft } is an adapted stochastic sequence with E[Z 2
t ] = E[a2

t b2
t ] =σ2

aσ
2
b <∞ where

σ2
a = E[a2

t ], σ2
b = E[b2

t ].

The lemma follows from Theorem 5.16 in White (2002), where we prove directly

that
∞∑

m=1

(
E

[
E[Z0|F−m]2

])1/2

<∞.

First note that

E[Z0|F−m ]2 = E


 ∞∑

i=0
φi ε−i

 ∞∑
i=0

γiη−i


∣∣∣∣∣∣∣F−m


2

=
 ∞∑

i=m
φi ε−i

2  ∞∑
i=m

γiη−i

2

.

Thus,

∞∑
m=1

(
E

[
E[Z0|F−m ]2

])1/2
=

∞∑
m=1

σ2
εσ

2
η

∞∑
i=m

φi
2

∞∑
i=m

γi
2

1/2

≤
∞∑

m=1

σ2
εσ

2
b

∞∑
i=m

φi
2

1/2

≤ σεσb

∞∑
m=1

 ∞∑
i=m

|φi |
=σεσb

 ∞∑
i=0

i |φi |
<∞.

Note in particular that Lemma 1 proves that multiplying the long-memory process

by an I (0) process reduces the order of convergence to the one of a short memory

process.

Proof of Theorem 1

If β 6= 0: The OLS estimator of regression model (3.6) is given by b̂OLS = (
X′X

)−1 (
X′y

)
,

where (
X′X

)−1 = 1

T
∑

x2
t−1 −

(∑
xt−1

)2

( ∑
x2

t−1 −∑
xt−1

−∑
xt−1 T

)
,



94 CHAPTER 3. UNBALANCED REGRESSIONS AND THE PREDICTIVE EQUATION

X′y =
( ∑

yt∑
yt xt−1

)
,

with xt−1 and yt generated by equations (3.3) and (3.4), respectively, and b̂OLS =
(
â, b̂

)′
.

X and y are defined as in equations (3.9) and (3.10), and all sums run from t = 1 to T
unless stated otherwise12. It follows that

â =
∑

x2
t−1

∑
yt −∑

xt−1
∑

yt xt−1

T
∑

x2
t−1 −

(∑
xt−1

)2
(3.20)

b̂ = T
∑

yt xt−1 −
∑

yt
∑

xt−1

T
∑

x2
t−1 −

(∑
xt−1

)2
. (3.21)

To derive the asymptotic behavior of the estimators (3.20) and (3.21), along with the

associated t-statistics, it is necessary to obtain the limit expression of the sums that

appear in the equations. They are summarized in Table 3.1, along with their respective

convergence rates. All of the convergence rates (see the underbraced expressions) can

be found in Tsay and Chung (2000) except for the normalization ratio of
∑
εt−1zt−1

and
∑
ξt zt−1, which follows from Lemma 1.

∑
xt−1 =

∑
εt−1︸ ︷︷ ︸

Op (T 1/2)

+ ∑
zt−1︸ ︷︷ ︸

Op (T d+1/2)∑
x2

t−1 =
∑
ε2

t−1︸ ︷︷ ︸
Op (T )

+∑
z2

t−1︸ ︷︷ ︸
Op (T )

+2
∑
εt−1zt−1︸ ︷︷ ︸

Op (T 1/2)∑
yt = αT +β∑

εt−1 +
∑
ξt︸ ︷︷ ︸

Op (T 1/2)∑
y2

t = α2T +β2 ∑
ε2

t−1 +
∑
ξ2

t︸ ︷︷ ︸
Op (T )

+2αβ
∑
εt−1 +2α

∑
ξt +2β

∑
ξtεt−1︸ ︷︷ ︸

Op (T 1/2)∑
yt xt−1 = α

∑
εt−1 +α

∑
zt−1 +β

∑
ε2

t−1 +β
∑
εt−1zt−1 +

∑
ξtεt−1 +

∑
ξt zt−1︸ ︷︷ ︸

Op (T 1/2)

Table 3.1. Expressions for sums in Theorem 1.

For ease of exposition, denote â(n) and â(d) the numerator and denominator of â,
respectively, and substitute the expressions from Table 3.1.

â(n) =
(∑

x2
t−1

)(∑
yt

)
−

(∑
xt−1

)(∑
yt xt−1

)
12Strictly speaking, T should be replaced by T −1 in all equations, as we lose one observation by lagging

xt ; similarly, all sums should run from t = 2 to T . Asymptotically, this will make no difference, however.
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= αT
∑
ε2

t−1 +αT
∑

z2
t−1︸ ︷︷ ︸

Op (T 2)

−β∑
ε2

t−1

∑
zt−1︸ ︷︷ ︸

Op (T d+3/2)

−α
(∑

zt−1

)2

︸ ︷︷ ︸
Op (T 2d+1)

+∑
ξt

∑
ε2

t−1 +β
∑
εt−1

∑
z2

t−1 +
∑
ξt

∑
z2

t−1 +2αT
∑
εt−1zt−1︸ ︷︷ ︸

Op (T 3/2)

−2α
∑
εt−1

∑
zt−1 −β

∑
zt−1

∑
εt−1zt−1 −

∑
zt−1

∑
ξtεt−1 −

∑
zt−1

∑
ξt zt−1︸ ︷︷ ︸

Op (T d+1)

+β∑
εt−1zt−1

∑
εt−1 +2

∑
εt−1zt−1

∑
ξt −

∑
εt−1

∑
ξtεt−1 −

∑
εt−1

∑
ξt zt−1︸ ︷︷ ︸

Op (T )

−α
(∑

εt−1

)2

︸ ︷︷ ︸
Op (T )

â(d) = T
∑

x2
t−1 −

(∑
xt−1

)2

= T
∑
ε2

t−1 +T
∑

z2
t−1︸ ︷︷ ︸

Op (T 2)

+2T
∑
εt−1zt−1︸ ︷︷ ︸

Op (T 3/2)

−
(∑

zt−1

)2

︸ ︷︷ ︸
Op (T 2d+1)

−2
∑
εt−1

∑
zt−1︸ ︷︷ ︸

Op (T d+1)

−
(∑

εt−1

)2

︸ ︷︷ ︸
Op (T )

.

It follows that the expression for â simplifies to

â =
αT

(∑
ε2

t−1 +
∑

z2
t−1

)
+Op (T d+3/2)

T
(∑

ε2
t−1 +

∑
z2

t−1

)
+Op (T 3/2)

.

Dividing both the numerator and the denominator by T 2 and letting T →∞, we obtain

plim
T→∞

â =α,

since the remaining terms collapse. Now let b̂(n) and b̂(d) be the numerator and
denominator of b̂, respectively. Then

b̂(n) = T
∑

yt xt−1 −
(∑

yt

)(∑
xt−1

)
= βT

∑
ε2

t−1︸ ︷︷ ︸
Op (T 2)

+βT
∑
εt−1zt−1 +T

∑
ξtεt−1 +T

∑
ξt zt−1︸ ︷︷ ︸

Op (T 3/2)

−β∑
εt−1

∑
zt−1 −

∑
ξt

∑
zt−1︸ ︷︷ ︸

Op (T d+1)

−β
(∑

εt−1

)2 −∑
ξt

∑
εt−1︸ ︷︷ ︸

Op (T )

.

Noting that b̂(d) = â(d), we obtain

b̂ = βT
∑
ε2

t−1 +Op (T 3/2)

T
(∑

ε2
t−1 +

∑
z2

t−1

)
+Op (T 3/2)

.
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Dividing b̂(n) and b̂(d) by T 2, in the limit we have

plim
T→∞

b̂ =β σ2
ε

σ2
ε+σ2

z
.

Next, we demonstrate the derivation of the asymptotic expression for the variance of
the regression residuals, s2.

s2 =
(
y−Xb̂OLS

)′(
y−Xb̂OLS

)
T−2

= T
∑

y2
t
∑

x2
t−1−

∑
y2

t (
∑

xt−1)2−T
(∑

yt xt−1
)2−2

∑
xt−1

∑
yt xt−1

∑
yt+∑

x2
t−1

(∑
yt

)2

(T−2)
(
T

∑
x2

t−1−(
∑

xt−1)2
) .

Substituting the terms from Table 3.1, we obtain the following expressions for the
numerator, s2(n), and denominator, s2(d), of s2.

s2(n) = −T
∑
ε2

t−1

∑
ξ2

t −T
∑

z2
t−1

∑
ξ2

t −Tβ2 ∑
ε2

t−1

∑
z2

t−1︸ ︷︷ ︸
Op (T 3)

+op (T 3)

s2(d) = −T 2 ∑
ε2

t−1 −T 2 ∑
z2

t−1︸ ︷︷ ︸
Op (T 3)

+op (T 3).

Thus, we obtain the following.

s2 =
1

T 2

(∑
ξ2

t
∑
ε2

t−1 +
∑
ξ2

t
∑

z2
t−1 +β2 ∑

z2
t−1

∑
ε2

t−1

)
+op (1)

1
T

(∑
ε2

t−1 +
∑

z2
t−1

)
+op (1)

.

When T →∞
plim
T→∞

s2 =σ2
ξ+β2 σ2

εσ
2
z

σ2
ε+σ2

z
.

Finally, we can write the t−statistics as

ta = â
[

s2 (
X′X

)−1
(1,1)

]−1/2

tb = b̂
[

s2 (
X′X

)−1
(2,2)

]−1/2
.

Following the same procedure as above, we find

plim
T→∞

ta = plim
T→∞

â ×
(

plim
T→∞

s2

)−1/2

× plim
T→∞

((
X′X

)−1

(11)

)−1/2

= α

(
σ2
ξ+β2 σ2

εσ
2
z

σ2
ε+σ2

z

)−1/2
plim

T→∞

∑
x2

t−1

T
∑

x2
t−1 −

(∑
xt−1

)2

−1/2
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= α

(
σ2
ξ+β2 σ2

εσ
2
z

σ2
ε+σ2

z

)−1/2


plim
T→∞

(∑
ε2

t−1 +
∑

z2
t−1 +Op (T 1/2)

)
plim
T→∞

(
T

∑
ε2

t−1 +T
∑

z2
t−1 +Op (T 3/2)

)

−1/2

= α

(
σ2
ξ+β2 σ2

εσ
2
z

σ2
ε+σ2

z

)−1/2

 σ2
ε+σ2

z

plim
T→∞

(∑
ε2

t−1 +
∑

z2
t−1)

)

−1/2

plim
T→∞

T−1/2ta = α

(
σ2
ξ+β2 σ2

εσ
2
z

σ2
ε+σ2

z

)−1/2

, (3.22)

and

plim
T→∞

tb = plim
T→∞

b̂ ×
(

plim
T→∞

s2

)−1/2

× plim
T→∞

((
X′X

)−1

(22)

)−1/2

=
(
β

σ2
ε

σ2
ε+σ2

z

)(
σ2
ξ+β2 σ2

εσ
2
z

σ2
ε+σ2

z

)−1/2
plim

T→∞
T

T
∑

x2
t−1 −

(∑
xt−1

)2

−1/2

=
(
β

σ2
ε

σ2
ε+σ2

z

)(
σ2
ξ+β2 σ2

εσ
2
z

σ2
ε+σ2

z

)−1/2

 1

plim
T→∞

(∑
ε2

t−1 +
∑

z2
t−1 +Op (T 1/2)

)

−1/2

plim
T→∞

T−1/2tb =

 β2σ4
ε

σ2
ξ

(
σ2
ε+σ2

z

)
+β2σ2

εσ
2
z


1/2

. (3.23)

If β = 0: Note that the asymptotic behavior for â does not change since the terms

with the largest order of divergence in â(d) and â(d) do not involve β. Similarly, the

asymptotic behavior of b̂(d) remains the same, yet the limit of b̂(n) is different if β= 0.

We find that

b̂ = T
(∑

ξtεt−1 +∑
ξt zt−1

)+op (T 3/2)

T
(∑

ε2
t−1 +

∑
z2

t−1

)
+Op (T 3/2)

=
1

T 1/2
1

T 1/2

(∑
ξtεt−1 +∑

ξt zt−1
)+op (T −1/2)

1
T

(∑
ε2

t−1 +
∑

z2
t−1

)
+Op (T −1/2)

T 1/2b̂ =
1

T 1/2

(∑
ξt

(
εt−1 + zt−1

))+op (1)

1
T

(∑
ε2

t−1 +
∑

z2
t−1

)
+Op (T −1/2)

. (3.24)

The denominator of (3.24) converges in probability to σ2
ε+σ2

z . The numerator involves

the sum of the random variable ξt
(
εt−1 + zt−1

)
, which from the Lemma has constant
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variance σ2
ξ

(
σ2
ε+σ2

z

)
. Thus, the numerator converges in distribution to

N

(
0,σ2

ξ

(
σ2
ε+σ2

z

))
. It follows that

T 1/2b̂
D→N

0,
σ2
ξ

σ2
ε+σ2

z

 . (3.25)

The asymptotic behavior of the numerator of s2, i.e. s2(n) changes if β= 0, whereas for

s2(d) there is no change. As a result, we get

plim
T→∞

s2 = plim
T→∞

1
T 2

(∑
ξ2

t
∑
ε2

t−1 +
∑
ξ2

t
∑

z2
t−1

)
+op (1)

1
T

(∑
ε2

t−1 +
∑

z2
t−1

)
+op (1)

=σ2
ξ.

Plugging this result into the expression for ta in (3.22), it follows that plim
T→∞

T −1/2ta = α
σξ

.

Finally, we find the asymptotic behavior of tb in the case where β = 0. We re-write
(3.23) as

tb = b̂ ×
(

s2
(
X′X

)−1

(22)

)−1/2

= b̂ ×

 s2 1(∑
ε2

t−1 +
∑

z2
t−1 +Op (T 1/2)

)

−1/2

= T 1/2b̂ ×

 s2 1(
1
T

∑
ε2

t−1 +
∑

z2
t−1 +Op (T−1/2)

)

−1/2

. (3.26)

The first term in (3.26), T 1/2b̂ converges in distribution to a normal by (3.25). The

second term converges in probability to

(
σ2
ξ

σ2
ε+σ2

z

)−1/2

. Hence,

tb
D→N

(
0,1

)
.

Proof of Theorem 2

This section presents proofs for the asymptotic results in Theorem 2. The IV estimator

of regression model (3.6) is given by

b̂IV ≡
(
â, b̂

)′ = (
X′Q

[
Q′Q

]−1 Q′X
)−1 (

X′Q
[
Q′Q

]−1 Q′y
)

,
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where Q, X′, and y are defined in equations (3.13), (3.9), and (3.10), respectively.

Introduce the following auxiliary notation

Q′X =


T

∑
xt−1∑

q1,t−1
∑

xt−1q1,t−1
...

...∑
qK ,t−1

∑
xt−1qK ,t−1

≡

 T
1×1

x
1×1

q
K×1

r
K×1

 (3.27)

Q′y =


∑

yt∑
yt q1,t−1

...∑
yt qK ,t−1

≡

 y
1×1

t
K×1

 (3.28)

Q′Q =


T

∑
q1,t−1 . . .

∑
qK ,t−1∑

q1,t−1
∑

q2
1,t−1 . . .

∑
q1,t−1qK ,t−1

...
...

. . .
...∑

qK ,t−1
∑

qK ,t−1q1,t−1 . . .
∑

q2
K ,t−1


≡

 T
1×1

q′
1×K

q
K×1

B
K×K

 (3.29)

It follows that

(Q′Q)−1 = 1

c

(
1 −q′B−1

−B−1q cB−1 +B−1qq′B−1

)
,

where c
1×1

≡ T −q′B−1q. Furthermore,

X′Q(Q′Q)−1 = 1

c

(
c 0

x − r′B−1q −x q′B−1 + cr′B−1 + r′B−1qq′B−1

)
,

and

X′Q(Q′Q)−1Q′X = 1

c

 T c xc

xc
(
x − r′B−1q

)(
x − r′B−1q

)′+ cr′B−1r


X′Q(Q′Q)−1Q′y = 1

c

 yc
yx − yr′B−1q+

(
−x q′B−1 + cr′B−1 + r′B−1qq′B−1

)
t

 .

Now, note that the following relation must hold true(
X′Q(Q′Q)−1Q′X

)−1 = c

T c
(
x − r′B−1q

)(
x − r′B−1q

)′+T c2r′B−1r−x 2c2
×
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 (
x − r′B−1q

)(
x − r′B−1q

)′+ cr′B−1r −xc
−xc T c

 .

Thus, the IV estimate can be re-written as follows.

b̂IV = 1

T c
(
x − r′B−1q

)(
x − r′B−1q

)′+T c2r′B−1r−x 2c2
×

(
x q′− cr′− r′B−1qq′

)
cB−1

(
−yr+x t

)
−

(
x q′− cr′− r′B−1qq′

)
T cB−1t+ (

x q′−T r′
)

ycB−1q

 .

As for the proof of Theorem 1 in Section A, it is necessary to obtain the limit expression

of the sums that appear in the definitions of the IV estimates and the associated

t-ratios. Most of these expressions are summarized in Table 3.1. The remaining sums

can be found in Table 3.2.

∑
qk,t−1 = ρk

∑
εt−1 +

∑
υk,t−1︸ ︷︷ ︸

Op (T 1/2)∑
q2

k,t−1 = ρ2
k

∑
ε2

t−1︸ ︷︷ ︸
Op (T )

+∑
υ2

k,t−1︸ ︷︷ ︸
Op (T )

+2ρk
∑
εt−1υk,t−1︸ ︷︷ ︸

Op (T 1/2)∑
yt qk,t−1 = αρk

∑
εt−1 +α

∑
υk,t−1 +βρk

∑
ε2

t−1 +β
∑
εt−1υk,t−1 +ρk

∑
ξtεt−1︸ ︷︷ ︸

Op (T 1/2)+∑
ξtυk,t−1︸ ︷︷ ︸

Op (T 1/2)∑
xt−1qk,t−1 = ρk

∑
ε2

t−1 +
∑
εt−1υk,t−1 +ρk

∑
εt−1zt−1 +

∑
zt−1υk,t−1︸ ︷︷ ︸
Op (T 1/2)∑

qk,t−1q j ,t−1 = ρkρ j
∑
ε2

t−1 +ρk
∑
εt−1υ j ,t−1 +ρ j

∑
εt−1υk,t−1 +

∑
υk,t−1υ j ,t−1︸ ︷︷ ︸

Op (T 1/2)

Table 3.2. Expressions for sums in Theorem 2 with j 6= k; k = 1, · · · ,K .

From the expressions in Tables 3.1 and 3.2 it follows that all elements of B are of

the order Op (T ). Hence, it must hold that B−1 is of order Op (T −1). Furthermore, the

elements of all vectors have the same convergence rates; i.e. q is Op (T 1/2), r is Op (T ),

and t is Op (T ) if β 6= 0 and Op (T 1/2) otherwise. Finally, we note the following orders for

the scalars. x is Op (T d+1/2), y is Op (T ), and c is Op (T ).

Let â(n) denote the numerator of â, given by (3.30). Note that independently of the
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true value of β, we find the following dominant terms

â(n) = c2yr′B−1r︸ ︷︷ ︸
Op (T 4)

+op (T 4).

Similarly, the denominator of â given in (3.30) is

â(d) = T c2r′B−1r︸ ︷︷ ︸
Op (T 4)

+op (T 4).

It follows that in the limit we can write

plim
T→∞

â = plim
T→∞

1
T 4 c2yr′B−1r+op (1)

1
T 3 c2r′B−1r+op (1)

= plim
T→∞

y
T

= αT

T
=α (3.30)

Now, note that the denominator of b̂ is identical to the denominator of â. Hence
b̂(d) = â(d). For the limiting behavior of the numerator of b̂, we need to distinguish
between β= 0 and β 6= 0. First, define additional auxiliary variables. Let

p ≡


ρ1
...

ρK

 u ≡


∑
υ1,t−1

...∑
υK ,t−1

 v ≡


∑
υ2

1,t−1
...∑
υ2

K ,t−1

 w ≡


∑
ξtυ1,t−1

...∑
ξtυK ,t−1

 .

If β 6= 0: Following the convergence rates in the tables, we find

b̂(n) = T c2r′B−1t︸ ︷︷ ︸
Op (T 4)

+Op (T 7/2).

Hence,

plim
T→∞

b̂ = plim
T→∞

1
T 3 c2r′B−1t+Op (T −1/2)

1
T 3 c2r′B−1r+op (1)

= plim
T→∞

r′B−1t

r′B−1r
= plim

T→∞

r′B−1β
∑
ε2

t−1p

r′B−1 ∑
ε2

t−1p
=β

Next we investigate the asymptotic behavior of s2, which is defined as

s2 =
(
y−Xb̂IV

)′ (
y−Xb̂IV

)
T −2

.

Introduce the additional auxiliary notation h ≡∑
y2

t , o ≡∑
xt−1 yt , and m ≡∑

x2
t . The

respective orders are Op (T ), Op (T ) if β 6= 0 and Op (T d+1/2) otherwise, and Op (T ). We

can re-write s2 as

s2 = h b̂(d) −2y â(n) −2ob̂(n) +T ââ(n) +2x â(n)b̂ +m b̂b̂(n)

(T −2)b̂(d)
.
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Note that the denominator of s2, s2(d), is equal to (T −2)a(d) = (T −2)b(d). For the case

where β 6= 0, we can write the numerator of s2, s2(n), in the limit as

s2(n) = h b̂(d) −2y â(n) −2ob̂(n) +T ââ(n) +m b̂b̂(n)︸ ︷︷ ︸
Op (T 5)

+op (T 5),

and hence by plugging in the dominant terms, we find

plim
T→∞

s2(n) = plim
T→∞

{(
α2T +β2

∑
ε2

t−1 +
∑
ξ2

t

)
T c2r′B−1r−2αT c2yr′B−1r

−2β
∑
ε2

t−1T c2r′B−1t+Tαc2yr′B−1r+
(∑

ε2
t−1 +

∑
z2

t−1

)
βT c2r′B−1t

+op (T 5)
}

= plim
T→∞

{(
α2T +β2

∑
ε2

t−1 +
∑
ξ2

t

)
T 3p′B−1p

(∑
ε2

t−1

)2

−2α2T 4p′B−1p
(∑

ε2
t−1

)2 −2β2
(∑

ε2
t−1

)3
T 3p′B−1p

+T 4α2p′B−1p
(∑

ε2
t−1

)2

+
(∑

ε2
t−1 +

∑
z2

t−1

)
β2T 3p′B−1p

(∑
ε2

t−1

)2 +op (T 5)

}
= plim

T→∞

{
T 3p′B−1p

(∑
ε2

t−1

)2 (∑
ξ2

t +β2
∑

z2
t

)
+op (T 5)

}
We can therefore conclude that

plim
T→∞

s2 = plim
T→∞

T 3p′B−1p
(∑

ε2
t−1

)2 (∑
ξ2

t +β2 ∑
z2

t

)
+op (T 5)

T 4p′B−1p
(∑

ε2
t−1

)2 +op (T 5)

= plim
T→∞

T −2p′B−1p
(∑

ε2
t−1

)2 (∑
ξ2

t +β2 ∑
z2

t

)
T −1p′B−1p

(∑
ε2

t−1

)2

= plim
T→∞

1

T

(∑
ξ2

t +β2
∑

z2
t

)
=σ2

ξ+β2σ2
z .

Finally, we analyze the asymptotic behavior of the t-statistics. The expressions for(
X′X

)−1 are given in equation (3.30).

plim
T→∞

ta = plim
T→∞

â

(
plim
T→∞

s2

)−1/2 (
plim
T→∞

(
X′Q

[
Q′Q

]−1 Q′X
)−1

(11)

)−1/2
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= α
(
σ2
ξ+β2σ2

z

)−1/2

plim
T→∞

1
T b̂(d) + 1

T x 2c

b̂(d)

−1/2

= α
(
σ2
ξ+β2σ2

z

)−1/2
(

plim
T→∞

c2r′B−1r+op (T 3)

T c2r′B−1r+op (T 4)

)−1/2

T −1/2plim
T→∞

ta = α
(
σ2
ξ+β2σ2

z

)−1/2
(

plim
T→∞

T −3c2r′B−1r+op (1)

T −3c2r′B−1r+op (1)

)−1/2

=α
(
σ2
ξ+β2σ2

z

)−1/2
.

In a similar manner, we determine the asymptotics of tb . To that end, we obtain an

expression for B−1. We can write B = ∑
ε2

t−1pp′+diag(v)+Op (T 1/2). Thus, we know

that

B−1 = (1/f )
((

diag(v)
)−1 f − (

diag(v)
)−1 ∑

ε2
t−1pp′ (diag(v)

)−1
)
+Op (T −1/2),

where f = 1+∑
ε2

t−1p′ (diag(v)
)−1 p. Then

plim
T→∞

tb = plim
T→∞

b̂

(
plim
T→∞

s2

)−1/2 (
plim
T→∞

(
X′Q

[
Q′Q

]−1 Q′X
)−1

(22)

)−1/2

= β
(
σ2
ξ+β2σ2

z

)−1/2
(

plim
T→∞

T c2

b̂(d)

)−1/2

= β
(
σ2
ξ+β2σ2

z

)−1/2
(

plim
T→∞

T 3 +Op (T 2)

T c2r′B−1r+op (T 4)

)−1/2

= β
(
σ2
ξ+β2σ2

z

)−1/2

plim
T→∞

T −1

T −1p′B−1p
(∑

ε2
t−1

)2


−1/2

= β
(
σ2
ξ+β2σ2

z

)−1/2
(

plim
T→∞

p′B−1p
(∑

ε2
t−1

)2
)1/2

= β
(
σ2
ξ+β2σ2

z

)−1/2

plim
T→∞

(∑
ε2

t−1

)2
p′ (diag(v)

)−1 p

1+∑
ε2

t−1p′ (diag(v)
)−1 p


1/2

= β
(
σ2
ξ+β2σ2

z

)−1/2

plim
T→∞

(∑
ε2

t−1

)2 ∑K
k=1ρ

2
k

(∑
υ2

k,t−1

)−1

1+∑
ε2

t−1

∑K
k=1ρ

2
k

(∑
υ2

k,t−1

)−1


1/2
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T −1/2plim
T→∞

tb = β
(
σ2
ξ+β2σ2

z

)−1/2


σ4
ε

∑K
k=1

ρ2
k

σ2
υk

1+σ2
ε

∑K
k=1

ρ2
k

σ2
υk


1/2

Ifβ= 0: Note that the asymptotic behaviour of â, b̂(d), s2(d), plim
T→∞

(
X′Q

[
Q′Q

]−1 Q′X
)−1

(11)
,

and plim
T→∞

(
X′Q

[
Q′Q

]−1 Q′X
)−1

(22)
remains unaltered. However, the convergence of b̂(n)

and s2(n) changes. For the former, we find the following

b̂(n) = cr′T cB−1t−T r′ycB−1q︸ ︷︷ ︸
Op (T 7/2)

+op (T 3)

= T cr′B−1
(
T p

∑
ξtεt−1 +T w

)
︸ ︷︷ ︸

Op (T 7/2)

+op (T 3)

= T 3
∑
ε2

t−1p′B−1
(
p

∑
ξtεt−1 +w

)
︸ ︷︷ ︸

Op (T 7/2)

+Op (T 3).

Hence, in the limit we get

plim
T→∞

b̂ = plim
T→∞

T 3 ∑
ε2

t−1p′B−1
(
p

∑
ξtεt−1 +w

)+Op (T 3)

T 3p′∑ε2
t−1B−1 ∑

ε2
t−1p+op (T 4)

= plim
T→∞

T −1 ∑
ε2

t−1p′B−1
(
p

∑
ξtεt−1 +w

)
T −1p′∑ε2

t−1B−1 ∑
ε2

t−1p

= plim
T→∞

p′ (diag(v)
)−1 (

p
∑
ξtεt−1 +w

)
p′ (diag(v)

)−1 p
∑
ε2

t−1

= plim
T→∞

∑K
k=1ρ

2
k

(∑
υ2

k,t−1

)−1 (∑
ξtεt−1 +

∑
ξtυk,t−1
ρk

)
∑K

k=1ρ
2
k

(∑
υ2

k,t−1

)−1 ∑
ε2

t−1

T 1/2plim
T→∞

b̂ = plim
T→∞

∑K
k=1ρ

2
k

(
1
T

∑
υ2

k,t−1

)−1
(

1
T 1/2

∑
ξtεt−1 +

1
T 1/2

∑
ξtυk,t−1

ρk

)
∑K

k=1ρ
2
k

(
1
T

∑
υ2

k,t−1

)−1
1
T

∑
ε2

t−1

=
plim
T→∞

1
T 1/2

∑
ξtεt−1

σ2
ε

+
∑K

k=1
ρk

σ2
υk

plim
T→∞

1
T 1/2

∑
ξtυk,t−1

σ2
ε

∑K
k=1

ρ2
k

σ2
υk

. (3.31)
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Note that (3.31) is the sum of two independent random variables that has zero mean

and asymptotic variance given by

Var(T 1/2plim
T→∞

b̂) =
σ2
ξ
σ2
ε

σ4
ε

+
∑K

k=1

ρ2
k

σ4
υk

σ2
ξ
σ2
υk

σ4
ε

(∑K
k=1

ρ2
k

σ2
υk

)2 =
σ2
ξ

(
σ2
ε

∑K
k=1

ρ2
k

σ2
υk

+1

)
σ4
ε

∑K
k=1

ρ2
k

σ2
υk

. (3.32)

Thus, the result in Theorem 2 follows suit. Now we consider the error variance s2. For

the case where β= 0, we can write the numerator of s2, s2(n), in the limit as

s2(n) = h b̂(d) −2y â(n) +T ââ(n)︸ ︷︷ ︸
Op (T 5)

+op (T 9/2)

plim
T→∞

s2(n) = plim
T→∞

{(
α2T +∑

ξ2
t

)
T c2r′B−1r−2αT c2yr′B−1r+Tαc2yr′B−1r

}
= plim

T→∞

{(
α2T +∑

ξ2
t

)
T 3p′B−1p

(∑
ε2

t−1

)2 −2α2T 4p′B−1p
(∑

ε2
t−1

)2

+T 4α2p′B−1p
(∑

ε2
t−1

)2
}

= plim
T→∞

{∑
ξ2

t T 3p′B−1p
(∑

ε2
t−1

)2
}

Since the denominator is the same as above, we can conclude that

plim
T→∞

s2 = plim
T→∞

∑
ξ2

t T 3p′B−1p
(∑

ε2
t−1

)2 +op (T 9/2)

T 4p′B−1p
(∑

ε2
t−1

)2 +op (T 5)

= plim
T→∞

T −2 ∑
ξ2

t p′B−1p
(∑

ε2
t−1

)2

T −1p′B−1p
(∑

ε2
t−1

)2 =σ2
ξ (3.33)

In the final step, we analyze the asymptotic behavior of the t-statistics. Note that the

computation of the limiting behavior of ta follows exactly the steps in (3.31) in Section

A above, with plim
T→∞

s2 replaced by σ2
ξ

. Then

T −1/2plim
T→∞

ta =α
(
σ2
ξ

)−1/2
.

For the derivation of tb , we make the following replacements in equation (3.31) above.
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Replace plim
T→∞

s2 by σ2
ξ

and plim
T→∞

b̂ by T −1/2 times the expression in (3.31). It follows that

T −1/2plim
T→∞

tb = T −1/2

∑K
k=1

ρ2
k

σ2
υk

plim
T→∞

(
1

T 1/2

∑
ξtεt−1 +

1
T 1/2

∑
ξtυk,t−1

ρk

)

σ2
ε

∑K
k=1

ρ2
k

σ2
υk

(
σ2
ξ

)−1/2


σ4
ε

∑K
k=1

ρ2
k

σ2
υk

1+σ2
ε

∑K
k=1

ρ2
k

σ2
υk


1/2

plim
T→∞

tb =

∑K
k=1

ρ2
k

σ2
υk

plim
T→∞

(
1

T 1/2

∑
ξtεt−1 +

1
T 1/2

∑
ξtυk,t−1

ρk

)

σ2
ε

∑K
k=1

ρ2
k

σ2
υk

(
σ2
ξ

)−1/2


σ4
ε

∑K
k=1

ρ2
k

σ2
υk

1+σ2
ε

∑K
k=1

ρ2
k

σ2
υk


1/2

(3.34)

By the same logic as before, note that (3.34) is a random variable with zero mean and

asymptotic variance equal to

Var


∑K

k=1

ρ2
k

σ2
υk

plim
T→∞

(
1

T 1/2

∑
ξtεt−1 +

1
T 1/2

∑
ξtυk,t−1

ρk

)

σ2
ε

∑K
k=1

ρ2
k

σ2
υk


σ4
ε

∑K
k=1

ρ2
k

σ2
υk

σ2
ξ

(
1+σ2

ε

∑K
k=1

ρ2
k

σ2
υk

)

σ2
ξ

(
1+σ2

ε

∑K
k=1

ρ2
k

σ2
υk

)
σ4
ε

∑K
k=1

ρ2
k

σ2
υk

σ4
ε

∑K
k=1

ρ2
k

σ2
υk

σ2
ξ

(
1+σ2

ε

∑K
k=1

ρ2
k

σ2
υk

) = 1,

where the last line follows directly from (3.32).

Proof of Corollary 1

This section presents proofs for the asymptotic results in Corollary 1. Sargan’s J test

for instrument validity is built upon a two-step procedure: (i) we estimate regression

(3.6) by IV and, (ii) the resulting residuals, ê, are in turn regressed on the instruments.
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The residuals of the second regression, v̂, as well as ê are then used to construct the J

statistic, J = T ê′ê−v̂′v̂
ê′ê , where ê = y−Xb̂IV and v̂ = ê−Q$̂. Note that the test statistic

can be written as

J = T
ê′ê− v̂′v̂

ê′ê
= ê′Q(Q′Q)−1Q′ê

ê′ê
T

=
(−βz+ξ

)′ QL√
ê′ê
T

[
I−L′Q′X

(
X′QLL′Q′X

)−1 X′QL
] L′Q′ (−βz+ξ

)√
ê′ê
T

, (3.35)

where

z′ ≡
(

z1 z2 z3 . . . zT−1

)
ξ′ ≡

(
ξ2 ξ3 ξ4 . . . ξT

)
and L is a (K +1)× (K +1) matrix such that LL′ = (Q′Q)−1. We can write L as

L =
 1p

c 0

− 1p
c B−1q B−1/2

 .

J in (3.35) is the product of the transpose of a (K + 1)× 1 vector multiplied by a

(K +1)× (K +1) symmetric and idempotent matrix,
[

I−L′Q′X
(
X′QLL′Q′X

)−1 X′QL
]

,

that has rank K −1, multiplied by the former (K +1)×1 vector. If it can be proven that

the (K +1)×1 vector,
L′Q′(−βz+ξ)√

ê′ ê
T

, converges to a standard normal distribution, the

usual result follows and J
D→χ2

(K−1).

We can express the vector
L′Q′(−βz+ξ)√

ê′ ê
T

as

L′Q′ (−βz+ξ
)√

ê′ê
T

= 1√
ê′ê
T

 − βp
c
∑

zt−1 + 1p
c
∑
ξt + βp

c q′B−1s− 1p
c q′B−1a

−βB−1/2s+B−1/2a

 , (3.36)

where

s ≡


∑

zt−1q1,t−1
...∑

zt−1qK ,t−1

 a ≡


∑
ξt q1,t−1

...∑
ξt qK ,t−1

 .
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q
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r)( x p T
q
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q

T
(x
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q
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cr
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−
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This implies that the limit of the idempotent matrix and the (K +1)×1 vector is

equal to

plim
T→∞


[

I−L′Q′X
(
X′QLL′Q′X

)−1 X′QL
] L′Q′ (−βz+ξ

)√
ê′ê
T


= plim

T→∞

[
I−L′Q′X

(
X′QLL′Q′X

)−1 X′QL
] plim

T→∞
L′Q′ (−βz+ξ

)
√
β2σ2

z +σ2
ξ

= 1√
β2σ2

z +σ2
ξ



plim
T→∞

(
T
p

cq′B−1rr′B−1/2−T
p

cr′B−1rq′B−1/2
)

plim
T→∞

T cr′B−1r
plim
T→∞

(
−βB−1/2s+B−1/2a

)
plim
T→∞

B−1/2
(
T Bcr′B−1r−T crr′

)
B−1/2

plim
T→∞

T cr′B−1r
plim
T→∞

(
−βB−1/2s+B−1/2a

)
+op (1)



= 1√
β2σ2

z +σ2
ξ


0

plim
T→∞

(
I − B−1/2rr′B−1

r′B−1r

)
plim
T→∞

(
−βB−1/2s+B−1/2a

)
+op (1)

 ;

i.e., the first row of the vector [L′Q′(−βz+ξ)]/
p

ê′ê/T in (3.36) disappears in the limit.

The remaining terms, [plim
T→∞

(−βB−1/2s+B−1/2a)]/
√
β2σ2

z +σ2
ξ

, are (scaled) sums that

by Lemma 1 converge to a standard normal distribution. Hence, J is asymptotically

equivalent to

(
0 n′

)
×

 0 0

0 plim
T→∞

(
I − B−1/2rr′B−1

r′B−1r

) ×
(

0

n

)

= n′plim
T→∞

(
I − B−1/2rr′B−1

r′B−1r

)
n ∼χ2

(K−1),

where n is a K × 1 vector that has a standard normal distribution, N (0,1). Since

plim
T→∞

(I − B−1/2rr′B−1

r′B−1r
) is the probability limit of a K × K symmetric and idempotent

matrix of rank K −1 the above result holds and it follows that

J
D→χ2

(K−1).



110 CHAPTER 3. UNBALANCED REGRESSIONS AND THE PREDICTIVE EQUATION

B Figures

Figure 3.1. Small sample behavior of OLS estimates if β= 0 - The figures plot the small sample
distribution of the scaled OLS estimate T 1/2b̂ (left) from 200,000 simulations of the DGP
(3.2)-(3.5), and the associated t-statistic, tb (right). The black solid line reports the asymptotic
distribution from Theorem 1. The gray dots represent the empirical distribution for T = 250; the
black crosses are the empirical distribution for T = 50,000. In the simulations, we let d = 0.35,
ση ≈ 1, σξ ≈ 2, σε ≈ 1.8, α = 1.2, and β = 0. The innovations in the DGP are drawn from
continuous uniform distributions.

Figure 3.2. Small sample behavior of OLS estimates if β 6= 0 - The figures plot the small sample
behavior of the OLS estimate b̂ (left) from 200,000 simulations of the DGP (3.2)-(3.5), and the
associated scaled t-statistic, T−1/2tb (right). The x-axis contains varying sample sizes from
T = 250 to T = 50,000. The black solid line reports the asymptotic value from Theorem 1.
The gray dots represent the average estimate for a given T . In the simulations, we let d = 0.2,
ση ≈ 1.2, σξ ≈ 1.7, σε ≈ 1.4, α = 1.2, and β = 4. The innovations in the DGP are drawn from
t-distributions.
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Figure 3.3. Small sample behavior of IV estimates if β = 0 - The figures plot the small
sample distribution of the scaled IV estimate T 1/2b̂ (left) from 200,000 simulations of
the DGP (3.2)-(3.5) and the instruments (3.12) with K = 9, and the associated t-statistic,
tb (right). The black solid line reports the asymptotic distribution from Theorem 2.
The gray dots represent the empirical distribution for T = 250; the black crosses are
the empirical distribution for T = 50,000. In the simulations, we let d = 0.3, ση = 1,
σξ = 2, σε = 1.8, συ = [1.5,1.2,3.0,1.5,1.2,3.0,1.5,1.2,3.0]′, α = 1.2, β = 0, and ρ =
[3.77,4.44,1.77,0.55,3.11,2.66,1.99,3.99,0.99]′. The innovations in the DGP are drawn from
standard normal distributions.

Figure 3.4. Small sample behavior of IV estimates if β 6= 0 - The figures plot the small sample
behavior of the IV estimate b̂ (left) from 200,000 simulations of the DGP (3.2)-(3.5) and the
instruments (3.12) with K = 3, and the associated scaled t-statistic, T−1/2tb (right). The x-axis
contains varying sample sizes from T = 250 to T = 50,000. The black solid line reports the
asymptotic value from Theorem 2. The gray dots represent the average estimate for a given T .
In the simulations, we let d = 0.4, ση ≈ 1.0, σξ ≈ 2.0, σε ≈ 1.8, συ ≈ [1.5,1.2,3.0]′, α= 1.2, β= 3,
and ρ = [3.77,4.44,1.77]′. The innovations in the DGP are drawn from continuous uniform
distributions.
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Figure 3.5. ACF estimates for the three variance series and returns - The figure plots the
estimates of the autocorrelation of the realized variance, r vt (top left), the bipower variation,
bvt (top right), the volatility index, vi x2

t (bottom left), and daily intraday returns on the the S&P
500, rt (bottom right). The x-axis measures lags in daily units.

Figure 3.6. Roots of the characteristic polynomial of the co-fractional VAR - The figure plots
the roots of the characteristic equation |(1− c)I3×3 −ϕθ′c − (1− c)

∑n
i=1Γi ci | = 0, indicated by

the black stars. The gray line is the image of the complex disk Cd , for d̂ = 0.3775. For θ′Xt to be
I (0), all roots must be equal to one or lie outside the disk.

C Tables
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Table 3.5. Size, Power, and (In-)Consistency of IV Estimate b̂ with Irrelevant Instrument

The table reports rejection rates in % at a nominal size of 5% based on a standard t-test of H0 : β= 0 vs.
H1 :β 6= 0. We estimate regression (3.6) by IV using an irrelevant instrument. That is, we set Corr(qt , x∗t )
equal to zero. Simulations are based on 200,000 repetitions. The table also outlines the relative bias in
the estimate, (b̂/β)×100 in gray font. All errors are drawn from continuous uniform distributions.

d
β

0.1 0.295 0.49
σξ ,σε ,ση ,συ T -2 0 3 -2 0 3 -2 0 3

1.7,1.7,1.7,1.7 250 4 0.01 5 3 0.01 4 2 0.01 3
-218 -135 73 25 86 80

1.7,1.7,1.7,1.7 1000 4 0.01 5 3 0.01 4 2 0.01 2
23 127 33 58 -84 6

1.7,1.7,1.7,1.1 250 4 0.01 5 3 0.02 5 2 0.01 3
-122 -130 71 -1522 157 133

1.7,1.7,1.7,1.1 1000 4 0.01 5 3 0.01 4 2 0.01 2
-526 278 25 46 -105 -80

1.7,1.7,1.1,1.7 250 9 0.01 13 8 0.01 11 6 0.01 7
-412 1472 53 71 434 81

1.7,1.7,1.1,1.7 1000 9 0.01 13 8 0.01 11 4 0.01 6
76 -414 -10 -228 412 -91

1.7,1.7,1.1,1.1 250 9 0.01 13 8 0.01 11 6 0.01 7
-539 429 74 -27 121 406

1.7,1.7,1.1,1.1 1000 9 0.01 12 8 0.01 11 4 0.01 6
-335 86 -56 294 483 54

1.7,1.1,1.7,1.7 250 1 0.01 1 1 0.01 1 0 0.01 1
-13 18 358 -101 162 76

1.7,1.1,1.7,1.7 1000 1 0.01 1 1 0.01 1 0 0.01 0
-294 65 -2227 -2268 147 7

1.7,1.1,1.7,1.1 250 1 0.01 1 1 0.01 1 0 0.01 1
-2 -13 -73 -77 81 -10

1.7,1.1,1.7,1.1 1000 1 0.01 1 1 0.01 1 0 0.01 0
-333 108 -2316 -2307 57 11

1.7,1.1,1.1,1.7 250 2 0.01 4 2 0.01 3 1 0.01 2
-70 95 -66 -1928 247 71

1.7,1.1,1.1,1.7 1000 2 0.01 4 2 0.01 3 1 0.01 2
148 59 68 23 -147 103

1.7,1.1,1.1,1.1 250 2 0.01 4 2 0.01 3 1 0.01 2
140 426 -134 1974 27 -5

1.7,1.1,1.1,1.1 1000 2 0.01 4 2 0.01 3 1 0.01 1
17 56 -10 -142 28 91

1.1,1.7,1.7,1.7 250 5 0.01 6 4 0.02 5 3 0.01 3
-125 -124 61 -1367 141 145

1.1,1.7,1.7,1.7 1000 5 0.01 6 4 0.01 5 2 0.01 2
-391 265 32 48 -82 -87

1.1,1.7,1.7,1.1 250 5 0.01 6 5 0.01 5 3 0.01 3
-94 106 -633 -1419 201 61

1.1,1.7,1.7,1.1 1000 5 0.01 6 4 0.01 5 2 0.01 2
200 49 59 16 -119 86

1.1,1.7,1.1,1.7 250 13 0.01 15 11 0.01 13 7 0.01 9
-122 251 74 -8 113 408

1.1,1.7,1.1,1.7 1000 13 0.01 15 11 0.01 12 6 0.01 7
-352 95 -92 262 364 48

1.1,1.7,1.1,1.1 250 13 0.01 15 11 0.01 13 7 0.01 9
-593 -179 80 81 415 16

1.1,1.7,1.1,1.1 1000 13 0.01 15 11 0.01 12 6 0.01 7
139 146 117 446 17 -278

1.1,1.1,1.7,1.7 250 1 0.01 2 1 0.01 1 1 0.01 1
2 -14 -79 -70 80 -14

1.1,1.1,1.7,1.7 1000 1 0.01 2 1 0.01 1 0 0.01 1
-250 66 -2306 -2332 47 18

1.1,1.1,1.7,1.1 250 1 0.01 2 1 0.01 1 1 0.01 1
-17 -5 -37 -470 -33 -36
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Table 3.5 – continued from previous page

1.1,1.1,1.7,1.1 1000 1 0.01 2 1 0.01 1 0 0.01 1
-133 99 -2452 -9 47 120

1.1,1.1,1.1,1.7 250 4 0.01 5 3 0.01 4 2 0.01 3
131 351 -506 1839 36 -11

1.1,1.1,1.1,1.7 1000 4 0.01 5 3 0.01 4 2 0.01 2
26 51 -3 -134 43 85

1.1,1.1,1.1,1.1 250 4 0.01 5 3 0.01 4 2 0.01 3
-3 426 1202 26 -38 27

1.1,1.1,1.1,1.1 1000 4 0.01 5 3 0.01 4 2 0.01 2
27 -327 -93 53 58 -11
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Table 3.8. Long-Memory Estimates

The upper panel of the table reports estimates of d using the multivariate EW estimator
of Nielsen and Shimotsu (2007) for Yt = [r vt , bvt , vi x2

t , rt ]′. The size of the spectral
window is set to m = T 0.35; the choice is based on a graphical analysis of the slope of
the log periodograms as suggested by Beran (1994). td=0 denotes the respective t-statistic
of element i of Yt given by 2

p
md̂i . The lower panel of the table summarizes the t-statistics

corresponding to the null hypothesis di = d j for i 6= j . Nielsen and Shimotsu (2007) define
the t-statistic as

tdi =d j
=

p
m

(
d̂i − d̂ j

)
√√√√√ 1

2

1−
τ̂2

i , j
τ̂i ,i τ̂ j , j

+h(T )

,

where τ̂i , j = 1
m

∑m
l=1 real

{
I (λl )

}
and I (λl ) is the periodogram of a (4 × 1) vector with

elements ∆d̂i Yt ,i at frequency λl . h(T ) is a tuning parameter, which we set equal to(
ln(T )

)−1 as in Nielsen and Shimotsu (2007). The resulting statistic tdi =d j
should be

compared to critical values from a t-distribution.

Estimates for d
r vt bvt vi x2

t rt

d̂ 0.3517 0.3403 0.4393 0.0202
td=0 2.8134 2.7227 3.5146 0.1618

tdi =d j
statistics with h(T ) = 0.1233

r vt bvt vi x2
t rt

r vt - 0.2609 -1.6730 2.2602
bvt - -1.7115 2.1587
vi x2

t - 2.9844
rt -
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Table 3.9. Summary Statistics and Estimation Results

The first panel of the table reports summary statistics of the three variance series and intraday
returns. The second panel summarizes the estimation results when the predictive regression
(3.17) is evaluated by OLS. OLS−SE denotes the usual standard error of b, and H AC −SE reports
standard errors based on H AC covariance estimation using a Bartlett kernel. The third panel of
the table contains the analogous results from IV estimation. IV −SE is the usual standard error
of b and J is Sargan’s statistic from Corollary 1.

Summary Statistics
Autocorrelation

Average Std. Dev. 1 2 3 22

rt 0.0139 1.2833 -0.0769 -0.0612 0.0205 0.0356
r vt 31.7888 47.6128 0.9976 0.9927 0.9860 0.7009
bvt 25.4352 40.5219 0.9976 0.9927 0.9858 0.6959
vi x2

t 45.9689 48.6179 0.9690 0.9469 0.9322 0.7413

OLS Regressions (3.17)
xt b̂ OLS −SE(b) H AC −SE(b) tb̂OLS

−SE

r vt 4.98×10−5 0.0005 0.0004 0.0996
bvt 7.70×10−5 0.0005 0.0004 0.1540
vi x2

t 0.0015 0.0005 0.0002 3.0012

IV Regressions (3.17)
xt b̂ IV −SE(b) H AC −SE(b) tb̂IV

−SE J

r vt -0.0130 0.0024 0.0046 -5.4166 13.7306
bvt -0.0088 0.0021 0.0035 -4.1905 30.3321
vi x2

t 0.0128 0.0020 0.0060 6.4001 1.4128
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