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Abstract

This thesis deals with a wide range of topics within the research area of advanced

baseband receiver design for wireless communication systems. In particular, the work

focuses on signal processing algorithms for receivers in multiple-input multiple-output

(MIMO) orthogonal frequency-division multiplexing (OFDM) systems, with a particu-

lar emphasis on the 3rd Generation Partnership Project (3GPP) Long Term Evolution

(LTE) standard as a study case.

Signal processing in wireless receivers can be designed following different strategies.

On the one hand, one can use intuitive argumentation to define the structure of the

receiver with the hope that the resulting heuristic architecture will exhibit the desired

behavior and performance. On the other hand, one can employ analytical frameworks

to pose the problem as the optimization of a global objective function subject to certain

constraints. This work includes contributions based on both types of approaches.

Our work on analytical frameworks is mainly focused on tools from variational

Bayesian inference in probabilistic models and, more specifically, the mean-field (MF)

and belief propagation (BP) methods. Within this context, one of our main contribu-

tions is the derivation of a novel message-passing scheme combining the MF and BP

frameworks; the algorithm is derived from the stationary points of a region-based free

energy approximation, and is guaranteed to converge if the underlying probabilistic

model satisfies certain conditions. Moreover, we apply the combined message-passing

algorithm to the probabilistic model of a MIMO-OFDM system; from the general

derivation of the messages in the model, several instances of receiver structures with

varying degrees of computational complexity and performance are obtained. We also

explore the applicability of MF methods to the problem of estimation of sparse signals.

Among the contributions within the area of heuristic approaches, we highlight our

study of iterative MIMO detection, interference cancellation and decoding for LTE

systems. A detailed study of channel estimation algorithms for OFDM is also provided,

including both pilot-based and data-aided schemes.
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Dansk Resumé

Denne afhandling omhandler en række emner indenfor forskningsomr̊adet for avanceret

design af modtagere til tr̊adløse kommunikationssystemer. Arbejdet fokuserer navnlig p

signalbehandlingsalgoritmer til modtagere i ”multiple-input multiple-output” (MIMO)

”orthogonal frequency-division multiplexing” (OFDM) systemer og har særlig fokus

p̊a“3rd Generation Partnership Project” (3GPP) “Long Term Evolution” (LTE) stan-

darden.

Signalbehandling i tr̊adløse modtagere kan designes efter forskellige strategier. P̊aden

ene side kan der bruges intuitive argumenter til at definere strukturen af modtageren

med h̊abet om, at den resulterende heuristiske arkitektur vil udvise den ønskede adfærd

og prstationer. P̊aden anden side kan der anvendes analytiske tilgange til at fremsætte

problemet som optimeringen af en global funktion underlagt visse sidebetingelser. Dette

arbejde omfatter bidrag baseret p begge tilgange.

Vores arbejde med den analytiske tilgang er hovedsageligt fokuseret p̊aværktøjer til

“variational Bayesian inference” i sandsynlighedsteoretiske modeller og - mere speci-

fikt - metoderne “mean field” (MF) og “belief propagation” (BP). I denne sammen-

hæng er en af vores vigtigste bidrag udledningen af en ny besked-baseret algoritme,

der kombinerer MF og BP. Algoritmen er udledt p̊abaggrund af stationære punkter i

en region-baseret fri energi tilnærmelse og er garanteret at konvergere, hvis den un-

derliggende probabilistiske model opfylder visse betingelser. Endvidere, anvender vi

den kombinerede besked-baseret algoritme til den probabilistiske model af et MIMO-

OFDM system. Igennem den generelle udledning af beskederne i modellen, opn̊as der

flere eksempler p̊astrukturen i modtageren med varierende grader af beregningsmæs-

sig kompleksitet og ydeevne. Vi undersøger ogs̊aanvendeligheden af MF metoder til

problemet med estimering af signaler, som har egenskaben “sparse”.

Blandt bidragene indenfor heuristiske metoder, fremhver vi vores undersøgelse af

iterativ MIMO-detektion, interferens annullering og afkodning til LTE-systemer. En de-

taljeret undersøgelse af algoritmer til kanalestimering i OFDM systemer er ogs̊afremlagt,

herunder b̊ade pilot-baseret og data-støttet løsninger.



vi



Preface

This thesis is submitted to the International Doctor School of Technology

and Science at Aalborg University, Denmark, in partial fulfillment of the

requirements for the degree of doctor of philosophy. The work has been

carried out during the period spanning from October 2006 to November

2011 at the Department of Electronic Systems, Aalborg University. It has

been partially supported by Intel Mobile Communications (IMC). Parts

of this work have been performed within the ICT-216715 FP7 Network of

Excellence in Wireless COMmunication (NEWCOM++) and the 4GMCT

project funded by IMC, Agilent, Aalborg University and the Danish Na-

tional Advanced Technology Foundation.

The main body of the thesis consists of Papers A–O, which are included as

appendices and are published, submitted or under preparation for submis-

sion to peer-reviewed international conferences and journals. Chapters 1–4

set the context of the thesis and briefly describe its contribution.

I would like to express my appreciation for the guidance provided by my su-

pervisors Professor Bernard Henri Fleury, Professor Preben Mogensen and

Associate Professor Troels Bundgaard Sørensen. I would also like to express

my gratitude to the members of my PhD defence committee Professor Ralf

Müller, Professor Henk Wymeersch and Professor Søren Holdt Jensen for

taking the time to read and assess this work. Last by not least, I would like

to thank all my colleagues at the Navigation and Communication Section

and the Radio Access Technology Section in the Department of Electronic

Systems, Aalborg University.



viii



Contents

1 Introduction 1

1.1 Modern Wireless Communication Systems . . . . . . . . . . . . . . . . . 1

1.2 Challenges in the Area of Baseband Receiver Design . . . . . . . . . . . 3

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 An Introduction to Baseband Receiver Design 7

2.1 A Simple Signal Model for OFDM Communications . . . . . . . . . . . 7

2.2 Optimum Receiver and Suboptimum Approaches . . . . . . . . . . . . . 9

2.3 Heuristic approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Heuristic Iterative Receivers . . . . . . . . . . . . . . . . . . . . . 12

2.4 Inference Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Message-Passing Algorithms for Bayesian Inference on Factor Graphs 19

3.1 Factor Graphs for Probabilistic Models . . . . . . . . . . . . . . . . . . . 19

3.2 The Sum-Product Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 The Variational Message-Passing Algorithm . . . . . . . . . . . . . . . . 21

3.4 Combined VMP-SP Algorithm . . . . . . . . . . . . . . . . . . . . . . . 22

4 Contributions of the Thesis 25

4.1 Inference Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Heuristic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

References 31

A Merging Belief Propagation and the Mean Field Approximation: A

Free Energy Approach 39

ix



CONTENTS

B Merging Belief Propagation and the Mean Field Approximation: A

Free Energy Approach 55

C Receiver Architectures for MIMO-OFDM Based on a Combined VMP-

SP Algorithm 63

D Sparse Estimation using Bayesian Hierarchical Prior Modeling for

Real and Complex Models 89

E Variational Message-Passing for Joint Channel Estimation and De-

coding in MIMO-OFDM 117

F Interference Cancellation Based on Divergence Minimization for MIMO-

OFDM Receivers 125

G Channel Estimation Based on Divergence Minimization for OFDM

Systems with Co-Channel Interference 133

H Application of Bayesian Hierarchical Prior Modeling to Sparse Chan-

nel Estimation 141

I On the Design of a MIMO-SIC Receiver for LTE Downlink 149

J Turbo-Receivers for Single User MIMO LTE-A Uplink 157

K Parametric Modeling and Pilot-Aided Estimation of the Wireless Mul-

tipath Channel in OFDM Systems 165

L Iterative Channel Estimation with Robust Wiener Filtering in LTE

Downlink 173

M Unification of Frequency Direction Pilot-Symbol Aided Channel Es-

timation (PACE) for OFDM 181

N Analysis of Time and Frequency Domain PACE Algorithms for OFDM

with Virtual Subcarriers 189

O Effect of Phase Noise on Spectral Efficiency for UTRA Long Term

Evolution 197

x



1

Introduction

In this introductory chapter, we begin by succinctly discussing the rapid evolution of

wireless communication systems over the last two decades. Next, we turn our attention

to the influence that this evolution has in the current research challenges in the field

of baseband receiver design, which is the main topic of this thesis. Finally, a brief

overview of the organization of the thesis is provided.

1.1 Modern Wireless Communication Systems

Wireless communication systems have been subject to a drastic transformation during

the last twenty years. From the old analog systems, focused exclusively on providing

voice communication services, wireless technology has undergone a steep evolutionary

path which has lead to today’s wireless broadband systems, offering a wide range of

multimedia services. A conceptual graph describing this evolution in terms of the data-

rates and mobility degrees supported by various wireless communication standards is

depicted in Figure 1.1. From the figure, it becomes apparent that a common trend

has been driving the development of mobile wireless systems: a strive for higher data

rates, even in high mobility scenarios. As an illustration, the International Telecommu-

nication Union - Radiocommunication Sector (ITU-R) sets the target peak data-rate

requirements for 4G systems, e.g. the Long Term Evolution-Avanced (LTE-A) sys-

tem [1], at 100 Mbps for users moving at vehicular speeds and 1 Gbps for low-mobility

users [2].
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Figure 1.1: Conceptual graph of the current wireless standard landscape.

While increased data-rates have indeed been the ultimate goal in the design of wire-

less systems, there are other important requirements that a modern wireless standard

should fulfil. In the following, we list and discuss some of them [3]:

High spectral efficiency: radio spectrum is a scarce and expensive resource that

must be shared among users of a communication systems. It is therefore of

crucial importance to make an efficient use of it, so that more users can be served

with higher data rates for a given portion of bandwidth.

Reduced latency: the proliferation of interactive, real-time services like video-conferencing

or multi-player internet gaming calls for reduced round-trip times compared to

previous systems.

All-IP architecture: the transition of mobile systems to an all-IP based core network

enables PC-like services and better interworking with fixed networks and other

mobile standards.

Interworking: interworking with other fixed and mobile networks is required in order

to advance towards network convergence, with different radio-access technologies

providing access to a global, technology-transparent network.
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1.2 Challenges in the Area of Baseband Receiver Design

Spectral Flexibility: besides being scarce and expensive, the radio spectrum is also

highly fragmented due to the coexistence of very diverse systems and different

local regulations. Thus, it is paramount for modern standards to be scalable

in bandwidth, i.e. allowing deployment over wide as well as narrow bandwidth

allocations.

1.2 Challenges in the Area of Baseband Receiver Design

In the previous section, we have briefly sketched some basic goals and requirements

driving the progress of wireless communications during the recent years. From this

general view, we now limit our scope to discuss the impact that these goals and re-

quirements have on the design of wireless receivers.

The goal of a digital wireless receiver is, very generally, to estimate the value of a

sequence of bits sent by the transmitter (or transmitters) from the digitalized baseband

signal received at its antenna port(s). The quality of a receiver is commonly measured

by the probability that its estimates of the bit values coincide indeed with the originally

transmitted bits. Given a fixed transmission rate, a higher-quality receiver will make

less bit errors than a poorer-quality receiver; or, from another point of view, a higher-

quality receiver will be able to detect without error signals transmitted at a higher rate

compared to a poorer-quality receiver. Thus, the design of high-performance receivers

is crucial to enable systems with high spectral efficiency and, consequently, high data-

rates.

Conceptually, this very basic goal in the design of wireless receivers has remained

unchanged since the emergence of the first digital wireless standards. The receiver ob-

jective is to estimate the transmitted bit sequence given its received signal, regardless

of the type of system in which it is operating. It is, however, the relation between the

transmitted bit sequence and the received signal what is essentially different from one

communication standard to another. This relation is defined by, among others, the

type of transmission technology used, the type of complex modulations employed, the

encoding schemes, the propagation environment, etc; in short, it is basically defined by

the physical layer parameters of the system at hand. Therefore, while the conceptual
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1. INTRODUCTION

task of a receiver is independent of the type of communication system, the specific op-

erations that are required in order to accomplish this task are very strongly determined

by the system’s physical layer design.

The above discussion leads us to the conclusion that, in order to understand the

challenges present in the design of receivers for current wireless standards, one needs

to understand the main technological advances that have been included in the physical

layer design of said standards. In the following, we briefly enumerate and discuss the, in

our view, most important physical-layer developments that have lead to the definition

of today’s mobile communication systems.

Multiple-input multiple-output (MIMO) antenna techniques: using multiple an-

tenna elements at the transmitter, the receiver or both ends is a very effective

way of increasing the reliability of a transmission, its data-rate or a combina-

tion of the two [4]. Theoretically, the capacity of a wireless link grows linearly

with the minimum of the number of antenna elements at the transmitter and

the receiver [5]; in practice, however, very efficient receivers, with the ability to

accurately estimate the MIMO channel and work with advanced channel codes,

are required in order to attain the capacity predicted by theory.

OFDM-based air interface: orthogonal frequency-division multiplexing (OFDM) and

closely related techniques (like single-carrier frequency-division multiplexing or

multi-carrier CDMA) have become the technology of choice for most modern

wireless standards [3, 6]. Their flexibility and scalability in terms of bandwidth

allocation, their ability to effectively cope with the channel temporal dispersion

with simple equalization and their easy integration with MIMO techniques are

some of the main reasons motivating this choice.

Advanced channel codes and high-order modulation: very important advances

have been made in the field of coding theory in the last two decades with the

emergence of turbo codes [7] and the popularization of low-density parity check

(LDPC) codes [8]. These coding schemes allow for transmission very close to

the theoretical capacity in an additive white Gaussian noise (AWGN) channel,

but require iterative decoding schemes in order to do so. In addition, the use of

high-order quadrature amplitude modulations, like 64-QAM or even 128-QAM,

further help boosting the spectral efficiency of the system.

4



1.3 Structure of the Thesis

Given the physical layer mechanisms described above, we can already define which

the main challenges present in the design of modern wireless receivers will be. First,

the deployment of efficient MIMO detection techniques is required; to that end, high

quality channel estimators for OFDM systems are necessary; and, moreover, these

functionalities should be adequately integrated with iterative channel decoders and

high-order demodulators. Additionally, all these operations must be designed under

the constraint of a limited computational capability, especially for hand-held receivers.

It is clear that these challenges do not have an easy solution, and various different

strategies to approach the problematic have been proposed so far. We will momentarily

stop the discussion here and re-take it in Chapter 2, where we classify and summarize

some of the most relevant steps made by the research community in order to answer

the many open questions in the field of wireless receiver design.

1.3 Structure of the Thesis

In this chapter, we have introduced the context of this thesis. We started by concisely

describing the main objectives driving the design of today’s wireless communication

systems and the most relevant technological advances in physical layer design enabling

the achievement of said objectives. In the remainder of this work, we explore strategies

for the design of advanced wireless receivers that can effectively operate in modern

systems and can cope with the challenges described in Section 1.2. The rest of this

thesis is organized as follows:

Chapter 2 gives an overview of the most relevant strategies for the design of wireless

baseband receivers proposed in literature in the recent years. From a simple

signal model of a MIMO-OFDM system, we discuss optimal and sub-optimal

design strategies. Among the latter, we classify the different approaches into

two different categories: heuristic designs and approaches based on analytical

frameworks.

Chapter 3 summarizes the message-update equations of two well-known message-

passing techniques: the sum-product algorithm and variational message passing.

Additionally, the message-update equations of the message-passing approach pro-

posed in Papers A and B are also provided.
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1. INTRODUCTION

Chapter 4 briefly classifies and describes the main contributions of this work, which

are presented in the form of scientific articles published or submitted to interna-

tional conferences and journals.

Papers A–O are the articles described in Chapter 4, and they contain the main sci-

entific content of this thesis.
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2

An Introduction to Baseband

Receiver Design

In this chapter, we introduce the general problem of baseband receiver design and

briefly summarize the main approaches that can be found in state-of-the-art research.

We begin by presenting a simple OFDM signal model which is used as an illustration

of the challenges found in the area of receiver design. Taking as a starting point

the optimum –but computationally intractable– maximum a posteriori (MAP) design

criterium, we scan the different suboptimal approaches that have been proposed in

literature in the recent years. We classify the strategies into two separate categories:

heuristic methods and formal inference frameworks.

2.1 A Simple Signal Model for OFDM Communications

Figure 2.1 shows the block-diagram representation of the transmitter part of a simple

MIMO-OFDM system with M transmit antennas, which may belong to a single or mul-

tiple users. For the mth transmit chain, a sequence of information bits um is encoded

and interleaved, yielding a sequence of coded bits cm. The coded bit sequence is com-

plex modulated, producing a vector of modulated data symbols x
(d)
m . The modulated

data symbols are multiplexed with a sequence of pilot symbols x
(d)
m . The value and

allocation of the pilot symbols are known to the receiver, and they are used (mainly)

to improve the accuracy of channel estimation on the receiver side. Finally, the trans-

mitted symbol vector xm containing both data and pilot symbols is OFDM modulated

7
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Figure 2.1: Block-diagram representation of the considered OFDM system.

and transmitted through the wireless channel. We assume that the transmission from

all M different transmit antennas is perfectly synchronized in time and frequency.

Assuming that the channel response is static over the duration of an OFDM symbol

and that the cyclic prefix is long enough to cope with the temporal dispersion of the

channel, the signal received at the nth antenna port of a receiver with N antennas

reads

yn(k) =

M∑

m=1

hnm(k)xm(k) + wn(k), k = 1, . . . ,K, n = 1, . . . , N (2.1)

where hnm(k) is the frequency-response weight of the channel between transmitter

m and receiver n at subcarrier k, wn(k) denotes zero-mean complex additive white

Gaussian Noise (AWGN) with variance σ2
w andK is the total number of subcarriers. We

can re-write (2.1) for all subcarriers and all receive antennas in matrix-vector notation:

y =

M∑

m=1

Xmhm +w =

M∑

m=1

Hmxm +w. (2.2)

In (2.2), y = [y1(1), . . . , y1(K), . . . , yN (1), . . . , yN (K)]T, Xm = IN ⊗diag{xm}, Hm =

[diag{h1m}, . . . ,diag{hNm}]T and hnm = [hnm(1), . . . , hnm(K)]T, with IN and A⊗B

denoting respectively the identity matrix of dimension N and the Kronecker product

between matrices A and B.
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2.2 Optimum Receiver and Suboptimum Approaches

2.2 Optimum Receiver and Suboptimum Approaches

The goal of a baseband receiver is to infer the value of the information bit vectors

u1, . . . ,uM from the received signal in (2.2). With this goal in mind, the probability

of incorrect detection is minimized by formulating a decision rule implementing the

maximum a posteriori probability (MAP) criterion [9]:

[ûT
1 , . . . , û

T
M ]T = argmax

u1,...,uM

p(u1, . . . ,uM |y). (2.3)

In (2.3), p(u1, . . . ,uM |y) denotes the conditional probability mass function (pmf) of

the information bit vectors given the observation in (2.2), and is commonly referred

to as the a posteriori pmf of the information bits. In the case in which all possible

combinations of information bits u1, . . . ,uM are equally likely to be transmitted (i.e.,

the prior pmf p(u1, . . . ,uM ) is uniform), the MAP criterion simplifies to the maximum

likelihood (ML) decision criterion [9]:

[ûT
1 , . . . , û

T
M ]T = argmax

u1,...,uM

p(y|u1, . . . ,uM ). (2.4)

In (2.4), p(y|u1, . . . ,uM ) denotes the conditional pdf of the observation y given the

information bits, and is commonly referred to as the likelihood function when considered

as a function of u1, . . . ,uM , i.e for fixed y.

While the MAP and ML criteria lead to a decision rule minimizing the probability

of error, direct maximization of either the a posteriori pmf in (2.3) or the likelihood

function in (2.4) is typically intractable or too computationally complex to be imple-

mented in modern wireless communication systems. This is due to the presence of

unknown parameters, such as the channel weight vectors h1, . . . ,hM or the AWGN

variance σ2
w, together with the use of QAM complex modulation schemes and advanced

channel codes. For some specific configurations, it is still possible to design a receiver

following the optimum design criterion (see [10]), but in general one must resort to

suboptimum approaches.

In the remainder of this chapter, we briefly discuss different strategies for the sub-

optimal design of baseband receivers for wireless communication systems in general

and with a special focus on MIMO-OFDM systems. We classify the strategies into two

main categories: heuristic approaches and formal inference frameworks. In the former,

9
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Figure 2.2: Block-diagram representation of a heuristic sequential receiver.

the receiver’s operation is split into multiple smaller tasks which are then solved in-

dividually and independently from the other tasks. In the latter, on the other hand,

the receiver’s operation is designed in a global manner by trying to approximate the

MAP/ML criteria in a structured and analytical way.

2.3 Heuristic approaches

Heuristic methods for baseband receiver design attempt to break down the general prob-

lem presented in Section 2.2 into smaller, simpler problems. Typically, they divide the

receiver’s operation into three main tasks: channel estimation1, MIMO detection and

single-user decoding. A conceptual block-diagram of a receiver sequentially performing

these operations is shown in Figure 2.2.

By performing this division of tasks, each of the individual problems becomes sim-

pler to solve. In fact, in many cases optimal solutions given a design criterion can be

found and computed in practice. Unfortunately, locally finding the optimum solution

for the individual tasks does not guarantee the computation of the globally optimum

solution. In the following, we give a brief overview of state-of-art methods performing

each of the tasks described in Figure 2.2, with special focus on their application to

MIMO-OFDM systems.

1By channel estimation we refer to the estimation of all unknown channel parameters, including

the complex channel weights and the AWGN variance.
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2.3 Heuristic approaches

For OFDM systems, one of the first problems to be tackled by the research commu-

nity was the estimation of the frequency response of the wireless channel based on the

information provided by pilot symbols. Amongst the methods proposed in literature,

linear minimum mean-squared error (LMMSE) channel estimators exploiting the time-

frequency correlation of the channel response have attracted the most attention [11].

This approach, however, has two important drawbacks: firstly, the time-frequency cor-

relation function of the channel is, in general, not known at the receiver; secondly,

LMMSE channel estimators usually involve the inversion of matrices of large dimen-

sion, which make them computationally cumbersome. In order to mitigate the first

drawback, Li et al. give some guidelines on how to design a robust LMMSE estimator

when the receiver does not have knowledge of the channel second-order statistics [12]. In

order to reduce the complexity of matrix inversions, a reduced-complexity version of the

estimator, based on a singular value decomposition of the channel covariance matrix,

has been proposed in [13]. In a slightly different approach, some authors have proposed

estimators which try to capitalize on the structure of the time-domain response in order

to estimate the frequency response [14, 15]; within this context, the work by Yang et.

al in [16], where a parametric model of the multipath wireless channel is invoked to

reduce complexity of LMMSE channel estimation, is especially remarkable.

In the area of MIMO detection, most efforts have been devoted to find reduced-

complexity versions of the MLMIMO detector [17], which has a computational complex-

ity increasing exponentially with the MIMO and complex modulation orders. Among

these, list-sphere decoders [18] have been shown to be a good compromise. In contra-

position to ML-based detectors, which jointly detect the symbols transmitted through

the MIMO channel, approaches attempting sequential detection of the symbols have

also been presented. They are usually based on a linear detection step, either using

zero-forcing or LMMSE filtering, followed by an interference cancellation step, in which

signal components corresponding to already detected symbols are subtracted before a

new detection step takes place. A first version of this sequential detection algorithm

was proposed in [19], in which the interference cancellation step was based on hard

decisions on the already detected symbols. A more evolved version of the algorithm

was presented in [20], following the approach in [21], in which the receiver uses soft

decisions on the already detected symbols and also provides soft outputs for use in

channel decoders.

11



2. AN INTRODUCTION TO BASEBAND RECEIVER DESIGN

With regards to channel decoding, the techniques used obviously vary depending on

the type of code used. For convolutional codes, the Viterbi algorithm [9] provides an ML

sequence detector, i.e. minimizes the probability of an incorrect decoded sequence. An

alternative is the BCJR decoder [22], which instead minimizes the probability of error

of the individual bits of the transmitted sequence. Furthermore, the BCJR algorithm

directly provides soft outputs, i.e. the probabilities of the bits being 1 or 0 after

decoding, which makes it very attractive for use in iterative algorithms. While soft

versions of the Viterbi algorithm exist (see [23]), they yield poorer performance than

the BCJR method. For concatenated codes, and in particular for turbo codes, an

heuristic iterative decoding scheme built upon BCJR decoding was presented in [7];

while initially derived following intuitive argumentation, the iterative decoding of turbo

codes was shown later on to be an instance of the belief propagation framework [24];

similar interpretations of the BCJR algorithm within the belief propagation framework

have also been proposed [25].

2.3.1 Heuristic Iterative Receivers

As we stated previously, optimum design of the individual components of the receiver

depicted in Figure 2.2 does not, in general, imply global optimality of the receiver.

Intuitively, it is easy to see that such a receiver does not make use of all the informa-

tion available to compute its decisions. For instance, channel estimation needs to be

performed as a first step based only on the receiver’s knowledge of the pilot symbols,

as no information about the modulated data symbols (except the type of modulation

used) is available. Clearly, a better channel estimate can be obtained after MIMO

detection by incorporating the receiver’s knowledge on the coded bits c1 . . . , cM into

the channel estimation process. Similarly, the same can be done with the knowledge

acquired by the receiver after SU decoding, which can be used to refine the output of

both the channel estimation and the MIMO detection modules.

Inspired by the iterative structure of the decoding of turbo codes [7], a number of

iterative receiver structures based on the turbo principle have been proposed in litera-

ture. Conceptually, the receiver’s operation is still subdivided into the same individual

components as the sequential receiver in Figure 2.2. However, instead of performing

the involved operations just once in a sequential way, the different components are

interconnected and iteratively perform their operation with the output provided by

12
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y

ĥ1, . . . , ĥM , σ̂2
w ĉ1

ĉM

û1

ûM

Channel Estimation

MIMO Detection

SU Decoding

SU Decoding

Figure 2.3: Block-diagram representation of a heuristic iterative receiver.

each module being used as an input to other receiver components. A block diagram

of a heuristic iterative receiver illustrating this concept is depicted in Figure 2.3. The

discontinuous lines represent all possible feedback interconnections that may be made

among the individual receiver components.

Clearly, an iterative receiver following the scheme in Figure 2.3 must obtain better

performance than a classical sequential receiver when designed properly, as it makes a

more exhaustive use of all the information available at the receiver. However, the way

in which the information provided by the different components should be combined

and distributed in the receiver is unclear due to the lack of a global design criterion.

As a consequence, the information flow inside this type of iterative structures is often

designed using intuitive argumentation or based on the results obtained from simulation

studies. As an example of this problematic, there has been a debate in the research

community on whether a posteriori probabilities (APP) or extrinsic values should be fed

back from the decoder to the rest of the receiver components; several authors coincide

in proposing the use of extrinsic values for MIMO detection [21,26,27] while using APP

values for channel estimation [26, 27], but no thorough justification for this choice is

given apart from its superior performance shown by simulation results.

13



2. AN INTRODUCTION TO BASEBAND RECEIVER DESIGN

In the following, we give a very brief overview of relevant publications proposing

heuristic iterative receiver architectures for wireless communication systems in general

and MIMO-OFDM systems in particular. In the context of OFDM systems, a few algo-

rithms proposing iterative channel estimation and decoding have been presented [28,29]

which are mainly based on LMMSE channel estimators incorporating soft information

from the decoded symbols. It is also worth mentioning the work by Hanzo et al.,

summarized in [6]. A vast amount of work on iterative detection and decoding is avail-

able in literature; initiated by the receiver proposed in [21] and following the turbo

principle used to decode turbo codes, a variety of turbo receivers performing iterative

channel equalization and decoding have been proposed [30–32]. Finally, we highlight

two heuristic iterative structures performing channel estimation, multi-user detection

and channel decoding for CDMA systems [26] and MIMO-OFDM systems [27].

2.4 Inference Frameworks

In the previous section we dealt with heuristic methods for receiver design, in which

the receiver is intuitively divided into smaller individual components iteratively ex-

changing information among them. In this section, we explore a different strategy.

We stated in Section 2.2 that direct computation of the a posteriori pmf in (2.3) is

often intractable for most practical wireless communication systems. However, one can

try to find approximations to them. If a good approximation to the posterior pmf

b(u1, . . . ,uM ) ≈ p(u1, . . . ,uM |y) is found, then it is likely that a good approximation

to the MAP criterion can be obtained by finding the information bit vectors maximizing

b(u1, . . . ,uM ).

A wide range of algorithms attempting to solve approximate computation of pdf/pmfs

and marginals can be found within the context of variational Bayesian inference frame-

works [33,34]. Variational approximation methods are defined by two main components:

a belief function b(z) trying to approximate the desired pmf p(z) and an objective

function F (b) which is optimized with respect to the approximating belief function.

Typically, the objective function F (b) is some type of discrepancy measure between

p(z) and the approximation b(z). Furthermore, some constraints are usually applied to

b(z) to ensure that the optimization of F (b) is computationally tractable. We briefly

14
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summarize next two fundamental approaches to variational Bayesian inference: the

mean-field (MF) approximation and belief propagation (BP)1.

Assume we want to approximate the pmf

p(z) =
1

Z

∏

a∈A

fa(za) (2.5)

where z = (zi|i ∈ I)T and function fa(za) has arguments za, with the entries of za

being a subset of the entries of z for all a ∈ A. In (2.5), Z =
∫

z

∏

a∈A fa(za)dz is a

normalization constant. Within the MF approach, an approximation b(z) ≈ p(z) is

computed by minimizing the variational free energy [34]

F (b) = U(b)−H(b) (2.6)

with U(b) being the variational average energy

U(b) =
∑

a∈A

∑

z

b(z)fa(za)

and H(b) denoting the variational entropy

H(b) = −
∑

z

b(z) log b(z).

We can also rewrite (2.6) as

F (b) = − logZ +D(b‖p)

where D(b‖p) =
∑

z
b(z) log b(z)

p(z) is the Kullback-Leibler divergence between b and

p [38]. Therefore, minimizing F (b) is equivalent to minimizing D(b‖p). The mini-

mization of (2.6) becomes tractable by applying the following constraints to the belief

function:

b(z) =
∏

i∈I

bi(zi), (2.7)

∑

zi

bi(zi) = 1 ∀i ∈ I. (2.8)

1Some authors, e.g. Winn and Bishop [35,36], consider BP outside the variational Bayesian frame-

work, and usually use the term variational only in the context of MF-like approximations. We use,

however, the more general view proposed e.g. in [33,34,37], which considers BP as another algorithm

for variational Bayesian inference.
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We refer to (2.7) as the factorization constraint. It implies that the belief function

factorizes with respect to each of the variables zi. The condition in (2.8), which we

name the normalization constraint, ensures that each of the factors is normalized. Ob-

viously, one could consider different types of factorization, in which the belief function

factorizes with respect to groups of variables; such approaches are commonly referred

to as structured MF approaches, whereas the full factorization in (2.7) is usually named

naive MF [33,39].

Next, we turn to the BP approach to the problem. Instead of trying to approximate

the full pmf in (2.5), BP calculates approximate marginals bi(zi) ≈
∑

z\zi
p(z)1 and

ba(za) ≈
∑

z\za
p(z) of the desired pmf. The objective function for BP algorithms is

the Bethe free energy, defined as [34]

FBethe = UBethe −HBethe (2.9)

where the Bethe average energy is defined as

UBethe = −
∑

a∈A

∑

za

ba(za) log fa(za) (2.10)

and the Bethe entropy reads

HBethe =
∑

a∈A

∑

za

ba(za) log ba(za) +
∑

i∈I

(di − 1)
∑

zi

bi(zi) log bi(zi). (2.11)

In (2.11), di denotes the degree of variable zi, defined as the number of factors fa,

a ∈ A which have zi as an argument. The beliefs bi and ba are constrained to fulfill the

consistency constraints

∑

za\zi

fa(za) = bi(zi), ∀a ∈ A, i ∈ I (2.12)

and the normalization constraints

∑

zi

bi(zi) =
∑

za

ba(za) = 1, ∀a ∈ A, i ∈ I. (2.13)

The expression in (2.9) subject to the the constraints (2.12) and (2.13) is usually referred

to as the constrained Bethe free energy, and the BP marginals bi and ba are calculated

as its stationary points. The choice of the constrained Bethe free energy as objective

1The expression z\zi denotes all components of z except zi.
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functions is motivated by the fact that it is equal to the variational free energy in (2.6)

when p(z) can be expressed in a factor graph without cycles, i.e. a tree-structured

graph [34]. When that is the case, the marginals calculated using BP are exact. For

graphs with cycles, though, only approximate marginals are obtained [33,34,36].

Both the BP and the MF principles can be expressed as message-passing algorithms

in factor graphs. Factor graphs [40] are a tool which allows for a graphical representa-

tion of a probabilistic model. The message-passing interpretation of the BP principle

is known as the sum-product (SP) algorithm [40] due to the form of its message update

rules, while its MF counterpart is commonly known as the variational message-passing

(VMP) algorithm [35,39]. We introduce both message-passing algorithms in Chapter 3,

together with a novel algorithm proposed in [41,42] which combines the benefits of both

approaches, and which constitutes one of the important contributions of this thesis. The

contributions in [41,42] are included in the appendix of this thesis as Papers A and B.

We finalize the chapter with a brief review of relevant applications of variational

Bayesian inference frameworks to the design of wireless receivers. BP was initially

applied mainly to the decoding of channel codes like convolutional codes [40], turbo

codes [24] or low-density parity check codes [8], and its application was later on ex-

tended to iterative detection and decoding schemes [25, 43–46]. In certain cases, the

application of BP to channel estimation problems leads to algorithms which are dif-

ficult to treat numerically. In such circumstances, authors like Dauwels and Loeliger

have proposed to combine BP with the expectation-maximization (EM) algorithm [47]

for parameter estimation [25,48]. An alternative approach is to find Gaussian approx-

imations of the SP algorithm [49, 50]. Application of MF approaches to the design of

wireless receivers usually involve estimation of the wireless channels, in which the MF

approximation typically leads to algorithms which are computationally simpler than

its BP counterpart. Among these, we wish to highlight the contributions in [51–55].
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3

Message-Passing Algorithms for

Bayesian Inference on Factor

Graphs

As we discussed in Section 2.4, the algorithms obtained via the MF and BP inference

frameworks can be expressed as message-passing algorithms in probabilistic graphs,

yielding respectively the VMP [35] and the SP [40] algorithms. Since message-passing

techniques are one of the central topics of this thesis, we briefly summarize the two

algorithms in this chapter. Additionally, we also include the message update equations

for the combined VMP-SP algorithm which is proposed in Papers A and B.

3.1 Factor Graphs for Probabilistic Models

Let p(z) be the probability density function (pdf) of a vector z of random variables zi

(i ∈ I) which factorizes according to

p(z) =
1

Z

∏

a∈A

fa(za) (3.1)

where za = (zi|i ∈ N(a))T with N(a) ⊆ I for all a ∈ A and Z =
∫

z

∏

a∈A fa(za)dz

is a normalization constant. We also define N(i) , {a ∈ A|i ∈ N(a)} for all i ∈ I.

Similarly, N(a) = {i ∈ I|a ∈ N(i)} for all a ∈ A. The above factorization can be

graphically represented by means of a factor graph [40]. A factor graph 1 is a bipartite

1We will use Tanner factor graphs [40] throughout this thesis
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graph having a variable node i (typically represented by a circle) for each variable zi,

i ∈ I and factor node a (represented by a square) for each factor fa, a ∈ A. An

edge connects a variable node i to a factor node a if, and only if, the variable zi is an

argument of the factor function fa. The set N(i) contains all factor nodes connected

to a variable node i ∈ I and N(a) is the set of all variable nodes connected to a factor

node a ∈ A.

Factor graphs provide a compact and intuitive representation of the statistical de-

pendencies among the random variables in a probabilistic model. Furthermore, they

enable the design of a class of iterative signal processing algorithms which are based

on the nodes of the graph iteratively exchanging information (messages) with their

neighbors (connected nodes). This class of algorithms has been coined message-passing

techniques, and in the following we will describe the two instances of these techniques

which have been most widely applied to signal processing for communication systems:

the SP and VMP algorithms.

3.2 The Sum-Product Algorithm

The SP algorithm is a message-passing algorithm that computes the exact marginal

distributions pi(zi) of the variables zi associated to the joint distribution p(z) for tree-

shaped factor graphs. When the factor graph does not have a tree structure, the

outcome of the algorithm is only an approximation of the true marginal, and the ap-

proximate marginals bi(zi) ≈ pi(zi) are called beliefs. The message-passing algorithm

is derived from the equations of the stationary points of the constrained Bethe free

energy [34].

The algorithm operates iteratively by exchanging messages from variable nodes to

factor nodes and vice-versa. The message computation rules for the SP algorithm read

ma→i(zi) = da〈fa(za)〉∏
j∈N(a)\i nj→a

, ∀a ∈ A, i ∈ N(a)

ni→a(zi) =
∏

c∈N(i)\a

mc→i(zi), ∀i ∈ I, a ∈ N(i)

where the notation 〈f(x)〉g denotes the expectation of f(x) taken over g(x) and da

(a ∈ A) are positive constants ensuring that the beliefs are normalized. Often the

constants da need not be calculated explicitly, and it is enough to normalize the beliefs

after convergence of the algorithm (see Paper A for more details on normalization
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issues). We use the notation n(·)→(·) for output messages from a variable node to a

factor node and m(·)→(·) for input messages from a factor node to a variable node.

The variables’ beliefs can be calculated at any point during the iterative algorithm

as

bi(zi) =
∏

a∈N(i)

ma→i(zi) ∀i ∈ I.

The SP algorithm acquired great popularity through its application to iterative

decoding of, among others, turbo codes and LDPC codes, and has since then been used

for the design of many iterative algorithms in a wide variety of fields [25].

3.3 The Variational Message-Passing Algorithm

The VMP algorithm is an alternative message-passing technique which is derived based

on the minimization of the variational free energy subject to the mean-field approxi-

mation constraint on the beliefs. While it does not guarantee the computation of exact

marginals (even for tree-shaped graphs), its convergence is guaranteed by ensuring that

the variational free energy of the computed beliefs is non-increasing at each step of the

algorithm [34].

The operation of the VMP algorithm is analogous to the SP algorithm; the message

computation rules read

ma→i(zi) = exp〈log fa(za)〉∏
j∈N(a)\i nj→a

, ∀a ∈ A, i ∈ N(a) (3.2)

ni→a(zi) = ei
∏

c∈N(i)

mc→i(zi) ∀i ∈ I, a ∈ N(i) (3.3)

where ei (i ∈ I) are positive constants ensuring that ni→a are normalized. As in the

SP algorihtm, the beliefs can be obtained as

bi(zi) = ei
∏

c∈N(i)

mc→i(zi) = ni→a(zi) ∀i ∈ I, a ∈ N(i).

The VMP algorithm has recently attracted the attention of the wireless communi-

cation research community due to its suitability for conjugate-exponential probabilistic

models [35]. The computation rule for input messages from factor to variable nodes

allows for the obtention of closed-form expressions in many cases in which the SP

algorithm typically requires some type of numerical approximation.
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It is shown in Paper A that a message-passing interpretation of the EM algorithm

can be obtained from the VMP algorithm. Assume that for a certain subset of variables

zi, i ∈ E ⊆ I we want to apply an EM update while still using VMP for the rest of

variables. To do so, the beliefs bi are restricted to fulfill the constraint bi(zi) = δ(zi− z̃i)

for all i ∈ E additionally to the mean-field factorization and normalization constraints.

Minimizing the variational free energy subject to these conditions leads to a message

passing algorithm identical to the one described in (3.2) and (3.3) except that the

messages ni→a for all i ∈ E and a ∈ N(i) are replaced by

ni→a(zi) = δ(zi − z̃i) with z̃i = argmax
zi




∏

a∈N(i)

ma→i(zi)



 . (3.4)

3.4 Combined VMP-SP Algorithm

As stated previously in this chapter, the VMP and the SP algorithms are two message-

passing techniques suitable for different types of models. While SP is especially suit-

able in models with deterministic factor nodes, e.g. code or modulation constraints,

VMP has the advantage of yielding closed-form computationally tractable expressions

in conjugate-exponential models, as are found in channel weight estimation and noise

variance estimation problems. Based on these facts, it seems natural to try to combine

the two methods in a unified scheme capable of preserving the advantages of both.

A combined message-passing scheme based on the SP and VMP algorithms was

recently proposed in Papers A and B. This hybrid technique is based on splitting the

factor graph into two different parts: a VMP part and a SP part. To do this, part of

the factor nodes are assigned to the VMP set (AVMP) and the rest are assigned to the

SP set (ASP). Given this classification, we can express the probabilistic model in (3.1)

as

p(z) =
1

Z

VMPpart
︷ ︸︸ ︷
∏

a∈AVMP

fa(za)

SPpart
︷ ︸︸ ︷
∏

c∈ASP

fc(zc)

where AVMP ∪ ASP = A and AVMP ∩ASP = ∅. By applying the Bethe approximation

to the SP part and the mean-field approximation on the VMP part, a new message-

passing scheme is derived from the stationary points of the region-based free energy.
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The message computation rules for this algorithm read

mVMP
a→i (zi) = exp〈log fa(za)〉∏

j∈N(a)\i nj→a
, ∀a ∈ AVMP, i ∈ N(a) (3.5)

mSP
a→i(zi) = da〈fa(za)〉∏

j∈N(a)\i nj→a
, ∀a ∈ ASP, i ∈ N(a) (3.6)

ni→a(zi) = ei
∏

c∈N(i)∩AVMP

mVMP
c→i (zi)

∏

c∈N(i)∩ASP\a

mSP
c→i(zi) ∀i ∈ I, a ∈ N(i) (3.7)

where, again, da and ei are positive constants ensuring normalized beliefs. The compu-

tation rules for messages outgoing factor nodes are preserved: for factor nodes in the

VMP part (a ∈ AVMP) the messages are computed using (3.5) as in standard VMP;

for factor nodes in the SP part (a ∈ ASP) the messages are computed via (3.6), which

corresponds to a standard SP message. A message from a variable node i to a factor

node a is computed as a VMP message when a ∈ AVMP and as a SP message when

a ∈ ASP, as can be deduced from (3.7).

As with the VMP and SP algorithms, the beliefs of the variables can be retrieved

at any stage of the algorithm as

bi(zi) = ei
∏

a∈N(i)∩AVMP

mVMP
a→i (zi)

∏

a∈N(i)∩ASP

mSP
a→i(zi) ∀i ∈ I.

Note that we can apply the EM restriction to the belief of variables zi which are

only connected to VMP factors (i.e. N(i)∩ASP = ∅). In that case, the message update

rules remain the same except that the message ni→a in (3.7) is replaced by (3.4) for

the selected variables.
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4

Contributions of the Thesis

In this chapter, we detail the contributions of this thesis. The main body of the

thesis is composed of Papers A–O. Most of the articles propose or study one or several

algorithms that deal with specific problems within the context of advanced baseband

receiver design.

Following the same nomenclature made in Chapter 2, we categorize the papers

according to the type of algorithm discussed in them: algorithms derived from formal

inference frameworks or heuristically designed algorithms. One paragraph per article

is provided which briefly introduces its content and scientific contribution.

4.1 Inference Frameworks

Papers A–H all deal with algorithms derived from variational Bayesian inference frame-

works. More specifically, Papers A and B present a novel message-passing algorithm

based on a combined application of the MF approximation and the BP framework;

the message computation rules of this technique have already been presented in Chap-

ter 3.4. Papers C–H, on the other hand, deal with particular applications of inference

frameworks to the design of receiver structures in wireless communication systems.

Paper A In this contribution, a joint message-passing approach combining belief prop-

agation and the mean-field approximation is presented. The algorithm is derived

based on the region-based free energy approximation method in [34]. Specifically,

the message-passing fixed point equations of the combined algorithm are shown
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to be the stationary points of the constrained region-based free energy approxi-

mation. Moreover, some conditions on the factor-graph describing the underlying

probabilistic model to ensure a convergent algorithm are given.

Paper B This article is, basically, a shortened conference version of Paper A. In it, the

message-update equations of a novel message-passing algorithm combining MF

and BP are derived from a constrained region-based free energy approximation.

Note that, although the expressions for the message computation rules in this

contribution are slightly different from the ones presented in Paper A, they are

equivalent.

Paper C In this paper, we apply the combined message-passing scheme introduced in

Papers A and B to the design of iterative receiver structures for a MIMO-OFDM

system. From a factor graph representing the underlying probabilistic model

of a MIMO-OFDM system, we derive a generic message-passing receiver itera-

tively performing channel weight estimation, noise variance estimation, MIMO

equalization and data decoding. We show how, by applying specific scheduling

schemes and different restrictions to the generic algorithm, we are able to ob-

tain a number of particular receiver architectures which span from full-iterative,

high performance receivers to simplified low-complexity implementations. Fur-

thermore, the performance of the proposed receiver structures is demonstrated

and compared to state-of-art methods by means of Monte Carlo simulations.

Paper D This paper deals with models and algorithms for estimation of sparse signals.

The contribution in it is two-fold: firstly, a hierarchical Bayesian formalism for the

design of sparsity-inducing priors is introduced; secondly, a variational message-

passing algorithm operating in the said hierarchical Bayesian model is proposed.

The general hierarchical model can be particularized for real- and complex-valued

models. A Bayesian formulation of the widely-used l1-norm constraint for sparse

estimation can also be obtained as an instance of our proposed model. In addi-

tion, the model allows for the design of novel priors with better sparsity-inducing

properties than the l1-norm. Simulation results illustrate how the proposed VMP

algorithm applied to the hierarchical Bayesian model outperforms state-of-the-

art sparse estimation techniques, especially for low and moderate signal-to-noise

ratio regimes.

26



4.1 Inference Frameworks

Paper E This contribution presents an iterative receiver structure for multi-user OFDM

systems performing channel weight and noise variance estimation, multi-user de-

tection and single-user decoding. The receiver is derived based on the VMP algo-

rithm (see Chapter 3.3), but uses a standard SP (equivalent to BCJR) decoder.

Note that in this work VMP and SP are separately applied to different parts of

the receiver, and the two algorithms are combined in an “ad-hoc” way; this is in

contrast to the approach in Paper C, in which a unified VMP-SP algorithm is

applied to the full probabilistic model. Nonetheless, the simulation results illus-

trate how the proposed scheme can significantly outperform a heuristic receiver

adapted for OFDM systems from [26].

Paper F We propose an iterative receiver structure for OFDM systems with syn-

chronous interferers. The receiver is derived based on a MF-based variational

inference framework, which is referred to as the divergence minimization (DM)

framework following the terminology in [52]. The proposed structure performs

iterative channel estimation, interference cancellation and single-user decoding of

the desired signal. The numerical results, obtained by Monte Carlo simulations,

show how the proposed scheme can effectively mitigate the effect of the interferers,

achieving BER values close to those of a receiver operating in an interference-free

scenario. It is also worth mentioning that the receiver structure presented in this

work can be seen as a specific instance of the generic receiver derived in Paper C.

Paper G In this conference contribution, we propose an iterative pilot-based channel

estimator for OFDM systems with co-channel interference. The proposed esti-

mator can be applied to systems in which the user of interest and the interferers

transmit their pilot signals in the same time-frequency locations. The iterative

estimator is derived following the DM framework in [52], yielding a sequential

scheme in which the channel coefficients for one user are estimated after sub-

tracting the signal contributions from all other users. As the numerical results

demonstrate, the performance of the sequential estimator approaches, with a suf-

ficient number of iterations, that of a joint LMMSE channel estimator; however,

its sequential structure allows for a significantly lower computational complex-

ity, as the cumbersome matrix inversions in the joint LMMSE estimator can be

avoided with a suitable design. As in the case of Paper F, the channel estimator
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proposed in this contribution can be interpreted as an instance of the generic

message-passing receiver presented in Paper C.

Paper H In this work, we apply the method presented in Paper D for modeling and

estimation of sparse signals to the problem of pilot-based channel estimation in

OFDM systems. As a result, a channel estimator based on VMP is obtained

which estimates the active components of the sparse time-domain response of

the channel rather than directly estimating the channel frequency-response coef-

ficients. Simulation results illustrate the effectiveness of the proposed approach,

which outperforms commonly-used frequency-domain estimators (e.g. a robustly-

designed Wiener filter) as well as other state-of-art sparse estimation techniques.

4.2 Heuristic Algorithms

Papers I–O in this thesis present contributions within the field of heuristic algorithms,

mainly for OFDM systems. In particular, Papers I and J deal with schemes for iterative

MIMO detection and decoding, while Papers L–O deal with issues regarding both

linear and iterative channel estimation algorithms for OFDM. The specific scientific

contributions made in each article are detailed in the following:

Paper I In this article, we analyze the performance of different implementations of

a MIMO receiver performing sequential interference cancellation (SIC) and de-

coding of the transmitted signals. The different receiver structures are specifi-

cally designed for the 3GPP LTE-downlink [56] parameter settings. It is shown

how SIC schemes using a “per-codeword” selection strategy clearly outperform

the schemes that operate on a “per-subcarrier” basis. Furthermore, it is found

that, for the evaluated schemes, providing soft-feedback from the channel decoder

only improves the receiver’s performance slightly compared to using hard-decision

feedback.

Paper J This contribution compares two transmission technologies, namely OFDM

and single-carrier frequency-domain multiplexing (SC-FDM) as potential tech-

nologies for the uplink of the 3GPP LTE-A system. The comparison is done
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4.2 Heuristic Algorithms

under the assumption that, for both transmission schemes, a turbo-receiver per-

forming iterative interference cancellation, MIMO detection and single-user de-

coding, either in a sequential or a parallel fashion, is used. The numerical results

presented show that, while using a turbo-receiver for SC-FDM systems can very

significantly reduce the BER attained with this technology, an OFDM system

with turbo receivers can attain a superior spectral efficiency than its SC-FDMA

counterpart. This is especially relevant when only two receive antennas are em-

ployed; for systems with more receive than transmit antennas, both systems yield

comparable performance.

Paper K The contribution of this paper is two-fold: first, a parametric channel model

allowing for a more dynamical behavior of the multipath components compared to

standard models is presented; next, a detailed analysis of spatial smoothing tech-

niques [57] applied to the estimation of multipath components’ delays in OFDM

systems is provided. The proposed channel estimation technique uses Unitary

ESPRIT [58] together with spatial smoothing techniques to obtain an estimate of

the multipath components’ delays; this estimate is then fed to the channel estima-

tor proposed in [16]. From the presented simulation results, we draw two main

conclusions: first, it is crucial to adequately model the dynamical behavior of

multipath components in order to obtain meaningful insight from the numerical

evaluation; second, spatial-smoothing techniques can, when properly designed,

greatly improve the accuracy of the estimates of the multipath components’ de-

lays.

Paper L This contribution presents a heuristic iterative channel estimation algorithm

for the downlink of the 3GPP LTE standard. The iterative channel estimator

is based on a modified version of the robustly-designed Wiener filter [11] which

incorporates the receiver information on the data symbols by means of hard-

decision feedback. The effect of the number of iterations run inside the turbo

decoder before and after feeding back the information to the channel estimator

is analyzed via Monte Carlo simulations. The discussion of the results shows

that moderate gains in terms of BER and average cell spectral efficiency can

be obtained with the proposed scheme compared to a reference receiver without

increasing the total number of iterations run in the turbo decoder.

29



4. CONTRIBUTIONS OF THE THESIS

Paper M In this article, several state-of-art pilot-aided channel estimation algorithms

are analyzed within a downlink 3GPP LTE context. The considered estimators

are defined under a unified notation that allows for a generic MSE evaluation

of all of them. Two main types of estimators are considered: estimators using

DFT techniques for the estimation of the channel impulse response and estimators

which incorporate knowledge of the multipath components’ delays. The MSE and

BER analysis shows that DFT-based estimators suffer from two important degra-

dation effects: the leakage effect [14] caused by the limited sampling resolution in

the receiver and numerical instabilities due to the inversion of ill-conditioned ma-

trices. On the other hand, estimators making use of the multipath components’

delay information need very precise estimates of these delays to avoid severe MSE

degradation.

Paper N In this work, we analyze the performance of linear pilot-aided channel es-

timators for OFDM systems. In particular, two DFT-based channel estimators,

proposed in [15] and [59], are studied analytically and by means of Monte Carlo

simulations for a system with settings similar to the downlink of the 3GPP LTE

standard [56]. An MSE analysis of the estimators reveals that DFT-based estima-

tors suffer from numerical issues due to the inversion of ill-conditioned matrices

when the number of active subcarriers of the OFDM system is smaller than the

DFT size. This caveat can be overcome by means of Tikhonov regularization [60],

as it is done in [59]. Furthermore, a computational complexity analysis is provided

which demonstrates the computational advantages of DFT-based estimators as

compared to traditional Wiener filter approaches.

Paper O This contribution researches the effect of imperfections in the local oscilla-

tors of transmitters and receivers on the performance of OFDM systems. More

specifically, the impact of phase noise degradation in downlink LTE systems is

studied. We model the phase noise as a Wiener-Lévy process [61], and we eval-

uate the performance of a receiver employing LMMSE channel estimation with

different pilot patterns and for several phase noise powers via Monte Carlos simu-

lations. The numerical results show that phase noise can cause sever degradation

at high SNR regimes; this effect can be mitigated by increasing the pilot-symbol

density, with the associated cost of an increased transmission overhead.
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Abstract—We present a joint message passing approach that
combines belief propagation and the mean field approximation
based on the region-based free energy approximation method
proposed by Yedidia et al. We show that the message passing
fixed point equations obtained by this combination correspond
to stationary points of a constraint variational free energy ap-
proximation. Moreover, we present a convergent implementation
of these message passing fixed point equations provided that
the underlying factor graph fulfills certain technical conditions.
In addition, we show how to include hard constraints in the
part of the factor graph corresponding to belief propagation. As
an example, we demonstrate our method for iterative channel
estimation and decoding in a time-varying frequency-flat mobile
channel.

I. I NTRODUCTION

Variational techniques have been used for decades in quan-
tum and statistical physics, where they are referred to asmean
field (MF) approximation [2]. Later, they found their way to
the area of machine learning or statistical inference, see,e.g.,
[3]–[6]. The basic idea of variational inference is to derive the
statistics of “hidden” random variables given the knowledge
of “visible” random variables of a certain probability density
function (pdf). This is done by approximating the pdf by
some “simpler,” e.g., (fully) factorized pdf and minimizing
the Kullback-Leibler divergence between the approximating
and the true pdf, which can be done in an iterative, i.e.,
message passing like way. Apart from being fully factorized,
the approximating pdf typically fulfills additional constraints
that allow for messages that have a simple structure and can be
updated in a simple way. For example, additional exponential
conjugacy constraints result in messages propagating along
the edges in a Bayesian network that are described by a few
parameters [5]. Variational inference methods were recently
applied in [7] to thechannel state estimation/interference
cancellation partof a class of MIMO-OFDM receivers that
iterate between detection, channel estimation, and decoding.

A different approach isbelief propagation(BP) [8]. Roughly
speaking, with BP one tries to findlocal approximations,
which are—exactly or approximately—the marginals of a
certain pdf. This can also be done in an iterative way, where
messages are passed along the edges in a factor graph [9].
A typical application of BP isdecoding of turbo or low
density parity check (LDPC) codes. Based on the excellent
performance of BP, a lot of variations have been derived in

order to push the performance of this algorithm even further.
For example, minimizing an upper bound on the log partition
function of a pdf leads to the powerful tree rewighted BP algo-
rithm [10]. An offspring of this idea is the recently developed
uniformly tree rewighted BP algorithm [11]. Another example
is [12], where methods from information geometry can be used
to compute correction terms for the beliefs obtained by loopy
BP.

The fixed point equations of both, BP and the MF ap-
proximation, can be obtained by minimizing an approxima-
tion of the Kullback-Leibler divergence, called region-based
variational free energy [13]. This approach differs from other
methods, see, e.g., [14]1, because the starting point for the
derivation of the corresponding message passing fixed point
equations is the same objective function for both, BP and
the MF approximation. Since both methods have their own
advantages, it is of great benefit to combine them and develop
a unified message passing algorithm. More precisely, suppose
that a probability mass function (pmf) admits an a priori
factorization as a product of nonnegative real-valued functions
and we want to apply BP to a certain subset of factors of
this factorization and the MF approximation to the remaining
factors of this factorization. The main technical result of
this work is Theorem 2, where we show that the message
passing fixed point equations for such a combination of BP
and the MF approximation correspond to stationary points of
one single constraint region-based variational free energy and
state a clear rule how to couple the messages propagating
in the BP and MF part. In fact, based on the factor graph
corresponding to a factorization of a pmf and a choice for
a separation into BP and MF factors of this factorization,
Theorem 2 gives the message passing fixed point equations
for the factor graph representing the whole factorization of the
pmf. One example for an application of Theorem 2 is joint
channel estimation, interference cancellation, and decoding.
Note that typically these parts are considered as separate units
and the coupling between these units is described in a heuristic
way Despite having a clear rule to update the messages for
the whole factor graph representing a factorization of a pmf,
an additional advantage is the fact that solutions of fixed
point equations for the messages are related to the stationary

1An information theoretical interpretation of the different objective func-
tions used in [14] can be found in [15].
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points of the corresponding constraint variational free energy
approximation. This correspondence is important because it
yields an interpretation of the computed beliefs for arbitrary
factor graphs similar to the case of solely BP, where solutions
of the message passing fixed point equations do in general not
correspond to the true marginals if the factor graph has cycles
but always correspond to stationary points of the constraint
Bethe free energie [13]. Moreover, this observation allowsus
to present a systematic way of updating the messages, namely,
Algorithm 2, that is guaranteed to converge provided that the
factor graph representing the factorization of the pmf fulfills
certain technical conditions.

The paper is organized as follows. In the remainder of
this section we fix our notation. Section II is devoted to the
introduction of the region-based free energy approximations
proposed by [13] and to recall how BP, the MF approximation,
and the EM algorithm [16] can be obtained by this method.
Since the MF approximation is typically used for parameter
estimation, we briefly show how it can be extended to the
case of continuous random variables. Note that it is not
obvious how to define the Fréchet derivative of the Kullback
Leibler divergence with respect to a pdf when any point in
the image of the pdf can be arbitrary close to zero. Therefore,
we make use of [17, Th. 2.1] which allows to minimize the
Kullback Leibler divergence without computing the Fréchet
derivative in order to extend the MF approximation to the
case of continuous random variables. Section III is the main
part of this work. There we state our main result, namely,
Theorem 2, and show how the message passing fixed point
equations of a combination of BP and the MF approximation
can be related to the stationary points of the corresponding
constraint region-based free energy approximation. We then
(i) show how to generalize Theorem 2 to the case where the
factors of the pmf in the BP part are no longer restricted to be
strictly positive real-valued functions and (ii) present Algorihm
2 that is a convergent implementation of the message passing
update equations presented in Theorem 2 provided that the
factor graph representing the factorization of the pmf fulfills
certain technical conditions. As a byproduct, (i) gives insights
for BP, which is a special case of the combination of BP
and the MF approximation, with hard constraints, where only
conjectures are formulated in [13]. In Section IV we apply
Algorihm 2 to joint channel estimation and decoding of a
time-varying frequency-flat mobile channel. More advanced
receiver architectures together with numerical simulations and
a comparison with other state of the art receivers can be found
in [18]. Finally, we conclude in Section V and present an
outlook for further research directions.

A. Notation

Capital calligraphic lettersA, I,N denote finite sets. The
cardinality of a setI is denoted by|I|. If i ∈ I we write
I \ i for I \ {i}. We use the convention that

∏

∅

(. . . ) , 1

where ∅ denotes the empty set. For any finite setI, II
denotes the indicatior function onI, i.e., II(i) = 1 if i ∈ I
and II(i) = 0 else. We denote by capital lettersX discrete
random variables with probability mass functionp(x) and

∑

x

(. . . ) runs through all possible realizationsx of X . We

write x = (xi | i ∈ I)T for the realization of the vector
of random variablesX = (Xi | i ∈ I)T with probability
mass functionp(x). If i ∈ I then

∑

x\xi

(. . . ) runs through all

possible realizations ofX but Xi. For any nonnegative real
valued functionf with argumentx = (xi | i ∈ I)T andi ∈ I,
f |x̄i

denotesf with fixed argumentxi = x̄i. If a functionf is
identically zero we writef ≡ 0 andf 6≡ 0 means that it is not
identically zero. For two real valued functionsf andg with the
same domain and argumentx, we writef(x) ∝ g(x) if f = cg

for some real positive constantc ∈ R+. We use the convention
that 0 ln(0) = 0, a ln(a0 ) = ∞ if a > 0, and 0 ln(00 ) = 0
[19, p. 31]. Forx ∈ R, δ(x) = 1 if x = 0 and zero else.
MatricesΛ ∈ Cm×n are denoted by capital boldface greek
letters. The superscriptsT and H stand for transposition and
Hermitian transposition, respectively. For a matrixΛ ∈ Cm×n,
the entry in theith row andjth column is denoted byλi,j .
Finally, CN (µ,Σ) stands for the distribution of a jointly
proper Gaussian random vector with meanµ and covariance
matrix Σ and Γ(k, θ) denotes the gamma distribution with
scale parameterθ and shape parameterk.

II. K NOWN RESULTS

A. Region-based free energy approximations [13]

Let p(x) be a certain positive pmf of a vectorX of random
variablesXi (i ∈ I) that factorizes as

p(x) =
∏

a∈A

fa(xa) (1)

wherex , (xi | i ∈ I)T andxa , (xi | i ∈ N (a))T with
N (a) ⊆ I for all a ∈ A. We also setN (i) , {a ∈ A | i ∈
N (a)} for all i ∈ I. Without loss of generality, we assume
that all the factorsfa of the pmf p in (1) are real-valued
positive functions. Later in Section (III), we shall show how
to relax the positivity constraints for some of these factors.
The factorization in (1) can be visualized in afactor graph
[9]. In a factor graph,N (a) is the set of all variable nodes
connected to a factor nodea ∈ A andN (i) represents the set
of all factor nodes connected to a variable nodei ∈ I. An
example of a factor graph is depicted in Figure 1.

A regionR , {IR,AR} consists of subsets of indicesIR ⊆
I andAR ⊆ A with the restriction thata ∈ AR implies that
N (a) ⊆ IR. To each regionR we associate acounting number
cR ∈ Z. A set R , {(R, cR)} of regions and associated
counting numbers is calledvalid if
∑

R∈R

cR IAR
(a) =

∑

R∈R

cR IIR
(i) = 1, ∀a ∈ A, i ∈ I.

For an arbitrary pmfb of the vectorX of random variables
Xi (i ∈ I), we define thevariational free energy[13]

F (b) ,
∑

x

b(x) ln
b(x)

p(x)

=
∑

x

b(x) ln b(x)

︸ ︷︷ ︸

,−H(b)

−
∑

x

b(x) ln p(x)

︸ ︷︷ ︸

,−U(b)

. (2)
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In (2), H(b) denotes the entropy [19, p. 5] ofb andU(b) is
called average energy ofb. Note thatF (b) is the Kullback-
Leibler divergence [19, p. 19] betweenb and p, i.e., F (b) =
D(b || p). For a setR of regions, theregion-based variational
free energyis defined as [13]FR , UR −HR with

UR , −
∑

R∈R

cR
∑

a∈AR

∑

xR

bR(xR) ln fa(xa),

HR , −
∑

R∈R

cR
∑

xR

bR(xR) ln bR(xR).

Here, eachbR is defined locally on a regionR. Instead of
minimizingF with respect tob, we minimizeFR with respect
to all bR ((R, cR) ∈ R) where thebR have to fulfill certain
constraints. The quantitiesbR are calledbeliefs. We give two
examples of valid sets of regions.

Example 2.1:The trivial example RMF , {(R =
(I,A), cR)} with cR = 1. It leads to the MF fixed point
equations, as will be shown in subsection II-C.

Example 2.2:We define two types of regions:

1) large regions:Ra , (N (a), {a}) with cRa
= 1 ∀ a ∈

A;
2) small regions:Ri , ({i}, ∅) with cRi

= 1−|N (i)| ∀ i ∈
I.

The region-based variational free energy corresponding tothe
valid set of regions

RBP , {(Ri, cRi
) | i ∈ I} ∪ {(Ra, cRa

) | a ∈ A}

is called theBethe free energy[13], [20]. It leads to the BP
fixed point equations, as will be shown in subsection II-B. The
Bethe free energy is equal to the exact variational free energy
when the factor graph has no cycles [13].

B. Belief propagation fixed point equations

The fixed point equations for BP can be obtained from
the Bethe free energy by imposing additional marginaliza-
tion constraints and computing the stationary points of the
corresponding Lagrangian function [13], [21]. The Bethe free
energy reads

FBP =
∑

a∈A

∑

xa

ba(xa) ln
ba(xa)

fa(xa)

−
∑

i∈I

(|N (i)| − 1)
∑

xi

bi(xi) ln bi(xi) (3)

with ba , bRa
∀ a ∈ A, bi , bRi

∀ i ∈ I, andFBP , FRBP.
The normalization constraints for the beliefsbi (i ∈ I) and
the marginalization constraints for the beliefsba (a ∈ A) can
be included in the Lagrangian [22, Sec. 3.1.3]

LBP ,FBP −
∑

a∈A

∑

i∈N (a)

∑

xi

λa,i(xi)
(

bi(xi)−
∑

xa\xi

ba(xa)
)

−
∑

a∈A

γa

(∑

xa

ba(xa)− 1
)

. (4)

The stationary points of the Lagrangian in (4) are then related
to the BP fixed point equations by the following theorem.

Theorem 1: [13, Th. 2] Stationary points of the Lagrangian
in (4) must be BP fixed points with positive beliefs fulfilling
(5) and vice versa.






ba(xa) = da fa(xa)
∏

i∈N (a)

ni→a(xi), ∀ a ∈ A

bi(xi) =
∏

a∈N (i)

ma→i(xi), ∀ i ∈ I
(5)

with






ma→i(xi) = da
∑

xa\xi

fa(xa)
∏

j∈N (a)\i

nj→a(xj)

ni→a(xi) =
∏

c∈N (i)\a

mc→i(xi)
(6)

for all a ∈ A, i ∈ N (a). Here,da (a ∈ A) are positive con-
stants that ensure that the beliefsba (a ∈ A) are normalized
to one.

Often, the following alternative system of fixed point equa-
tions is solved instead of (6).






m̃a→i(xi) = ωa,i

∑

xa\xi

fa(xa)
∏

j∈N (a)\i

ñj→a(xj)

ñi→a(xi) =
∏

c∈N (i)\a

m̃c→i(xi)
(7)

for all a ∈ A, i ∈ N (a) where ωa,i (a ∈ A, i ∈ N (a))
are arbitrary positive constants. The reason for this is that
for a fixed scheduling the messages computed in (6) differ
from the messages computed in (7) only by positive constants,
which drop out when the beliefs are normalized. See also [13,
Eq. (68) and Eq. (69)], where the“ ∝ ” symbol is used in
the update equations noting that the normalization constants
are irrelevant. A solution of (7) can be obtained, e.g., by
updating corresponding likelihood ratios of the messages in
(6) or by updating the messages according to (6) but ignoring
the normalization constantsda (a ∈ A) and using as stopping
criterion for the algorithm that the normalized beliefs do not
change any more. In both cases, a rescaling of the messages is
irrelevant and therefore a solution of (7) is obtained. However,
we note that rescaling a solution of (7) has not necessarily to
be a solution of (6). Hence, the beliefs obtained by solving
(7) need not be stationary points of the Lagrangian in (4).
To the best of our knowledge, this elementary insight is not
published yet in the literature and we state a necessary and
sufficient condition when a solution of (7) can be rescaled to
a solution of (6) in the following lemma.

Lemma 1:Suppose that{m̃a→i(xi), ñi→a(xi)} (a ∈
A, i ∈ N (a)) is a solution of (7) and set

d̃a ,
1

∑

xa

fa(xa)
∏

i∈N (a)

ñi→a(xi)
, ∀a ∈ A. (8)

Then this solution can be rescaled to a solution of (6) if and
only if there exist positive constantsei (i ∈ I) such that

ωa,i = eid̃a, ∀ a ∈ A, i ∈ N (a). (9)

Proof: See Appendix A.
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Remark 2.1:Note that for factor graphs that have tree-
structure the messages computed by the forward-backward
algorithm [9] always fulfill (9) because we haveωa,i = 1
(a ∈ A, i ∈ N (a)) and d̃a = 1 (a ∈ A) in this case.

C. Fixed point equations for the mean field approximation

A message passing interpretation of the MF approximation
was derived in [5], [23]. In this section, we briefly show how
the corresponding fixed point equations can be obtained by the
free energy approach. To this end we useRMF from Example
2.1 together with the factorization constraint

b(x) =
∏

i∈I

bi(xi). (10)

Plugging (10) into the expression for the region based free
energy corresponding to the trivial approximationRMF we get

FMF =
∑

i∈I

∑

xi

bi(xi) ln bi(xi)−
∑

a∈A

∑

xa

∏

i∈N (a)

bi(xi) ln fa(xa)

(11)
with FMF , FRMF . Assuming that all the beliefsbi (i ∈ I)
have to fulfill a normalization constraint, the stationary points
of the corresponding Lagrangian for the MF approximation
can easily be evaluated to be

bi(xi) = ei exp

(
∑

a∈N (i)

∑

xa\xi

∏

j∈N (a)\i

bj(xj) ln fa(xa)

)

(12)
for all i ∈ I where the positive constantsei (i ∈ I) are
such thatbi is normalized to one for alli ∈ I 2 . The
updatesbi can be obtained by iterating overi ∈ I. At each
step the objective function, i.e., the Lagrangian corresponding
to the mean field free energy (11), cannot increase and the
algorithm is guaranteed to converge. Note that in order to
derive a particular updatebi (i ∈ I) we need all previous
updatesbj with j ∈

⋃

a∈N (i) N (a) \ i. The beliefsbi are
obtained by settingbi(xi) = ni→a(xi) ∀ i ∈ I, a ∈ N (i) and
solving






ni→a(xi) =ei
∏

a∈N (i)

ma→i(xi)

ma→i(xi) = exp

(
∑

xa\xi

∏

j∈N (a)\i

cjnj→a(xj) ln fa(xa)

)

(13)
for all a ∈ A, i ∈ N (a). The MF approximation can be
extended to the case wherep is a continuous pdf, which is
shown in Appendix B. Formally, each sum over statesxi with
i ∈ I in (12) and (13) has to be replaced by a Lebesgue
integral whenever the corresponding random variableXi is
continuous.

D. EM algorithm

Message passing interpretations of the EM algorithm [16]
were derived in [24], [25]. It can be shown that the EM

2The Lagrange multiplier [22, p. 283] for each beliefbi (i ∈ I) corre-
sponding to the normalization constraint can be absorbed into the positive
constantei (i ∈ I).

algorithm is a special instance of the MF approximation [26,
Sec. 2.3.1], which we briefly summarize in the following.
Suppose that we apply the MF approximation top in (1) as
described before. In addition, we assume that for alli ∈ E ⊆ I
the beliefsbi fullfill the constraints thatbi(xi) = δ(xi − x̃i).
Using the fact that0 ln(0) = 0, we can rewriteFMF in (11) as

FMF =
∑

i∈I\E

∑

xi

bi(xi) ln bi(xi)

−
∑

a∈A

∑

xa

∏

i∈N (a)

bi(xi) ln fa(xa).
(14)

For all i ∈ I \ E the stationary points ofFMF in (14) have
the same analytical expression as the one obtained in (12).
For i ∈ E , minimizing FMF in (14) with respect tõxi yields
bi(xi) = δ(xi − x̃i) with

x̃i = argmax
xi

(
∏

a∈N (i)

exp

(
∑

xa\xi

∏

j∈N (a)\i

bj(xj) ln fa(xa)

))

.

(15)

Settingbi(xi) = cini→a(xi) ∀ i ∈ I, a ∈ N (i), we get the
message passing update equations defined in (13)exceptthat
we have to replace the messagesni→a(xi) for all i ∈ E and
a ∈ N (i) by

ni→a(xi) = δ(xi−x̃i) with x̃i = argmax
xi

(
∏

a∈N (i)

ma→i(xi)

)

(16)
for all i ∈ E , a ∈ N (a).

III. C OMBINED BELIEF PROPAGATION/ MEAN FIELD

APPROXIMATION FIXED POINT EQUATIONS

Let

p(x) =
∏

a∈AMF

fa(xa)
∏

a∈ABP

fa(xa) (17)

be a partially factorized pmf withAMF ∩ ABP = ∅ andA ,

AMF ∪ ABP. As before, we havex , {xi | i ∈ I}, xa ,

(xi | i ∈ N (a))T with N (a) ⊆ I for all a ∈ A, andN (i) ,
{a ∈ A | i ∈ N (a)} for all i ∈ I. We refer to the factor
graph representing the factorization

∏

a∈ABP
fa(xa) in (17) as

”BP part” and to the factor graph representing the factorization
∏

a∈AMF
fa(xa) in (17) as ”MF part”. Furthermore, we set

IMF ,
⋃

a∈AMF

N (a) IBP ,
⋃

a∈ABP

N (a)

and

NMF(i) , AMF ∩ N (i) NBP(i) , ABP ∩ N (i).

Following [13], as outlined in Subsection II-A, we define
the following regions and counting numbers:

1) one MF regionRMF , (IMF,AMF) with cRMF = 1;
2) small regionsRi , ({i}, ∅) with cRi

= 1 − |NBP(i)| −
IIMF(i) for all i ∈ IBP;

3) large regionsRa , (N (a), {a}) with cRa
= 1 for all

a ∈ ABP.
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This yields the valid set of regions

RBP, MF ,{(Ri, cRi
) | i ∈ I} ∪ {(Ra, cRa

) | a ∈ ABP}

∪ {(RMF, cRMF)}. (18)

The additional termsIIMF(i) in the counting numbers of
the small regionsRi (i ∈ I) defined in 2) compared to
the counting numbers of the small regions for the Bethe
approximation (see Example 2.2) guarantee that this is indeed
a valid set of regions.

The valid set of regions in (18) gives the region-based
variational free energy

FBP, MF =
∑

a∈ABP

∑

xa

ba(xa) ln
ba(xa)

fa(xa)

−
∑

a∈AMF

∑

xa

∏

i∈N (a)

bi(xi) ln fa(xa)

−
∑

i∈I

(|NBP(i)| − 1)
∑

xi

bi(xi) ln bi(xi) (19)

with FBP, MF , FRBP, MF. In (19), we have already plugged in
the factorization constraint for the MF part, i.e., we set

bMF(xMF) =
∏

i∈IMF

bi(xi).

The normalization constraints for the beliefsbi (i ∈ IMF\IBP)
and ba (a ∈ ABP) and the marginalization constraints for the
beliefs ba (a ∈ ABP) can be included in the Lagrangian [22,
Sec. 3.1.3]

LBP, MF ,FBP, MF

−
∑

a∈ABP

∑

i∈N (a)

∑

xi

λa,i(xi)
(

bi(xi)−
∑

xa\xi

ba(xa)
)

−
∑

i∈IMF\IBP

γi

(∑

xi

bi(xi)− 1
)

−
∑

a∈ABP

γa

(∑

xa

ba(xa)− 1
)

. (20)

Remark 3.1:Note that there is no need to introduce normal-
ization constraints for the beliefsbi (i ∈ IBP). If a ∈ NBP(i),
then it follows from the marginalization and normalization
constraint for the beliefba that

1 =
∑

xa

ba(xa)

=
∑

xi

( ∑

xa\xi

ba(xa)
)

=
∑

xi

bi(xi).

The stationary points of the LagrangianLBP, MF in (20)
are then obtained by setting the derivatives ofLBP, MF with
respect to the beliefs and the Lagrange multiplier equal to
zero. The following theorem relates the stationary points of
the LagrangianLBP, MF to solutions of fixed point equations
for the beliefs.

Theorem 2:Stationary points of the Lagrangian in (20) in
the combined BP/MF approach must be fixed points with
positive beliefs fulfilling






ba(xa) = da fa(xa)
∏

i∈N (a)

ni→a(xi), ∀ a ∈ ABP

bi(xi) = ei
∏

a∈NBP(i)

mBP
a→i(xi)

∏

a∈NMF(i)

mMF
a→i(xi), ∀ i ∈ I

(21)
with






ni→a(xi) =ei
∏

c∈NBP(i)\a

mBP
c→i(xi)

∏

c∈NMF(i)

mMF
c→i(xi),

∀ a ∈ A, i ∈ N (a)

mBP
a→i(xi) =da

∑

xa\xi

fa(xa)
∏

j∈N (a)\i

nj→a(xj),

∀ a ∈ ABP, i ∈ N (a)

mMF
a→i(xi) = exp

(
∑

xa\xi

∏

j∈N (a)\i

nj→a(xj) ln fa(xa)

)

,

∀ a ∈ AMF, i ∈ N (a)
(22)

and vice versa. Here,ei (i ∈ I) andda (a ∈ ABP) are positive
constants that ensure that the beliefsbi (i ∈ I) andba (a ∈ A)
are normalized to one withei = 1 ∀ i ∈ IBP.

Proof: See Appendix C.
Remark 3.2:Note that for eachi ∈ I \IBP Theorem 2 can

be generalized to the case whereXi is a continuous random
variable following the derivation presented in Appendix B.
Formally, each sum over statesxi with i ∈ I \IBP in (21) and
(22) has to be replaced by a Lebesgue integral whenever the
corresponding random variableXi is continuous.

A. Hard constraints for BP

Some conjectures on how to generalize Theorem 1 ( [13,
Th. 2]) to hard constraints, i.e., to the case where the factors
fa (a ∈ A) of the pmf p are not restricted to be strictly
positive real-valued functions, can be found in [13, Sec. VI.D].
However, the derivations in [13, Sec. VI.D] are based on the
fact that we are allowed to compute the stationary points of
the LagrangianLBP in (4), i.e., that we are allowed to take the
corresponding derivatives, even though the factorsfa (a ∈ A)
of the pmfp are no longer strictly positive functions.

In the sequal, we show how to generalize Theorem 2 to the
case wherefa ≥ 0 ∀ a ∈ ABP based on the simple observation
that we are interested in solutions where the variational region
based free energy is not plus infinity (recall that we want to
minimize this quantity). As a byproduct, this also yields an
extension of Theorem 1 ( [13, Th. 2]) to hard constraints by
simply settingAMF = ∅.

To this end we analyze the first term of the free energy
FBP, MF in (19), which is

F1 ,
∑

a∈ABP

∑

xa

ba(xa) ln
ba(xa)

fa(xa)
. (23)

Note that the remaining terms inFBP, MF−F1 are all finite due
to the assumption that the beliefsbi (i ∈ I) are valid pmfs and,
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therefore, nonnegative and bounded functions, and the factors
fa with a ∈ AMF are strictly positive real-valued functions.
Now let x̄a with a ∈ ABP be a fixt state withfa(x̄a) = 0.
Then we see from (23) thatF1 = ∞ unlessba(x̄a) = 0.
Note also that, regardless of the valued ofba(x̄a), we are not
allowed to take the derivative ofF1 with respect toba(x̄a).
Based on the fact thatFBP, MF < ∞, we set

ba(x̄a) = 0, ∀ x̄a with a ∈ ABP, fa(x̄a) = 0. (24)

We distinguish between two cases:
1) Suppose thatfa |x̄i

≡ 0 for somea ∈ ABP and xi ∈
xa. Then (24) implies thatba |x̄i

≡ 0. Moreover, the
marginalization constraints imply thatbi(x̄i) = 0 and,
therefore,bc |x̄i

= 0 for all c ∈ NBP(i). Hence, we can
exclude the statēxi from the set of all possible states:

If fa |x̄i
≡ 0 with a ∈ ABP, i ∈ N (a) excludex̄i.

(25)

Note thatfa |x̄i
≡ 0 for somea ∈ ABP implies that

p |x̄i
≡ 0. This just means that the true set of realizations

of the random variableXi is smaller.
2) Suppose that we have excluded all valuesx̄i of xi for

all i ∈ IBP from case 1) and (24) is fulfilled. The
analysis for the remainingba(xa) andbi(xi), which are
stationary points, is the same as in the proof of Theorem
2 and the resulting fixed point equations are identical
to (22), because we can reintroduce the statesx̄a from
(24) in the message passing update equations, as can
be seen immediately from (22). In fact, the additional
terms for the states in (24) in the update of the messages
mBP

a→i(xi) (a ∈ ABP, i ∈ N (a)) do not contribute
becausefa(x̄a) = 0 for all of these states. All the beliefs
bi are still positive functions: leti ∈ IBP, a ∈ NBP(i),
andxi = x̄i. Due to (25),fa |x̄i

6≡ 0. This implies that
fa(x̄a) 6= 0 for some statēxa = (x̄j | j ∈ N (a))T

with i ∈ N (a) and the stationary pointba(x̄a) 6= 0. The
marginalization constraints in the BP part together with
the fact that the beliefba must be a nonnegative function
then implies thatbi(x̄i) > 0.

B. Convergence

If the BP part has no cycles and

|N (a) ∩ IBP| ≤ 1, ∀a ∈ AMF, (26)

then there exists a convergent implementation of the combined
message passing equations in (22). In fact, we can iterate
between updating the beliefsbi with i ∈ IMF \ IBP and the
forward backward algorithm in the BP part, as is outlined in
the following Algorithm.

Algorithm 1: If the BP part has no cycle and (26) is
fulfilled, the following implementation of the fixed point
equations in (22) is guaranteed to converge.

1) Initialize bi for all i ∈ IMF \ IBP and send the cor-
responding messagesni→a(xi) = bi(xi) to all factor
nodesa ∈ NMF(i).

2) Use all messagesmMF
a→i(xi) with i ∈ IBP ∩ IMF and

a ∈ NMF(i) as fixed input for the BP part and run

the forward/backward algorithm [9]. The fact that the
resulting beliefsbi with i ∈ IBP can not increase the
region-based variational free energy in (19) is proved in
Appendix D.

3) For eachi ∈ IMF ∩ IBP and a ∈ NMF(i) the message
ni→a(xi) is now available and can be used for further
updates in the MF part.

4) For eachi ∈ IMF\IBP recompute the messageni→a(xi)
and send it to alla ∈ NMF(i). Note that for all indices
i ∈ IMF \IBP the recomputed beliefsbi(xi) = ni→a(xi)
fulfill

∂FBP, MF

bi(xi)
= 0 and

∂2FBP, MF

∂bi(xi)2
=

1

bi(xi)
> 0,

which implies that the region-based free energy in (19)
can not increase.

5) Proceed as described in 2).

Remark 3.3:If the factor graph representing the BP part has
cycles then Algorithm 2 can be modified by running loopy BP
in step 2). However, in this case the algorithm is not guaranteed
to converge.

IV. A PPLICATION TO ITERATIVE CHANNEL ESTIMATION

AND DECODING

In this section, we present an example where we show
how to compute the updates of the messages in (22) based
on Algorithm 1. We choose a simple channel model where
the updates of the messages are simple enough in order to
avoid overstressed notation. A class of more complicated
MIMO-OFDM receiver architectures together with numerical
simulations can be found in [18].

Specifically, we consider a time-varying frequency-flat
channel with input-output relationship

y = h⊙ x+ z

wherez ∼ CN (0, γ−1IN ) andx,y ∈ Cn. The symbolsxi ∈
x (i ∈ [1 : N ]) belong to a certain modulation alphabet. We
assume that each symbolxi ∈ C can be mapped to a unique bit
vectorci ∈ {−1, 1}M . We choose for the prior distributions
of Γ andH [5]

pΓ(γ) ∼ Γ(kp, 1/βp)

pH(h) ∼ CN (µp,Λp−1).

The pdfpY,X,H,C,Γ with C , (CT
1 , . . . ,C

T
N)T admits the

factorization

pY,X,H,C,Γ(y,x,h, c, γ)

= pY|X,H,C,Γ(y|x,h, c, γ) pX|C(x|c) pC(c) pH(h) pΓ(γ)

=
∏

i∈[1:N ]

pYi|Xi,Hi,Γ(yi|xi, hi, γ)

×
∏

j∈[1:N ]

pXj |Cj
(xj |cj) pH(h) pC(c) pΓ(γ), (27)

where we used the fact thatΓ, H, andX are independent.
Here, the pdfpC represents the code constraints for the bits
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that typically admits an additional factorization and

pYi|Xi,Hi,Γ(yi|xi, hi, γ)

=
γ

π
exp(−γ|yi − hixi|

2)

∼ CN (hixi, 1/γ), ∀i ∈ [1 : N ]. (28)

Now let

I ,{C1, . . . , CNM} ∪ {X1, . . . , XN}

∪ {H1, . . . , HN} ∪ {Γ} (29)

A ,{pYi|Xi,Hi,Γ | i ∈ [1 : N ]} ∪ {pXi|Ci
| i ∈ [1 : N ]}

∪ {pH(h)} ∪ {pC, pΓ}. (30)

By a slight abuse of notation we used in (30) the names of
the functions in the factorization in (27) as indices of the set
A. We shall choose the following splitting ofA into ABP and
AMF.

ABP , {pC} ∪ {pXi|Ci
| i ∈ [1 : N ]}

AMF , {pΓ} ∪ {pH(h)} ∪ {pYi|Xi,Hi,Γ | i ∈ [1 : N ]}.
(31)

The splitting in (31) yields

IBP = {C1, . . . , CNM} ∪ {X1, . . . , XN}

IMF = {X1, . . . , XN} ∪ {H1, . . . , HN} ∪ {Γ},
(32)

which implies thatIBP ∩ IMF = {X1, . . . , XN}. The factor
graph corresponding to the factorization in (27) with the
splitting of A into AMF and ABP as in (31) is depicted in
Figure 1.

We now show how to apply Algorithm 1 for the factor graph
depicted in 1.

Algorithm 2: (Application of Algorithm 1):
1) Initialize

bΓ(γ) =
βk

(k − 1)!
γk−1 exp(−βγ) ∼ Γ(k, 1/β)

bHi
(hi) =

1

πσ2
Hi

exp
(

−
1

σ2
Hi

|hi − µHi
|2
)

∼ CN (µHi
, σ2

Hi
), ∀ i ∈ [1 : N ]

and set

nΓ→pΓ(γ) = bΓ(γ)

nΓ→pYi|Xi,Hi,Γ
(γ) = bΓ(γ), ∀ i ∈ [1 : N ]

nHi→pH
(hi) = bHi

(hi)

nHi→pYi|Xi,Hi,Γ
(hi) = bHi

(hi), ∀ i ∈ [1 : N ].

2) Using the particular form of the distributionspYi|Xi,Hi,Γ

(i ∈ [1 : N ]) in (28), we get

mMF
pYi|Xi,Hi,Γ

→Xi
(xi)

∝ exp

(

−

∫

dγnΓ→pYi|Xi,Hi,Γ
(γ)γ

∫

dhinHi→pYi|Xi,Hi,Γ
(hi)|yi − hixi|

2

)

∝ exp

(

−
k(σ2

Hi
+ |µHi

|2)

β

∣
∣
∣
∣
∣
xi −

yiµ
∗
Hi

(σ2
Hi

+ |µHi
|2)

∣
∣
∣
∣
∣

2)

for all i ∈ [1 : N ].
3) Use the messagesmMF

pYi|Xi,Hi,Γ
→Xi

(xi) (i ∈ [1 : N ]) as
fixed input for the BP part and run (loopy) BP.

4) After running BP in the BP part, compute the messages
nXi→pYi|Xi,Hi,Γ

(xi) (i ∈ [1 : N ]) and update the
messages in the MF part. Namely, after setting

µXi
,
∑

xi

nXi→pYi|Xi,Hi,Γ
(xi)xi

σ2
Xi

,
∑

xi

nXi→pYi|Xi,Hi,Γ
(xi)|xi − µXi

|2

for all i ∈ [1 : N ] we obtain:
(i) Update of(k, β) for bΓ:

mMF
pYi|Xi,Hi,Γ

→Γ(γ)

∝
γ

π
exp

(

− γ

∫

dhi

∑

xi

nHi→pYi|Xi,Hi,Γ
(hi)nXi→pYi|Xi,Hi,Γ

(xi)|yi − hixi|
2

)

∝
γ

π
exp

(

− γ
(
|yi|

2 + (σ2
Hi

+ |µHi
|2)(σ2

Xi
+ |µXi

|2)

− 2ℜ(y∗i µHi
µXi

)
))

nMF
Γ→pYi|Xi,Hi,Γ

(γ)

= eΓm
MF
pΓ→Γ(γ)

∏

j∈[1:N ]

mMF
pYj |Xj,Hj,Γ

→Γ(γ)

=
βk

(k − 1)!
γk−1 exp(−γβ))

with updated shape and inverse scale parameter

k = N + kp

β = βp +
∑

j∈[1:N ]

(
|yj |

2 + (σ2
Hj

+ |µHj
|2)(σ2

Xj
+ |µXj

|2)

− 2ℜ(y∗jµHj
µXj

)
)
,

respectively. The update for the beliefbΓ is

bΓ(γ) = nMF
Γ→pYi|Xi,Hi,Γ

(γ) ∼ Γ(k, 1/β). (33)

(ii) Update of(µHi
, σ2

Hi
) for bHi

(i ∈ [1 : N ]):
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Fig. 1. Factor graph corresponding to the factorization of the pdf in (27).

mMF
pYi|Xi,Hi,Γ

→Hi
(hi)

∝ exp

(

−

∫

dγnΓ→pYi|Xi,Hi,Γ
(γ)γ

∑

xi

nXi→pYi|Xi,Hi,Γ
(xi)|yi − hixi|

2

)

∝ exp

(

−
k(σ2

Xi
+ |µXi

|2)

β

∣
∣
∣
∣
∣
hi −

yiµ
∗
Xi

σ2
Xi

+ |µXi
|2

∣
∣
∣
∣
∣

2)

mMF
pH→Hi

(hi)

∝ exp

(

−

∫
∏

j∈[1:N ]\i

dhjnHj→pH

(h− µp)HΛp(h− µp)

)

∝ exp

(

− λ
p
ii

∣
∣
∣
∣
∣
hi −

∑

j∈[1:N ]\i

λ
p
ij(µ

p
j − µHj

)

λ
p
ii

− µ
p
i

∣
∣
∣
∣
∣

2)

nMF
Hi→pYi|Xi,Hi,Γ

(hi)

= eHi
mMF

pHi
→Hi

(hi)m
MF
pYi|Xi,Hi,Γ

→Hi
(hi)

1

πσ2
Hi

exp
(

−
1

σ2
Hi

|hi − µHi
|2
)

for all i ∈ [1 : N ] where Lemma 2 yields the updated
mean and variance parameters

µHi
= σ2

Hi

(
∑

j∈[1:N ]\i

λ
p
ij(µ

p
j − µHj

) + λ
p
iiµ

p
i +

kyiµ
∗
Xi

β

)

σ2
Hi

=
1

k(σ2
Xi

+|µXi
|2)

β
+ λ

p
ii

for all i ∈ [1 : N ], respectively. The updates for the

beliefsbHi
(i ∈ [1 : N ]) are

bHi
(hi) = nMF

Hi→pYi|Xi,Hi,Γ
(hi)

∼ CN (µHi
, σ2

Hi
), ∀ i ∈ [1 : N ]. (34)

5) Proceed as described in 2).

Note that there is an ambiguity in the choice of variable
nodes in the MF part. For example, we could have chosenH
to be a single variable node in the factor graph. In this case
we do not make the assumption that the random variablesHi

(i ∈ [1 : N ]) are independent in the MF approximation and
the set of indicesI in (29) has to be replaced by

I , {C1, . . . , CNM} ∪ {X1, . . . , XN} ∪ {H} ∪ {Γ}.

Each factor nodepYi|Xi,H,Γ (i ∈ [1 : N ]) is then connected
to the same variable nodeH with

pYi|Xi,H,Γ(yi|xi,h, γ) =
γ

π
exp(−γ|yi − eTi hxi|

2)

∼ CN (eTi hxi, 1/γ), ∀i ∈ [1 : N ]

whereei denotes thei-th unit vector inCN .

V. CONCLUSION AND OUTLOOK

We showed that the message passing fixed point equations
of a combination of BP and the MF approximation correspond
to stationary points of one single constraint region-based
variational free energy. These stationary points are in one-
to-one correspondence to solutions of a coupled system of
message passing fixed point equations. For an arbitrary factor
graph and a choice of a splitting of the factor nodes into a
set of MF and BP factor nodes, our result gives immediately
the corresponding message passing fixed point equations and
yields an interpretation of the computed beliefs as stationary
points. Moreover, we presented an algorithm for updating
the messages that is guaranteed to converge provided that
the factor graph fulfills certain technical conditions. We also
showed how to extend the MF part in the factor graph to
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continuous random variables and to include hard constraints
in the BP part of the factor graph. Finally, we showed how to
compute the messages in a simple example.

An interesting extension of our result would be to generalize
the functions in the factorization of the BP part to func-
tions depending on continuous random variables. A promising
approach are the results in [27], which could be used to
generalize the Lagrange multiplier for the marginalization
constraints to the continuous case. However, these methodsare
based on the assumption that the objective function is Fréchet
differentiable and it seems to be not obvious how to define
the Fréchet derivative of the Kullback Leibler divergence
depending on pdfs. The reason for this is that in general
any point in the image of a pdf can be arbitrary close to
zero. Therefore, the argument of the logarithm in the Kullback
Leibler divergence is not guaranteed to be nonnegative in the
definition of the Fréchet derivative. An extension to continuous
random variables in the BP part would allow to apply a
combination of BP with the MF approximation, e.g., for sensor
self-localization, where both methods are used [28], [29].
Another interesting extension could be to generalize the free
energy such that the messages in the BP part are equivalent
to the messages for tree rewighted BP.

APPENDIX

A. Proof of Lemma 1

Suppose that{m̃a→i(xi), ñi→a(xi)} (a ∈ A, i ∈ N (a)) is
a solution of (7) and set

m̃a→i(xi) = κa,ima→i(xi), ∀ a ∈ A, i ∈ N (a)

ñi→a(xi) = τa,ini→a(xi), ∀ a ∈ A, i ∈ N (a)
(35)

with κa,i, τa,i > 0 (a ∈ A, i ∈ N (a)). Plugging (35) into (7)
we obtain the following fixed point equations for the messages
{ma→i(xi), ni→a(xi)} (a ∈ A, i ∈ N (a)).







κa,ima→i(xi)

= ωa,i

( ∏

j∈N (a)\i

τa,j

) ∑

xa\xi

fa(xa)
∏

j∈N (a)\i

nj→a(xj)

τa,ini→a(xi)

=
( ∏

c∈N (i)\a

κc,i

) ∏

c∈N (i)\a

mc→i(xi)

(36)
for all a ∈ A, i ∈ N (a). Now (36) is equivalent to (6) if and
only if

τa,i =
∏

c∈N (i)\a

κc,i, ∀ a ∈ A, i ∈ N (a) (37)

da =

ωa,i

∏

j∈N (a)\i

τa,j

κa,i

, ∀ a ∈ A, i ∈ N (a) (38)

where the positive constantsda (a ∈ A) are such that the
beliefs ba (a ∈ A) in (5) are normalized to one. This

normalization of the beliefsba (a ∈ A) in (5) gives
1

da
=
∑

xa

fa(xa)
∏

j∈N (a)

nj→a(xi)

=

∑

xa

fa(xa)
∏

j∈N (a)

ñj→a(xi)

∏

j∈N (a)

τa,j

=
1

d̃a
∏

j∈N (a)

τa,j
, ∀ a ∈ A (39)

where we used (35) in the second step and (8) in the last step.
Combining (37), (38), and (39) we obtain

1

d̃a
=

κa,iτa,i

ωa,i

=
ei

ωa,i

, ∀ a ∈ A, i ∈ N (a)

with

ei ,
∏

c∈N (i)

κc,i, ∀ i ∈ I.

Now suppose that (9) is fulfilled. Setting

κa,i = e
1

|N(i)|

i , ∀ a ∈ A, i ∈ N (a)

τa,i = e
1− 1

|N(i)|

i ∀ a ∈ A, i ∈ N (a)

and reversing all the steps finishes the proof.

B. Extension of the MF approximation to continuous random
variables

Suppose thatp(x) is a pdf for the vector of random variables
X. In this appendix, we assume that all integrals are Lebesgue
integrals. For eachi ∈ I we can rewriteFMF in (11) as

FMF =

∫

bi(xi) ln bi(xi) dxi −

∫

ln p(x)
∏

i∈I

bi(xi) dxi

−
∑

j∈I\i

∫

bj(xj) ln bj(xj) dxj

= D(bi || ai)−
∑

j∈I\i

∫

bj(xj) ln bj(xj) dxj (40)

with

ai(xi) , exp
(∫

ln p(x)
∏

j∈I\i

b(xj) dxj

)

= exp
( ∑

a∈N (i)

∫

ln fa(xa)
∏

j∈N (a)\i

b(xj) dxj

)
,

∀ i ∈ I.

Suppose thatai (i ∈ I) are measurable, integrable functions.
For eachi ∈ I, minimizing FMF in (40) with respect tobi
subject to

∫
bi(xi) dxi = 1 is equivalent to minimizing

D(bi || ai) + λi

∫

bi(xi) dxi

= D
(

bi ||
ai

∫
ai(xi) dxi

)

+
(

λi − ln

∫

ai(xi) dxi

) ∫

bi(xi) dxi (41)
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with Lagrange multiplierλi that ensures thatbi is normalized
to one. Now let

µi(E) ,

∫

E

bi(xi) dxi

µ̃i(E) ,

∫

E
ai(xi) dxi

∫
ai(xi) dxi

for Lebesgue measurable setsE. If bi is a measurable inte-
grable function that vanishes only on sets of measure zero, we
see thatµi and µ̃i are absolutely continuous with respect to
one another. Hence, we can apply [17, Th. 2.1] withT ≡ 0 and
find that for eachi ∈ I the quantityD(bi || ai) is minimized
subject to

∫
bi(xi) dxi = 1 if and only if

bi(xi) =
ai(xi)

∫
ai(xi) dxi

. (42)

Formally, bi (i ∈ I) in (42) differs frombi (i ∈ I) in (12)
by replacing the sum over the statesxi with the Lebesgue
integral.

C. Proof of Theorem 2

The proof of Theorem 2 is based on the ideas of the proof
of [13, Th. 2]. However, we will see that we get a significant
simplification by augmenting it with some of the arguments
originally used in [10] for Markov random fields and adopted
to factor graphs in [11]. In particular, we shall make use of
the following observation. Recall the expression forFBP, MF in
(19)

FBP, MF =
∑

a∈ABP

∑

xa

ba(xa) ln
ba(xa)

fa(xa)

−
∑

a∈AMF

∑

xa

∏

i∈N (a)

bi(xi) ln fa(xa)

−
∑

i∈I

(|NBP(i)| − 1)
∑

xi

bi(xi) ln bi(xi), (43)

the marginalization constraints

bi(xi) =
∑

xa\xi

ba(xa), ∀ a ∈ ABP, i ∈ N (a), (44)

and the normalization constraints
∑

xi

bi(xi) = 1, ∀ i ∈ IMF \ IBP

∑

xa

ba(xa) = 1, ∀ a ∈ ABP.
(45)

Using the marginalization constraints (44), we see that
∑

a∈ABP

∑

xa

ba(xa) ln
∏

i∈N (a)

bi(xi)

=
∑

a∈ABP

∑

xa

∑

i∈N (a)

ba(xa) ln bi(xi)

=
∑

a∈ABP

∑

i∈N (a)

∑

xi

bi(xi) ln bi(xi)

=
∑

i∈IBP

∑

a∈NBP(i)

∑

xi

bi(xi) ln bi(xi)

=
∑

i∈IBP

|NBP(i)|
∑

xi

bi(xi) ln bi(xi). (46)

Combining (46) with (43), we further get

FBP, MF =−
∑

a∈ABP

∑

xa

ba(xa) ln fa(xa)

−
∑

a∈AMF

∑

xa

∏

i∈N (a)

bi(xi) ln fa(xa)

+
∑

i∈I

∑

xi

bi(xi) ln bi(xi)

+
∑

a∈ABP

Ia (47)

with the mutual information [19, p. 19]

Ia ,
∑

xa

ba(xa) ln
ba(xa)

∏

i∈N (a) bi(xi)
, ∀ a ∈ ABP. (48)

Next, we shall compute the stationary points of the Lagrangian

LBP, MF =FBP, MF

−
∑

a∈ABP

∑

i∈N (a)

∑

xi

λa,i(xi)
(

bi(xi)−
∑

xa\xi

ba(xa)
)

−
∑

i∈IMF\IBP

γi

(∑

xi

bi(xi)− 1
)

−
∑

a∈ABP

γa

(∑

xa

ba(xa)− 1
)

(49)

using the expression forFBP, MF in (47). The particular form
of FBP, MF in (47) is convenient because the marginalization
constraints in (44) imply that for alli ∈ I anda ∈ ABP we
have ∂Ia

∂bi(xi)
= − INBP(i)(a). Setting the derivative ofLBP, MF

in (49) with respect tobi(xi) andba(xa) equal to zero for all
i ∈ I anda ∈ ABP, we get the following fixed point equations
for the stationary points.

ln bi(xi) =
∑

a∈NBP(i)

λa,i(xi)

+
∑

a∈NMF(i)

∑

xa\xi

∏

j∈N (a)\i

bj(xj) ln fa(xa)

+ |NBP(i)|+ IIMF\IBP(i)γi − 1, ∀ i ∈ I

ln ba(xa) = ln fa(xa)−
∑

i∈N (a)

λa,i(xi) + ln
( ∏

i∈N (a)

bi(xi)
)

+ γa − 1, ∀ a ∈ ABP.

(50)

Setting

mBP
a→i(xi) , exp

(

λa,i(xi) + 1−
1

|NBP(i)|

)

,

∀a ∈ ABP, i ∈ N (a)

mMF
a→i(xi) , exp

(
∑

xa\xi

∏

j∈N (a)\i

bj(xj) ln fa(xa)

)

∀ a ∈ AMF, i ∈ N (a),

(51)

we can rewrite (50) as
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bi(xi) = ei
∏

a∈NBP(i)

mBP
a→i(xi)

∏

a∈NMF(i)

mMF
a→i(xi), ∀ i ∈ I

ba(xa) = da fa(xa)
∏

i∈N (a)

bi(xi)

mBP
a→i(xi)

, ∀ a ∈ ABP

(52)

with

ei , exp(IIMF\IBP(i)γi), ∀ i ∈ I (53)

da , exp

(

γa − 1 +
∑

i∈N (a)

(

1−
1

|NBP(i)|

)
)

, ∀ a ∈ ABP.

(54)

Finally, we define

ni→a(xi) , ei
∏

c∈NBP(i)\{a}

mBP
c→i(xi)

∏

c∈NMF(i)

mMF
c→i(xi),

∀ a ∈ A, i ∈ N (a). (55)

Plugging the expression forni→a(xi) in (55) into the second
line in (52) , we find that

bi(xi) = ei
∏

a∈NBP(i)

mBP
a→i(xi)

∏

a∈NMF(i)

mMF
a→i(xi), ∀ i ∈ I

ba(xa) = da fa(xa)
∏

i∈N (a)

ni→a(xi), ∀ a ∈ ABP.

(56)

Using the marginalization constraints in (44) in combination
with (56) and noting thatei = 1 for all i ∈ IBP we further
find that

ni→a(xi)m
BP
a→i(xi)

=
∏

a∈NBP(i)

mBP
a→i(xi)

∏

a∈NMF(i)

mMF
a→i(xi)

= bi(xi)

=
∑

xa\xi

ba(xa)

= da
∑

xa\xi

fa(xa)
∏

j∈N (a)

nj→a(xj), ∀ a ∈ ABP, i ∈ N (a).

(57)

Dividing both sides of (57) byni→a(xi) gives

mBP
a→i(xi) = da

∑

xa\xi

fa(xa)
∏

j∈N (a)\i

nj→a(xj)

∀ a ∈ ABP, i ∈ N (a). (58)

Noting thatnj→a(xj) = bj(xj) for all a ∈ AMF and j ∈
N (a), we can write the messagesmMF

a→i(xi) in (51) as

mMF
a→i(xi) = exp

(
∑

xa\xi

∏

j∈N (a)\i

nj→a(xj) ln fa(xa)

)

,

∀ a ∈ AMF, i ∈ N (a). (59)

Now (55), (58), and (59) is equivalent to (22) and (56) is
equivalent to (21). This completes the proof that stationary
points of the Lagrangian in (20) must be fixed points with
positive beliefs fulfilling (21). Since all the steps are reversible,
this also completes the proof of Theorem C.

D. Proof of convergence

In order to finish the proof of convergence for the algorithm
presented in Subsection III-B, we need to show that running
the forward/backward algorithm in the BP part in step 2) of
Algorithm 1 cannot increase the free energyFBP, MF in (19).
To this end we analyze the factorization

p(xBP) ∝
∏

a∈ABP

fa(xa)
∏

i∈IBP∩IMF

∏

b∈NMF(i)

mMF
b→i(xi) (60)

with xBP , {xi | i ∈ IBP}. The factorization in (60) is the
product of the factorization of the BP part in (17) and the
incoming messages from the MF part and we compute the
marginals ofp(xBP) in (60) in step 2) of Algorithm 1. The
Bethe free energy (3) corresponding to the factorization in(60)
is

FBP =
∑

a∈ABP

∑

xa

ba(xa) ln
ba(xa)

fa(xa)

+
∑

i∈IBP∩IMF

∑

a∈NMF(i)

∑

xi

bi(xi) ln
bi(xi)

mMF
a→i(xi)

−
∑

i∈IBP

(|NBP(i)|+ |NMF(i)| − 1)
∑

xi

bi(xi) ln bi(xi)

=
∑

a∈ABP

∑

xa

ba(xa) ln
ba(xa)

fa(xa)

−
∑

i∈IBP∩IMF

∑

a∈NMF(i)

∑

xi

bi(xi) lnm
MF
a→i(xi)

−
∑

i∈IBP

(|NBP(i)| − 1)
∑

xi

bi(xi) ln bi(xi). (61)

We now show that minimizingFBP in (61) is equivalent to
minimizing FBP, MF in (19) with respect toba and bi for all
a ∈ ABP and i ∈ IBP. Obvioulsy,

∂FBP, MF

∂bi(xi)
=

∂FBP

∂bi(xi)
, ∀i ∈ IBP \ IMF

and
∂FBP, MF

∂ba(xa)
=

∂FBP

∂ba(xa)
, ∀a ∈ ABP.

This follows from the fact thatFBP, MF differs from FBP by
terms that depend only onbi with i ∈ IMF.

Now suppose thati ∈ IBP ∩ IMF. In this case, we find that

∂FBP, MF

∂bi(xi)
= (1− |NBP(i)|)(ln bi(xi) + 1)

−
∑

a∈NMF(i)

∑

xa\xi

∏

j∈N (a)\i

bj(xj) ln fa(xa) (62)

and
∂FBP

∂bi(xi)
= (1− |NBP(i)|)(ln bi(xi) + 1)−

∑

a∈NMF(i)

lnmMF
a→i(xi).

(63)

From (22) we see that

mMF
a→i(xi) = exp

(
∑

xa\xi

∏

j∈N (a)\i

nj→a(xj) ln fa(xa)

)

,

∀ a ∈ NMF(i). (64)
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Note that, according to step 2) in Algorithm 1, the messages
mMF

a→i(xi) in (64) arefixed inputsfor the BP part. Therefore,
we are not allowed to plug the expressions for the messages
mMF

a→i(xi) in (64) into (63) in general. However, sincea ∈
AMF andi ∈ IBP∩IMF, condition (26) implies thatN (a)\i ⊆
IMF \ IBP and guarantees that

nj→a(xj) = bj(xj) (65)

is constant in step 2) of Algorithm 1 for allj ∈ N (a) \
i ⊆ IMF \ IBP. Therefore, we are indeed allowed to plug the
expressions of the messagesmMF

a→i(xi) in (64) into (63) and
finally see that also

∂FBP, MF

∂bi(xi)
=

∂Ff

∂bi(xi)
, ∀i ∈ IBP ∩ IMF.

Hence, minimizingFBP in (61) is equivalent to minimizing
FBP, MF in (19).

By assumption, the factor graph in the BP part has tree
structure. Therefore, [13, Prop. 3] implies that

1) FBP ≥ 0;
2) FBP = 0 if and only if the beliefs{bi, ba} in (61) are

the marginals of the factorization in (60).

Hence, forbj fixed with j ∈ IMF \ IBP, we see thatFBP, MF

in (19) is minimized by the marginals of the factorization in
(60).

It remains to show that running the forward/backword
algorithm in the BP part as described in step 2) in Algorithm
1 indeed computes the marginals of the factorization in (60).
Applying Theorem 1 to the factorization in (60) yields the
message passing fixed point equations






ni→a(xi) =
∏

c∈NBP(i)\a

mBP
c→i(xi)

∏

c∈NMF(i)

mMF
c→i(xi),

∀ a ∈ ABP, i ∈ N (a)

mBP
a→i(xi) = da

∑

xa\xi

fa(xa)
∏

j∈N (a)\i

nj→a(xj),

∀ a ∈ ABP, i ∈ N (a).
(66)

The message passing fixed point equations in (66) are the
same as the message passing fixed point equations for the
BP part in (22) with fixed input messagesmMF

a→i(xi) for
all i ∈ IBP ∩ IMF and a ∈ NMF(i). Hence, running the
forward/backward algorithm in the BP part indeed computes
the marginals of the factorization in (60) and Algorithm 1 is
guaranteed to converge.

E. Product of two Gaussian distributions

Lemma 2:Let

p1(x) =
1

πσ1
exp

(
−

1

σ2
1

|x− µ1|
2
)

p2(x) =
1

πσ2
exp

(
−

1

σ2
2

|x− µ2|
2
)
.

Then

p1(x)p2(x) ∝
1

πσ
exp

(
−

1

σ2
|x− µ|2

)

with

σ2 =
1

1
σ2
1
+ 1

σ2
2

µ = σ2
(µ1

σ2
1

+
µ2

σ2
2

)
.

Proof: Follows from direct computation.
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Abstract-We present a joint message passing approach that 
combines belief propagation and the mean field approximation. 
Our analysis is based on the region-based free energy approxi
mation method proposed by Yedidia et al., which allows to use 
the same objective function (Kullback-Leibler divergence) as a 
starting point. In this method message passing fixed point equa
tions (which correspond to the update rules in a message passing 
algorithm) are then obtained by imposing different region-based 
approximations and constraints on the mean field and belief 
propagation parts of the corresponding factor graph. Our results 
can be applied, for example, to algorithms that perform joint 
channel estimation and decoding in iterative receivers. This is 
demonstrated in a simple example. 

I. INTRODUCTION 

Variational techniques have been used for decades in quan
tum and statistical physics, where they are referred to as 
mean field (MF) approximation [1]. They are also applied 
for statistical inference, see, e.g., [2]-[5]. The basic idea of 
variational inference is to derive the statistics of "hidden" 
random variables given the knowledge of "visible" random 
variables of a certain probability density function (pdt). This 
is done by approximating the pdf by some "simpler," e.g., 
(fully) factorized function in an iterative (message passing 
like) way. Typically, such a function has to fulfill additional 
constraints. For example, [4] imposes additionally exponential 
conjugacy constraints in order to derive simple update rules 
for the messages that propagate along the edges in a Bayesian 
network. Variational inference methods were recently applied 
in [6] to the channel state estimation/interference cancellation 

part of a class of MIMO-OFDM receivers that iterate between 
detection, channel estimation, and decoding. 

A different approach is belief propagation (BP) [7]. Roughly 
speaking, with BP one tries to find local approximations, 
which are---exactly or approximately-the marginals of a 
certain pdf. This can also be done in an iterative way, where 
messages are passed along the edges in a factor graph [8]. A 
typical application of BP is decoding of turbo codes. 

An obvious question that arises is the following: Can we 
combine both approaches and develop a unified message 

passing algorithm that combines BP and the MF approach, 
and how do the two types of messages influence each other? 
The main contribution of this work is to shed light on this 
open problem using the free energy approach proposed in [9] 
and to derive the message passing fixed point equations for 
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a joint approach, where BP is applied to a subset of factor 

nodes and the MF approximation is employed to the remaining 

factor nodes of a factor graph. 

The paper is organized as follows. Section II is devoted to 
the introduction of the region-based free energy approxima
tions proposed by [9]. We briefly summarize the main steps 
to derive the message passing fixed point equations for BP 
in Section III. In Section IV, we show how the MF approx
imation can be included in the free energy framework. Our 
main result-the combined BPIMF fixed point equations-is 
presented in Section V. Section VI is devoted to a discussion 
of a simple example and shows simulation results. Finally, we 
conclude in Section VII. 

II. REGION-BASED FREE ENERGY APPROXIMATIONS 

In the following two sections, we follow the presentation 
and main results given in [9]. Let p(x) be a certain pdf that 
factorizes as 

a 

where x � {Xi liE I}, I � {l, . . .  ,N}, Xa � x, and a E 
A � {I, . . .  , M}. Such a factorization can be visualized in a 
factor graph [8]. We assume that p(x) is a positive function 
and that x is a set of discrete random variables. Our analysis 
can be extended to continuous random variables by simply 
replacing sums by integrals. Now define the sets of indices 

N(a) � {i I Xi E xa} and N(i) � {a I Xi E Xa}. 

A region R � {XR, AR} consists of a subset XR � x of 
variables and a subset AR � A of indices with the restriction 
that a E AR implies that Xa � XR. To each region R we 
associate a counting number CR E Z. A set n � {R} of 
regions is called valid if 

L cRhR(a) = L cRIxR(Xi) = 1 'Va E A,i E I, 
RE'R RE'R 

where 1_( _ ) is the indicator function. 
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We define the variational free energy [9] 

F(b) � L b(x) In ��:� 
x 

L b(x) Inb(x) -L b(x) Inp(x) .  (1) 
x x 

�--�v�--�' '�--�v�---J 
�-H(b) �-U(b) 

In (1), H(b) denotes entropy and U(b) is called average 
energy. Note that F(b) is the Kullback-Leibler divergence [10, 
p. 19] between band p, i.e., F(b) = D(b II p). For a set R of 
regions, the region-based variational free energy is defined as 
[9] Fn � Un -Hn with 

Un � L CRUR, 
REn 

Hn � L cRHR, 
REn 

UR � - L L bR(XR) In fa (xa), 
aEAR XR 

HR � -L bR(XR) InbR(xR). 
XR 

Here, bR(XR) is defined locally on the region R. Instead 
of minimizing F with respect to b, we minimize Fn with 
respect to all bR (R E R), where the bR have to fulfill certain 
constraints. The quantities bR are called beliefs. We give two 
examples of valid sets of regions. 

Example 11.1 The trivial example R = {R = (x, A)}. 

Example 11.2 We define two types of regions: 

1) large regions: Ra � (xa, {a}) with CRa = 1 Va E A; 
2) small regions: Ri � ({xd,0) with 

CRi = 1 -IN(i)1 ViE I. 
Here, IN(i)1 denotes the cardinality of the set N(i) for all 
i E I. The region-based variational free energy corresponding 
to the valid set of regions R = {Ri l iE I} U {Ra I a E A} 
is called the Bethe free energy [9], [11]. The exact variational 
free energy is equal to the Bethe free energy when the factor 
graph has no cycles [9]. 

III. BELIEF PROPAGATION FIXED POINT EQUATIONS 

The fixed point equations for BP can be obtained from 
the Bethe free energy by imposing additional marginalization 
constraints and computing the stationary points. The Bethe 
free energy reads 

"" ( ) ba(xa) Fn = � � ba Xa In J. (x ) aEA Xa a a 

-L(IN(i)1 - 1) L bi(Xi) lnbi(xi), (2) 
iEI 

with ba(xa) � bRJXa) V a E A and bi(Xi) � 

bR.({Xi}) ViE I. The summation over the index set I in (2) 
can be restricted to indices with IN(i)1 > 1 (the dependence 
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on beliefs bi(Xi) with IN(i)1 = 1 drops out). In addition, we 
impose marginalization constraints on the beliefs 

bi(Xi) = L ba(xa) Vi E I,a E N(i), (3) 
Xa \Xi 

which can be included in the Lagrangian 

L � Fn + L L L Aa,i(Xi) ( bi(Xi) - L ba(Xa)) , 
aEA iEN(a) Xi Xa \Xi 

(4) 
where the Aa,i(Xi) are Lagrange multipliers [12, p. 283]. 

The following theorem gives a connection between the BP 
fixed points with positive beliefs and stationary points of the 
Lagrangian in (4). 

Theorem 1 [9, Theorem 2J Stationary points of the con

strained Bethe free energy must be BP fixed points with 

positive beliefs and vice versa. 

Note that beliefs with tight nonnegativity constraints can only 
belong to critical points but not to stationary points. We 
summarize the main steps in the proof of Theorem 1. The 
stationary points of the Lagrangian in (4) can then be evaluated 
as { ba(Xa) <X fa (xa) exp (LiEN(a) Aa,i(Xi)) 

bi(Xi) <X exp (IN(i�l-l LaEN(i) Aa,i(Xi)) 
Now we apply the following lemma. 

VaEA 
(5) ViE I. 

Lemma 1 [9, p. 2292J For each i E I (recall that IN(i)1 > 
1) we can reparametrize 

Aa,i(Xi) = In II mc-+i(xi) Va E N(i) (6) 
cEN(i)\a 

in an unique way with ma-+i(xi) > 0 Va E N(i). The inverse 

of this mapping is given by 

(2 -IN(i)1 ma-+i(xi) = exp IN(i)l-l Aa,i(Xi) 

+ IN(i�l-l L Ab,i(Xi)) V a E N(i). 
bEN(i)\a 

The proof of Lemma 1 is based on a simple matrix inversion. 
Defining 

ni-+a(Xi) � II mc-+i(xi) Vi E I,a E N(i), (7) 
cEN(i)\a 

plugging the reparametrization (6) into (5), and applying the 
marginalization constraints in (3) yields the following fixed 
point equations for BP: { ma-+i(Xi) = L fa(xa) II nj-+a(Xj) 

Xa \Xi jEN(a)\i 
(8) 

ni-+a(Xi) = II mc-+i(xi). 
cEN(i)\a 
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Remark 111.1 This result can be extended to the case where 
the functions fa are nonnegative under the assumption that 
LXa\Xi fa(xa) > 0 for all i E N(a) (If this expression is 
zero for one Xi = Xi then p(x) = 0 for all x \ Xi and Xi = Xi 
and we can remove Xi). The key observation is that we must 
set ba(xa) = 0 whenever fa(xa) = 0 for a certain Xa = xa 
if we assume that Fn is finite. The beliefs bi(Xi) are always 
positive. 

IV. FIXED POINT EQUATIONS FOR THE MEAN FIELD 

APPROXIMATION 

The MF approximation can be interpreted as a message 
passing algorithm on a factor graph [13]. In this section, we 
briefly show how the corresponding fixed point equations can 
be obtained by the free energy approach. To this end we define 
one region R � (x, A) with CR = 1 and impose the constraint 
that b(x) fully factorizes, i.e., 

b(x) = II bi(Xi). 
iEI 

This constraint can be directly plugged into the expression for 
the variational free energy in (1). Doing so we get 

iEI Xi aEA Xa iEN(a) 

The stationary points for the MF approximation can easily be 
evaluated: 

be a partially factorized pdf. As before we have x = {Xi liE 
I}, I = {I, . . .  , N}, Xa � x, and a E A = {I, . . .  , M} with 
A = AMP U ABP. Furthermore, we set 

IMF � {i E I I 3a E AMF with i E N (a)} 
IBP � {i E I I 3a E ABP with i E N(a)}. 

Note that AMF n ABP = 0 but IMF n IBP =F 0 in general. We 
define the set 'R of valid regions: 

1) one MF region RMF � (XMF, AMF) with XMF � {Xi I 
i E IMF} and CRMF = 1; 

2) small regions Ri � ({Xi}, 0) with CRi = I -INBp(i)l
IIMF(i) for all i E IBP; 

3) large regions Ra � (xa, {a}) with CRa = 1 for all a E 
ABP, 

with NBP(i) � {a E ABP I a E N(i)}. This yields the region
based variational free energy 

'" '" ba(Xa) Fn = � � ba(xa) In fa (xa) aEABP Xa 

- L L II bi(Xi) Infa(Xa) 
aEAMF Xa iEN(a) 

-L(INBP(i)I -I) L bi(xi) lnbi(xi). 
iEI Xi 

(10) 

bi(Xi) ex: exp ( L L II bj(xj) Infa(Xa)) ViE I. We can restrict the summation over the index set I in the last aEN(i) Xa \Xi jEN(a)\i term in (10) to indices i E I with INBP( i) I =F 1. The constraints 

The updates bi can be evaluated by iterating over i E I. At for the BP part can be included in a Lagrangian 

each step the objective function decreases and the algorithm 
is guaranteed to converge. To derive a particular update bi we 
need all previous updates bj for j E UaEN(i) N(a) \ i. 

A message passing interpretation for the MF approximation 
can be obtained by setting ni--+N(i)(Xi) � bi(Xi) Vi E  I, 
which results in [13] 

Remark IV.1 In the MF approach, we assume that the func
tions fa(xa) are positive. 

V. COMBINED BELIEF PROPAGATION / MEAN FIELD FIXED 

POINT EQUATIONS 

We are now in a position to combine BP and the MF 
approximation. Let 

p(X) = II fa(xa) II fa (xa) 
aEAMF aEABP 
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We now derive the stationary points of this Lagrangian. To 
this end we define the set 

which corresponds to variable nodes that are "dead ends" in 
the BP part, i.e., there is a unique ai E ABP for each i E �, 
but are connected to the MF part. The stationary points can 
be evaluated as 

Aai,i(Xi) In(b�F (Xi)) ViE � 
ba(xa) ex: b:P(xa) II b�F(Xi) Va E ABP 

iEN(a) { b�F(Xi)b�P(Xi) ViE I \ � 
bi(Xi) ex: L ba.(xaJ ViE�, 

Xai \Xi 
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with 

ViE IBP \ � 

ViE 1 \  IBP 
b�F(Xi) � 

{ exp ( L L II bj(xj) In fa (Xa)) ViE IMF 
aENMF(i) Xa \Xi jEN(a)\i 

1 ViEI \ IMF, 

where we defined NMF(i) � {a E AMF I a E N(i)} and 

>-a,i(Xi) � Aa,i(Xi) - lnb�F(xi) ViE IBP \ �,a E NBP(i). 

The messages for the BP part can now be introduced in a 
similar way as for solely BP. Applying Lemma 1 to >-a,i(Xi) 
for all i E IBP \ � gives the reparametrization 

>-a,i(Xi) = In II m��i(xi) Va E NBP(i). 
cENBP(i)\a 

Defining the messages 

n�-!N(i)(Xi) � b�F(Xi) ViE IBP 
n?&a(Xi) � II m��i(xi)ViEIBP \ �,aENBP(i) 

cENBP(i)\a 

yields 

b:P(xa) = fa(xa) II n?&a(Xi) Va E ABP 
iEN(a)\tl. 

ba(xa) ex: b:P(xa) II n�N(i)(Xi) Va E ABP 
iEN(a) 

bi(Xi) ex: n�-!N(i)(Xi) II m:�i(xi) ViE I \ �. 
aENBP(i) 
, 

v 

=W(Xi)  

Using the marginalization constraints, we end up with the fixed 
point equations for the BP part { m:�i(xi) = L fa(xa) II n��a(Xj) II n�N(j)(Xj) 

Xa \X. jEN(a)\( {i}Utl.) jEN(a)\i 

n?&a(Xi) = II m��i(xi) 
cENBP(i)\a 

(11) 
for all a E ABP, i E IBP \ �. The beliefs bi(Xi) for i E � can 
be evaluated from the marginalization constraints, i.e., 

bi(Xi) ex: n�{ai}(Xi) L b:�(xaJ II n�!N(j)(Xj) 

for all i E �. 

Xai \Xi jEN(ai)\i 
, 
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It remains to introduce the remaining messages for the MF 
part 

aENMF(i) 

m�&i(xi) �exp ( L II b�P(xj) (12) 
Xa \Xi jEN(a)\i 

n�!N(j)(Xj) In fa (xa) ) 
for all a E AMF, i E IMF • All these steps are reversible. Thus, 
we have proved the following theorem. 

Theorem 2 Stationary points of the constrained variational 

free energy in the combined BPIMF approach must be fixed 

points with positive beliefs and vice versa. The corresponding 

fixed point equations are (11) and (12). 

Remark V.l The inclusion of hard constraints in the BP part 

can be done in the same fashion as for solely BP propagation. 

VI. A SIMPLE EXAMPLE 

Assume a frequency-flat time-varying channel with input
output relationship 

y = Xh+z, 

where z E CN(O, -y-1 I), X � diag(xi I i = 1, . . .  , n) , and 
y E <en. The symbols Xi E <e belong to a certain modulation 
alphabet. Rewriting 

p(y, X, -y, h) ex: p(yIX, -y, h)p(-y)p(h)p(X), 

where we used the fact that -y, h, and x are independent, gives 
a factorization where we wish to apply BP for p(X) and the 
MF approximation for the remaining factors. Notice that p(X) 
includes modulation and the code constraints. We assume that 
the prior distributions of -y and h are of the form 

Let 

p(-y) ex: 
'lP -1 exp( --yOP) 

p(h) ex: exp(-(h -iiP)H Ah(h -iiP)). 

ii � Ebh (h) 
X � E{bi}(X) 

Rh � COVbh (h) ;y � Eb-y (-y) 
� � Vaqbi} (X), 

with bi = bfPb� (i = 1, ... , n) , bh = b�, and b-y = b�F. 
Then we get the following message passing update equations: 
Update for-y: 

with 

m��)-t-y(-y)m��lx,h,-y)-t-y(-Y) 
-ykP +N-1 exp( --y(OP + fl)), 

fl � E{b;} Ebh Ily -Xhl12 
= IIyl12 + Tr((Rh + iiiiH)(� + XXH)) -2�(yHXii). 
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Fig. 1. Average BER versus Eb/NO for a time-varying channel with a square 
Doppler spectrum. The channel code is a turbo code with polynomial (1,1/3) 
and codeword length of 196, the modulation scheme is 16-QAM, and the 
interleaver is random. A pilot based LMMSE estimate yields the initialization 
of h; two QPSK modulated pilot symbols are employed for this purpose. The 
channel covariance matrix is assumed to be perfectly known at the receiver. 

Update for h: 

with 

nh-+N(h) (h) m��)-+h (h)m��lx,h,')')-+h (h) 
<X exp (-(h - h)HRhl(h - h)) , 

Rhi = (At: + A) 
A � "r(I:: + XXH) 

This follows from 

Update for Xi (i = 1, . . .  , n): 

Fig. 1 depicts the average BER versus Eb/NO of three 
algorithms. The blue curve denotes the performance of a 
scheme performing separate decoding and LMMSE channel 
estimation based on pilot symbols, while knowing the noise 
precision. The green curve represents the performance of the 
combined BPIMF approach after convergence is reached. The 
former "separate" receiver is used to compute the initial values 
of the channel coefficients and symbol estimates. The red 
curve depicts the performance of a decoder having perfect 
knowledge of the channel coefficients and noise precision. 

It can be seen that the performance of the BPIMF algo
rithm is close to that of the scheme having perfect channel 
knowledge. Moreover, the BPIMF algorithm significantly out
performs the scheme performing separate channel estimation 
and decoding. 
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VII. CONCLUSION 

Using the region-based free energy approximation method 
proposed in [9], we derived message passing update equations 
for a factor graph where BP is applied to one part of the 
factor nodes and the MF approximation is implemented on the 
remaining factor nodes. The proposed theoretical framework 
provides a mean to determine the way messages computed on 
the same factor graph using BP and the MF approximation are 
to be combined. 

A simple example confirmed the validity of the BPIMF 
method. This example shows that the method allows to com
bine the estimation of densities of continuous parameters with 
BP processing of discrete variables, unlike methods using the 
EM algorithm to compute point estimates of these parameters 
[14]. 
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Receiver Architectures for MIMO-OFDM Based on
a Combined VMP-SP Algorithm

Carles Navarro Manch́on, Gunvor E. Kirkelund, Erwin Riegler, Lars P. B. Christensen,
Bernard H. Fleury.

Abstract

Iterative information processing, either based on heuristics or analytical frameworks, has been shown to be
a very powerful tool for the design of efficient, yet feasible, wireless receiver architectures. Within this context,
algorithms performing message-passing on a probabilisticgraph, such as the sum-product (SP) and variational
message passing (VMP) algorithms, have become increasingly popular.

In this contribution, we apply a combined VMP-SP message-passing technique to the design of receivers for
MIMO-ODFM systems. The message-passing equations of the combined scheme can be obtained from the equations
of the stationary points of a constrained region-based freeenergy approximation. When applied to a MIMO-OFDM
probabilistic model, we obtain a generic receiver architecture performing iterative channel weight and noise precision
estimation, equalization and data decoding. We show that this generic scheme can be particularized to a variety
of different receiver structures, ranging from high-performance iterative structures to low complexity receivers.
This allows for a flexible design of the signal processing specially tailored for the requirements of each specific
application. The numerical assessment of our solutions, based on Monte Carlo simulations, corroborates the high
performance of the proposed algorithms and their superiority to heuristic approaches.

Index Terms

MIMO, OFDM, multi-user detection, message-passing algorithms, belief propagation, mean-field approxima-
tion, sum-product, variational message-passing, iterative channel estimation, equalization and data decoding

I. INTRODUCTION

During the last two decades, wireless communication systems have undergone a rapid and steep
evolution. While old analog systems mainly focused on providing voice communications, today’s digital
systems offer a plethora of different services such as multimedia communications, web browsing, audio
and video streaming, etc. Along with the growing variety of services offered, the amount of users accessing
them has also experienced a drastic increase. The combination of applications requiring large amounts of
data traffic and high density of users, together with the scarceness of wireless spectrum resources, dictates
high spectral efficiency to be an essential target in the design of modern wireless systems.

From a physical layer point of view, the emergence of multiple-input multiple-output (MIMO) tech-
niques [1] together with the development of near-capacity-achieving channel codes, such as turbo [2] or
low-density parity check (LDPC) [3] codes, have been the most remarkable steps towards this goal. The
use of multiple antennas allows for increasing the theoretical capacity of a wireless channel linearly with
the minimum of the number of antenna elements at the transmitter and at the receiver ends [4]. Depending
on the specific MIMO technique employed, multiple antennas can be used to exploit the number of degrees
of freedom of a wireless channel, its diversity or a mixture of both [5]. The combination with advanced
channel codes enables transmission schemes with unprecedented high spectral efficiency. However, in order
to realize in practice the performance predicted by theory,advanced receiver architectures combining high
performance channel estimators, MIMO detectors and channel decoders are required.

Joint maximum likelihood (ML) receivers are prohibitivelycomplex for most modern communication
systems, especially systems with high MIMO order and concatenated codes. A wide-spread approach
for the design of suboptimal, yet efficient receiver architectures is to separate the receiver into several
individual blocks, each performing a specific task: channelweight estimation, noise estimation, interference
cancellation, equalization or data decoding are some examples. Inspired by the iterative decoding scheme
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of turbo codes, some structures in which the different constituent blocks exchange information in an
iterative manner have been proposed [6]–[10]. In these receivers, each block is designed individually, and
the way it exchanges information with the other blocks is based on heuristics. Consequently, while each
block is designed to optimally perform its task, the full receiver structure does not necessarily optimize
any global performance criterion. Nevertheless, these structures have shown remarkably good performance
at an affordable complexity, while keeping a large degree offlexibility in their design.

Motivated by the success of heuristic iterative approaches, a set of formal frameworks for the design of
algorithms performing iterative information processing have arisen in recent years. Among these, methods
for variational Bayesian inference in probabilistic models [11] have attracted much attention from the
communication research community in recent times. These frameworks allow for the design of iterative
algorithms based on the optimization of a global cost function. Typically, they are derived from the
stationary points of a discrepancy measure between the probability distribution that needs to be estimated
and a postulated auxiliary distribution, the latter distribution providing an estimate of the former. The
different frameworks differ on the particular discrepancymeasure selected and the restrictions applied
to the postulated auxiliary function. We especially highlight two main approaches suggested so far in
literature: belief propagation (BP) and mean-field (MF) methods1.

BP [16] is a Bayesian inference framework applied to graphical probabilistic models. In its message-
passing form –referred to as the sum-product (SP) algorithm[17]– messages are sent from one node
of the graphical model to neighboring nodes. The message computation rules for the SP algorithm are
obtained from the stationary points of the Bethe free energy[14]. When the graphical model representing
the system is free of cycles, the SP algorithm provides exactmarginal distributions of the variables in the
model. When the graph has cycles, however, the algorithm outputs only an approximation of the marginal
distributions and it is, moreover, not guaranteed to converge [18]. In most cases, nonetheless, the obtained
marginals are still a high quality approximation of the exact distributions. BP and the SP algorithm have
found widespread application in the decoding of channel codes [17], [19], and have also been proposed
for the design of iterative receiver structures in wirelesscommunication systems [20]–[24]. However,
modifications of the original algorithm are required for parameter estimation problems, such as channel
estimation. This has been solved by, e.g., combining the SP algorithm with the expectation-maximization
(EM) algorithm [21], [25] or approximating SP messages which are computationally untractable with
Gaussian messages [26], [27].

MF approaches –proposed by Attias in [28] and formulated as the variational Bayesian expectation-
maximization (VBEM) principle by Beal [29]– are based on theminimization of the Kullback-Leibler
(KL) divergence [30] between a postulated auxiliary function and the distribution to be estimated. The
minimization becomes especially computationally tractable under the MF approximation [31], in which
the auxiliary function is assumed to completely factorize with respect to the different parameters. The
obtained iterative algorithm guarantees convergence in terms of the KL divergence, but convergence to
the globally optimum solution can only be guaranteed when the considered problem has a unique single
optimum. However, it has proven very useful in the design of iterative receiver structures including channel
estimation, e.g., channel estimation and detection for GSMsystems [32], iterative multiuser channel
estimation, detection and decoding [33] or channel estimation, interference cancellation and detection
in OFDM systems [34], [35]. For other applications of MF methods, see [36]–[38]. Message-passing
interpretations of this technique on probabilistic graphshave also been proposed in [12], [39], [40] and
are commonly referred to as variational message-passing (VMP) techniques.

In this contribution, we apply a hybrid message-passing framework to the design of iterative receivers
in a MIMO-OFDM setup. This hybrid framework, recently proposed in [41], [42], combines the SP and
VMP algorithms in a unified message-passing technique. Message updates are obtained from the stationary
points of a particular region-based free energy approximation [14] of the probabilistic system. Specifically,

1Some authors, e.g. Winn and Bishop [12], [13], consider BP outside the variational Bayesian framework, and usually use the term
variational only in the context of MF-like approximations. We use, however, the more general view proposed e.g. in [11], [14], [15], which
considers BP as another algorithm for variational Bayesianinference.
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the combined framework allows for performing VMP in parts ofthe graph and SP in others, thus enabling
a flexible, yet global, design.

From a MIMO-OFDM signal model, we derive a generic message-passing receiver performing channel
estimation, MIMO detection and channel decoding in an iterative fashion. Channel estimation is not
limited to the estimation of channel weights, but also includes estimation of the noise variance, which
proves to be crucial for the operation of the receiver. The application of a unified framework to the whole
receiver design unequivocally dictates the type of information that should be exchanged by the individual
constituents of the receiver in the form of messages. This isin contrast to heuristic approaches which,
for instance, arbitrarily select a-posteriori or extrinsic probabilities to be exchanged between the channel
decoder and other modules based on intuitive argumentationor trends observed by simulation results [9],
[10].

The generic messages derived can easily be particularized by applying different assumptions and
restrictions to the signal model considered. Thus, our framework enables a highly scalable and flexible
design of the signal processing in the receiver. For instance, applying the messages to only part of the factor
graph yields simplified architectures performing just a subset of the receiver tasks; also, small modifications
to the factor-graph lead to different receiver structures with different performance and computational
complexity tradeoffs. These properties are illustrated inour numerical evaluation, where the performance
of a few selected instances of our proposed receiver is assessed via Monte Carlo simulations. The presented
results demonstrate the high accuracy of our approach, and its superiority to iterative receivers based on
heuristics.

The remainder of the paper is organized as follows. The signal model of the MIMO-OFDM system
considered is presented in Section II, followed by a brief review of the combined message-passing
framework proposed in [41], [42] in Section III. In Section IV, the generic messages to be exchanged
in the factor-graph are derived, and the performance of five different receivers obtained from the generic
derivation is tested in Section V. Finally, we draw some finalconclusions in Section VI.

A. Notation

Throughout the paper, lower-case boldface letters represent column vectors, while upper-case boldface
letters denote matrices;(·)T and (·)H denote the transpose and conjugate-transpose of a vector ormatrix
respectively;‖ · ‖ denotes the Euclidian norm;A ⊗B represents the Kronecker product of matricesA

and B; IN denotes the identity matrix of dimensionN . Moreover,log denotes the natural logarithm;
f(x) ∝ g(x) means thatf(x) is equal tog(x) up to a proportionality constant;〈f(x)〉g denotes the
expectation off(x) over g(x), i.e. 〈f(x)〉g =

∫

x
f(x)g(x)dx; S\s denotes all elements in the setS but

s.

II. SIGNAL MODEL

In this section a multi-user signal model for MIMO-OFDM is derived. The system is composed
by M synchronous transmitter chains andN receiver antennas, as depicted in Fig. 1. These trans-
mitters can represent different transmission branches of the same physical transmitter, or physically
separated transmitters at different locations. For themth transmitter, a finite sequence of information
bits um is encoded, yielding a sequence of coded bitscm. After interleaving, the interleaved coded
bits cπm are complex modulated, resulting in the vectorx

(d)
m of complex-modulated data symbols. Fi-

nally, the data symbols are multiplexed with the pilot symbols x
(p)
m , giving the transmitted symbols

xm = [xm(1, 1), . . . , xm(K, 1), . . . , xm(1, L), . . . , xm(K,L)]T, wherexm(k, l) denotes the symbol sent by
themth transmitter on thekth subcarrier of thelth OFDM symbol of a frame. The transmitted symbols
xm are then OFDM modulated using an IFFT and the insertion of a cyclic prefix.

The signal is transmitted through a wide-sense stationary uncorrelated scattering (WSSUS) channel.
The channel impulse response from transmitterm to receivern during the transmission of thelth OFDM
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Fig. 1. Block-diagram representation of the transmission model.

symbol l can be described by

gnm(l, τ) =

Inm∑

i=1

α(i)
nm(l)δ(τ − τ (i)nm) (1)

whereα(i)
nm andτ (i)nm are respectively the complex gain and delay of theith multipath component andInm

is the number of multipath components. We assume that the channel response is static over the duration
of an OFDM symbol, but changes from one OFDM symbol to the next. Also, the maximum delay of each
wireless linkτ (Inm)

nm is assumed to be smaller than the duration of the OFDM cyclic prefix2, so that no
inter-symbol interference (ISI) degrades the transmission. From (1), the sample of the channel frequency
response at thekth subcarrier of thelth OFDM symbol is found to be:

hnm(k, l) =
Inm∑

i=1

α(i)
nm(l)e

−j2πk∆fτ
(i)
nm .

In this expression,∆f denotes the OFDM subcarrier spacing.
At the receiver, the signal is OFDM demodulated by discarding the cyclic prefix and applying an FFT

on the received samples. Under the previously stated assumptions that the channel is block fading and the
maximum delays are smaller than the duration of the cyclic prefix, the signal received at thenth receive
antenna on thekth subcarrier of thelth OFDM symbol reads

yn(k, l) =
M∑

m=1

hnm(k, l)xm(k, l) + wn(k, l),
n = 1, . . . , N,
k = 1, . . . , K,
l = 1, . . . , L,

(2)

with wn(k, l) denoting zero-mean additive complex white Gaussian noise (AWGN) with varianceλ−1.
The equations in (2) can be recast in a matrix-vector notation as

y =

M∑

m=1

Xmhm +w =

M∑

m=1

Hmxm +w (3)

2We assume without loss of generality that the delaysτ
(i)
nm are ordered in increasing order, i.e.τ

(i+1)
nm ≥ τ

(i)
nm.
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wherey = [yT
1 , . . . ,y

T
N ]

T, with yn = [yn(1, 1), . . . , yn(K, 1), . . . , yn(1, L), . . . , yn(K,L)]T denoting the
received signal at thenth receive antenna for a frame ofK subcarriers andL OFDM symbols. Additionally,
hm = [hT

1m, . . . ,h
T
Nm]

T, Xm = IN ⊗ diag{xm}, Hm = [diag{h1m}, . . . , diag{hNm}]
T and hnm =

[hnm(1, 1), . . . , hnm(K, 1), . . . , hn,m(1, L), . . . , hnm(K,L)]T. Equation (3) can be further compressed as

y = Xh+w = Hx+w

wherex = [xT
1 , . . . ,x

T
M ]T, h = [hT

1 , . . . ,h
T
M ]T, X = [X1, . . . ,XM ] andH = [H1, . . . ,HM ].

III. M ESSAGEPASSING TECHNIQUES

In this section, we briefly introduce message-passing techniques on factor graphs. First, we define the
concept of factor graph on a probabilistic model, followed by the description of two standard message-
passing schemes: the sum-product (SP) algorithm [17] and the variational message-passing (VMP) algo-
rithm [12]. Finally, we show how to combine both algorithms to perform hybrid VMP and SP message
passing in a factor graph [41].

A. Factor Graphs for Probabilistic Models

Let p(z) be the probability density function (pdf) of a vectorz of random variableszi (i ∈ I) which
factorizes according to

p(z) =
1

Z

∏

a∈A

fa(za) (4)

whereza = (zi|i ∈ N (a))T with N (a) ⊆ I for all a ∈ A andZ =
∫

z

∏

a∈A fa(za)dz is a normalization
constant. We also defineN (i) , {a ∈ A|i ∈ N (a)} for all i ∈ I. Similarly, N (a) = {i ∈ I|a ∈ N (i)}
for all a ∈ A. The above factorization can be graphically represented bymeans of a factor graph [17].
A factor graph3 is a bipartite graph having a variable nodei (typically represented by a circle) for each
variable zi, i ∈ I and a factor nodea (represented by a square) for each factorfa, a ∈ A. An edge
connects a variable nodei to a factor nodea if, and only if, the variablezi is an argument of the factor
function fa. The setN (i) contains all factor nodes connected to a variable nodei ∈ I andN (a) is the
set of all variable nodes connected to a factor nodea ∈ A.

Factor graphs provide a compact and intuitive representation of the statistical dependencies among
the random variables in a probabilistic model. Furthermore, they enable the design of a class of iterative
signal processing algorithms which are based on the nodes ofthe graph iteratively exchanging information
(messages) with their neighbors (connected nodes). This class of algorithms has been coinedmessage-
passingtechniques, and in the following we will describe the two instances of these techniques which have
been most widely applied to signal processing for communication systems: the SP and VMP algorithms.

B. The Sum-Product Algorithm

The SP algorithm is a message-passing algorithm that computes the exact marginal distributionspi(zi)
of the variableszi associated to the joint distributionp(z) for tree-shaped factor graphs. When the factor
graph does not have a tree structure, the outcome of the algorithm is only an approximation of the true
marginal, and the approximate marginalsbi(zi) ≈ pi(zi) are called beliefs. The message-passing algorithm
is derived from the equations of the stationary points of theconstrained Bethe free energy [14].

The algorithm operates iteratively by exchanging messagesfrom variable nodes to factor nodes and
vice-versa. The message computation rules for the SP algorithm read

ma→i(zi) = da〈fa(za)〉∏j∈N (a)\i nj→a
, ∀a ∈ A, i ∈ N (a)

ni→a(zi) =
∏

c∈N (i)\a

mc→i(zi), ∀i ∈ I, a ∈ N (i)

3We will use Tanner factor graphs [17] throughout this article
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whereda (a ∈ A) are positive constants ensuring that the beliefs are normalized to one. Often the constants
da need not be calculated explicitly, and it is enough to normalize the beliefs after convergence of the
algorithm (see [42] for more details on normalization issues). We use the notationn(·)→(·) for output
messages from a variable node to a factor node andm(·)→(·) for input messages from a factor node to a
variable node. This convention will be kept through the restof the paper, also for other message-passing
schemes.

The variables’ beliefs can be calculated at any point duringthe iterative algorithm as

bi(zi) =
∏

a∈N (i)

ma→i(zi) ∀i ∈ I.

The SP algorithm acquired great popularity through its application to iterative decoding of, among
others, turbo codes and LDPC codes, and has since then been used for the design of many iterative
algorithms in a wide variety of fields [21].

C. The Variational Message-Passing Algorithm

The VMP algorithm is an alternative message-passing technique which is derived based on the minimiza-
tion of the variational free energy subject to the mean-fieldapproximation constraint on the beliefs. While
it does not guarantee the computation of exact marginals (even for tree-shaped graphs), its convergence is
guaranteed by ensuring that the variational free energy of the computed beliefs is non-increasing at each
step of the algorithm [14].

The operation of the VMP algorithm is analogous to the SP algorithm; the message computation rules
read

ma→i(zi) = exp〈log fa(za)〉∏j∈N (a)\i nj→a
, ∀a ∈ A, i ∈ N (a) (5)

ni→a(zi) = ei
∏

c∈N (i)

mc→i(zi) ∀i ∈ I, a ∈ N (i) (6)

whereei (i ∈ I) are positive constants ensuring thatni→a are normalized. As in the SP algorihtm, the
beliefs can be obtained as

bi(zi) = ei
∏

c∈N (i)

mc→i(zi) = ni→a(zi) ∀i ∈ I, a ∈ N (i).

The VMP algorithm has recently attracted the attention of the wireless communication research com-
munity due to its suitability for conjugate-exponential probabilistic models [12]. The computation rule
for input messages from factor to variable nodes allows for the obtention of closed-form expressions in
many cases in which the SP algorithm typically requires sometype of numerical approximation.

It is shown in [42] that a message-passing interpretation ofthe EM algorithm can be obtained from
the VMP algorithm. Assume that for a certain subset of variables zi, i ∈ E ⊆ I we want to apply an EM
update while still using VMP for the rest of variables. To do so, the beliefsbi are restricted to fulfill the
constraintbi(zi) = δ(zi − z̃i) for all i ∈ E additionally to the mean-field factorization and normalization
constraints. Minimizing the variational free energy subject to these conditions leads to a message passing
algorithm identical to the one described in (5) and (6) except that the messagesni→a for all i ∈ E and
a ∈ N (i) are replaced by

ni→a(zi) = δ(zi − z̃i) with z̃i = argmax
zi




∏

a∈N (i)

ma→i(zi)



 . (7)
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D. Combined VMP-SP Algorithm

As stated previously in this section, the VMP and the SP algorithms are two message-passing techniques
suitable for different types of models. While SP is especially suitable in models with deterministic factor
nodes, e.g. code or modulation constraints, VMP has the advantage of yielding closed-form computa-
tionally tractable expressions in conjugate-exponentialmodels, as are found in channel weight estimation
and noise variance estimation problems. Based on these facts, it seems natural to try to combine the two
methods in a unified scheme capable of preserving the advantages of both.

A combined message-passing scheme based on the SP and VMP algorithms was recently proposed
in [41], [42]. This hybrid technique is based on splitting the factor graph into two different parts: a VMP
part and a SP part. To do this, part of the factor nodes are assigned to the VMP set (AVMP) and the rest
are assigned to the SP set (ASP). Given this classification, we can express the probabilistic model in (4)
as

p(z) =
1

Z

VMPpart
︷ ︸︸ ︷
∏

a∈AVMP

fa(za)

SPpart
︷ ︸︸ ︷
∏

c∈ASP

fc(zc)

whereAVMP∪ASP = A andAVMP∩ASP = ∅. By applying the Bethe approximation to the SP part and the
mean-field approximation on the VMP part, a new message-passing scheme is derived from the stationary
points of the region-based free energy [41], [42]. The message computation rules for this algorithm read

mVMP
a→i (zi) = exp〈log fa(za)〉∏j∈N (a)\i nj→a

, ∀a ∈ AVMP, i ∈ N (a) (8)

mSP
a→i(zi) = da〈fa(za)〉∏j∈N (a)\i nj→a

, ∀a ∈ ASP, i ∈ N (a) (9)

ni→a(zi) = ei
∏

c∈N (i)∩AVMP

mVMP
c→i (zi)

∏

c∈N (i)∩ASP\a

mSP
c→i(zi) ∀i ∈ I, a ∈ N (i) (10)

where, again,da and ei are positive constants ensuring normalized beliefs. The computation rules for
messages outgoing factor nodes are preserved: for factor nodes in the VMP part (a ∈ AVMP) the messages
are computed using (8) as in standard VMP; for factor nodes inthe SP part (a ∈ ASP) the messages are
computed via (9), which corresponds to a standard SP message. A message from a variable nodei to a
factor nodea is computed as a VMP message whena ∈ AVMP and as a SP message whena ∈ ASP, as
can be deduced from (10).

As with the VMP and SP algorithms, the beliefs of the variables can be retrieved at any stage of the
algorithm as

bi(zi) = ei
∏

a∈N (i)∩AVMP

mVMP
a→i (zi)

∏

a∈N (i)∩ASP

mSP
a→i(zi) ∀i ∈ I.

Note that we can apply the EM restriction to the belief of variableszi which are only connected to
VMP factors (i.e.N (i) ∩ ASP = ∅). In that case, the message update rules remain the same except that
the messageni→a in (10) is replaced by (7) for the selected variables.

IV. MIMO-OFDM RECEIVER BASED ON COMBINED VMP-SPA

In this section, we present a generic iterative receiver forMIMO-OFDM systems based on the mixed
VMP and SP message-passing strategy outlined in Section III-D. Recalling the signal model presented
in Section II, we can now postulate the probabilistic model to which we will apply the combined VMP-
SP technique. In our case, we identify the observation to be the received signal vectory. As unknown
parameters, we include the vector of information bitsu = [uT

1 , . . . ,u
T
M ]T, the vector of coded bitsc =

[cT
1 , . . . , c

T
M ]T, the vector of modulated symbolsx = [x1, . . . ,xM ]T, the vector of complex channel weights

h = [h1, . . . ,hM ]T and the AWGN precisionλ. The system function of our model is the joint pdf of all
parameters, which can be factorized as

p(u, c,x,h, λ,y) = p(y|h,x, λ)
︸ ︷︷ ︸

fO

p(h)
︸︷︷︸

fC

p(λ)
︸︷︷︸

fN

p(x, c,u)
︸ ︷︷ ︸

fM

(11)
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Fig. 2. Generic factor graph of the receiver.

where we have chosen to group the factors on the right-hand side into four functions. FactorfO(y,h,x, λ) ,
p(y|h,x, λ) denotes the likelihood of the channel weightsh, the noise precisionλ and the transmitted
symbolsx given the observationy. FactorfC(h) , p(h) contains the assumed prior model of the channel
weights, which is relevant for channel weight estimation. FunctionfN(λ) , p(λ), likewise, contains the
assumed prior model for the noise precision parameterλ which defines how estimation of the noise
precision is done. Finally, functionfM(x, c,u) , p(x, c,u) denotes the modulation and code constraints.
Note that further factorization of the factors in (11) is possible and will, in fact, be used later in this
section.

A schematic factor-graph-like representation of the modelin (11) is depicted in Fig. 2. The observation
factor nodefO is connected to three ovals: channel weights, noise precision and modulation and coding.
Each of the ovals represents a subgraph corresponding to factors fC, fN and fM in (11). The three
subgraphs are connected tofO, which reads

fO(y,x,h, λ) ∝ λKNL exp
{
−λ‖y −Xh‖2

}
= λKNL exp

{
−λ‖y −Hx‖2

}
.

Each of the subgraphs in Fig. 2 will be detailed in the remainder of this section. For now, we define the
setsAC, AN andAM as the set of factor nodes inside the channel weights, noise precision and modulation
and coding subgraphs respectively. Likewise, we define the setsIC, IN andIM as the set of variable nodes
inside the channel weights, noise precision and modulationand coding subgraphs respectively. With these
definitions, the set of all factor nodes in the graph is given by4

A = {fO} ∪ AC ∪AN ∪ AM,

and the set of all variable nodes reads

I = IC ∪ IN ∪ IM.

From the observation factor nodefO, sets of messagesMC, MN and MM are sent to the respective
subgraphs. These sets are composed of individual messagesmfO→z, z ∈ I. The specific composition of
the sets of messages depends on the exact configuration of variable and factor nodes of the corresponding
subgraph, which will be described later in the section. After processing is completed at each subgraph,
sets of messagesNC, NN andNM, which correspond to the updated estimates of the channel weights,
the noise precision and the transmitted symbols respectively, are send back tofO.

In order to apply the combined VMP-SP algorithm, we need to define which factor nodes are assigned
to the VMP setAVMP and which are assigned to the SP setASP. We select the following splitting:

AVMP ,{fO} ∪ AC ∪AN

ASP ,AM

4With a slight abuse of notation, from this point on we use the names of functions and variables as indices of the setsA andI respectively.
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Fig. 3. Subgraph corresponding to the noise precision priormodel.

i.e. the observation factor node and all factors in the channel weight and noise precision subgraphs are
assigned to the VMP set, and all factor nodes in the modulation and coding subgraph are assigned to the
SP set.

In the remainder of this section, we will present the detailsof each of the subgraphs, with several
alternative factor-graph representations yielding different message-passing configurations. The performance
of the individual receiver structures obtained will be evaluated and compared in Section V.

A. Noise Precision Subgraph

The noise precision subgraph is the graphical representation of fN in (11), which we specify now as

fN(λ) , p(λ)

wherep(λ) denotes the prior distribution ofλ. With this, we can now specify the sets

AN ={fN}

IN ={λ}.

The factor graph representation of the subgraph is depictedin Fig. 3. It only consists of the variable node
λ and the factor nodefN. Since there is only one variable node connected tofO, the set of messagesMN

reduces toMN = {mfO→λ}. Analogously,NN = {nλ→fO}.
According to the message-computation rules given in Section III, the message transmitted fromfO to

λ is calculated as

mfO→λ(λ) = exp {〈log fO(y,x,h, λ)〉NCNM} = λKLN exp {−λA} (12)

with
A = ‖y − X̂ĥ‖2 + Tr

{

B̂
H
ĈB̂ + B̂

H
Ĥ

H
ĤB̂

}

+ Tr
{

X̂Σ̂hX̂
H
}

.

In the above expression,̂h = 〈h〉NC, Ĥ = 〈H〉NC, x̂ = 〈x〉NM , X̂ = 〈X〉NM are the means ofh, H, x
andX respectively taken with respect to the channel weights and modulation and coding output messages.
Moreover,Σ̂h = 〈hhH〉NC − ĥĥ

H
, andĈ = 〈HHH〉NM − Ĥ

H
Ĥ. Finally, B̂ = UΛ1/2 whereΛ is the

diagonal matrix of eigenvalues andU is the matrix containing the eigenvectors ofΣ̂x = 〈xxH〉NM −x̂x̂H,
i.e. Σ̂x = UΛUH.

The message in (12) is proportional to the pdf of a complex central Wishart distribution of dimension
1, KLN + 1 degrees of freedom and associated covarianceA−1 [43]. We select the prior pdfp(λ) to be
conjugate, i.e., a complex Wishart. This yields the message

mfN→λ(λ) = p(λ) ∝ λa−1 exp{−λAprior}.
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Fig. 4. Subgraph corresponding to the prior model of the joint channel weights.

Given the two incoming messagesmfN→λ andmfO→λ, the outgoing message fromλ is also proportional
to a complex Wishart pdf

nλ→fO(λ) ∝ mfN→λ(λ)mfO→λ(λ) ∝ λKLN+a−1 exp{−λ(A + Aprior)}.

Since usually no prior information on the noise precision isavailable at the receiver, we selectp(λ)
non-informative with parametersa = 0 andAprior = 0. With this choice, the mean ofλ with respect to
NN reads

λ̂ = 〈λ〉NN =
KLN

A
. (13)

Note that the above update forλ̂ coincides with the ML estimate of the noise precision. Since, as we will
see later in the section, only the first moment ofλ is needed to compute other messages, it is sufficient
to pass just this value to the rest of the graph.

B. Channel Weights Subgraph

The channel weights subgraph includes the graphical description of the factorfC in (11). We will
present in the following two alternative subgraphs representing two possible definitions offC: in the first
one, coinedjoint channel weights subgraph, all channel weights for all transmit antennas are grouped
together in a single variable nodeh; in the second one, which we refer to asdisjoint channel weights
subgraph, the weights are split intoM variable nodesh1, . . . ,hM each of them containing the channel
weights associated with an individual transmit antenna.

1) Joint Channel Weights Model:The joint channel weights subgraph is obtained from the following
definition:

fC(h) , p(h)

with p(h) denoting the prior pdf of the vector of channel weightsh. Using this model forfC leads to
defining the factor and variable node sets as

AC ={fC}

IC ={h}.

The factor graph describing the joint channel weight optionis presented in Fig. 4. As there is only one
variable node connected to the factor nodefO, the set of input messages to the channel weights subgraph
is simplyMC = {mfO→h} and the set of output messages is the singletonNC = {nh→fO}.

The message fromfO to h is given by

mfO→h(h) = exp{〈log fO(y,x,h, λ)〉NMNN} ∝ exp
{

−λ̂
(

‖y − X̂h‖2 + hHD̂h
)}
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with D̂ = 〈XHX〉NM − X̂
H
X̂ . Hence,mfO→h(h) is proportional to a Gaussian pdf. We also impose the

prior p(h) to be Gaussian, which yields the message

mfC→h(h) = p(h) ∝ exp
{

−(h− hprior)
HΣ−1

hprior
(h− hprior)

}

.

For most practical channels it is reasonable to assume thathprior = 0. The receiver needs an estimate of
the prior covariance of the channelΣhprior. In order to obtain the outgoing messagenh→fO(h), the two
incoming messages are combined, leading to

nh→fO(h) ∝ mfO→h(h)mfC→h(h) ∝ exp
{

−(h− ĥ)HΣ̂
−1

h
(h− ĥ).

}

Thus,nh→fO is proportional to a Gaussian pdf with covariance matrix

Σ̂h =
(

λ̂X̂
H
X̂ + λ̂D̂ +Σ−1

hprior

)−1

and mean value
ĥ = Σ̂h

(

λ̂X̂
H
y +Σ−1

hprior
hprior

)

.

2) Disjoint Channel Weights Model:The disjoint channel weights subgraph is obtained by factorizing
fC with respect to each transmitter. More specifically, we define

fC(h) =

M∏

m=1

fCm
(hm)

with fCm
(hm) , p(hm), m = 1, . . . ,M denoting the prior pdf of the channel weights for themth transmit

antenna. We also specify the sets

AC ={fCm
|m = 1, . . . ,M}

IC ={hm|m = 1, . . . ,M}.

Fig. 5 shows the factor graph of the disjoint channel weightsmodel with the above definitions. With
this configuration, the channel weight vectorh is split intoM variable nodesh1, . . . ,hM , each of them
containing the weights associated with one transmit antenna. Each of these variable nodes is furthermore
connected to a factor nodefCm

. Due to this separation, the set of incoming messages readsMC =

{mfO→hm
|m = 1, . . . ,M}, while the set of outgoing messages isNC = {nhm→fO |m = 1, . . . ,M}. With

this structure, the channel weight vectors are estimated sequentially by iterating through the transmit
antenna indexm.

For themth transmit antenna, the incoming message reads

mfO→hm
(hm) = exp

{

〈log fO(y,x,h, λ)〉
NMNNN

(m)
C

}

∝ exp

{

−λ̂

(

∥
∥y −

∑

m′ 6=m

X̂m′ĥm′ − X̂mhm

∥
∥2 + hH

mD̂mhm

)}

whereN
(m)
C =

{
nhm′→fO

}

∀m′=1,...,M
m′ 6=m

denotes the set of all output channel weight messages exceptthe

mth one. Furthermore,̂hm′ = 〈hm′〉
N

(m)
C

, X̂m = 〈Xm〉NM and D̂m = 〈XH
mXm〉NM − X̂

H

mX̂m. Again,
mfO→hm

is observed to be proportional to a Gaussian pdf. Analogously to the joint channel weights case,
we need to specify the prior of each individual channel vector hm. Defining them as Gaussians leads to
the message

mfCm→hm
(hm) = p(hm) ∝ exp

{

−(hm − hm,prior)
HΣ−1

hm,prior
(hm − hm,prior)

}
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Fig. 5. Subgraph corresponding to the prior model of the disjoint channel weights.

where, once more, the receiver requires estimates of the prior parameters of the channel for each transmitter.
The outgoing message from variable nodehm is obtained by multiplying both incoming messages, leading
to

nhm→fO(hm) ∝ mfO→hm
(hm)mfCm→hm

(hm) ∝ exp
{

−(hm − ĥm)
HΣ̂

−1

hm
(hm − ĥm)

}

,

which equals, up to a proportionality constant, a Gaussian pdf with covariance matrix

Σ̂hm
=
(

λ̂X̂
H

mX̂m + λ̂D̂m +Σ−1
hm,prior

)−1

and mean value

ĥm = Σ̂hm

(

λ̂X̂
H

m

(

y −
∑

m′ 6=m

X̂m′ĥm′

)

+Σ−1
hm,prior

hm,prior

)

.

It is important to note that every time a new messagenhm→fO is computed, the set of messagesMC

needs to be recomputed again, as allmfO→hm′ , m
′ 6= m depend on the updated messagesnhm→fO.

C. Modulation and Coding Subgraph

The modulation and coding subgraph describes the factorfM in (11). We choose to factorize this factor
according to

fM(x, c,u) =
M∏

m=1

fPm
(x(p)

m )fMm
(x(d)

m , cm,1, . . . , cm,Cm
)fCm(cm,1, . . . , cm,Cm

, um,1, . . . , um,Um
)

Um∏

i=1

fum,i
(um,i)

wherefPm
(x

(p)
m ) , p(x

(p)
m ) denotes the prior pdf of the pilot symbols transmitted from themth transmitter,

fMm
(x

(d)
m , cm,1, . . . , cm,Cm

) , p(x
(d)
m |cm,1, . . . , cm,Cm

) denotes the modulation constraints on the data sym-
bols of themth transmitter,fCm(cm,1, . . . , cm,Cm

, um,1, . . . , um,Um
) , p(cm,1, . . . , cm,Cm

|um,1, . . . , um,Um
)

represents the code constraints for themth codeword andfum,i
(um,i) , p(um,i) is the prior pdf of theith

information bit transmitted by themth antenna. In addition, the vectorsx(p)
m andx(d)

m contain, respectively,
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Fig. 6. Subgraph corresponding to the modulation and codingconstraints.

the modulated pilot and data symbols transmitted from themth antenna. Finally,Cm andUm denote the
number of coded and information bits respectively transmitted in a codeword from themth antenna. Using
this factorization offM, we define the setsAM andIM as

AM ={fPm
|m = 1, . . . ,M} ∪ {fMm

|m = 1, . . . ,M} ∪ {fCm |m = 1, . . . ,M}

∪ {fum,i
|m = 1, . . . ,M, i = 1 . . . Um}

IM ={x(p)
m |m = 1 . . . ,M} ∪ {x(d)

m |m = 1 . . . ,M} ∪ {cm,i|m = 1, . . . ,M, i = 1 . . . Cm}

∪ {um,i|m = 1, . . . ,M, i = 1 . . . Um}.

The factor graph with the modulation and coding constraintsis shown in Fig. 6. As it can be observed,
the modulated symbols have been separated into different variable nodes according to the transmit antenna
indexm from which they are sent. The symbols corresponding to each transmit antenna port have been
further subdivided into two different variable nodesx(p)

m andx
(d)
m , the first containing the pilot symbols

and the second containing the modulated data symbols. The modulated data symbolsx(d)
m are connected to

the encoded bitscm,1, . . . , cm,Cm
via the modulation factor nodefMm

, which describes the mapping of bits
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onto a complex constellation. The coded bits are, in turn, related to the information bitsum,1, . . . , um,Um

through the specific channel code and interleaving scheme utilized, which is represented in a simplified
manner by the factorfCm in Fig. 6. Finally, every information bitum,i has an associated prior probability
represented by the factor nodefum,i

. For the vast majority of applications, however, the valuesof the bits
will be assumed to be equiprobable. With the proposed structure, the set of incoming messages is defined
asMM =

{

m
fO→x

(p)
m
|m = 1, . . . ,M

}

∪
{

m
fO→x

(d)
m
|m = 1, . . . ,M

}

, while the set of outgoing messages

becomesNM =
{

n
x
(p)
m →fO

|m = 1, . . . ,M
}

∪
{

n
x
(d)
m →fO

|m = 1, . . . ,M
}

.

In order to ease the derivation of the messages for this subgraph, we can re-writefO(y,x,h, λ) as

fO(y,x,h, λ) ∝ λKNL exp

{

−λ
∥
∥
∥y

(d) −
M∑

m=1

H(d)
m x(d)

m

∥
∥
∥

2

− λ
∥
∥
∥y

(p) −
M∑

m=1

H(p)
m x(p)

m

∥
∥
∥

2
}

where the contribution of pilot and data symbols has been split into two separate terms. We start by
computing the message that factor nodefO sends tox(d)

m :

m
fO→x

(d)
m
(x(d)

m ) = exp
{

〈log fO(y,x,h, λ)〉
NNNCN

(m)
M

}

∝ exp

{

−λ̂

(
∥
∥
∥y

(d) −
∑

m′ 6=m

Ĥ
(d)

m′ x̂
(d)
m′ − Ĥ

(d)

m x(d)
m

∥
∥
∥

2

+ (x(d)
m )HĈ

(d)

m x(d)
m

+
∑

m′ 6=m

(

(x(d)
m )HĈ

(d)

mm′x̂
(d)
m′ + (x̂

(d)
m′ )

H(Ĉ
(d)

mm′)
Hx(d)

m

)
)}

. (14)

In the above expression, and similarly to previous definitions, x̂(d)
m′ = 〈x

(d)
m′ 〉NM , Ĥ

(d)

m′ = 〈H
(d)
m′ 〉NC,

Ĉ
(d)

m = 〈(H(d)
m )HH(d)

m 〉NC − (Ĥ
(d)

m )HĤ
(d)

m and Ĉ
(d)

mm′ = 〈(H(d)
m )HH

(d)
m′ 〉NC − (Ĥ

(d)

m )HĤ
(d)

m′ . Additionally,
N

(m)
M = {n

x
(p)
i →fO

|i = 1, . . . ,M} ∪ {n
x
(d)
i →fO

|i = 1, . . . ,M, i 6= m} denotes the set of all outgoing
detection messages exceptn

x
(d)
m →fO

. The message in (14) is proportional to a Gaussian pdf with covariance
matrix

Σ̂
x
(d)
m,VMP

= λ̂−1
(

(Ĥ
(d)

m )HĤ
(d)

m + Ĉ
(d)

m

)−1

and mean

x̂
(d)
m,VMP = λ̂Σ̂

x
(d)
m,VMP

(

(Ĥ
(d)

m )H

(

y(d) −
∑

m′ 6=m

Ĥ
(d)

m′ x̂
(d)
m′

)

−
∑

m′ 6=m

Ĉ
(d)

mm′x̂
(d)
m′

)

.

The outgoing messagen
x
(d)
m →fO

(x
(d)
m ) is obtained by multiplying the messagesm

fO→x
(d)
m
(x

(d)
m ) andm

fMm→x
(d)
m

.
In this case,m

fMm→x
(d)
m

is a SP message reading

m
fMm→x

(d)
m

∝

Nd∏

i=1

(
∑

s∈Sm

β
x
(d)
m (i)

(s)δ(x(d)
m (i)− s)

)

(15)

whereSm is the modulation set for userm and β
x
(d)
m (i)

(s) represents the extrinsic values ofx
(d)
m (i) for

each constellation points ∈ Sm, obtained from the SP demodulator and decoder. The combinedmessage
fed back to the observation factor node reads

n
x
(d)
m →fO

(x(d)
m ) ∝ m

fO→x
(d)
m
(x(d)

m )m
fMm→x

(d)
m
(x(d)

m )

∝
Nd∏

i=1

(
∑

s∈Sm

β
x
(d)
m (i)

(s) exp

{

−|s− x̂
(d)
m,VMP(i)|

2

σ2

x
(d)
m

(i)

}

δ(x(d)
m (i)− s)

)

, (16)
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where σ2

x
(d)
m

(i) is the ith entry in the main diagonal of̂Σ
x
(d)
m,VMP

. It can be observed that the message

factorizes with respect to the individual modulated symbolsx(d)
m (i), so the mean and variance of each data

symbol can be computed independently and used to build the mean vectorx̂ and the covariance matrix
Σ̂x by inserting the updated mean and variances in their corresponding positions.

It is important to note that, because the factor nodefMm
is a SP factor node, the messagen

x
(d)
m →fMm

is obtained by multiplying all messages received at variable nodex(d)
m except the message coming from

fMm
, which in this particular setup reduces to

n
x
(d)
m →fMm

(x(d)
m ) = m

fO→x
(d)
m
(x(d)

m ).

All message-passing among the modulation factor nodes, coded bits and information bits is completed by
using the standard SP algorithm, and will therefore not be described here.

It remains to describe the income and outcome messages involving pilot symbols. As pilot symbols are
known by the receiver, their prior distribution isp(x(p)

m (i)) = δ(x
(p)
m (i)− pm(i)) with pm(i) denoting the

ith pilot symbol sent from transmit antennam. This imposes that the outgoing messagen
x
(p)
m →fO

is also

a Dirac delta, which can also be described as a degenerate Gaussian message with mean̂x(p)
m = pm and

covarianceΣ̂
x
(p)
m

= 0.

V. SIMULATION RESULTS

In this section, we propose a number of receiver structures based on the derivations made in Section IV
and evaluate their performance by means of Monte-Carlo simulations. First, we present the parameters
of the MIMO-OFDM system considered, followed by a description of the specific receiver structures that
will be evaluated. Finally, the BER performance results obtained are presented and discussed.

A. Description of the MIMO-OFDM System

We begin by describing the MIMO-OFDM system used for obtaining the numerical results. Its main
parameters are summarized in Table I. We consider an OFDM system withM = N = 2 antennas at both
transmitter and receiver ends. Two streams of random bits are independently encoded using a convolutional
code with rate 1/3 and generating polynomials 133, 171 and 165 (octal). After channel interleaving, the
coded bits are mapped onto symbols of a QPSK or 16QAM constellation (with Gray mapping) which are
then inserted into an OFDM frame consisting ofL = 7 OFDM symbols withK = 75 subcarriers and
with a subcarrier spacing of 15kHz. Part of the time-frequency elements are reserved for the transmission
of pilot symbols. We specify the following pilot patterns: pilot symbols are transmitted in the first and
fifth OFDM symbol of the frame, with a frequency spacing of 12 subcarriers, resulting in a total of
13 pilot symbols per frame. Note that both transmit antennasshare the same time-frequency elements
for the simultaneous transmission of pilot symbols. Pilot symbols are randomly chosen from a QPSK
constellation.

Realizations of the channel time-frequency response are randomly generated using the extended typical
urban (ETU) model from the 3GPP LTE standard [44] with 9 Rayleigh-fading taps. The channel responses
corresponding to two different transmitters are uncorrelated and remain static over the duration of an
OFDM frame. A new channel response is generated for each OFDMframe, with the responses of two
different frames being also uncorrelated.

B. Receiver Structures

We introduce now the specific receiver architectures that will be evaluated in this section. All receivers
are based on the generic message-passing receiver presented in Section IV. The messages exchanged can
be obtained by particularizing the generic messages according to the specific receiver configuration, as it
will be detailed in the following. We evaluate three main types of VMP-SP receiver, which are described
next.
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TABLE I
PARAMETERS OF THEOFDM SYSTEM SIMULATED

Parameter Value
Tx antennas (M ) 2
Rx antennas (N ) 2
Subcarriers (K) 75

OFDM symbols (L) 7
Subcarrier spacing (∆f ) 15 kHz

Channel coding 1/3 Convolutional
Symbol mapping 16QAM

Pilot symbols 13
Channel model 3GPP ETU

1) I-DJC-DD and I-DSC-DD Receivers:First, we introduce a full iterative receiver using exactlythe
messages derived in Section IV. The receiver operates by iteratively updating the beliefs of the channel
weight vector, the data symbols and information bits and, finally, the noise precision parameter.

Initialization of the beliefs of the channel weights and thetransmitted symbols is required. The ini-
tialization of the channel weights is obtained from a pilot-based joint linear minimum mean-squared-
error (LMMSE) channel estimator. For the initialization ofthe transmitted symbols, maximum-likelihood
detection (MLD) is used, followed by soft-in soft-out (SISO) BCJR decoding. The belief of the transmitted
data symbols is set to a Gaussian pdf with mean and covariancevalues obtained from soft modulation of
the a-posteriori probabilities (APP) of the coded bits obtained from the SISO BCJR decoder. An initial
estimate of the noise precision is obtained as in Section IV-A. After the initialization, a full iteration of
the receiver consists of updating the beliefs of the channelweight vectors (using either the joint channel
weight model in Fig. 4 or the disjoint channel weight model inFig. 5), a message-passing run on the
modulation and coding subgraph (updating the beliefs of transmitted symbols, coded bits and information
bits) and, finally, an update of the noise precision parameter. Note that the message-passing operations
done through the channel code factor node can be replaced by SISO BCJR decoding. In this case, the SP
messagesncm,k→fMm

can be identified to be the extrinsic values of the coded bits output by the BCJR
decoder.

We refer to the described architectures as Iterative - Data-aided Joint Channel estimation - Data Decoding
(I-DJC-DD) for the receiver using the joint channel weightsmodel and Iterative - Data-aided Sequential
Channel estimation - Data Decoding (I-DSC-DD) for the receiver obtained using the disjoint channel
weights model.

2) DJC-DD and DSC-DD Receivers:We introduce now a class of receivers which perform iterative
data-aided channel weights and noise precision estimationtogether with equalization and demodulation of
the transmitted symbols. Compared to the receivers presented before, channel decoding is left outside of
the iterative process, and is performed only once at the end after convergence of the algorithm. The receiver
capitalizes on just the knowledge of the complex modulationstructure of the transmitted signal to refine
its channel estimates, and not on the code structure. This receiver architecture is obtained by applying
a special scheduling to the message computation and exchange between the subgraphs. Specifically, no
messages are passed from variable nodesx

(d)
m to factor nodesfMm

until the last iteration of the algorithm.
Instead, after the messagesm

fO→x
(d)
m

are computed, the updated messagen
x
(d)
m →fO

is directly computed
using (16). To this end, an initial value of the messagesm

fMm→x
(d)
m

is needed. This can be obtained by
setting

β
x
(d)
m (i)

(s) =
1

|Sm|
∀m = 1, . . . ,M, i = 1, . . . , Nd, s ∈ Sm

in (15). In the expression above,|Sm| denotes the cardinality of the setSm. Note that this initialization
corresponds to assuming that all modulated symbols in the constellation are equally likely, which is a
valid assumption when the information bits are equiprobable and the channel code is regular.
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As for the previous receivers, an initialization of the beliefs of the channel weight vector, noise precision
and transmitted symbols is required. The channel weight vectors are initialized as a Gaussian pdf, with
mean obtained from a pilot-based LMSSE channel estimator and null covariance. Similarly, the beliefs of
the transmitted symbols are also set to a Gaussian pdf with mean and covariance values obtained from
a MIMO MLD (no BCJR decoding is done, as opposed to the I-DJC-DD and I-DSC-DD receivers). An
initial estimate of the noise precision is then obtained following the procedure in Section IV-A. After the
initialization, the receiver operates by iteratively updating the beliefs of the channel weights (either jointly
as in Fig. 4, or sequentially as in Fig. 5), the transmitted symbols and noise precision parameter. After
convergence of the algorithm (or maximum number of iterations attained), the messagesn

x
(d)
m →fMm

are
computed, and a round of decoding based on the SP algorithm isperformed, yielding the beliefs of the
information bits.

We refer to these receivers as Data-aided Joint Channel estimation - Data Decoding (DJC-DD) for the
receiver using the joint channel weight prior model (Section IV-B1) and Data-aided Sequential Channel
estimation - Data Decoding (DSC-DD) for the receiver using the disjoint channel weight prior model
(Section IV-B2).

3) PSC-DD Receiver:Finally we present a simple receiver consisting of a pilot-aided channel estimator,
a MIMO maximum likelihood detector (MLD) and data decoding.The channel estimation module is based
on the VMP-SP generic receiver described in Section IV. It updates iteratively the beliefs of the channel
weight vectors corresponding to each transmit antenna and the noise precision. To this end, the channel
estimator only exploits the pilot signals transmitted fromeach transmit antenna and does not capitalize
on data symbols to refine its estimates.

In order to obtain this pilot-aided channel estimator from the generic receiver architecture in Section IV,
the messagesn

x
(d)
m →fO

must be set to

n
x
(d)
m →fO

(x(d)
m ) =

∏

i

δ(x(d)
m (i)).

This enforces that data symbols are not employed for channelweight estimation. In addition, the disjoint
channel weights setup (see Fig. 5) is selected. With this configuration, the output messagesNM are
constant, reflecting the receiver’s knowledge on the value of the pilot symbols. Hence, expectations taken
overNM in the channel weights and noise precision subgraphs reduceto the value of the pilot symbols
(or zero for data symbols), with all second-order terms vanishing. Note that, for this channel estimator,
no update of the beliefs of the data symbols is performed. Equalization and decoding are done outside
the VMP-SP framework.

Additionally, a small modification in the processing corresponding to the noise precision subgraph is
required. Note that, for the computation of the messagemfO→λ, the signal received at all –pilot and
data– subcarriers is used, while only the signals received at pilot positions are utilized for channel
weight estimation. This can be avoided by restricting this message to include only the observation at
pilot positions, i.e. calculatingmf

O(p)→λ instead, where

fO(p)(y(p),x(p),h(p), λ) , p(y(p)|x(p),h(p), λ) ∝ λN(p)

exp

{

−λ
∥
∥
∥y

(p) −X(p)h(p)
∥
∥
∥

2
}

,

with N (p) denoting the total number of pilots in a frame.
The initialization for this estimator is simpler compared to that of the other receivers. It consists of

setting the beliefs of the channel weight vector corresponding to each transmit antenna to a Gaussian prior
with zero mean and zero covariance, while an initial value for the noise precision can be obtained from
the signal received at pilot subcarriers. The receiver operates by sequentially updating the channel weight
vectors corresponding to each transmitterh1, . . . ,hM following the procedure described in Section IV-B2.
This is followed by an update of the noise precision parameter. The channel responses belonging to each
transmit antenna obtained after convergence of the iterative estimator are fed to a MIMO maximum
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TABLE II
SUMMARY OF RECEIVER STRUCTURES

Initialization Operation
Receiver Channel Weights Transmitted Symbols Channel Weight Model Demodulation & Decoding
PSC-DD Null mean and covariance – Disjoint –
DJC-DD LMMSE estimator ML detector Joint Demodulation only
DSC-DD LMMSE estimator ML detector Disjoint Demodulation only
I-DJC-DD LMMSE estimator MLD + BCJR Joint Demodulation and decoding
I-DSC-DD LMMSE estimator MLD + BCJR Disjoint Demodulation and decoding
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Fig. 7. MSE of the estimates of the channel weights for the PSC-DD receiver versus the iteration index. 13 pilot symbols are inserted per
OFDM frame. The dashed black lines represent the MSE obtained with pilot-based LMMSE joint channel estimation.

likelihood detector (MLD), followed by BCJR decoding. Thus, we can obtain BER performance results
and benchmark them with analogous receiver structures using a different channel estimator.

As we will see in the performance evaluation, this iterativeestimator approximates the performance of
a pilot-based joint LMMSE channel estimator with perfect knowledge of the noise variance. The iterative
estimator, however, presents the advantage of avoiding cumbersome matrix inversions depending on the
specific values of the pilot-symbols. This estimator was presented (outside the context of message-passing
techniques) in [34]. A more detailed discussion of the computational advantages of this estimator over
the LMMSE estimator is provided in this contribution.

In the following, we refer to this receiver as Pilot-aided Sequential Channel estimation - Data Decoding
(PSC-DD) receiver.

The main characteristics of all the receivers presented above are summarized in Table II.

C. Numerical Results

We evaluate separately the performance of the three architectures described in Section V-B, beginning
with the simplest scheme, the PSC-DD receiver; we follow with the DJC-DD and DSC-DD receivers and
conclude with the most advanced structures: the I-DJC-DD and I-DSC-DD receivers.

In Fig. 7, the mean squared error (MSE) of the estimates of thechannel weights obtained with the
PSC-DD receiver is depicted. The MSE is plotted for three different Eb/N0 values as a function of
the number of iterations performed. It is observed that the performance of the sequential pilot-based
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Fig. 8. BER as a function ofEb/N0 for the PSC-DD receiver with QPSK modulation. 13 pilot symbols are inserted per OFDM frame. The
BER performance of a similar receiver using LMMSE channel estimation with knowledge of the noise variance is included asa reference.

estimator approaches the performance of a joint LMMSE estimator with sufficient number of iterations.
It is especially interesting to note the dependency of the number of iterations required for convergence
on theEb/N0 value. ForEb/N0 = −2dB andEb/N0 = 2dB, between 2 and 3 iterations are sufficient
to achieve an MSE virtually equal to the LMMSE bound. When increasingEb/N0 to 6dB, however, a
minimum number of 5 iterations is needed, and about 10 iterations are required forEb/N0 = 10dB.
Similar observations can be made when evaluating the BER of the receiver with QPSK modulation,
as shown in Fig. 8. Again, the performance of the PSC-DD receiver equals that of the receiver with
the LMMSE estimator when enough iterations for the receiverto converge have been run, and fewer
iterations are needed the smallerEb/N0 is. These results suggest that the iterative channel estimator in
the PSC-DD receiver would be a good choice to obtain an initial channel estimate for the more complex
iterative structures that we will discuss next. Furthermore, this channel estimator has the additional benefit
of outputting soft estimates (the beliefs) of both the channel weights and the noise precision. Classical
channel estimators, on the other hand, typically require separate noise estimation prior to the estimation
of the channel weights, and only provide hard (point) estimates.

BER results for the DJC-DD and DSC-DD receivers are portrayed in Fig. 9. The results have been
obtained using a QPSK constellation for the modulation of data symbols. They indicate that a significant
performance gain can be obtained by iteratively updating the channel weights, transmitted data symbols
and noise precision parameter after the initialization, even though the receiver does not capitalize on the
code structure within the iterative process. For both receivers (with joint and sequential channel estimation),
most of the improvement with respect to the initialization is obtained in the first three iterations, with
only marginal gains obtained after further processing. Regarding the channel estimation approach, DJC-DD
leads to a slightly better performance than DSC-DD in the whole simulatedEb/N0 range; the improved
accuracy of the joint estimation approach comes at the expense of a larger computational complexity,
as it operates with vectors and matrices of dimensionsM times as large as in the sequential estimation
approach, which can be a problem when calculating the necessary matrix inversions.

Note that the receivers evaluated in Fig. 9 operate by capitalizing on the structure of the constellation
used for the modulation of data symbols. Hence, their performance strongly depends on the type of modula-
tion used. Low-order modulations, such as BPSK or QPSK, favor this receiver, as there is a relatively large
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Fig. 9. BER as a function ofEb/N0 for the DJC-DD and DSC-DD receivers with QPSK modulation. 13pilot symbols are inserted per
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Fig. 10. BER as a function ofEb/N0 for the I-DJC-DD and I-DSC-DD receivers with 16-QAM modulation. 13 pilot symbols are inserted
per OFDM frame.

distance between the points in the constellation, allowingbetter refining (through SP message-passing)
of the VMP estimates of the transmitted symbols. When using higher order modulations, however, the
receiver’s performance suffers from the relatively small distance between adjacent constellation points.
Specifically for the system investigated in this work, we found that the DJC-DD and DSC-DD receivers
for 16-QAM or higher order modulations do not improve the performance with respect to the initialization.

The aforementioned problem with high-order modulations can be circumvented with the inclusion of
the channel code structure in the iterative processing, as done in the I-DJC-DD and I-DSC-DD receivers.
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Fig. 11. Average noise variance estimated by the I-DJC-DD receiver as a function of the iteration index. 13 pilot symbolsare inserted per
OFDM frame. The dashed black lines represent the true noise variance for eachEb/N0 value.

The BER performance of both receivers with 16-QAM modulateddata symbols is depicted in Fig. 10. For
benchmarking purposes, the BER performance of a heuristically designed iterative receiver with analogous
features to the I-DJC-DD receiver is also plotted. We refer to this receiver as LMMSE receiver, as the
channel estimation and MIMO detection modules are separately designed after the LMMSE principle.
The LMMSE receiver is based on the design proposed in [9] for amultiuser CDMA receiver, and was
adapted to MIMO-OFDM in [40], where a detailed description of its operational principles can be found.
In addition, the BER performance of a modified version of the I-DJC-DD receiver has also been included.
This receiver, which we denote as I-DJC-DD(EM) receiver, results from applying the EM restriction to
the beliefs of the channel weightsh and the noise precision parameterλ. Thus, this receiver is identical
to the I-DJC-DD receiver except that the messagesnh→fO andnλ→fO are computed according to (7). This
modified messages imply that all terms depending on the second order moments ofbh = nh→fO vanish.

The results show that vast improvements in BER of the I-DJC-DD and I-DSC-DD receivers with
respect to the initialization are obtained, even for very low Eb/N0 values. As in the case of the DJC-DD
and DSC-DD receivers, joint estimation of the channel weights performs marginally better than sequential
estimation. Both message-passing receivers clearly outperform the heuristic LMMSE receiver, withEb/N0

gains close to 1dB at a BER of 1%. We explain these gains by the fact that, contrary to the separate
design of the different modules in the LMMSE receiver, our VMP-SP receivers are analytically derived
based on a global objective function, namely the region-based free energy. This global design ensures that
the information shared by the different receiver components is treated correctly, and resolves the choice
of the appropriate type of information to be passed from the channel decoder to the other component
parts of the receiver. It is also remarkable that the EM-constrained version of the I-DJC-DD receiver
achieves roughly the same performance as the non-constrained version. This result seems to indicate that
there is no significant gain to be achieved by computing soft channel estimates as compared to just point
estimates, at least for the system considered.

Another key feature of the I-DJC-DD and I-DSC-DD receivers is the estimation of the noise precision.
This functionality does not only account for the AWGN, but also includes inaccuracies in the estimates
of the channel weights and data symbols. Fig. 11 depicts the averaged noise variance estimate (inverse
of the noise precision estimateλ) provided by the I-DJC-DD receiver as a function of the iteration index
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for three differentEb/N0 levels. The true AWGN variances are also depicted as dashed black lines. It
is apparent from the results that the behavior of the noise variance estimates (with respect to the true
value) depends heavily on the regime in which the receiver isoperating. For the very lowEb/N0 regime,
the receiver significantly overestimates the noise variance; this is due to the low accuracy of the channel
weights estimates and the large amount of errors in the estimates of the data symbols obtained. At the other
extreme, for highEb/N0 values, the estimates of the channel weights and data symbols become so accurate
(as it can be observed from the low BER values) that the noise variance estimate rapidly converges to the
true AWGN variance, as the contribution of the estimates’ inaccuracies becomes negligible. In the medium
Eb/N0 range, the noise variance estimate slowly converges to a value larger than the true variance, the
difference between both values depending again on the accuracy of the other parameters’ estimates.

Conceptually, the estimate of the noise precision represents the amount of ‘trust’ that the algorithm has
on the beliefs of the channel weights and data symbols. With high noise precision values, the receiver
has high confidence on these beliefs, leading to a rapid convergence towards a stable solution. On the
contrary, low noise precision values will yield slower changes on the beliefs from one iteration to the
next, resulting in a slower convergence rate.

VI. CONCLUSION

In this article we have used a hybrid VMP-SP message passing framework [41], [42] for the design
of iterative receivers for wireless communication. The framework has been applied to the factor graph of
a generic MIMO-OFDM system. The messages obtained from the generic derivation have been used to
obtain a set of receiver architectures ranging from computationally simple solutions to full-scale iterative
architectures performing channel weight estimation, noise precision estimation, MIMO equalization and
channel decoding. The performance of the proposed receivers has been assessed and compared to state-
of-the-art solutions via Monte Carlo simulations.

A fundamental contribution of this work is the application of a unified framework that jointly optimizes
the receiver architecture based on a global cost function, namely the region-based variational free energy.
The message-passing scheme used in this work can be obtainedfrom the equations of the stationary
points of a particular region-based free energy approximation. The resulting algorithm applies the VMP
and SP algorithms to different parts of the graph and unequivocally defines how the messages of the
two respective frameworks are to be combined. As a result, the hybrid technique allows for a convenient
design of wireless receivers in which the SP algorithm is used for demodulation and channel decoding
and the VMP algorithm is applied for channel weight estimation, noise covariance estimation and MIMO
equalization. The connection between the specific receivercomponent parts is defined by the message-
computation rules, in contrast to other approaches in whichthe selection of information to be exchanged
among the specific receiver components is done based on numerical results and/or intuitive argumentation.

We illustrate the application of the framework by applying it to the design of receivers in a MIMO-
OFDM communications system. From the factor-graph representing the underlying probabilistic model,
a set of generic messages exchanged between different partsof the model, represented by sub-graphs, is
derived. We choose to split the factor graph in three main subgraphs corresponding to the channel weights
prior model, the noise precision model and the modulation and coding constraints. The advantage of this
modular approach is that it enables a scalable, flexible design of the receiver in which the modification
of a specific sub-graph does not modify the processing performed in other parts of the graph. Thus,
a collection of different receiver architectures can be obtained by applying different initialization and
scheduling strategies.

In order to assess the performance of the receivers derived with the proposed framework, we define
five specific instances of the generic message-passing receiver. The particular architectures selected span
from to full-scale iterative schemes, in which the output ofthe channel decoder is used to refine the
estimates of the channel parameters and the transmitted symbols, to low-complexity solutions, in which
only pilot symbols are used for channel weight and noise variance estimation. This particular selection
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of receiver architectures serves as an illustration of how the tradeoff between computational complexity
and receiver performance can be adjusted, with the generic message-passing receiver as a starting point.
The numerical results, obtained via Monte Carlo simulations in a realistic MIMO-OFDM setup, confirm
the effectiveness of the receivers derived following the hybrid VMP-SP framework. In particular, the
convergence behavior of the receivers tested is especiallyremarkable. All receiver instances yield an
improved or equal performance with increasing number of iterations, both in terms of BER and MSE of
the channel weight estimates. We explain these favorable convergence properties by the use of the unique,
global cost function from which the algorithm is derived. The estimation of the noise precision parameter,
accounting for the uncertainty on the estimates of the channel weights and transmitted symbols in addition
to the AWGN variance, is another key feature of the proposed architecture.
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Abstract

Sparse modeling and estimation of complex signals is not uncommon in practice. However, his-

torically, much attention has been drawn to real-valued system models, lacking the research of sparse

signal modeling and estimation for complex-valued models. This paper introduces a unifying sparse

Bayesian formalism that generalizes to complex- as well as real-valued systems. The methodology relies

on hierarchical Bayesian sparsity-inducing prior modeling of the parameter of interest. This approach

allows for the Bayesian modeling of `1-norm constraint for complex-valued as well as real-valued models.

In addition, the proposed two-layer hierarchical model allows for the design of novel priors for sparse

estimation that outperform the Bayesian formulation of the `1-norm constraint and lead to estimators

approximating a soft-thresholding rule. An extension of the two-layer model to a three-layer model is

also presented. Varying the free parameters of the three-layer model leads to estimators that approximate

a hard-thresholding rule. Finally, a variational message-passing (VMP) implementation of the proposed

Bayesian method that effectively exploits the hierarchical structure of the inference problem is presented.

The simulation results show that the VMP algorithm outperforms existing sparse methods both in terms

of the sparsity of the estimation results and achieved mean squared error in low and moderate SNR

regimes.
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I. INTRODUCTION

During the last decade the research on compressive techniques and sparse signal representations has

received considerable attention (see e.g., [1]–[4]). With a few minor variations, the general goal of sparse

reconstruction is to estimate the parameter vector α of the following canonical model:

y = Hα+w. (1)

In this expression y is a M × 1 vector of measurement samples, H = [h1, . . . ,hL] is an M × L

measurement matrix with L column vectors hl. The additive term w is an M × 1 perturbation vector,

which is assumed to be a white Gaussian random vector with zero-mean and covariance matrix Σ = λ−1I

with λ > 0 being the noise precision parameter. The unknown L×1 parameter vector α = [α1, . . . , αL]
T

has only K non-zero entries, i.e., α is assumed to be K-sparse. System model (1) can be either real-

valued, when H and w are real and α is real [1], [2], or complex-valued, when H or w is complex

and α is complex as well.

Historically, a real-valued system model has dominated the research in sparse signal reconstruction and

compressive sampling techniques. However, complex systems are not so uncommon in practice in which

sparse parameter estimation is sought as well. An example is the estimation of the dominant multipath

components in the response of wireless channels [4], [5]. Motivated by the lack of formal tools for sparse

learning in complex-valued system models and inspired by the recent developments of sparse Bayesian

methods [3], [6]–[11] we propose a unifying sparse Bayesian formalism that applies to both real- and

complex-valued system models. The formalism enables to generalize and improve the sparse Bayesian

methods proposed nowadays.

Sparse Bayesian learning (SBL) [3], [12], [13] applied to model (1) aims at finding a sparse maximum

a posteriori (MAP) estimate of α

α̂MAP = argmin
α

{
ρ‖y −Hα‖22 + λ−1Q(α)

}
, (2)

with ρ = 1/2 (real model) or ρ = 1 (complex model), the Euclidean norm ‖ · ‖2, and the penalty

term Q(α) ∝e − log p(α),1 by modeling the prior p(α) using a hierarchical structure, which involves

a conditional prior p(α|γ) and a hyperprior p(γ). The hierarchical approach to the representation of

sparsity-inducing prior has several important advantages. First of all, one is free to choose the prior

pdfs in the formulation of the hierarchical structure, which is advantageous for the generalization of

1
x ∝e

y denotes exp(x) = exp(β) exp(y) and thus x = β + y for some arbitrary constant β.
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SBL for complex- and real-valued system models. When carefully chosen, the resulting hierarchical

structure also allows for the construction of efficient inference algorithms, in terms of sparsity enhancing

capability, and an analytical derivation of the inference expressions. Second, the two-layer hierarchy can

be naturally extended with an additional hierarchy tier by treating the parameters of the hyperprior – the

hyperparameters – as random variables specified by a hyper-hyperprior distribution. This yields additional

degrees of freedom in controlling the sparsity properties of the resulting inference scheme, as will be

demonstrated later in this work.

The SBL methodology has developed following two distinct approaches that differ in the way the

hierarchical prior model is constructed. The first approach is exemplified by the relevance vector machines

(RVMs) [12]. In RVM, each component of α is independently constrained using a two-layer hierarchical

prior p(αl|γl)p(γl), where p(αl|γl) is a Gaussian probability density function (pdf) with zero-mean and

variance γl, and p(γl) ≡ p(γl; al, bl) = bal

l γ−al−1
l exp(−bl/γl)/Γ(al) is an inverse gamma hyperprior pdf

with parameters al and bl.
2 Further in the text we refer to this formulation of the hierarchical prior pdf

as a Gaussian-Inverse gamma (G-IGa) prior model. Notice that the G-IGa prior model applies equally

well to the modeling of complex-valued as well as real-valued αl. Using the G-IGa prior model an

RVM algorithm is then formulated to estimate the hyperparameters γ = [γ1, . . . , γL]
T by maximizing its

posterior pdf p(γ|y, λ) ∝ p(γ)
∫
p(y|α, λ)p(α|γ)dα; as γl decreases it drives the corresponding weight

αl towards zero, thus encouraging a solution with only a few non-zero coefficients in α. It is known [12]

that the prior p(α) =
∫
p(α,γ)dγ is the product of pdfs of Student-t distributions over αl. Under such

a prior most of the probability mass is concentrated along the coordinate axes in the parameter space,

thus encouraging a posterior distribution with a mode lying close to these axes in the α-space [13]. The

analytical tractability of the resulting inference problem allows for a further analysis of SBL with these

hierarchical priors, especially in case of a non-informative hyperprior p(γ) ∝
∏L

l=1 γ
−1
l

, which is also

termed automatic relevance determination (ARD) [11], [12]. In the latter case the prior p(α) is improper:

p(α) ∝
∏L

l=1 1/|αl|. It leads to the log-sum penalization term Q(α) =
∑L

l=1 log |αl| in (2), which is

known to strongly promote sparsity [7], [8].3 Furthermore, ARD leads to very efficient and fast inference

schemes [6], [14], [15].

The second approach to SBL was proposed in [16] for real-valued models to realize a popular `1-

2In the original formulation of the RVM algorithm the parameter γl models the precision (inverse variance) of the conditional

Gaussian prior p(αl|γl) and the hyperprior p(γl; al, bl) is a gamma pdf. The model has been reformulated here to match the

framework adopted in this sequel of the paper.

3Note, however, that the hierarchical formulation realizes this log-sum penalty term indirectly through the product of two pdfs

that form a conjugate family.
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norm regularization for each component of α. This approach consists in independently constraining

each element of α using a two-layer hierarchical prior p(αl|γl)p(γl). Similarly to the G-IGa model

p(αl|γl) is a Gaussian pdf with zero-mean and variance γl; however, the hyperprior p(γl) ≡ p(γl; η) is

selected as an exponential pdf with rate parameter η. We refer to this formulation of the hierarchical

prior pdf as a Gaussian-exponential (G-E) prior model. It can be shown [16] that in this case the prior

pdf p(α; η) =
∫
p(α|γ)p(γ; η)dγ ∝

∏L
l=1 exp

(
−
√
2η|αl|

)
is the product of Laplace pdfs with zero-

mean and scale parameter
√
2η. In this case the penalty term in (2) reads Q(α) =

√
2η‖α‖1 with ‖ · ‖1

denoting the `1-norm. The MAP estimate with this selection of Q(α) is called Least Absolute Shrinkage

and Selection Operator (LASSO) [17]. The popularity of the LASSO regression is mainly attributed to

the convexity of the `1 penalty term Q(α) =
√
2η‖α‖1 as well as to its provable sparsity-inducing

properties (see, e.g., [2], [18]).

The sparsity properties of the LASSO estimator depend heavily on the value of the regularization

parameter κ = λ−1√2η. If κ is selected too large, the resulting estimator produces overly sparse estimates,

i.e., relevant information will be discarded; in contrast, small values of κ lead to non-sparse solutions,

especially in low signal-to-noise ratio (SNR) regime. While techniques exist for empirically choosing the

regularization parameters [8], the Bayesian methodology provides all the tools necessary for finding an

optimal regularization term. In other words, by modeling η and λ as random variables and incorporating

them into the inference framework, an optimal value of κ can be found. This requires extending the

two-layer prior modeling of p(α) with a third layer — the “hyper-hyperprior” pdf for η. Naturally, the

“hyper-hyperprior” again depends on some parameters that have to be specified. However, it is reasonable

to assume that the performance of the resulting estimator is less sensitive to the exact choice of these

“hyper-hyperparameters”: the tiers of such hierarchical priors can be seen as different layers of abstraction

from the actual model parameter vector α. Thus, on the highest layer such a “hyper-hyperprior” gives

a very abstract description of the representation of α. In this work we propose several extensions and

generalizations of this hierarchical modeling approach.

Our goal in this work is threefold. First, we extend the G-E prior model to complex domain, effectively

generalizing the hierarchical prior formulation for real as well as complex models. We do so by using a

gamma hyperprior p(γl; ε, ηl) instead of an exponential prior; furthermore, L individual parameters ηl are

used instead of a single regularization parameter. We will refer to this new hierarchical prior formulation

as Gaussian-gamma (G-Ga) prior model. The obtained results naturally generalize those obtained in [16]

for real α. We demonstrate that by varying the shape parameter ε of the gamma hyperprior p(γl; ε, ηl) a

family of solutions for α that approximate a soft-thresholding rule with different degrees of sparseness
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is obtained. Second, instead of a two-layer prior we propose a three-layer hierarchical prior for both real

and complex parameters. This is realized by modeling the hyperprior parameters ηl as random variables

with the gamma pdf p(ηl) ≡ p(ηl; al, bl) = bal

l
ηal−1
l

exp(−blηl)/Γ(al). This leads to a model with 2L+1

free parameters, i.e., ε and al, bl, l = 1, . . . , L, to control the degree of sparseness of the resulting

solution. We show that, in contrast to the G-Ga model, varying the parameter ε with fixed al and bl leads

in this case to a family of solutions for α that approximate a hard-thresholding rule. Moreover, a weakly

informative prior can be constructed that induces an equivalent weighted log-sum penalization of the

parameter likelihood function [8], [10]. This three-layer prior model we term Gaussian-gamma-gamma

(G-Ga-Ga) prior model. Furthermore, we show that for both two-layer and three-layer prior models,

choosing non-informative hyperpriors yields a log-sum penalization of the parameter likelihood, which is

identical to the ARD formulation of the RVM-type of hierarchical prior. Finally, we propose a variational

Bayesian message passing algorithm that exploits the hierarchical structure of the inference problem. Due

to the adopted choice of the pdfs in the hierarchical prior model it is possible to compute the messages in

closed form. Thus, inference can be implemented very efficiently. We should mention that a three-layer

prior model has been also independently proposed in [7] for hierarchical adaptive LASSO (HAL). In [7]

the authors use a three-layer hierarchical prior to motivate the adaptive version of the LASSO estimator.

There are, however, several important distinctions between their approach and the one advocated in our

work. First of all, although a three-layer hierarchy is used, the prior pdfs used in the hierarchy prohibit

an application of this structure to models with complex parameters; specifically, one does not obtain a

LASSO-type of objective function when this hierarchical modeling is applied to models with complex

parameters. Second, the inference algorithm does not really exploit the three-layer hierarchy. Instead, it

works with a two-layer structure, where the first layer is a Laplace pdf and the second layer is a gamma

pdf. Such a two-layer structure has been explicitly used earlier for sparse estimation of multipath wireless

channels in [5]. More on this will be discussed later in the text.

Throughout this paper we shall make use of the following notation. For vectors x and matrices X ,

(·)T and (·)H denote respectively the transpose and the Hermitian transpose. The expression 〈f(x)〉q(x)

denotes the expectation of a function f(x) with respect to a density q(x). For a random vector x,

N(x|a,B) and CN(x|a,B) denote respectively a multivariate real and a multivariate complex Gaussian

pdf with a mean a and a covariance matrix B; similarly, Ga(x|a, b) = ba

Γ(a)x
a−1 exp(−bx) denotes a

Gamma pdf with shape parameter a and rate parameter b. The range of integration of integrals will not

be explicitly given when it is obvious.
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II. BAYESIAN FRAMEWORK FOR SPARSE ESTIMATION

We begin with the specification of the probabilistic structure of the SBL problem for model (1). Two

types of hierarchical prior models for α are considered: a two-layer and a three-layer hierarchical model.

Later we will see that these models lead to priors for α with distinct sparsity-inducing properties.

The joint pdf of system model (1) with a two-layer prior model for α reads

p(y,α,γ, λ) = p(y|α, λ)p(λ)p(α|γ)p(γ). (3)

The joint pdf of system model (1) with a three-layer prior model for α is obtained by assuming that the

parameters η of the p(γ) in (3) are random. The resulting joint pdf is then specified as

p(y,α,γ,η, λ) = p(y|α, λ)p(λ)p(α|γ)p(γ|η)p(η). (4)

Both the two-layer formulation (3) and the three-layer formulation (4) share the same likelihood function

p(y|α, λ) and the prior pdf of the noise precision parameter p(λ). Due to (1) the likelihood func-

tion is Gaussian: p(y|α, λ) = N(y|Hα, λ−1I) for the real-valued system model and p(y|α, λ) =

CN(y|Hα, λ−1I) for the complex-valued model. The prior p(λ) is selected as a gamma prior, i.e.,

p(λ) = p(λ; c, d) , Ga(λ|c, d). This choice is convenient since the gamma distribution is a conjugate

prior for the precision of a Gaussian likelihood function. Additionally, selecting c = d = 0 makes this

prior non-informative.

Let us specify the structure of the hierarchical priors of α in (3) and (4). Motivated by [12], [16] we

select the conditional prior p(α|γ) =
∏L

l=1 p(αl|γl) to be the product of Gaussian pdfs. While in [12],

[16] real-valued α was considered, here we consider both real- and complex-valued α. To this end we

define

p(αl|γl) =

(
ρ

πγl

)ρ

exp

(

−ρ
|αl|

2

γl

)

(5)

with the parameter ρ ∈ {1
2 , 1}. The conditional prior p(αl|γl) for real-valued αl is realized by selecting

ρ = 1/2, while ρ = 1 entails the prior for complex-valued αl. In the next section we compute the prior

for α that results from the two-layer prior model and analyze its sparsity-inducing property. We redo the

same exercise in the following section with the three-layer prior model.
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A. Two-Layer Hierarchical Prior Model

As we have already mentioned, the original G-E prior model in [16] assumes that p(γ) is a product of

exponential pdfs with a common rate parameter η. We can easily generalize this model by considering

p(γ) as a product of gamma pdfs with individual rate parameters. Specifically, we assume that p(γ) =
∏L

l=1 p(γl) with p(γl) = p(γl; ε, ηl) , Ga(γl|ε, ηl). The G-E prior model is then the special case with

the settings ε = 1 and η1 = . . . = ηL = η. We define now η = [η1, . . . , ηL]
T and compute the prior of

α to be

p(α; ε,η) =

∫ ∞

0
p(α|γ)p(γ; ε,η)dγ =

L∏

l=1

p(αl; ε, ηl) (6)

with

p(αl; ε, ηl) =
2ρ

(ε+ρ)

2

πρΓ(ε)
η

(ε+ρ)

2

l
|αl|

ε−ρKε−ρ(2
√
ρηl|αl|). (7)

In this expression, Kν(·) is the modified Bessel function of the second kind and order ν ∈ R. Further

in the text we refer to this formulation of the hierarchical prior pdf as Gaussian-gamma (G-Ga) prior

model. The prior (7) is valid for real-valued (ρ = 1/2) as well as for complex-valued (ρ = 1) αl.

By selecting ε = 1, ρ = 1/2, and using the identity K 1

2
(z) =

√
π
2z exp(−z) [19], (7) yields the

Laplace prior for real αl:

p(αl; ε = 1, ηl) =

√
ηl

2
exp(−

√

2ηl|αl|), αl ∈ R. (8)

In the complex case, when ρ = 1, it is easy to see that selecting ε = 3/2 leads to the same order of the

Bessel function in (7) as in the real case. Making use of the same identity for the Bessel function we

find the corresponding prior for complex αl:

p(αl; ε = 3/2, ηl) =
2ηl
π

exp(−2
√
ηl|αl|), αl ∈ C. (9)

Hence, the G-Ga prior model realizes the `1 penalty term Q(α;η) = 2
∑L

l=1

√
ρηl|αl| with ε = 1 for

real α and with ε = 3/2 for complex α.

The G-Ga prior model can be used with arbitrary values of ε, leading to the general optimization

problem (2) with

Q(α; ε,η) =

L∑

l=1

log
(
|αl|

ε−ρKε−ρ (2
√
ρηl|αl|)

)
. (10)
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Fig. 1. Two-layer hierarchical prior pdf for the complex system model with the setting η = 1: (a) The restriction to R

(Im{αl} = 0) of p(αl; ε, η) (7) for different values of ε. (b) Contour plot of the restriction to the Im{α1} = Im{α2} = 0 –

plane of Q(α1, α2; ε, η) ∝
e − log p(α1; ε, η)p(α2; ε, η). In (b) the black dashed line indicates the penalty term resulting when

the prior pdf is a circular symmetric Gaussian pdf.

One important observation is that decreasing ε beyond 3/2 in the complex case (or equivalently beyond

1 in the real case) leads to a non-convex penalty term that resembles the `p-norm penalty for 0 < p < 1.4

Unfortunately, in this case the optimization problem (2) with penalty term (10) is no longer convex. Note,

however, that the hierarchical approach advocated in this work does not involve a direct optimization of the

objective function in (2). Instead, the non-convex penalty term (10) is realized indirectly as a product of

Gaussian and gamma pdfs. Moreover, since in the G-Ga model formulation the prior p(α|γ) is Gaussian,

the resulting MAP objective function for α is necessarily convex with respect to α irrespective of the

value of ε.5

Let us stress that (6) represents a family of prior pdfs for α parameterized by ε and η. While the entries

in η can be recognized as multiple regularization parameters, the impact of ε is less straightforward. To

better understand its influence on the shape of (6) we visualize in Fig. 1(a) the restriction6 to R of the

prior p(αl, ε, ηl) in (7) with ρ = 1 for various values of ε. Observe the change of the shape of p(αl; ε, ηl)

4The norm `p, 0 < p < 1, better approximates the pseudo-norm `0 — the number of non-zero entries in the vector — as

compared to `p with p ≥ 1.

5The same is true for G-E and G-IGa models.

6Let f denote a function defined on a set A. The restriction of f to a subset B ⊂ A is the function defined on B that

coincides with f on this subset.
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Fig. 2. Two-layer hierarchical prior for the complex system model: Restriction to Im{hH
l y} = 0 of the resulting MAP

estimation rule (2) with ε as a parameter in the case when H is orthonormal. The black dashed line indicates the hard-threshold

rule [20].

with ε: the smaller the value of ε the more rapidly p(αl, ε, ηl) decays around the origin. In Fig. 1(b)

we show the contour lines of the restriction to R of Q(α1, α2; ε, η) ∝
e − log p(α1; ε, η)p(α2; ε, η); each

contour line is computed for a specific choice of ε. It can be seen from the plots that as ε decreases

towards 0 more probability mass concentrates along the α-axes; as a consequence, the mode of the

resulting posterior is more likely to be found close to the axes, thus indicating a sparse solution. The

behavior of the classical `1 penalty term obtained for ε = 3/2 can also be clearly recognized.

In order to get further insight into the impact of ε on the MAP estimate α̂ with penalty term (10),

we consider the case when H is orthonormal, i.e., when hH
l hk = δk,l, where δk,l is the Kronecker

delta. In this case the solution α̂ can be easily computed since the optimization (2) decouples into L

independent scalar optimization problems. Furthermore, when the G-Ga prior model realizes an `1-norm

constraint, i.e., the prior pdfs (8) (real case) or (9) (complex case) is selected, the MAP solution can even

be computed analytically as follows:

α̂l = sign(hH
l y)max

{

0, |hH
l y| − λ−1

√
ηl

ρ

}

, l = 1, . . . , L, (11)
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where sign(x) = x/|x|. The interpretation of this result is quite intuitive: for complex αl the region

where the estimate α̂l is exactly zero is the closed disc with radius λ−1√ηl centered at origin; for real

αl it is given by the closed interval
[
−λ−1√2ηl, λ

−1√2ηl
]
. Correspondingly, the solution (11) is a soft-

thresholding rule for each entry in α̂ with threshold λ−1
√

ηl

ρ
. In Fig. 2 we visualize the estimation rules

produced by the MAP solver for different values of ε. Note their typical soft-threshold-like behavior.

As ε → 0, more components of α̂ are pulled towards zero since the threshold value increases, thus

encouraging a sparser solution.

B. Three-Layer Hierarchical Prior Model

We now turn to the SBL problem with a three-layer prior model for α represented by the joint pdf in (4).

Specifically, we extend the G-Ga prior model to a three-layer model by considering the hyperparameters

in η as random. We assume that p(η) =
∏L

l p(ηl), where p(ηl) = p(ηl; al, bl) , Ga(ηl|al, bl). The

resulting three-layer model we term Gaussian-gamma-gamma (G-Ga-Ga) prior model.

Let us now compute the prior p(α) that corresponds to the G-Ga-Ga model. First, we note that

p(α,γ,η) = p(α|γ)p(γ|η)p(η) =
∏L

l=1 p(αl|γl)p(γl|ηl)p(ηl) and marginalize p(α,γ,η) over η. This

requires computing p(α|γ)p(γ) = p(α|γ)
∫
p(γ|η)p(η)dη. Defining a , [a1, . . . , al]

T and b , [b1, . . . , bL]
T

we obtain

p(γ; ε,a, b) =

L∏

l

∫ ∞

0
p(γl|ηl; ε)p(ηl; al, bl)dηl =

L∏

l

p(γl; ε, al, bl), (12)

where

p(γl; ε, al, bl) =
bal

l
Γ(ε+ al)

Γ(ε)Γ (al)
γε−1
l

(γl + bl)
−(ε+al). (13)

Finally, marginalizing p(α|γ)p(γ; ε,a, b) over γ yields

p(α; ε,a, b) =

L∏

l

p(αl; ε, al, bl) (14)

with

p(αl; ε, al, bl) =

∫ ∞

0
p(αl|γl)p(γl)dγl

=

(
ρ

πbl

)ρ Γ(ε+ al)Γ(al + ρ)

Γ(ε)Γ(al)

(

ρ
|αl|

2

bl

)ε−ρ

U

(

ε+ al; ε− ρ+ 1; ρ
|αl|

2

bl

)

. (15)

In this expression, U(·; ·; ·) is the confluent hypergeometric function [19]. Unfortunately, this function
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Fig. 3. Three-layer hierarchical prior pdf for the complex system model with the setting a = 1, b = 0.1: (a) Restriction

to Im{hH
l y} = 0 of the resulting MAP estimation rule (2) with ε as a parameter in the case when H is orthonormal. The

black dashed line indicates the hard-threshold rule and the black solid line the soft-threshold rule (11). (b) Contour plot of the

restriction to the Im{α1} = Im{α2} = 0 – plane of the penalty term Q(α1, α2; ε, a, b) ∝
e − log p(α1; ε, a, b)p(α2; ε, a, b).

makes a further analytical investigation of (15) rather difficult. Nonetheless, we can study its behavior

numerically. Following the same approach as for the G-Ga prior model, we show the estimation rules

produced by the MAP solver for different values of ε and fixed parameters al and bl when H is

orthonormal in Fig. 3(a). Notice, the estimation rules obtained with the G-Ga-Ga prior model approximate

the hard-thresholding rule. In Fig. 3(b), we depict the contour of the penalty term Q(α1, α2; ε, a, b) ∝
e

− log p(α1; ε, a, b)p(α2; ε, a, b). Observe that although the contours are qualitatively similar to those shown

in Fig. 1(b) for the G-Ga model, the corresponding estimation rules in Fig. 3(a) are not.

C. Weighted log-sum Penalization

The use of the additional third layer in the G-Ga-Ga prior model leads to the introduction of the

additional free parameter vectors a and b which must be selected in addition to the prior parameter ε.

In this section we discuss a selection of these parameters that leads to a “weakly” informative prior for

α with good sparsity-inducing properties.

Recall that the entries in η in the G-Ga prior model represent regularization parameters. The range

of appropriate values for η is primarily determined by the particular SNR, measurement signal y, and

dictionary H (see (11)); this range can be quite large in general. Thus, it makes sense to employ a
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Fig. 4. Three-layer hierarchical prior for the complex system model with small b (b = 10−6): Restriction to Im{hH
l y} = 0

of the resulting MAP estimation rule (2) with al as a parameter in the case when H is orthonormal. The black dashed line

indicates the hard-threshold rule and the black solid line the soft-threshold rule (11).

diffuse prior over η. This can be achieved by selecting the entries in b to be small; practically, we set

bl = 10−6, l = 1, . . . , L. For small bl the prior (13) can be approximated as

p(γl; ε, al, bl) ≈
bal

l Γ(ε+ al)

Γ(ε)Γ (al)
γ
−(al+1)
l . (16)

If in addition we select ε = 0 we obtain the improper prior for γl

p(γl; al) ∝ γ
−(al+1)
l . (17)

The prior p(αl; al) obtained by marginalizing p(αl|γl)p(γl; al) over γl is also improper in this case:

p(αl; al) ∝ |αl|
−2(al+ρ). (18)

The prior (18) leads to a weighted log-sum penalty term Q(α;a) = 2
∑L

l=1(al+ρ) log |αl| parametrized

by a in the MAP objective function. Observe that selecting a = 0 in (18) the log-sum penalty term is

automatically obtained. Such form of penalty appears in the ARD formulation of the G-IGa prior model

[12], [21], as well as in the re-weighted `1 optimization [8].
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The dependency of (18) on al gives some extra degree of freedom to further adjust the sparsity

property of this prior. To demonstrate this, let us again consider the special case of an orthogonal

measurement matrix H . In Fig. 4 we depict the corresponding MAP estimation rules for αl with penalty

term Q(αl; al) = 2(al + ρ) log |αl|. Observe that increasing the value of al also increases the values of

the effective threshold, thus resulting in sparser solutions of α.

III. RELATED APPROACHES AND METHODS

In this section we establish the relationship between the sparse Bayesian modeling approach with

hierarchical priors developed in Sec. II and other state-of-the-art sparse estimation techniques proposed

in the literature.

The iterative re-weighted `1 minimization method studied by [8], [10], [21] solves the weighted

optimization problem for the real system model (ρ = 1/2) in (2) with penalty term

Q(α;β) =

L∑

l=1

βl|αl|, (19)

where βl, l = 1, . . . , L, are some fixed weights. In [8] it is proposed to update the weights as

βl = (|α̂l|+ ς)−1, (20)

where ς is some small constant and α̂l is the current estimate of αl; such an algorithm leads to a sequence

of re-weighted `1 minimization problems.

We show that our proposed G-Ga prior model also implements the same objective function, albeit

for real as well as complex system models. Indeed, the MAP estimate of α computed using the G-Ga

hierarchal prior model with the setting ε = ρ+ 1/2 yields the penalty term

Q(α;η) = 2

L∑

l=1

√
ρηl|αl|. (21)

Hence, (21) is equivalent to (19) with the weighting factors βl = 2
√
ρηl, l = 1, . . . , L. Quite naturally

this relationship can be exploited by selecting the hyperparameters ηl = 1/(4ρ(|α̂l|+ ς)2) as proposed in

[8]. Moreover, in contrast to [8] and as already mentioned in Sec. II, the Bayesian hierarchical approach

is not constrained to the `1-type of penalty term obtained with ε = ρ+1/2, but can be used for arbitrary

values of ε, leading to the general re-weighted constrained optimization problem by updating ηl in (10).

We will demonstrate that due to the strong sparsity-inducing nature of the prior (7) for ε < ρ+1/2, (10)

leads to a sparser estimate as compared to that obtained using (21).
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Similarly to the G-Ga prior model, the two-layer G-IGa prior model proposed in [12] also requires

specifying the hyperprior parameters. In [12] the variance γl follows an inverse gamma distribution. The

corresponding marginal distribution of αl can be shown to follow a Student-t distribution. This result can

be easily generalized for complex variables, leading to the prior for αl

p(αl; al, bl) =
( ρ

π

)ρ bal

l
Γ(al + ρ)

Γ(al)

(
bl + ρ|αl|

2
)−(al+ρ)

. (22)

Setting al and bl to zero leads to a special case of non-informative hyperpriors and ARD, with an improper

prior p(α) ∝
∏L

l=1 |αl|
−2ρ that leads to the log-sum penalty term Q(α) = 2ρ

∑L
l=1 log |αl|. We should

also add that the `1 re-weighting scheme in [8] has also been motivated using the log-sum penalty term

(see [8] for more details). Moreover, it has been demonstrated [10], [21] that the ARD approach to

SBL based on the G-IGa prior model can also be interpreted as a series of re-weighted `1 minimization

problems; the computation of the weighting factors, however, differs from that used in [8].

Similarly, in [16] the author also suggests to make use of Jeffreys’ prior for the variance γl in the

G-E prior model. It can be shown that this choice of hyperprior in fact again leads to the same improper

ARD prior p(αl) ∝ |αl|
−2ρ. Hence, the G-IGa model proposed by Tipping in [12] and the G-E model

proposed by Figueiredo in [16] are equivalent when the hyperpriors are chosen to be non-informative.

Note that since the G-Ga prior model endorses the G-E model as a special case, the same is true when

ε = ηl = 0, l = 1, . . . , L, in (7). Furthermore, for the three-layer prior model it is easily seen that letting

al = bl = ε = 0 in (13) also entails the non-informative Jeffreys’ prior for γl. Thus, the equivalent

marginalized prior p(αl) coincides with that obtained in [12] and [16] when non-informative hyperpriors

are assumed. In other words, when second or third layer priors are chosen to be non-informative, an

instance of ARD is obtained regardless of the hierarchal prior model used.

While two-layer models in general require specifying the regularization parameters, three-layer prior

models effectively lead to an alternative automatic procedure for selecting the parameters ηl. The three-

layer structure has been implicitly exploited in [5] for sparse variational Bayesian extension of the SAGE

algorithm for parameter estimation in sparse wireless channels and explicitly in [7] for hierarchical

adaptive LASSO. In [5] the authors exploit the two-layer prior structure, where the first layer is the

`1 prior, i.e., p(α|η̃) ∝
∏L

l=1 exp(−2η̃l|αl|) and the second layer is the gamma hyperprior p(η̃) =
∏L

l=1 Ga(η̃l|al, bl). Obviously, the prior p(α|η̃) can be constructed via the G-Ga model as we showed in

Sec. II-A with η̃l =
√
ηl; thus, the two-layer `1-gamma prior model used in [5] is equivalent to the three-

layer structure discussed in Sec. II-B with the selected hyper-hyperprior p(η) =
∏L

l=1Ga(
√
ηl|al, bl).
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Thus, η̃l =
√
ηl following a generalized gamma distribution [22]. The resulting update expressions for

η̃l can then be computed as [5], [7]

η̃l =
al + ρ−1

bl + ρ−1|α̂l|
. (23)

Notice the similarity between the update expression (23) and the one proposed in [8] for the weights

βl in (19). Let us stress that although the authors in [7] discuss the three-layer structure, they do not

exploit the hierarchy for constructing the inference algorithm; instead, the first two layers are combined

together to give the Laplace prior. This leads to the desired LASSO-type objective function for estimating

α and makes their approach numerically equivalent to that proposed in [5]. Nonetheless, despite formal

similarities between the update expressions for the `1 weighting parameters obtained with the three-layer

hierarchical prior and those proposed in [8], a substantial difference between these schemes lies in the

order in which the parameters are updated. Specifically, in [8] the weights are updated once a single

weighted `1 optimization problem has been solved with fixed weights ηl, l = 1, . . . , L; similarly, the

ARD approach estimates the corresponding weighting parameters once the vector α that optimizes the

ARD objective function are computed [21]. In contrast, in [5] and [7] the update expressions for the

weights of the weighted `1 optimization are evaluated concurrently with the update expressions for the

model parameter vector α; in other words, a weight ηl is updated each time the corresponding parameter

αl is updated.

IV. VARIATIONAL MESSAGE PASSING

In this section we present a variational message passing (VMP) algorithm for estimating α given the

observation y. First, we derive the VMP inference expressions for the SBL problem with the two- and

the three-layer prior models. Then, a procedure for removing a basis function from the measurement

matrix H is described.

A. The VMP algorithm

Let Φ = {α,γ,η, λ} be the set of unknown parameters to be estimated and let p(y,Φ) be the

joint pdf specified in (4). The factor graph [23] that encodes the factorization of p(y,Φ) in (4) is

shown in Fig. 5. Consider an auxiliary pdf q(Φ) for the unknown parameters that factorizes according

to q(Φ) = q(α)q(γ)q(η)q(λ). The VMP algorithm is an iterative scheme that attempts to compute

the auxiliary pdf q(Φ) by minimizing the Kullback-Leibler (KL) divergence KL(q(Φ)‖p(Φ|y)). In the

following we summarize its key steps; the reader is referred to [24] for more information on VMP.
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Fig. 5. A factor graph [23] that represents the joint pdf (4). In this figure fy ≡ p(y|α, λ), fα ≡ p(α|γ), fγ ≡ p(γ),
fη ≡ p(η), and fλ ≡ p(λ).

From [24] the auxiliary function q(φi), φi ∈ φ is updated as the product of incoming messages from

the neighboring factor nodes fn to the variable node φi:

q(φi) ∝
∏

fn∈Nφi

mfn→φi
. (24)

In (24) Nφi
is the set of factor nodes neighboring the variable node φi and mfn→φi

denotes the message

from factor node fn to variable node φi. This message is computed as

mfn→φi
= exp

(

〈ln fn〉∏
j
q(φj), φj∈Nfn\{φi}

)

, (25)

where Nfn is the set of variable nodes neighboring the factor node fn. After an initialization procedure,

the individual factors of q(Φ) are then updated iteratively in a round-robin fashion using (24) and (25).

In the following we derive two versions of the VMP algorithm: one applied to the two-layer G-Ga prior

model (referred to as VMP-2L), and another one applied to the three-layer G-Ga-Ga model (VMP-3L).

The messages corresponding to VMP-2L are easily obtained as a special case of the messages computed

for VMP-3L by assuming q(ηl) = δ(ηl − η̂l), where δ(·) is a Dirac delta function and η̂l is some fixed

number. We compute the messages for both real-valued (ρ = 1/2) and complex-valued (ρ = 1) signal

models (1).

1) Update of q(α): According to (24) the computation of q(α) requires evaluating the product of

messages mpy→α
and mpα→α

. These are obtained as

mpy→α
= exp(〈ln p(y|α, λ)〉q(λ))

∝ exp
(
−ρ〈λ〉q(λ)‖y −Hα‖22

)
, (26)

mpα→α = exp(〈ln p(α|γ)〉q(γ))

∝ exp
(
−ραHV (γ)α

)
, (27)
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where we define V (γ) = diag{〈γ−1
1 〉q(γ), . . . , 〈γ

−1
L 〉q(γ)}. Multiplying (26) and (27) yields the Gaussian

auxiliary pdf q(α) = CN
(

α|α̂, Σ̂α

)

when ρ = 1 and q(α) = N
(

α|α̂, Σ̂α

)

when ρ = 1/2 with

corresponding mean and covariance given by

Σ̂α = (〈λ〉q(λ)H
HH + V (γ))−1, (28)

α̂ = 〈α〉q(α) = 〈λ〉q(λ)Σ̂αH
Hy. (29)

2) Update of q(γ): The computation of q(γ) requires evaluating the messages mpα→γ and mpγ→γ :

mpα→γ = exp(〈ln p(α|γ)〉q(α))

∝
L∏

l=1

γ
−ρ
l exp

(
−ργ−1

l 〈|αl|
2〉q(α)

)
, (30)

mpγ→γ ∝
L∏

l=1

γε−1
l exp(−γl〈ηl〉q(η)). (31)

Notice that 〈|αl|
2〉q(α) in (30) is the lth diagonal element of 〈ααH〉q(α) = Σ̂α+ α̂α̂H . Multiplying (30)

and (31) yields

q(γ) ∝
L∏

l=1

γ
ε−ρ−1
l exp

(
−γ−1

l ρ〈|αl|
2〉q(α) − γl〈ηl〉q(η)

)
. (32)

The right-hand side expression in (32) is recognized as the product of Generalized Inverse Gaussian (GIG)

pdfs [25], i.e., q(γ) =
∏L

l=1 q(γl; p, ul, vl) where q(γl; p, ul, vl) =
(ul/vl)

p
2

2Kp(
√
ulvl)

γ
p−1
l exp

(

− ul

2 γl−
vl
2 γ

−1
l

)

with order p = ε− ρ and parameters ul = 2〈ηl〉q(η) and vl = 2ρ〈|αl|
2〉q(α).

Observe that the computation of V (γ) in (28) requires evaluating 〈γ−1
l 〉q(γ) for all l = 1, . . . , L.

Luckily, the moments of the GIG distribution are given in closed form for any n ∈ R [25]:

〈γnl 〉q(γ) =

(

ρ〈|αl|
2〉q(α)

〈ηl〉q(η)

)n

2 Kp+n

(

2
√

ρ〈ηl〉q(η)〈|αl|2〉q(α)

)

Kp

(

2
√

ρ〈ηl〉q(η)〈|αl|2〉q(α)

) . (33)

In the special case of `1-norm priors, i.e., when p = ε − ρ = 1/2, using the identity Kν(·) = K−ν(·)

[19], (33) simplifies to

〈γ−1
l

〉q(γ) =

(
〈ηl〉q(η)

ρ〈|αl|2〉q(α)

) 1

2

. (34)
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3) Update of q(η): The update of q(η) is the product of messages mpη→η and mpγ→η:

q(η) ∝
L∏

l=1

ηε+al−1
l

exp
(
−(〈γl〉q(γ) + bl)ηl

)
, (35)

which is identified as a gamma pdf. The first moment of ηl used in (33) is easily computed as

〈ηl〉q(η) =
ε+ al

〈γl〉q(γ) + bl
. (36)

Naturally, q(η) is only computed for VMP-3L.

4) Update of q(λ): The update of q(λ) can be shown to be q(λ) = Ga(λ|ρM+c, ρ〈‖y−Hα‖22〉q(α)+

d). The first moment of λ used in (28) and (29) is therefore computed as

〈λ〉q(λ) =
ρM + c

ρ〈‖y −Hα‖22〉q(α) + d
. (37)

B. Pruning a basis function

When the estimation algorithm produces a sparse parameter vector α̂ with K̂ non-zero components, the

remaining L−K̂ basis function in the measurement matrix H can be removed from the model. This basis

function pruning drastically lowers the computational complexity of the VMP algorithm. Specifically, it

reduces the computational complexity of the inversion of the covariance matrix in (28) from O(L3) to

O(K̂3).

A closer inspection of (28) reveals that the parameters 〈γ−1
l 〉q(γ) are in fact classical regularization

terms for estimating the weights α. Quite naturally, the larger the value of 〈γ−1
l

〉q(γ), i.e., the larger the

regularization for the lth basis function hl, the smaller the estimate of the corresponding αl. Thus, it

makes sense to remove hl in H when 〈γ−1
l 〉q(γ) exceeds a certain large threshold. The same method

was used in [12] for the G-IGa prior model to obtain a sparse solution.

V. NUMERICAL RESULTS

We perform Monte Carlo simulations to evaluate the performance of the two versions of the derived

VMP algorithm in Sec. IV. A complex-valued signal model (1) is considered in all experiments, where for

each Monte Carlo run a random M×L matrix H , a K-sparse vector α, and a random perturbation vector

w are generated. In order to test the methods on a realistic benchmark we use a random dictionary H

whose entries are independent and identically distributed (iid) zero-mean complex symmetric Gaussian

random variables with unit variance. The indices of the K non-zero components of α are uniformly

drawn from the set {1, 2, . . . , L}. The K non-zero components of α are iid and drawn from a zero-mean
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Legend Model Parameters

VMP-2L(ε = 3/2) G-Ga ε = 3/2
VMP-2L(ε = 0) G-Ga ε = 0
VMP-3L(ε = 3/2) G-Ga-Ga ε = 3/2, a = 1, b = 10−61
VMP-3L(ε = 0) G-Ga-Ga ε = 0, a = 1, b = 10−61

TABLE I

THE SELECTED PARAMETERS FOR THE PROPOSED PRIOR MODELS PRESENTED IN SEC. II. HERE, 1 := [1, . . . , 1]T .

complex circular symmetric Gaussian distribution with unit variance. All reported curves are computed

based on a total of 200 Monte Carlo runs.

Table I summarizes the choice of the free parameters for the G-Ga and G-Ga-Ga prior models discussed

in Sec. II. As indicated in the table, the selected value of ε used in the different versions of the VMP

algorithm is appended to their acronyms.

To initialize the VMP algorithm we set 〈λ〉q(λ) equal to (Var{y})−1 and 〈γ−1
l 〉q(γ) equal to the inverse

number of columns L. Furthermore, we let c = d = 0 in (37), which corresponds to a non-informative

prior for λ. Once the initialization is completed, the algorithm sequentially updates the auxiliary pdfs

q(α), q(γ), q(λ), and q(η) until convergence is achieved. As stated in Sec. IV, q(η) is only updated for

VMP-3L, whereas for VMP-2L the entries in η are free parameters that must be determined. Therefore, we

propose to use the re-weighting scheme of [8] to update ηl once the VMP-2L algorithm has converged and

a solution α̂l is produced. The parameters ηl, l = 1, . . . , L, are then updated based on the corresponding

estimates α̂l and the VMP-2L algorithm is iterated once more with the updated parameters. Specifically,

ηl is updated as [8]

ηl = (|α̂l|+ ς)−2 (38)

with the parameter ς set to ς = 10−3. Empirically we have observed that only a few (roughly 3 – 4) re-

weighting updates are needed. Initially, we choose η = [1, . . . , 1]T the first time the VMP-2L algorithm

solves the optimization problem.

In the sequel we perform the following investigations: first, the performance of the VMP-2L and VMP-

3L is analyzed; then, the VMP algorithm is compared with several state-of-the-art sparse estimation

schemes. The performance of the compared algorithms is evaluated based on the mean-squared error

(MSE) of α̂ and the number of non-zero elements K̂ in α̂. Note that the estimate α̂l is set to zero when

〈γ−1
l

〉q(γ) exceeds a fixed threshold set at 106.
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Fig. 6. Performance of the VMP algorithm: (a,b) MSE versus (a) SNR and (b) overcompleteness ratio L/M with M = 100.

(c,d) Estimated number of non-zero components K̂ versus (c) SNR and (d) overcompleteness ratio L/M (M=100) at 15 dB

SNR. The gray horizontal line indicates the true number of non-zero components in α.

A. Performance of the VMP algorithm

Here we evaluate the performance of the VMP algorithm versus (i) the SNR per received signal

component and (ii) the overcompleteness ratio L/M . The results illustrate the sensitivity of the algorithm

to measurement noise and its performance in classical compressive sampling test setting, where the number

of basis functions L exceeds the number of measurements samples M . In these investigations the true

number of non-zero components in α is set to K = 10.

In Figs. 6(a) and 6(c) the performance of the algorithm is evaluated versus the SNR with M = 100 and

L = 200, which yields an overcompleteness ratio of L/M = 2. Notice that in a very high SNR regime,

i.e., when the observation is practically noise free, the performance of the compared schemes is almost

indistinguishable. However, when the noise cannot be neglected, VMP-3L(ε = 0) clearly outperforms the

other three schemes in terms of the estimate K̂, followed closely by VMP-2L(ε = 0); VMP-2L(ε = 3/2)

clearly performs worse than the other schemes both in terms of the achieved sparseness and MSE. Observe

that when ε = 3/2, which is equivalent to the `1-norm parameter constraint, both G-Ga and G-Ga-Ga

models induce a heavily overestimation of K; in contrast, setting ε = 0 leads to much sparser solutions.

Also, notice that for a fixed ε, the G-Ga-Ga model generally leads to an estimator that produces sparser
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Fig. 7. Performance of the VMP algorithm: (a)-(c) MSE performance and (d)-(f) estimated number of non-zero components

K̂ versus the true number of non-zero components K. The SNR is set to 10 dB in (a) and (d), 30 dB in (b) and (e), and 60

dB in (c) and (f).

results as compared to that of the G-Ga model.

In Figs. 6(b) and 6(d) the performance of the algorithm is compared as a function of the overcom-

pleteness ratio L/M for an SNR level fixed at 15 dB. Here again VMP-3L(ε = 0) is a clear winner. We

also notice that for a fixed ε the G-Ga-Ga model induces better performance over the G-Ga model, and

the case ε = 0 outperforms the schemes realizing the `1-norm parameter constraints with ε = 3/2.

Next we evaluate the performance of the schemes as a function of the number of non-zero components

K in α. To this end we set M = 100, L = 200 and vary K from 10 to M . The MSE and the estimate

K̂ are compared for SNR fixed at 10 dB, 30 dB, and 60 dB. The corresponding results are shown

in Fig. 7. In low SNR regime (∼ 10 dB) VMP-2L(ε = 0), VMP-3L(ε = 3/2), and VMP-3L(ε = 0)

exhibit an almost identical MSE performance, with VMP-2L(ε = 3/2) performing worse only for low

K values. However, K̂ does vary for these schemes. For ε = 3/2 the estimate K̂ is almost independent

of the true number of non-zero components K. However, when ε = 0, VMP-3L(ε = 0) underestimates

K, performing best only if K < 20; in contrast VMP-2L(ε = 0) exhibits acceptable performance for

K < 40. As the SNR increases, the performance of all schemes improves, yet the MSE curves begin

to exhibit an interesting thresholding effect, which gives the highest K value for which the algorithm

is still able to recover the true number of non-zero components. Here, VMP-2L(ε = 0) performs the

best, exhibiting the thresholding behavior at K ≈ 60 or even K ≈ 70 as the SNR grows to 60 dB. It
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is followed by VMP-3L(ε = 0), exhibiting the thresholding effect already at K ≈ 30 for both 30 dB

and 60 dB SNR. However, the performance of both schemes with ε = 0 significantly degrades when K

increases beyond the corresponding sparsity threshold levels, i.e., when the signal becomes less sparse.

Specifically, the number of non-zero components in α is underestimated, leading to an abrupt increase in

the MSE of the estimates. The VMP schemes with ε = 3/2 become effective only when the SNR level

becomes very high, with VMP-3L(ε = 3/2) inducing superior performance than VMP-2L(ε = 3/2).

In what follows we compare the performance of VMP-2L(ε = 0) and VMP-3L(ε = 0) with several

other sparse estimation algorithms.

B. Comparison with Existing Sparse Methods

In the following, we compare VMP-2L(ε = 0) and VMP-3L(ε = 0) to the ARD formulation of the

RVM [12], [13], the sparse reconstruction by separable approximation (SpaRSA) algorithm [26],7 and

a re-weighted version of SpaRSA. The SpaRSA algorithm is a proximal gradient method for solving the

LASSO cost function. We can easily extend the framework of [26] to solve the weighted LASSO cost

function:

ẑ = argmin
z∈CL

{
1

2
‖y −HB−1z‖22 + κ‖z‖1

}

, (39)

where α = B−1z and B , diag{β}. The components of β , [β1, . . . , βL]
T are updated according to

(20) with ς = 10−3 a total of 3 times. Further in the text we will refer to this algorithm as Reweighted

SpaRSA. Note that the choice of κ has a crucial impact on the performance of the resulting inference.

For large κ the algorithm produces very sparse estimates; however, the MSE performance in this case

might significantly degrade. In our implementation of this estimation scheme we select κ = 0.2 for

SpaRSA and κ = 0.05 for Reweighted SpaRSA. The latter values were empirically found to balance

well the achieved signal sparsity with the MSE. As already mentioned, VMP-3L, in contrast, provides

the necessary mechanism to set this regularization parameter automatically.

In Fig. 8 the performance of the compared schemes is depicted for K = 10. In Figs. 8(a), 8(c) the

dependency of the estimates’ MSE on the SNR for the overcompleteness ratio L/M = 2 with M = 100

is visualized. Observe that VMP-2L(ε = 0) and VMP-3L(ε = 0) achieve lower MSE in the SNR range

up to 60 dB as compared to the other schemes. Furthermore, in this SNR range they also produce

sparser estimates. However, Reweighted SpaRSA “catches” the VMP curves already at 30 dB, slightly

7The software is available on-line at http://www.lx.it.pt/~mtf/SpaRSA/
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Fig. 8. Performance comparisons of VMP-2L(ε = 0) and VMP-3L(ε = 0) with ARD RVM, SparseRSA and Reweighted

SparseRSA algorithms: (a,b) MSE versus (a) SNR and (b) overcompleteness ratio L/M with M = 100. (c,d) Estimated number

of non-zero components K̂ versus (c) SNR and (d) overcompleteness ratio L/M (M=100) at 15 dB SNR. The gray horizontal

line indicates the true number of non-zero components in α.

outperforming VMP-2L(ε = 0) in terms of the estimated number of non-zero components. A similar trend

is observed when the algorithm performance is compared as a function of the overcompleteness ratio L/M

in Figs. 8(b) and 8(d). Although the G-Ga and G-Ga-Ga models with ε = 0 lead to estimators with better

performance than the other schemes, the performance of VMP-2L(ε = 0) degrades as the ratio L/M

increases, while VMP-3L(ε = 0) performs well almost independently of the actual overcompleteness

ratio.

Now we test the performance of the algorithms versus K with L/M = 2 and M = 100. The

corresponding results are shown in Fig. 9 for the SNR level fixed at 10 dB, 30 dB, and 60 dB. Interestingly,

a similar thresholding behavior is observed here also for ARD RVM and both SparseRSA schemes. The

VMP schemes perform better in low (∼ 10 dB) and moderate (∼ 30 dB) SNR regimes. In high SNR

regime ARD RVM performs almost as well as VMP-2L(ε = 0), yet it significantly overestimates K

for K > 70. Reweighted SparseRSA also performs quite well in the high SNR regime, for K < 50,

overestimating K as K grows.
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Fig. 9. Performance comparisons of VMP-2L(ε = 0) and VMP-3L(ε = 0) with ARD RVM, SparseRSA and Reweighted

SparseRSA algorithms: (a)-(c) MSE performance and (d)-(f) estimated number of non-zero components K̂ versus the true

number of non-zero components K. The SNR is set to 10 dB in (a) and (d), 30 dB in (b) and (e), and 60 dB in (c) and (f).

VI. CONCLUSION

In this paper a unifying sparse Bayesian formalism with hierarchical sparsity prior modeling was

proposed. The presented methodology generalizes the sparse modeling of complex- as well as real-valued

systems. Taking as a starting point the hierarchical structure for modeling the `1 parameter constraint,

originally proposed by M. Figueredo, we extend this model to the complex domain, which leads to a

parametric family of sparsity-inducing hierarchical priors.

The new approach uses a product of zero-mean Gaussian priors defined for each element of the

parameter vector α, with the variance of each prior following a gamma distribution characterized by a

shape parameter ε and a component specific scale parameter ηl. This model we termed the Gaussian-

gamma prior model. The choice ε = 3/2 in case of complex-valued models and ε = 1 in case of

real-valued models corresponds to the Bayesian hierarchical modeling of the `1-norm constraint in the

objective function. Naturally, other values of ε ≥ 0 can be utilized. This additional degree of freedom in

controlling the sparsity properties with ε leads to priors with strong sparsity properties. More specifically,

it was shown that the case ε = 0 encourages a sparser solution than the `1-norm constraint. Furthermore,

varying the parameter ε of the Gaussian-gamma model leads to estimators of α that approximate a

well-known soft-thresholding rule.
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We also considered a further extension of the Gaussian-gamma prior model by modeling the hyperpa-

rameters ηl as random variables with a gamma prior pdf. The new model – the Gaussian-gamma-gamma

prior model – also generalizes complex- as well as real-valued scenarios and allows for an automatic

selection of the parameter ηl. Similarly to the Gaussian-gamma model, the three-layer Gaussian-gamma-

gamma prior also leads to a family of parametric priors with different sparsity-inducing properties.

However, varying the free parameters of the Gaussian-gamma-gamma model leads to estimators of α

that approximate a hard-thresholding rule.

Finally, we proposed a variational message passing (VMP) algorithm for the estimation of the model

parameters. The proposed VMP algorithm effectively exploits the probabilistic structure of the inference

problem. It was shown that in general the case ε = 0 outperforms the `1-norm constraint both in terms of

the sparsity as well as in the achieved MSE. The proposed extension of the Bayesian hierarchical model

for sparsity constraint is a very powerful, yet analytically tractable and simple mechanism for imple-

menting sparse estimators. Our numerical results show that we obtained a very significant performance

improvement over existing sparse methods when testing in low and moderate SNR regimes, in which

state-of-art estimators failed to produce sparse solutions.
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Abstract—In this contribution, a multi-user receiver for M-
QAM MIMO-OFDM operating in time-varying and frequency-
selective channels is derived. The proposed architecture jointly
performs semi-blind estimation of the channel weights and noise
inverse variance, serial interference cancellation and decoding in
an iterative manner. The scheme relies on a variational message-
passing approach, which enables a joint design of all these
functionalities or blocks but the last one. Decoding is performed
using the sum-product algorithm. This is in contrast to nowadays
proposed approaches in which all these blocks are designed and
optimized individually. Simulation results show that the proposed
receiver outperforms in coded bit-error-rate a state-of-the-art
iterative receiver of same complexity, in which all blocks are
designed independently. Joint block design and, as a result, the
fact that the uncertainty in the channel estimation is accounted
for in the proposed receiver explain this better performance.

I. INTRODUCTION

During recent years, algorithms based on iterative informa-
tion processing or “turbo” techniques have become widespread
in wireless receiver design [1]–[3]. The success of these
algorithms can be explained by their remarkable properties:
high performance at tractable complexity and flexibility in
their design. An emblematic example is turbo-codes, which,
when associated with turbo-decoding, allow for transmission
close to capacity at tractable complexity [1].

In this paper, we focus on a specific application of iterative
information processing, namely to design efficient, feasible
algorithms for channel estimation (i.e. estimation of both
the channel transfer function and the channel inverse noise
variance), interference cancellation, and decoding in MIMO-
OFDM systems. Some related work is already available in
the literature. Worth noticing is the iterative algorithm for
detection and interference cancellation [4] applied to multiuser
CDMA. This algorithm is extended for various transmission
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Fig. 1. Baseband signal model of the considered MIMO-OFDM system.

schemes in [5]–[7] to include estimation of the channel re-
sponse into the iterative process. We coin this receiver the
LMMSE-based receiver, according to the dominant structure
implemented in its constituent blocks. An essential feature of
this receiver is that its constituent blocks are designed and
optimized individually. These blocks are connected afterwards
to form the iterative structure.

In this contribution, we apply variational Bayesian (VB)
inference [8] and one of its applications, namely the variational
Bayesian expectation maximization (VBEM) algorithm [9] to
perform channel weight and noise inverse variance estimation
as well as serial interference cancellation in an M-QAM
MIMO-OFDM system operating in time-variant frequency-
selective channels. Decoding is performed using the sum-
product (SP) algorithm [3]. The VBEM algorithm has already
been applied in [10] for GSM channel estimation and detec-
tion. In [11] it is combined with the sum-product algorithm
for the design of a multiuser CDMA receiver. Further related
work is found in [12]–[15]. In our paper, we apply the VBEM
scheme in [11] to MIMO-OFDM and reformulate it as a
variational message-passing (VMP) algorithm on factor graphs
[16].

The proposed VMP receiver and the LMMSE-based receiver
from [5]–[7] share similar features in their respective struc-
tures. Thus, we find it useful to also include a comparison of
the two schemes. A crucial difference is that the estimation
of the noise and residual interference power in the VMP
receiver accounts for the uncertainty in the channel coefficient
estimates, an effect not considered in the LMMSE-based
receiver. This, combined with the joint design of all receiver
blocks but decoding, yields a superior performance of the
VMP receiver, as our simulation results demonstrate.

The notational convention for the rest of the paper is as
follows: the superscripts (·)T and (·)H denote transposition
and Hermitian transposition respectively. The symbol · ∝ ·
denotes proportionality. The trace operator is designated as
tr(·). The expectation operation with respect to a function q(x)
is represented by 〈·〉q(x). The newest estimate of the mean or
covariance of a variable is denoted by ·̂. The operators diag(·)
and Diag(·) denote the vectorized diagonal of a matrix and the
diagonalized matrix of a vector respectively. For matrices A

and B, the Kronecker and Hadamard products are represented
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by A⊗B and A�B respectively (for the Hadamard product A
and B are assumed to have the same dimension). The identity
matrix of dimension K is designated as IK and 1G represents
the all-one matrix of dimension G × G. We employ 0K and
[1 . . . 1]K to designate respectively the all-zero column-vector
and the all-one row-vector of length K.

II. SIGNAL MODEL

We consider the LTE-like MIMO-OFDM system depicted in
Fig. 1 in which we have K transmitters, indexed by k, and G
receivers, indexed by g. In the kth transmitter, denoted by Txk,
the bit-stream bk is encoded, interleaved and modulated into
data symbols, which are then multiplexed with pilot symbols
to allow for channel estimation in the receiver. Pilot and data
symbols are arranged in an OFDM frame of L OFDM symbols
consisting of N subcarriers each. The OFDM frame of Txk

is represented by xk � [xk11 . . . xknl . . . xkNL]
T ∈ Xk, where

l indexes the OFDM symbols and n indexes the subcarrier
number. The set Xk of legal M-ary sequences of Txk is
determined by the coding and modulation scheme and the
multiplexing scheme of data and pilot symbols.

The OFDM frames are transmitted across a time-variant
frequency-selective channel. The samples of the time-
frequency response of the sub-channel from transmit antenna
k to receive antenna g are concatenated in the channel weight
vector agk � [agk11 . . . agk1L . . . agknl . . . agkNL]

T. Assuming
that inter-symbol and inter-subcarrier interferences are negli-
gible, the received signals at all G antenna ports are given in
vector notation by

y =

K∑

k=1

Akxk + w (1)

= Xa + w (2)

= Ax + w. (3)

The vector y is the concatenation of the output vectors of
all receive antennas, y � [yT

1
. . .yT

g . . .yT
G]T with yg �

[yg11 . . . ygnl . . . ygNL]T denoting the output of receive an-
tenna g. The channel matrix for transmitter k is defined
as Ak � Diag(ak)([1 . . . 1]TG ⊗ IN ). The noise vector w

is white and circularly symmetric complex Gaussian: w ∼
CN (0GNL, σ2

wIGNL), with σ2

w denoting the noise variance.
We define the precision parameter λ � σ−2

w . The matrix
X is defined as X � IG ⊗ (([1 . . . 1]K ⊗ IN )Diag(x))
and a � [aT

11
. . .aT

gk . . .aT
GK ]T. The matrix A � (IG ⊗

([1 . . . 1]K ⊗ IN ))Diag(a)(([1 . . . 1]TG ⊗ IK) ⊗ IN ) is the
MIMO channel matrix. The vector x � [xT

1
. . .xT

k . . .xT
K ]T

contains the concatenated OFDM codewords from all transmit
antennas. The receiver outputs an estimate b̂k of the bit-stream
for any k.

III. GRAPHICAL REPRESENTATION

In this section, we present a graphical representation of the
signal model introduced in the previous section. This graphical

SP regionVMP region
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pλ

λ

bk
pbk

xk

y

Fig. 2. Factor-graph [3] of the signal model in Section II. The parameter
K indicates that the corresponding block is repeated K times, one for each
transmitter. Notice that the left region is equivalent to the Bayesian network
representation from [17].

representation will be used to derive the message-passing
algorithm in Section IV. Let

Φ � {y,a, λ,x1, . . .xK ,b1, . . .bK} (4)

denote the set of all (observed and unobserved) variables in
(1). Based on the assumptions made in Section II, the joint
probability density function (pdf) of Φ factorizes as

pΦ(Φ) = py(y|a, λ,x1, . . .xK)pa(a)pλ(λ)
∏

k

pxk
(xk|bk)pbk

(bk). (5)

The constraints imposed by coding, modulation and multi-
plexing of the deterministic pilot symbols are included in
the factor pxk

for transmitter k. A straightforward graphical
representation of this factorization is the Tanner factor-graph
[3] depicted in Fig. 2. Factors are represented as squares,
variables as circles. An edge between a variable node and
a factor node indicates that the variable is an argument of the
factor.

Based on this graphical representation of the signal model,
we employ iterative algorithms to estimate the joint pdf pΦ.
We split the graph into two regions as depicted in Fig. 2. In the
right-hand region, we apply the SP algorithm [3] to compute
the marginals pxk

and pbk
. In the left-hand region, we apply

the VMP algorithm [16] to estimate pa and pλ. The VMP
algorithm is used to reformulate the VB inference method
proposed in [11] in terms of messages.

The motivation for splitting the Tanner graph in this way
and applying two different message-passing methods is as
follows. The SP algorithm is a well-established algorithm for
computing the marginal probability mass functions pxk

and
pbk

in known channel conditions. Direct computation of the
channel marginals pa and pλ by means of the SP algorithm
is, however, computationally infeasible. In this case, one has
to rely on techniques for approximating these marginals, e.g.
particle filters or the EM algorithm [18]. Here, we propose
another avenue and compute these marginals with the VMP
algorithm. We define the set of unknown variables in the VMP
region as ΦVMP � {a, λ,x1, . . .xK} ⊆ Φ.
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Variational Message-Passing (VMP)

We consider an arbitrary factor-graph. The message from
factor node f to a variable node φ in the set Nf of
neighbouring nodes of f is

mf→φ � exp〈ln f〉mφ′→f∀φ′∈Nf\φ. (6)

The message from variable node φ to any factor node f
in the set Nφ of factor nodes neighbouring φ is

mφ→f �
∏

f ′∈Nφ

mf ′→φ. (7)

The estimated auxiliary function of φ is

bφ ∝ mφ→f . (8)

IV. VARIATIONAL MESSAGE-PASSING

In this section, we apply the VMP algorithm [11], [17] to
the left-hand region in the factor-graph in Fig. 2, see [16] and
references therein for variational inference on factor-graphs.
The message-passing rules are summarized in (6)-(8). Their
derivations are sketched in App. A.

The VMP algorithm approximates the joint pdf
pΦVMP,y(ΦVMP,y) = py(y|a, λ,x1, . . .xK)pa(a)pλ(λ)
∏

k pxk
(xk) with an auxiliary function bΦVMP(ΦVMP) in

such a way that the KL divergence from bΦVMP(ΦVMP)
to pΦVMP,y(ΦVMP,y) is minimized [17]. We constrain
the auxiliary function to factorize according to
bΦVMP(ΦVMP) = ba(a)bλ(λ)bx1(x1) . . . bxK

(xK).
The VMP algorithm implements sequential message

updates to update the factors in bΦVMP(ΦVMP). Updating
ba(a), bλ(λ), and bxk

(xk) corresponds to estimating the
channel weights, estimating the precision parameter, i.e. the
channel inverse noise variance, and interference cancellation,
respectively.

A. Estimation of the Channel Weights

In this subsection, we derive the messages to and from the
variable node a. These messages are used to update ba by
means of (8). The message to node a from py is obtained
from (6):

mpy→a = exp
(〈ln py(y|a, λ,x)〉mλ→py

∏

k mxk→py

)
. (16)

Solving the expectation yields

mpy→a ∝ pCN (λ̂VMPĈpy→aX̂
Hy, Ĉpy→a). (17)

Here, pCN (µ,C) is a multivariate complex Gaussian pdf with
mean vector µ and covariance matrix C, and Ĉpy→a �
(λ̂VMPX̂HX̂ + λ̂VMP(IG ⊗ Ĉx))−1. The matrix Ĉx is the
block-diagonal concatenation of the estimates Ĉxk

of the
covariance matrices of xk, k = 1 . . . K. Both Ĉxk

and the
estimate λ̂VMP of the precision parameter are defined later in
this section. We impose the prior pa to belong to the family
of conjugate pdfs of a for py. This choice guarantees that the
auxiliary pdf ba is also in this family. From (16) the conjugate

family of pdfs of a for py is the Gaussian family. Thus, from
(6)

mpa→a = pCN (0GKNL,Ca), (18)

where Ca is the prior channel covariance matrix. Inserting
(17) and (18) in (7) yields

ma→py ∝ pCN (â, Ĉa) = ba (19)

with â = λ̂VMPĈaX̂
Hy and Ĉa = (C−1

a + Ĉ−1

py→a)
−1. As

the Gaussian pdf is fully defined by these two moments – its
natural statistics – it is enough to pass them to py.

B. Estimation of the Precision Parameter

In this subsection, we define the messages to and from
variable node λ. The auxiliary function bλ is then updated
by plugging these messages in (8). The message from py to
λ reads from (6)

mpy→λ = exp
(〈ln py(y|a, λ,x)〉ma→py

∏

k mxk→py

)
. (20)

Evaluating the expectation under the assumption that the
messages ma→py and mxk→py , k = 1 . . . K, are Gaussian
densities [11] yields

mpy→λ ∝ pCW1

(
Ŵ−1, GNL + 1

)
. (21)

In this expression, pCWF
(M−1, d) is a complex Wishart pdf

defined by three parameters: the dimension F , the degree
of freedom d, and a matrix M of dimension F × F [19].
Here, F = 1, d = GNL + 1, and M is a scalar given as
Ŵ � tr((y− Âx̂)(y− Âx̂)H + X̂ĈaX̂

H +
∑

k ÂkĈxk
ÂH

k +
∑

k(1G⊗Ĉxk
)�Diag(diag(Ĉak

))). The estimate Ĉak
of the

auto-covariance matrix of ak can be obtained from Ĉa. The
estimate Ĉxk

of the covariance matrix of xk is defined later
in this section.

We select pλ to be a conjugate pdf of λ, which is a complex
Wishart pdf of dimension one [20, Sec. IVb]. From (6)

mpλ→λ = pCW1

(
M−1

pr
, dpr

)
(22)

with given parameters Mpr and dpr. By inserting (21) and
(22) into the message-passing rule (7), we obtain the complex
Wishart pdf

mλ→py ∝ pCW1

(
(Ŵ + Mpr)

−1, dpr + GNL
)

= bλ. (23)

It is enough to pass the first moment λ̂VMP =
(dpr + GNL) (Ŵ + Mpr)

−1 [20, Eq. (22)] of this pdf, since
the other message updates only depend on this value. As we
have no prior information on λ, we select pλ to be uniform
over the range of λ. For this improper prior, we have Mpr = 0
and dpr = 0 [20].

C. MIMO Decoding

To update bxk
, we compute the messages to and from the

variable node xk. From (6), the message from node py to
variable node xk is

mpy→xk
=

exp
(〈ln py(y|a, λ,x)〉ma→pymλ→py

∏

k′ �=k mx
k′→py

)
. (24)
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Channel Estimation

VMP receiver:

â =
(

C−1
a + λ̂VMPX̂HX̂ + λ̂VMP(IG ⊗ Ĉx)

)−1
λ̂VMPX̂Hy (9)

LMMSE-based receiver:

â =
(

C−1
a + X̂HΛ̂

chan
LMMSEX̂

)−1
X̂HΛ̂

chan
LMMSEy (10)

MIMO Detection/Interference Cancellation

VMP receiver:

x̂k =

(

λ̂VMPÂH
kÂk + λ̂VMP

∑

g′

∑

g

Diag(diag(Ĉakgakg′ ))

)−1

λ̂VMPÂH
k

(

y −
∑

k′ �=k

Âk′ x̂k′

)

(11)

LMMSE-based receiver:

x̂k =
(

C−1
xk

+ ÂH
kΛ̂

det
LMMSEÂk

)−1
ÂH

kΛ̂
det
LMMSE

(

y −
∑

k′ �=k

Âk′ x̂k′

)

(12)

Estimation of the Precision Matrix

VMP receiver: Λ̂VMP = λ̂VMPIGNL with

λ̂VMP =

(
tr
(
(y−Âx̂)(y−Âx̂)H+X̂ĈaX̂H+

∑

k ÂkĈxk
ÂH

k+
∑

k(1G⊗Ĉxk
)�Diag(diag(Ĉak

))
)

GNL

)−1

(13)

LMMSE-based receiver: σ2
a is the average power of the channel

Λ̂
chan
LMMSE =

((
tr
((

y−Âx̂
)(

y−Âx̂
)H)

GNL

)

IGNL + σ2
aIG ⊗

∑

k

Ĉxk

)−1

(14)

Λ̂
det
LMMSE =

((
tr
((

y−Âx̂
)(

y−Âx̂
)H)

GNL

)

IGNL +
∑

k′ �=k

Âk′Ĉxk′ Â
H
k′

)−1

(15)

Fig. 3. Channel estimation, MIMO detection/interference cancellation and the precision matrix estimation in the VMP and LMMSE-based receiver.

Solving the expectation, yields

mpy→xk
∝ pCN (x̂k, Ĉxk

) (25)

with mean vector x̂k = λ̂VMPĈxk
ÂH

k

(
y − ∑

k′ �=k Âk′ x̂k′
)

and covariance matrix Ĉxk
= (λ̂VMPÂH

k Âk + λ̂VMP∑

g′
∑

g diag(Ĉakgakg′ ))
−1. The estimate Ĉakgakg′ of the

cross-covariance matrix of the channel vectors akg and akg′

can be obtained from Ĉa.
Demodulation and decoding are performed in the right

region of the graph in Fig. 2 using the SP algorithm. The
estimated mean of a symbol xknl in xk is computed to be
x̂knl =

∑

x∈M xP (xknl = x|x̂k), where P (xknl = x|x̂k) =
∑

xk∈Xk,xknl=x mpy→xk
(xk) with M denoting the set of

constellation points of the selected M-QAM modulation. For
convolutional codes, these marginals can be obtained with the
BCJR algorithm. Likewise, the estimated variance of xknl is
σ̂2

xknl
=

∑

x∈M x2P (xknl = x|x̂k) − x̂2

knl. Any two distinct
symbols are assumed to be uncorrelated. As a result, the
estimate of the covariance matrix of xk after decoding reads
Ĉxk

= Diag(σ̂2

xk11
, . . . σ̂2

xkNL
).

We approximate the message from xk to py by a Gaussian
pdf. Notice that the Gaussian family is the conjugate family of
xk for py. With this approximation and from (25) we obtain

mxk→py ∝ pCN (x̂k, Ĉxk
) = bxk

. (26)

We only pass the natural statistics x̂k, Ĉxk
to py. From (8),

the message (26) represents the estimated posterior pdf of xk.

V. COMPARISON WITH THE LMMSE-BASED RECEIVER

In this section, we compare the VMP receiver derived in the
previous section to a state-of-the-art iterative receiver proposed
in [5], further developed for detection in multiuser CDMA
[6], and applied to MIMO-OFDM systems in [7]. We refer
to this receiver as the LMMSE-based receiver. Due to lack
of space, the derivation of the LMMSE-based receiver is not
included in this work, but the expressions of the different
component blocks are summarized in Fig. 3 together with the
corresponding expressions obtained for the VMP receiver.

The conceptual difference between the two schemes is
that in the LMMSE-based receiver the different constituent
blocks are designed independently, while in the VMP receiver
the blocks corresponding to factors in the VMP region are
designed jointly, by minimizing a global cost function, i.e. a
KL divergence, in this region.

By inspecting the expressions in Fig. 3 we observe that
the LMMSE-based receiver and the VMP receiver share some
structural properties. For instance, from (9) and (10) it is clear
that both algorithms use an LMMSE-like channel estimator,
which mainly depends on the channel prior covariance, es-
timates of the transmitted symbols and an estimate of the
precision matrix, namely λ̂VMPI in the VMP receiver and

Λ̂
chan

LMMSE
in the LMMSE-based receiver. Similarly, the detec-

tion part of both receivers consists of interference cancellation
followed by LMMSE filtering of the residual interference.
However, we can highlight two critical differences between
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TABLE I
PARAMETER SETTINGS FOR THE SIMULATIONS

Cyclic prefix length 4.7 μs
Symbol duration 66.7 μs

Subcarrier spacing 15 kHz
Pilot overhead 4.8% pilots
Pilot pattern Regular spacing/diamond, QPSK

Modulation alphabet 16-QAM
Number of information bits 660
Number of subcarriers N 75

Number of OFDM symbols L 7
Number of transmitters K 2

Number of receivers G 2
Channel interleaver block
Convolutional code (155, 117, 127)8

the two algorithms: firstly, only one scalar estimate of the
precision parameter is needed in the VMP receiver, while
the LMMSE-based receiver calculates two different precision

matrices, one for channel estimation (Λ̂
chan

LMMSE
) and one for

detection (Λ̂
det

LMMSE
); secondly, the LMMSE-based receiver

does not deal with the uncertainty in the channel weight
estimates and considers them as the true values in the detection
part, while the VMP receiver accounts for channel estimation
errors via the term Ĉa in (11) and (13).

VI. SIMULATION RESULTS

To verify the performance of the VMP receiver, we perform
Monte-Carlo simulations for an LTE-like 2×2 system with the
settings reported in Table I. We consider a pilot scheme where
all transmitters transmit pilots in the same time-frequency
resources. Realizations of the channel time-frequency response
are generated using the extended typical urban (ETU) channel
model from the 3GPP LTE standard [21], with Rayleigh-fading
channel taps, and assuming no correlation over transmit or re-
ceive antennas. Note that the channel is wide-sense-stationary
and uncorrelated-scattering (WSSUS) [22]. We compute the
prior covariance matrix Ca from the channel time-frequency
correlation function.

We test the OFDM-MIMO system with the two receivers
described in Fig. 3. Both receivers use the same initialization,
consisting of MMSE pilot-based channel estimation and joint
soft-decision maximum likelihood (ML) detection, followed
by soft-in soft-out sequential decoding. In both receivers an it-
eration consists of estimation of the channel weights, followed
by sequential detection and decoding of all K transmitted
frames, and ending with estimation of the precision parameter
or matrices.

The bit-error-rate (BER) performance of both receivers
versus the signal-to-noise ratio (Eb/N0) is illustrated in Fig. 4.
For the sake of comparison, the initialization is also de-
picted (denoted by the ‘Linear Receiver’ tag). Both receivers
perform 10 iterations. The results show that both iterative
structures significantly improve the performance of the linear
receiver, especially for Eb/N0 larger than 0 dB. Moreover,
the VMP receiver outperforms the LMMSE-based receiver in
the considered signal-to-noise range. The gain is about 0.5
dB in the operation range of the MIMO-OFDM system. The
convergence behaviour of both iterative structures is described
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Fig. 4. Coded bit-error-rate.
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Fig. 5. Frame-error-rate across iterations.

in Fig. 5, which depicts the frame-error-rate versus the number
of iterations at the receiver for three different Eb/N0 values.
Both receivers converge after approximately 5 iterations for
all operation points. Again, the VMP receiver outperforms the
LMMSE-based receiver regardless of the number of iterations.

VII. CONCLUSION

We derive a novel iterative receiver structure for M-QAM
MIMO-OFDM operating in frequency-selective time-variant
channels. The scheme performs jointly semi-blind estimation
of the channel weights and of the noise inverse variance based
on both data and pilot symbols, serial interference cancellation,
and decoding. The scheme was already proposed for CDMA
in [11]. A variational message-passing (VMP) interpretation
of it is provided here.

The VMP receiver is compared with the LMMSE-based
iterative receiver derived in [5]–[7]. Both iterative architectures
are made of the same blocks and exhibit similar complexity.
However, in the VMP receiver all blocks but decoding are
jointly optimized according to a global cost function, the KL
divergence, while in the LMMSE-based receiver all blocks
are designed independently. Furthermore, the VMP framework
yields a structure that takes into account the inaccuracy of the
channel weight estimates. This inaccuracy is neglected in the
LMMSE-based receiver.

In order to assess the effect of these structural differences,
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we evaluate the performance of both receivers in an LTE-like
scenario. The simulation results show that the VMP receiver
outperforms the LMMSE-based receiver with a signal-to-noise
ratio gain of 0.5 dB at relevant BER values.

An issue not addressed in the paper is how to combine
efficiently the VMP algorithm – used for channel weight and
noise inverse variance estimation as well as serial interference
cancellation – and the sum-product algorithm – employed
for decoding – in the receiver. A solution has been recently
proposed in [23].
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APPENDIX A
THE VARIATIONAL MESSAGE-PASSING ALGORITHM

In VB inference [11] we consider as the cost function the
KL divergence DKL(bΦ‖fΦ) �

∫
dΦ bΦ log bΦ

fΦ
, where fΦ is

a pdf of a set of variables Φ and bΦ is an auxiliary function,
which approximates fΦ. We seek an auxiliary function that
minimizes the cost function.

We reformulate the VB inference problem to message-
passing on a factor-graph [16]. We assume that fΦ factorizes
according to fΦ =

∏

a fa(Nfa
), where Nfa

⊆ Φ is the set of
neighbouring variables of fa. We select an auxiliary function
bΦ, which factorizes according to bΦ =

∏

φ∈Φ bφ. As shown
in [11], the factor bφ of bΦ which minimizes DKL(bΦ‖fΦ)
with all other factors bφ′ , ∀φ′ ∈ Φ\φ fixed is

bφ ∝ exp〈
∑

fa∈Nφ

ln fa〉bφ′∀φ′∈Nfa\φ (27)

∝
∏

fa∈Nφ

exp〈ln fa〉bφ′∀φ′∈Nfa\φ, (28)

where Nφ is the set of neighbouring factors of φ. With the
definitions in (6) and (7) we can recast (28) as

bφ ∝
∏

f ′
a∈Nφ

mf ′
a→φ = mφ→fa

(29)

for any fa ∈ Nφ, and we have

bΦ =
∏

φ∈Φ

bφ ∝
∏

φ∈Φ

∏

f ′
a∈Nφ

mf ′
a→φ. (30)

Identity (28) can be used to design an iterative algorithm which
at each iteration updates a given factor bφ of bΦ while keeping
the other factors fixed. The iterative algorithm converges in the
sense of the KL divergence, since DKL(bΦ‖fΦ) is minimized
at each iteration. The identities in (29) provide a message-
passing interpretation of the updating steps.
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Abstract—In this paper, we present a novel iterative receiver
for MIMO-OFDM systems with synchronous interferers. The
receiver is derived based on the Kullback-Leibler divergence
minimization framework, and combines channel estimation,
interference cancellation and residual noise estimation in an
iterative manner. By using both the pilot and data symbols, the
channel estimator improves the accuracy of the estimates ineach
iteration, which leads to a more effective interference cancellation
and data detection process. A performance evaluation basedon
Monte-Carlo simulations shows that the proposed scheme can
effectively mitigate the effect of interferers, and operates very
close to the single-user performance even in severe interference
scenarios.

I. I NTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
become the selected transmission technique for several recent
wireless standards, such as the IEEE standard for local and
metropolitan area networks (better known as WiMAX) [1],
or the 3GPP UTRA Long Term Evolution (LTE) [2]. Its
ability to cope with time-dispersive channels while allowing
for receivers with low complexity, its ability to easily integrate
multiple antenna techniques and its flexibility in terms of
bandwidth usage and resource allocation are some of the
advantages that have motivated its selection.

In OFDM, the transmission bandwidth is divided into multi-
ple narrowband subcarriers. By the addition of a proper cyclic
prefix (CP), these subcarriers become fully orthogonal and
experience frequency flat fading conditions in time-invariant
channels [3]. This allows for simple equalization of the signal
at the receiver, while keeping a high spectral efficiency due
to the use of orthogonal overlapping subcarriers. In OFDM
systems with frequency re-use, however, the signal transmitted
from other cells may create co-channel interference which,if
not correctly treated, can induce a severe degradation of the
receiver performance, especially at the cell edge.

Much work has been done in interference cancellation
techniques for OFDM, as in [4]–[6]. These methods, however,
assume perfect knowledge of the channel at the receiver.
In [7], a minimum mean-squared error interference rejection

combiner (MMSE-IRC) for OFDM receivers with multiple
antennas is proposed. The combiner parameters are estimated
using a discrete-Fourier-transform-based robust MMSE instan-
taneous correlation estimator, which is therefore sensitive to
theleakage effect [8] when the channel delays are not perfectly
aligned with the receiver sampling grid.

In our latest work, we proposed an iterative pilot-based
channel estimator for OFDM systems with synchronous inter-
ferers and super-imposed pilots [9]. In this work, we propose
an iterative receiver performing channel estimation, inter-
ference cancellation and residual noise variance estimation.
Our receiver is derived by applying the Kullback-Leibler
(KL) divergence minimization (DM) principle, which was
presented in [10] for multiuser detection in a code-division
multiple access scenario. The channel estimator combines the
information available from the pilot symbols with information
from soft-decisions on the data symbols, thus outperforming
typical schemes using only the pilot symbols. Furthermore,
the channel estimation error is taken into account in the
interference cancellation and detection process by estimating
the covariance of the channel estimates and the residual noise
covariance.

The remainder of the paper is organized as follows. The sig-
nal model for our considered scenario is presented in Section
II. In Section III, the DM framework is briefly introduced, and
the proposed iterative receiver is derived. Its performance is
assessed by means of Monte-Carlo simulations in Section IV
and finally some concluding remarks are provided in Section
V.

The following notation will be used throughout the paper.
Vectors are represented by boldface lowercase letters, while
matrices are denoted as boldface uppercase letters;(·)T and
(·)H denote respectively the transpose and conjugate transpose
of a vector; tr{·} denotes the trace operation, and diag{x}
represents a diagonal matrix with the elements of vectorx;
A⊗ B denotes the Kronecker product of matricesA andB;
IN represents theN × N identity matrix; x ∝ y denotes
direct proportionality, i.e.,x = αy, and x ∝e y denotes
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Fig. 1. Block diagram of the considered system.

exponential proportionality, i.e.,exp[x] = exp[β + y], for
arbitrary constantsα andβ; finally, Eqx

{f(x)} represents the
expectation of the functionf(x) with respect to the probability
distributionqx(x) of x.

II. SIGNAL MODEL

We consider a MIMO-OFDM system withM transmit
antennas and a receiver withN receive antennas, as depicted
in Fig. 1. Transmit antennas1, . . . , Md transmit the signal
of interest, while antennasMd + 1, . . . , M are regarded as
interferers. We assume that all transmitters in the system are
perfectly synchronized in time and use the same frequency
resources. For themth transmitter, the information bitsbm(k),
k = 1, . . . , Kb,m are encoded, yielding a stream of coded bits
cm(k), k = 1, . . . , Kc,m, which is modulated onto a set of
QAM/QPSK symbols denoted byxd,m(k), k = 1, . . . , Kd.
The data symbols are then multiplexed with a sequence of
pilot symbols xp,m(k), k = 1, . . . , Kp, resulting in the
transmitted symbols sequencexm(k), k = 1, . . . , K. The
transmitted symbols are then OFDM modulated by means of
an inverse fast Fourier transform (IFFT) and the insertion of
a cyclic prefix. We assume that the sets of pilot subcarriers
P = {p1, . . . , pKp

} and data subcarriersD = {d1, . . . , dKd
}

are the same for all transmitters, and hence

xm(k) =

{
xp,m(i), k = pi

xd,m(i), k = di

. (1)

Note thatP ∪D = {1, . . . , K} andP ∩D = ∅. K denotes the
total number of subcarriers in the system, whileKp and Kd

denote the number of pilot and data subcarriers respectively.
The signal received at each of the antenna ports is OFDM

demodulated by removing the cyclic prefix and performing a
fast Fourier transform (FFT). Assuming that the channel is
static during one OFDM symbol and that the cyclic prefix
is longer than the maximum excess delay of the channel, the
signal received at thekth subcarrier of receive antennan reads

rn(k) =

M∑

m=1

hnm(k)xm(k) + wn(k) (2)

wherehnm(k) denotes the channel frequency response from
transmitterm to receive antennan at subcarrierk andwn(k)

is additive white Gaussian noise (AWGN) with varianceσ2

w
.

The received signal at all subcarriers in all receive antenna
ports can be expressed in vector-matrix notation as

r =
M∑

m=1

Hmxm + w. (3)

In the above expression,r = [rT
1
, . . . , rT

N
]T , Hm =

[diag{h1m}, . . . , diag{hNm}]T , xm = [xm(1), . . . , xm(K)]T

and w = [w1(1), . . . , w1(K), . . . , wN (1) . . . , wN (K)]T .
Furthermore, rn = [rn(1), . . . , rn(K)]T , hnm =
[hnm(1), . . . , hnm(K)]T and we also define
hm = [hT

1m
, . . . ,hT

Nm
]T .

III. PROPOSEDRECEIVER

In this section, our proposed iterative receiver with channel
estimation and interference cancellation is presented. First, the
general DM principle is briefly explained, followed by the
application to our specific scenario. Finally, some remarkson
implementation issues are given.

A. The Divergence Minimization principle

Let Φ denote a vector including as components all the un-
known parameters to be estimated andp(Φ|r) be the posterior
probability density function (pdf) ofΦ given an observation
r. The DM framework approximatesp(Φ|r) by an auxiliary
pdf q(Φ) minimizing the KL divergence [11]

D

(

q(Φ)
∣
∣
∣

∣
∣
∣p(Φ|r)

)

,
∫

dΦq(Φ) log
q(Φ)

p(Φ|r)
. (4)

In our application, we are interested in estimating the
desired transmitted signalsx1, . . . ,xMd

. To achieve this re-
liably, we need estimates of the channel transfer functions
h1, . . . ,hM , the interfering signalsxMd+1, . . . ,xM and the
inverse of the noise covariance matrixΣ−1

w
, with Σw =

E{wwH}. Therefore, the set of parameters to be estimated is
Φ = {Σ−1

w
,h1, . . . ,hM ,x1, . . . ,xM}, while the observation

vectorr is given by (3). In order to obtain a solution that can
be computed with tractable complexity, we define an auxiliary
function q(Φ) that factorizes according to

q(Φ) = q
Σ

−1
w

(Σ−1

w
)

M∏

m=1

qhm
(hm)qxm

(xm). (5)



The auxiliary function is iteratively updated by minimizing
the KL divergence in (4) with respect to one of the factors
in (5) while keeping the rest fixed. By alternatively updating
the different factors, the KL divergence is minimized and the
auxiliary distributionq(Φ) approximates the true posterior pdf
p(Φ|r). More details about the formal principles of the DM
framework can be found in [10].

In the following, the updating steps ofq(Φ) with re-
spect to the different parameters are described. The algo-
rithm assumes initial distributionsq[0]

Σ
−1
w

(Σ−1

w ), q
[0]

hm
(hm) and

q
[0]

xm(xm), where the superindex(·)[i] indicates theith updating
step.

B. Update of the channel gain distributions

When updating the channel distributionqhm
(hm) in the

(i+1)th updating step, the distributionsq[i]

Σ
−1
w

(Σ−1

w
), q

[i]

x (x) =
∏M

j=1
q
[i]

xj (xj) and q
[i]

h̄m
(h) =

∏

j 6=m
q
[i]

hj
(hj) are treated as

constants. The updated distributionq
[i+1]

hm
(hm) is obtained by

solving the minimization problem:

minimize D

(

qhm
(hm)q

[i]

h̄m
(h)q

[i]

x (x)q
[i]

Σ
−1
w

(Σ−1

w )
∣
∣
∣

∣
∣
∣p(Φ|r)

)

subject to
∫

qhm
(hm)dhm = 1

qhm
(hm) ≥ 0,

(6)
which leads to the solution

q
[i+1]

hm
(hm)∝p(hm)

· exp
[

E
q
[i]
x

{
E

q
[i]
h̄

{
E

q
[i]

Σ−1
w

{
log p(r|Φ)

}}}]

(7)

wherep(hm) denotes the prior distribution ofhm. The log-
likelihood function in (7) reads

log p(r|Φ) ∝e

log |Σ−1

w | − (r −

M∑

m=1

Hmxm)HΣ−1

w (r −

M∑

m=1

Hmxm).(8)

By assuming that the prior distribution ofhm is Gaussian
with zero mean and covariance matrixΣhm

= E
{
hmhH

m

}
, the

marginalizations in (7) lead to an updated distribution which
is also Gaussian, with pdf

q
[i+1]

hm
(hm) ∝

exp
[

− (hm − h[i+1]

m )HΣ
[i+1]

−1

hm
(hm − h[i+1]

m )
]

. (9)

The mean value is given by

h[i+1]

m
=
(
Σ−1

hm
+ X̃[i]

H

m
(Ω−1

w
)[i]X̃[i]

m
+ B[i]

H

m
(Ω−1

w
)[i]B[i]

m

)−1

· X̃[i]
H

m
(Ω−1

w
)[i](r −

∑

j 6=m

H
[i]

j
x̃

[i]

j
) (10)

and the covariance is

Σ
[i+1]

hm
=

(
Σ−1

hm
+ X̃[i]

H

m (Ω−1

w )[i]X̃[i]

m + B[i]
H

m (Ω−1

w )[i]B[i]

m

)−1

. (11)

In the above equations,̃x[i]

j
= E

q
[i]
xj

{xj}, X̃
[i]

j
= IM ⊗

diag{x̃[i]

j
}, and B

[i]

j
= IM ⊗ diag{σ[i]

xj(1)
, . . . , σ

[i]

xj(K)
} with

σ
[i]

2

xj(k)
= E

q
[i]
xj

{|xj(k)|2}− |x̃
[i]

j
(k)|2. Details on(Ω−1

w
)[i] will

be given in the following subsection.

C. Update of the inverse noise covariance distribution

For the update of the inverse noise covariance distri-
bution q

Σ
−1
w

(Σ−1

w
), the distributionsq

[i]

x (x) and q
[i]

h
(h) =

∏
M

j=1
q
[i]

hj
(hj) are kept fixed, leading to the following min-

imization problem:

minimize D

(

q
Σ

−1
w

(Σ−1

w )q
[i]

h
(h)q

[i]

x (x)
∣
∣
∣

∣
∣
∣p(Φ|r)

)

subject to
∫

q
Σ

−1
w

(Σ−1

w )dΣ−1

w = 1

q
Σ

−1
w

(Σ−1

w
) ≥ 0.

(12)

Analogously to the channel gain update, the solution of the
minimization reads

q
[i+1]

Σ
−1
w

(Σ−1

w ) ∝ p(Σ−1

w ) exp
[

E
q
[i]
h

{
E

q
[i]
x

{
log p(r|Φ)

}}]

.

(13)

After performing the marginalizations with respect to the
channel distribution and the transmitted symbols distribution,
and assumingp(Σ−1

w ) is a uniform distribution, we obtain an
updated distribution given by

q
[i+1]

Σ
−1
w

(Σ−1

w ) ∝ |Σ−1

w | exp
[
tr{−Σ−1

w C[i]}
]

(14)

with

C[i]=(r −

M∑

j=1

X̃
[i]

j
h

[i]

j
)(r −

M∑

j=1

X̃
[i]

j
h

[i]

j
)H +

M∑

j=1

B
[i]

j
Σ

[i]

hj
B

[i]
H

j

+

M∑

j=1

B
[i]

j
h

[i]

j
h

[i]
H

j
B

[i]
H

j
+

M∑

j=1

X̃
[i]

j
Σ

[i]

hj
X̃

[i]
H

j
. (15)

The above expression has the form of a complex Wishart
distribution [12]. Specifically, the matrixΣ−1

w
is Wishart

distributed asΣ−1

w ∼ WNK(NK + 2,C[i]
−1

), and has mean
value

(Ω[i+1]

w )−1 , E
q
[i+1]

Σ−1
w

{

Σ−1

w

}

=

(
C[i]

NK + 2

)−1

. (16)

In order to obtain simpler expressions, it can be further
assumed thatΣ−1

w represents the covariance matrix of a
white Gaussian process withΣ−1

w
= σ−2

w
INK . Under these

conditions, the corresponding distribution of the reciprocal
variance becomes

q
σ
−2
w

(σ−2

w ) = (σ−2

w )NK exp
[
− σ−2

w tr{C[i]}
]

(17)

which is chi-square distributed [12], with mean value

(σ−2

w
)[i+1] , Eq

σ
−2[i+1]
w

{

σ−2

w

}

=

(
tr{C[i]}

NK + 2

)−1

. (18)



D. Update of the transmitted symbol distributions

Analogously to the other updates, when updating the distri-
bution qxm

(xm), the distributionsq[i]

x̄m
(x) =

∏

j 6=m
q
[i]

xj(xj),

q
[i]

h
(h) =

∏M

j=1
q
[i]

hj
(hj) and q

[i]

Σ
−1
w

(Σ−1

w
) are kept fixed, and

the update is achieved by solving

minimize D

(

qxm
(xm)q

[i]

x̄m
(x)q

[i]

h
(h)q

[i]

Σ
−1
w

(Σ−1

w
)
∣
∣
∣

∣
∣
∣p(Φ|r)

)

subject to
∑

∀xm

qxm
(xm) = 1

qxm
(xm) ≥ 0. (19)

The solution to (19) reads

q[i+1]

xm
(xm)∝p(xm)

· exp
[

E
q
[i]
h

{
E

q
[i]
x̄

{
E

q
[i]

Σ−1
w

{
log p(r|Φ)

}}}]

.(20)

Since no prior information on the transmitted data symbols is
available (we assume that the receiver has perfect information
on the pilot symbols), a uniform prior distribution is assumed,
and p(xm) can be removed from (20). After marginalizing
with respect to the fixed distributions, the updating step is
given by

q[i+1]

xm
(xm) ∝ exp

[

2σ−2
[i]

w

K∑

k=1

Re
{
x∗

m(k)

N∑

n=1

h[i]
∗

nmγnm(k)[i]
}]

(21)

with

γnm(k)[i] = rnm(k) −
∑

j 6=m

h
[i]

nj
(k)x̃

[i]

j
(k)

−
1

2

(

h[i]

nm
(k)xm(k) +

xm(k)

h
[i]∗

nm(k)
Σ

[i]

hnm
[k, k]

)

, (22)

where we have assumed thatΣ−1

w = σ−2

w INK , as in (18).
As it can be observed in the above expressions, the updated
distribution is obtained by cancelling the signal contribution
from other transmitters. Also, the covariance of the channel
estimates,Σ[i]

hnm
, is taken into account. From the updated

distribution, the values of̃x[i+1]

m and B
[i+1]

m are calculated
to be used in the updates of the inverse noise covariance
and the channel gain distributions. When the last iterationof
the algorithm is reached, the distributionsqxm

(xm), m =
1, . . . , Md are used to obtain soft estimates of the coded
symbols, which are fed to the channel decoder in order to
detect the information bits.

E. Implementation Issues

1) Order of the updates: While the DM framework allows
to obtain the update rules for each of the distributions min-
imizing the KL divergence with respect to the true posterior
distribution, there is so far no formal way of determining
the optimal updating sequence. Therefore, this has to be
determined by performing a performance evaluation of the
different possible updating orderings by, e.g., Monte-Carlo

simulations. In this work, we opt to evaluate the following
scheme:

1) Updateqhm
(hm), m = 1, . . . , M .

2) Updateqxm
(xm), m = 1, . . . , M .

3) Updateq
Σ

−1
w

(Σ−1

w ).

The above sequence of updates represents a full iteration ofthe
receiver. Although there is no evidence of this scheme being
optimal, simulation results shown in the next section confirm
the good performance of a receiver using this design.

2) Initialization: Although the convergence of the DM
receiver is ensured due to the minimization performed at each
update step, the receiver might converge to different stationary
points depending on the initial values used in the algorithm.
It is therefore of crucial importance to initialize the iterative
receiver properly. In this work, we choose to initialize the
channel estimates with a linear minimum mean-squared error
(LMMSE) channel estimator using only the signal received
at pilot subcarriers. The expression of the LMMSE channel
estimates for channelhm reads

h[0]

m
= Σhmhp,m

XH

p,m

(
M∑

j=1

Xp,jΣhp,j
XH

p,j
+ Σwp

)−1

rp

(23)

where Σwp
= E{wpw

H
p
}, Σhmhp,m

= E{hmhH
p,m

} and
Σhp,j

= E{hp,jh
H

p,j
}. The subindexp in matrices and vectors

indicates that only elements corresponding to the pilot sub-
carriers are taken. The initial values for the covariance ofthe
channel estimates are taken from the prior channel covariance,
i.e., Σ[0]

hmhm
= Σhmhm

.
Once an initial value for the channel estimates is available,

estimates of the transmitted symbols can be obtained. In
our proposed implementation, these are obtained using a
soft-output maximum-likelihood detector (MLD) [13]. From
the soft output detector, the initial values̃x[0]

m and B
[0]

m are
obtained form = 1 . . . , M . With these initial values, the initial
estimate of the inverse noise covariance(Ω

[0]

w )−1 is obtained
by using either (16) or (18).

IV. PERFORMANCEEVALUATION

In this section, we evaluate the performance of the proposed
channel estimator by means of Monte-Carlo simulations. In
order to do so, we define an OFDM system with parameters
inspired by the 3GPP Long Term Evolution (LTE) 5 MHz
downlink physical layer parameters [2]. The system operates
with an FFT size of 512, with 300 active subcarriers, and a
frequency spacing of 15 KHz between them. Pilot subcarriers
are transmitted in every OFDM symbol, with a frequency
spacing of 12 subcarriers (i.e. 600 KHz) between them.
The desired and interfering signals have their pilots in the
same subcarriers, and perfect synchronization between the
transmitters is assumed. Hence, pilots of all transmitted signals
overlap in frequency. The pilot sequences are made of random
independent and uniformly distributed QPSK symbols. A
convolutional code is used for channel coding, with BCJR [14]
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decoding at the receiver, and QPSK modulation is employed
for the data symbols.

We consider a scenario with two single-antenna transmitters,
one transmitting the desired signal and the other being an
interferer. The receiver has two receive antennas, and the
signal-to-interference level per receive antenna branch is 0
dB (i.e., both the desired and interfering signal are received
with the same power). The channel responses are generated
according to the extended Typical Urban channel model [15],
which consists of 9 taps and has a maximum excess delay of
5 µs. Block fading is used, i.e., the channel response is static
over the duration of an OFDM symbol, and we assume that
the cyclic prefix is long enough to cope with the inter-symbol
interference due to multipath propagation.

In Fig. 2, the bit error rate performance of our proposed re-
ceiver in the considered scenario is depicted. For comparison’s
sake, the performance of a receiver using LMMSE channel
estimation and MLD detection (also used as initialization for
the DM receiver) is shown, as well as the single-user bound
(SUB). As it can be seen, the iterative process greatly improves
the performance of the receiver with a few iterations. Afterthe
first iteration of the algorithm, the receiver shows a gain of
0.9 dB at 1% BER with respect to the initialization, which
is further improved up to a 1.7 dB gain with five iterations.
After the first few iterations the receiver converges, achieving a
performance which is only slightly more than 2 dB away from
the SUB, even in such a strong interference environment.

In Fig. 3, the performances of the DM receiver’s channel
estimator and the pilot-based LMMSE channel estimator are
compared. As the plot shows, a great improvement in the
channel estimates’ accuracy is obtained after just the first
iteration. This is due to the increase of information used in
the channel estimator: while the LMMSE only makes use of
the observations at pilot subcarriers, the DM channel estimator
combines those with the estimates at the data subcarriers
and the partial information available on the data symbols. In
subsequent iterations, the reliability of the informationon the
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Fig. 3. MSE performance of the DM receiver’s channel estimator.

data symbols is increased due to the interference cancellation
at the detector and the estimate of the noise covariance, leading
to an improvement in the channel estimates.

V. CONCLUSION

In this work we have presented a novel iterative receiver
for MIMO-OFDM systems with synchronized interferers. The
receiver, derived under the DM framework, combines channel
estimation, interference cancellation and residual noiseesti-
mation in an iterative fashion, and is guaranteed to converge
due to the formal principle under which it has been derived.
The performance has been assessed by means of Monte-Carlo
simulations, showing that our proposed scheme performs very
closely to the single-user bound, even with an interference
level as high as 0 dB. This is due, in large proportion, to the
channel estimator, which combines the information available
from the pilot symbols with the information obtained from
soft-decisions on the data symbols, allowing to drastically
reduce the channel estimates’ error.
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Abstract—In this paper, we present a novel approach for pilot-
aided channel estimation in OFDM systems with synchronous
co-channel interference. The estimator is derived based on
the Kullback-Leibler divergence minimization framework. The
obtained solution iteratively updates both the desired user’s and
the interferer’s channels, using a combination of minimum mean
squared-error filtering and interference cancellation, avoiding
the complex matrix inversions involved in pure MMSE channel
estimation approaches. Estimation of the noise variance isalso
included in the iterative algorithm, accounting for the Gaussian
noise and residual interference after each iteration. The estimates
of both channels are used at the equalizer to reject the interfer-
ing signal, thus mitigating the degradation due to co-channel
interference. Simulation results show that a receiver using the
proposed estimator performs as good as one employing a pure
MMSE estimator, and very closely to a receiver having perfect
knowledge of the channel coefficients.

I. I NTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
become the selected transmission technique for several recent
wireless standards, such as the IEEE standard for local and
metropolitan area networks (better known as WiMAX) [1],
or the 3GPP UTRA Long Term Evolution (LTE) [2]. Its
ability to cope with time-dispersive channels while allowing
for receivers with low complexity, its easy integration with
multiple antenna techniques and its flexibility in terms of
bandwidth usage and resource allocation are some of the
advantages that have motivated its selection.

In OFDM, the transmission bandwidth is divided into multi-
ple narrowband subcarriers. By the addition of a proper cyclic
prefix (CP), these subcarriers become fully orthogonal and
experience frequency flat fading conditions in time invariant
channels [3]. This allows for simple equalization of the signal
at the receiver, while keeping a high spectral efficiency due
to the use of orthogonal overlapping subcarriers. In OFDM
systems with frequency re-use, however, the signal transmitted
from other cells may create co-channel interference which,if

not correctly treated, can induce a severe degradation of the
receiver performance, especially at the cell edge.

Much work has been done in interference cancellation
techniques for OFDM, as in [4]–[6]. These methods, however,
assume perfect knowledge of the channel at the receiver.
In [7], a minimum mean-squared error interference rejection
combiner (MMSE-IRC) for OFDM receivers with multiple
antennas is proposed. The combiner parameters are estimated
using a discrete-Fourier-transform-based robust MMSE instan-
taneous correlation estimator, which is therefore sensitive to
the leakage effect [8] when the channel is not sample-spaced.

In this work, we propose a pilot-aided channel estimator
for OFDM systems with severe synchronous co-channel inter-
ference in both the data and pilot subcarriers. The estimator
is derived by applying the Kullback-Leibler (KL) divergence
minimization (DM) approach, which was presented in [9] for
multiuser detection in a code-division multiple access system.
Our proposed scheme is able to estimate the desired user’s and
the interferer’s channels based on just the signal receivedat
pilot subcarriers. The estimates are then used in a MMSE-IRC
combiner, effectively mitigating the effect of the interference.
A similar problem was studied in [10]. The solution proposed
there, however, requires a preamble in which no interference is
present at the pilot subcarriers. Our estimator, on the contrary,
can effectively separate and estimate both channels when the
pilot signals of the desired user and the interferer overlapin
frequency for every OFDM symbol.

The remainder of the paper is organized as follows. The
signal model for our considered system is presented in Sec-
tion II. In Section III, the DM framework is briefly introduced,
and the channel estimator is derived. The performance of the
estimator is assessed by means of Monte-Carlo simulations
in Section IV. Finally, some concluding remarks are given in
Section V.

The following notation will be used throughout the paper.
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Fig. 1. Block diagram of the transmitters.

Vectors are represented by boldface lowercase letters, while
matrices are denoted as boldface uppercase letters.(·)T and
(·)H denote respectively the transpose and conjugate transpose
of a vector. tr{·} denotes the trace operation, anddiag{x}
represents a diagonal matrix with the elements of vectorx.
x ∝ y denotes direct proportionality, i.e.,x = αy, andx ∝e y

denotes exponential proportionality, i.e.,exp[x] = exp[β + y],
for arbitrary constantsα andβ. Finally, Eqx

{f(x)} represents
the expectation of the functionf(x) with respect to the
probability distributionqx(x) of x.

II. SIGNAL MODEL

We consider an OFDM system with single transmit antenna
and one interferer, as depicted in Fig. 1. In the diagram, the
first transmitter represents the user of interest, while thesecond
transmitter represents a synchronized interferer transmitting
in the same time-frequency resources. For each of them, the
information bitsbm(k), m = 1, 2, k = 0, . . . , Nb−1 are coded,
yielding a stream of coded bitscm(k), k = 0, . . . , Nc − 1.
These are modulated onto a set of QAM symbolsxd,m(k),
k = 0, . . . , Nd − 1 to be mapped onto an OFDM block.
The number of subcarriers used for data transmission in
an OFDM block is Nd = Nc/M , Nc is the number of
coded bits transmitted in one OFDM block andM is the
modulation order. The data symbols are then multiplexed with
a sequence of pilot symbolsxp,m(k), k = 0, . . . , Np − 1, Np

being the number of pilot subcarriers per block. We assume
that pilot symbols are allocated to the same subcarriers at
both transmitters. The resulting sequence of symbolsxm(k),
k = 0, . . . , Nu−1 is then mapped to theNu = Nd+Np active
subcarriers of the OFDM system, and transmitted through the
wireless channel after insertion of a cyclic prefix (CP). We
assume in this work that the CP is long enough to cope
with the time dispersion in both the desired and interfering
channels.

The structure of the receiver is shown in Fig. 2. We assume
a receiver with two antenna ports. The extension to a higher
number of antennas is straightforward. After FFT and CP
removal, the received signal at thekth subcarrier of thenth

antenna port is given by:

rn(k) = x1(k)hn1(k) + x2(k)hn2(k) + wn(k), (1)
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Fig. 2. Block diagram of the receiver

wherewn(k) is additive white Gaussian noise (AWGN) with
varianceσ2

w
and hnm(k) represents the frequency-domain

channel gain from transmitterm to receive antennan at thekth

subcarrier. In (1), we assume that the channel response is static
during one OFDM block. Hence, full orthogonality between
subcarriers is achieved. The received signal at antenna port n

for all subcarriers can be re-written in matrix-vector notation
as

rn = X1hn1 + X2hn2 + wn (2)

with rn = [rn(0) · · · rn(Nu − 1)]T , hn,m =
[hnm(0) · · ·hnm(Nu − 1)]T , wn = [wn(0) · · ·wn(Nu − 1)]T

and Xm = diag{[xm(0) · · ·xm(Nu − 1)]} is a diagonal
matrix containing the transmitted symbols.

The demultiplexer following the FFT and CP removal block
separates the signal received at pilot and data subcarriers. The
pilot signals rp,n = [rp,n(0) · · · rp,n(Np − 1)]T are fed to
the respective channel estimator blocks, while the data signals
rd,n = [rd,n(0) · · · rd,n(Nd − 1)]T are sent to the equalizer.
Based on the signal received on the pilot subcarriers, the
channel estimation block (which will be explained in detail
in Section III) provides the equalizer with estimatesh̃n,m

of the channel frequency responses of both the desired and
interfering channels. Using these estimates and the signal
received at data subcarriers, the equalizer performs MMSE-
IRC filtering to recover the desired transmitted symbols as:

x̃d,1(k) = hH

d,1(k)
(
HH

d (k)Hd(k) + σ2

wI
)−1

rd(k). (3)

In the above equation,rd(k) = [rd,1(k)rd,2(k)]T , Hd(k) =
[hd,1(k)hd,2(k)] and hd,m(k) = [hd,1m(k)hd,2m(k)]T , with
hd,nm(k) being the channel coefficient for thekth data sub-
carrier from transmitterm to receive antennan, andI denotes
the 2x2 identity matrix. Finally, the coded bits of the user of
interest c̃1(k) are recovered from the equalized symbols in
the QAM detector, and are fed to the channel decoder which
yields the estimates of the information bitsb̃1(k).

III. C HANNEL ESTIMATOR

In this section, two channel estimation approaches are
presented. The first one is the linear MMSE estimator, which
will be used as a benchmark for the performance evaluation of
our estimator. Next, our proposed channel estimator, basedon
the DM framework, is introduced. The DM principle is briefly
explained, along with the application to our specific scenario.
More details about the DM framework and its relation to other
known algorithms can be found in [9].



A. MMSE Channel Estimator

The linear MMSE channel estimator aims at minimizing
the mean-squared error of the estimate. For the signal model
presented, the MMSE estimate of the channel from transmit
antenna 1 to receive antennan reads:

h̃1= argmin
h̃n1

E{(hn1 − h̃n1)
H(hn1 − h̃n1)}

= Σhn1hp,n1X
H

p,1
(Xp,1Σhp,n1X

H

p,1

+ Xp,2Σhp,n2X
H

p,2
+ Σwp

)−1rp,n (4)

whereΣwp
= E{wpw

H
p
} = σ2

w
I, Σhn1hp,n1 = E{hn1h

H
p,n1

}
and Σhp,nm

= E{hp,nmhH
p,nm

}. The estimator requires the
inversion of anNp ×Np matrix every OFDM symbol, which
is normally to complex to compute in a mobile receiver for a
system with a large number of subcarriers. In the rest of the
section, we present an iterative approach which avoids this
matrix inversion.

B. Divergence minimization

Let Φ denote a vector including as components all the un-
known parameters to be estimated andp(Φ|r) be the posterior
probability density function (pdf) ofΦ given an observation
r. The DM framework approximatesp(Φ|r) by an auxiliary
pdf q(Φ) minimizing the KL divergence [11]

D

(

q(Φ)
∣
∣
∣

∣
∣
∣p(Φ|r)

)

,
∫

dΦq(Φ) log
q(Φ)

p(Φ|r)
(5)

In order to make the mathematical problem tractable, the
auxiliary distribution functionq(Φ) is assumed to factorize
as shown below.

In our application, the parameters to estimate are the
channel responses of the desired and interfering channels as
well as the inverse of the noise covariance matrix, i.e.,Φ =
{hp,n1,hp,n2,Σ

−1

wp,n
}, where Σwp,n

= E{wp,nwH
p,n

}. The
subindexp indicates that only pilot subcarriers are taken into
account. The auxiliary pdf is assumed to factorize according
to:

q(Φ) = q(hp,n1,hp,n2,Σ
−1

wp,n
)

= qhp,n1(hp,n1)qhp,n2(hp,n2)qΣ
−1
wp,n

(Σ−1

wp,n
). (6)

The observation is the received signal at the pilot subcarriers,
i.e

r = rp,n = Xp,1hp,n1 + Xp,2hp,n2 + wp,n. (7)

The algorithm iteratively minimizes the KL divergence with
respect to one of the factors in (7), while the other factors are
kept fixed, resulting in an iterative scheme.

Note that the channel estimation process is done indepen-
dently for each of the receive antennas. In the remainder of
the section we therefore drop the receive antenna subindex
n in order to simplify the notation (e.g.hp,1 denoteshp,n1).
The algorithm is started with initial distributionsq[0]

hp,1
(hp,1),

q
[0]

hp,2
(hp,2) and q

[0]

Σ
−1
wp

(Σ−1

wp
), and these distributions are suc-

cessively updated according to the updating steps detailedin
the following two subsections.

C. Update of the channel vectors

In this subsection, the derivation of the updating step for
qhp,1(hp,1) is detailed. Due to the symmetry of the problem,
the update forqhp,2(hp,2) is analogous.

To update qhp,1(hp,1), the distributionsq
[i]

hp,2
(hp,2) and

q
[i]

Σ
−1
wp

(Σ−1

wp
) are kept fixed, andqhp,1(hp,1) is updated by

solving the following problem:

minimize D

(

qhp,1(hp,1)q
[i]

hp,2
(hp,2)

·q
[i]

Σ
−1
wp

(Σ−1

wp
)
∣
∣
∣

∣
∣
∣p(hp,1,hp,2,Σ

−1

wp
|rp)

)

subject to
∫

qhp,1(hp,1)dhp,1 = 1
qhp,1(hp,1) ≥ 0.

(8)

The distributionq
[i+1]

hp,1
(hp,1) solving (8) is found to be

q
[i+1]

hp,1
(hp,1) ∝ p(hp,1)

· exp
[

E
q
[i]
hp,2

{

E
q
[i]

Σ−1
wp

{

log p(rp|hp,1,hp,2,Σ
−1

wp
)
}}]

(9)

where p(hp,1) is the prior pdf ofhp,1. The log-likelihood
function in (9) reads

log p(rp|hp,1,hp,2,Σ
−1

wp
)

∝e log |Σ−1

wp
| − tr

{

Σ−1

wp
(rp − Xp,1hp,1 − Xp,2hp,2)

· (rp − Xp,1hp,1 − Xp,2hp,2)
H

}

. (10)

The marginalization of (10) with respect toq[i]

hp,2
(hp,2) and

q
[i]

Σ
−1
wp

(Σ−1

wp
) yields

E
q
[i]
hp,2

{

E
q
[i]

Σ−1
wp

{

log p(rp|hp,1,hp,2,Σ
−1

wp
)
}}

∝e −tr
{

(Ω
−1

w,p
)[i]A[i]

}

, (11)

where(Ω
[i]

w,p)−1 , E
q
[i]

Σ−1
wp

{

Σ−1

wp

}

and

A[i]= (rp − Xp,1hp,1 − Xp,2h
[i]

p,2
)

· (rp − Xp,1hp,1 − Xp,2h
[i]

p,2
)H +Xp,2Σ

[i]

hp,2
XH

p,2
.(12)

Details on(Ω
[i]

w,p)−1 andΣ
[i]

hp,2
are given later on in this sec-

tion. Note that terms independent ofhp,1 have been neglected
in the derivation as they do not affectq

[i+1]

hp,1
(hp,1).

For Rayleigh fading channels, the prior distribution ofhp,1

is Gaussian with zero mean and covariance matrixΣhp,1 =

E
{

hp,1h
H
p,1

}

. Using this prior distribution and (11) in (9), we
obtain an updated distribution, which is also Gaussian, with
pdf:

q
[i+1]

hp,1
(hp,1) ∝

exp
[

− (hp,1 − h
[i+1]

p,1
)HΣ

[i+1]
−1

hp,1
(hp,1 − h

[i+1]

p,1
)
]

(13)



with mean vector

h
[i+1]

p,1
= Σhp,1

(

Σhp,1X
H

p,1
Xp,1 + Ω[i]

w,p

)−1

XH

p,1

·
(

rp − Xp,2h
[i]

p,2

)

(14)

and covariance matrix

Σ
[i+1]

hp,1
=

(

Σ−1

hp,1
+ (Ω[i]

w,p
)−1XH

p,1
Xp,1

)−1

. (15)

By inspecting (14), it is seen that the channel response
updating step has the form of an MMSE or Wiener filter [12],
applied to the interference-cancelled received signal at pilot
positions. As the interference cancellation is not ideal, the
estimate of the noise covariance matrixΩ[i]

w,p takes into
account both the noise and the residual interference power,in
order to correctly smooth the channel response, as it is shown
in the next subsection.

Note that the update of the channel coefficients in (14)
does only provide estimates of the channel response at pilot
subcarriers. Estimates of the full frequency response at all
active subcarriers are obtained by using

h̃1 = Σh1hp,1

(

Σhp,1X
H

p,1
Xp,1 + Ω[i]

w,p

)−1

XH

p,1

·
(

rp − Xp,2h
[i]

p,2

)

(16)

instead of (14) in the last iteration of the algorithm with
Σh1hp,1 = E

{

h1h
H
p,1

}

.

D. Update of the noise covariance matrix

When updatingq
Σ

−1
wp

(Σ−1

wp
), the distributionsq[i]

hp,1
(hp,1)

and q
[i]

hp,2
(hp,2) are kept fixed, and the optimization problem

to solve is the following:

minimize D

(

q
[i]

hp,1
(hp,1)q

[i]

hp,2
(hp,2)

·q
Σ

−1
wp

(Σ−1

wp
)
∣
∣
∣

∣
∣
∣p(hp,1,hp,2,Σ

−1

wp
|rp)

)

subject to
∫

q
Σ

−1
wp

(Σ−1

wp
)dΣ−1

wp
= 1

q
Σ

−1
wp

(Σ−1

wp
) ≥ 0.

(17)

The solution reads

q
[i+1]

Σ
−1
wp

(Σ−1

wp
) ∝ p(Σ−1

wp
)

· exp
[

E
q
[i]
hp,1

{

E
q
[i]
hp,2

{

log p(rp|hp,1,hp,2,Σ
−1

wp
)
}}]

. (18)

The marginalization of (10) is taken with respect toh
[i]

p,1
and

h
[i]

p,2
, resulting in

E
q
[i]
hp,1

{

E[i]

qhp,2

{

log p(rp|hp,1,hp,2,Σ
−1

wp
)
}}

∝e log |Σ−1

w | − tr
{

Σ−1

w,pB
[i]

}

, (19)

where

B[i] = (rp − Xp,1h
[i]

p,1
− Xp,2h

[i]

p,2
)

· (rp − Xp,1h
[i]

p,1
− Xp,2h

[i]

p,2
)H

+ Xp,1Σ
[i]

hp,1
XH

p,1 + Xp,2Σ
[i]

hp,2
XH

p,2. (20)

By choosing the prior pdfΣ−1

wp
to be flat, (18) becomes

q
[i+1]

Σ
−1
wp

(Σ−1

wp
) ∝ |Σ−1

w
| exp

[

− tr
{

Σ−1

w,p
B[i]

}]

, (21)

which has the form of a Wishart distribution [13] asΣ−1

w,p ∼

WNp

(

Np + 2,
(
B[i]

)−1
)

. The mean ofΣ−1

wp
is therefore

(Ω[i+1]

w,p )−1 , E
q
[i+1]

Σ−1
wp

{

Σ−1

wp

}

=

(
B[i]

Np + 2

)−1

. (22)

In order to simplify the algorithm, it is assumed thatΣwp

represents the covariance matrix of a white Gaussian noise
vector with Σ−1

wp
= diag{σ−2

wp
, . . . , σ−2

wp
}. In this case, the

updated pdf is given by

q
σ
−2
wp

(σ−2

wp
) ∝ (σ−2

wp
)Np exp

[

− σ−2

wp
tr
{

B[i]

}]

(23)

which is a chi-square distribution [13]. Specificallyσ−2

wp
∼

χ2

Np+2
, and the expectation ofσ−2

wp
is

(σ−2

wp
)[i+1] = E

q
[i+1]

σ
−2
wp

{

σ−2

wp

}

=




tr
{

B[i]

}

Np + 2





−1

. (24)

E. Implementation Issues

1) Matrix inverse in the update of the channel vectors:
As it can be observed in (14), the inversion of a matrix of
dimensionsNp × Np is still required for the update of the
channel coefficients vector. To avoid the matrix inversion,(14)
can be rewritten as:

h
[i+1]

p,1
= US

(

S + (σ−2

wp
)[i]INp

)−1

UHXH

p,1

·
(

rp − Xp,2h
[i]

p,2

)

(25)

whereΣhp,1 = USUH is the singular value decomposition
(SVD) of the channel covariance matrix. We have also made
use of the fact thatXH

p,1
Xp,1 = INp

for constant unit-power
pilots, and the simplification of the noise covariance matrix
introduced in (23) and (24). Note that the matrix to invert is
now a diagonal matrix, which can be inverted with justNp

complex operations. Also, in a wide-sense stationary channel,
the prior covariance matrices of the channels will not change
over time, and therefore the SVDs need to be computed only
once for each channel.

2) Initialization: Previously in this section, details on how
to update each of the pdfs have been given. An initializationof
them for the first iteration of the algorithm, however, is needed.
In our proposed implementation, the channel responses are
initialized to null vectors, i.e.,h[0]

p,m = [0, . . . , 0]T , and
their covariance matrices are initialized to the prior covari-
ance matrices of the channel,Σ

[0]

hp,m
= Σhp,m

. As for the
noise variance, it is initialized to the AWGN variance, i.e.,
(σ−2

wp
)[0] = σ−2

w
. In subsequent iterations, this initialization is

updated with the residual interference after the interference
cancellation performed in the updates of the channel response
vectors.



3) Updating schedule: Another important aspect having an
impact on the performance of the algorithm is the order in
which the pdfs are updated. So far, no analytical way of
determining the optimal updating order has been found. In
this article, we evaluate the following updating scheme:

1) Updateqhp,1(hp,1)
2) Updateqhp,2(hp,2)
3) Updateq

σ
−2
wp

(σ−2

wp
)

Intuitively, the desired user channel should be as strong or
stronger than the interfering channel, thus it is selected to be
estimated first. Once a first estimate of the desired channel
is available, the interfering channel can be estimated more
accurately. Finally an estimate of the residual noise plus
interference is obtained to improve the channel estimates in
subsequent iterations. Simulation results (which have notbeen
included here due to lack of space) showed no relevant gain
by updating the reciprocal of the noise variance between the
estimates of the desired and interfering channel. Therefore, this
step is not included in the algorithm, yielding a less complex
scheme with no appreciable loss in performance.

IV. PERFORMANCEEVALUATION

In this section, we evaluate the performance of the proposed
channel estimator by means of Monte-Carlo simulations. In
order to do so, we define an OFDM system with parameters
inspired by the 3GPP Long Term Evolution (LTE) 5 MHz
downlink physical layer parameters [2]. The system operates
with an FFT size of 512, with 300 active subcarriers, and a
frequency spacing of 15 KHz between them. Pilot subcarriers
are transmitted in every OFDM symbol, with a frequency
spacing of 6 subcarriers (i.e. 300 KHz) between them. Both
the desired and interfering signals have their pilots in the
same subcarriers, and perfect synchronization between the
transmitters is assumed. Hence, pilots of both transmitted
signals overlap in frequency. The pilot sequences are made of
random independent and uniformly distributed QPSK symbols.
The power of the interfering signal is equal to that of the
desired signal, and 16QAM modulation is employed for the
data symbols. A convolutional code is used for channel coding,
with BCJR [14] decoding at the receiver.

Two different channel models are considered, namely the
ITU Indoor Office A channel [15] and the COST 259 Typ-
ical Urban channel [16]. The former channel exhibits a low
frequency selectivity, with a coherence bandwidth of about
3.2 MHz, while the latter has a much narrower coherence
bandwidth of around 467 KHz. Block fading is assumed, with
a static channel response over the duration of an OFDM sym-
bol and independent realizations between consecutive OFDM
symbols. The same channel profile is assumed for all wireless
links (desired and interfering).

In Fig. 3, the Mean-Squared Error (MSE) of the channel
estimates of the desired and interfering channel versus the
number of iterations of the estimator are shown for the two
considered channels. The MSE of the MMSE estimator is
also depicted for comparison’s sake. The signal-to-noise ratio
(SNR), which is calculated as the ratio between the desired
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Fig. 3. MSE of the channel estimates versus the number of iterations of the
channel estimator at a fixed SNR of 25 dB.
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Fig. 4. BER performance for an Indoor A Channel.

signal power and the noise power for each antenna branch,
is fixed to 25 dB. It is observed that the iterative process
improves greatly the quality of the estimates, due to the
effectiveness of the interference cancellation and the updating
of the noise covariance matrix, which accounts for both the
AWGN and the residual interference. A lower MSE (about a
7 dB difference) is achieved in the Indoor A channel. This is a
consequence of the lower frequency selectivity, a well-known
result from MMSE channel estimation. It is also noted that the
convergence rate of the algorithm depends on the frequency
selectivity of the channel as well: while 5 iterations are enough
to achieve convergence in the Indoor channel, around 10
iterations are needed in the Typical Urban channel. As the
results show, the DM channel estimator performance converges
to the MMSE estimator with sufficient number of iterations,
and the number of iterations required for convergence depends
on the frequency selectivity of the channel.

The receiver’s performance is evaluated in terms of bit-
error-rate (BER) in Fig. 4 for the Indoor Office A channel
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Fig. 5. BER performance for a Typical Urban Channel.

and in Fig. 5 for the Typical Urban channel. Results are shown
when the estimators use 5 and 10 iterations. As a reference,
the BER of the receiver with perfect knowledge of the channel
is also depicted, as well as the BER of a receiver using the
MMSE estimator. In the Indoor Channel, the performance of
the DM and MMSE estimators is equivalent. When compared
with a receiver with perfect knowledge of the channel, a
very small degradation in the range of 1 dB is observed in
the high SNR range. Furthermore, as commented above, the
performance of the estimator does not significantly improve
after 5 iterations, with only a very marginal gain after 10
iterations. In the Typical Urban channel, a larger deviation
from the perfect channel knowledge results is observed. The
degradation ranges from 1.7 dB to 2.4 dB at BER of 10%
and 0.1% respectively. However, the degradation in the high
SNR range is relatively small when considering a scenario with
such a severe interference. Again, the performance of the DM
estimator is very close to the MMSE estimator, and only a
very slight gain is observed when increasing the number of
iterations of the algorithm from 5 to 10.

V. CONCLUSION

In this paper, we have presented a novel approach for
channel estimation in OFDM systems with synchronized co-
channel interferers and overlapped pilot symbols. Based onthe
KL-divergence minimization principle, an iterative algorithm
for estimation of the channel gains based on the signal
observed at pilot locations has been derived. The resulting
algorithm combines MMSE channel estimation with succes-
sive interference cancellation and estimation of the noiseand
residual interference power. The effectiveness of the proposed
estimator is assessed by Monte-Carlo simulations. The results
show that our algorithm performs as good as the MMSE chan-
nel estimator, with the advantage of avoiding the cumbersome
matrix inversion in the latter. An overall receiver performance
very close to that of a receiver with perfect knowledge of the
channel coefficients is attained, especially in channels with
low frequency selectivity.

To conclude, it is worth remarking that although the es-
timator has been presented and evaluated for an OFDM
system with synchronized co-channel interference, application
to other scenarios could be very advantageous. For instance,
our estimator would allow to reduce the pilot overhead in
a MIMO-OFDM system by placing the pilot sequences of
all transmit antennas in the same time-frequency locations,
instead of having specific locations reserved for each of the
antennas as it is common in current wireless standards, e.g.
LTE.
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Abstract—In the literature efficient methods have been pro-

posed for sparse channel estimation with a solution typically

obtained through `1-norm penalization of the parameter of

interest. However, other penalization terms than the `1-norm have

proven to have strong sparsity-inducing properties. In this work,

we propose a sparse Bayesian learning channel estimator based

on hierarchical Bayesian prior modeling and variational message

passing (VMP). Using the developed prior model, the VMP

algorithm is able to realize various sparsity-inducing constraints

to the channel estimation task. The numerical results show

superior performance of our channel estimator as compared to

traditional and state-of-the-art sparse methods.

I. INTRODUCTION

During the last few years the research on compressive

sensing techniques and sparse signal representations [1], [2]

applied to channel estimation has received considerable atten-

tion, see e.g., [3]–[7]. The reason is that, typically, the impulse

response of the wireless channel has a few dominant multipath

components. A channel exhibiting this property is said to be

sparse [3].

The general goal of sparse signal representations from

overcomplete dictionaries is to estimate the sparse vector α

of the following system model:

y = Φα+w. (1)

In this expression y ∈ CM is the vector of measurement

samples and w ∈ CM is the additive white Gaussian ran-

dom noise with covariance matrix λ−1I and noise precision

parameter λ > 0. The matrix Φ = [φ1, . . . ,φL] ∈ C
M×L

is the overcomplete dictionary with more columns than rows

(L > M ) and α ∈ CL is an unknown sparse vector with few

non-zero elements at unknown locations.

Often, a sparse channel estimator is constructed by solving

the `1-norm constrained quadratic optimization problem, see

among others [4]–[6]:

α̂ = argmin
α

{
‖y −Φα‖22 + κ‖α‖1

}
(2)

with κ > 0 being some regularization constant and ‖ · ‖p
denotes the `p vector norm. This method is also known as

Least Absolute Shrinkage and Selection Operator (LASSO)

regression [8] or Basis Pursuit Denoising [9]. The popularity

of the LASSO regression is mainly attributed to the convexity

of the cost function, as well as to its provable sparsity-inducing

properties (see [2]). In [4]–[6] LASSO regression is applied

to orthogonal frequency-division multiplexing (OFDM) pilot-

aided channel estimation. Various convex optimization based

channel estimation algorithms that minimize the LASSO cost

function are compared in [6].

Another approach to sparse channel estimation is sparse

Bayesian learning (SBL) [7], [10]–[12]. Specifically, SBL aims

at finding a sparse maximum a posteriori (MAP) estimate of

α

α̂ = argmin
α

{
‖y −Φα‖22 + λ−1Q(α)

}
(3)

by specifying a prior p(α) such that the penalty term Q(α) ∝e

− log p(α) induces a sparse estimate α̂.1

Obviously, by comparing (2) and (3) the SBL framework

realizes the LASSO cost function by choosing the `1-prior

p(α) ∝ exp(−a‖α‖1) with κ = λ−1a.2 However, instead of

working directly with the prior p(α), SBL models this using a

two-layer (2-L) hierarchical structure. This involves specifying

a conditional prior p(α|γ) and a hyperprior p(γ) such that

p(α) =
∫
p(α|γ)p(γ)dγ has a sparsity-inducing nature. The

hierarchical approach to the representation of p(α) has several

important advantages. First of all, one is free to choose simple

and analytically tractable prior pdfs. Second, when carefully

chosen, the resulting hierarchical structure then allows for the

construction of efficient inference algorithms with analytical

derivation of the inference expressions.

In [13] we propose a 2-L and a three-layer (3-L) prior

model for α. The introduced hierarchical prior models lead

to novel sparse inducing priors that as a special case result

in the `1-prior for complex variables. We also propose a

variational message passing (VMP) algorithm for estimating

α that effectively exploits the hierarchical structure of the

prior model. This paper adapts the Bayesian probabilistic

framework introduced in [13] to OFDM pilot-aided sparse

channel estimation. This approach leads to a novel channel

estimation algorithm that makes use of various priors with

strong sparsity-inducing properties. The numerical results re-

1Here x ∝e y denotes exp(x) = exp(υ) exp(y), and thus x = υ+y, for
some arbitrary constant υ. We will also make use of x ∝ y which denotes
x = υy for some positive constant υ.

2In the case α ∈ RL, p(α) ∝ exp(−a‖α‖1) is the product of Laplace
pdfs. To the best of our knowledge the Laplace pdf has not yet been defined
for complex variables. We therefore refer to it as the `1-prior.



veal the promising potential of our estimator with improved

performance as compared to state-of-the-art methods. In par-

ticular the estimator outperforms LASSO.

Throughout the paper we shall make use of the following

notation: (·)T and (·)H denote respectively the transpose and

the Hermitian transpose; the expression 〈f(x)〉q(x) denotes

the expectation of the function f(x) with respect to the

density q(x); CN(x|a,B) denotes a multivariate complex

Gaussian pdf with mean a and covariance matrix B; similarly,

Ga(x|a, b) = ba

Γ(a)x
a−1 exp(−bx) denotes a Gamma pdf with

shape parameter a and rate parameter b.

II. SIGNAL MODEL

We consider a single-input single-output OFDM system

with N subcarriers. A cyclic prefix (CP) is added to pre-

serve orthogonality between subcarriers and to eliminate inter-

symbol interference between consecutive OFDM symbols.

The channel is assumed static during the transmission of

each OFDM symbol. In baseband representation the received

OFDM signal r ∈ CN reads in matrix-vector notation

r = Xh+ n. (4)

The diagonal matrix X = diag {x1, x2, . . . , xN} contains the

transmitted symbols. The components of the vector h ∈ CN

are the samples of the channel frequency response at the N

subcarriers. Finally, n ∈ C
N is a zero-mean complex sym-

metric Gaussian random vector with independent components

with variance λ−1.

To estimate the vector h in (4), a total of M pilot symbols

are transmitted at selected subcarriers. The pilot pattern P
denotes the set of indices of the pilot subcarriers. The received

signals observed at the pilot positions rP are then divided by

the corresponding pilot symbols XP to produce the observa-

tions used to estimate the channel vector h:

y , (XP)
−1rP = hP + (XP)

−1nP . (5)

We assume that all pilot symbols hold unit power such that the

statistics of the noise term (XP )
−1nP remain unchanged, i.e.,

y ∈ C
M yields the samples of the true channel frequency re-

sponse (at the pilot subcarriers) corrupted by additive complex

circularly symmetric white Gaussian noise with component

variance λ−1.

In this work, we consider a frequency-selective wireless

channel that remains constant during the transmission of

each OFDM symbol. The maximum relative delay τmax is

assumed to be large compared to the sampling time Ts, i.e.,

τmax/Ts � 1 [3]. The impulse response of the wireless channel

is modeled as a sum of multipath components:

g(τ) =
K∑

k=1

βkδ (τ − τk) . (6)

In this expression, βk and τk are respectively the complex

weight and the continuous delay of the kth multipath compo-

nent, and δ(·) is the Dirac delta function. The parameter K

is the total number of multipath components. The channel pa-

rameters βk, τk, and K are random variables. Specifically, the

weights {βk} are mutually uncorrelated zero-mean with the

sum of their variances normalized to one. Additional details

regarding the assumptions on the model (6) are provided in

Section VI.

III. THE DICTIONARY MATRIX

Our goal is to estimate h in (4) by applying the general

optimization problem (3) to the observation model (5). For

doing so, we must define a proper dictionary matrix Φ. In this

section we give an example of such a matrix. As a starting

point, we invoke the parametric model (6) of the channel.

Making use of this model, (5) can be written as

y = T (τ )β +w (7)

with hP = T (τ )β, w = (XP)
−1nP , β = [β1, . . . , βK ]

T
,

τ = [τ1, . . . , τK ]
T

, and T (τ ) ∈ CM×K depending on the pilot

pattern P as well as the unknown delays in τ . Specifically,

the (m, k)th entry of T (τ ) reads

T (τ )m,k , exp (−j2πfmτk) ,
m = 1, 2, . . . ,M

k = 1, 2, . . . ,K
(8)

with fm denoting the frequency of the mth pilot subcarrier.

In the general optimization problem (3) the columns of Φ
is known. However, the columns of T (τ ) in (7) depends on

the unknown delays in τ . To circumvent this discrepancy we

follow the same approach as in [5] and consider a grid of

uniformly spaced delay samples in the interval [0, τmax]:

τ d =
[

0,
Ts

ζ
,
2Ts

ζ
, . . . , τmax

]T

(9)

with ζ being some positive constant. We now define the

dictionary Φ ∈ CM×L as Φ = T (τ d). Thus, the entries of

Φ are of the form (8) with delay vector τ d. The number

of columns L = ζτmax/Ts + 1 in Φ is thereby inversely

proportional to the selected delay resolution Ts/ζ.

It is important to notice that the system model (1) with Φ
defined using discretized delay components is an approxima-

tion of the true system model (7). This approximation model

is introduced so that (3) can be applied to solve the channel

estimation task. The estimate of the channel vector at the pilot

subcarriers is then ĥP = Φα̂. In order to estimate the channel

h in (4) the dictionary Φ is appropriately expanded (row-wise)

to include all N subcarrier frequencies.

IV. BAYESIAN PRIOR MODELING

In this section we specify the two types of hierarchical prior

models for α: the 2-L and the 3-L hierarchical prior model.

We begin by specifying the joint pdf of the system model (1)

for respectively the 2-L and the 3-L hierarchical prior model.

Specifically, in case of the 2-L prior model, the joint pdf of

the system model (1) reads

p(y,α,γ, λ) = p(y|α, λ)p(λ)p(α|γ)p(γ;η). (10)

For the 3-L prior model, the parameter η specifying the prior

of γ in (10) is assumed random. The joint pdf is then of the
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Fig. 1. 2-L hierarchical prior pdf for α ∈ C2: (a) Contour plot of
the restriction to the Im{α1} = Im{α2} = 0 – plane of the penalty
term Q(α1, α2; ε, η) ∝e − log(p(α1; ε, η)p(α2 ; ε, η)). (b) Restriction to

Im{hH
l y} = 0 of the resulting MAP estimation rule (3) with ε as a parameter

in the case when Φ is orthonormal. The black dashed line indicates the hard-
threshold rule and the black solid line the soft-threshold rule (obtained with
ε = 3/2). The black dashed line indicates the penalty term resulting when
the prior pdf is a circular symmetric Gaussian pdf.

form:

p(y,α,γ,η, λ) = p(y|α, λ)p(λ)p(α|γ)p(γ|η)p(η). (11)

In (10) and (11) we have p(y|α, λ) = CN(y|Φα, λ−1I) due

to (1). Furthermore, we let p(λ) = p(λ; c, d) , Ga(λ|c, d).
This choice is motivated by the fact that the gamma distri-

bution is a conjugate prior for the precision of a Gaussian

likelihood function. In addition, setting c = d = 0 makes p(λ)
non-informative. Finally, we select p(α|γ) =

∏L
l=1 p(αl|γl)

with p(αl|γl) , CN(αl|0, γl). In the following we show the

main results and properties of these prior models. We refer to

[13] for a more detailed analysis.

A. Two-Layer Hierarchical Prior Model

The 2-L prior model assumes that p(γ) =
∏L

l=1 p(γl) with

p(γl) = p(γl; ε, ηl) , Ga(γl|ε, ηl). We compute the prior of

α to be

p(α; ε,η) =

∫ ∞

0

p(α|γ)p(γ; ε,η)dγ =

L∏

l=1

p(αl; ε, ηl) (12)

with

p(αl; ε, ηl) =
2

πΓ(ε)
η

(ε+1)
2

l |αl|
ε−1Kε−1(2

√
ηl|αl|). (13)

In this expression, Kν(·) is the modified Bessel function of

the second kind with order ν ∈ R. Thus, the prior (13) leads

to the general optimization problem (3) with penalty term

Q(α; ε,η) =

L∑

l=1

log
(
|αl|

ε−1Kε−1 (2
√
ηl|αl|)

)
. (14)

We show now that the 2-L prior model induces the `1-

norm penalty term and thereby the LASSO cost function as

a special case. Selecting ε = 3/2 and using the identity
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Fig. 2. Three-layer hierarchical prior pdf for α ∈ C2 with the setting
a = 1, b = 0.1: (a) Restriction to Im{hH

l y} = 0 of the resulting
MAP estimation rule (3) with ε as a parameter in the case when Φ is
orthonormal. The black dashed line indicates the hard-threshold rule and the
black solid line the soft-threshold rule. (b) Contour plot of the restriction to the
Im{α1} = Im{α2} = 0 – plane of the penalty term Q(α1, α2; ε, a, b) ∝e

− log(p(α1; ε, a, b)p(α2; ε, a, b)).

K 1
2
(z) =

√
π
2z exp(−z) [14], (13) yields the prior

p(αl; ε = 3/2, ηl) =
2ηl
π

exp(−2
√
ηl|αl|). (15)

It clearly leads to the `1-norm of penalty term Q(α; η) =
2
√
η‖α‖1 with the selection ηl = η, l = 1, . . . , L.

The prior pdf (13) is specified for each choice of ε and of

the regularization parameter η. In order to get insight into the

impact of ε on the properties of this prior pdf we consider the

case α ∈ C2. In Fig. 1(a) the contour lines of the restriction

to R of Q(α1, α2; ε, η) ∝e − log(p(α1; ε, η)p(α2; ε, η)) are

visualized;3 each contour line is computed for a specific choice

of ε. Notice that as ε decreases towards 0 more probability

mass accumulates along the α-axes; as a consequence, the

mode of the resulting posterior is more likely to be found close

to the axes, thus promoting a sparse solution. The behavior of

the classical `1 penalty term obtained for ε = 3/2 can also

be clearly recognized. In Fig. 1(b) we consider the case when

Φ is orthonormal and compute the MAP estimator (3) with

penalty term (14) for different values of ε. Note the typical

soft-threshold-like behavior (see e.g., [15]) of the estimators.

As ε → 0, more components of α̂ are pulled towards zero

since the threshold value increases, thus encouraging a sparser

solution.

B. Three-Layer Hierarchical Prior Model

We now turn to the SBL problem with a 3-L prior model

for α represented by the joint pdf in (11). Specifically, the

goal is to incorporate the regularization parameter η into the

inference framework, such that it can be automatically set by

the algorithm. We assume that p(η) =
∏L

l p(ηl) with p(ηl) =
p(ηl; al, bl) , Ga(ηl|al, bl). Let us now compute the prior

p(α) that corresponds to the 3-L prior model. Defining a ,

[a1, . . . , al]
T and b , [b1, . . . , bL]

T we obtain p(α; ε,a, b) =

3Let f denote a function defined on a set A. The restriction of f to a subset
B ⊂ A is the function defined on B that coincides with f on this subset.
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∏L
l p(αl; ε, al, bl) with

p(αl; ε, al, bl) =

∫ ∞

0

p(αl|γl)p(γl)dγl

=
Γ(ε + al)Γ(al + 1)

πblΓ(ε)Γ(al)

(
|αl|2

bl

)ε−1

U

(

ε + al; ε;
|αl|2

bl

)

.

(16)

In this expression, U(·; ·; ·) is the confluent hypergeometric

function [14]. In Fig. 2(a) we show the estimation rules

produced by the MAP solver for different values of ε and

fixed parameters al and bl when Φ is orthonormal. It can

be seen that the estimation rules obtained with the 3-L prior

model approximate the hard-thresholding rule. In Fig. 2(b), we

depict the contour of the penalty term Q(α1, α2; ε, a, b) ∝e

− log(p(α1; ε, a, b)p(α2; ε, a, b)). Observe that although the

contours behave qualitatively similarly to those shown in Fig.

1(a) for the 2-L prior model, the corresponding estimation

rules in Fig. 2(a) and Fig. 1(b) are different.

Naturally, the 3-L prior model has three free parameters to

be set, ε, a, and b. In [13], it is shown that the choice ε = 0 and

bl small (practically we let bl = 10−6, l = 1, . . . , L) induces

a weighted log-sum penalization term. This type of penalty is

known to strongly promote a sparse estimate [10], [11]. Later

in the text we will also adopt this parameter choice.

V. VARIATIONAL MESSAGE PASSING

In this section we present a VMP algorithm for estimating

h in (4) given the observation y in (5). Let Θ = {α,γ,η, λ}
be the set of unknown parameters and p(y,Θ) be the joint

pdf specified in (11). The factor graph [16] that encodes

the factorization of p(y,Θ) is shown in Fig. 3. Consider an

auxiliary pdf q(Θ) for the unknown parameters that factorizes

according to q(Θ) = q(α)q(γ)q(η)q(λ). The VMP algorithm

is an iterative scheme that attempts to compute the auxiliary

pdf that minimizes the Kullback-Leibler (KL) divergence

KL(q(Θ)‖p(Θ|y)). In the following we summarize the key

steps of the algorithm; the reader is referred to [17] for more

information on VMP.

From [17] the auxiliary function q(θi), θi ∈ Θ is updated

as the product of incoming messages from the neighboring

factor nodes fn to the variable node θi:

q(θi) ∝
∏

fn∈Nθi

mfn→θi
. (17)

In (17) Nθi
is the set of factor nodes neighboring the variable

node θi and mfn→θi
denotes the message from factor node

fn to variable node θi. This message is computed as

mfn→θi
= exp

(

〈ln fn〉∏
j
q(θj), θj∈Nfn\{θi}

)

, (18)

where Nfn is the set of variable nodes neighboring the

factor node fn. After an initialization procedure, the individual

factors of q(Θ) are then updated iteratively in a round-robin

fashion using (17) and (18).

We provide two versions of the VMP algorithm: one applied

to the 2-L prior model (referred to as VMP-2L), and another

one applied to the 3-L model (VMP-3L). The messages

corresponding to VMP-2L are easily obtained as a special

case of the messages computed for VMP-3L by assuming

q(ηl) = δ(ηl − η̂l), where η̂l is some fixed real number.

1) Update of q(α): According to (17) and Fig. 3 the

computation of the update of q(α) requires evaluating the

product of messages mfy→α
and mfα→α

. Multiplying these

two messages yields the Gaussian auxiliary pdf q(α) =

CN
(

α|α̂, Σ̂α

)

with corresponding mean and covariance

given by

Σ̂α = (〈λ〉q(λ)Φ
HΦ+ V (γ))−1, (19)

α̂ = 〈α〉q(α) = 〈λ〉q(λ)Σ̂αΦ
Hy. (20)

In the above expression we have defined V (γ) =
diag{〈γ−1

1 〉q(γ), . . . , 〈γ
−1
L 〉q(γ)}.

2) Update of q(γ): The update of q(γ) is proportional to

the product of the messages mfα→γ and mfγ→γ :

q(γ) ∝
L∏

l=1

γε−2
l exp

(
−γ−1

l 〈|αl|
2〉q(α) − γl〈ηl〉q(η)

)
. (21)

The right-hand side expression in (21) is recognized as the

product of Generalized Inverse Gaussian (GIG) pdfs [18] with

order p = ε−1. Observe that the computation of V (γ) in (19)

requires evaluating 〈γ−1
l 〉q(γ) for all l = 1, . . . , L. Luckily, the

moments of the GIG distribution are given in closed form for

any n ∈ R [18]:

〈γn
l 〉q(γ) =

(
〈|αl|2〉q(α)

〈ηl〉q(η)

)n
2 Kp+n

(
2
√
〈ηl〉q(η)〈|αl|2〉q(α)

)

Kp

(
2
√
〈ηl〉q(η)〈|αl|2〉q(α)

) .

(22)

3) Update of q(η): The update of q(η) is proportional to

the product of messages mfη→η and mfγ→η:

q(η) ∝
L∏

l=1

ηε+al−1
l exp

(
−(〈γl〉q(γ) + bl)ηl

)
, (23)

which is identified as a gamma pdf. The first moment of ηl
used in (22) is easily computed as

〈ηl〉q(η) =
ε + al

〈γl〉q(γ) + bl
. (24)

Naturally, q(η) is only computed for VMP-3L.

4) Update of q(λ): The update of q(λ) can be shown to be

q(λ) = Ga(λ|M +c, 〈‖y−Φα‖22〉q(α)+d). The first moment
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Fig. 4. Comparison of the performance of the VMP-2L, VMP-3L, RWF, ARD RVM, and SparseRSA algorithms: (a) BER versus Eb/N0, (b) MSE versus
Eb/N0, (c) MSE versus number of available pilots M with fixed L = 200 and the ratio between received symbol power and noise variance set to 15 dB.
In (a,b) we have M = 100 and L = 200. In (a) the dashed line shows the BER performance when the true channel vector h in (4) is known.

of λ used in (19) and (20) is therefore

〈λ〉q(λ) =
M + c

〈‖y −Φα‖22〉q(α) + d
. (25)

VI. NUMERICAL RESULTS

We perform Monte Carlo simulations to evaluate the perfor-

mance of the two versions of the derived VMP algorithm in

Section V. We consider a 3GPP LTE alike scenario [21] with

the settings specified in Table I. The multipath channel (6) is

inspired by [22] where for each realization of the channel,

the total number of multipath components K is Poisson

distributed with a mean of 〈K〉p(K) = 10 and the delays

τk, k = 1, . . . ,K , are independent and uniformly distributed

random variables drawn from the continuous interval [0,

144 Ts] (the CP length). The kth non-zero component βk

conditioned on the delay τk has a zero-mean complex cir-

cular symmetric Gaussian distribution with variance σ2(τk) =
〈|βk|2〉p(βk|τk) = u exp(−τk/v) and parameters u, v > 0.4

To initialize the VMP algorithm we set 〈λ〉q(λ) equal to

the inverse of the sample variance of y and 〈γ−1
l 〉q(γ) is set

equal to the inverse number of columns L. Furthermore, we

let c = d = 0 in (25), which corresponds to a non-informative

4By specifying 〈K〉p(K) = 10, τmax = 144 Ts, and a decay rate v =

20 Ts then u is computed such that 〈
∑K

k=1 |βk(t)|
2〉p(β,τ ,K) = 1.

TABLE I
Parameter settings for the simulations. The convolutional

code and decoder has been implemented using [19].
Sampling time, Ts 32.55 ns

CP length 4.69 µs / 144 Ts

Subcarrier spacing 15 kHz

Pilot pattern Equally spaced, QPSK

Modulation QPSK

Subcarriers, N 1200

Pilots, M 100

OFDM symbols 1

Information bits 727

Channel interleaver Random

Convolutional code (133, 171, 165)8
Decoder BCJR algorithm [20]

prior for λ. Once the initialization is completed, the algorithm

sequentially updates the auxiliary pdfs q(α), q(γ), q(η), and

q(λ) until convergence is achieved. Naturally, q(η) is only

updated for VMP-3L, whereas for VMP-2L the entries in η

are set to M . For both versions we select ε = 0 and for VMP-

3L we set al = 1 and bl = 10−6, l = 1, . . . , L. Finally, the

dictionary Φ is specified by M pilot subcarriers and a total of

L = 200 columns (corresponding to the choice τmax = 144
Ts and ζ ≈ 1.4 in (9)).

The VMP is compared to a classical channel estimator and

two state-of-the-art sparse estimation schemes. Specifically,

we use as benchmark the robustly designed Wiener Filter

(RWF) [23], the automatic relevance determination (ARD)

formulation of the relevance vector machine (RVM) [10],

[11], and the sparse reconstruction by separable approxima-

tion (SpaRSA) algorithm [24].5 The ARD RVM solves the

optimization problem (3) with the log-sum penalization term

Q(α) = 2
∑L

l=1 log |αl|, whereas SpaRSA is a proximal

gradient method for solving (2). In case of the SpaRSA

algorithm the regularization parameter κ needs to be set. In all

simulations, we let κ = 1/2 which leads to good performance

in high signal-to-noise ratio (SNR) regime.

The performance is compared with respect to the resulting

bit-error-rate (BER) and mean-squared error (MSE) of the

estimate ĥ versus the SNR (Eb/N0). In addition, in order to

quantify the algorithms’ ability to reduce the pilot overhead,

we evaluate the MSE versus the number of available pilots

M . Hence, in this setup M is no longer fixed as in Table I.

In Fig. 4(a) we compare the BER performance of the

different schemes. We see that VMP-3L outperforms the other

schemes across all the SNR range considered. Specifically, at

1 % BER the gain is approximately 2 dB compared to VMP-

2L and ARD RVM and 3 dB compared to SpaRSA and RWF.

Also VMP-2L achieves lower BER in the SNR range 0 - 12

dB as compared to ARD RVM and across the whole SNR

range compared to SpaRSA and RWF.

The superior BER performance of the VMP algorithm is

well reflected in the MSE performance shown in Fig. 4(b).

Again VMP-3L is a clear winner followed by VMP-2L. The

bad MSE performance of the SpaRSA for low SNR is due

5The software is available on-line at http://www.lx.it.pt/~mtf/SpaRSA/



to the difficulty in specifying the regularization parameter κ

across a large SNR range.

We next fix the ratio between received symbol power and

noise variance to 15 dB and evaluate the MSE versus number

of available pilots M . The results are depicted in Fig. 4(c). Ob-

serve a noticeable performance gain obtained with VMP-3L.

In particular, VMP-3L exhibits the same MSE performance

as VMP-2L and ARD RVM using only approximately 85

pilots, roughly half as many as VMP-2L and ARD RVM.

Furthermore, VMP-3L achieves a significant improvement

using this number of pilots as compared to SpaRSA and RWF

where all 200 pilots are available.

VII. CONCLUSION

In this paper, we proposed a sparse Bayesian learning based

channel estimation algorithm. The channel estimator relies on

Bayesian hierarchical prior modeling and variational message

passing (VMP). The VMP algorithm effectively exploits the

probabilistic structure of the hierarchical prior model and

thereby applies various priors with strong sparsity-inducing

properties. It was shown that we obtain an estimator with better

performance than the typically applied `1-norm constrained

based estimator. Our numerical results show that the proposed

channel estimator yields superior performance in terms of

bit-error-rate and mean-squared error. It also allows for a

significant reduction of the amount of pilot subcarriers needed

for estimating the channel as compared to other existing

estimators.
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Abstract—In this paper, we investigate different multiple-input
multiple-output (MIMO) receiver structures based on MMSE
filtering and sequential interference cancellation (SIC) for the
downlink of the 3GPP long term evolution (LTE) system. We
divide them into two approaches: symbol-SIC receivers, in which
the detection and interference cancellation is done independently
for each subcarrier, and codeword-SIC structures, in whichthe
processing is carried out for each independently-coded stream
by including the turbo-decoder inside the feedback loop. The
results show that symbol-SIC receivers need to take into account
the propagation of errors in the interference cancellation to
provide the turbo decoder with reliable soft bit values. However,
these are clearly outperformed by codeword-SIC schemes, due
to the error correction capabilities of the turbo-decoder inside
the feedback loop. We show that the best tradeoff between
computational complexity and receiver performance is achieved
by only cancelling the interference of a codeword when this has
been successfully decoded.

I. I NTRODUCTION

The 3rd Generation Partnership Project (3GPP) is currently
finalizing the standardization of UTRA long term evolution
(LTE). This new system aims at peak data rates of 100 Mbps
in 20 MHz bandwidth in the downlink [1]. To achieve the
required spectral efficiency, a physical-layer air interface based
on the combination of orthogonal frequency-division multi-
plexing (OFDM) and multiple-input multiple-output (MIMO)
has been defined [2]. OFDM divides the available bandwidth
into narrow orthogonal subcarriers. With the addition of a
cyclic prefix (CP), the subcarriers become flat-fading, allowing
simple equalization of the channel, and easing the integration
with MIMO techniques [3].

MIMO techniques have promised a linear increase of the
capacity of wireless links with the number of antennas used
at the receiver and the transmitter [4]. An efficient way of
achieving most of this capacity increase is the combination
of space-division multiplexing (SDM) with sequential inter-
ference cancellation (SIC) at the receiver. Since this approach
was presented in [5], many different receiver algorithms have
been proposed ([6]–[9]) and, for a practical system, it is
unclear which the optimal choice in terms of performance and
complexity is.

In this paper, we review different approaches suggested in
literature. We divide them into symbol-SIC, in which the in-
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Fig. 1. Block diagram of the transmitter

terference cancellation is done at modulated-symbol level, and
codeword-SIC, where the interference is cancelled in a per-
codeword fashion. Furthermore, we propose two modifications
of the codeword-SIC receiver, one avoiding error propagation,
and the other compensating for the error introduced in the
interference cancellation step. All the different schemesare
evaluated under LTE parameters by means of link-level sim-
ulations, showing the superiority of the proposed structures.

The remainder of the paper is organized as follows. Section
II describes the system considered. In Section III, the different
SIC algorithms are presented, and a performance evaluationis
done in Section IV. Finally, Section V concludes the work.

II. SYSTEM DESCRIPTION

In the following, the considered MIMO-OFDM system
will be described. A block diagram of a transmitter withN
antennas is shown in Fig. 1. As it is shown, the information
bits are split into two codewords, which are independently
encoded and interleaved before being mapped to complex
modulated symbols. The complex symbols are then mapped
to the antennas depending on the MIMO order of the system:
for a 2× 2 system, each codeword is transmitted through one
antenna; for a4×4 system, codeword1 is mapped to transmit
antennas1 and 2, and codeword2 is mapped to transmit
antennas3 and 4. Finally, the bits are OFDM modulated by
applying an inverse fast Fourier transform (IFFT) and adding
a CP.

Assuming that the channel response is static over the
duration of an OFDM symbol and the cyclic prefix is long
enough to cope with the multipath delays of the channel, the
signal seen from theM antennas at the receiver after CP
removal and fast Fourier transform (FFT) can be expressed
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as:

y[k] = H[k]x[k] + w[k] (1)

wherex[k] = [x1(k)x2(k) · · ·xN (k)]T represents the complex
transmitted symbols at subcarrierk from the N transmitting
antennas,w[k] = [w1(k)w2(k) · · ·wM (k)]T is the i.i.d. com-
plex additive white Gaussian noise (AWGN) vector and

H[k] =






h11(k) · · · h1N(k)
...

. ..
...

hM1(k) · · · hMN (k)




 (2)

is the channel transfer function matrix at thekth subcarrier
frequency. The coefficientshij(k) in (2) describe the complex
channel gain from the transmit antennaj to the receive antenna
i. Since no channel state information (CSI) is assumed at
the transmitter, the transmitted power is equally distributed
among the transmit antennas, leading to a variance of the
transmitted symbolsσ2

x
= E[xi(k)xi(k)∗] = P

N
, whereP is

the total power transmitted at each subcarrier, and E[·] and
(·)∗ represent the expected value and conjugate operations
respectively. The AWGN termswi(k) have varianceσ2

w
.

III. MIMO SIC R ECEIVERS

In this section, we describe the different receiver structures
evaluated. We classify them in two types: symbol SIC and
codeword SIC. In symbol-SIC, the interference cancellation is
done independently at each subcarrier on modulated-symbol
level, whereas in codeword-SIC the detection is done on
codeword level and the interference contribution is subtracted
after decoding and re-encoding of the codeword.

A. Symbol-SIC Receivers

The structure of a symbol-SIC receiver is shown in Fig. 2.
MMSE processing and sequential interference cancellationare
performed independently at each subcarrier. Next, the structure
of the codewords is re-built and, after soft demodulation
and deinterleaving, the decoder yields hard decisions on the
information bits. To simplify the notation, we will assume here
that H[k] andx[k] have been reordered at each subcarrierk

according to the optimal detection order proposed in [5], i.e.,
symbols with transmit antenna subindex1 will be detected
first, whilst the ones with subindexN will be detected last.

1) Conventional Symbol-SIC:We consider here the con-
ventional symbol-SIC (S-SIC) approach described in [5], with
the difference that we employ a linear MMSE filter instead
of the zero-forcing approach. The MMSE estimate of the

symbol transmitted from theith antenna after detection and
interference cancellation of the previousi − 1 symbols is:

x̃i(k) = gi[k]yi−1[k]. (3)

Here,gi[k] denotes theith row of the MMSE matrix:

Gi[k] =

(

HH

i:N
[k]Hi:N [k] +

σ2

w

σ2
x

IN−i+1

)−1

HH

i:N
[k] (4)

whereHi:N [k] is the matrix formed by removing thei − 1
first columns of H[k]. The vector yi−1[k] in (3) is the
received signal in subcarrierk after cancelling the interference
contribution from the firsti − 1 transmit antennas:

yi−1[k] = y[k] − H1:i−1[k]x̂1:i−1[k] (5)

whereH1:i−1[k] andx̂1:i−1[k] represent thei−1 first columns
and elements ofH[k] and x̂[k] respectively. The elements
x̂i(k) are calculated by taking hard decisions of the MMSE
estimates in (3). Subsequently, the interference from theith
detected symbol is cancelled from the received signal, giving:

yi[k] = yi−1[k] − hi[k]x̂i(k) = y[k] − H1:i[k]x̂1:i[k] (6)

with hi[k] denoting theith column ofH[k].
The MMSE estimates̃xi(k) are then fed to a soft-demapper

which calculates log-likelihood ratios (LLRs) of the codedbits.
To do so, the estimates are approximated to a Gaussian process
described by:

x̃i(k) = µxi(k) + η (7)

whereµ = gi[k]hi[k] andη is normally distributed with zero
mean and varianceσ2

η = σ2

x(µ − µ2) [10].
2) Symbol-SIC with Error Compensation:A drawback of

the previous scheme is that it doesn’t take into account the
error introduced in the interference cancellation step when a
wrong hard-decision̂xi(k) is taken. To show the effect of these
errors, (5) can be re-written as:

yi−1[k] = Hi:N [k]xi:N [k] + H1:i−1[k]ê1:i−1[k] + w[k] (8)

where the vector̂e1:i−1[k] = x1:i−1[k] − x̂1:i−1[k] represents
the error introduced by wrong symbol-decisions. In order
to compensate for these errors, Leeet al. proposed the use
of an improved MMSE matrix taking error propagation into
account [6]. In this receiver, which we refer to as symbol-SIC
with error compensation (S-SIC EC), (4) is replaced by:

Gi[k] = HH

i:N
[k]

(

Hi:N [k]HH

i:N
[k] +

σ2

w

σ2
x

IN−i+1

+
1

σ2
x

H1:i−1[k]Qê1:i−1[k]H
H

1:i−1
[k]

)−1

(9)

where Qê1:i−1[k] is the covariance matrix of the decision
errors in thei − 1 previously detected symbols, whose ele-
ments are given byqp,r(k) = E{êp(k)ê∗r(k)|x̂p(k), x̂r(k)},
i.e. the expected value of the errors product given the hard
decisions on the symbols. The off-diagonal elements can be
neglected by assuming uncorrelated symbol errors. For the
diagonal elements, the authors in [6] propose to calculate
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the elements of the matrix from an approximation of the
probability of error given the modulation constellation and the
noise variance in (7). We adopt however a different approach:
by assuming that the LLRs of the bits corresponding to
xi(k) are available, the probability of each symbols in the
constellation P

(
xi(k) = s|x̃i(k)

)
can be obtained. Hence,

diagonal elements ofQê1:i−1[k] can be obtained by:

qp,p(k) = E{|êp(k)|2
∣
∣x̂p(k)}

=
∑

s∈S

|x̂p(k) − s|2P
(
xp(k) = s|x̃p(k)

)
(10)

whereS is a set with all the possible points of the constellation
used. The detection and interference cancellation processis the
same as in the conventional symbol-SIC, but using (9) instead
of (4).

B. Codeword-SIC

In the following, three codeword-SIC algorithms are de-
scribed. In a codeword-SIC receiver, the detection and decod-
ing process is done sequentially for each of the codewords. We
will assume here that the codewords are ordered according
to the optimal detection and decoding sequence. A detailed
analysis on how to select the detection order can be found in
[8].

1) Conventional Codeword-SIC: The conventional
codeword-SIC (C-SIC) is analogous to the symbol-SIC
receiver. However, the ordering, detection, decoding and
interference cancellation are done in a per-codeword fashion,
as shown in Fig. 3, rather than independently for individual
subcarriers. In the first stage, the MMSE estimates of the
symbols transmitted by the antennas corresponding to the
selected codeword,̃xcw1[k], are obtained for all subcarriers
by using theM × N MMSE matrix:

G[k] =

(

HH [k]H[k] +
σ2

w

σ2
x

IN

)−1

HH [k]. (11)

Note that in the case of 4 transmit antennas, the symbols
transmitted through two antennas (the ones corresponding to
the selected codeword) will be detected. Subsequently, the
symbols are soft demapped, providing the decoder with soft
values on the coded bits. After decoding, the hard decisionson
the information bits are re-encoded and mapped to the complex
symbol constellation in order to re-build the transmitted signal.
Then, the interference term created by the selected codeword

is cancelled from the received signal at all subcarriers by:

y′[k] = y[k] − Hcw1[k]x̂cw1[k] (12)

whereHcw1[k] denotes the columns ofH[k] corresponding
to the antennas on which the selected codeword has been
mapped, and̂xcw1[k] are the reconstructed symbols trans-
mitted over those antennas, obtained from the re-encoded bit
decisions. In the second stage, the MMSE estimates of the
symbols corresponding to the the remaining codeword are
obtained with the matrix:

G′[k] =

(

HH

cw2
[k]Hcw2[k] +

σ2

w

σ2
x

IN/2

)−1

HH

cw2
[k] (13)

where the matrixHcw2[k] denotes the columns ofH[k]
corresponding to the antennas where the undetected codeword
is mapped.

2) Codeword-SIC with Verified Feedback:Coded packet-
based systems usually have some error-detection capabilities,
so that the receiver can check whether the packet has been
correctly received or a retransmission is required. A common
way of achieving this (and the one used in LTE) is to
append a cyclic redundancy code (CRC) to the information
bits of the packet. After decoding of the packet, the receiver
can, by checking the CRC, know if the detection process
has been successful. We propose here to make use of this
error detection capability in our codeword-SIC structure,in
a scheme we call codeword-SIC with verified feedback (C-
SIC VF). The detection and decoding of the first codeword
selected is equivalent to the C-SIC scheme. After decoding,
the CRC of the decoded codeword is checked. If the CRC is
correct, re-encoding and re-mapping of the codeword is done,
and interference cancellation and decoding of the remaining
codeword is performed according to (12) and (13), as in the
C-SIC approach. Otherwise, no feedback is performed and
the remaining codeword is detected with a plain MMSE as in
(11). This avoids the introduction of errors in the interference
cancellation, as well as reducing the processing involved in the
case in which the first codeword is not successfully decoded.

3) Codeword-SIC with Error Compensation:We introduce
here a new modification to the Codeword-SIC scheme which
makes use of both the error detection and the error correction
properties of the channel decoder. To do so, we make use of
a soft-input soft-output decoder, which yields soft decisions
on both the information and the coded bits in the form of
LLRs. These soft values will have better quality than the
ones generated at the soft demapper, as they benefit from
the decoding process. In the first stage of the receiver, the
codeword selected to be decoded first is detected through
MMSE (11), exactly as in the other two schemes. Then, soft
decoding of the codeword is performed, and hard decisions
on the information bits are taken. If the CRC is correct, the
soft values of the coded bits can be fully trusted; thus, hard-
decision on the coded bits is taken, and the interfering signal
is reconstructed by complex modulation of the bits. Then,
interference cancellation and detection can be performed on
the second codeword as in (12) and (13), having the certainty



that no errors are being fed back. When the CRC is not correct,
there are errors among the soft coded bits delivered by the soft
decoder. Nevertheless, the coded bits are also sliced to hard
values, complex modulated, and the interference on the second
codeword is cancelled by (12). In the MMSE fiter, however,
we compensate for the errors introduced, analogously to the
S-SIC EC, by using the following MMSE matrix:

G′[k] = HH

cw2
[k]

(

Hcw2[k]HH

cw2
[k] +

σ2

w

σ2
x

IN/2

+
1

σ2
x

Hcw1[k]Qêcw1[k]H
H

cw1
[k]

)−1

(14)

whereQêcw1[k] denotes the covariance matrix of the error of
the remodulated symbolŝecw1 = xcw1 − x̂cw1. Again, the
off-diagonal elements ofQêcw1[k] can be neglected, and the
diagonal elements can be calculated as in (10). In this case,
however, the probabilities of each symbol of the constellation
will be obtained from the LLRs provided by the soft-output
decoder, thus taking advantage of the coding gain.

IV. PERFORMANCEEVALUATION

In this section, the simulation results of the described
SIC schemes are presented. The performance of a linear
receiver using conventional MMSE detection is also shown
for comparison’s sake. A turbo-coded OFDM system with LTE
parameters is considered. The 5MHz transmission bandwidth
configuration is selected [2], [11], which corresponds to300
subcarriers, and the antenna configurations evaluated are2×2
and 4 × 4. In both configurations, two codewords are inde-
pendently encoded, rate-matched and interleaved following
3GPP specifications in [12]. The channel model used is the
20 taps Typical Urban channel in [13], where we assume no
correlation between spatial channels and uncorrelated block
fading, i.e., the channel is constant over the duration of one
transmission time interval (TTI). No hybrid automatic repeat
request (HARQ) retransmissions are used.

In Fig. 4, the packet error rate (PER) obtained with all
the considered schemes is depicted for the2 × 2 system
with 16QAM modulation and coding rate1/2. The conven-
tional S-SIC receiver shows a very poor performance, being
considerably worse than the linear MMSE receiver. This is
due to error propagation in the interference cancellation and
the soft-values calculation. As this scheme assumes that the
interference of each symbol has been perfectly removed, the
channel decoder is unable to compensate for errors in the
detection process. On the other hand, when information on
the reliability of previously detected symbols is incorporated
into the MMSE filtering and the soft-values calculation, as in
the S-SIC EC scheme, the decoder has precise information
about the quality of the detected bits, thus being able to
decode the codewords with much better accuracy. For the
configuration shown, the S-SIC EC receiver outperforms the
linear MMSE receiver, obtaining an SNR gain of about0.8 dB
at 1% PER. Larger gains can be achieved when a codeword-
SIC scheme is used. These schemes perform better than
the linear receiver by between1.9 and 2.2 dB. The best
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performance corresponds to the C-SIC EC receiver, although
it only achieves a marginal gain over the C-SIC VF. These
two schemes slightly outperform the conventional C-SIC; the
reason is that, in C-SIC, error propagation takes place when
the first codeword is not correctly decoded. This drawback is
avoided by not cancelling the interference in the case of C-SIC
VF, or by making use of the soft information at the output of
the decoder in the case of the C-SIC EC.

The PER performance of the studied receivers for the
4 × 4 antenna configuration case is shown in Fig. 5, where
again 16QAM modulation and coding rate of 1/2 have been
employed. Note that the conventional S-SIC scheme has not
been plotted as its poor performance was already stated above.
As it can be observed, the trends are similar to the2 × 2
configuration. Again, codeword-SIC schemes perform best,
while the achievable gain of the S-SIC EC with respect to
MMSE does not exceed 1 dB at1% PER. For this antenna
configuration, the gain obtained by considering error com-
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TABLE I
MCS USED FOR SPECTRAL EFFICIENCY CURVE

Modulation Coding Rates

QPSK 1/6, 1/3, 1/2, 2/3

16QAM 1/2, 2/3, 3/4

64QAM 2/3, 4/5

pensation in the codeword-SIC scheme is more noticeable,
but still inside 0.2 to 0.3 dB with respect to C-SIC VF. The
conventional C-SIC receiver, again, is the one obtaining worst
results due to error propagation. From the results obtained, it is
observed that when the first codeword decoding is erroneous,
not performing interference cancellation is better than doing
it without compensating for the errors introduced. When
compensation is done, slightly better results can be obtained
at the expense of a significant complexity increase.

In order to evaluate the performance of the proposed
schemes in the whole SNR range, a spectral efficiency curve
obtained with MMSE, S-SIC EC and C-SIC VF schemes is
presented in Fig 6. This curve has been generated by selecting
the modulation and coding schemes (MCS) from Table I which
provide the highest spectral efficiency for a given SNR. The
curves show how the C-SIC VF scheme outperforms both S-
SIC EC and MMSE over the whole SNR range and for every
MCS. For SNR larger than 5 dB, the codeword SIC scheme
is between1.5 and 2 dB better than a conventional MMSE
receiver. The S-SIC EC receiver, on the other hand, exhibits
different performance gains depending on the modulation and
coding rate. For a given modulation, the performance is in-
creased at higher coding rates. The explanation is that thishigh
coding rates are used at higher SNR and, as a consequence, the
probability of errors in the detected symbols is lower, which
benefits the interference cancellation process. A codewordSIC
can still benefit from the interference cancellation at low SNR
by making use of the strong error correction capabilities of
the low code rates employed.

V. CONCLUSION

In this paper, we have addressed the design of a MIMO SIC
receiver for 3GPP LTE. The studied receivers have been split
into two categories: symbol-SIC receivers, where detection
and interference cancellation is done independently for each
subcarrier, and codeword-SIC receivers, in which the detection
is done on a per-codeword basis, and the channel turbo-
decoder is included in the interference cancellation loop.
Our results show that the codeword schemes outperform the
symbol-based significantly over the whole SNR range and for
every MCS. Furthermore, the best tradeoff between complexity
and performance corresponds to the C-SIC VF scheme, in
which the interference from any codeword is only cancelled
when this has been correctly decoded. By doing so, SNR gains
of up to 2 dB with respect to a conventional MMSE receiver
can be obtained, whilst the complexity is kept low by avoiding
the feedback loop when decoding errors are detected.
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Abstract—The paper deals with turbo detection techniques
for Single User Multiple-Input-Multiple-Output (SU MIMO)
antenna schemes. The context is on the uplink of the upcoming
Long Term Evolution - Advanced (LTE-A) systems. Iterative
approaches based on Parallel Interference Cancellation (PIC)
and Successive Interference Cancellation (SIC) are investigated,
and a low-complexity solution allowing to combine interstream
interference cancellation and noise enhancement reduction is
proposed. Performance is evaluated for Orthogonal Frequency
Division Multiplexing (OFDM) and Single Carrier Frequency
Division Multiplexing (SC-FDM) as candidate uplink modulation
schemes for LTE-A. Simulation results show that, in a 2x2
antenna configuration, the turbo processing allows a consistent
improvement of the link performance, being SC-FDM the one
having higher relative gain with respect to linear detection.
The turbo receiver’s impact is however much reduced for both
modulation schemes in a 2x4 configuration, due to the higher
diversity gain provided by the additional receive antennas.

Index Terms—LTE-A, MIMO, OFDM, SC-FDM, turbo re-
ceiver, PIC, SIC

I. INTRODUCTION

The 3rd Generation Partnership Project (3GPP) is currently
specifying the system requirements for the upcoming Long
Term Evolution - Advanced (LTE-A) systems, aiming at target
peak data rates of 1 Gbits/s in local areas and 100 Mbit/s
in wide areas. While in the previous Release 8 [1] only
single transmit antenna schemes have been standardized for the
uplink, multiple-input-multiple-output (MIMO) techniques are
expected to be deployed to meet these ambitious requirements.
Orthogonal Frequency Division Multiplexing (OFDM) has
been selected in the Release 8 for the downlink due to its
high robustness to multipath as well as its flexibility, allowing
to easily share resources among users while keeping full
intra-cell orthogonality [2]. In this scheme, the modulated
symbols are split over narrowband subcarriers and transmitted
in parallel over the wireless channel; a cyclic prefix (CP) is
inserted to mitigate the intersymbol interference (ISI) and the
intercarrier interference (ICI), allowing simple equalization
in the receiver. Despite its advantages, OFDM suffers from
high Peak to Average Power Ratio (PAPR) of the transmitted

signals, which requires higher power backoff in the transmit-
ter to avoid distortions, and hence leading to lower power
efficiency. This is particularly critical in uplink because of the
power consumption constraint in the User Equipment (UE).
Therefore, Single Carrier Frequency Division Multiplexing
(SC-FDM) has been selected for the uplink in LTE [1]. This
modulation scheme exploits the same benefits in terms of
multipath mitigation and flexibility as OFDM. However, data
symbols are transmitted serially in the time domain, leading
to a consistent reduction of the PAPR [3]. Nevertheless, the
choice of the uplink modulation scheme for LTE-A has not
yet been finalized. It has been shown that OFDM generally
outperforms SC-FDM in terms of spectral efficiency when
linear receivers are used [4]; this is because SC-FDM systems
suffer from an effect called “noise enhancement”, which
degrades the estimation of the data symbols. In a previous
study [5], we implemented an iterative receiver for a single-
input-multiple-output (SIMO) SC-FDM system, showing that
the noise enhancement can be overcome by the non-linear
detection. That makes the performance of SC-FDM similar
to OFDM.

In this paper, we extend the previous work to a double
stream Single User MIMO scheme for the upcoming LTE-A
systems. Iterative approaches based on parallel and successive
interference cancellation are investigated, and a new turbo
processing solution allowing to reduce the computational
complexity is proposed. Both parallel and successive inter-
ference cancellation have been widely treated in literature, for
CDMA as well as OFDM systems (e.g.,[6],[7] and [8]). Their
aim is basically a progressive reduction of the interstream
interference by including in the detection process a previous
estimate of the transmitted data sequences. Here, since our
main scope is leveraging SC-FDM performance, we combine
in the iterative processing (even called turbo processing) both
the traditional interstream interference removal provided by
the aforementioned techniques and the noise enhancement
reduction.

The remainder of the paper is structured as follows. In
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Section I, the MIMO LTE-A system is presented. Section
II describes the principles of the iterative detection, focusing
on Parallel and Successive Interference Cancellation. Section
III shows our proposed turbo processing strategy with limited
complexity. In Section IV, simulation results are presented and
discussed. Finally, Section V summarizes the conclusions.

Fig. 1. MIMO transmitter with 2 codewords.

II. SYSTEM MODEL

A simplified baseband model of a MIMO OFDM/SC-FDM
transmitter with 2 codewords (CWs) and NT transmit antennas
is depicted in Fig.1. For each CW, the information bits are
independently encoded, interleaved, and finally mapped to
QPSK/M-QAM symbols, yielding the vectors si, i=1,2. Then,
a Discrete Fourier Transform (DFT) is performed in the case of
SC-FDM, spreading each data symbol over all the subcarriers,
obtaining the vectors di. For OFDM instead, each data symbol
is mapped over one subcarrier, i.e. di = si. Symbols di are
then mapped over the transmit antennas by the MIMO encoder
block. Finally, an Inverse Fast Fourier Transform (IFFT) is
applied and a CP is appended. Assuming that the channel
response is static over the duration of an OFDM symbol, and
the CP is long enough to cope with the delay spread of the
channel, the received signal after CP removal and fast Fourier
transform (FFT) can be written as follows:

y[k] = H[k]x[k] + w[k] (1)

where x[k] = [x1(k), x2(k), . . . , xNT
(k)]T is a vector con-

taining the encoded complex transmitted MIMO symbols
at subcarrier k from the NT transmit antennas, w[k] =
[w1(k), w2(k), . . . , wNR

(k)]T is the additive white Gaussian
noise vector with E[wi(k)wi(k)∗] = σ2

w and

H[k] =

⎡

⎢
⎣

h11(k) . . . h1NT
(k)

...
. . .

...
hNR1(k) . . . hNRNT

(k)

⎤

⎥
⎦ (2)

is the channel transfer function matrix at subcarrier k. hij(k)
denotes the complex channel gain from the transmit antenna
j to the receive antenna i. In this study, it is assumed that
E[si(k)si(k)∗] = 1 and that the transmitted power is equally
distributed among the transmit antennas.

III. ITERATIVE DETECTION

The structure of the considered turbo receiver is shown in
Fig.2. The equalizer and the turbo decoder are joint in a loop,
benefiting from the mutual information exchange. The aim is

improving the performance with respect to the linear receiver
by iteratively enhancing the reliability of the data estimates
for each CW. The turbo decoder provides an estimate of
all the coded bits in the form of likelihood ratios, that are
subsequentely interleaved and modulated as done in [5] to get
a soft estimate of the transmitted symbols. These soft estimates
are then fed back to an interference canceller, allowing to
progressively remove the mutual interference contribution.
In SC-FDM systems, the inverse discrete Fourier transform
(IDFT) performed at the receiver spreads the noise contribu-
tion from faded subcarriers over all the data symbols. Iterative
processing aims even at reducing this noise enhancement.
In the following, we present the principles of two widely
adopted iterative detection techniques: Parallel Interference
Cancellation and Successive Interference Cancellation.

Fig. 2. MIMO Turbo Receiver.

A. Parallel Interference Cancellation (PIC)

In the PIC technique, all the CWs are detected in parallel,
interleaved, re-modulated and sent back to the interference
canceller, whose output for the m-th CW in the subcarrier k
at n-th iteration can be written as follows:

yn
m,c[k] = y[k] − HZ−{m}[k]d̂n−1

Z−{m}[k] (3)

where Z = {1, 2} is the set of the CWs’indexes, HZ−{m}
denotes the column of H corresponding to the antennas on
which the (Z − {m})-th CW has been mapped, and d̂n−1

Z−{m}
is the frequency domain soft estimate of the (Z − {m})-th
CW, obtained in the previous iteration. Note that for SC-
FDM, d̂n−1

Z−{m} is obtained through a DFT operation over

the soft modulated symbols ŝn−1
Z−{m} (for OFDM, d̂n−1

Z−{m} =

ŝn−1
Z−{m}). The residual error after the interference cancellation

should be taken into account in the equalization. The frequency
domain equalization for the m-th CW in subcarrier k can be
carried out as follows [8]:

yn
m,eq[k] = HH

m[k]
[
H[k]QnHH [k] + NT σ2

wINR

]−1

yn
m,c[k]

(4)
where (·)H denotes the hermitian operator, INR

is the NR ×
NR identity matrix, and Qn = diag [q1, · · · ,qNT

] is the
NT ×NT diagonal matrix of the residual interference powers,
whose j-th element can be expressed as:

qj =

{
1, if j = m

1 − σ̂2

Z−{m},n−1
if j �= m

(5)
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where σ̂2

Z−{m},n−1
is the variance of the soft modulated

symbols of the (Z − {m})-th CW at (n-1)-th iteration. It can
be computed as follows:

σ̂2

Z−{m},n−1
=

1

Nsub

Nsub∑

k=1

∣
∣
∣ŝn−1

Z−{m}[k]
∣
∣
∣

2

(6)

where Nsub is the number of subcarriers. Note that at the
beginning, when no apriori information is available, σ̂2 = 0
and Eq.(4) acts as a traditional Minimum Mean Square Error
(MMSE) equalizer. The receiver performs the tasks described
above for a number of iterations; after that, the turbo decoder
takes hard decisions about the transmitted bits.

B. Successive Interference Cancellation (SIC)

In the SIC technique the CWs are first ordered depending on
some criterion, and the detection and the decoding processes
are performed sequentially. The CWs are usually ordered
according to their equivalent channel gain, so that the CW
with highest equivalent channel gain is detected first. The
equivalent channel gain of the m-th CW at the n-th iteration
can be expressed as follows:

H̃n
m =

1

Nsub

Nsub∑

k=1

HH
m[k]

[
H[k]QnHH [k] + NT σ2

wINR

]−1

Hm[k]

(7)
The selected CW is detected, soft modulated and fed back
to the interference canceller, whose output can be written as
follows:

yn
m,c[k] = y[k] − HZ−{m}[k]d̂p

Z−{m}[k], where

p = n if Z − {m} = argmaxi=1,2H̃
n
i

p = n − 1 if Z − {m} �= argmaxi=1,2H̃
n
i (8)

The equalizer’s output for the m-th CW in subcarrier k is given
by:

yn
m,eq[k] = HH

m[k]
[

H[k]Q̃nHH [k] + NT σ2

wINR

]−1

yn
m,c[k]

(9)
where Q̃n = diag [q̃1, · · · , q̃NT

], whose generic j-th element
can be written as:

q̃j =

⎧

⎪⎨

⎪⎩

1, if j = m

1 − σ̂2

Z−{m},n if j �= m, j = argmaxi=1,2H̃
n
i

1 − σ̂2

Z−{m},n−1
if j �= m, j �= argmaxi=1,2H̃

n
i

(10)

IV. TURBO PROCESSING WITH LIMITED COMPLEXITY

An obvious drawback of the iterative detection techniques is
their computational complexity, increasing with the number of
iterations. However, since an estimate of the transmitted CWs
is available at each iteration, the turbo processing presented
above is redundant once at least one of them has been correctly
detected. In LTE, a cyclic redundancy code (CRC) is appended
to the information bits of the CW to check if the detection pro-
cess has been successful. Here, we propose to use this error-
detection capability to reduce the turbo processing complexity.

In fact, checking the CRC allows to stop the iterative process
once CWs are correctly decoded. Furthermore, we combine in
the same process both the interstream interference removal and
the noise enhancement reduction for SC-FDM. For simplicity,
in the following we will refer to a double transmit antenna
system.

Let us suppose to perform the generic n-th iteration of the
PIC or SIC algorithm. After both CWs have been detected,
their CRC is checked by taking hard decisions on the soft
bits. The possible options and the subsequent behaviour to be
adopted are the followings:

• Both CWs are not successfully detected. Continue per-
forming PIC or SIC in the (n+1)-th iteration.

• Only one CW is successfully detected. In this case, the
interstream interference can be fully removed from the
wrong CW. Therefore, the MIMO system is virtually re-
duced to a single-input-multiple-output one, and the noise
enhancement reduction strategy for SC-FDM presented in
[5] can be adopted. To sum up, the following steps have
to be performed:

– (n+1)-th iteration: feed back only the correct CW for
interstream interference removal and equalization;

– from (n+2)-th iteration: re-modulate the wrong CW
obtaining d̂n+1

wr and use the equalizer coefficients
defined in [5], that have been shown to reduce the
noise enhancement of SC-FDM in a SIMO system.
We distinguish between forward coefficients, which
aim at increasing the Signal-to-Noise Ratio (SNR),
and feedback coefficients, designed at the purpose
of reducing the noise contribution in the estimated
sequence. The forward coefficient at the q-th receive
antenna in subcarrier k can be defined as follows:

Cff,q (k) =

1

1 + βσ̂2

wr,n+1

h∗
q,wr (k)

(
1 − σ̂2

wr,n+1

)∑NR

q=1
|hq,wr (k)|2 + σ2

w

(11)

where

β =
1

Nsub

Nsub∑

k=1

∑NR

q=1
|hq,wr (k)|2

(
1 − σ̂2

wr,n+1

)∑NR

q=1
|hq,wr (k)|2 + σ2

w
(12)

The feedback coefficient in subcarrier k can be
expressed as:

Cfb (k) =

NR∑

q=1

hq,wr (k) Cff,q (k) − 1 (13)

Therefore the resultant output of the equalizer is
given by:

yn+2

wr,eq[k] = Cff [k]yn+1

wr,c[k] − Cfb(k)d̂n+1

wr [k] (14)

where Cff [k] = [Cff ,1(k), · · · ,Cff ,NR
(k)]. For

further details, we refer to [5].
• Both CWs are successfully detected: jump to the detec-

tion of the next data frame.

3
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TABLE I
SIMULATION PARAMETERS

Carrier frequency 2 GHz

Sampling frequency 15.36 MHz

Subcarrier spacing 15 KHz

FFT size 1024

Used subcarriers 600

CP length 5.2a/4.68b µs

Slot duration 0.5 ms

Symbols per slot 7

MIMO schemes (2x2, 2x4) SM

User speed 3 kmph

MCS settings QPSK: 1/6, 1/3, 1/2, 2/3

16QAM: 1/2, 2/3, 3/4

64QAM: 2/3, 4/5

Channel code 3GPP Rel.8 compliant Turbo code

with basic rate 1/3

Turbo decoder iterations 8

Receiver scheme MMSE, PIC, SIC

aFirst OFDM/SC-FDM symbol in a slot.
b2th − 7th OFDM/SC-FDM symbol in a slot.

V. PERFORMANCE EVALUATION

The performance of the turbo receiver is evaluated by Monte
Carlo simulations. We use as a reference 10 MHz LTE con-
figuration parameters [1]. The main simulation parameters are
gathered in Table I. An urban micro channel model (SCM-D)
[9] is used in the simulations, and perfect channel knowledge
is assumed. In the following, we will assume that an iteration
of both PIC and SIC is completed once an estimate of both
CWs is available by exploiting the feedback information. The
linear MMSE equalization can instead be considered as the
0-th iteration of the PIC scheme.

Fig.3 shows the performance of PIC and SIC for a 2x2 SC-
FDM system in terms of Block Error Rate (BLER), assuming
16QAM 2/3. Linear MMSE performance is also included.
Both iterative techniques lead to a consistent gain over linear
detection, up to 5 dB with 6 iterations. Most of the gain
is already obtained after the first iteration. Note that at the
first iteration PIC performs better than SIC because in the
latter the soft interference is removed only from one CW.
However, for higher number of iterations both techniques tend
to perform similarly. It can be seen (Fig.4) that SIC converges
slightly faster than PIC. This is because in SIC one of the
soft estimates used in the interference cancellation is obtained
in the current iteration, while in PIC both are obtained in the
previous iteration.

Fig.5 depicts a comparison between OFDM and SC-FDM
for SIC receivers. As it can be observed, OFDM clearly
outperforms SC-FDM when linear receivers are used. This
is due to the noise enhancement in SC-FDM systems. OFDM
performance can be further improved by the iterative detection.
However, for OFDM the gain of SIC with respect to MMSE
is limited to 3.5 dB. This allows reducing the performance
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Fig. 3. BLER performance of SC-FDM in a 2x2 antenna system, with
16QAM 2/3.
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Fig. 4. SC-FDM PIC vs. SIC, SNR=18dB.

gap between OFDM and SC-FDM, to within 1 dB. The
higher relative gain of SC-FDM compared to MMSE is due
to the reduction of the noise enhancement provided by the
turbo processing. Furthermore, comparing Fig.3 and Fig.5, it
can also be noticed that the relative gain between different
iterations is slightly higher for SC-FDM.

The gap between the modulation schemes with MMSE is
quite reduced with a 2x4 antenna configuration, as presented in
Fig.6. This is due to the increase of diversity, which averages
the channel seen at the receiver. In this way, the deep fades of
the channel are smoothed, and therefore the noise enhancement
of SC-FDM is reduced. Here, the iterative processing only
leads to a gain up to 2 dB for SC-FDM and 1.5 dB for OFDM,
thus further reducing their performance gap.

The performance result on the whole SNR range, when
link adaptation is used, is shown in Fig.7. The link adaptation
is done based on average SNR and the corresponding curve

4
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Fig. 6. Performance comparison between OFDM and SC-FDM in a 2x4
antenna system, with 16QAM 2/3.

results from the envelope of the spectral efficiency curves for
several Modulation and Coding Schemes (MCSs). For low
SNRs, OFDM performs as good as SC-FDM for both linear
and iterative detection. The performance gap is relevant for
high order MCSs, where the higher relative gain of the turbo
receiver for SC-FDM is evident. OFDM and SC-FDM tend
perform similarly in a 2x4 antenna system, as suggested by
the previous results.

VI. CONCLUSIONS

In this paper, iterative detection techniques are presented
and investigated in a Single User MIMO context for the uplink
of the upcoming LTE-A standard, and a limited complexity
solution combining interstream interference removal and noise
enhancement reduction is proposed. Performance is evalu-
ated for both OFDM and SC-FDM as candidate modulation
schemes for the uplink of LTE-A. Simulation results show
that the proposed solution leads to a gain in terms of BLER
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Fig. 7. Link adaptation curves for 2x2 and 2x4 antenna configurations.

up to 5 dB over linear detection for a SC-FDM 2x2 antenna
configuration, thus outperforming OFDM with linear MMSE
receiver. For OFDM, the gain of the turbo processing over
linear detection is limited to 3.5 dB. The diversity gain
obtained by adding antennas at the receiver reduces the impact
of the turbo processing: in fact, link adaptation based on
average SNR shows no relevant difference in performance
when the antenna configuration is increased to a 2x4 system.
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Abstract—In this paper we present a refined model of the
wireless multipath channel along with a thorough analysis on the
impact of spatial smoothing techniques when used for improved
channel estimation. The state-of-the-art channel estimation al-
gorithm for pilot-aided OFDM systems is robustly designed
and operates without knowledge of the time-varying multipath
propagation delays in the wireless channel. However, algorithms
exploiting knowledge of these time-varying delay parameters can
outperform the state-of-the-art solution. We demonstrate from
simulations how the Unitary ESPRIT algorithm together with
spatial smoothing techniques exhibit a promising potential for
multipath propagation delay estimation. Furthermore, we show
that the optimum smoothing parameters depend notably on the
channel model assumed, specifically in terms of the dynamical
behavior of the multipath delays.

I. INTRODUCTION

During the last decade, the technique of orthogonal
frequency-division multiplexing (OFDM) has entered and set-
tled within several wireless standards, e.g. European digital au-
dio broadcasting, IEEE 802.11a wireless local area networking
and 3GPP long term evolution (LTE). The reasons for OFDM
being widely selected are manifold. A few motivations include
the flexibility in spectrum occupancy, robustness against inter-
symbol-interference and easy integration with multiple antenna
techniques.

Today, even higher data rates are demanded - calling for
larger digital constellation sizes and coherent detection. Chan-
nel estimation is therefore required and commonly achieved
using pilot symbol transmissions. In principle, the channel
estimation may be conducted in a completely non-parametric
manner. However, this approach conflicts with the requirement
of high data rates due to the dimensionality of the estimation
problem and also due to the time-varying behavior of the
wireless channel (expensive time-frequency overhead of pilot
symbols). With the aim of lowering the dimension of the
estimation task and the amount of pilot symbols needed,
a parametric structure of the wireless multipath channel is
typically imposed [1]–[4]. Yet, the parametric channel model
assumed in scientific literature and wireless standards [5] does
not adequately reflect dynamic environments, e.g. with a mo-
bile receiver. For instance, the multipath propagation delays,
the inter-delay gaps and the overall number of delays are often

modeled as persistently fixed - even though the receiver is
assumed to be moving. Furthermore, it is common to include
modeling of the Doppler frequency shifts experienced by
the receiver [2], [4] - despite the fact that Doppler shifts
and delay fluctuations are indisputably related. Hence, the
default and widely used modeling of the wireless channel is
counterintuitive and inadequate.

When employing the state-of-the-art channel estimator [1]
(robust design), the fluctuating behavior of the multipath
delays are of no importance since a continuum of equally
powered channel components is assumed. However, this robust
design yields an irreducible performance degradation which is
avoidable if instead a channel estimator presupposing knowl-
edge of the time-varying delays is used. Hence, if sufficiently
accurate delay estimates can be obtained, the robust state-of-
the-art channel estimator [1] can be outperformed. Yet, for
this opposing solution to earn practical attention it requires a
sufficiently accurate/realistic model of the wireless multipath
channel.

In recent literature [2] the ESPRIT algorithm [6] has been
proposed to serve as initial multipath delay acquisition tool
for pilot-aided OFDM systems. The ESPRIT algorithm is
an eigenvalue decomposition based method which exhibits
satisfactory estimation performance when the multipath prop-
agation delays in the channel model stay persistently fixed.
However, in more realistic scenarios the propagation delays
will fluctuate over time, the overall number of delays will
change and also the inter-delay gaps will vary. Thus, depend-
ing on the individual realizations of the channel the delays will
sometimes tend to cluster while other times tend to be more
dispersed. Such effects are typically not captured by the chan-
nel models in use. Accordingly, promising simulation-based
algorithm performance may implicitly give rise to erroneous
comprehension - directly inherited from the inappropriate
channel modeling.

In this paper we present an advanced multipath channel
model which manages to mimic an increased amount of real-
world channel effects. Compared to the default state-of-the-
art channel model, this advanced model is of supplementary
dynamic nature and therefore allows for interesting simulation-
based comparisons. In terms of channel estimation perfor-
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mance we compare the state-of-the-art algorithm [1] with the
linear minimum mean squared error (LMMSE) estimator [2]
using Unitary ESPRIT [7] as multipath delay estimation tool.
Additionally, a key contribution of this paper is a thorough
analysis of the performance gain obtained when applying
a spatial smoothing scheme for improved delay estimation
accuracy. The smoothing scheme is also employed in [2], yet
no analysis of its impact is provided and no justification for
the smoothing parameters are given. We investigate how to op-
timize the smoothing parameters depending on the dynamical
behavior of the wireless multipath channel model assumed.

The remaining parts of this paper are organized as fol-
lows. In Section II a scenario involving an OFDM system
is described and the signal model is presented. The channel
models considered are introduced and discussed in Section
III. In Section IV we briefly describe the main principles of
the ESPRIT algorithm. Performance evaluations are conducted
and compared in terms of Monte-Carlo simulations in Section
V. Concluding remarks are provided in Section VI.

II. OFDM SIGNAL MODEL

We consider a single-input single-output OFDM system
designed with a total of N subcarriers. The effective spectrum
occupied by the system is often adjusted by forcing certain
subcarriers inactive, for instance at each edge of the overall
bandwidth. Accordingly, only Nu ≤ N subcarriers are used
for actual transmissions.

The OFDM signal is generated as follows. Initially, a stream
of raw information bits are modulated onto a set of PSK/QAM
symbols which are then multiplexed with a sequence of M
pilot symbols. After multiplexing the sequence consists of
exactly Nu symbols x1 , x2 , . . . , xNu

, and these are intended
for transmission. Finally, OFDM modulation by means of an
IFFT is performed and a cyclic prefix is inserted.

The received signal is OFDM demodulated by discarding
the samples corresponding to the cyclic prefix and the N time-
domain samples left are exposed to a FFT. We assume that
the channel remains static during transmission of each OFDM
symbol and furthermore that the duration of the cyclic prefix
exceeds the maximum excess delay of the channel. The OFDM
demodulated signal at the receiver is then given as

r =
[
r1 , r2 , . . . , rNu

]�
= Xh + w, (1)

where X = diag
{
x1 , x2 , . . . , xNu

}
is a diagonal matrix built

from the transmitted symbols and h = [h1 , h2 , . . . , hNu
]�

contains as components the channel frequency responses at
the Nu active subcarriers. Circular symmetric additive white
Gaussian noise contributions with variance σ2 are contained
in the vector w = [w1 , w2 , . . . , wNu

]�.

A. Pilot Symbol Observations

The received pilot symbol observations are used to estimate
the channel frequency response at all subchannels carrying
non-redundant data symbols. Conveniently, we define the
following subset of indices

P :=
{
p(1), p(2), . . . , p(M)

} ⊂ {1, 2, . . . , Nu

}
,

which identifies the M subcarriers used for pilot symbol trans-
missions. We extract the M equations from (1) corresponding
to the indices contained in P and define

ym
:=

r
p(m)

x
p(m)

, m = 1, 2, . . . ,M,

which we can appropriately and compactly formulate as

y :=
(
XP
)−1

rP = hP +
(
XP
)−1

wP , (2)

meanwhile the subscript notation should be obvious to in-
terpret. We assume that all pilot symbols hold unit power,
whereby the statistics of the noise term

(
XP
)−1

wP remains
unchanged. Hence, the observations available in (2) are known
to the receiver due to the pilot symbol data and y yields
the true channel frequency responses (at the pilot subcarriers)
embedded in zero-mean complex Gaussian noise. To prop-
erly estimate the channel frequency responses at all active
subcarriers, i.e. the vector h in (1), a parametric model of
the wireless channel is invoked. In this way the dimension is
notably reduced since the task is now altered to estimate only
a relatively small number of channel model parameters.

III. MULTIPATH CHANNEL MODELS

Two different multipath channels are presented in this
section. The overall model for these two channels is the same
and the first configuration described is simpler but unrealistic
with respect to certain physical interpretations. The second
configuration described is more dynamic and sophisticated
while easier to accept from a physical point of view. In the
entire paper we assume a non-line-of-sight, far-field scenario
where only the receiver is moving.

The model commonly used to describe a time-varying
multipath channel impulse response is given by

g(t, τ) =

L(t)
∑

�=1

α
�
(t)δ

(
τ − τ

�
(t)
)
, (3)

where δ is the Dirac delta. Each complex-valued amplitude
α

�
, � = 1, 2, . . . , L(t), is typically modeled as a wide-sense

stationary, zero-mean complex Gaussian process [1]–[4]. The
processes {α

�
} are furthermore assumed to be mutually uncor-

related, i.e. the channel described by (3) is a so-called wide-
sense stationary and uncorrelated scattering [8] (WSSUS)
Rayleigh fading channel.

A. Static Reference Channel

The simpler and static channel model is described according
to a relaxed version of (3) reading

g(t, τ) =

L∑

�=1

α
�
(t)δ(τ − τ

�
). (4)

The overall number L of echoes in the channel is fixed and also
the delay parameters {τ

�
} are persistently static. All amplitude

processes {α
�
} are assumed to share the same normalized

autocorrelation function, given in terms of the zeroth-order
Bessel function of the first kind. Accordingly, the normalized
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Doppler power spectrum associated with each echo is bathtub-
shaped and usually referred to in terms of Clarke or Jakes,
see [9, Sec. 3.2] and the references therein. Such modeling is
based on the assumption of a uniform scattering environment, a
scenario which is difficult to accept by physical means. Specif-
ically, it is hard to imagine a propagation environment such
that the transmitted signal is scattered into plenty reflections
arriving uniformly from every direction, all equally delayed,
and thereby combining into one of the L dominant echoes
in the channel. Nonetheless, such a channel model is usually
assumed, e.g. by 3GPP in [5].

B. Dynamic Channel

A more realistic model would allow for the delay parameters
to fluctuate over time as a result of receiver mobility. Also, the
overall number of echoes in the channel may change from time
to time due to blocking obstacles in the environment. Hence,
a channel impulse response as described by (3) is appropriate
and notably more realistic than the model in (4). Initially, for
� = 1, 2, . . . , L(t), the channel echoes are modeled as

α
�
(t) =

√

Q
�

R

R∑

r=1

exp
(
j2πf

D
cos(θ

�,r )t + jϕ
�,r

)
, (5)

where Q
�

is the average power of the �’th echo, f
D

denotes the
maximum Doppler frequency and {ϕ

�,r} are i.i.d. uniform ini-
tial phases. In contrast to the uniform scattering environment,
each channel echo α

�
in (5), is (heuristically) modeled from

R azimuth excited subcomponents centered around a nominal
angle of arrival θ̄

�
. Specifically, the modeling reads

θ̄
�

i.i.d.∼ U(−π, π) and θ
�,r

∣
∣θ̄

�

i.i.d.∼ vM
(
θ̄

�
, κ
)
,

where the notation vM
(
θ̄

�
, κ
)

refers to the von Mises distribu-
tion with location parameter θ̄

�
and concentration parameter

κ ≥ 0, see [10] for details. In this setup the channel echoes
do not share the same normalized autocorrelation function and
the Doppler power spectra are therefore individual too.

Following the modeling suggestion in [11], it is convenient
to let transitions of arising channel echoes occur according
to a homogeneous Poisson process with rate λA

. Assigning
i.i.d. exponential lifetimes with mean 1/λ

B
to the echoes then

results in L(t) being a Poisson distributed random variable
with E

[
L(t)

]
= λA

/λ
B

. For simplicity and due to our receiver
mobility assumption, it is furthermore convenient to model the
delay fluctuations from straight line advancements, i.e.

τ
�
(t) = τ

�,0 +
f

D
cos(θ̄

�
)

f
c

(t − t
�,0), t ≥ t

�,0 ,

where fc
denotes the carrier frequency of the communication

system and t
�,0 is the birth time of the �’th echo. The

distribution of the initial delays {τ
�,0} can be specified as

desired - a simple choice is to select the uniform distribution
on an appropriate interval. The average power terms {Q

�
}

may then be assigned according to an exponentially decaying
function (i.e. the power delay profile is specified). The straight
line advancements of the multipath delays are illustrated in
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Figure 1. Contiguous realization of the dynamic channel with maximum
Doppler frequency fD = 100Hz and carrier frequency fc = 2GHz.

Fig. 1 which reports a ten seconds realization of the dynamic
channel with E

[
L(t)

]
= 15 delays on average. As can be

seen from the figure the channel exhibits a reasonable amount
of dynamical behavior, e.g. the overall number of delays is
changing over time and also the straight line patterns of the
delays are quite apparent.

The simpler and more static channel model described
comprises the state-of-the-art reference. The intention with
the more realistic and dynamic channel model described is
to mimic a time-varying and fluctuating behavior of L(t),
{
τ

�
(t)
}

and
{|τ

�
(t)− τ

k
(t)|}. Our goal is to investigate how

incorporation of such dynamics affects the pilot-aided channel
estimation performance.

IV. PROPAGATION DELAY ESTIMATION

Assuming the reference channel model (4) as described in
Section III-A, we reformulate the observation model (2) as

y = T(τ )α + n, (6)

where we have introduced a M × L matrix T(τ ), the vector
α = [α1 , α2 , . . . , αL

]� and the additive noise vector n. The
matrix T(τ ) depends on the delay parameters and the pilot
symbol positions in such a way that its (m, �)’th entry reads

T
m,�

= exp
(

− j2π
p(m)

N

τ
�

Ts

)

,
m = 1, 2, . . . , M,

� = 1, 2, . . . , L,

where Ts denotes the sampling time of the communication
system. Notice that the L columns building up the matrix T(τ )
are of identical structure and by system design the parameters
N, Ts and P are known - only the delays {τ

�
} are unknown.

The theoretical covariance matrix associated with y reads

R := E

[

yyH
]

= T(τ )ATH(τ ) + σ2I
M

, (7)

where we have implicitly assumed that any component of α is
statistically independent of any component of n. Furthermore,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2010 proceedings



A := E
[
ααH

]
is a L × L diagonal matrix due to the

uncorrelated scattering assumption. Notice in (7), that since
the delay parameters are assumed static the covariance matrix
R does not change over time.

Now, any vector in the null space of TH(τ ) is an eigen-
vector of R with associated eigenvalue σ2. Therefore, the
particular eigenvectors of R not belonging to the null space
of TH(τ ) are all associated with eigenvalues strictly greater
than σ2. This key fact provides insight on how the signal
subspace and the noise subspace can be separated according
to the individual magnitudes of the eigenvalues. From a proper
design of the set P , the structure inherited by the matrix T(τ )
allows for two specific submatrices to be related by a simple
rotational (i.e. unitary) transform. Estimation of this unitary
transform is essentially how the ESPRIT algorithm is used to
estimate the unknown delay parameters, see [2].

Obviously, the theoretical covariance matrix R is not avail-
able. Instead the ESPRIT algorithm is applied to some ‘pru-
dent’ estimate of the matrix. Observations which we denote
by
{
y

k

}
are collected temporally, and in a generic manner we

arrange K of such vectors in the M × K matrix

Y :=

⎡

⎢
⎣

| | |
y

1
y

2
· · · y

K

| | |

⎤

⎥
⎦ . (8)

The estimate used could then be the sample covariance matrix

R̂ :=
1

K
YYH or R̃ :=

1

2

(

R̂ + JR̂�J
)

,

where R̃ is the centrosymmetric equivalent1 of R̂. Here J

denotes the M ×M reversal matrix with 1’s in its entire anti-
diagonal and 0’s elsewhere, see [12, Sec. 4.8, 6.5.8].

If instead we assume the more realistic and dynamic channel
model (3) as described in Section III-B, the entire situation is
crucially altered. In (6), the delay parameter τ = τ (t) is now
time-variant and the basis of the underlying signal subspace
is therefore changing over time (potentially, the dimension
changes too, e.g. while gathering data for the matrix Y).
Essentially, the rotational transform to be estimated is time-
variant since the delay parameters no longer stay fixed and
hence, the basic assumptions for ESPRIT are not satisfied. Yet,
by considering only time frames of sufficiently short duration,
the delay fluctuations can be considered negligible. Finally, to
achieve improved estimation accuracy and reduced complexity
we employ Unitary ESPRIT [7], not standard ESPRIT.

A. Spatial Smoothing

To decrease any disturbing impact from the time-varying
delay parameters it seem obvious to use an observation matrix
Y where K is as small as possible. With K small, only
a few observations are collected in the time direction and
this fact complies well with the rigorous latency requirements
of today’s communication systems. If the number of pilot

1The theoretical covariance matrix in (7) is Toeplitz when the subcarrier
spacings between adjacent pilots are all identical.

symbols M is relatively large and if the set P is designed
appropriately, we can apply a so-called spatial smoothing tech-
nique. By doing so we artificially build up more time-direction
observations by suffering on overall dimension (aperture) in
the frequency direction. By applying a vertical sliding window
of size M1 ≤ M to the M ×K matrix in (8) we obtain a new
observation array of size

M1 × K(M − M1 + 1).

Notice how the attribute of wide-sense stationarity in the
frequency domain (inherited from the uncorrelated scattering
assumption in the delay domain) is paramount when applying
the smoothing window. Obviously, the number M1 should be
chosen according to a trade-off between aperture and estima-
tion accuracy. Choosing M1 smaller generates more snapshots
while is (simultaneously) penalized by poorer ability to resolve
closely displaced delay parameters. Notice that with K = 1
the data matrix Y in (8) has unit rank and consequently R̂

only holds a single nonzero eigenvalue. In this case we should
indeed make sure that M −M1 + 1 exceeds the total number
of delays in the channel - otherwise there are not enough
nonzero eigenvalues for ESPRIT to process. Spatial smoothing
techniques are commonly employed to decorrelate coherent
signal sources, see e.g. [13] and the references therein.

V. PERFORMANCE EVALUATION

In this section we evaluate the pilot-assisted channel esti-
mation performance of the LMMSE estimator from [2] using
Unitary ESPRIT as delay estimation tool. For all configu-
rations considered we evaluate uncoded bit-error-rate (BER)
performance of the OFDM system. We investigate the impact
of spatial smoothing as a function of the window size M1 and
the two different channel models are treated separately. We
consider a 3GPP LTE alike scenario with system parameters:

N = 2048, Nu = 1200, Ts = 32.55ns, M = 200.

The duration of the cyclic prefix is 4.69μs, corresponding to
144 Ts-samples. A total of 14 OFDM symbols are transmitted
every millisecond and four of these carry M = 200 pilots
each. We assume the pilot symbols to be evenly positioned
along the Nu = 1200 active subchannels with a fixed spacing
of six subcarriers, i.e.

P =
{
3, 9, 15, . . . , 597, 603, . . . , 1185, 1191, 1197

}
. (9)

The set of pilot symbol positions P in (9) represents a uniform
linear array of sensors with maximum overlap. The carrier
frequency of the system is assumed to be fc = 2GHz and
we consider a receiver traveling at walking speed, i.e. the
maximum Doppler frequency is assumed to be f

D
= 10Hz.

The digital modulation scheme used is QPSK (gray coded),
both for data symbols and pilot symbols.

A. Performance in Static Reference Channel

As the static reference channel we employ the 3GPP EVA-
profile from [5, Annex B.2] which constantly holds L = 9
multipath echoes with fixed delays and its maximum excess
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Figure 2. BER performance as a function of M1 . The two grey-dashed lines
indicate the BER performance at 10dB and 25dB of signal-to-noise ratio
(SNR) using true/known channel frequency responses.

delay is approximately half the duration of the cyclic prefix.
To visualize how the window size M1 impacts the overall
system performance, we consider a span from M1 = 200
towards M1 = 10, corresponding to no smoothing and full-
scale smoothing, respectively. Figure 2 reports the uncoded
BER-performance of the OFDM system as a function of the
window size M1 . We always feed the true number of delays
(i.e. L = 9) directly to Unitary ESPRIT, since estimation
of the number of channel echoes is not an objective in this
paper. In Fig. 2, it is interesting to note that a rather wide
range of window sizes are leading to the same degree of
performance (near to that of using known channel coefficients).
Even with K = 1 we realize that near-optimal performance
is achievable. However, additional smoothing is required and
the range of window sizes inheriting splendid performance is
more tight when K is smaller. Notice also the immediate and
steep performance gains obtained when M1 decreases from its
maximum value M = 200. This behavior partly reflects the
fact that rank is building up in the covariance matrix estimate,
cf. the discussion at the end of Section IV. Finally, recall that
the inter-delay gaps are persistently fixed in this scenario and
hence, the resolvability issues for Unitary ESPRIT to deal with
are identical/constant for all individual channel realizations.

B. Performance in Dynamic Multipath Channel

With a channel inheriting additional dynamical behavior we
now repeat the same simulation study as just described in the
previous section. Hence, we wish to visualize the impact of the
window size M1 in a scenario where the delay resolvability
issue is non-constant across the individual realizations of
the channel. For simulation technical reasons the dynamic
channel holds fifteen echoes on average2, i.e. L(t) is Poisson

2Basically, we require P
(
L(t) = 0

)
to be negligible.
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Figure 3. BER performance as a function of M1 . The two grey-dashed lines
indicate the BER performance at 10dB and 25dB of SNR using true/known
channel frequency responses.

distributed with mean parameter equal to 15. The maximum
excess delay is the same as for the static reference channel
and also the power delay profile is similar to that of the
static reference channel. Since E

[
L(t)

]
= 15, then roughly

anything from five to twenty-five echoes can be observed in the
instantaneous realizations of the channel. In some realizations
the delays will tend to cluster while in others tend to be more
dispersed. As before, we feed the true number of delays to
Unitary ESPRIT such that it always seeks for the instantaneous
amount of channel echoes. Figure 3 illustrates how the window
size M1 affects the system performance in this case.

As can be readily seen from Fig. 3, the wide range of
window sizes leading to the same degree of performance is not
present anymore. The curves are still bathtub shaped, however,
notably less steep and edged compared to Fig. 2. Also, none
of the curves appear tight along the known channel bound as
in the first case considered. This is jointly caused by the fact
that more delays have to be estimated on average and since the
instantaneous realizations of the channel sometimes trigger the
delays more clustered. If for system design purposes we were
to select and fix a single value of M1 , then based on Fig. 2,
anything in the range from 90 to 150 would seem appropriate.
Based on Fig. 3, however, the optimum value of M1 seems to
appear tightly around 120.

C. State-of-the-art Comparison

To get a full picture of the BER performance across a wide
SNR-range we have fixed M1 = 120 and conducted another
simulation study. We now compare the LMMSE estimator
from [2] using Unitary ESPRIT against the robustly designed
state-of-the-art channel estimator from [1]. Our comparison is
carried out using the dynamical channel with parameters as in
the previous section. Figure 4 reports the outcome, where two
selected values for K are shown, namely K = 1 and K = 40.
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Figure 4. BER-performance as a function of average SNR.

In the SNR-range from −10dB to 15dB the state-of-the-art
solution is marginally outperformed with K = 1. However,
when using K = 40 the state-of-the-art solution is more
notably outperformed and in a slightly wider SNR-range.
That is, better or similar performance can be achieved us-
ing the LMMSE estimator from [2] together with Unitary
ESPRIT. Yet, the state-of-the-art solution operates on lower
computational complexity and this fact directly implies a need
for complexity reductions in order to comparably gain the
performance enhancements suggested in Fig. 4.

Notice from Fig. 2, where the static channel model was
assumed, that a similar study as reported in Fig. 4 would
conclude that the state-of-the-art solution could be notably
outperformed in the entire SNR-range considered, even with
K = 1. This follows since the BER performance in Fig. 2
with K = 1 and M1 = 120 is almost as good as using
known channel frequency responses, both at 10dB and 25dB
of SNR. The point here is that the channel model selection
can importantly affect the results obtained. In general, validity
of the evaluated algorithm performance is achieved through
adequate and comprehensive modeling.

VI. CONCLUSION

In this paper we have considered channel estimation tech-
niques for pilot-aided OFDM systems, where the estimation is
grounded on a parametric model of the wireless channel. The
multipath delay parameters in the channel model have been es-
timated via the Unitary ESPRIT algorithm and spatial smooth-
ing techniques have been applied to improve the estimation
accuracy. Incorporation of the delay estimates in a LMMSE
estimator allows for improved performance compared to the
robustly designed state-of-the-art solution. That is, the state-
of-the-art channel estimator can be outperformed over a wide
SNR-range. Yet, computational complexity and estimation of
the instantaneous number of channel echoes remain critical
issues for the opposing channel estimator investigated.

In order to provide a rigorous performance assessment of the
opposing channel estimation solution, we have compared state-
of-the-art channel modeling against a refined channel model
of additional dynamical nature. The main additional features
comprise a time-varying number of channel echoes together
with fluctuating delay positions, i.e. non-constant inter-delay
gaps. From simulations we have analyzed the impact of spatial
smoothing techniques when used to improve the multipath
delay estimation accuracy. Our results indicate that both
estimation accuracy and the optimum smoothing parameters
are notably affected with increased dynamical behavior of the
channel model assumed.

To conclude, our work shows that the selection of appropri-
ate channel models is crucial when assessing the performance
of receiver algorithms. Choosing inadequate models may
imply misleading comprehension and could therefore yield
improper algorithm selection for practical applications.
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Abstract—In this paper, an iterative enhancement of the robust
Wiener filter (RWF) estimator is presented for a turbo-codedor-
thogonal frequency division multiplexing (OFDM) system under
the umbrella of the 3GPP Long Term Evolution. The proposed
scheme can operate with uncoded or coded feedback, and
outperforms the conventional linear RWF in the whole signal-to-
noise ratio (SNR) range with both approaches. Results show that
most of the gain is obtained in the first iteration of the algorithm,
and better performance is achieved with the coded feedback
scheme. A good tradeoff between accuracy and complexity is
achieved by selecting a low number of turbo coding iterations
(TCI) in the iterative loop and concentrating most of them at the
final decoding stage. Following this design, cell spectral efficiency
gains of around 2.7 % and 6.5 % can be obtained with respect
to linear RWF for micro- and macro-cell scenarios respectively.

I. I NTRODUCTION

Over the recent years, an increasing demand for higher
data rates in wireless communications systems has arisen in
order to support broadband services. To achieve such high
data rates, wideband transmission over the dispersive mobile
channel is required. A highly efficient way to cope with
the frequency selectivity of wideband channels is orthogo-
nal frequency division multiplexing (OFDM). In OFDM, the
transmission bandwidth is divided into lower-rate narrowband
orthogonal subcarriers. This, together with the employment of
a proper cyclic prefix (CP), allows simple equalization of the
multipath channel [1]. The ability to easily cope with multipath
distortion and the high spectral efficiency has motivated the
election of OFDM in upcoming wireless standards, such
as the 3GPP Long Term Evolution (LTE) [2] or the IEEE
802.16e-2005 standard (WiMAX) [3]. In both standards, pilot-
assisted channel estimation (PACE) is defined in order to allow
coherent detection at the receiver.

When PACE is employed, pilot symbols, known by both the
transmitter and the receiver, are sent in pre-defined subcarrier
locations. By processing the received signal at these positions,
the receiver can estimate the whole channel response for
each OFDM symbol. Minimum mean-squared-error (MMSE)
interpolation of the channel response has been proposed as a
solution [4], known as Wiener filtering interpolation. Although
it exhibits the best performance among the existing linear

algorithms in literature, it requires accurate knowledge of
second order channel statistics, which is not always feasible
at a mobile receiver. To overcome this, a robust design of
the filter can be used [5], which eases the practical imple-
mentation while still keeping an acceptable performance. To
further improve the accuracy of the estimator, iterative channel
estimators can be employed. In these schemes, the estimates
are improved by feeding back data decisions to the channel
estimation block in an iterative fashion, as done for instance
in [6], [7]. However, these schemes usually suffer from a
prohibitive computational complexity.

In this paper, we propose an iterative enhancement of the
robust Wiener filter (RWF) in a turbo-coded OFDM system.
The complexity of the scheme can be tuned by varying
the number of channel estimation iterations as well as the
number of iterations inside the turbo decoder. The performance
of the estimator is evaluated for LTE parameters, showing
that improved accuracy can be achieved while keeping the
computational complexity at a reasonable level, making it
suitable for practical implementation in a mobile receiver.

The remainder of the paper is organized as follows: in
Section II, the considered OFDM system is described. The
proposed iterative scheme is presented in Section III, and its
performance is analyzed in Section IV. Finally, Section V
concludes the work.

II. SYSTEM DESCRIPTION

A simplified block diagram of the considered OFDM sys-
tem, with classical linear reception, is depicted in Fig. 1.On
the transmitter side, the bit streamb is fed to the turbo encoder
block, which follows 3GPP Release 7 specifications [8]. This
block contains a rate 1/3 turbo encoder, a rate matching
module that performs repetition or puncturing of the coded bits
depending on the selected coding rate, and a bit interleaver.
The coded bits, denoted by the vectorc, are then modulated
onto a QPSK, 16QAM or 64QAM constellation and pilot
symbols are inserted in the data stream. These modulated
symbols, both data and pilots, are mapped onto theNu central
subcarriers of the system, and an inverse fast Fourier transform
(IFFT) of sizeNfft is performed to obtain the time-domain



Fig. 1. Block diagram of the considered system with classical linear reception

OFDM signal. After the addition of the CP, the signal is
transmitted over a wireless multipath channel characterized
by its channel impulse response:

g(τ, t) =

Nt−1∑

i=0

αi(t)δ(τ − τi) (1)

whereαi(t) are wide sense stationary, uncorrelated complex
Gaussian random path gains at time instantt, with their
respective delaysτi. Nt denotes the total number of paths.

At the receiver, the CP is first discarded, and a fast Fourier
transform (FFT) is performed to recover the frequency-domain
signal. Assuming that the channel is static over the duration
of one OFDM symbol and that the CP is longer than the
maximum excess delay of the channelτNt−1, the signal
yu ∈ CNu can be described as:

yu = Xuhu + wu (2)

Note that the subindexu indicates that only theNu subcarriers
filled with symbols are considered. In (2),Xu ∈ CNu×Nu

is a diagonal matrix containing the transmitted symbols and
hu ∈ C

Nu is a vector with the channel transfer function (CTF)
coefficients at each subcarrier:

hu[k] =

Nt−1∑

i=0

αie
−j2πkτi
T0Nfft (3)

where k denotes the subcarrier index andT0 denotes the
sampling period. Finally,wu ∈ CN

u is an additive white
Gaussian noise vector with varianceσ2

w.
In order to recover the transmitted bits, the channel estima-

tor block needs to obtain an estimate ofhu, which is used
by the soft demodulator to derive the soft estimatesc̃ of the
coded bits. To this end,Np pilot symbols are transmitted in
some predefined subcarrier positions. The received signal in
these locations can be written as:

yp = Xphp + wp (4)

with Xp ∈ CNp×Np and (wp,hp) ∈ CNp being subsets of
the corresponding matrices defined in (2). Finally, the soft
estimates of the coded bits pass through an iterative turbo
decoder, which is based on the max-log maximum a-posteriori
algorithm [9], [10], obtaining as output the hard decisionson
the information bitŝb.

III. I TERATIVE ROBUST WIENER FILTER

In this section, we present an iterative enhancement of the
RWF in which the demodulated data symbols are re-used, as if
they were known, in order to improve the estimates’ accuracy.
The operation of the algorithm is depicted in Fig.2. In the first
stage, only the pilot symbols are used to obtain the estimate
of the CTF which can be expressed as:

ĥ
(0)

RWF
= R̄huhp

(R̄hphp
+ β · σ2

w · Ip)
−1ĥLS,p (5)

where ĥLS,p = X−1

p
yp ∈ CNp is the least squares channel

estimate in frequency-domain at pilot positions,β ∈ R is a
constant that depends on the modulation,Ip ∈ NNp×Np is the
identity matrix and (̄Rhuhp

∈ CNu×Np , R̄hphp
∈ CNp×Np)

are subsets of the covariance matrixR̄hh ∈ C
Nfft×Nfft . The

latter is defined assuming a uniform power delay profile (PDP)
with paths’ delays uniformly distributed between 0 andτNt−1

as [5]:

R̄hh[k, n] =
1 − e

−2πj
τNt−1

T0
(k−n)/Nfft

2πj
τNt−1

T0

k−n

Nfft

(6)

The estimate of the CTF in the used subcarriersĥ
(0)

RWF
is

then employed, together with the received signal, in the soft
demodulator block to obtain an estimate of the transmit coded
bits c̃. Note that in this block, the pilot symbols have been
removed from the information stream. If the maximum number
of iterations has not been reached, the vectorc̃ is decoded
using an iterative turbo decoder, withM turbo coding iterations
(TCI), thus obtaining a hard estimate of the uncoded transmit
bits b̂. Finally, the vector̂b is re-encoded and posteriorly re-
modulated to QPSK/QAM symbols in the mapper block. It is
important to highlight here that this block is also responsible
to re-multiplex the pilots with the data symbols in order to
keep the same structure as in the received signal. This point
is the end of the first stage, which is related toi = 0 with i
denoting the iteration index. From this point on(i > 0), all
demodulated transmit symbols, both data and pilots, are used
in the estimation process. Hence, it is appropriate to rewrite
the estimate of the CTF fori > 0 as:

ĥ
(i)

RWF
= R̄huhu

(R̄huhu
+ β · σ2

w
· Iu)−1(X̂u)−1yu (7)

where X̂u ∈ C
Nu×Nu is a diagonal matrix whose elements

are the estimated transmit symbols (both data and pilots).
This iterative process is repeated until the maximum number

of iterationsImax is achieved. Then, the vectorc̃ is decoded
with N TCI, obtaining the output bit vector̂b. It is worth men-
tioning the employment of a different number of TCI inside
and outside the estimation loop since it will be demonstrated
later that it plays an important role on the system performance.

IV. PERFORMANCEEVALUATION

In the following, the performance of the iterative estimator
proposed in Section III will be evaluated by means of Monte
Carlo simulations. To this end, a single-input single-output
(SISO) downlink OFDM system based on the 10 MHz LTE
physical layer parameters [11] will be considered. These



Fig. 2. Iterative RWF Block Diagram

TABLE I
SIMULATION PARAMETERS

Sampling frequency 15.36 MHz

Subcarrier spacing 15 KHz

Nfft 1024

Nu 600

CP length 5.2a/4.68b µs

Pilot spacing 6

Pilot overhead 4.76%

Slot duration 0.5 ms

OFDM symbols per slot 7

Antenna scheme SISO

User speed 3 kmph

MCS settings QPSK: 1/6, 1/3, 1/2, 2/3

16QAM: 1/2, 2/3, 3/4

64QAM: 1/2, 2/3, 3/4, 4/5

aFirst OFDM symbol in a slot.
b2th − 7th OFDM symbol in a slot.

parameters are gathered in Table I as well as the modulation
and coding set (MCS) formats employed. QPSK modulation
has been considered for pilot symbols, which are transmitted
in the first and fifth OFDM symbol within a slot with an even
frequency-domain spacing of 6. Furthermore, Typical Urban
20 taps channel model [12] is employed in the simulations and
low user speed is considered. Results are presented in terms
of packet error rate (PER), spectral efficiency (bits/s/Hz)and
mean squared error (MSE) of the CTF as a function of the
signal-to-noise ratio (SNR).

A. Turbo Coding Iterations Evaluation

The goal of this subsection is to provide the optimum
distribution of TCI inside and outside the estimation loop.
Furthermore, in order not to increase the complexity at the
receiver, while compared with the linear RWF, the maximum
number of TCI is fixed to beM + N = 8. In the rest of
the document, only one iteration of the algorithm has been
considered since it has been observed that most of the gain
is obtained in this first stage. Fig.3 depicts the average MSE
in dB for the proposed iterative estimator at the end of the
first iteration using QPSK1/2. The number of TCI inside
the estimation loop (M) varies from 0 (uncoded feedback) to
8. For the sake of comparison, the MSE of the linear RWF
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Fig. 3. Average MSE for RWF with QPSK 1/2

TABLE II
RELATIVE SPECTRAL EFFICIENCY GAINS(%)

Configuration M=2, N=6 M=1, N=7 M=3, N=5 M=4, N=4

Relative gain 4.4 3.3 1.6 0.5

(i = 0) has also been plotted. First of all, the employment
of the iterative RWF allows for a reduced MSE compared
to the linear algorithm. Besides, it can be observed that the
estimates’ accuracy is highly improved withM = 2 TCI since
the MSE is significantly lowered. There is not appreciative
gain by increasingM further than 2. From the results, we can
conclude that it is worth employing a low number of TCI (M)
in the inner decoding while concentrating most of them (N)
in the last one to correct as many errors as possible.

Table II gathers the relative gains in spectral efficiency ofthe
iterative RWF ati = 1 with respect to the linear estimator with
different combinations ofM andN. In this case, 16QAM2/3
has been considered as well as an operating point atSNR =
15 dB. The results confirm the statement above mentioned
since the configuration withM = 2 andN = 6 provides the
highest gain∼ 4.4 %.

Finally, Fig. 4 depicts PER vs SNR curves for theM =
2, N = 6 configuration for two selected MCS, namely QPSK
1/2 and 16QAM 2/3. Results show that in both cases, this
configuration performs slightly better than uncoded feedback
(i = 1, M = 0, N = 8), obtaining a gain around∼ 0.3 dB at
PER = 10−2 with respect to the linear estimator (i = 0).

B. Spectral Efficiency Results

In this section, we extend the previous results and build
the link adaptation (LA) curves for the iterative RWF. Fig. 5
presents the spectral efficiency results for: uncoded feedback,
coded feedback withM = 2, N = 6 and linear RWF. The
latter has been represented for comparison purposes. Results
show that coded feedback withM = 2, N = 6 obtains
the highest gains with respect to the linear algorithm. At
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Fig. 4. Packet error rate for: (a) QPSK 1/2; and (b) 16QAM 2/3

SNR = −2 dB, which corresponds to QPSK 1/6, a relative
gain of 36 % in spectral efficiency is achieved. At medium
SNR, e.g.,SNR = 15 dB (16QAM 2/3), the gain is reduced
to 4.4 % whereas atSNR = 25 dB (64QAM 4/5) it is only
1.3%. These gains are further reduced in the case of uncoded
feedback, being almost negligible at low SNR. This is due
to the fact that at this SNR range many errors committed in
the symbols’ detection are fed back to the channel estimator,
which will use this wrong information as correct symbol
decisions. However, we must highlight that no degradation in
performance is observed, i.e., the iterative algorithm is always
better than the linear one even at low SNR and considering
uncoded feedback.

Finally, the LA curves are mapped to cell spectral efficiency
by means of SNR distributions for macro- and micro-cell envi-
ronments [13]. The relative spectral efficiency gains obtained
with the iterative estimator compared to the linear one are
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Fig. 5. Spectral efficiency curves for RWF

TABLE III
RELATIVE CELL EFFICIENCY GAINS (%)

Cell environment M=0, N=8 M=2, N=6 M=2, N=8

Micro 0.8 2 2.7

Macro 2.2 5 6.5

presented in Table III, which also includes results for a new
configuration withM = 2 and N = 8 TCI. As expected,
the gains are higher for coded feedback and for macro-cell
environment, since lower values of SNR are more likely to
happen in this scenario and, as shown before, the iterative
estimation is better exploited for medium-low SNR. Note that
the M = 2, N = 8 configuration obtains the highest gains
up to 6.5 % and 2.7 % in macro- and micro-cell scenarios,
respectively.

C. Complexity

Regarding the complexity of the iterative approach, it has
to be mentioned that each iteration of the algorithm has a
complexity of the same order as the one of linear RWF.
For this estimator, the main contribution to the complexity
comes from the term(R̄huhu

+ β · σ2

w
· Iu)−1. This ma-

trix can be pre-calculated and stored for several scenarios,
thus only one run-time matrix multiplication is required (N2

u

complex multiplications). However, this complexity can be
significantly lowered by using a low-rank reduction based
on the singular value decomposition (SVD) of the channel
autocovariance matrix̄Rhuhu

[5]. This low-rank estimator
only requires2pNu multiplications wherep is the index of the
first singular value approximately equal to zero. Fig. 6 depicts
the amplitude of the singular values of̄Rhuhu

for different
channel profiles. Note that in scenarios with long maximum
path delay, such as the exponential decaying profile (EDP)
with τNt−1 = 17 µs, the number of singular values with
significant amplitude becomes larger; therefore, the number
of required multiplications (complexity) increases. Table IV
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Fig. 6. SVD ofR̄huhu
in 10 MHz

TABLE IV
COMPLEXITY REDUCTION (%)

Channel profile Selectedp Complexity reduction

Indoor A 10 97

Typical Urban 28 91

Pedestrian B 40 87

EDP 160 47

summarizes the complexity reduction achieved by means of
the low-rank estimator with respect to the full-rank RWF. This
reduction is strictly dependant on the length of the channel
considered, being up to97 % for Indoor A profile.

V. CONCLUSION

In this work, we have proposed an iterative enhancement of
the RWF estimator with relatively low complexity. It has been
seen that most of the gain is obtained in the first iteration for
both uncoded and coded feedback. Even though the latter is
shown to provide the best results, both approaches improve
the performance with respect to the linear estimator for allthe
SNR range. The optimal combination of TCI among the inner
and outer turbo decoding has been investigated fixing a total
number ofM + N = 8 for complexity constraints. Results
show that selectingM = 2 and N = 6, relative spectral
efficiency gains up to36 % can be obtained compared to the

linear RWF. Furthermore, by slightly increasing the number
of TCI in the last decoding toN = 8, cell spectral efficiency
gains of 2.7 % and 6.5 % are achievable over linear RWF
for micro- and macro-cell environments, respectively. Finally,
using a low-rank estimator based on the SVD decomposition
of the channel autocovariance matrix, the complexity can
be significantly reduced, especially for channels with short
maximum excess delay.
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Unification of Frequency Direction PACE
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Abstract—Frequency direction Pilot-symbol Aided Channel
Estimation (PACE) for Orthogonal Frequency Division Multi-
plexing (OFDM) is crucial in high-rate wireless systems. The
choice of an estimator for upcoming standards, such as the
Long Term Evolution (LTE) of UTRA, has to take into account
their specificities, namely the presence of virtual subcarriers and
non-sample-spaced channels. To ease this choice, we propose
a unified presentation of estimators encompassing most of the
algorithms that can be found in literature, which only differ
by the assumptions made on the channel. This unification leads
to common Mean Squared Error (MSE) expression, both for
sample-spaced and non sample-spaced channels, and enables
easy, yet comprehensive comparisons between the estimators.

I. INTRODUCTION

In the frame of OFDM for upcoming wireless systems,

much attention has been given to pilot-based channel esti-

mators (PACE) showing that the performance tradeoff of the

algorithms depends on the relationship between the Power

Delay Profile (PDP) properties and the frequency-domain pilot

spacing. Deterministic approaches have, so far, been sepa-

rated into time- and frequency-domain solutions. Deterministic

time-domain solutions are: the Time-Domain Least Squares

(TDLS) [3], [4], the Maximum Likelihood (ML) approach

[5], [6] and the Noise Reduction Algorithm (NRA) [7]. Deter-

ministic frequency-domain methods are Spline, Gaussian or

Lagrange interpolation, and require higher pilot overhead to

achieve an acceptable performance [8]. Bayesian approaches

such as the Minimum Mean Squared Error (MMSE) estimator

in time domain and/or frequency domain have been proposed

in [2], [3], with complexity reduction by Singular Value

Decomposition (SVD) suggested in [9].

The major contribution of this paper is to provide a frame-

work for the choice of a channel estimation algorithm for

the upcoming PACE OFDM-based standards. In this study we

derive a uniform algorithm and Mean Squared Error (MSE)

formulation, covering all studied algorithms and thereby facil-

itating a generic performance comparison. Three main effects

will be studied: the impact of a priori knowledge in a full

bandwidth system with a SS channel, the effect of virtual

subcarriers and the effect of a NSS channel. Performance

simulations are conducted in a LTE context and will show the

importance of knowing the exact tap delays, for the studied

algorithms, at the receiver in order to avoid the leakage effect

due to NSS channel.

II. ANALYTICAL MODEL

A. Multipath Channel Model

The OFDM signal is transmitted over a block fading nor-

malized multipath Rayleigh channel with a Channel Impulse

Response (CIR) given by:

g(τ) =
N−1
∑

i=0

aiδ(τ − τi) with
N−1
∑

i=0

E{|ai|
2} = 1 (1)

where ai are the different wide sense stationary, uncorrelated

complex Gaussian random path gains with their corresponding

time delays τi, N is the number of paths and τN−1 is assumed

to be smaller than the cyclic prefix.

B. Baseband Model

Due to spectral constraints, many multicarrier systems make

use of only a subset of Nu < Nfft subcarriers, leaving unused

the Nfft −Nu remaining ones, usually placed at the edges of

the transmission bandwidth. The latter are the so-called virtual

subcarriers, and this scenario will be referred to as Partial

Bandwidth, where Nfft is the FFT size. In such a context,

the received signal at the used subcarriers can be described

by:

yu = Duhu + wu = DuFug + wu (2)

where the (frequency) Channel Transfer Function (CTF) at the

used subcarrier positions hu ∈ CNu is:

hu = Fug (3)

Du ∈ CNu×Nu is a diagonal matrix with the transmitted sym-

bols at the used subcarriers, wu ∈ CNu is the AWGN vector

corresponding to the used subcarriers, and Fu ∈ CNu×Nfft is

a subset of the Fourier matrix F with Fu[k, n] = F[k, n] =

e
−j2π nk

Nfft for −Nu

2
≤ k ≤ Nu

2
− 1.

C. Received Signal at Pilot Subcarriers

Np pilot symbols are transmitted in positions {pm, 0 ≤
m ≤ Np − 1}. The received signal in these pilot subcarriers
can be then written as:

yp = Dphp + wp = DpFpg + wp (4)

Dp ∈ CNp×Np , hp ∈ CNp , Fp ∈ CNp×Nfft and wp ∈ CNp

with Dp[m,m] = Du[pm, pm], hp[m] = hu[pm], Fp[m,n] =
Fu[pm, n] and wp[m] = wu[pm].
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III. CHANNEL ESTIMATION ALGORITHMS

The initial Least Squares (LS) estimate at the pilots is :

hls = Dp
−1yp = hp + Dp

−1wp (5)

The pilot symbols are M-PSK modulated with unit power and

the number of pilot symbols used Np is assumed to be larger

than the normalized maximum delay of the channel.In the

following, at sampling rate τs, two scenarios are considered:

Case 1 A SS-CIR scenario, where it is assumed that the

delays τi are sample spaced on the same grid as the

receiver and all τi

τs
are integer values.

Case 2 A NSS-CIR scenario, where it is assumed that the

delays τi are not sample spaced on the same grid as

the receiver and some τi

τs
are not integer values.

A. Sample-Spaced Channel

The different studied algorithms can be written in the

following generic formula:

hest = Fuxgest = FuxMesthls (6)

which will be specified for each estimator.

1) Time-Domain Least Squares: This estimator [3], [4]

assumes no a priori knowledge of the channel, and estimates

Nx = Np samples of g, corresponding to gp[n] = g[n] for
0 ≤ n ≤ Np − 1. The formulation of TDLS is:

htdls = Fupgtdls = FupF
−1

pp hls (7)

where Fpp ∈ CNp×Np and Fup ∈ CNu×Np correspond,

respectively, to Fpp[m,n] = Fp[m,n] and Fup[k, n] =
Fu[k, n] for 0 ≤ n ≤ Np − 1. For the TDLS estimator,
then, Mest = F−1

pp . Note that Fpp is always invertible due to

the Vandermonde structure of the DFT matrix [4]; however,

in a Partial Bandwidth scenario, this matrix can become ill-

conditioned depending on the number of virtual subcarriers.

2) Maximum Likelihood: The ML estimator [5], [6], as-

sumes that the receiver knows the CIR length, i.e, the last

channel path’s delay τN−1, and only estimates the Nx =
Ns = τN−1

τs
+ 1 first samples of the SS-CIR, corresponding

to gs[n] = g[n] for 0 ≤ n ≤ Ns − 1. The ML estimator is
expressed as:

hml = Fusgml = Fus(F
H
psFps)

−1FH
pshls (8)

where Fps ∈ CNp×Ns and Fus ∈ CNu×Ns correspond, re-

spectively, to Fps[m,n] = Fp[m,n] and Fus[k, n] = Fu[k, n]
for 0 ≤ n ≤ Ns − 1. In this case, Mest = (FH

psFps)−1FH
ps.

Similarly to the case of the TDLS estimator, the matrix Fps

is always of full column rank (for Np ≥ Ns), implying that

FH
psFps is of full rank. However, in the presence of virtual

subcarriers this matrix can become ill-conditioned, as for the

TDLS estimator.

3) Noise Reduction Algorithm : As a solution to the ill-

conditioning problems [11] of the previous estimators, a small

value can be added to the diagonal of the matrix to be

inverted [7], thus avoiding numerical instability :

hnra = Fusgnra = Fus(F
H
psFps + γnraIs)

−1FH
pshls (9)

where Is is the identity matrix of size Ns, and γnra is

a positive scalar value. From (9), it follows that Mest =
(FH

psFps + γnraIs)−1FH
ps. In a Full Bandwidth scenario with

evenly spaced pilot subcarriers, it can be shown that the

optimum value is γnra = Nsσ2
w.

4) Enhanced Noise Reduction Algorithm : The Enhanced

Noise Reduction Algorithm (ENRA) differs from the NRA by

only estimating the Nx = Nt samples of g which are not

null, i.e., gt[n] = g[τn/τs] for 0 ≤ n ≤ Nt − 1. Therefore,
the knowledge of the number of paths and their corresponding

delays is required. The estimator is given by:

henra = Futgenra = Fut(F
H
ptFpt + γenraIt)

−1FH
pthls (10)

where Fpt ∈ CNp×Nt and Fus ∈ CNu×Nt correspond,

respectively, to Fpt[m,n] = Fp[m, τn/τs] and Fut[k, n] =
Fu[k, τn/τs] for 0 ≤ n ≤ Nt − 1. It denotes the identity

matrix of size NT . Hence, for the ENRA Mest = (FH
ptFpt +

γenraIt)−1FH
pt. Analogously to the NRA, the value γenra =

Ntσ2
w is optimum in a Full Bandwidth with equally spaced

pilots scenario.

5) Wiener Filter: The Wiener filter (WF) estimator mini-

mizes the MSE of the estimate by making use of channel and

noise correlation properties, and has been broadly treated in

literature [2], [9], [10], [12]. It is classically formulated as:

hwf = Rhuhp
(Rhphp

+ σ2

wIp)
−1hls (11)

where Rhuhp
= E{huh

H
p } is the correlation matrix of hu and

hp, Rhphp
= E{hph

H
p } is the autocorrelation matrix of hp,

and Ip is the identity matrix of size Np. In the sample spaced

case, it leads to:

hwf = Futgwf = Fut(F
H
ptFpt + σ2

wR−1

gtgt
)−1FH

pthls (12)

For WF, Mest = (FH
ptFpt + σ2

wR−1
gtgt

)−1FH
pt.

Note that when no information about the channel correlation

is available, a robust design of the filter is proposed, and

consists of assuming a sample-spaced PDP with Ns samples

and equal mean power in all taps. In such conditions Fut =
Fus, Fpt = Fps and Rgtgt

= 1

Ns
Is, showing that this robust

WF implementation is equivalent to the NRA given in (9).

6) Generic Formulation: When observing the expressions

of the studied algorithms, a general formulation that covers all

the cases can be given by:

hest = Fuxgest = Fux(FH
pxFpx +γestCest)

−1FH
pxhls (13)

An overview over the specific values taken by each element

of (13) is given in Table 1.
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Table 1: Generalization of the algorithms

Estimator Fux Fpx γest Cest gx Nest

TDLS Fup Fpp 0 0 gp Np

ML Fus Fps 0 0 gs Ns

NRA Fus Fps Nsσ2
w Is gs Ns

ENRA Fut Fpt Ntσ2
w It gt Nt

WF Fut Fpt σ2
w R−1

gtgt
gt Nt

7) MSE of the Estimators: The different studied estimators

are all described by (6). It is then possible to evaluate their

respective performance by using one single generic MSE

expression. The MSE is calculated as:

MSE{hest[k]} = E{|hu[k] − hest[k]|2} (14)

Using (6), the MSE for the kth subcarrier becomes:

MSE{hest[k]} = Q[k, k] (15)

where

Q = Fux[(I − MestFpx)Rgxgx
(I − FH

pxM
H
est)

+ σ2

wMestM
H
est]F

H
ux (16)

Note that Rgxgx
= E{gxg

H
x } depends on the a priori

assumptions made by each estimator. The average MSE of

the estimator can consequently be defined as:

MSE{hest} =
1

Nu
tr{Q} (17)

In a Full Bandwidth (Nu = Nfft) scenario with a constant

pilot spacing ∆p = Nfft

Np
, the products between the DFT-

based matrices become diagonal matrices, and it is easy

to simplify (16). Under such conditions, the MSE of the

estimate becomes independent on the subcarrier index k. For
the estimators which do not assume any knowledge of the

mean power of the paths (TDLS, ML, NRA and ENRA), the

MSE reduces to the generic expression:

MSE{hest,full} =
γ2

est + NxNpσ2
w

(Np + γest)2
. (18)

B. Non-Sample-Spaced Channel

In an NSS scenario, there is at least one path of the

channel with a delay τi which is not an integer multiple

of the sampling period τs. In this situation, the ith column

of the leakage matrix L 1 will have non zero values for

every element, i.e., L[n, i] &= 0 ∀n. a is the vector of size

Nt containing only the channel taps. As a consequence, the

complex gain of the ith path will have a contribution on

all the samples of the equivalent SS-CIR. Fig. 1 illustrates

how NSS paths are mapped to the equivalent SS-CIR for

a simple example where Nfft = 64 and the channel is

g(τ) = 0.8δ(τ−0.5τs)+0.5δ(τ−3.5τs)+0.3δ(τ−7.5τs). As

1The relationship between g and a can be found to be: g =
1

Nfft
FHTa = La where T[k, i] = e

−j2π k
Nfft

τi
τs and L[n, i] =

1
Nfft

sin(π
τi
τs

)

sin( −π
Nfft

(n−
τi
τs

))
e
−j π

Nfft
((Nfft−1)

τi
τs

+n)
, L ∈ C

Nfft×N is the

leakage matrix, and represents how the complex gain ai of each channel path
is mapped to the SS-CIR.

can be seen, most of the power of each path is mapped to the

surrounding samples in the SS-CIR. It is especially interesting

how the last samples have significant amplitude, due to the

leakage of the first channel paths.
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Fig. 1. Leakage of the NSS-CIR paths to the equivalent SS-CIR

The estimators studied in the sample-spaced case rely on

the fact that most of the samples of g are zero, and thus

they can be canceled in the estimation problem. Obviously,

this assumption does not hold any more in the NSS scenario,

and the estimators must be modified accordingly. Due to the

ill-condition problems of the TDLS and ML estimators, only

NRA, ENRA and WF will be considered in the following.

1) Modified NRA: The NRA algorithm for SS channel is

based on the knowledge of the CIR length, i.e., the max-

imum excess delay of the channel, so that every sample

of g beyond this value is assumed to be zero. For the

NSS scenario, however, the length of the SS-CIR is Nfft

due to the leakage effect, which will cause a performance

degradation if Np < Nfft. Since the actual path delays are

considered unknown, the selection of the samples to estimate

can only be approximated: it is expected that they will be

concentrated at the beginning and at the end of the SS-CIR.

Therefore, a suboptimal solution to the problem, provided that

no knowledge of the actual channel paths is available, is given

by the Modified NRA, (MNRA), which is formulated as:

hmnra = Fumgmnra

= Fum(FH
pmFpm + γmnraIm)−1FH

pmhls
(19)

where the matrix Fum ∈ CNu×Nm is defined as:

Fum[k, n] =
{

Fu[k, n], 0 ≤ n ≤ (Nm(1 − α)) − 1
Fu[k,Nfft − Nm + n], (Nm(1 − α)) ≤ n ≤ Nm − 1

(20)

and Fpm ∈ CNp×Nu is defined analogously with respect

to Fp. Im is the identity matrix of size Nm. Furthermore,

the parameter γmnra is selected to be γmnra = Nmσ2
w,

analogously to the sample-spaced case.

Two parameters shall be adapted depending on the PDP and

σ2
w: Nm representing the number of samples of the equivalent

SS-CIR to estimate, and α representing the proportion of the

estimated samples in the final part of the SS-CIR.

2) ENRA and Wiener Filter: When using the ENRA or

the Wiener Filter estimator, it is assumed that the delays of

the channel are perfectly known, so that there is no need

to estimate the equivalent SS-CIR. Instead, the parameters
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to estimate are the complex gains ai of each of the paths,

represented by the vector a. The estimators can be rewritten
for the NSS scenario as:

henra = Tuaenra = Tu(TH
p Tp + γenraIt)

−1TH
p hls (21)

hwf = Tuawf = Tu(TH
p Tp + σ2

wR−1

aa )TH
p hls (22)

where the matrices Tu ∈ CNu×Nt and Tp ∈ CNp×Nt are

defined with respect to T in the same way as Fu and Fp

with respect to F. As in the SS case, γenra = σ2
wNt, and

Raa ∈ CNt×Nt is the correlation matrix of the channel gains,

i.e, Raa = diag{E{|a0|2}, . . . ,E{|aNt−1|2}} as we assume
i.i.d. channel taps. It can be seen that these definitions of the

ENRA and WF estimator are equivalent to (10) and (12) when

the channel is restricted to be sample-spaced.

3) MSE of the Estimators: Unlike the SS scenario, it is

difficult to find a general expression that includes all the

studied algorithms for an NSS channel. For this reason, we

will study the performance of a generic estimator such as:

hest = Mesthls (23)

which includes any linear estimator that can be expressed in

matrix form. With this formulation, the MSE over an NSS

channel is:

MSE{hest} = 1

Nu
tr

{

TuRaaT
H
u

−TuRaaT
H
p MH

est − MestTpRaaT
H
u

+MestTpRaaT
H
p MH

est + σ2
wMestM

H
est

}

(24)

and the specific values ofMest for each studied algorithm are:

Mest =







Fum(FH
pmFpm + γmnraIm)−1FH

pm, MNRA

Tu(TH
p Tp + γenraIt)−1TH

p , ENRA

Tu(TH
p Tp + σ2

wR−1
aa )TH

p , WF
(25)

IV. PERFORMANCE EVALUATION

In the following, the performance of the estimators dis-

cussed in section III will be studied via Monte Carlo sim-

ulations. A single-input single-output OFDM system with

physical layer parameters proposed for the downlink of UTRA

LTE will be used [1]. QPSK modulation is used for both pilot

and data symbols. Evenly spaced pilot symbols with a spacing

of ∆p = 6 subcarriers are transmitted in every OFDM block.

Two channel power delay profiles, with 20 equispaced taps

and a decay of 1dB per tap leading to an overall loss of 19dB,

are used for this simulation study. The “long SS” profile is

sample spaced of length 3.711 µs and the “long NSS” profile
is not sample spaced differing by 0.5 Ts added to all delays

of the “long SS” profile.

Results for Bit Error Rate (BER) using the studied estima-

tors as a function of the Signal-to-Noise Ratio (SNR) will be

given.
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Fig. 2. Performance of the different estimators in a Full Bandwidth OFDM
system (Nu = Nfft = 2048) and a pilot spacing of 6 for the “long SS”
channel.
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Fig. 3. MSE of the ML estimator for varying assumed CIR length and
different Nu, Nfft = 2048 and Eb/No = 15 dB

A. Sample-Spaced Scenario

The performance of the different studied algorithms in a

Full Bandwidth system using the “long SS” channel profile is

depicted in Fig. 2. From the BER results shown in IV-A, we

see that the TDLS curve lies 3.5 dB from the known channel

performance at Eb

N0
=10 dB, whereas this distance is reduced

to 0.25 dB for the ENRA and WF estimators.

In the case of partial bandwidth the TDLS totally fails, due

to bad conditioning. The ML fails as seen on Fig. 3, leading

to ill-conditionning of the matrix to be inverted, when the size

of the CIR is large for a given Nu.

B. Non-Sample-Spaced Scenario

The effect of having an NSS PDP on the classical algorithms

is studied. The BER results are given in Fig. 4 for the NRA,

MNRA, ENRA and WF using the “long NSS” channel profile.

It is noted that the ENRA and WF have the same performance
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Fig. 4. Effect of leakage on the classical algorithms in an LTE scenario with
Nu = 1200, Nfft = 2048 and a pilot spacing of 6 for the “long” NSS
channel.
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Fig. 5. MSE of the ENRA with different delay estimation errors in an LTE
scenario with Nu = 1200, Nfft = 2048 and a pilot spacing of 6 for the
“long” NSS channel.

as when employing the “long SS” PDP. The NRA, on the other

hand, suffers from significant degradation for Eb

N0
≥10 dB in

both MSE and BER. From these results it can be observed

that the knowledge of the tap delays of the PDP is of crucial

importance to avoid the leakage effect.

In Fig. 5 the robustness of the ENRA against delay es-

timation errors is studied. A random zero-mean Gaussian

error with variance σ2
τ has been added to the delay’s values

to simulate imperfect delay estimates, and the MSE of the

estimates has been represented. The results show that even

with small errors the ENRA suffers from severe degradation

as the SNR increases. Very high accuracy in the tap delay

estimates is therefore needed in order to avoid leakage.

V. CONCLUSION

In this paper, we have propose a unification of linear PACE

OFDM algorithms. Analysis and simulation results are first

given for a sample-spaced channel and Full Bandwidth. The

effects of introducing virtual subcarriers as well as a non-

sample-spaced channel are studied.

When Partial Bandwidth is used, the TDLS and ML algo-

rithms suffer from severe ill-conditioned matrices an cannot

be used as such if the number of virtual subcarriers is too

large.

When the channel is non-sample-spaced, exact knowledge

of the tap delays is necessary to avoid leakage, with the studied

algorithms, but even small errors of tap delay estimates lead to

significant performance degradation. This means that without

an accurate tap delay estimator the target peak data rates at

high SNR in LTE might be compromised.

A modified DFT based robust Wiener seems to be a good

candidate for low and middle range SNR (up to 15 dB).

However at higher SNR this solution is not recommended

and other solutions should be used. These could be based on

accurate tap delay estimation or iterative data aided estimation.
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ABSTRACT

This paper studies common linear frequency direction pilot-
symbol aided channel estimation algorithms for orthogonal fre-
quency division multiplexing in a UTRA long term evolution
context. Three deterministic algorithms are analyzed: the max-
imum likelihood (ML) approach, the noise reduction algorithm
(NRA) and the robust Wiener (RW) filter. A closed form mean
squared error is provided for these three algorithms. Analyti-
cal and simulation results show that, in the presence of virtual
subcarriers, the ML can suffer large performance degradation
due to ill-conditioned matrix issues. A solution to this problem
is to use the Tikhonov regularization method giving the NRA.
The equivalence between the NRA and the RW is proved an-
alytically. A practical implementation of the NRA and RW is
proposed based on partial-input partial-output FFT, leading to
6 to 8 times lower complexity than the reference implementa-
tion.

I. INTRODUCTION

Over the last years Orthogonal Frequency Division Multiplex-
ing (OFDM) has been adopted in high data-rates communica-
tion systems. By using a Cyclic Prefix (CP) the subcarrier or-
thogonality is preserved over the dispersive multipath channel.
OFDM is used in upcoming standards such as IEEE 802.16 and
UTRA Long Term Evolution (LTE) [1]. Both standards use co-
herent detection through Pilot-symbol Aided Channel Estima-
tion (PACE) with virtual subcarriers.

Peter Hoeher showed in [2] that the two dimensional inter-
polation problem of PACE could be solved by using 2 cascaded
orthogonal 1-D filters, giving virtually no performance loss
compared to the 2-D filter. The latency requirements of stan-
dards such as LTE or IEEE 802.16e limit the pilot span avail-
able for channel estimation in time direction to a low amount
of samples. This increases the importance of the frequency di-
rection interpolation which is the focus of this paper.

Much attention has been given to this topic showing that
the performance tradeoff of the algorithms depends on the
relationship between the Power Delay Profile (PDP) length
and the frequency domain pilot spacing. Deterministic ap-
proaches can be separated into time and frequency domain so-
lutions. Deterministic time domain solutions are: the Time Do-
main Least Squares (TDLS) [3] and [4], The Maximum Like-
lihood approach (ML) [5], [6] and The Noise Reduction Al-
gorithm (NRA) [7]. Deterministic frequency domain meth-
ods are Spline, Gaussian or Lagrange interpolation, and re-

quire higher pilot overhead to achieve an acceptable perfor-
mance [8]. Bayesian approaches such as the Minimum Mean
Squared Error (MMSE) in time domain or frequency domain
have been proposed in [2], [3], with complexity reduction by
Singular Value Decomposition (SVD) suggested in [9]. How-
ever, Bayesian approaches cannot directly be used as they need
large channel dependent matrix inversions and require accurate
knowledge of channel correlation properties. To reduce their
complexity, different solutions have been proposed by, for ex-
ample assuming a uniform PDP [9], [10].

We propose to study three algorithms: ML, NRA and RW.
When introducing virtual subcarriers in the OFDM symbol, un-
equal MSE distribution at different carriers appears, in partic-
ular, MSE increases at band edges [6]. This MSE increase at
the band-edges is analyzed, and solutions to alleviate the prob-
lem are suggested. The ML approach shows not to be suitable
when introducing too many virtual subcarriers, or having chan-
nel profiles with large delays. A more convenient approach is
to use the NRA by introducing a diagonal matrix in the calcu-
lation of the pseudo-inverse of the ML, known as the Tikhonov
regularization. The authors prove that the NRA is equivalent
to the Robust Wiener (RW) approach when assuming identi-
cal channel statistics knowledge at the receiver and a sample
spaced PDP. Performance is then evaluated for LTE parame-
ters, and implementation strategies are analyzed focusing on
the computational complexity.

The remainder of this paper is structured as follows: the
OFDM baseband received signal model is given in section II.
An algorithm study is presented in section III, followed by a
performance analysis in section IV. The complexity study and
implementation strategy are then given in section V. Finally
section VI concludes the work.

II. OFDM BASEBAND RECEIVED SIGNAL

A. Notations

The notations used throughout this paper are:

∀ : for all
∈ : membership
(·)H : hermitian transpose of a matrix or vector
| · | : absolute value
tr{·} : trace operator
E{·} : expectation operator
X[n, k] : the nth row and kth column element of

a matrix X

1-4244-1144-0/07/$25.00 c©2007 IEEE
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Bold upper-case letters are used for matrices and bold lower-
case letters are used for vectors.

B. Received Signal

In the following an analytical model is derived with the purpose
of studying some specific frequency direction channel estima-
tion algorithms. In order to simplify the mathematical expres-
sions of this model, we will assume that the maximum excess
delay of the channel is shorter than the CP and accordingly, as-
sume no Inter-Symbol Interference (ISI) between consecutive
OFDM symbols. The channel variations are considered negli-
gible over the duration of 1 OFDM symbol giving Inter-Carrier
Interference (ICI) free signal reception. Furthermore, we will
consider that the receiver is ideally synchronized with the ar-
rival of the first physical path of the channel. Depending on
the initial assumptions different matrix vector models can be
derived. Starting with a very general case with all subcarriers
used for data transmission, the received signal before channel
equalization is:

y = XFg + w = Xh + w (1)

X: data symbol diagonal (Nfft·Nfft)
F: DFT (Nfft·Nfft)
g: Channel Impulse Response (CIR) (Nfft·1)
h: Channel Transfer Function (CTF) (Nfft·1)
w: Additive White Gaussian Noise (AWGN) (Nfft·1)

with ∀{n, k} ∈ [0, Nfft − 1]2, F[n, k] = e

−j2πnk

Nfft .
When virtual subcarriers are introduced, data and pilot symbols
are only partially using the bandwidth. It is then possible to
reorder the rows of y to have a clear notation that separates
virtual subcarriers from the used subcarriers. The perceived
CIR is assumed to have a finite length and to be sample spaced.
The received vector may be written as:

y =

[
Xu 0
0 0

][
Fus Fun

Fvs Fvn

][
gs

0

]

+ w. (2)

Xu: data and pilot symbol diagonal matrix (Nu·Nu)
Fus: subDFT of used subcarriers and CIR (Nu·Ns)
Fun: subDFT of used subcarriers and noise (Nu·(Nfft − Ns))
Fvs: subDFT of virtual subcarriers and CIR ((Nfft − Nu)·Ns)
Fvn: subDFT of virtual subcarriers and noise ((Nfft − Nu) ·
(Nfft − Ns))
gs: CIR vector of length of the maximum excess delay (Ns·1)
Nfft: FFT size
Nu: number of used subcarriers for data and pilots
Np: number of pilot subcarries in one OFDM symbol
Ns: number of CIR samples with energy
Only the subset of pilot-carrying subcarriers are available for
channel estimation leading to:

yp = XpFpsgs + wp = Xphp + wp (3)

where Xp is a diagonal subset matrix of Xu and Fps is a sub-
set matrix of Fus where only the elements affecting the pilot
subcarriers are considered.

III. ALGORITHM STUDY

Different classical algorithms are presented in this section.
However they are studied in the case of OFDM containing
virtual subcarriers which will affect their notation and perfor-
mance. They are all based on an initial least-squares estimate at
the pilot positions. It is noted that the pilots are all transmitted
with a M-PSK constellation leading to a constant pilot power.
Without loss of generality we assume that this power is set to
unity. The initial least-squares estimate at the pilots is given
by:

hls = Xp
−1yp. (4)

A. Maximum Likelihood

Assuming that the maximum CIR length is known at the re-
ceiver, the ML estimate of the channel response is expressed
as [5]:

hml = Fusgml = Fus(F
H
psFps)

−1FH
pshls. (5)

However, when virtual subcarriers are present, the matrix:

T = FH
psFps (6)

can become ill-conditioned, leading to high MSE, as it will be
shown in Section IV.

B. Noise Reduction Algorithm

A simple solution to alleviate the ill-conditioning problem is
to add a small value γ to the diagonal of the matrix T, also
known as the Tikhonov regularization method. This is sug-
gested in [7], giving the NRA algorithm:

hnra = Fusgnra = Fus(F
H
psFps + γI)−1FH

pshls. (7)

Assuming that Fps = U∆VH by SVD, with λi being the ith

singular value of Fps, (7) can be rewritten as:

hnra = FusV∆nraU
Hhls (8)

where ∆nra[i, j] = λi

λ2
i
+γ

for (i = j), and ∆nra[i, j] = 0 for

i �= j.

C. Wiener and Robust Wiener

In his work, Hoeher showed that the optimum linear estimator,
in the MSE sense, in PACE OFDM is the Wiener filter, which
is given by [2]:

hw = Rhhp
(Rhphp

+ σ2

wINp
)−1hls (9)

where Rhhp
is the cross-correlation matrix of h and hp,

Rhphp
is the autocorrelation matrix of hp and σ2

w is the power
of the gaussian noise. Generally, the frequency correlation
properties are not known at the receiver, and furthermore they
can vary over time. For this reason, a robust design based
on the assumption of a uniform PDP with sample-spaced
equally-powered taps and the same length of the CIR is
proposed. The resulting constant correlation matrices can be
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then expressed as:

Rhhp
= E{hhH

p } =
1

Ns
FusINs

FH
ps (10)

and

Rhphp
= E{hph

H
p } =

1

Ns
FpsINs

FH
ps. (11)

Using this formulation, (9) can be rewritten as:

hrw = FusF
H
ps(FpsF

H
ps + σ2

wINp
)−1hls. (12)

We refer to this estimator as RW.

D. Equivalence Between NRA and RW

Comparing (7) and (12), a strong similarity can be observed.
By using the SVD of the matrix Fps, the RW estimator can be
expressed as:

hrw = FusV∆rwUHhls (13)

where ∆rw[i, j] = λi

λ2
i
+Nsσ2

w
for i = j, and ∆rw[i, j] = 0 for

i �= j.
From inspection of (8) and (13), it is straightforward to see

that hnra = hrw when γ = Nsσ
2

w. Moreover, it can be shown
that this value minimizes the MSE of the estimator when no
virtual subcarriers are present and regularly-spaced pilots are
used, and it will be assumed for the NRA algorithm in the re-
minder of this paper. Therefore the full equivalence between
the time-domain NRA algorithm and the frequency domain
RW algorithm has been proven, assuming the same a priori
knowledge available at the receiver.

E. MSE of the Estimators

The different proposed practical solutions are all covered
by (7). It is therefore possible to study their respective
performance by using one single closed form MSE expression.
The MSE is calculated as:

MSE{hnra[n]} = E{|h[n] − hnra[n]|2}. (14)

Using (7), the MSE for the nth subcarrier becomes:

MSE{hnra[n]} = M[n, n] (15)

where

M = Fus[(I − A)Rgsgs
(I − A) + σ2

wA2T−1]FH
us. (16)

In the previous equation, A = (T + γI)−1T, where T is de-
fined in (6), and Rgsgs

is the autocorrelation matrix of gs. The
average MSE of the estimator can consequently be defined as:

MSE{hnra[n]} =
1

Nu
tr{M}. (17)

Note that the MSE of the ML estimator is obtained by setting
γ = 0 and the MSE of the RW estimator is obtained by setting
γ = Nsσ

2

w.

IV. PERFORMANCE ANALYSIS

In the following, the performance of the estimators discussed
in section III will be studied. A single input single output
OFDM system with the physical layer parameters proposed for
the downlink of UTRA LTE will be used [1]. The system is
based on a constant subcarrier spacing of 15 KHz, with differ-
ent bandwidth configurations ranging from 1,25 to 20 MHz, as
shown in Table 1. The CP is assumed to be always longer than
the maximum delay of the channel, and QPSK modulation is
used for both pilot and data symbols. Evenly spaced pilot sym-
bols with a spacing of 6 subcarriers are transmitted in every
OFDM block.

Table 1: OFDM parameters for LTE
Signal Bandwidth Nfft Nu Sampling frequency

1.25 MHz 128 75 1.92 MHz
2.5 MHz 256 150 3.84 MHz
5 MHz 512 300 7.68 MHz

10 MHz 1024 600 15.36 MHz
20 MHz 2048 1200 30.72 MHz

In Fig. 1, the MSE of the ML estimator depending on the max-
imum delay of the channel is analyzed using (17), where a
sample-spaced uniform PDP and an OFDM system with an
FFT size of 2048 and different number of used subcarriers have
been used. The Signal-to-Noise Ratio (SNR) is set to 15 dB and
the sampling rate is the one corresponding to the LTE 20 MHz
configuration. When all the subcarriers are used, the error of
the estimate grows linearly with the channel length. When vir-
tual subcarriers are used, however, the matrix T to be inverted
becomes ill-conditioned after a certain channel length, yield-
ing a large degradation of the MSE that makes the estimator
unusable. The maximum channel length before the estimator
becomes unstable decreases as the number of used subcarriers
is reduced.

Fig. 2 depicts the same analysis for the different LTE con-
figurations shown in Table 1, which all have the same ratio be-
tween used and virtual subcarriers. The results show that the
larger the bandwidth, the smaller is the maximum length of the
channel that can be estimated without suffering from the ill-
conditioning effect. In the extreme case of 20 MHz bandwidth,
only channels with a maximum delay lower than 800 ns can be
estimated accurately, showing that ML is not a good option for
systems with large FFT sizes and virtual subcarriers.

By adding a diagonal of small values to the matrix T, the
ill-conditioning of the matrix to be inverted is avoided . This
is illustrated in Fig. 3, where the MSE corresponding to each
subcarrier has been represented for the ML and the NRA esti-
mators in a LTE 2,5 MHz configuration. Only half of the band-
width has been represented, where subcarrier 0 indicates the
central subcarrier. The channel profile used is a sample spaced
modified ITU Pedestrian B profile, which has a maximum ex-
cess delay of 3.7 µs, and the SNR has been set to 15 dB. As can
be seen, ML suffers severe degradation in the edge of the band-
width, due to the use of virtual subcarriers. NRA significantly
alleviates this problem and also achieves a better performance

Authorized licensed use limited to: Aalborg Universitetsbibliotek. Downloaded on July 9, 2009 at 09:14 from IEEE Xplore.  Restrictions apply.



The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’07)

0 0.5 1 1.5 2 2.5 3 3.5 4
−40

−35

−30

−25

−20

−15

−10

Length of uniform CIR (µs)

M
S

E
 (

dB
)

 

 

N
u
 = 400

N
u
 = 800

N
u
 = 1200

N
u
 = 1600

N
u
 = 2048

Figure 1: MSE for varying CIR length, different used band-
widths sizes, ML algorithm, Nfft = 2048 at Eb/No = 15dB
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Figure 2: MSE for different bandwidths of the LTE standard
and a varying uniform channel profile length, at Eb/No = 15dB.
The ratio Nu

Nfft
is fixed to 0.586

over all the bandwidth, as it makes use of the noise variance
knowledge.

Finally, the Symbol Error Rate (SER) performance of ML
and NRA is shown in Fig. 4, where again a sample spaced mod-
ified Pedestrian B channel profile has been used. The curves
for 20 and 2.5 MHz configurations are depicted. The results
for ML show an acceptable performance for the 2.5 MHz set-
tings, with a degradation of around 3.5 dB at 1% SER with
respect to perfect channel estimation. For 20 MHz, however,
ML is unable to estimate the channel, as the estimator becomes
numerically unstable due to the matrix inversion. NRA, on the
other hand, performs better than ML in both scenarios, with a
distance of 1.5 dB to the known channel curve. Furthermore,
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Figure 4: SER as a function of SNR for Pedestrian B channel
profile, for 2,5 MHz and 20 MHz

it exhibits total robustness to the FFT size and number of sub-
carriers used, turning out to be a more suitable estimator for
OFDM systems in both large and small bandwidth scenarios.

V. COMPLEXITY AND IMPLEMENTATION STRATEGY

The optimal linear Wiener filter is discarded as it requires com-
putation of a matrix inverse that depends on the channel statis-
tics and is therefore computationally prohibitive for large band-
widths. Due to the high MSE’s experienced by the ML algo-
rithm, only different approaches of computing the RW or NRA
algorithm are studied.
Three main implementation proposals are considered and dis-
cussed for different parameter settings. They are given as fol-
lows:
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I) A precalculated RW filter, where the filter coefficients are
calculated in advance and pre-stored in memory.

II) SVD of RW where the coefficients are also pre-stored in
memory.

III) FFT based NRA, where Fus is computed by a partial in-
put partial output FFT, as suggested in [11]. It is noted
that a general analytical expression of the complexity is
nontrivial in this case. For this reason the complexity of a
full FFT is considered as an upper bound.

Table 2: Complexity of the Estimator
Proposal Complexity

I O(NuNp)
II O(NsNu + Ns + N2

p )

III O(Nfftlog2(Nfft) + NsNp)

The orders of complexity of the different proposals are given
in Table II. Practical Complex Multiply Accumulate (CMAC)
operations per estimated CTF are used as complexity unit. Pa-
rameters are chosen according to the LTE settings given in Ta-
ble I for the 2,5MHz and the 20MHz bandwidths. The com-
plexity results are then shown in Fig. 5. The main complexity
factor is the FFT size allowing an increased data rate. How-
ever, for the chosen solutions, the length of the CIR is criti-
cal in determining the solution with lowest complexity. When
considering a small FFT size of 256, the SVD of RW has the
lowest complexity if the CIR length is below 3,5 µs. On the
other hand, for an FFT size of 2048, the FFT based solution
has the lowest complexity for CIR lengths above 1,7 µs. As
the interest of complexity reduction lies in the worst case sce-
narios, the most promising algorithm implementation would be
the one based on partial-input, partial-output FFT, where III is
an upper complexity bound. As the input is of size Nu and the
output of size Ns the complexity of III could be further reduced
by an approximate factor of 1,5 to 2. From Fig. 5 solution III
is up to 4 times less complex than solution I and II, and with an
optimized implementation [11] this could be further enhanced
leading to a factor 6 to 8 times lower complexity.

VI. CONCLUSION

Frequency direction PACE is studied for OFDM in an LTE con-
text. In this paper we show that when virtual subcarriers are
introduced, the ML time domain algorithm suffers from high
MSE due to ill-conditioned matrices. The FFT size and the
number of used subcarriers will determine the length of sup-
ported CIR for an ML with acceptable performance. A solu-
tion to this problem is to introduce a small value to the diag-
onal of the matrix to be inverted giving the NRA. We prove
that there is a full equivalence between the time domain NRA
and the frequency domain RW algorithm. This proof helps us
to define a low complex FFT based implementation of the RW
solution. Complexity evaluations show that this solution has
significantly lower complexity than the classical implementa-
tions by SVD in the case of large FFT sizes.
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ABSTRACT

In this paper, the effects of phase noise on the spectral effi-
ciency of the next generation of OFDM based mobile systems
with channel estimation is investigated. The simulation con-
text and parameter settings are taken from the 3GPP Evolved
UTRA (E-UTRA) study item, focusing on an OFDM down-
link single antenna system in 20 MHz bandwidth. Phase noise
is modeled as a Wiener-Lévy process and several phase noise
powers are evaluated. The OFDM coherent detection method
is based on Pilot Assisted Channel Estimation (PACE) with
Wiener based frequency domain interpolation and second or-
der gaussian interpolation for the time domain interpolation.
The cell level spectral efficiency is also evaluated for micro
and macro-cell scenarios. The simulation results indicate that
the phase noise effect in E-UTRA downlink can be reduced by
using high performance local oscillator or by placing pilots in
every OFDM symbols.

I. INTRODUCTION

The work presented in this paper investigates the phase noise
effects in a downlink E-UTRA system including channel es-
timation. 3GPP has initiated a study item looking into long
term evolution of the existing 3G radio technology known as
the Evolved UTRA (E-UTRA) [1]. OFDM has been proposed
as the modulation scheme for downlink and will use coherent
detection based on Pilot Assisted Channel Estimation (PACE).

One of the OFDM system drawbacks is its sensitivity to
phase noise [3], [4], [5]. Phase noise is a characteristic of
the local oscillator in the transmitter and receiver and it can be
modeled as a Wiener-Lévy process [3]. This model is quite ac-
curate and appropriate for quantitative studies of system perfor-
mance degradation due to phase noise [3]. The phase noise pa-
rameters suitable for beyond 3G system are given in [11], [12].

Channel estimation in OFDM is also sensitive to phase noise
[3]. Large attention has been given to research on channel
estimation algorithms in such a context. The phase noise ef-
fects in the OFDM system with channel estimation for Wireless
LAN 802.11a have previously been investigated in [9]. The
Optimum linear solution, in a Minimum Mean Square Error
(MMSE) sense is achieved with Wiener filtering [2] which, re-
quires knowledge of channel statistics (such as the Power De-
lay Profile (PDP)) and noise variance. This algorithm will be
chosen throughout this paper due to its high performance.

In this paper , an analytical study is conducted and the per-
formance loss is divided into pilot overhead, channel estimate

inaccuracy, and phase noise. The phase noise effect on spectral
efficiency for an E-UTRA downlink with channel estimation
is evaluated. Moreover, the link level throughput is mapped
to corresponding cell-level spectral efficiency using available
Geometry1 (G-factor) distributions for macro and micro-cell
scenarios.

This paper is organized as follows: Section II gives a brief
description of the E-UTRA simulator and the used parameter
set, the analytical model and performance loss analysis is pre-
sented in section III. The phase noise model and channel esti-
mation algorithm are explained in section IV and V. The sim-
ulation results are shown in section VI and, finally, in section
VII conclusions are drawn.

II. SIMULATOR AND SYSTEM PARAMETERS

Throughout this paper results will be given through Monte
Carlo simulations from a developed Link Simulator, using the
proposed parameter values of Table 1. The study will be done
using a SISO, downlink OFDM based transmission. The down-
link bandwidth occupied in this system is scalable into 1.25
MHz, 2.5 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz. How-
ever in this study, we will only deal with a fixed bandwidth
of 20 MHz. Different modulation and coding sets (MCS) are
chosen according to the spectral efficiency they can achieve.
All pilot and data symbols will have equal power in this study.
Turbo decoding and interleaving following the UTRA specifi-
cations release 6 are used throughout the simulations.

III. ANALYTICAL MODEL

A. Assumptions

In order to simplify the mathematical expressions of this
model, we will assume that the maximum excess delay of the
channel is shorter than the cyclic prefix and, therefore, there is
no inter-symbol interference (ISI) between consecutive OFDM
symbols. Furthermore, we will consider that the receiver is ide-
ally synchronized with the arrival of the first physical path of
the channel.

B. Transmitted Signal

The mth transmitted symbol in an OFDM system can be ex-
pressed as a vector of length Ngs samples, defined by:

1The G-factor is the ratio of total received wideband BS power and other-
cell/noise interference at the MS. It is averaged over short-term fading but not
shadowing.
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Table 1: E-UTRA parameters for simulation.

Parameter Value
Carrier Frequency 2 GHz
Transmission BW 20 MHz
Sub-frame duration 0.5 ms
Sub-carrier spacing 15 kHz
OFDM symbols
per sub-frame 7
CP length 4.7 µs
FFT size 2048
Useful subcarriers 1200
MCS settings QPSK: 1/6, 1/3, 1/2, 2/3

16QAM: 1/2, 2/3, 3/4
64QAM: 1/2, 2/3, 3/4, 4/5

Channel model Typical Urban 20 paths [10]

sm = Ψm.dm (1)

where dm is a vector with Ns QAM or PSK modulated sym-
bols, and Ψm (2) is a matrix which performs both an Inverse
Discrete Fourier Transform (IDFT) operation and ads a redun-
dant Cyclic Prefix (CP) of Ng samples. The elements of Ψm

are defined by:

Ψm,k [n] =
1√
Ns

.e
j2πk

“
n−Ng

Ns

”
(3)

where k is the sub-carriers index and n is the time sample. Fur-
thermore, Ngs = Ng + Ns is the total length in samples of the
OFDM symbol and Ns is the number of subcarriers (size of the
IDFT).

C. Received Signal

After the convolution with the channel, the signal that reaches
the receiver can be written as:

rm = Pm.Hm.sm + wm (4)

Hm is the Ngs × Ngs channel matrix for the mth OFDM
symbol, defined in (5).

In (5) am,p [n] represents the pth complex tap coefficient of
the channel impulse response in the nth time sample of the
mth OFDM symbol. Pm is a Ngs ×Ngs diagonal matrix that
models the effects of phase noise at the receiver. The elements
of its diagonal are:

Pm [n,n] = eΦm[n] (6)

When Φm [n] is small compared to 1, the elements in the
diagonal can be approximated by ejΦm[n] ≈ 1 + jΦm [n] , and
therefore:

Pm = I + jΦm (7)

where Φm is a diagonal matrix with the values of Φm [n]
in its diagonal, and I is the identity matrix. Finally, wm is an
Ngs long vector with additive white Gaussian noise (AWGN).
Using (7), we can re-write the received signal as:

rm = (I + jΦm) .Hm.sm + wm (8)

D. Signal After Receiver DFT

Once the signal reaches the receiver, the CP is removed, and a
Discrete Fourier Transform (DFT) is performed. Both opera-
tions are modeled by the matrix Ψ̃H

m , which is a matrix equal
to ΨH

m but with zeros in the first Ng columns. The received
signal after the DFT can be written as:

zm = Ψ̃H
mrm = (COm + CPN,m)dm + wm (9)

where, COm = Ψ̃H
mHmΨm, and CPN,m =

Ψ̃H
m (jΦmHm)Ψm.

E. Channel Equalization

After the DFT at the receiver, a 1 tap equalizer is applied. The
elements of zm are divided by an estimate of the channel trans-
fer function in the corresponding subcarrier to obtain an esti-
mate of the transmitted symbol:

ym [k] =
zm [k]

h̃m [k]
(10)

h̃m is an estimate of the diagonal of COm+CPN,m, obtained
by the use of PACE and a given channel estimation algorithm.

F. Degradation Mechanisms

From the analysis above, it comes out that there are three main
mechanisms that will cause a loss in the system performance:

Total loss = LALGO + LPILOT + LPN (11)

LALGO represents the loss due to the inaccuracy of the channel
transfer function estimate, h̃m , and it depends on the algorithm
used. LPILOT is the loss due to the use of pilot symbols to es-
timate the channel, which will decrease the amount of useful
information, and is dependent on the pilot density. LPN is the
loss due to the phase noise effect and the error is caused by a
common phase rotation and inter-carrier interference (ICI) [3].
It should be noted that the three degradation mechanisms are
coupled and therefore, there are not independent of one an-
other.

IV. PHASE NOISE MODEL

Phase noise in the local oscillator can be seen as a multiplica-
tion of the transmitted signal with a noisy carrier ejΦ(t). The
random phase of this carrier is modeled by a Wiener-Lévy pro-
cess as follows [5]:

Φ(t) = 2π

∫ t

0

µ (τ) dτ (12)

In (12), µ(t) is a zero-mean white Gaussian process with
power spectral density N0 . The single-sideband (SSB) phase
noise power is a Lorentzian spectrum [7]:

L (f) =
2

π∆f3dB
.

1

1 +
(

2f
∆f3dB

)2 (13)
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Ψm =



Ψm,0 [0] · · · Ψm,Ns−1 [0]
. . .

... Ψm,k [n]
...

. . .
Ψm,0 [Ngs − 1] · · · Ψm,Ns−1 [Ngs − 1]


(2)

Hm =



am,0 [0] 0 · · · 0
am,0 [0] am,0 [1] 0

... am,1 [1]
. . .

am,Ng−1 [0]
...

. . . am,0 [n] 0
...

0 am,Ng−1 [1]
. . .

...
. . . . . . . . . 0

0 · · · 0 am,Ng−1 [Ns] · · · am,1 [Ngs − 2] am,0 [Ngs − 1]


(5)

In (13), ∆f3dB = 2πN0 is the two-sided 3 dB bandwidth of
phase noise. The power spectrum in (13) is an approximation
to practical oscillator spectra, which enables analytical treat-
ment.

In discrete time, phase noise can be modeled as a Markov
process [3]. The random phase value of the disturbed subcarrier
at the nth sample of the mth OFDM symbol can be written as:

Φm [n] = Φm−1 [Ngs − 1] +
n∑

i=0

u [mNgs + i] (14)

where u [i] is a white Gaussian random process with zero mean
and variance σu = 2π∆f3dB

T
Ns

, T denotes the OFDM symbol
period.

V. CHANNEL ESTIMATION ALGORITHM

The channel estimation problem is solved by using Wiener
based frequency domain interpolation and second order gaus-
sian interpolation for the time domain interpolation. Pilot sym-
bols are used to estimate the channel transfer function (CTF).
For the simplicity of derivation of the channel estimation al-
gorithm, the channel impulse response is considered constant
over the duration of an OFDM symbol, and phase noise will
not be included in the derivation of the estimation algorithm.

First, an estimate of the CTF at the pilot subcarriers is ob-
tained. Then, the full CTF is calculated using the following
interpolation method.

1) Estimate at Pilot Position: Let pi, i = 0, 1, ..., Np − 1
be a set of indexes containing the subcarrier indexes that carry
pilot symbols, where Np is the number of pilot symbols in an
OFDM symbol. A Least-Squares (LS) estimate of the channel
transfer function at these pilot positions can be calculated as:

h̃p [i] =
z [pi]
d [pi]

(15)

z [pi]and d [pi] are respectively the received symbol after the
FFT and the transmitted symbol in the ith pilot subcarrier.

2) Wiener filtering Interpolation: Wiener filtering is the op-
timum interpolation method in terms of mean square error. Us-
ing the statistics of the channel and noise, it performs a MMSE
interpolation of the estimates at pilot sub-carriers, optimally re-
ducing the effects of noise and channel distortion. In the pres-
ence of additive white Gaussian noise,The full CTF estimate is
obtained by:

h̃ = Rhhp .
(
Rhphp + σ2

wINp

)−1
h̃p (16)

where Rhhp is the cross correlation matrix of the true channel
transfer function and the true channel transfer function h at
pilot subcarriers hp, Rhphp is the autocorrelation matrix of
the true channel transfer function at pilot subcarriers, σ2

w is the
noise power and INp is the Np × Np identity matrix. Note
that the channel transfer function coefficients are assumed to
be uncorrelated to the noise process.

3) Second Order Interpolation: The frequency response of
the channel changes through time. Thus, the channel estimates
require to be updated. Second order interpolation has been cho-
sen as the performance degradation is neglegible for the pro-
posed pilot schemes. The expression of the interpolated esti-
mates for evenly spaced pilots is [8]:

h̃m = Cp,i−1(m)h̃p,mi−1 + Cp,i(m)h̃p,mi .. (17)

+Cp,i+1(m)h̃p,mi+1 ,mp,i ≤ m < mp,i+1

where mp,i, ...,mp,i+1 represent the OFDM symbols index of
the symbols carrying pilots, ∆pt is the spacing between OFDM
symbols carrying pilots, and the interpolation coefficients are:

Cp,i−1(m) =
1
2

{(
m−mp,i

∆pt

)2

− m−mp,i

∆pt

}

Cp,i(m) = 1−
(

m−mp,i

∆pt

)2

(18)

Cp,i+1(m) =
1
2

{(
m−mp,i

∆pt

)2

+
m−mp,i

∆pt

}
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Table 2: Phase Noise Characteristics.
SSB Power at Bandwidth Ratio
1 MHz offset ∆f3dB ρPN

-100 dBc/Hz 625 Hz 4.17%
-110 dBc/Hz 62 Hz 0.41%
-115 dBc/Hz 20 Hz 0.13%
-120 dBc/Hz 6 Hz 0.04%

VI. SIMULATION RESULTS

The main parameters for the simulation are shown in Table 1.
A low velocity environment is considered (3 kmph). Two pilot
patterns are used to investigate the impact of using dense/sparse
pilot symbols in time domain. The 1st pilot scheme (P1) is
a comb type with pilot in all OFDM symbols. The 2nd pilot
scheme (P2) is a rectangular type with pilots in the 3rd and
7thOFDM symbols of each sub-frame. One sub-frame con-
tains 7 OFDM symbols. Both pilot schemes have a equally fre-
quency spacing of 8. P1 and P2 introduce a total pilot overhead
of 12.5% and 3.6%, respectively.

Several phase noise powers are considered based on the SSB
phase noise power at 1 MHz frequency offset from the carrier.
It is indicated in [11] that good quality phase noise oscillators
achieve -120 dBc/Hz at 1 MHz offset and medium quality -
100 dBc/Hz. These phase noise powers can be related with the
phase noise bandwidth using (13). The phase noise character-
istics for this simulation are summarized in Table 2. It may be
useful to characterize the quality of an OFDM oscillator by the
relation between its phase noise bandwidth and the subcarrier
spacing of the OFDM signal (∆fsc):

ρPN =
∆f3dB

∆fsc
(19)

The link performance evaluation is conducted from very low
G-factor (-10 dB) to very high G-factor (40 dB). In practice, the
maximum G-factor is around 30 dB, due to the RF impairments
such as non-linearity in amplifier. In this study, the investiga-
tion is still conducted up to 40 dB in order to investigate the
performance of the higher-order MCS schemes.

Fig. 1 shows link adaptation (LA) curves with various MCS
schemes for the case with and without phase noise of -115
dBc/Hz. The spectral efficiency for individual MCS schemes
versus G-factor is also plotted. The LA curve without phase
noise represents the achievable performance with the given pi-
lot pattern. At low speed, the degradation due to the estimation
error is negligible and therefore, the main loss is due to the pi-
lot overhead. Phase noise does not affect the spectral efficiency
of lower order MCS schemes.

Fig. 2 shows the LA curves when the pilot schemes P1 is
used. The link performance using various phase noise powers
is illustrated. The maximum achievable spectral efficiency for
this pilot schemes is 3.5 b/s/Hz. Phase noise of -120 dBc/Hz
gives no noticeable degradation. A significant degradation is
shown for the phase noise of -100 dBc/Hz.

The LA curves for the pilot schemes P2 is shown in Fig.
3. The maximum achievable spectral efficiency is close to

Figure 1: Spectral efficiency of PN= -115 dBc/Hz & pilot
scheme P1 with different MCS schemes.

Figure 2: LA curves for pilot scheme P1.

Figure 3: LA curves for pilot scheme P2.
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Figure 4: CDF of G-factor in macro & micro-cell scenarios.

4 b/s/Hz. Phase noise of -120 dBc/Hz gives degradation in
higher order MCS schemes. The spectral efficiency is getting
worse for phase noise of -115 dBc/Hz, -110 dBc/Hz, and -100
dBc/Hz, respectively.

From Fig. 2 and Fig. 3, it is shown that P1 can reduce
the phase noise effect with the cost of pilot overhead. P2 can
achieve higher spectral efficiency compared to P1 when high
performance oscillator (phase noise ≤ -120 dBc/Hz) is used.
P1 outperform compared to P2 by using oscillator with phase
noise ≥ -115 dBc/Hz. The reason is that P1 has pilots in every
OFDM symbols. Thus, it can track the common phase error
introduced by the phase noise. The results in Fig. 2 and Fig.
3 also indicate that low ρPN ratio factor (Table 2) results in
higher performance.

The study in the cell level requires G-factor distribu-
tions used for the macro-cell outdoor and the micro-cell in-
door/outdoor scenarios, which are shown in Fig. 4 [13]. The
spectral efficiency at cell level is evaluated by conditioning the
G-factor dependent throughput with the probability of obtain-
ing a given G-factor and integrating over the whole G-factor
range. The results are shown in Fig. 5 where the bar plot of the
cell level spectral efficiency obtained for both pilot schemes
and several phase noise powers are presented. For the P1 case
in the macro-cell scenario, phase noise does not give signifi-
cant degradation except for a phase noise of -100 dBc/Hz that
leads to a spectral efficiency degradation of around 21%. In the
microcell scenario, significant degradations of 17% and 50%
are shown for phase noise of -110 dBc/Hz and -100 dBc/Hz,
respectively. Overall, the P2 case has similar trend as the P1.
In the macro-cell scenario, a significant degradation of 53%
is caused by phase noise of -100 dBc/Hz. In the micro-cell
scenario, a phase noise of -110 dBc/Hz and -100 dBc/Hz give
degradation of 32% and 71%, respectively.

VII. CONCLUSION

The goal of this paper has been to give an estimate of the perfor-
mance degradation due to phase noise in a downlink E-UTRA
SISO scenario with channel estimation. An analytical model of
the received signal has been derived to give an expression for
the performance loss, including loss due to phase noise. The
phase noise is modeled as a Wiener-Lévy process. It is con-
cluded that the higher order modulation schemes suffered most
in spectral efficiency degradation. The throughput obtained at
link-level was mapped to a cell level spectral efficiency using

Figure 5: Cell throughput for different phase noise powers.

available Geometry (G-factor) distributions for the macro and
micro-cell scenarios. In the macro-cell scenarios, significant
spectral efficiency degradation appears at a phase noise level
of -100 dBc/Hz, while in the micro-cell scenarios, it already
appears at a phase noise level of -110 dBc/Hz. The phase noise
effect in E-UTRA downlink can be reduced by using high per-
formance local oscillator or by placing pilots in every OFDM
symbols. In future work, an advanced receiver can be consid-
ered to minimize ICI due to the phase noise.
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