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ABSTRACT

In the engineering community, it is increasingly appreciated that traditional sys-
tems modeling has a significant potential for improvement. The main purpose of the
present thesis is thus to introduce and further develop recent research on probabilistic
modeling and analysis of complex systems, which has relevance within offshore en-
gineering. This involves showcasing how current state-of-the-art machine learning
frameworks, such as Bayesian networks, Gaussian processes, and neural networks,
can be applied to formulate knowledge- and information-consistent models within the
domain. Such models need not only to reflect average tendencies within the model-
ing domain but should also be able to consistently utilize the available data sources,
e.g., experiments, measurements, hindcasts and forecasts, and represent as well as
propagate the associated uncertainties. It is emphasized that although this research is
demonstrated in the context of offshore engineering, it is fully generic and applies in
principle to any field of application where complex systems occur.

Appreciating that model building is inherently a subjective task that relies on the
modeler’s bias towards and knowledge of existing modeling frameworks, as well as
the available or chosen data for modeling, we often end up with a set of relevant model
hypotheses that explain the data almost equally well. At the same time, our modeling
efforts should always be seen in relation to the decisions they serve to support, i.e., it
is imperative that system representations support the decision context at hand in the
best way possible when performing decision optimization. This research accommo-
dates these considerations by introducing practical statistical and decision analytical
frameworks for dealing with competing system representations in inferential model-
ing and decision-making.

To show how the modeling frameworks covered in the thesis can be applied in
practice, a GitHub repository containing toolboxes, code examples, and tutorials de-
veloped during the PhD project is provided. This includes toolboxes developed for
Bayesian network learning, which are used in several research papers, and tutori-
als applying the toolboxes. For systems representation, additional tutorials and code
examples are available on the application of among others Gaussian process, neural
network, and gradient boosting machines. For systems analysis, several examples
are available on cluster and sensitivity analysis, and tutorials on concepts such as
hyper-parameter tuning, and model selection and averaging are available as well.
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ABSTRACT

The research papers introduce a set of principle examples on the application of
the systems modeling approaches. These examples consider different aspects rele-
vant when building probabilistic models for the offshore engineering community.
First, probabilistic models are formulated for offshore, environmental storm events,
accounting for domain knowledge, as well as measurement and hindcast data. In this
regard, the framework of Bayesian networks is used to formulate computational effi-
cient, categorical models for storm events, and Gaussian processes are used to repre-
sent the discrepancies between measurements and hindcasts. This research also shows
how to consistently account for competing system representations when considering
a specific decision context. Second, probabilistic modeling of fatigue crack growth in
welded, steel joints is considered. This work employs Bayesian hierarchical modeling
to jointly model data collected from different laboratory experiments, thus represent-
ing different measurement uncertainties, and Bayesian model averaging for statistical
inference in case of new details. This approach provides a means for systematically
accounting for the uncertainties, which naturally scales to larger data sets.

The research papers further introduce a set of principle examples on the analy-
sis of complex system performances. First, the potential of cluster and sensitivity
analysis are explored for a simple moment resisting portal frame structure. These as-
sessments show how model-based clustering may be used to establish a probabilistic
representation of realizations exhibiting a certain target behavior, which provides sig-
nificant insight on the characteristics of the targeted system behavior in terms of e.g.,
latent groupings in the realizations and driving variables. Moreover, it is shown how
variance-based sensitivity analysis can be used to decompose the variability in sys-
tem responses into contributions from the individual, random system inputs, which
thus provides a means for assessing e.g., the importance of the inputs in driving the
random responses. Second, a framework for systems identification is presented in the
context of damage detection for the simple moment resisting portal frame structure,
and a slightly more complex 3-story, 3-bay, moment resisting frame structure. In
this regard, the fidelity and robustness of gradient boosting in classifying the damage
patterns are verified by considering different levels of uncertainties associated with
observations of structural responses and different numbers of observed structural re-
sponses. Furthermore, as numerical simulations as well as observations of failure
events usually result in an imbalanced database in the failure events, a novel struc-
tured Markov chain Monte Carlo upsampling scheme is introduced to balance such
databases.
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RESUMÉ

Indenfor ingeniørvidenskaben anerkendes det i stigende grad at traditionel system-
modellering har et betydeligt forbedringspotentiale. Hovedformålet med denne afhan-
dling er således at introducere og videreudvikle på den seneste forskning inden for
probabilistisk modellering og analyse af komplekse systemer, som har relevans for off-
shore ingeniørsamfundet. Dette indebærer en demonstrering af, hvordan moderne
maskinlæringstilgange, såsom Bayesianske netværk, Gaussiske processer og neurale
netværk kan anvendes til at definere videns- og informationskonsistente modeller in-
den for domænet. Sådanne modeller skal ikke alene kunne afspejle middeltendenser i
modeldomænet, men også konsistent kunne udnytte de tilgængelige datakilder, f.eks.
eksperimenter, målinger, simuleringer og prognoser, samt kunne repræsentere og
propergere de relaterede usikkerheder. Det understreges, at selvom denne forskning
demonstreres i relation til offshore ingeniørvidenskaben, er den fuldstændig gener-
isk og gælder i princippet for ethvert anvendelsesområde, hvor komplekse systemer
forekommer.

Ved at værdsætte at modelopbygning i sagens natur er en subjektiv opgave, der
afhænger af modelbyggerens bias mod og viden om eksisterende modelleringstilgange,
såvel som de tilgængelige eller valgte data til modelopbygningen, ender man ofte med
et sæt af relevant modelhypoteser, som på lige fod kan forklare data. Samtidig skal en
modelleringsindsats altid ses i forhold til de beslutninger, hvilke modellerne tjener til
at støtte, dvs. det er bydende nødvendigt, at en systemrepræsentation understøtter
den aktuelle beslutningskontekst på den bedst mulige måde, når der udføres beslut-
ningsoptimering. Denne forskning imødekommer disse overvejelser ved at introduc-
ere praktiske, statistiske og beslutningsteoretiske tilgange til håndtering af konkur-
rerende systemrepræsentationer i inferensmodellering og beslutningsoptimering.

For at skitsere den praktiske anvendelse af de introducerede systemmodeller-
ingstilgange, er der oprettet et GitHub-arkiv med programmer og kodeeksempler,
der er udviklet i løbet af ph.d.-projektet. Dette inkluderer programmer udviklet til
automatisk læring af Bayesianske netværk, som er anvendt i flere af forskningsar-
tiklerne, samt kodeeksempler vedrørende programmernes anvendelse. Til system-
repræsentation er der yderligere kodeeksempler tilgængelige omhandlende blandt an-
det Gaussiske processer, neuralt netværk og gradientforstærkede maskiner. Til sys-
temanalyse er der adskillige kodeeksempler tilgængelige vedrørende klynge- og føl-
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RESUMÉ

somhedsanalyse, og der findes også kodeeksempler vedrørende koncepter såsom hy-
perparametervalg, samt modelvalg og -gennemsnit.

Forskningsartiklerne introducerer et antal principeksempler, hvor systemmodel-
leringstilgangene anvendes i praksis. Disse eksempler illustrerer forskellige aspekter,
der er relevante, når man bygger sandsynlighedsmodeller til offshore ingeniørsam-
fundet. For det første formuleres sandsynlighedsmodeller for offshore stormhændelser
baseret på domæneviden samt målinger og simuleringer. I denne forbindelse anven-
des Bayesianske netværk til at formulere beregningseffektive, kategoriske modeller
for stormhændelser, og Gaussiske processer benyttes til at repræsentere forskellene
mellem målinger og simuleringer. Denne forskning viser også, hvordan man for
en given beslutningskontekst konsekvent kan tage højde for konkurrerende system-
repræsentationer. For det andet defineres probabilistisk modeller for metaltræthed-
srevnedannelse i svejste stålsamlinger. Dette arbejde anvender Bayesiansk, hierarkisk
modellering til at repræsentere data fra forskellige laboratorieeksperimenter med hver
deres måleusikkerhed, og Bayesiansk modelgennemsnit til statistisk inferens i tilfælde
af nye samlingsdetaljer. Denne fremgangsmåde muliggør en systematisk håndtering
af usikkerhederne, som kan skaleres til større datasæt.

Forskningsartiklerne introducerer ligeledes et antal principeksempler vedrørende
analyse af komplekse systemrepræsentationer. For det første undersøges potentialet af
klynge- og følsomhedsanalyse på en simpel, momentbestandig portalrammekonstruk-
tion. Denne forskning viser, hvordan modelbaseret klyngedannelse kan anvendes til
at etablere en probabilistisk repræsentation af realiseringer, som giver anledning til
bestemte systemadfærdsmønstre. Dette bidrager med betydelig indsigt i de enkelte
systemadfærdsmønstre med hensyn til f.eks. latente grupperinger i realisationerne og
drivende variable. Endvidere viser forskningen, hvordan variansbaseret følsomheds-
analyse kan benyttes til at nedbryde variabiliteten i systemresponser i bidrag fra de
enkelte, stokastiske systeminput, hvilket f.eks. kan anvendes til at vurdere effekten
af de enkelte systeminput på de stokastiske systemresponser. For det andet præsen-
teres en modeltilgang til systemidentifikation i en skadesdetekteringskontekst for den
momentbestandig portalrammekonstruktion og en lidt mere kompleks 3-etager, 3-
enheder momentbestandig rammekonstruktion. Disse analyser bekræfter nøjagtighe-
den og robustheden af gradientforstærkede maskiner in relation til klassificering af
skadesmønstrene ved forskellige niveauer af usikkerhed forbundet med strukturelle
observationer, samt forskellige antal observerede strukturelle observationer. Idet nu-
meriske simuleringer såvel som observationer af skadeshændelser normalt resulterer
i en ubalanceret database af skadeshændelser, introduceres der en ny struktureret
Monte Carlo simuleringsprocedure baseret på Markov-kæder til at balancere sådanne
databaser.

vi



PREFACE

A famous quote in statistics by George E. P. Box goes

“all models are wrong but some are useful”

— Robustness in the strategy of scientific
model building, 1979 (p. 202).

Taking this perspective, it becomes increasingly important to reflect the qual-
ity of scientific models in terms of model fit and especially the uncertainty
associated with models. Moreover, since all models are wrong Box advocates
that Occam’s razor applies for model selection, and thus we should seek an
economical description of natural phenomena, often termed a parsimonious
model representation.

In the same vein, Vladimir N. Vapnik has pointed out that

“if you possess a restricted amount of information for solving some
problem, try to solve the problem directly and never solve a more
general problem as an intermediate step. It is possible that the avail-
able information is sufficient for a direct solution but is insufficient
for solving a more general intermediate problem”

— Statistical learning theory, 1998 (p. 12),

and Judea Pearl emphasizes that

“you are smarter than your data. Data do not understand causes
and effects; humans do”

— The book of why: the new science of cause
and effect, 2018 (p. 21).

On the other hand, so-called black-box models, like deep neural networks,
are dominating the scene for large and highly complex machine learning
applications, such as image classification, recommender systems, computer
vision and natural language processing. Deep neural networks emulate the
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PREFACE

way the human brain processes information by activation impulses, and thus
the fitting of such system representations can to some extend be compared
to the development of the human brain from cradle to grave – like neural
networks we too learn by a huge amount examples.

As apparent from the considerations above, there are a lot of opinions
on and approaches to scientific modeling, and new algorithms and modified
variants of existing algorithms continue to appear in scientific publications.
This makes it increasingly difficult for newcomers to navigate in the field of
probabilistic modeling, as formulated by Christopher M. Bishop

“the popularity and importance of machine learning means that it
has moved beyond the domain of the machine learning community to
the point where many researchers whose expertise lies in other fields,
such as the physical and biological sciences, statistics, medicine, fi-
nance and many others, are interested in solving practical problems
using machine learning techniques. The variety of algorithms, as
well as the complex nomenclature, can make the field challenging
for newcomers.”

— Model-based machine learning, 2013 (p. 3),

and Leo Breiman further states that

“The best available solution to a data problem might be a data model;
then again it might be an algorithmic model. The data and the
problem guide the solution. To solve a wider range of data problems,
a larger set of tools is needed.”

— Statistical modeling: The two cultures, 2001 (p. 204).

Moreover, it is appreciated by Peter McCullagh and John A. Nelder that

“Data will often point with almost equal emphasis at several possible
models and it is important that the statistician recognize and accept
this.”

— Generalized linear models, 1989 (p. 8).

Based on these reflections, this thesis strives to bring recent developments
in probabilistic modeling and analysis to the challenging field of offshore
engineering by showcasing how current state-of-the-art machine learning
frameworks can be applied within the domain to formulate knowledge- and
information-consistent scientific models relevant for offshore design and as-
sessments. This generally involves multi-scale, temporal, and spatial consid-
erations for multiple, interrelated variables. In this regard, the thesis consid-
ers the frameworks used in detail and elaborates on how to analyze response
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PREFACE

characteristics of systems in order to understand these and improve their rep-
resentation in terms of modeling. As models are generally built to support
decision-making, it is crucially important that system representations sup-
port the decision context in the best way possible when performing decision
optimization. Thus, the thesis considers feasible approaches for embedding
probabilistic modeling within the decision problem in order to choose the
best possible system representation for the decision context at hand, and for
quantifying the value of existing and additional information as well as and
model improvements.

The thesis is composed of two part: Part I frames the thesis and elab-
orate on the theory used in the accompanying research papers. This part,
named Treatise, is meant as a general introduction to systems modeling and
analysis, as many technical details are omitted in the research papers. In
this way, I have attempted to make the thesis as self-contained as possible.
Part II contains a set of published papers demonstrating applications of the
theory (Part I) on practical engineering problem of relevance within the con-
text of offshore engineering. Only papers where I act as the lead author are
included in this part, which is named Papers. The papers in this part are
individual works with their own reference list and section, figure, table, and
equation numbering. Therefore, similar bits and pieces appear in more than
one paper. Note that I have tried to keep Part I inclusive by use of “we” to
referrer to you (the reader) and me, whereas in Part II, “we” refers to my
co-authors and me. Moreover, in support of the study, a GitHub repository
hosted at https://github.com/SebastianGlavind/PhD-study has been cre-
ated, which includes code examples on most of the theory presented and
introduces the use of two toolboxes for Bayesian network learning that I have
developed during the course of this study.
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PART I

TREATISE

1





ON SYSTEMS MODELING
AND ANALYSIS

1 INTRODUCTION

1.1 BACKGROUND, MOTIVATION AND PURPOSE1

The Danish oil and gas reserves are by now rapidly decreasing, whereby the
efficiency in recovery of the remaining oil and gas resources plays a signif-
icant role in the extent to which the Danish state can benefit from these re-
serves – and for how long. In appreciation of this, the partners of the Danish
Underground Consortium (DUC; Total E&P Denmark, Noreco & Nordsø-
fonden) established the Danish Hydrocarbon Research and Technology Cen-
tre (DHRTC)2 at the Technical University of Denmark (DTU) in 2014, in col-
laboration with other universities and industrial partners in Denmark and
abroad. The main objectives of this DKK 1 billion investment over 10 years
are to identify possible technical means to increase the recovery efficiency of
the remaining oil and gas resources, to facilitate sustainable, cost-effective ex-
ploitation activities, and, at the same time, to ensure that the safety level for
personnel, environment, and assets comply with given acceptance criteria.

Integrity management of the offshore structures presently in operation
constitutes in itself a major challenge, as most structures were built during
the period 1970-1980 and typically with design service lives of around 20-
30 years. Thus, many of these structures are still in operation despite exceed-
ing their originally intended service lives. The situation is further compli-
cated by new findings, which indicate that the original design assumptions
regarding the offshore wave load environment in the Danish North Sea result
in an underestimation of the extreme loads [1, 2]. This calls among others for
the development of new methods and technology in support of asset integrity
management to enable a more detailed modeling and analysis of structural

1https://vbn.aau.dk/da/projects/load-environment-modeling-and-forecasting
2https://www.oilgas.dtu.dk
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1. INTRODUCTION

performances, which in turn facilitates that the various uncertainties affect-
ing these performances can be quantified and that the reliability and risks
associated with the structures can be updated based on observations, inspec-
tions, and repair actions and be documented transparently to the responsible
authorities.

To accommodate the effort on safety assurance of offshore structures, the
main purpose for the present thesis is to bring resent advances on systems
modeling and analysis to the offshore engineering community in pursuit of
knowledge- and information-consistent probabilistic models relevant for off-
shore design and assessments. Such models should among others comply
with the new requirements in relation to e.g., uncertainty, reliability and risk
quantification.

1.2 THE MODELING PHILOSOPHIES

Model building often leads to a multitude of competing model hypotheses,
due to limited amounts of data and the vast amount of modeling frameworks
and associated parameter representations in the literature. Thus, a funda-
mental question in model building is how to choose a system representation,
or model, for a given problem context.

Simple, or parsimonious, models are commonly advocated for and pre-
ferred to complex models when representing systems, as it is generally easier
to express distributional assumptions for and interpret such models [3]. This
preference is often expressed through Occam’s razor, or Ockham’s razor, due
to the English monk and philosopher William of Occam (1288–1348) [4], who
originally used the philosophy that simpler explanations should be preferred
over complex ones to ground his reasoning in his faith. A variant of this
principle, i.e.,

“We are to admit no more causes of natural things than such as are
both true and sufficient to explain their appearances”,

also appear as the first rule of reasoning in philosophy in Isaac Newton’s
Principia Mathematica [5, p. 202]. Today, Occam’s razor is cited in most text-
books on probabilistic modeling to guide model comparison and selection
through Occam’s and Bayes factor, see e.g., [4, 6].

The general challenge, though, with this selection bias towards simpler
models is that model accuracy or data faithfulness should not be unduly
compromised for the sake of simplicity [3]. This has led to a set of so-called
anti-razors, expressed e.g., by Karl Menger [7, p. 415] as

“it is vain to try to do with fewer what requires more”.

This philosophy complies very well with today’s deep learning applications,
where the general solution to a poor model fit is to enlarge the model by
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including additional hidden layers, which often result in models that have
more parameters than data points available to fit the model, see e.g., [8].

In either case, the no free lunch theorem states that without any specific
knowledge of the problem or the data at hand, i.e., the problem context,
there are no reasons to support one modeling framework over another. At
the same time, even if such knowledge is available, models customized for
a specific situation, e.g., handling missing data, may be constraint in other
ways, e.g., linear models, which may not allow the model to represent the
underlying data distribution anyway. Thus, the model choice should be seen
in consistency with the knowledge and information (data) at hand. To this
end, the common approach is to test the generalization performance of the
models against a data set that has not been used to fit the models using a
measure of “average” or “overall” performance, like mean-squared error or
classification accuracy [3, 9].

This procedure has proven to work well when the objective of modeling
is to understand the overall data generating mechanism or to perform av-
erage predictions, but what is often overseen when specifying the problem
context are the decisions about the system, the model aims to support. As
an example, an overall score metric for model performance is of no value if
the decision context relies only on the upper or lower tail of the model distri-
bution. Also, a choice of system representation that does not account for the
decision context will not accommodate a quantification of the true value of
additional information in a decision analysis, as the model hypothesis space
is already reduced to a specific model class. In the general setting, where
the decision context is accommodated for in the model choice, utility theory
provides a principled means for context-specific model selection and decision
optimization. Early developments along this line are found in [10].

1.3 THESIS OBJECTIVES AND RESEARCH QUESTIONS

In response to the foregoing outline of the research purpose and context, the
principal objectives of the present thesis are categorized into (i) representa-
tion of systems, (ii) analysis of systems, and (iii) model selection and decision
optimization, and listed below along with their associated research questions.

Representation of systems: The objective is to formulate and develop prob-
abilistic models of engineering systems, like the joint representation of
the offshore load environment (e.g., wind, waves and current), which
are relevant for design and assessments of offshore structures and fa-
cilitate for (i) a consistent utilization of available and potential future
knowledge and information, and (ii) a consistent representation of the
prevailing aleatory and epistemic uncertainties.

Q1: Which information sources are commonly used and available for
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building offshore engineering models, and how can we utilize all
available, and future, knowledge and information to this end?

Q2: What are current practices for representing offshore engineering
systems and what can be improved?

Q3: What are the trends in state-of-the-art systems representation and
how do they apply to (offshore) engineering systems?

Q4: How can we consistently account for the aleatory and epistemic
uncertainties when formulating system representations?

Analysis of systems: The objective is to investigate how methods of big data
analysis can be used as a means for understanding complex probabilis-
tic system representations by revealing behavioral patterns and sensi-
tivities in the model specification.

Q5: What are the trends in state-of-the-art big data analysis of complex
systems and how do they apply to (offshore) engineering systems?

Q6: How can we consistently explore the space of possible, competing
systems and rank their relevance in terms of occurrence?

Model selection and decision optimization: With basis in the early devel-
opments on context-specific model selection presented in [10], the objec-
tive is to assess whether these ideas can be operationalized and further
developed to accommodate not only a selection among pre-specified
models but also a full embedding of the model building operation in
case of complex systems.

Q7: Can the framework of Faber & Maes [10] be operationalized to ac-
commodate context-specific model selection for complex systems?

Q8: If so, how does it aid a situation of (i) pre-specified models, and
(ii) embedding of the model specification?

1.4 THESIS OUTLINE

The thesis is composed of two parts: Part I is the treatise, which acts as
a wrapper for the accompanying research papers, and Part II contains the
research papers, which document the research conducted as part of this PhD
study. Part I introduces the general frame for the papers and elaborates on
the theory of some of the applied techniques, as the paper format only makes
room for a glimpse of the mathematical details. Note that this part does not
include a dedicated state-of-the-art literature survey; however, when found
relevant, a survey appears in the papers of Part II.

In the coming sections of the treatise, we will start out with a general
introduction to systems modeling and the terminology and notation used

6
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throughout this study in Sec. 2. Next, Secs. 3–5 proceed to cover three of the
frameworks for systems representation, which are used extensively through-
out the study and part of the current state-of-the-art in machine learning.
These are Bayesian networks (BNs), Gaussian processes (GPs), and (deep)
neural networks (NNs), mentioned in order of decreasing explainability.

In order to understand and assess probabilistic system representations in
the context of decision analysis, Sec. 6 considers how input-output relations
leading to different performances of systems can be analyzed with this per-
spective. In this regard, we focus our attention on state-of-the-art methodolo-
gies from the global sensitivity analysis (SA) literature and show how these
may be complemented by methods from the machine learning literature to
enhance our understanding of complex systems. This section also elabo-
rates on surrogate modeling using polynomial chaos expansions for efficient
implementation of variance-based SA techniques, and model-based cluster
analysis for regionalized SA.

As most real systems are complex to model in a way that reflect all as-
pects of the systems, model building may result in different system represen-
tations that explain the information (and knowledge) equally well. In these
situations, tools for handling different (competing) systems are needed for
subsequent decision optimization. Section 7 reviews some of the tools used
in this study for handling model multiplicity in regard to the management of
systems.

To finalize the treatise (Part I), Sec. 8 points to the papers in Part II, where
among others the theory from Secs. 3–7 is used on practical engineering
problems relevant for offshore engineering design and assessment. This is
followed by Sec. 9 that concludes the thesis and points to future research.
The treatise is visually outlined in Fig. 1 using the section titles.

The papers in Part II generally fall into two categories: (i) papers where
the main objective is the representation of systems (Papers A, C, D, and F);
and (ii) papers where the main objective is the analysis of system responses
(Papers B and E). Both categories encompass the overarching envelope of
decision support and particularly risk-informed integrity management. The
papers in Part II are listed below.

Paper A: Sebastian T. Glavind and Michael H. Faber, “A framework for off-
shore load environment modeling”, in Proceedings of the ASME 2018
37th International Conference on Ocean, Offshore and Arctic Engineering
(OMAE2018), OMAE2018-77674, 2018.
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Section 1:
Introduction

Section 2:
Systems modeling

Section 3:
System representations
using Bayesian networks

Section 4:
System representations
using Gaussian processes

Section 5:
System representations
using Neural networks

Section 6:
Systems analysis

Section 7:
Model selection and averaging,

and decision optimization

Section 8:
Applications in offshore

engineering

Section 9:
Conclusions and future work

Figure 1: Outline of the treatise.

Paper B: Sebastian T. Glavind, Juan G. Sepulveda, Jianjun Qin and Michael
H. Faber, “Systems modeling using big data analysis techniques and
evidence”, in Proceedings of the IEEE 2019 4th International Conference on
System Reliability and Safety (ICSRS2019), ICSRS2019-R0119, 2019.

Paper C: Sebastian T. Glavind and Michael H. Faber, “A framework for off-
shore load environment modeling”, Journal of Offshore Mechanics and
Arctic Engineering, vol. 142, no. 2, pp. 021702, OMAE-19-1059, 2020.

Paper D: Sebastian T. Glavind, Henning Brüske and Michael H. Faber, “On
normalized fatigue crack growth modeling”, in Proceedings of the ASME
2020 39th International Conference on Ocean, Offshore and Arctic Engineer-
ing (OMAE2020), OMAE2020-18613, 2020.
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Paper E: Sebastian T. Glavind, Juan G. Sepulveda and Michael H. Faber, “On
a simple scheme for systems modeling and identification using big data
techniques”, submitted to Reliability Engineering & System Safety.

Paper F: Sebastian T. Glavind, Henning Brüske, Erik D. Christensen and
Michael H. Faber, “On systems modeling and context-specific model
selection in offshore engineering”, submitted to Computer-Aided Civil
and Infrastructure Engineering.

If not stated otherwise, I carried out the research documented in the afore-
mentioned papers, and co-authors assisted in an advisory role. In Paper B,
Juan G. Sepulveda supplied the finite-element program for the portal frame
structure and conducted the simulations for the study. In Paper D, Hen-
ning Brüske used the developed normalized fatigue crack growth model for
risk-based inspection planning. In Paper E, Juan G. Sepulveda supplied the
finite-element program for the portal frame structure, and the 3-story, 3-bay
frame structure, and conducted the simulations for the study.

In addition to the papers in Part II, I have also contributed to the following
publication, which is not included in the thesis:

Paper: Linda Nielsen, Sebastian T. Glavind, Jianjun Qin and Michael H.
Faber, “Faith and fakes – dealing with critical information in decision
analysis”, Civil Engineering and Environmental Systems, vol. 36, no. 1,
pp. 32-54, 2019.

Note that Paper B received the session award of Network and Data Security
at the 4th International Conference on System Reliability and Safety (ICSRS2019),3

and the aforementioned additional paper by Nielsen et al. received the 2019
best paper award of the journal Civil Engineering and Environmental Systems.4

Finally, the thesis is supplemented by a GitHub repository hosted at
https://github.com/SebastianGlavind/PhD-study, which includes code
examples on the techniques discussed in this thesis and introduces the use of
two toolboxes developed during the PhD study.

3http://www.icsrs.org/icsrs19.html
4https://think.taylorandfrancis.com/journal-prize-civil-engineering-and-

environmental-systems-best-paper-award/
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2 SYSTEMS MODELING

This section frames the concept of systems modeling as considered in this
study and provides a common ground for discussion in terms of terminology
and notation. Section 2.1 introduces the basis for systems modeling along
with the different components of the modeling, which are elaborated on in
subsequent sections. The study employs techniques from different technical
disciplines, e.g., probability theory, statistics, machine learning, and decision
theory; thus Secs. 2.2 and 2.3 provide some general terminology and notation,
respectively, used throughout the remainder of the study.

2.1 MODELING BASIS

Parts of this section appear in Papers A, and C.

Knowledge and information form the basis for representing systems subject
to decision optimization. Thus, before proceeding on the topic of model
development, we will start out with a brief outline on how we account for this
modeling basis. Following the guideline for system representations proposed
by the Joint Committee on Structural Safety (JCSS) [11], Fig. 2 provides a
system representation in terms of the flow of consequences generated as a
result of exposure events (Paper C). 

 
 
Figure 1 The JCSS framework for systems risk modelling (from JCSS (2008)). 

 

Following Shannon’s MTC, Weaver (1949) argued that the analysis of information can be viewed 

in terms of: (i) quantification of information in accordance with Shannon’s theory for the purpose 

of solving technical problems; (ii) analysis of semantic problems related to meaning and truth; and 

(iii) analysis of “influential” problems with regard to effects of information on human behavior. 

Clearly, in the context of risk management in support of societal decision making, all the above are 

relevant.  

Given the pervasiveness of the concept of information in a wide range of application areas from 

computer science to linguistics to biology, there is no agreed definition of information, rather a 

multiplicity of operational definitions that fit particular contexts. Before we say which of these 

definitions we prefer as befitting the context of our present inquiry, we briefly look at implications 

of the physical and semantic conceptions of information with regard to decision-making under 

uncertainty. The physical conception of information is formulated through Shannon’s MTC in the 

context of electrical engineering. It deals with the problems of data compression and data 

transmission. MTC is not concerned with the content or meaning of the data, but it does provide 

meaning about the potentiality of meaning through the concept of statistical significance. In the 

words of Weaver (1949): “The mathematical theory of communication deals with the carriers of 

information, symbols and signals, not with information itself. That is, information is the measure of 

your freedom of choice when you select a message”. By treating information as a physical entity, 

MTC postulates that a lower degree of randomness or entropy is associated with less information 

and vice versa. 

The semantic conception of information considers the content of information through the 

satisfaction of three criteria: meaningfulness, consistency and truth. Those who require the first two 

criteria only are proponents of the theory of weakly semantic information; those who require all 

three subscribe to the theory of strong semantic information. Floridi (2015) distinguishes further 

between instructional information (which must be meaningful in order to convey the need for action) 

and factual information (a declarative statement which may be true or false). Floridi has come to be 

known as the academic authority on the newly coined branch of philosophy – philosophy of 

information, particularly on ethical aspects of the uses of information. He argues (2004, 2015) that 

truth is a defining criteria of factual information and that misinformation and disinformation 

regardless of intent, or the lack thereof, are not to be considered as factual information. Opposed to 

this view, Fetzer (2004) and Dodig-Crnkovic (2005) have argued that false information, including 

contradictions are also instances of semantic information by virtue of fulfilling the truth-neutral 

Figure 2: The JCSS systems representation [11].

In the top of Fig. 2, we consider an exposure event (e.g., natural hazard,
act of terrorism, etc.) acting on the constituents of the system. This expo-
sure event may lead to system changes, as depicted in the middle part of
the figure, in terms of direct consequences (e.g., loss of lives, damages to in-
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frastructure, etc.) and indirect consequences (e.g., loss of business continuity,
repetition loss, etc.). In this regard, vulnerability is associated with the risk
imposed by direct consequences, and robustness relate to the risk of event-
imposed consequences exceeding the direct consequences. The lower part of
the figure shows an additional source of indirect consequences, namely con-
sequences attributed to the societal or public perception, as a result of system
changes. This part indicates how risk management relies on risk communica-
tion, i.e., efficient risk communication before, during, and after e.g., events of
natural hazards can mitigate consequences associated with perception (e.g.,
loss of trust) [11, 12].

We note that depending on the granularity of the risk assessment, the ex-
posure, constituents, and consequences are different. As an example, a sys-
tem could be an oil and gas field in the North Sea with constituents being the
different offshore facilities in the field (e.g., production and accommodation
platforms, etc.), or a system could be one of the offshore facilities in the field
with constituents being e.g., the structural members. For one such offshore
facility, a decision problem concerning the structural design would consider
exposure events in terms of the operational and environmental loads acting
on the structure, and the constituents would include e.g., the structural com-
ponents and joints. The direct consequences would be e.g., material damages
and loss of lives, and the indirect consequence would be e.g., monetary con-
sequences imposed by the loss of functionality of the structure and additional
material losses imposed on the surrounding assets [11].

The flow of consequences and their magnitude are generally subject to
both aleatory (type I) and epistemic (type II) uncertainty, where aleatory un-
certainty represents inherent variation associated with the system, i.e., it can
be described as intrinsic, irreducible randomness. Epistemic uncertainty is
uncertainty caused by lack of knowledge (or information) about the system,
i.e., it can be described as subjective uncertainty, which may be reduced by
e.g., better models and/or more data [13–15]. In accordance with JCSS [11],
the uncertainties may be adequately represented by means of Bayesian prob-
ability theory, whereby Bayesian decision analysis [16] and the axioms of von
Neumann and Morgenstern [17] provide the necessary means for decision
optimization regarding the management of systems, as illustrated in Fig. 2,
in support of the available knowledge and information about how decisions
change the generation of the expected value of consequences.

Nielsen et al. [12] point out that the knowledge and information relevant
to consider when establishing a probabilistic system representation (model)
are the knowledge and information which affect the identification of opti-
mal decisions, i.e., the ranking of decision alternatives. With this insight,
the process of model building and systems management, i.e., the context
of the model building, should be considered jointly and not as separate
tasks (Paper C). To this end, given a decision context, systems modeling
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includes (i) knowledge- and information-consistent system representation(s),
(ii) analysis of system performances, and (iii) context-driven optimization of
system performance management decisions. Thus, these elements should
constitute a joint (integrated) system formulation. The individual elements
are as mentioned elaborated on in subsequent sections, see Sec. 1.4.

2.2 MACHINE LEARNING TERMINOLOGY
AND CONCEPTS

Statisticians and machine learners generally use different terminology for the
same concepts. For instance, statisticians often use covariates, predictors, or
independent variables for the inputs to a model, whereas machine learners
often use features, or attributes, and the model output is commonly referred
to as outcome, response, dependent variable, or target. Fitting a model to
data is often termed estimation in statistics and learning in machine learn-
ing (ML), where the data are typically given a label like training, validation,
and testing, depending on where in the learning process it is used. In this
regard, the data points in a data set are commonly referred to as samples,
observations, or instances [18, 19]. Throughout this study, we will use these
terms interchangeably.

Probabilistic models are generally built to support decision-making
within a given problem domain (area of expertise or application). In this
regard, ML models can be grouped into two categories, namely generative
and discriminative models. Generative models provide a joint distribution
model for the random variables in the problem domain, and discriminative
models, also referred to as conditional models, fit the posterior distribution
of some variable(s) in the problem domain, i.e., the outputs, based on other
variable(s) in the problem domain, i.e., the inputs, which are assumed to be
given, and thus their distribution is not modeled [6]. The discriminative ap-
proach is appealing when data are limited, and we are targeting a specific
output variable or set of output variables. As argued by Vapnik [20, p. 12],
we should

“try to solve the problem directly and never solve a more general
problem as an intermediate step”.

However, the generative approach offers a principled means for dealing with
real data, where e.g., some input values may be missing and/or outliers may
be present. Thus, in accordance with the no free lunch theorem, the most
appropriate modeling approach is problem dependent [3, 21].

Applications in which the training data consists of observations of input
vectors and corresponding output vectors are known as supervised learning
problems. If the outputs are continuous-valued, i.e., variables with a contin-
uous sample space, then the task is called regression, and if the outputs are
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discrete-valued, i.e., variables with a discrete sample space, then the task is
called classification [6]. An example of a regression problem considered in
this study is the prediction of fatigue crack growth for fatigue sensitive de-
tails, see Paper D, and an example of a classification problem is damage class
identification in a structural health monitoring context, see Paper E.

Applications in which the training data consists of observations of input
vectors without corresponding output vectors are known as unsupervised
learning problems. The objective of such problems can be to reflect latent
groups of similar samples within the data, typically referred to as cluster
analysis or clustering, to define a distribution based on the data samples
from input space, known as density estimation, or to reduce the dimension-
ality by means of projection for e.g., visualization purposes [6]. An example
of a clustering problem considered in this study is the discovery of most
likely failure points in structural reliability, and the corresponding systems
sensitivity towards the individual inputs, see Paper B.

Whether we are building a probabilistic model for supervised or unsu-
pervised learning, we need to decide on a modeling scheme. Do we want a
model with a specific functional form defined by a small number of param-
eters, which are estimated from the data set? Or do we want a more flexible
model for which the functional form depends on the size of the data set? The
former is named a parametric model, which e.g., has the advantage of be-
ing fast to train and use but the disadvantage of making strong assumptions
about the underlying data distribution. The latter is named a non-parametric
model, which as noted is more flexible but often computationally intractable
for large data sets in which case approximation schemes are needed. Non-
parametric models also have parameters, but these define the model complex-
ity rather than the form of the distribution [4, 6]. An example of a parametric
regression model considered in this study is again the prediction of fatigue
crack growth for fatigue sensitive details, see Paper D, and an example of a
non-parametric regression is the discrepancy modeling performed in Paper F,
where the discrepancy between a hindcast data set and a corresponding data
set of observations is modeled.

As noted earlier, an important consideration when building models is the
choice of model complexity. Thus, we want a model that reflects all infor-
mation on the underlying data distribution contained in the data set, but, at
the same time, we do not want to include the observation noise contained in
the data in our model. This is referred to as the bias-variance trade-off, see
e.g., [3, 18]. Failing to reflect all information on the underlying data distribu-
tion is generally referred to as underfitting, and adaption of the data distri-
bution model to observation noise is referred to as overfitting. Underfitting
occurs when the considered probabilistic model cannot adequately capture
the underlying structure of the data due to too limited flexibility, and over-
fitting occurs when the probabilistic model contains more parameters than
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can be justified by the data. Measures to prevent overfitting are referred to
as regularization measures, which have an equivalent prior interpretation in
a Bayesian setting, see e.g., [6] for further details.

2.3 GENERAL NOTATION

In this study, we consider both discrete and continuous random variables. In
either case, we denote a random variable by an uppercase letter, e.g., X, Y,
Z, and a generic (realized) state or value of a variable by that same letter in
lowercase, e.g., x, y, z. Moreover, we denote a set of random variables by a
boldface uppercase letter, e.g., X, Y , Z, and a boldface lowercase letter, e.g.,
x, y, z, denote a generic assignment of state or value to each variable in a
given set. Thus, we may also refer to a set of random variables X as being in
configuration x [22, 23].

For discrete random variables, P(X = x), or simply P(x), refers to the
probability that X = x, i.e., the probability mass at X = x; and for continuous
random variables, p(X = x), or simply p(x), refers to the probability density
at X = x. When we discuss discrete, categorical random variables, we use
the notation x ∈ Val(X) = {x1, x2, ..., x|X|}, when we need to enumerate the
possible values of X. Other shorthand notations used in this study are ∑x to
refer to a sum over all possible values that X can take and P(X = x, Y = y), or
simply P(x, y), to refer to the conjunction P((X = x) ∩ (Y = y)). Moreover,
we will use the notation P(X|Y) to represent the set of conditional probability
distributions defined by the two random variables X and Y. Thus, for each
value of Y, this object assigns a conditional probability distribution over X.
Note that these definitions equally apply to sets of random variables [6, 24].

When we consider a data set of observations of a set random variables,
we will denote it D, and the corresponding number of observations will be
denoted by N, e.g., D = {x[n]}N

n=1 or D = {x[n], y[n]}N
n=1. Moreover, the

number of observations in D for which the random variable X takes the value
x is denoted N[x]. Sometimes it is easier to consider our data set as matrix
quantities. In these situations, the data set may equivalently be defined as
e.g., D = {X̂, ŷ}, where X̂ ∈ RN×M is referred to as the design matrix of
N observations in M input variables, and ŷ is a corresponding vector of N
observations of output variable Y.
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3 SYSTEM REPRESENTATIONS USING
BAYESIAN NETWORKS

A Bayesian network (BN) is a probabilistic graphical model that allows for
reasoning and learning in complex, uncertain domains. In this regard, rea-
soning refers to the task of performing probabilistic inference one or several
variable(s) in the problem domain, e.g., querying the (conditional) distribu-
tion of a variable, potentially given observations on some other variables in
the model. Learning refers to the task of specifying the BN model, i.e., model
structure and parameters given a training data set (Paper F).

This section sets off by introducing BNs and their semantics in Secs. 3.1
and 3.2. Next, Sec. 3.3, accompanied by Appendix A, covers inferences in
BNs, and Sec. 3.4 considers learning of discrete BN representations, includ-
ing optimal discretization policies, based on fully observed and partially ob-
served data sets, respectively. Finally, Sec. 3.5 discusses the concept of tem-
plate modeling for structured data, e.g., populations of similar groups or
temporal systems, which naturally leads to the introduction of an emerging
methodology for applying machine learning, called model-based machine
learning, in Sec. 3.6. Note that two toolboxes have been developed during
the PhD study to support the research on probabilistic system representa-
tions using BNs. The toolboxes, along with supporting tutorials on their use,
are available at the GitHub repository.

3.1 INTRODUCTION TO BAYESIAN NETWORKS

Parts of this section appear in Papers A, C, D, and F.

BNs define a joint probability distribution over a set of random variables X
by decomposing it into a product of local, conditional probability distribu-
tions according to a directed acyclic graph (DAG) G, i.e., the model structure.
In the DAG G, each vertex or node corresponds to a random variable Xi ∈ X,
and the edges between the nodes represent the set of direct dependence rela-
tions implied by G. In the following, we use Xi to denote both variable i and
its corresponding node in G. Now, by studying the edges and missing edges
in G, we can directly read off a set of (conditional) independence assertions
about the domain variables in X. For each random variable Xi represented in
G, we specify a conditional probability distribution P(Xi|Pai). This distribu-
tion defines the dependence of Xi on the random variables that Xi is directly
dependent on in G, termed the parent set Pai of variable Xi, see e.g., [25, 26].

The joint distribution defined by a BN is written as

P(X|G, ΘG) = ∏
i

P(Xi|Pai), (1)
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where ΘG denotes the set of model parameters. For discrete random vari-
ables, the set of parameters corresponds to the probability masses of each
combination of states, and for continuous random variables, the parameter
set corresponds to the parameters needed to specify the probability density
functions of the random variables. In a supervised learning setting, the local
distribution function P(xi|pai) may be regarded as a probabilistic classifi-
cation or regression function. Thus, a BN can be viewed as a collection of
probabilistic classification/regression models, organized by conditional in-
dependence relations, and in principle, any combination of models from the
supervised learning literature can be used to define the conditional probabil-
ity distributions of a BN [23] (Papers A, C, and D).

The language of BNs combines ideas from probability theory (calculus)
and computer science (data structures, i.e., graphs and algorithms for ex-
ploiting them) in order to model and reason about complex domains in an
efficient manner. Thus, while BNs can represent arbitrary, unique probability
distributions, they provide computational advantages for distributions that
allow for a simple structural representation. BNs are particularly useful when
we wish to reason about multiple interrelated variables simultaneously, and
not just a single target variable, in which case other machine learning frame-
works may be better suited, see e.g., Secs. 4 and 5. Furthermore, BNs provide
a natural way of incorporating prior knowledge on both the structure and
parameters into the modeling. This is in contrast to most traditional machine
learning frameworks, where it can be difficult to embed prior knowledge in
a natural way, see e.g., [23, 24].

3.2 REPRESENTATION

Parts of this section appear in Paper A.

The semantics of BNs are easiest explained by example. Figure 3 shows a
classic example from [25], which illustrates how Mr. Holmes is reasoning
about his burglary alarm A going off. If the alarm goes off, his neighbor
Dr. Watson W may call him. A triggering of the alarm will have one of two
causes: (i) there is a burglar B in his house, or (ii) there is an earthquake
E in the area. Moreover, Holmes may gain additional information on the
earthquake scenario by listening to the radio news R. The joint distribution,
which factorizes according to Fig. 3, is written as

P(B, E, A, R, W) = P(B)P(E)P(A|B, E)P(R|E)P(W|A).

Now, imagine that Holmes is out and gets a call from Watson, who has heard
Holmes’ alarm going off. Holmes rushes to his car believing that a burglar
has triggered the alarm. On his way home, the radio news reports an earth-
quake in the area. This additional piece of information makes him change
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Figure 3: Burglary or earthquake Bayesian network (Paper A).

his belief in the burglary scenario, as the reported earthquake “explain away”
the triggered alarm (Paper A).

The BN in Fig. 3, as every BN, is constructed from three distinct connec-
tion types: serial, e.g., B → A → W and E → A → W; diverging, e.g.,
A ← E → R; and converging, e.g., B → A ← W. Based on these connec-
tion types, the rules for flow of information in a BN can be formulated under
one criterion known as d-separation, which defines when information cannot
flow between two variables. Two distinct variables X and Z in a BN are said
to be d-separated if for all trails between X and Z, there is an intermediate
variable Y (distinct from X and Z) such that either

• the connection is serial (Fig. 4a) or diverging (Fig. 4b) and the state of Y is
observed, or

• the connection is converging and neither Y nor any of Y’s descendants
(variables descending from Y in G) have received evidence (Fig. 4c).

If X and Z are not d-separated, they are d-connected, and information can
flow between them. The blocking of information flow between variables,
which appears in the first item above, reflects the concept of conditional in-
dependence, i.e., X ⊥ Z|Y; and the blocking of information flow, which
appears in the second item above, reflects the concept of (unconditional) in-
dependence, i.e., X ⊥ Z. It should further be noted that the d-separation
criterion also applies to disjoint sets of variables [27, 28].

3.3 INFERENCE IN BAYESIAN NETWORKS

Parts of this section appear in Papers C, and D.

In this section, we consider how to use the framework of BNs to answer
queries on a subset of the variables in a BN, potentially given evidence (ob-
servations) on some of the other variables in the network. There are many
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X Y Z

(a)

X Y Z

(b)

X Y Z
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(c)

Figure 4: D-separation in Bayesian networks: (a) serial connection with ob-
served intermediate variable Y, (b) diverging connection with observed in-
termediate variable Y, and (c) converging connection with unobserved inter-
mediate variable Y and descendant V of Y. Colored vertices mark observed
variables.

queries we can use a BN to answer, but the two most common types are the
conditional probability query and the maximum a posteriori (MAP) query,
both of which we explain below.

CONDITIONAL PROBABILITY QUERIES

A conditional probability query evaluates the posterior distribution P(Y |Ev =
ev) of a subset Y of the variables in a BN, given a (possibly empty) evidence
set Ev = ev on some of the other variables in the network. By the definition
of conditional probability, we may write this probability distribution as

P(Y |Ev = ev) =
P(Y , ev)

P(ev)
. (2)

In Eq. 2, the numerator is computed from the factorization of the joint dis-
tribution P(X), defined by the BN, by marginalizing out the latent variables
W = X − Y − Ev, which are neither query nor evidence variables, i.e.,

P(Y , ev) = ∑
W

P(Y , W , ev). (3)

Here, we assume that the variables are discrete, but the considerations in this
section apply equally well to continuous variables, or to a combination of dis-
crete and continuous variables, in which case, the summations are replaced,
where appropriate, by integrals.

Now, because Y , W , and Ev are all the variables in the BN, each term in
the summation P(y, w, ev) is simply one entry in the joint distribution. The
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denominator in Eq. 2 may then be computed as

P(ev) = ∑
Y

P(Y , ev), (4)

which allows us to reuse the result of Eq. 3, instead of having to marginalize
out both Y and W from the joint distribution P(X) of all variables in the BN.
Note that P(ev) may also simply be regarded as an elementary renormaliza-
tion constant, which ensures that the posterior distribution sums to 1, i.e.,
P(Y |ev) ∝ P(Y , ev) [24, 27] (Papers C, and D).

To illustrate the procedure, we consider the example of Sec. 3.2. Again,
the joint distribution that factorizes according Fig. 3 is written as

P(B, E, A, R, W) = P(B)P(E)P(A|B, E)P(R|E)P(W|A).

Now, say that we receive some evidence on the variables B and R, i.e., ev =
{B = b, R = r}, and we want to query A, given this evidence. First, we
reduce the relevant factors by the evidence, and marginalize out all non-
query variables, i.e.,

P(A, Ev = ev) = ∑
E,W

P(B = b)P(E)P(A|B = b, E)P(R = r|E)P(W|A).

Second, we normalize by the evidence to produce the desired posterior dis-
tribution, i.e.,

P(A|Ev = ev) =
P(A, ev)

P(ev)
, where P(ev) = ∑

A
P(A, ev).

Equation 3 represents a brute force procedure for computing P(Y , Ev =
ev) called sum-product, where we first compute the product of factors in the
summation and then marginalize out the variables W that are not of immedi-
ate interest, but there exists a variety of more efficient inference algorithms,
both exact, like the sum-product algorithm, and approximate [24]. Some of
the more common algorithms are summarized in Appendix A. Moreover,
a thorough review on algorithms used for inference in BNs may be found
in e.g., [29], and a recent review on general Bayesian inference is found
in [30] (Papers C, and D).

MAXIMUM A-POSTERIORI INFERENCE

MAP inference finds the MAP assignment MAP(Y |Ev = ev) of a subset Y =
X− Ev of the variables in a BN, given a (possibly empty) evidence set Ev = ev
on the other variables in the network, i.e.,

MAP(Y |Ev = ev) = arg max
y

P(Y = y|Ev = ev). (5)
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That is, the MAP assignment is a single coherent assignment of highest poste-
rior probability, which in general do not coincide with maximizing individual
marginal probabilities. This assignment may not be unique, thus there may
be several assignments that produce similar posterior probabilities.

If we again take basis in Eq. 2, we see that the denominator is constant
with respect to Y . Therefore, for the purpose of finding the MAP assignment,
it is sufficient to consider the numerator in Eq. 5, i.e., P(Y |ev) ∝ P(Y , ev). The
procedure represented by Eq. 5 is often referred to as max-product, because
in this case we are maximizing a product of factors [24]. Again, there is
a variety of different inference algorithms for finding the MAP assignment.
For instance, the algorithms in Appendix A may easily be modified for MAP
inference by replacing marginalizations with maximizations [24].

3.4 LEARNING DISCRETE BAYESIAN NETWORKS

Parts of this section appear in Papers A, C, and F.

As apparent from Eq. 1, a BN is fully specified by its DAG G and its param-
eters ΘG . The process of specifying the pair {G, ΘG} is termed learning, and
it is usually performed in two steps: structure learning and parameter learn-
ing. Structure learning refers to the construction of the graph structure G, and
parameter learning refers to the specification of the model parameters ΘG .

Both learning tasks may be undertaken by use of a bottom-up or top-
down approach, or by a combining hereof. In a top-down approach, the DAG
and parameters are defined using information provided in a database, and in
a bottom-up approach, domain experts are interviewed to identify the DAG
and parameters [31]. As mentioned, BNs are defined in terms of conditional
dependence relations and probabilistic properties, without any implication
that edges should point from causes to effects in the DAG. However, it is
argued by Pearl [26] that causal BNs pose a more reliable and natural way of
expressing our knowledge about a given problem domain. That is, we should
strive to use a combined learning approach whenever possible, as it makes
the best use of the available and relevant knowledge and information about
a given system (Papers A, and C).

We adapt the Bayesian approach to learning, which involves a consis-
tent quantification of uncertainty using probabilities. After observing some
data D, the (current) prior distribution P(G, ΘG) may be updated using
Bayes’ theorem to obtain the posterior distribution, i.e.,

P(G, ΘG |D)︸ ︷︷ ︸
posterior

∝ P(D|G, ΘG)︸ ︷︷ ︸
likelihood

P(G, ΘG)︸ ︷︷ ︸
prior

. (6)

In this setting, the data set D = {x[n]}N
n=1 is composed of N i.i.d. observa-

tions in M random vector. The change in distribution represented by Eq. 6
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reflects the information gain we get by observing some data, and it further
illustrates what it means for a machine to “learn from data”. Moreover, the
posterior distribution in turn becomes the prior distribution to be used with
new observations, which makes the updating process inherently sequential,
and therefore well suited for online learning, where the data points are con-
sidered one at a time and the probability distributions updated after observ-
ing each data point [6, 32] (Paper F).

The Bayesian approach is especially relevant when data are limited and
the resulting uncertainty in the model itself and its model parameters is sig-
nificant. In such cases, traditional optimization-based approaches are often
prone to overfitting, which means that the model is tuned to noise in the
data, leading to poor generalization for new data. In this regard, a relevant
distinction is made by Bishop [32] between the computational size of a data
set, which refers to its size in terms of bits, and the statistical size of a data
set in relation to the model being considered. Thus, though we are in the era
of “big data”, statistically small data sets arise in many situations due to data
fragmentation, also known as the curse of dimensionality.

In the remainder of this section, we consider learning of system repre-
sentations for discrete-valued random variables, or accordingly dynamically
discretized continuous-valued random variable. By casting the discretiza-
tion process as part of the learning problem, we hereby strive to make as few
assumptions as possible regarding the distribution family of the domain vari-
ables, when learning a BN representation of a given system (Papers C, and F).

PARAMETER LEARNING

In this section, we consider how to learn the parameters of a Bayesian net-
work from data, when the corresponding DAG G is given, and our data set D
consists of complete assignments to all variables. In this setting, with refer-
ence to Eq. 6, parameter learning is usually performed by searching for a set
of parameters in ΘG that maximizes

P(ΘG |G,D) = P(G, ΘG |D)
P(G) ∝ P(D|G, ΘG)P(ΘG |G), (7)

where P(G, ΘG) = P(ΘG |G)P(G) (Paper F). First, we consider how the likeli-
hood function decomposes

P(D|G, ΘG) = ∏
n

P(x[n]|ΘG ,G)

= ∏
n

∏
i

P(xi[n]|pai[n], ΘG ,G)

= ∏
i

[
∏

n
P(xi[n]|pai[n], ΘG ,G)

]
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P(D|G, ΘG) = ∏
i

[
∏

n
P(xi[n]|pai[n], ΘXi |Pai

,G)
]

, (8)

where ΘXi |Pai
denotes the subset of parameters that defines P(Xi|Pai) in G.

Thus in Eq. 8, the terms in the square brackets define the conditional like-
lihood of a variable given its parents [24]. Second, if we assume that the
parameter vectors ΘXi |Pai

are independent a priori, which corresponds to an
assumption of global parameter independence, the prior decomposes as

P(ΘG |G) = ∏
i

P(ΘXi |Pai
|G). (9)

Moreover, if we further assume that the parameter vectors ΘXi |ui
for each par-

ent configuration ui in ΘXi |Pai
are independent a priori, which corresponds to

an assumption of local parameter independence, the individual prior terms
P(ΘXi |Pai

|G) decompose as

P(ΘXi |Pai
|G) = ∏

ui∈Val(Pai)

P(ΘXi |ui
|G), (10)

where Val(Pai) are the parent configurations of Pai. In Eq. 10, we assume
P(ΘXi |ui

|G) to be the Bayesian Dirichlet equivalent uniform (BDeu) prior, i.e.,

P(ΘXi |ui
|G) = Dir(αXi |ui

) with αXi |ui
=

{
α

xj
i |ui

=
α

|ΘXi |Pai
|

}|Xi |

j=1

, (11)

where α
j
xi |ui

is the prior weight in bin j of variable Xi, with parent configu-
ration ui; and α is the so-called imaginary sample size associated with the
BDeu prior, which specifies the weight assigned to the prior, compared to the
weight assigned to the likelihood through the sample size of D [24, 31, 33].
Recommendations on the imaginary sample size α are given in [34].

Based on these assumptions, the parameter posterior also decomposes,
with one posterior term P(ΘXi |Pai

|G,D) per variable, i.e.,

P(ΘG |G,D) = ∏
i

P(ΘXi |Pai
|G,D)

= ∏
i

∏
ui∈Val(Pai)

Dir

({
α

xj
i |ui

+ N[xj
i , ui]

}|Xi |

j=1

)
, (12)

where N[xj
i , ui] is the number of samples in bin j of variable Xi, with parent

configuration ui [24, 35] (Paper F).
As mentioned, parameter learning is usually performed by searching for

a parameter vector that maximizes Eq. 12 to produce the maximum a pos-
teriori (MAP) estimate of the parameter vector θ̂G , which is then later used
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for inference. The problem with this approach is that the statistical uncer-
tainties, due to a limited amount of data, are disregarded. Instead, we may
adapt a full Bayesian approach and average over all possible realizations of
the parameter vector. In practice, this is typically pursued by sampling a
number of realizations of the parameter vector {θ(t)G }T

t=1 using Eq. 12 and
then performing inferences for each of these realizations.

PARAMETER LEARNING FROM INCOMPLETE DATA

In this section, we consider how to learn the parameters of a BN from data,
when the corresponding DAG G is given, and our data set D is partially
observed. In this case, we write D = {Dobs,Dhid}, where Dobs denotes the
observed data and Dhid denotes the hidden data. Moreover, we also define an
inclusion indicator variable I , which determines, whether the n’th instance
of variable i is observed I [i, n] = 1, or not I [i, n] = 0. That is, we assume
that the incomplete data set has been generated by a mechanism that hides
some of the data values in a corresponding complete data set [28, 36]. The
joint distribution of {D, I}, given parameters {ΘG , Φ} and DAG G, can be
written as

P(D, I|G, ΘG , Φ) = P(D|G, ΘG)P(I|D, Φ), (13)

where the conditional distribution of I describes the missing-data mecha-
nism. We can now obtain the probability distribution for the observed infor-
mation {Dobs, I} by summing Dhid out of the equation, i.e.,

P(Dobs, I|G, ΘG , Φ) = ∑
Dhid

P(Dobs,Dhid|G, ΘG)P(I|Dobs,Dhid, Φ). (14)

One of three assumptions for the missing-data mechanism is typically consid-
ered: (i) data missing completely at random (MCAR), where the mechanism
is assumed to be independent of the data, i.e., P(I|Dobs,Dhid, Φ) = P(I|Φ);
(ii) data missing at random (MAR), where we assume that the mechanism
does not depend on the hidden data, i.e., P(I|Dobs,Dhid, Φ) = P(I|Dobs, Φ);
and (iii) data missing not at random (MNAR), where the mechanism depends
on both the observed and the hidden data [36] (Paper F).

As an example, we consider a questionnaire survey. A MCAR situation
may arise when some of the questionnaires are lost in the mail, thus the
missingness does not depend on the characteristics of the individuals par-
ticipating in the survey. A MAR situation may arise when men refuse to
answer some questions in the questionnaire at rates significantly higher than
women. Under the MAR assumption, we can correct for this kind of miss-
ingness, when we have observed the gender of the individuals. A MNAR
situation may arise when people from certain social groups, or people from
a specific large city, do not answer. In this case, the missing-data mechanism
is non-ignorable, because it is needed to identify the non-responders [37].
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In this study, we assume data to be MAR, thus we assume the observed
data to be informative of the missing data. Under this assumption, Eq. 14
may now be written as

P(Dobs, I|G, ΘG , Φ) =P(I|Dobs, Φ) ∑
Dhid

P(Dobs,Dhid|G, ΘG)

=P(I|Dobs, Φ)P(Dobs|G, ΘG). (15)

We see that the first term depends only on the parameters Φ, and the sec-
ond term depends only on the parameters ΘG . If we further assume the two
parameter vectors to be independent in the prior distribution, we can opti-
mize the posterior distribution of the parameters ΘG in P(X) independently
of the parameters of the missing-data mechanism. That is, while learning the
parameters ΘG , we can ignore the missing-data mechanism [24, 36].

We are thus back in the setting of Eq. 7, where the corresponding likeli-
hood function may now be written as

P(D|G, ΘG) = ∏
n

P(o[n]|G, ΘG) = ∏
n

∑
h[n]

P(o[n], h[n]|G, ΘG), (16)

with o[n] being the observed values in instance n, and h[n] being the un-
known values of hidden variables in instance n. In order to evaluate the
likelihood, we need to perform inference for the hidden variables of each
instance. Note that this formulation implies that we lose the property of
parameter independence and thereby the decomposability of the likelihood
function. This is easiest seen from the simple meta-networks in Fig. 5. If both
x[n] and y[n] are observed (Fig. 5a), the path ΘX → x[n] → y[n] ← ΘY is
blocked, but if x[n] is missing and y[n] is observed (Fig. 5b), the path is ac-
tive and information can flow. The former case corresponds to learning from
complete data, and the latter case corresponds to learning from incomplete
data [4, 24].

Again, we assume the BDeu prior (Eq. 11), which as mentioned satis-
fies both global and local parameter independence, but because the poste-

x[n]

ΘX

y[n]

ΘY

(a)

x[n]

ΘX

y[n]

ΘY

(b)

Figure 5: Meta-networks for parameter estimation: (a) fully observed training
data, and (b) partially observed training data.
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rior is a product of the likelihood and the prior, it follows that the posterior
does not decompose and no closed form solution exists. One way of ad-
dressing this problem is to learn the parameter setting that maximizes the
posterior probability using e.g., a generic gradient-based optimization al-
gorithm or the expectation maximization (EM) algorithm. Another way of
addressing the problem is to use a sampling-based method, like Gibbs sam-
pling, to approximate the posterior distribution [24, 38]. A recent review
on common algorithms used for parameter learning in BNs may be found
in e.g., [29, 39, 40] (Paper F).

Expectation maximization Instead of integrating over the entire posterior
P(ΘG |G,D), the EM algorithm searches for a parameter setting that maxi-
mizes the following expression

θ̂G = arg max
θG

P(θG |G,D) = arg max
θG

P(D|G, θG)P(θG |G)
P(D) , (17)

thus it produces a MAP parameter estimate. This search is conducted by
successively applying two steps until convergence: Expectation (E-step), the
algorithm uses the current parameter setting θ̂

(t)
G to compute the expected

sufficient statistics N̄[·, ·] related to Eq. 12, i.e., the expected sufficient statis-
tics are the expected counts of the different events {xj

i , ui} in the data. Maxi-
mization (M-step), the expected sufficient statistics are used in Eq. 12, and the
expression is optimized to produce a new MAP estimate θ̂

(t+1)
G . The expected

sufficient statistics in the E-step are calculated as

N̄[xj
i , ui] =

N

∑
n=1

P(xj
i , ui|o[n],G, θ̂

(t)
G ). (18)

That is, in order to calculate the sufficient statistics, we need to perform in-
ference for every instance in the data set over the current BN specified by
{G, θ̂

(t)
G } [4, 24, 41]. Pseudo-code for the EM algorithm is provided in Alg. 1.

Note that if we consider the expected sufficient statistics from the last
fixed point update of the EM algorithm, in combination with Eq. 12, the re-
sulting EM distribution appears as a special case of a variational distribution
of the posterior [6, 24, 36]. See e.g., Appendix A for further details on vari-
ational inference in a BN setting. Moreover, we discuss the EM algorithm in
more details in Sec. 6.3 in the context of Gaussian mixture models.

Gibbs sampling A Gibbs sampler is a Markov chain Monte Carlo (MCMC)
method, in which we construct a Markov chain whose states are one as-
signment to the unobserved variables in our model; such that the stationary
distribution of the chain corresponds to the posterior distribution over the
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Algorithm 1: Pseudo-code of the EM algorithm for BNs.
Input: D, G, α

Output: θ̂
(t)
G

1 Initialization: θ̂
(0)
G

2 for t = 0, 1, ..., until convergence do

3 E-step:

Initialization: {N̄[xj
i , ui]} ← 0

4 for n = 1, ..., N do
5 for i = 1, ..., M do
6 for each xj

i , ui ∈ Val(Xi, Pai) do
7 N̄[xj

i , ui]← N̄[xj
i , ui] + P(xj

i , ui|o[n],G, θ̂
(t)
G )

8 end
9 end

10 end

11 M-step:
12 for i = 1, ..., M do
13 for each xj

i , ui ∈ Val(Xi, Pai) do
14 αxj

i |ui
← α
|ΘXi |Pai

|

15 θ̂
(t+1)
xj

i |ui
←

α
xj

i |ui
+N̄[xj

i ,ui ]

αui+N̄[ui ]

16 end
17 end
18 end

unobserved variables. In our case, a state of the Markov chain consists of
Z = {ΘG ,Dhid}, and two assumptions are made: (i) the sampler is irre-
ducible, i.e., P(Z = z) > 0 for all unobserved variable states, and (ii) each
Z ∈ Z is chosen infinitely often, which is typically pursued in practice by cy-
cling deterministically through the unobserved variables in Z until a steady
state condition is reached, called the mixing time [23, 24].

A generic Gibbs sampler proceeds as follows: We initiate the chain at an
arbitrary point in Z-space z = {zk}K

k=1, and produce a new state by cycling
through the elements of Z. At each iteration t, an ordering of the K ele-
ments of Z is chosen and, in turn, each Z(t)

k is sampled from the conditional
distribution given all the other components of Z, i.e.,

P(Z(t)
k |z

(t)
∼k), (19)

where z(t)∼k represents an instantiation of all the components of Z but Zk, at
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Algorithm 2: Pseudo-code of Gibbs sampling in BNs.
Input: D, G, Z, T
Output: {z(t)}T

t=0

1 Initialization: z(0) ← {θ(0)G , {h[n](0)}}
2 for t = 1, ..., T do
3 z(t) ← z(t−1)

4 for each Zk ∈ Z do
5 Sample z(t)k from P(Z(t)

k |z
(t)
∼k)

6 end
7 end

their current values in iteration t, i.e.,

z(t)∼k = {z
(t)
1 , ..., z(t)k−1, z(t−1)

k+1 , ..., z(t−1)
K }. (20)

Pseudo-code for a generic Gibbs sampler is provided in Alg. 2.
In our sample space Z, we have two distinct classes of variables: those of

ΘG and those of Dhid. If we consider a variable Zk ∈ Dhid, at each step, we
know all the current parameters and all the other variables in Dhid, so we can
infer the distribution in Eq. 19 from the BN representation as P(Xi = Zk|Ev =

ev), where ev = {o[n], z(t)∼k[n]} corresponds to the evidence in instance n, to
which Zk belongs. Now, if we consider a variable Zk ∈ ΘG , at each step, all
variables in Dhid are instantiated, and thus we have a complete data set. This
means that we can instantiate the parameters as we would do in a complete
data setting, see Eq. 12. The natural order of inference in each iteration is
therefore to impute all the missing values in Dhid first, and then draw the
parameter values from the distribution of ΘG [24, 36, 41].

STRUCTURE LEARNING

We now consider how to learn the DAG of a BN from complete data. Taking
basis in Eq. 6, structure learning is usually performed by searching for a DAG
G that maximizes

P(G|D) ∝ P(G)P(D|G) = P(G)
∫

P(D|G, θG)P(θG |G)dθG , (21)

where P(G, ΘG) = P(ΘG |G)P(G), and the prior over structures P(G) is usu-
ally assumed to be uniform. As is apparent from Eq. 21, it is not possible to
perform this computation without also considering the parameters ΘG of the
BN model. Therefore, to make P(G|D) independent of any specific choice of
ΘG , we need to integrate ΘG out of the equation [31, 35] (Paper F).
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If we assume that the parameter prior P(ΘG |G) satisfies global parameter
independence, see Eq. 9, and we define P(D|G, ΘG) according to Eq. 8, then
P(D|G) may be written as

P(D|G) = ∏
i

∫
∏

n
P(xi[n]|pai[n], θXi |Pai

,G)P(θXi |Pai
|G)dθXi |Pai

. (22)

Moreover, if P(ΘG |G) also satisfies local parameter independence, see Eq. 10,
then P(D|G) decomposes as

P(D|G) = ∏
i

∏
ui∈Val(Pai)

∫
∏

n,ui [n]=ui

P(xi[n]|ui, θXi |Pai
,G)P(θXi |ui

|G)dθXi |ui
.

(23)
For discrete BNs, we can estimate P(D|G) in closed form. In this estima-
tion, we again assume a BDeu prior over the parameter space of each parent
configuration ui, see Eq. 11. Under these assumptions, P(D|G) may be eval-
uated as

P(D|G) = ∏
i

∏
ui∈Val(Pai)

Γ(αXi |ui
)

Γ(αXi |ui
+ N[ui])

∏
xj

i∈Val(Xi)

Γ(α
xj

i |ui
+ N[xj

i , ui])

Γ(α
xj

i |ui
)

, (24)

where Γ(·) is the Gamma function; N[ui] is the number of samples with
configuration ui; N[xj

i , ui]) is the number of samples in bin j of variable Xi,
with parent configuration ui; and α·|ui

are the imaginary samples of the BDeu
prior [24]. Recommendations on the imaginary sample size α of the BDeu
prior are given in [34]. At the large sample limit, Eq. 24 is equivalent to
what is known as the Bayesian information criterion (BIC), which negation
is equivalent to an information theoretic score called minimum description
length (MDL) [23, 33, 42].

Finding a DAG that maximizes Eq. 21 is generally an intractable prob-
lem [43]. One approach to deal with this problem is to resort to a heuristic
search strategy to find a high-scoring DAG. Another approach is to avoid
the need to define a measure of goodness-of-fit for G, and instead use con-
ditional independence tests on D to learn a DAG one edge at a time. The
former approach is called score-based structure learning, and the latter ap-
proach is called constraint-based structure learning. Additionally, one may
combine the two approaches by first reducing the search space of DAGs us-
ing a constraint-based structure learning algorithm, and then search for a
high-scoring DAG in the reduced search space using a score-based structure
learning algorithm. This approach is often referred to as hybrid structure
learning [31] (Paper F).

Recent advances on structure learning with respect to decomposable
scores, e.g., Eq. 21, explore techniques such as dynamic programming,
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e.g., [44], and integer linear programming, e.g., [45, 46], to perform an ex-
act search on the space of DAGs, but as the computational and memory
requirements are exponential in the number of vertices in the problem do-
main, these approaches are only feasible for smaller domains. For a recent
review on structure learning in graphical models see e.g., [29, 47, 48].

Based only on data, structure learning algorithms identify an equivalence
class, either by finding a DAG within the equivalence class or by finding the
essential graph.5 Furthermore, under the assumption that there is a DAG
G∗ faithful to the true underlying probability distribution P∗(X), which has
generated the data D, both score-based and constraint-based algorithms will
return an optimally scoring graph structure in the large sample limit.6 When
the faithfulness assumption is not fulfilled, a score-based algorithm still re-
turns a suitable graph structure, given that the weaker composition condition
holds [47, 49].7

In this study, we apply a set of hill-climbing strategies to perform score-
based structure learning. A greedy hill-climbing strategy proceeds as follows:
In each iteration, we define the neighborhood of the current DAG G(t) as all
DAGs we can produce from G(t) by adding an edge, removing an edge, or
reversing an edge. In this neighborhood, we pick the DAG that has the high-
est score and update G(t+1). This strategy only guaranties to find a local
optimum, but we may improve our chances of finding a “good” optimum
by including a tabu list of previously visited structures and/or performing
random restarts, when a local optimum is reached [31, 50]. Score-based al-
gorithms and tabu search in particular have been proven to perform well in
practice, in terms of accuracy and speed of network reconstruction, for both
small and large sample sizes [50] (Paper F).

In this section, we have so far only dealt with the problem of finding a
high-scoring DAG corresponding to a local optimum, but there may be an
ensemble of models, which correspond to different local optima that explain
the data equally well or even better than this model. This leads us to a dis-
cussion of how we can address model uncertainty in the setting of structure
learning. One approach is to run the structure learning algorithm several
times with different bootstrap data sets [51] and/or different initial DAGs,
generated at random or by use of a MCMC scheme [52–54]. Another ap-
proach is to use a MCMC scheme to simulate over the space of DAGs [55] or
possible orderings of the vertices within the DAG [56].

5Two DAGs that have the same d-separation properties are said to be Markov equivalent. The
essential graph of a Markov equivalence class is a graph that has both directed and undirected
edges (known as a p-DAG), where the directed edges are those that retain the same direction
for all DAGs within the Markov equivalence class, and the undirected are those that change
direction [47].

6A probability distribution P is faithful to a DAG G, if any independence in P is reflected in
the d-separation properties of G [24].

7The composition condition stats that if X ⊥ Y|Z and X ⊥W|Z then X ⊥ Y ∪W|Z [47].
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STRUCTURE LEARNING AND AUTOMATED DISCRETIZATION

In this section, we consider how to learn the DAG of a BN and, at the same
time, the optimal discretization of continuous variables from complete data.
When discretizing numerical data, it is important to keep the information loss
at a minimum by establishing a trade-off between model accuracy and model
complexity, in terms of the number of discretization intervals for each vari-
able, as we are generally likely to find more dependencies in the data, when
the data are represented by only a few intervals (coarse discretization), than
when the data are represented by many intervals (fine discretization) [57, 58].
Under these considerations, we discretize the continuous variables by use of
a multivariate discretization procedure, embedded in the structure learning
procedure, which accounts for the interactions in the current graph structure.

The method we use is based on [59], thus we assume that a continuous
data set is generated in two steps. First, an interval of a variable is selected
from the distribution of the discrete variable. Second, the corresponding
continuous value is drawn from a distribution over the discrete interval. We
then seek an optimal discrete representation D of the original continuous
data set Dc (Papers A, and C). The discretization policy ΛG depends on G and
the observed continuous data Dc, thus we need to specify our beliefs about
the triple {G, ΘG , ΛG}. Analogue to Eq. 6, our joint posterior distribution for
this problem takes the form

P(G, ΘG , ΛG |Dc) ∝ P(Dc|G, ΘG , ΛG)P(G, ΘG , ΛG), (25)

where ΛG specifies a set of interval boundary points for each variable. Fur-
thermore, as implicitly implied by the generative process for Dc, we assume
that, given D and ΛG , Dc is conditionally independent of {G, ΘG}, whereby
the likelihood of Dc may be written as

P(Dc|G, ΘG , ΛG) = P(Dc|D, ΛG)P(D|G, ΘG , ΛG). (26)

This assumption is illustrated in Fig. 6. Based on Eq. 26, we may now
rewrite Eq. 25 as

P(G, ΘG , ΛG |Dc) ∝ P(Dc|D, ΛG)︸ ︷︷ ︸
likelihood (continuous)

P(D|G, ΘG , ΛG)︸ ︷︷ ︸
likelihood (discrete)

P(G, ΘG , ΛG)︸ ︷︷ ︸
prior

.

(27)
The prior term in Eq. 27 factorizes as

P(G, ΘG , ΛG) = P(ΘG |G, ΛG)P(ΛG |G)P(G), (28)

where we assume that P(ΛG |G) and P(G) are uniformly distributed over
the space of discretization policies and DAGs, respectively; and P(ΘG |G, ΛG)
follow a product Dirichlet distribution defined by Eqs. 9–11. Under these

32



ON SYSTEMS MODELING AND ANALYSIS

Xc
1 Xc

2

Xc
3Xc

4

(a)

ΛG
=⇒

X1

Xc
1

X2

Xc
2

X3

Xc
3

X4

Xc
4

(b)

Figure 6: Structure learning and automated discretization: (a) the depen-
dency structure is captured by interactions of the continuous variables; (b)
the dependency structure is captured by interactions of the underlying dis-
crete variables, and the continuous variables depend only on their discrete
counterpart.

assumptions, the product of the two last terms in Eq. 27 (the discrete part)
corresponds to the evaluation of Eq. 21 (Eq. 24) [60] (Paper F).

Two formulations of the continuous likelihood in Eq. 27 are considered in
this study, i.e.,

P(Dc|D, ΛG) =∏
i

∏
xj

i∈Val(Xi)

(
1

λ
j
i − λ

j
i

)N[xj
i ]

(29a)

P(Dc|D, ΛG) =∏
i

∏
xj

i∈Val(Xi)

(
1

N[xj
i ]

)N[xj
i ]

, (29b)

where N[xj
i ] is the number of samples in bin j of variable Xi, regardless of

the parent configuration; and {λj
i , λ

j
i} are the boundary points in bin j of

variable Xi. Moreover, we only consider the N − 1 midpoints of each data
vector Dc

i as candidate boundary points for Xi in our implementations.
The formulation in Eq. 29a, which was proposed in the original work by

Monti and Cooper [59], may not be normalizable for the boundary intervals
corresponding to j = 1 and j = |Xi|. In these cases, we solve this issue by
using the smallest value of the observation vector {xc

i [n]}N
n=1 as the lower

bound, and the largest value of this vector as the upper bound. Another way
to overcome the normalization problem of Eq. 29a is to use the formulation
in Eq. 29b, which was proposed by Vogel [60]. This metric has the property
that each observation of Xc

i corresponds to one unit of the metric.
Based on these assumptions, the scoring function of Eq. 27 establishes

a trade-off between model accuracy and model complexity. On one hand,
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the formulations of P(Dc|D, ΛG) in Eq. 29 rewards model complexity and
prediction accuracy, with respect to the continuous variable, whereby it in-
creases with an increasing number of intervals. On the other hand, the dis-
crete part of Eq. 27, penalizes model complexity, whereby it balances the
resolution of the discretization by decreasing as the number of intervals in-
creases [59] (Paper F).

As the graph structure changes throughout the structure learning phase,
the discretization is adjusted dynamically to maximize the score function
Eq. 27 in a manner similar to that proposed in [61]. That is; first, the data are
discretized based on the current graph structure and second, this discretiza-
tion is used to learn a new graph structure. These two steps are repeated until
the score function converges to a local optimum. A similar scheme for com-
bined structure learning and discretization is used in [60] (Papers A, and C).

An important point regarding the discretization step above is that we only
change the discretization policy ΛG,i for one variable at a time, while treating
all other variables as being discrete and fixed. That is, at each iteration, we
pick the variables one by one, and optimize the local scoring metric for the
current variable, considering only the variable itself and the variables in its
Markov blanket in Eq. 27.8 We repeat this procedure until we cannot improve
the local score for any of the continuous variables in the domain, and proceed
to learn a new graph structure related to this discretization polity Λ(t+1)

G .

STRUCTURE LEARNING AND AUTOMATED DISCRETIZATION
FROM INCOMPLETE DATA

Learning the DAG of a BN (in addition to the parameters) from an incom-
plete data set is challenging from both a statistical and a computational point
of view. The score metrics we defined in the two previous sections, i.e., Eq. 21
and Eq. 27, are functions of the sufficient statistics N[·], through the defini-
tion of the (discrete) data likelihood in Eq. 24, and these are not defined for
incomplete data sets. To circumvent this problem, we may adopt the defini-
tion of the (missing) data likelihood from Eq. 16, and thereby operate with a
notion of expected sufficient statistics [40, 60].

As for the case of parameter learning given a graph structure, this may be
accomplished by utilizing a deterministic optimization algorithm like EM, or
a stochastic procedure like Gibbs sampling. The former approach is termed
structural EM [62, 63], and it proceeds by embedding the structural search in-
side the EM procedure. The latter approach is usually termed data augmenta-
tion [64], and it utilizes sampling procedures to produce several completions
of the training data set, which may then be used for structure learning in the

8In a Bayesian network, the Markov blanket of node X includes its parents, children, and the
other parents of all of its children [25].
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same manner as in a complete data setting. See e.g., [40] for a recent review
on learning from incomplete data.

By use of one of the approaches mentioned above, the (discrete) data like-
lihood may now be evaluated, and learning of the triple {G, ΘG , ΛG} is again
performed in accordance with Eq. 27. Note that in order to evaluate the (con-
tinuous) data likelihood in Eq. 26, the corresponding continuous imputations
are needed. These imputations are sampled from the generative model im-
plied by Eq. 29 (Paper F).

In this study, we employ a variant of the structural EM algorithm [37, 65]
in order to learn a DAG G from incomplete data in correspondence with
Eq. 27. In the E-step, we impute the missing data based on their maximum a-
posteriori estimates using the current BN, which is termed hard-assignment
EM [24]. In the M-step, we learn a new BN based on the imputed data set.
This approach is computationally less demanding than ordinary EM, which
is appreciated given that we already need to run several iterations of BN
learning and discretization, where each iteration requires estimation of the
missing values [60].

3.5 TEMPLATE MODELING

In this section, we consider an important extension to the language of BNs
discussed so far, namely template models, which allow us to define a tem-
plate representation that can be reused to solve multiple problem, either in
sequence or simultaneously over multiple objects in the problem domain. The
trick here is to increase the statistical power of the analysis by introducing pa-
rameters sharing between and/or within the groups. First, we discuss how
to represent the distribution over multiple objects that are somehow related
to each other, such as pixels in an image. Second, we discuss how we can
represent distributions over systems that change over time, i.e., in sequence.
Third and last, we discuss how to encode higher level dependencies in our
models. In a template representation, random variables that are instantiated
(duplicated) multiple times within the model are referred to as template vari-
ables, and the joint distribution over a set of instantiated template variables,
called ground variables, is referred to a template factor [24].

PLATE MODELS

Plate models is a special case of a general class of object-relational models,
which is commonly use in practice, notably for encoding the assumptions
made in various learning tasks. The basic objects in these models are plates,
which share a common set of variables and a common probabilistic model.
Figure 7 shows the simplest possible plate model of multiple random vari-
ables {Xm} generated from the same distribution; exemplified by multiple
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tosses of a single coin. In this case, we have augmented the plate model by
the parameter Θ ∈ [0, 1] to form a meta-network for the generative process,
whereby the assumption that the variables have an identical distribution is
made explicit. The expressive power of plate models goes far beyond the
simple example considered here; the key idea is that plates can be combined
and/or nested in any way to form richly structured distributions, which are
able to utilize evidence that may otherwise be ignored [24]. Some examples
are provided throughout the text, see e.g., Alg. 3.

X

Θ

M

(a)

X2X1 X3

Θ

(b)

Figure 7: Plate model for multiple tosses of a single coin: (a) Compact repre-
sentation, and (b) ground or unrolled Bayesian network for M = 3.

The basic plate concept as presented here may be extended in various
ways. In the following, we will consider two such extensions, namely dy-
namic Bayesian networks (DBNs) for temporal modeling, and hierarchical
Bayesian models for encoding multilevel dependencies.

DYNAMIC BAYESIAN NETWORKS

In this section, we define a template model representation for temporal sys-
tems, which is not possible with the basis plate representation, as a variable
is not allowed to be a parent of itself at a future time step; a property we will
need to encode temporal dynamics.

We define a ground random variable X(t)
i to be the instantiation of tem-

plate variable Xi at time t, and X(t:t′) (t < t′) denote the set of variables
{X(t)|t ∈ [t, t′]}. Our goal is now to represent the joint distribution over
a trajectory of assignments to each X(t) for each relevant time instance t.
In this regard, we will assume time to be discrete with granularity ∆t, and
thus system states are only observed in time slices. Moreover, we will as-
sume the system to be Markovian, i.e., it satisfies the Markov assumption
(X(t+1) ⊥ X(0:t−1)|X(t)), and stationary, also called time invariant or homo-
geneous, so that the transition model P(X(t+1)|X(t)) is the same for all time
steps. Under these conditions, the distribution over trajectories sampled at
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times t = 0, 1, ..., T simplifies to

P(X(0:T)) = P(X(0))
T−1

∏
t=0

P(X(t+1)|X(0:t)) (30a)

= P(X(0))
T−1

∏
t=0

P(X(t+1)|X(t)), (30b)

where Eq. 30a encodes the joint distribution using the chain rule of probabil-
ity, and Eq. 30b simplifies Eq. 30a by use of the Markov assumption. In most
cases, the Markov assumption is reasonable, given that we consider a suffi-
ciently rich state space description, e.g., for object localization, we could in-
clude both location and velocity in the state space description. Alternatively,
we may employ a model that is semi-Markov, in which case the conditional
independence assumptions of the model are relaxed [24].

Equation 30b allows us to define infinite trajectories using only an initial
state distribution and a transition model, where the transition model is a con-
ditional probability distribution, which we can define using a conditional BN.
An example is shown in Fig. 8. Figure 8a shows a compact representation of
the conditional model, called a 2-time-slice Bayesian network (2TBN), where
we see the full representation at time t + 1, and only the interface variables
at time t, thus the interface variables XI ∈ X are those variables at time t
that have a direct influence on variables at time t + 1. Figure 8b shows the
corresponding ground BN over three time slices. In general, the 2TBN repre-
sentation therefore defines the conditional distribution, i.e.,

P(X ′|X) = P(X ′|XI) =
M

∏
i=1

P(X′i |Pa′i), (31)

where the template factors P(X′i |Pa′i) are instantiated within each time slice
at run time. Note that the initial state distribution does not need to encode
the exact same dependencies as the transition model, as it appears to do in
Fig. 8b [24].

In the 2TBN representation, edges connecting variables from one time
slice to variables in the next are referred to as inter-time-slice edges, whereas
edges connecting variables within a time slice are referred to as intra-time-
slice edges. Moreover, inter-time-slice edges of the form X → X′, thus edges
connection a variable X at time t to its t + 1 representation X′, are called
persistence edges, and variables for which we have persistence edges are
called persistence variables.

Many important special cases of DBNs are used extensively in practice.
For example, variants of the hidden Markov model (HMM) are commonly
used to represent the evolution of a discrete-state, latent Markov chains,
and variants of linear dynamical systems, also referred to as Kalman fil-
ters or state-space models, are commonly use to represent the evolution of
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Figure 8: Dynamic Bayesian network: (a) 2-time-slice Bayesian network
(2TBN) representation, and (b) ground or unrolled Bayesian network over
three time slices.

a continuous-state, latent Markov chain. In fact, the model represented in
Fig. 8 may e.g., be considered as an example of a factorial HMM, where X3
is regarded as an observation variable. Note that tailored algorithms for effi-
cient inference and learning are derives for these models. See e.g., [4, 66] for
further details.

HIERARCHICAL BAYESIAN MODELS

In this section, we discuss the generalization of plate models to hierarchical
Bayesian models, also known as multilevel models, in which we employ a soft
version of parameter sharing, where parameters are encouraged to be similar
through the use of hyper-priors and thus do not have to be identical [24].
Hierarchical priors allow us to introduce dependencies in parameter priors;
a property that is particularly useful when we only have small amounts of
training data and many parameters that can be assumed to be similar. In such
situations, hierarchical priors increase the statistical power of the analysis by
spreading the effect of observations between parameters with shared hyper-
parameters [24].

Figure 9 shows an example of a varying coefficients model, which is the
simplest example of a hierarchical Bayesian linear model [36]. The model
depicts the generative process of the data x for N samples in M groups, with
the following probabilistic description

xi ∼ N (wi, σ2
i ) (32a)

wi ∼ N (µw, σ2
w), (32b)
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along with appropriate (non-informative) prior distributions. We see that
the hyper-parameter µw captures the general tendency of the wi’s over the
groups, and σw expresses their variability.

xi[n]wi

µw

σw

σi

N

M

Figure 9: Meta-network for simple varying coefficients model.

In hierarchical models, we intentionally lose the property of parameter
independence, which we explored extensively when formulating learning
schemes for BNs in a complete data setting (Sec. 3.4). Thus, the posterior
does not decompose into a product of independent terms, as the parameters
are no longer independent in the prior and consequently in the posterior.
Therefore, we generally need to resort to approximate inference for param-
eter learning, as in the case of parameter learning from incomplete data in
Sec. 3.4 [24, 36]. Approximate inference algorithms can be slow to converge
or get stuck when certain parameters (e.g., σw) follow a very short- or long-
tailed distribution, thus the following reparameterization of Eq. 32 can be
used in practice to decouple the model

xi ∼ N (µw + σwηi, σ2
i ) (33a)

ηi ∼ N (0, 1), (33b)

where wi = µw + σwηi [36]. For example, Gelman et al. [36] recommend using
this reparameterization when employing a Hamiltonian Monte Carlo (HMC)
inference method, which is a class of state-of-the-art Markov chain Monte
Carlo (MCMC) inference methods.

3.6 MODEL-BASED MACHINE LEARNING

Parts of this section appear in Paper D.

In this section, we describe an emerging methodology for applying machine
learning (ML) called model-based machine learning (MBML) [32]. In tradi-
tional ML, the practitioner typically selects a suitable ML algorithm from the
literature when faced with a new problem. If the algorithm requires mod-
ification to comply with the problem at hand, the practitioner must either
modify the existing algorithm or combine the algorithm with other ML al-
gorithms from the literature, both of which can be challenging. In contrast,
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when applying MBML, a custom ML algorithm is formulated for a given
problem by decomposing the algorithm construction into two distinct parts,
namely (i) probabilistic model representation, and (ii) inference engine. The
model representation covers the set of application specific assumptions made
about the problem domain, i.e., the process that gave rise to the data, where
any assumptions involving uncertainty are expressed using probabilities. The
model representation is typically implemented in a compact modeling lan-
guage from which custom code for learning and reasoning can be generated
automatically based the chosen inference method. This is referred to as the
inference engine. In some cases, of course, the MBML algorithm might cor-
respond to an existing ML algorithm, while in other cases it will not. The
important distinction here is that a MBML algorithm makes the model as-
sumptions explicit through the model representation, while in traditional ML
algorithms these are often implicitly defined [32, 67].

As indicated above, the MBML framework offers several advantages when
defining a ML algorithm for a given problem, e.g., the ease with which highly
tailored models can be created for specific applications, rapid model proto-
typing and modification for model comparison, compact model representa-
tion that permits debugging and collaboration, and the fact that practitioners
can focus their attention on understanding a single modeling environment,
as many traditional ML algorithms will appear as special cases of the MBML
framework [32]. The framework could in principle be implemented using a
variety of different approaches [32], but we will focus on an approach that
leverages Bayesian inference in probabilistic graphical models, e.g., BNs, and
recent developments in probabilistic programming (Paper D).

When implementing a MBML algorithm, we therefore first need to repre-
sent our assumptions about the problem domain using e.g., a BN. This means
specifying the DAG G, and a prior for the parameter vector ΘG , which holds
the parameters of the corresponding (conditional) probability distributions.
In this section, we will not distinguish between discrete and continuous prob-
ability distributions, or combinations hereof, as the considerations apply to
either case. Thus, in general ΘG simply holds the parameters needed to spec-
ify the model. As an example, the model representation for a Bayesian linear
regression is shown in Alg. 3(1). Note that we have introduced a plate nota-
tion in the DAG to show that the relationship holds for every instance in the
training set, and we account for the intercept term by including an additional
element in the input vectors x, which is equal to 1.

Second, we need to choose an inference engine, and, as mentioned, we
will explore recent developments in probabilistic programming. Probabilis-
tic programming is a programming paradigm that compiles a probabilistic
model into a computer program from which inference code can be gener-
ated automatically, based on the chosen inference method. Moreover, it en-
ables the combination of probabilistic and conventional deterministic code,
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Algorithm 3: MBML algorithm statement defining a Bayesian linear
regression.

1 Probabilistic model representation:

f [n]

w

x[n] y[n]

σ

N

f (x) = wTx

y ∼ N ( f (x), σ)

wj ∼ N (0, 10)

σ ∼ half-Cauchy(0, 5)

2 Inference engine: e.g., Stan using Hamiltonian Monte Carlo

which provides a flexibility of modeling that reaches far beyond conventional
graphical model notation [23, 32]. Probabilistic programming languages are
programming languages that facilitate for probabilistic programming. Some
examples are BUGS [68], Infer.NET [69], JAGS [70] and Stan [71]. As an ex-
ample, we could implement our Bayesian linear regression model in Stan and
use a Hamiltonian Monte Carlo inference method, see Alg. 3(2).

The Stan code for our Bayesian linear regression is shown in Lst. 1. From
Lst. 1, we see that all we need to implement this model in Stan is 16 lines
of code. Furthermore, we also see how easy it is to change the modeling
assumptions. For instance, if we want to change the parametric form of the
coefficients from normal to uniform, we simply have to exchange Lst. 1(13)
to e.g., w[k] ∼ uniform(−10, 10). For a general discussion on prior choice in
probabilistic models, the interested reader is referred to e.g., [72].

Listing 1: Stan code for a Bayesian linear regression.
1 data {
2 int <lower=0> N; / / number o f d a t a i t e m s
3 int <lower=0> K; / / number o f i n p u t s
4 matrix [N, K] x ; / / i n p u t ma t r ix
5 vector [N] y ; / / ou tpu t v e c t o r
6 }
7 parameters {
8 vec tor [K] w; / / c o e f f i c i e n t s f o r i n p u t s
9 rea l <lower=0> sigma ; / / e r r o r s c a l e

10 }
11 model {
12 for ( k in 1 :K)
13 w[ k ] ~ normal ( 0 , 1 0 ) ; / / p r i o r f o r c o e f f i c i e n t s
14 sigma ~ cauchy ( 0 , 5 ) ; / / p r i o r f o r e r r o r s c a l e
15 y ~ normal ( x * w, sigma ) ; / / l i k e l i h o o d
16 }
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At the present stage, MBML is a very powerful framework for modeling
in problem domains, where the graph structure and the parametric form of
the (conditional) probability distributions involved can be specified up-front
in the probabilistic model representation. This is in contrast to the approach
defined in Sec. 3.4, where we consider how to learn both the structure and
the parameters of a BN model from data, of course, with the cost of having
to discretize all continuous variables.
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4 SYSTEM REPRESENTATIONS USING
GAUSSIAN PROCESSES

As mentioned, supervised learning may be split into regression and classifi-
cation problems, where the output in regression problems is the prediction
of continuous quantities, and the output in classification problems is the pre-
diction of discrete class labels. In this section, we consider how Gaussian
processes (GPs), which are Bayesian non-parametric models, can be used for
both supervised learning tasks. In Sec. 4.1, we consider single-output, as well
as multi-output, GP regression, and in Sec. 4.2, we consider GP classification.
Moreover, in Sec. 4.3, we show how the regression framework of GPs can
be used to optimize black-box cost functions under the Bayesian optimiza-
tion framework. Note that tutorials supporting the material covered in this
section are available at the GitHub repository.

4.1 GAUSSIAN PROCESSES FOR REGRESSION

Parts of this section appear in Paper F.

In this section, we consider the regression of some response variable(s) y
based on covariate(s) x of the form

y = f (x) + ε, (34)

where we assume that the observed output y differ from the functional value
f (x) by additive noise ε. In the following, we show how the functional rela-
tionship f may be established by use of Gaussian process regression. First,
we introduce Gaussian processes in a single-output setting and second, we
proceed to cover the multi-output setting.

SINGLE-OUTPUT GAUSSIAN PROCESSES

A Gaussian process (GP) is a generalization of the multivariate Gaussian dis-
tribution over random variables to a probability distribution over functions,
indexed by e.g., time or space, for which any finite subset of variables fol-
lows a Gaussian distribution. In this case, a random variable represents the
value of the function f (x) at location x, which thus follows a Gaussian dis-
tribution. Just as a Gaussian distribution is completely specified by its mean
and covariance, a GP is completely specified by its mean function m and
covariance or kernel function k. With basis in Eq. 34, we assume f to be a
non-linear, non-parametric function with a GP prior, i.e.,

f (x) ∼ GP(m(x), k(x, x′)), (35)
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where m(x) = E[ f (x)] is the mean function, and k(x, x′) = C[ f (x), f (x′)]
is the positive semi-definite kernel, or covariance, function. This definition
allows us to evaluate the mean function at an arbitrary input setting and
assess how the value of the function at an input point covary with the value
of the function at other points in input space. Therefore, we can think of a GP
as defining a distribution over functions, and inference taking place directly
in the space of functions [73].

Given a data set D = {X̂, ŷ} = {x[n], y[n]}N
n=1 of (potentially) vector-

valued inputs and scalar outputs, we construct the GP prior by evaluating
the mean and covariance function at the data points, which leads to a multi-
variate Gaussian distribution over the corresponding function values, i.e.,

f (X̂) ∼ N (m(X̂), k(X̂, X̂)), (36)

where f (X̂) = { f (x[n])}N
n=1 (Paper F). In Fig. 10, the GP model is depicted as

a DAG [74]. The figure shows how the observed inputs X̂ are related to the
observed outputs {y[n]}N

n=1 through the latent function f , given the param-
eters of the latent function and the likelihood Θ = {Θhid, Θobs}. Note that
the plate notation indicates independence amongst the outputs y[n], given
the corresponding functional value f [n], where f [n] is a shorthand notation
for f (x[n]). The likelihood p(y| f ) does not have to be Gaussian, but exact
inference is generally not possible for non-Gaussian likelihoods [73].

f [n]

Θhid

X̂ y[n]

Θobs

N

Figure 10: Meta-network of a Gaussian process.

Under proper normalization of the data, the expected value of the pro-
cess can be assumed to be zero without loss of generality. The covariance
function should then capture basic aspects of the process, such as stationar-
ity, isotropicity, smoothness, and periodicity (Paper F). Here we will consider
the Matérn family of kernels, which is a commonly used class of station-
ary kernels that are shift invariant. This kernel family includes a so-called
smoothness parameter ν > 0 that controls the degree to which samples from
a GP are differentiable. Thus, samples from a GP with such a kernel are
differentiable ν− 1 times. As an example, the exponential and squared expo-
nential kernel are special cases of Matérn kernels with ν = 1/2 and ν → ∞,
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respectively. Some commonly used Matérn kernels, labeled by their smooth-
ness parameter, are shown below

k3/2(x, x′) = σ2
f

(
1 +
√

3r2
)

exp
(
−
√

3r2
)

(37a)

k5/2(x, x′) = σ2
f

(
1 +
√

5r2 +
5
3

r2
)

exp
(
−
√

5r2
)

(37b)

kSE(x, x′) = σ2
f exp

(
−1

2
r2
)

, (37c)

where r2 = ∑i(xi − x′i)
2/l2

i . This class of kernels is thus parameterized by
Θhid = {σf , l}, where σf > 0 is an amplitude parameter, and l is a vector
of characteristic length-scale parameters li > 0. Kernel functions with learn-
able length-scale parameters are also known as automatic relevance detec-
tion (ARD) kernels, as the inverse of the length-scale indicates how relevant
an input is with respect to inferences. Thus, if a length-scale has a very
large value, the kernel will become almost independent of the corresponding
input, and effectively remove it when performing inferences [73, 75, 76].

Now, assume that we want to make a prediction f (x?) at a new input x?.
First, we need to update our prior over f (Eq. 36) based on the observations
using Bayes’ rule. The posterior distribution p( f (X̂)|D) then reads

p( f (X̂)|D) = p(ŷ| f (X̂))p( f (X̂)|X̂)

p(ŷ|X̂)
, (38)

where the denominator, which is called the marginal likelihood or evidence
to express the fact that the latent function f is marginalized out, is given by

p(ŷ|X̂) =
∫

p(ŷ| f (X̂))p( f (X̂)|X̂)d f (X̂). (39)

Second, the posterior predictive distribution for f (x?), which is the one we
are seeking, may be defined as

p( f (x?)|D, x?) =
∫

p( f (x?)| f (X̂), X̂, x?)p( f (X̂)|D)d f (X̂). (40)

Note that we have left out the dependence on Θ in the above expressions to
keep them uncluttered [77].

One attractive feature of the GP formulation is that exact inference is
tractable under a Gaussian likelihood assumption, i.e.,

ŷ ∼ N ( f (X̂), σ2I), (41)

where I is the identity matrix. For this case, a closed form expression for
Eq. 40 may be derived by direct application of the standard rules for condi-
tioning of Gaussian distributed random variables [6]. Thus, we can write the
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joint distribution of the observations ŷ and the function evaluated at the test
location under the prior as[

ŷ
f (x?)

]
∼ N

(
0,
[

k(X̂, X̂) + σ2I k(X̂, x?)
k(x?, X̂) k(x?, x?)

])
, (42)

where we have assumed the data to be properly normalized, so that m(x) = 0
is appropriate. We can then restrict this joint prior distribution to contain
only those functions that agree with the observations, i.e., by conditioning
the prior for f (x?) on the observed data points. The closed form expression
of the posterior predictive distribution for f (x?) (Eq. 40) then becomes

p( f (x?)|D, x?, Θ) = N (m?(x?), k?(x?, x?)), (43)

where Θ denotes the set of model parameters, and m? and k? are defined as

m?(x?) =kx?(k(X̂, X̂) + σ2I)−1ŷ (44a)

k?(x?, x?) =k(x?, x?)− kx?(k(X̂, X̂) + σ2I)−1kT
x? , (44b)

with kx? as a shorthand notation for k(x?, X̂). Note that if we are interested
in the corresponding noisy prediction y?, we simply have to add σ2 to the
predictive variance expression above. See [6, 73] for further details (Paper F).

Learning in a GP regression setting amounts to specifying the parame-
ters of the covariance function k and the noise process ε in Θ. This may be
achieved by use of a Bayesian approach, or by maximizing the log likelihood
of the evidence as

θ̂ = arg max
θ

log p(ŷ|X̂, θ)

= arg max
θ
−1

2
ŷT(k(X̂, X̂) + σ2I)−1ŷ

− 1
2

log |k(X̂, X̂) + σ2I| − N
2

log 2π. (45)

The right-hand side of the expression has three terms. The first term is the
Mahalanobis distance between model predictions and the data, i.e., it quan-
tifies the model fit to data. The second term penalizes model complexity, as
smaller determinants (penalties) are found for smoother covariance matrices.
The third and last term is a linear function of the data set size, which shows
that the likelihood of the data generally decreases with increasing data set
size. That is, the marginal likelihood provides an inherent trade-off between
fit to data and model complexity [73, 76].

One approach for solving Eq. 45 is to use a gradient descent algorithm
based on the partial derivative of the likelihood with respect to the model
parameters Θ, which can be analytical derived, see e.g., [4, 6, 73], i.e.,

∂

∂θj
log p(ŷ|X̂) =

1
2

ŷTK−1
y

∂Ky

∂θj
K−1

y ŷ− 1
2

tr

(
K−1

y
∂Ky

∂θj

)
(46a)
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∂

∂θj
log p(ŷ|X̂) =

1
2

tr

((
ααT −K−1

y

) ∂Ky

∂θj

)
, (46b)

where Ky = (k(X̂, X̂)− σ2I), α = K−1
y ŷ, and ∂Ky/∂θj is a matrix of deriva-

tives with respect to θj evaluated at the input X̂. The form of ∂Ky/∂θj de-
pends on the form of the input kernel and with respect to which parameter
we are computing the gradient. As an example, consider the square expo-
nential kernel Eq. 37c with a one dimensional input. For this case, we may
write the output kernel as

Ky(x, x′) = σ2
f exp

(
− (x− x′)2

2l2

)
+ σ2δx,x′ , (47)

where δx,x′ is a delta function that includes σ2 in the expression only when
x = x′. The derivatives with respect to the kernel parameters then become

∂Ky

∂σ
= 2σδx,x′ (48a)

∂Ky

∂σf
= 2σf exp

(
− (x− x′)2

2l2

)
(48b)

∂Ky

∂l
= σ2

f exp
(
− (x− x′)2

2l2

)(
(x− x′)2

l3

)
, (48c)

where the expression for ∂Ky/∂l is found by direct application of the chain
rule as

∂Ky

∂l
=

∂Ky

∂g
∂g
∂l

= σ2
f exp

(
− (x− x′)2

2l2

)
∂g
∂l

= σ2
f exp

(
− (x− x′)2

2l2

)
∂

∂l

(
− (x− x′)2

2
l−2
)

= σ2
f exp

(
− (x− x′)2

2l2

)(
(x− x′)2l−3

)
.

We often have constraints on the hyper-parameters, such as σ ≥ 0. For this
case, we can define θ = log σ, and then use the chain rule [4].

We note that a similar optimization problem is approached from a neu-
ral network perspective in Sec. 5. Section 5.1 provides some recommenda-
tions on how to avoid overfitting in high dimensional problems, see also [78],
and Sec. 5.2 provides some guidance on how to optimize the expression.
Moreover, in practical implementations of GPs we use the Cholesky decom-
position, instead of directly inverting the predictive covariance matrix, as
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it is faster and numerically more stable [73], see Alg. 4. Furthermore, for
large N, an approximation scheme may be needed to reduce the computa-
tional burden of inference, due to the inversion of the predictive covariance,
see e.g., [76] for further details.

Algorithm 4: Pseudo-code for inference and log marginal likelihood
estimation in GP regression.

Input: D, k, σ, x?
Output: m?(x?), k?(x?, x?), log p(ŷ|X̂)

1 Ky ← k(X̂, X̂) + σ2I
2 L← cholesky(Ky)

3 α← LT\(L\ŷ); as K−1
y = (L−1)T(L−1)

4 kx? ← k(x?, X̂)
5 m?(x?)← kx?α

6 v← L\kT
x?

7 k?(x?, x?)← k(x?, x?)− vTv
8 log p(ŷ|X̂)← − 1

2 ŷTα−∑n log Ln,n − N
2 log 2π

MULTI-OUTPUT GAUSSIAN PROCESSES

In this section, we extend the framework presented in the foregoing section
to cover multi-output processes. In the general case, the different outputs
might have different training set cardinalities, different input points, or even
different input spaces. Thus, we have a training data set Dd = {X̂d, ŷd} =

{xd[nd], yd[nd]}Nd
nd=1 for each output function fd. In the geostatistics literature,

a situation where each output has the same set of inputs is called isotopic,
and a situation where each output is associated with a different set of inputs
is called heterotopic [79]. The heterotopic case is also sometimes referred
to as multi-task learning, but the distinction between multi-output learning
and multi-task learning is not rigorously defined in the literature and varies
from author to author. Álverez et al. [79] use the term multi-output learning
or vector-valued learning to define the general class of problems, and the
term multi-task learning for the class of problems where each component
has different inputs, i.e., the heterotopic case.

Gaussian process modeling for vector-valued functions f = { fd}D
d=1 fol-

lows the same approach as for the single-output case. In the single-output
case, we consider a single process f evaluated at different values of x, and in
the multi-output case, we consider a set of processes f evaluated at different
values of x. The vector-valued function f is assumed to follow a GP, i.e.,

f (x) ∼ GP(m(x), K(x, x′)), (49)
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where m(x) = {md(x)}D
d=1 is the mean function of the outputs, and K(x, x′)

is a positive semi-definite, matrix-valued function with entries (K(x, x′))d,d′ ,
such that the entries correspond to the covariances between the outputs fd(x)
and fd′(x′) [79].

The prior distribution over f takes the form

f (X̂) ∼ N (m(X̂), K(X̂, X̂)), (50)

where f (X̂) = { fd(x[n])|n = 1, ..., N; d = 1, ..., D}, m(X̂) is a vector that con-
catenates the mean vectors of the outputs, which under proper normalization
of the data can be assumed to be the zero vector without loss of generality,
and K(X̂, X̂) is a block partitioned matrix defined as

K(X̂, X̂) =


(K(X̂1, X̂1))1,1 · · · (K(X̂1, X̂D))1,D
(K(X̂2, X̂1))2,1 · · · (K(X̂2, X̂D))2,D

...
. . .

...
(K(X̂D, X̂1))D,1 · · · (K(X̂D, X̂D))D,D

 . (51)

To simplify the following notations, we will assume that {Nd}D
d=1 = N, but

this is not a necessary condition, and the formulations may readily be ad-
justed to cover the general case [79] (Paper F).

If we again assume a Gaussian likelihood model, i.e.,

y ∼ N ( f (x), Σ), (52)

where Σ is a diagonal matrix of elements {σ2
d}D

d=1, and we assume the mean
function m(x) = 0, the predictive distribution for a new x? data point has a
closed form solution, i.e.,

p( f (x?)|D, x?, Θ) = N (m?(x?), K?(x?, x?)) (53)

where Θ denotes the set of model parameters, and m? and K? are defined as

m?(x?) = Kx?(K(X̂, X̂) + Σ)−1ŷc (54a)

K?(x?, x?) = K(x?, x?)− Kx?(K(X̂, X̂) + Σ)−1KT
x? (54b)

with ŷc being a vector of length N×D that concatenates the observed output
vectors, Σ = Σ⊗ IN is the Kronecker product between the noise covariance
matrix and an identity matrix of size N, and Kx? = (K(x?, X̂d))d,d′ . Note
that if we are interested in the corresponding noisy predictions y?, we simply
have to add Σ to the predictive variance expression above [79].

If we further assume that the kernel function is separable, we can form
the kernel as a product between an input kernel and an output kernel as

(K(x, x′))d,d′ = kx(x, x′)ky(d, d′), (55)
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where kx and ky encode the covariances between the inputs and outputs,
respectively. This is referred to as the intrinsic coregionalization model (ICM)
in the Bayesian literature. Other more general kernel structures are sums
of separable kernel, as in the linear model of coregionalization (LMC) and
process convolutions. See e.g., [79, 80] for further details (Paper F).

As for single-output GPs, learning in a multi-output GP setting amounts
to specifying the parameters of the covariance function K and the noise pro-
cess ε in Θ, which may again be achieved by maximizing the log likelihood
of the evidence, or by means of Bayesian inference [81].

4.2 GAUSSIAN PROCESSES FOR CLASSIFICATION

In this section, we consider how to perform classification with a GP. We start
by considering the case of binary classification, i.e., y ∈ {0, 1}, thus we wish
to represent a binary random variable. For this case, our model should output
a single number, i.e., P(y = 1|x) ∈ [0, 1], but the GPs considered so far
make predictions in R. However, we can adapt a GP to the classification
setting by transforming the output of the GP using an appropriate output
transformation function like the logistic sigmoid as

f (x) = sigm(z(x)) =
1

1 + exp(−z(x))
, (56)

which satisfies 0 ≤ f ≤ 1 such that P(y = 0|x) = 1− f (x), and z(x) repre-
sents the GP. Thus, we obtain a non-Gaussian stochastic process over func-
tion f [6]. Note that because the Gaussian prior is not conjugate to the
Bernoulli likelihood, the standard rules for conditioning of Gaussian dis-
tributed random variables, as defined for the regression setting, on longer
apply, and thus exact inference is not feasible [4]. This is not a unique feature
of GP classification problems but also applies when a non-Gaussian likeli-
hood is considered in the regression setting [73].

In this setup, z is a nuisance function, which is a function that is of no
immediate interest by itself, but which needs to be accounted for in the anal-
ysis of function f . That is, given a data set D = {X̂, ŷ} = {x[n], y[n]}N

n=1, the
posterior predictive distribution for f (x?) is given by

p( f (x?)|D, x?, Θ) =
∫

p( f (x?)|z(x?))p(z(x?)|D, x?, Θ)dz(x?), (57)

where p( f (x?)|z(x?)) = sigm(z(x?)), and p(z(x?)|D, x?, Θ) is the posterior
predictive distribution for z(x?) (Eq. 40). Note that there are no additional
parameters in this model than the ones defining the GP, as the output values
are assumed to be correctly labeled [6]. As mentioned, this integral is ana-
lytically intractable, and thus we need to resort to an approximate inference
method, such as e.g., Monte Carlo sampling, variational inference, or the
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Laplace approximation [6, 73]. The interested reader is referred to e.g., [73],
as well as Appendix A, for further details.

In the case of standard multi-class classification, each input is assigned
to one of D mutually exclusive classes. For this case, the output variables
yd ∈ {0, 1} have a 1–D encoding, and the model should output f = { fd(x) =
P(yd = 1|x)}D

d=1, thus we wish to represent a discrete random variable
with D states. This can be accomplished with a softmax output transfor-
mation function as

fd(x) = softmax(z(x))d =
exp(zd(x))

∑k′ exp(zd′(x))
, (58)

which satisfies 0 ≤ fd ≤ 1 and ∑d fd = 1. The softmax function can thus be
viewed as a generalization of the sigmoid function, which is used above to
define the probability distribution over a binary random variable [6, 82].

As indicated, the basis for the multi-class case is a multi-output GP z,
where the individual GPs zd may be assumed to be independent, i.e., K(X̂, X̂)
in Eq. 51 is a block-diagonal matrix. This again produces a non-Gaussian
process over functions, and because the Gaussian prior is not conjugate to
the categorical likelihood, we need to rely on the methods explained above
to conduct approximate inferences on f [6, 73].

4.3 GAUSSIAN PROCESSES FOR OPTIMIZATION

Parts of this section appear in Paper E.

In this section, we consider the problem of finding a global minimizer of a
function f defined by covariate(s) x as

xmin = arg min
x∈X

f (x). (59)

Bayesian optimization (BO) is a sequential model-based approach for op-
timizing a cost function, which is computationally expensive to evaluate
and/or has no closed-form expression, but from which we can obtain (noisy)
observations [76]. BO techniques are some of the most efficient optimization
techniques in terms of the number of functional evaluations required, due to
their use of Bayesian updating, i.e.,

p( f |D) ∝ p(D| f )p( f ), (60)

where D = {x[n], y[n]}N
n=1 is a data set of observations of the cost func-

tion [83]. One example is the optimization of hyper-parameters for a general
machine learning model, where the objective is to find the hyper-parameters
that result in the lowest validation loss. Traditionally, strategies such as
manual-, grid- and random-search are employed for the optimization, where
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random-search is found superior to grid-search [84], but BO techniques have
been shown to outperform manual- and random-search in terms of both per-
formance and efficiency, see e.g., [85–87] (Paper E).

Bayesian optimization using GPs leverage Bayes rule to build a surrogate
model of the cost function with a prior over functions and combines it with
new observations to form a posterior over functions, in an online fashion.
This allows for a utility-based selection of the next point to sample from the
cost function, which should account for the trade-off between exploration
(sampling from areas where the uncertainty is high) and exploitation (sam-
pling from areas that are likely to provide an improvement over the current
best setting x(t)min) [76, 83].

Fitting a surrogate model given a data set is an exercise of GP regres-
sion, as presented in Sec. 4.1, but finding the next sample point from the
cost function requires a utility function, which is commonly referred to as an
acquisition function in the BO literature. The acquisition function takes into
account the mean and variance information of the predictions, over the do-
main of interest, to model the utility of new sampling points, such that a high
acquisition value corresponds to potentially low cost values, either because
the prediction is low or the uncertainty is high, or both. The argmax value
of the acquisition function is chosen as the new sampling point of the cost
function, and the process is repeated, considering the data set D augmented
with the new sample point {x[N + 1], y[N + 1]} [83] (Paper E). Pseudo-code
for a BO implementation is provided in Alg. 5.

Algorithm 5: Pseudo-code for Bayesian optimization.
Input: D, f , p( f ), A, T
Output: xmin

1 Initialization: ( f (0)min, x(0)min)
2 for t = 0, ..., T do
3 Select x[N + 1] by optimizing acquisition function A(x|D) over current

surrogate model; x[N + 1] = arg maxx A(x|D)
4 Query cost function at x[N + 1] to obtain y[N + 1]
5 Update data set; D ← {D, {x[N + 1], y[N + 1]}}, N ← N + 1
6 Update surrogate model; p( f |D)← p(D| f )p( f )/p(D)
7 Update ( f (t+1)

min , x(t+1)
min ); f (t+1)

min ← f (x(t+1)
min ) = minx∈X̂ f (x)

8 end

Some improvement-based acquisition functions used for Bayesian opti-
mization are the probability of improvement API , and the expected improve-
ment AEI . The probability of improvement is defined as

API(x) = P( f (x) < f (t)min), (61)
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where f (t)min = minx∈X̂ f (x) is the best current value; and the expected im-
provement is defined as

AEI(x) = E
[
max(0, f (t)min − f (x))

]
. (62)

Note that analytical expressions can be derived for both API and AEI , when
a GP surrogate is used; and e.g., f (t)min = minx∈X̂ f?(x) can be used in case of
noisy observations [76, 77]. Another idea is to explore the lower confidence
bounds of the surrogate model to construct an acquisition function, i.e.,

ALCB(x) = − f?(x) + κτ?(x), (63)

where τ?(x) =
√

k?(x, x), and κ is a hyper-parameter to balance exploita-
tion and exploration [77]. See e.g., [76] for a detailed listing of acquisition
functions used in practice. Note that the choice of probabilistic model is of-
ten considered more important than the choice of acquisition function [76],
and in this regard the Matérn 5/2 kernel is recommended [75]. Moreover,
both the expected improvement and the confidence lower bound acquisition
function have proven to be efficient in the number of functional evaluations
required to find the global optimum of a variety multi-modal, black-box func-
tions [75, 88, 89].

Section 4.1 considers how to handle the hyper-parameters of the GP sur-
rogate, but we have not considered how to optimize the acquisition func-
tion. In practice, a common approach is to use a quasi-Newton hill-climbing
search with multiple restarts when the gradients can be analytically derived
or numerically approximated, and a derivative-free optimizer, like the di-
vided rectangles approach, when this is not the case. See e.g., [76] for a
review of other approaches used in practice for optimizing acquisition func-
tions.

In this section, BO is posed as an unconstrained, sequential optimization
problem, where an experiment is completed before the next is proposed, but
procedures for both parallel implementation and constraint optimization are
found in the literature, together with approaches that include the evaluation
time of an input configuration in the utility assessment, see e.g., [75, 76, 90].
For further details on BO in general, and BO using GPs in particular, the
interested reader is referred e.g., [76, 77, 83].
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5 SYSTEM REPRESENTATIONS USING
NEURAL NETWORKS

In the era of deep learning, it is almost unthinkable not to consider the most
widely used modeling approach for this purpose, namely (artificial) neural
networks (NNs). A NN is a data processing model composed of a layered
set of interconnected processing units (neurons), which is inspired by the
way the human brain process information. In Sec. 5.1, we introduce the
multilayer perceptron for both regression and classification tasks, and we
consider some ways to regularize NNs. This is followed by Sec. 5.2, where
we consider how to learn NNs. Finally, Secs. 5.3 and 5.4 introduce some other
common classes of NN architectures and Bayesian NNs, respectively. Note
that tutorials supporting the material covered in this section are available at
the GitHub repository.

5.1 MULTILAYER PERCEPTRONS

The most widely used and archetypal NN architecture is the multilayer per-
ceptron (MLP), also sometimes referred to as the (classical) feed-forward neu-
ral network. We can generally view a MLP as a parametric non-linear func-
tion f from a vector x of realized input variables to a vector y of realized
output variables [6]. MLPs allow signals to travel one way only, i.e., from
input to output, and there are no feedback loops, i.e., the output of any layer
does not affect that same layer [82]. Figure 11 shows this model as a directed
acyclic graph (DAG), with fully connected layers. The DAG illustrates the
functional representation of MLPs, i.e., f (x) = f [2]( f [1](x)). In this case, f [1]

is referred to as the first layer, and f [2] is referred to as the second layer.
The length of this chain is called the depth of the model, and the number
of units in each hidden layer specifies the width [82]. Generally, the layers
f [j] perform an affine transformation defined by parameters W [j], followed
by a fixed non-linear transformation using a so-called activation function g[j].
Thus, the mapping within the first layer becomes

h = f [1](x) = g[1]((W [1])Tx) = g[1](z), (64)

where we assume that x is augmented by the value x0 = 1 to include a bias
term, and z = (W [1])Tx. The mapping from input to output performed by
the function f can now be formulated as

f (x) = g[2](W [2])Th) = g[2]
(
(W [2])T g[1]((W [1])Tx)

)
, (65)

where g[2] is the output activation function, and we assume x, as well as h,
to be augmented by the value 1 to include a bias term. Moreover, as we only
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consider one output in this case, the matrix W [2] of the second layer becomes
a vector. The output unit activation function defines the task performed by
the MLP, e.g., regression or classification, and it needs to be chosen in consis-
tency with the cost function used to fit the model [6, 82].

x1

x2

h1

h2

y

(a)

x h y

(b)

Figure 11: Example of a MLP model: (a) graph showing the individual nodes
of each layer, (b) graph showing the nodes in each layer as vectors.

When implementing a NN, three important design choices need to be
made, namely (i) the activation function of the hidden layers, (ii) the cost
function to be optimized, and (iii) the network structure. The default recom-
mendations are to use the rectified linear unit (ReLU) as activation function,
and the cross-entropy as cost function, but a lot of different combinations
can be found in the literature. Generally, though, NN technologies employ a
gradient-based optimization procedure for training, which requires a smooth
cost function. Furthermore, when designing a MLP, a uniform width can be
assumed as default for all hidden layers, in order to reduce the set of possible
network structures to consider in a cross-validation scheme. This way, only
one width and one depth parameter need to be selected [82].

REGRESSION

In this section, we revisit the regression problem of Eq. 34, thus we con-
sider the regression of some response variable(s) y based on covariate(s) x of
the form

y = f (x) + ε,

under a Gaussian noise assumption, i.e., y ∼ N ( f (x), σ2). Given a data set
D = {X̂, ŷ} = {x[n], y[n]}N

n=1 of (potentially) vector-valued inputs and scalar
outputs, the likelihood of the model decomposes as

p(ŷ|X̂, Θ) =
N

∏
n=1

p(y[n]|x[n], Θ), (66)
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where Θ = {w, σ2} is the set of model parameters; w is the set of all network
weights and σ2 is the output variance [82].

The convention in the NN community is to minimize a cost function
rather than maximizing a (log) likelihood, so we will follow this conven-
tion [4, 6]. Taking the negative logarithm on both sides of Eq. 66, we arrive
at the negative log likelihood

− log p(ŷ|X̂, Θ) =
1

2σ2

N

∑
n=1

(y[n]− f (x[n]))2 +
N
2

log(2πσ2). (67)

The cost function used for training most modern NNs is the negative log
likelihood, which is equivalent to the cross entropy between the training data
and the model distribution [82].

We first consider the estimation of w ∈ Θ. Maximizing the likelihood
function with respect to w is equivalent to minimizing the sum-of-squares
cost function, i.e.,

L(w) =
1
2

N

∑
n=1

(y[n]− f (x[n]))2. (68)

Minimization of Eq. 68 produces a maximum likelihood estimate ŵ [6]. The
variance parameter can now be estimated by minimizing the negative log
likelihood (Eq. 67) to give

σ̂2 =
1
N

N

∑
n=1

(y[n]− f (x[n]))2. (69)

This approach is prone to overfitting, thus regularization measures should
always be considered when fitting a model using this approach. Taking
a Bayesian perspective, a specific kind of regularization emerges naturally
for this problem, namely weight decay, also known as L2 norm, ridge, and
Tikhonov regularization. Combining Eq. 66 with a Gaussian prior on w, i.e.,

p(w|τ2) = N (0, τ2I), (70)

the posterior for w takes the following form

p(w|D, σ2, τ2) ∝ p(w|τ2)p(D|w, σ2). (71)

This gives rise to the following cost function for the weights

L(w) =
1
2

N

∑
n=1

(y[n]− f (x[n]))2 +
λ

2
wTw, (72)

where λ = σ2/τ2 [4, 6, 91]. The minimization of Eq. 72 thus provides a max-
imum a-posteriori (MAP) estimate of w. Note that often the bias parameters
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are omitted from the regularizer, as their inclusion causes the solution to de-
pend on the choice of origin for the output variable, or they may be included
with their own regularization parameters. Furthermore, it is recommended
to use individual regularization terms for each layer. See e.g., [6] for further
details.

Some other ways to prevent overfitting are early stopping, data set aug-
mentation, and dropout. In early stopping, the validation error is monitored
during training, and the training process is terminated at the point of small-
est validation error. It can be shown that early stopping behaves like weight
decay regularization [6]. In data set augmentation, the training data are aug-
mented by perturbed versions of itself. In image classification this perturba-
tion could be different transformations, like translation and rotation, on the
data set. In cases where it is not apparent how to best transform the data,
input noise injection can be performed under the assumption that the model
should still be able to perform the task with random noise added to the
inputs [82]. For dropout regularization, we employ a minibatch-based learn-
ing algorithm that takes small steps, like stochastic gradient decent, and at
each training step, we randomly remove non-output units from the network
structure. In this regard, an input unit is typically included with probabil-
ity 0.8, and a hidden unit is included with probability 0.5. This can be seen as
an approximation to bootstrap aggregating (bagging), which is an ensemble
method that performs model averaging [82, 92]. Note that bagging is also
covered in Appendix B.

CLASSIFICATION

In this section, we consider how to perform classification with a MLP. We
start by considering the case of binary classification, i.e., y ∈ {0, 1}, thus we
wish to represent a binary random variable. For this case, our model should
output a single number, i.e., P(y = 1|x), which we can accomplish with e.g.,
the logistic sigmoid output unit as

f (x) = sigm(z) =
1

1 + exp(−z)
, (73)

which satisfies 0 ≤ f ≤ 1 such that P(y = 0|x) = 1− f (x) [6, 82]. Given a
data set D = {X̂, ŷ} = {x[n], y[n]}N

n=1, this setup reveals a likelihood function
based on the Bernoulli distribution, i.e.,

P(ŷ|X̂, Θ) =
N

∏
n=1

f (x[n])y[n](1− f (x[n]))(1−y[n]). (74)
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Taking the negative logarithm on both sides, we arrive at the negative log
likelihood

− log P(ŷ|X̂, Θ) = −
N

∑
n=1

y[n] log f (x[n]) + (1− y[n]) log(1− f (x[n])), (75)

which equivalently defines the cross-entropy cost function for the weight pa-
rameters of the model, i.e.,

L(w) = −
N

∑
n=1

y[n] log f (x[n]) + (1− y[n]) log(1− f (x[n])). (76)

Note that there are no additional parameters in this model, i.e., Θ = w, as
the output values are assumed to be correctly labeled [6, 82]. Moreover, the
cost function may be rewritten in terms of the softplus function, see [82] for
further details.

In the case of standard multi-class classification, each input is assigned to
one of D mutually exclusive classes. For this case, the output variables yd ∈
{0, 1} have a 1–D encoding, and the model should output f (x) = {P(yd = 1|
x)}D

d=1, thus we wish to represent a discrete random variable with D states.
This can be accomplished using the softmax output activation function as

fd(x) = softmax(z)d =
exp(zd)

∑d′ exp(zd′)
, (77)

which satisfies 0 ≤ fd ≤ 1 and ∑d fd = 1 [6, 82]. Given a data set D =
{X̂, Ŷ} = {x[n], y[n]}N

n=1, we arrive at a likelihood function based on the
categorical distribution, also called the multinoulli distribution, i.e.,

P(Ŷ |X̂, Θ) =
N

∏
n=1

D

∏
d=1

fd(x[n])yd [n]. (78)

Taking the negative logarithm on both sides, we get the negative log likeli-
hood

− log P(Ŷ |X̂, Θ) = −
N

∑
n=1

D

∑
d=1

yd[n] log fd(x[n]), (79)

which equivalently defines the cross-entropy cost function for the weight pa-
rameters of the model, i.e.,

L(w) = −
N

∑
n=1

D

∑
d=1

yd[n] log fd(x[n]). (80)

Note that again there are no additional parameters in the model, i.e., Θ = w,
as the output values are assumed to be correctly labeled [6, 82].
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It is interesting to note that the output activation functions used in this
section correspond to the output transformations for Gaussian process (GP)
classification studied in Sec. 4.2, but the resemblance does not end here. It
has been known for some time that a single-layer MLP with an i.i.d. prior on
the weights is equivalent to a GP, in the limit of infinite width, see e.g., [93],
and the same property has recently been shown to hold for deep NNs, see
e.g., [94]. This correspondence has led to new research activities on how to
convert deep NNs into GPs in order to perform exact Bayesian inference for
regression tasks, see e.g., [94–96].

5.2 LEARNING NEURAL NETWORKS

Learning, or training, is the process of determining the weights of the model,
along with any additional parameters, by introducing a training set D. The
optimal choice of weights is the one that produces the smallest aggregated er-
ror, i.e., the lowest cost, over the training set, while monitoring target metrics
on the validation set, e.g., accuracy, to avoid overfitting.

As apparent from Sec. 5.1, the appropriate choice of cost function de-
pends on the output unit activation function used in the network, and thus
the problem at hand. In general, the non-linearities in the network function
f (x) causes the cost function L(w) to become non-convex, and thus makes
the task of finding the weights an optimization problem. This implies find-
ing a stationary point (minimum) in weight space, i.e., ∇wL(w) ≈ 0, by
an iterative numerical procedure, i.e., w(t+1) = w(t) + ∆w(t) where t is the
iteration step [6, 97].

The optimization is performed in a sequence of steps, where each step
involves two distinct phases: (i) Finding the derivatives of the cost func-
tion with respect to the weights, and (ii) adapting the weights by apply-
ing the derivatives. Normally, the back-propagation technique is adopted in
phase (i), while minibatch-based learning algorithms, like stochastic gradient
decent, are applied in phase (ii) [6, 82, 97].

BACKPROPAGATION

In MLPs, information is propagated through the network from inputs to out-
puts leading to a scalar cost for each training example. This is called forward-
propagation. The back-propagation algorithm, often referred to as backprop,
formalizes how information is propagated backwards from the costs through
the network in order to compute the gradients with respect to the parameters
of the network [82].

By use of the chain rule of calculus, it is straightforward to express the
gradients, but numerical evaluation of such expressions can be computation-
ally expensive. Back-propagation is a specific instance of dynamic program-
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ming that avoids repeating common sub-expression evaluations by storing
intermediate results in the evaluation of the gradient ∇wL(w) and filling in
the components successively, as they are computed, when passing backward
through the network. See e.g., [82] for further details.

OPTIMIZATION ALGORITHMS

As apparent from Sec. 5.1, the cost function typically decomposes as a sum in
the training examples. Therefore, optimization algorithms adopted for NN
learning usually compute each parameter update based only on a randomly
selected subset of the training examples. Among others, this reduces the
computational cost of each parameter update compared to using the entire
training set, which is computationally expensive for large data sets [82].

Optimization algorithms that operate on randomly selected subsets of
the training data are called minibatch (stochastic) methods. The canonical
example of a minibatch method is stochastic gradient decent (SGD). In SGD,
the gradient of minibatch k is calculated as

∇(k)
w =

1
Nk

Nk

∑
n=1
∇L(w(k)|x(k)[n], y(k)[n]), (81)

where ∇(k)
w is the gradient of minibatch k of size Nk, and ∇L(w|x(k)[n],

y(k)[n]) are the gradient contributions from the individual members of mini-
batch k. It is common to use a power of 2 batch size in the range from 32
to 256. The updating rule then becomes

w(k+1) = w(k) − r∇(k)
w , (82)

where r is the learning rate, which may be gradually decreased during train-
ing. The typical recommendation is to cycling through the training set several
times, unless the training set is extremely large. When multiple epochs are
used, though, only the first epoch provides unbiased estimates of the gradi-
ents, but the additional epochs usually provide enough benefit in terms of
error reduction to make up for this fact [82].

More advanced optimization algorithms leverage e.g., information con-
tained in the second-order derivatives of the cost function, but this comes
with the cost of a larger batch size requirement. Furthermore, we note that a
reasonably new idea in deep learning called batch normalization [98], which
adaptively reparametrizes the layers, can improve the behavior of the op-
timization algorithm. At the same time, batch normalization has a slight
regularizing effect on the network, which depends on the minibatch size, i.e.,
smaller minibatches introduce more randomness in the normalization, and
thus adds more regularization. See e.g., [6, 82] for further details.
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5.3 OTHER NEURAL NETWORK ARCHITECTURES

There is a wide variety of different NN architectures targeting different ap-
plications, and more are arising every month, but some base classes need to
have a brief mentioning here, namely convolutional neural networks (CNNs),
recurrent neural networks (RNNs), autoencoders, and generative adversarial
networks (GANs).

CNNs can be applied to any domain that has a regular grid-like topology,
e.g., images. They take their name from the convolution operation, which is
used in place of the matrix multiplication in at least one of the layers of a
traditional NN, e.g., the MLP. Thus, inputs passed to a convolutional layer
are convolved with a kernel function, which usually has a dimensionality
that is much smaller than the input, to produce a so-called feature map. Due
to this inherent, sparse connectivity, and parameter sharing, CNNs can scale
well to large domains. Furthermore, they generalize well, as they provide a
representation that is invariant to spatial translations of the input, which is
not the case for traditional NNs like MLPs, and they have fewer parameters
to learn due to their sparse representation. See e.g., [82] for further details.

RNNs are a class of NNs specifically designed for sequence modeling.
Note that whenever the sequence is defined on a regular grid, CNNs can also
be used for this task. Just like CNNs scale well to grid-like typologies, RNNs
can scale to long data sequences, and like both DBNs and CNNs, RNNs
share parameters across different parts of the network. In case of RNNs,
and DBNs, parameters sharing occurs between time slices, which makes it
possible to apply and extend these models to data sequences of different
length and generalize across them. See e.g., [82] for further details.

Autoencoders learn latent representations of the original input data, also
called codings, in an unsupervised learning mode, and as the dimensionality
of latent representation is typically lower than the inputs (undercomplete),
autoencoders provide a means for dimensionality reduction. The architec-
ture of autoencoders has two parts: An encoder that maps the inputs to the
latent space and a decoder that maps the latent representations to the out-
puts, where the number neurons in the output layer must equal the input
size, as the quality of the mapping is measured by the reconstruction of the
inputs provided by the output layer. Some other applications of autoencoders
are denoising, where the network learns to recover the noise-free inputs pro-
vided a noisy version, and generative modeling, where new data similar to
the training data are generated. See e.g., [82, 92] for further details.

GANs are generative models that learn a dense representation of the data
in a unsupervised learning mode, like autoencoders. The architecture is com-
posed of two NNs: A generator network that generates new data, which are
similar to the training data, and a discriminator network that discriminates
simulated (fake) data from real data. During training the two networks com-
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pete in a zero-sum game in which the generator tries to fool the discriminator.
This is referred to as adversarial training, and it is considered one of the most
important, recent ideas in deep learning [92]. See also [82] for further details.

5.4 BAYESIAN NEURAL NETWORKS

Section 5.1 shows that using weight decay regularization on the cost function,
we arrive at a MAP estimate of the weights. However, if we adhere to a more
complete Bayesian treatment, we need to marginalize over the parameters in
order to make predictions. Bayesian neural networks (BNNs) are neural net-
works trained using Bayesian inference, where stochastic elements in terms
of activation functions and/or weights are introduced in the network. Thus,
BNNs be may considered as a special case of ensemble learning, see e.g.,
Sec. 7.1 and Appendix B.

For many models, it is infeasible to evaluate the posterior distribution
or to compute expectations with respect to it, and thus we need to resort to
an approximation method, e.g., MCMC or variational inference. As sampling
methods can be computationally demanding, especially for high dimensional
problems, we will focus on how to approximate the posterior distribution
using variational inference, also known as variational Bayes [6]. Note that
Appendix A also considers variational inference.

Our starting point is the posterior distribution for the weights, i.e., Eq. 71,
which is restated in the general form below

p(w|D) = p(w)p(D|w)

p(D) . (83)

In this setting, variational inference provides a locally optimal, exact ana-
lytical solution to an approximation of the posterior distribution, through
minimization of the Kullback-Leibler (KL) divergence between a variational
distribution q(w|ν) and the posterior distribution p(w|D), i.e.,

KL[q(w|ν) ‖ p(w|D)] =Eq

[
log

q(w|ν)p(D)
p(w)p(D|w)

]
=Eq [log q(w|ν) + log p(D)− log p(w)− log p(D|w)]

=KL[q(w|ν) ‖ p(w)]−Eq[log p(D|w)] + log p(D).
(84)

Since log p(D) is a normalizing constant with respect to q(w|ν), we can de-
fine the following cost function for the variational parameters ν, i.e.,

L(ν) = KL[q(w|ν) ‖ p(w)]−Eq[log p(D|w)]. (85)

Eq. 85 is sometimes referred to as the variational free energy, and its negation
L(ν) as the energy functional or evidence lower bound (ELBO) [4, 91]. The
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last name emphasizes that it is a lower bound on the log model evidence, i.e.,
from Eq. 84 we have that

KL[q(w|ν) ‖ p(w|D)] = −L(ν) + log p(D) (86)

or equivalently

log p(D) = KL[q(w|ν) ‖ p(w|D)] + L(ν), (87)

and since KL[q ‖ p] ≥ 0, with equality only if q(w|ν) = p(w|D), it follows
that L(ν) ≤ log p(D) [6].

In practice, we may e.g., utilize an approach called Bayes by backprop [91],
which uses unbiased estimates of the gradients of the cost function. For this
case, Eq. 85 is approximated as

L(ν) ≈
T

∑
t=1

log q(w(t)|ν)− log p(w(t))− log p(D|w(t)), (88)

where w(t) is a Monte Carlo sample drawn from the variational distribution
q(w|ν). Note that this procedure does not assume a specific prior family [91].

If we further consider a Gaussian mean field approximation, we can use
the local reparameterization trick [99] to translate uncertainty about global
parameters into local noise, i.e.,

w = µw + σw � ε, with ε ∼ N (0, I), (89)

where � is element-wise multiplication. This means that instead of parame-
terizing the neural network with weights w directly, we parameterize it with
parameter vectors µw and σw, which thus leads to a doubling of the origi-
nal number of parameters. In return, though, we get an infinite ensemble
representation instead of a single network model, where each network of the
ensemble has its weights drawn from a shared, learnt probability distribu-
tion [91].

A convenient result of this parameterization is that the only additional
thing we need to learn a variational model compared to a conventional NNs
model, as discussed in Sec. 5.2, is an updating rule for ν = {µw, σw} based
on the weight gradients provided by conventional back-propagation, which
in this case simply amounts to scaling and shifting the weight gradients. Pro-
vided this updating rule, we can use the learning scheme presented in Sec. 5.2
to calculate the weight gradients with respect to Eq. 88, and conduct the pa-
rameter updates [91]. For a general review on BNNs and their applications,
the interested reader is referred to e.g., Jospin et al. [100].
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6 SYSTEMS ANALYSIS

The analysis of system characteristics is key in understanding the behavior
of systems, and it facilitates a comprehensive study of system constituents,
their relationship, and associated uncertainties. Section 6.1 introduces the
two pillars of systems analysis, namely (i) uncertainty analysis and (ii) sensi-
tivity analysis, which are also commonly framed as elements of uncertainty
quantification [101]. After introducing uncertainty analysis, which is also a
subject of the forgoing sections on system representations, along with some
key references, we proceed to discuss sensitivity analysis, which is the subject
of Secs. 6.2 and 6.3. In Sec. 6.2 we consider (global) variance-based sensitivity
analysis in case of independent and dependent inputs, respectively; and in
Sec. 6.3 we discuss regionalized sensitivity analysis and show how cluster
analysis may be used for this purpose. Note that tutorials supporting the
material covered in this section are available at the GitHub repository.

6.1 INTRODUCTION TO SYSTEMS ANALYSIS

The analysis of systems naturally involves a consideration of how uncertainty
in the inputs propagates through a system to uncertainty in the outputs. This
is referred to as uncertainty analysis (UA). Sensitivity analysis (SA) propa-
gates uncertainty in the opposite direction, i.e., from outputs to inputs, while
focusing on how the uncertainty in system outputs can be appointed to dif-
ferent sources of uncertainty in the inputs. Thus, ideally, a UA study should
precede a SA study, as uncertainty can only be appointed once it is estimated.
In a quantitative analysis of systems uncertainty, we can only vary a subset
of the model assumptions, where an assumption refers to any choice of e.g.,
type and structure of model, parameters, resolution, and calibration data.
This subset is referred to as the input factors, and the results of the model for
any combination of the input factors is, as always, referred to as the model
output. Thus, when performing a UA and SA, we should keep in mind that
the uncertainty in the assumptions that are not part of the set of input factors
are not explored [102, 103].

The quantification of uncertainties related to system representations al-
lows us to bridge our computational modeling universe and the actual, phys-
ical systems represented by accounting for the different sources of variability
in our models, which include (i) uncertainties in input factors, such as param-
eters, initial conditions and boundary conditions; (ii) discrepancies between
the model and the true system; (iii) uncertainties due to a limited compu-
tational budget, e.g., limited number of simulations; and (iiii) solution and
coding errors [101]. In this regard, a UA may be undertaken using e.g., a
perturbation-based method, where a lower-order Taylor expansion is used to
derive approximate expressions for the statistical moments of the model out-
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puts, or a sampling-based approach, where a number of joint samples of the
input factors are drawn, and the model output evaluated for each joint sam-
ple. The inserted reader is referred to e.g., [101] for a comprehensive coverage
of UA techniques and the general field of uncertainly quantification.

SA techniques generally fall in two categories: local and global tech-
niques. Local techniques typically rely on the first partial derivatives of
the response function with respect to the input factors at a given design
point. Two important consequences of this definition of sensitivity are (i)
if the functional relationship f between inputs and outputs is nonlinear, then
the derivatives will change with the design point, and (ii) if input interactions
are present in f , then the partial derivative for input factor Xi will change de-
pending on the remaining inputs X∼i. Thus, the first partial derivatives are
only valid measures of sensitivity when the model is linear, in which case the
partial derivatives will remain constant over the range of X [102].

Because of the limitations of local sensitivity techniques, Saltelli et al. [102]
advocate the use of global SA techniques, when f is nonlinear and/or in-
puts interact. One approach to perform global SA is the analysis of vari-
ance (ANOVA), which informs the analyst about the global contribution of
input factors, in terms of variance, to the model outputs, including the ef-
fect of interactions among inputs [104]. Some other global approaches to
SA include e.g., the elementary effect approach [105], global derivative-based
measures [106], and moment-independent methods [107]. See e.g., [101] for
further details.

Following Saltelli et al. [103], a non-exhaustive list of possible settings for
a global SA, and corresponding objectives, is given below

Factor Prioritization (FP): Which factor (or group of factors) produces the
greatest reduction in output variance, if set to its true value?

Factor Fixing (FF): Which factors (or group of factors) provides no signifi-
cant contribution to the output variance, if set to an arbitrary value in
its range?

Variance cutting (VC): How can we bring the output variance below a given
threshold by acting on the smallest possible number of factors?

Factor mapping (FM): Which factors are driving a specific target behavior of
the system?

The FP setting allows us to rank the factors according to their impact on
the output variance. The FF setting provides an assessment of which factors
could be fixed, within its range, without significantly influencing the output
variance. The VC setting allows us to focus our effort to bring the output
variance below a certain threshold. The FM setting allows us to identity the
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most influential factors in driving the model output into a specific range of
output space.

The FP, FF, and VC settings fall in the category of variance-based SA,
whereas the FM setting relies on Monte Carlo filtering. In this study, we will
focus on two avenues for system analysis using global SA, namely variance-
based SA for factor prioritization and factor fixing, see Sec. 6.2, and regional-
ized SA, including cluster analysis, for factor mapping, see Sec. 6.3.

6.2 VARIANCE-BASED SENSITIVITY ANALYSIS

Parts of this section appear in Paper B.

In this section, we outline how variance-based sensitivity analysis can be
performed via the functional ANOVA decomposition for the case of inde-
pendent inputs and via the functional ANCOVA decomposition for the case
of dependent inputs, respectively.

ANOVA DECOMPOSITION

In variance-based SA, we assess how the variance of the output depends
on the uncertain input factors, or variables, by considering how the output
variance can be decomposed. The basis is a high-dimensional model repre-
sentation (HDMR) [108], where a response function Y = f (X1, X2, ..., XM) is
decomposed into a set of functions of increasing dimensionality, see Eq. 90.

f = f0 + ∑
i

fi + ∑
i

∑
j>i

fij + ... + f12...M, (90)

where the individual terms are square integrable over the domain of exis-
tence, and only a function of the factors in their index, thus fi = f (Xi),
fij = f (Xi, Xj) and so on.9 Given that each term in Eq. 90 is defined to have
zero mean, e.g.,

∫
fi(xi)dxi = 0 and

∫
fi(xi) f j(xj)dxidxj = 0, the terms are

orthogonal in pairs, and the individual terms can be uniquely calculated by
use of the conditional expectation of the model output, e.g.,

f0 =E[Y] (91a)

fi =E[Y|Xi]− f0 (91b)

fij =E[Y|Xi, Xj]− fi − f j − f0. (91c)

The so-called first-order sensitivity index corresponds to the variance of the
univariate terms Vi = V[ fi] = V[E[Y|Xi]] scaled by the unconditional output
variance V[Y], i.e.,

Si =
VXi [EX∼i [Y|Xi]]

V[Y]
, (92)

9Note that Eq. 90 is not a series expansion, as it has a finite number of terms [103].
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where X∼i denotes all variables except Xi. The index Eq. 92 represents the
main effect contribution from factor i to the output variance [103] (Paper B).

Two factors are said to interact when their effect on Y cannot be expressed
as a sum of single effects. For independent input factors, the output variance
decomposes as

V[Y] = ∑
i

Vi + ∑
i

∑
j>i

Vij + ... + V12...M, (93)

where the terms Vij, Vijk et cetera correspond to interaction terms. Equa-
tion 93 is commonly referred to as the analysis of variance (ANOVA) decom-
position. Dividing both sides of Eq. 93 by the output variance, the following
relationship appears

1 = ∑
i

Si + ∑
i

∑
j>i

Sij + ... + S12...M. (94)

Based on Eq. 94, a set of properties can now be derived for the first-order
sensitivity indices [103], see Tab. 1.

Table 1: Properties of first-order sensitivity indices (Paper B).

∑i Si ≤ 1 Always
∑i Si = 1 Additive models
1−∑i Si Indicates presence of interactions

The so-called total effect index represents the joint effect of all contribu-
tions related to a factor. That is, the first-order effect of a factor and higher-
order effect due to its interactions with the remaining factor. As an example,
the total effect index of X1 in a three factor model is

ST1 = S1 + S12 + S13 + S123.

The terms in Eq. 94 could in principle be used to construct the total effect
indices, as in the example above, but then 2k − 1 terms must be calculated.
That is, this procedure suffers under the curse of dimensionality. Instead, we
explore the law of total variance, i.e.,

V[Y] = VXi [EX∼i [Y|Xi]] + EXi [VX∼i [Y|Xi]], (95)

or equivalently

V[Y] = VX∼i [EXi [Y|X∼i]] + EX∼i [VXi [Y|X∼i]]. (96)

In both factorizations, the first term represents the variance due the condi-
tioning set, and the second term represents the residual variance, i.e., the

68



ON SYSTEMS MODELING AND ANALYSIS

variance due to variables not in the conditioning set. Note that the first-order
sensitivity index corresponds to the first term in Eq. 95 divided by the output
variance, see Eq. 92. By use of Eq. 96, the total effect index of variable i may
be represented by the residual variance divided by the output variance, i.e.,

STi =
EX∼i [VXi [Y|X∼i]]

V[Y]
= 1− VX∼i [EXi [Y|X∼i]]

V[Y]
. (97)

Equation Eq. 97 provides a more efficient way of calculating the total effect
index than the brute force formulation based on Eq. 94 [103] (Paper B).

In a variance-based sensitivity assessment, the set of all Si and STi indices
provides a reasonable good description of the model sensitivity at a compu-
tationally cost that is tractable for most models. Thus, variance-based main
effects are suitable in a factor prioritization setting, while the total effects ad-
dress a factor fixing setting. In case evaluation of Si and STi is computation-
ally intractable, there exists a set of proxies for these indices. The elementary
effect measure µ∗i can, for instance, be used as a proxy for STi [103] (Paper B).

In practical applications, it is often convenient to build a surrogate model
to approximate outputs from the underlying computational model, as such
models tend to be computationally expensive to run, and Monte Carlo esti-
mation of the Sobol indices requires a large amount of samples. One surro-
gate modeling scheme that lends itself directly to SA applications is polyno-
mial chaos expansion (PCE) [109], as the model representation immediately
provides the quantities needed to compute the Sobol indices [110].

PCE is a spectral method that represents f as an infinite sum of multivari-
ate orthonormal polynomials. In practice, this representation is truncated,
which leads to a finite approximation of the form

f (X) = ∑
α∈A

yαΨα(X), (98)

where α = (α1, ..., αk) is a multi-index or tuple for which αi ∈ N, and A is
a truncation scheme, e.g., A = {(0, 0), ..., (1, 2), ...(0, 3)} for degree 3 in two
variables. The polynomial degree is typically chosen to be 3 to 5, and/or
a more advanced truncation scheme is applied, to cope with the curse of
dimensionality. Furthermore, {yα} is the set of parameters, which may be
interpreted as the coordinates of Y in the basis, and {Ψα} is the set of multi-
variate polynomials defined as

Ψα(x) =
M

∏
i=1

ψ
(i)
αi (xi), (99)

where {ψ(i)
αi } is the set of orthonormal, univariate polynomials used as the

basis for the expansion. For example, if Xi ∼ N (0, 1) the corresponding
polynomial family is Hermite polynomials [111, 112].
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For any subset u = {i1, ..., is} ⊆ {1, .., M}, the multivariate polynomials
that depend only on u are

Au = {α ∈ A : αi 6= 0 iff i ∈ u}. (100)

Thus, we can rewrite Eq. 98 as

f (X) = y0 + ∑
u⊆{1,..,M}

u 6=∅

[
∑

α∈Au

yαΨα(Xu)

]
, (101)

where Xu is the subset of X with index i ∈ u. Now, due to orthogonality of
the PCE basis, we can decompose the output variance as

V[Y ] = V

 ∑
u⊆{1,..,M}

u 6=∅

[
∑

α∈Au

yαΨα(Xu)

] = ∑
u⊆{1,..,M}

u 6=∅

V

[
∑

α∈Au

yαΨα(Xu)

]
,

(102)
where the partial variance terms V[ fu] reduces to

V( fu) = V

[
∑

α∈Au

yαΨα(Xu)

]
= ∑

α∈Au

y2
α. (103)

Based on Eq. 103, the Sobol indices may be defined by

Su =
1

V[Y] ∑
α∈Au

y2
α, (104)

with the corresponding indices given in Tab. 2 [111]. In this study, we only
present a concise description of PCEs that evolves around SA. The interested
reader may refer to e.g., [111] for more general details on PCEs.

Table 2: First-order and total sensitivity index based on PCE surrogate model.

Si Au = Ai = {α ∈ A : αi > 0, αi 6=j = 0}
ST

i Au = AT
i = {α ∈ A : αi > 0}

ANCOVA DECOMPOSITION

The basis for variance decomposition in the case of correlated inputs is again
the HDMR (Eq. 90), but for dependent input variables, it is not possible to
derive a unique decomposition in terms of orthogonal summands of increas-
ing order [111, 113]. The unconditional variance of the model output may
now be written as

V[Y] =E
[
(Y−E[Y])2

]
(105a)
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V[Y] =E

(Y− f0)( ∑
u⊆{1,..,k}

fu)

 (105b)

=C

Y, ∑
u⊆{1,..,M}

fu

 (105c)

= ∑
u⊆{1,..,M}

C [Y, fu] (105d)

= ∑
u⊆{1,..,M}

V[ fu] + C

 fu, ∑
v⊆{1,..,M},v∩u=∅

fv

 (105e)

where each function { fu|u ⊆ {1, .., M}} represents the combined contribu-
tion of the variables Xu to Y. Equation 105b holds because Y contains its
functional decomposition, Eq. 105c reframes the variance of Y as the covari-
ance of Y with itself, Eq. 105d explores the properties of covariance, and
Eq. 105e splits the covariance terms into a variance and a covariance term.
Equation 105e is commonly denoted the analysis of covariance (ANCOVA)
decomposition. Note that when the inputs are independent, the functions
fu and fv are orthogonal. Thus, the covariance terms of Eq. 105e evaluate
to zero, and only the variance terms are left in the equation. Under these
conditions, the ANCOVA decomposition is equivalent to the ANOVA de-
composition, thus ANOVA is a particular case (independent inputs) of AN-
COVA [114, 115] (Paper B).

The ANCOVA decomposition in Eq. 105e facilitates a separation of the
uncorrelated and correlated effects in the following sensitivity indices

Su =
C[Y, fu]

V[Y]
(106a)

SU
u =

V[ fu]

V[Y]
(106b)

SC
u =

C
[

fu, ∑v⊆{1,..,M},v∩u=∅ fv

]
V[Y]

. (106c)

From this definition of indices, it is seen that Su represents the total contribu-
tion to output variance due to Xu, SU

u represents the uncorrelated, or struc-
tural, share of output variance due to Xu, and SC

u represents the correlated
share of output variance due to Xu, i.e., the contribution due to correlations
between Xu and the remaining inputs. Moreover, the relationship between
the indices is

Su = SU
u + SC

u . (107)

As a result of this definition, SU
u is always positive, the sign of SC

u depends on
the nature of the correlation between Xu and the remaining inputs, and thus
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the sign of Su depends on which of the structural contribution SU
u and cor-

relative contribution SC
u is largest. In this context, SC

u should be understood
as a corrective term that indicates whether the total contribution is overes-
timated or underestimated because of the correlation between the inputs.
If |SC

u | is small the correlation has a weak influence of the contribution of Xu,
and if it is large the correlation has a strong influence of the contribution
of Xu [114, 115] (Paper B).

Saltelli ét al. [116] argue that the condition E[V[Y|X∼i]] = 0 is a neces-
sary and sufficient condition to deem Xi non-influential, under any model or
correlation/dependency structure among the inputs. Moreover, if we add the
first order index and the higher-order indices of a variable together, we arrive
at an index ST

i that is consistent with the Sobol total effect index for the case
of independent inputs [115]. Note that in case of correlation among the in-
puts, the total effect terms can be smaller than the first-order terms (Paper B).
There is, however, confusion about the distinction between interaction and
correlation effects, when higher-order indices are calculated using Eqs. 106a–
106c. That is, if Xi and Xj are correlated, the term fij still appears in the
uncorrelative index (Eq. 106b). Furthermore, the correlative index (Eq. 106c)
may detect a correlation between Xk∈u,k 6=i and Xl∈v,k 6=i, although Xi is neither
correlated with Xk nor Xl , see [115, 116] for further details.

We also consider how PCE can be used to provide estimates for the sensi-
tivity induces, when the inputs are dependent. In this case, the recommended
procedure [113, 115] follows two distinct steps. First, we build a PCE sur-
rogate as if the input vector X has independent components (independent
copula). Second, we evaluate the variances and covariances by simulating
realizations of X, which accommodate for the dependency structure (depen-
dent copula). The sensitivity indices may then be estimated as

Su =
∑T

t=1( fA(x(t))− ȳA)( fu(x(t)u )− ȳu)

∑T
t=1( fA(x(t))− ȳA)2

(108a)

SU
u =

∑T
t=1( fu(x(t)u )− ȳu)2

∑T
t=1( fA(x(t))− ȳA)2

(108b)

SC
u =Su − SU

u , (108c)

with ȳA = 1
T ∑T

t=1 fA(x(t)) and ȳu = 1
T ∑T

t=1 fu(x(t)u ), see e.g, [113, 115] for
further details.

Finally, note that other approaches for generalizing the Sobol indices are
found in the literature, see e.g., [117, 118]. These approaches generally pro-
vide different results when the inputs are correlated, but they are consistent
with the Sobol indices when the inputs are independent. Thus, several gener-
alizations of the Sobol indices for models with dependent inputs are available
in the literature, but it remains an active research topic [115].
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6.3 REGIONALIZED SENSITIVITY ANALYSIS

Parts of this section appear in Paper B.

Regionalized sensitivity analysis (RSA) is a Monte Carlo (MC) filtering ap-
proach, where Monte Carlo simulations are filtered, based on the model out-
put realizations, into a “behavioral” (B) and a “non-behavioral” (B̄) set. The
behavioral samples correspond to output realizations exhibiting a certain tar-
get behavior, which in this study are realizations leading to (partial) system
failure, see Paper B. Based on this partitioning, RSA aims to identify which
factors are most important in driving output realizations into B or B̄. In prac-
tice, this is typically attained by comparing the subsets {Xi|B} and {Xi|B̄}
for all input factors, under the intuition that if the two subset are dissimilar
to one another, then the factor is influential [103].

STATISTICAL TESTING

The assessment of similarity between the behavioral and non-behavioral set
may be conducted by means of hypothesis testing using e.g., the Smirnov
two-sample test (two-sided) [103]. For this case, the test statistic is defined as

dB,B̄(Xi) = sup ||F̂(Xi|B)− F̂(Xi|B̄)||, (109)

where F̂ is the empirical CDF. We then assess at which significance level α the
null hypothesis, i.e., F(Xi|B) = F(Xi|B̄), is rejected. The larger dB,B̄(Xi), or
equivalently the smaller α, the more important the parameter is in driving the
model behavior. The Smirnov test provides a means for assessing whether
the factor under analysis is important, but it does not provide a necessary
condition for deeming a factor unimportant, i.e., its non-significance does
not ensure that a factor is non-influential. Furthermore, low success rates
may occur for rare model behaviors, which will lead to lack of statistical
power [103].

CLUSTER ANALYSIS

In some cases, we may be interested in analyzing whether all behavioral sam-
ples in a MC experiment corresponds to the same latent grouping, or whether
multiple latent groupings exist in the data. For this purpose, cluster analysis
may be employed. Furthermore, a comparison of the cluster representation
of {Xi|B} and {Xi|B̄} may reveal distinct patterns in the two subsets.

Cluster analysis is a general class of techniques used to classify items in
a database into relative groups called clusters, when no information about
the cluster memberships is available a-priori. Thus, the basic assumption in
cluster analysis is that the considered data setD is sampled from a finite set of
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distinct base models, and the target of the analysis is to infer the most likely
generating base model for each realization, i.e., the latent cluster assignment.
In this regard, we assume that the data set D = {x[n]}N

n=1 consists of N
i.i.d. observations of a random vector X ∈ RM. Model-based clustering is
commonly used as a basis for cluster analysis, as it provides a framework for
choosing the relevant number of clusters in the data, as well as assessing the
resulting partitioning of the data, see e.g., [119, 120] (Paper B).

In a model-based setting, if it is further assumed that the base model for
each of the clusters is Gaussian, the joint distribution can be represented as a
Gaussian mixture model (GMM) of the form

p(x|Θ) =
K

∑
k=1

πkN (x|µk, Σk), (110)

where Θ represent the collection of all model parameters, µk is the mean vec-
tor of cluster k, Σk is the covariance matrix of cluster k, and πk is the mixing
weight or probability of cluster k, such that ∑k πk = 1 with 0 ≤ πk ≤ 1.

The generative model for the data is shown in Fig. 12, where z[n] ∈
{0, 1} is a binary random variable with a 1-of-K encoding in which a par-
ticular element zk is equal to 1 and all other elements are equal to zero.
This variable represent the latent cluster assignment for data item n, with
a marginal distribution specified by the mixing weights, such that p(zk =
1) = πk and p(z) = ∏k π

zk
k [6]. Thus, the corresponding joint distribution

p(x, z) is defined in terms of the marginal distribution p(z) and a condi-
tional distribution p(x|z) = ∏kN (x|µk, Σk)

zk . The marginal distribution for
p(x) (Eq. 110) thus appears by marginalizing out z in p(x, z), i.e., p(x) =

∑z p(x|z)p(z) (Paper B).

π z[n] x[n]

µk Σk

N

K

Figure 12: Meta-network of a Gaussian mixture model (Paper B).

The log-likelihood of the data under this model is

log p(D|Θ) =
N

∑
n=1

log

(
K

∑
k=1

πkN (x[n]|µk, Σk)

)
. (111)

No closed form solution can be derived for the maximization of this expres-
sion with respect to the parameters, due to the summation over k that appears
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inside the logarithm, and thus it is necessary to resort to an iterative scheme,
e.g., expectation maximization (EM), to estimate the parameters of the distri-
bution, see e.g., [6] (Paper B).

Expectation maximization As described in Sec. 3.4, EM is a method for
finding point estimates of distribution parameters, i.e., maximum likelihood
(MLE) or maximum a-posteriori (MAP), for models with latent variables. In
Sec. 3.4, the latent variables are missing data in the data set, and in this
application they are latent cluster assignments, i.e., z[n] in Fig. 12.

First, we consider the solution conditions for the means, thus setting the
derivatives of Eq. 111 with respect to the mean components µk to zero, we
obtain the following equality

0 =
N

∑
n=1

πkN (x[n]|µk, Σk)

∑k′ πk′N (x[n]|µk′ , Σk′)︸ ︷︷ ︸
γ(zk [n])

Σ−1
k (x[n]− µk), (112)

where we can view πk as the prior probability of zk = 1 and the quan-
tity γ(zk) as the corresponding posterior probability after observing x. The
γ(zk) components are also called responsibilities, as they express the respon-
sibility of the individual components in explaining an observation x [6]. Now,
multiplying by Σk and rearranging, we obtain an expression for µk, i.e.,

µk =
1

Nk

N

∑
n=1

γ(zk[n])x[n], (113)

where Nk = ∑n γ(zk[n]) may be interpreted as the effective number of points
assigned to cluster k [6]. Next, we consider the solution conditions for the
covariances, thus setting the derivatives of Eq. 111 with respect to the co-
variance components Σk to zero and rearranging, we obtain the following
expression for Σk, i.e.,

Σk =
1

Nk

N

∑
n=1

γ(zk[n])(x[n]− µk)(x[n]− µk)
T . (114)

Finally, we need to maximize Eq. 111 with respect to the mixing coeffi-
cients πk, accounting for the constraint ∑k πk = 1. This may be archived
by augmenting Eq. 111 with a Lagrange multiplier component, and maxi-
mizing the augmented log-likelihood to arrive at the following expression
for πk, i.e.,

πk =
Nk
N

. (115)

That is, the mixing component of cluster k reflects the average responsibility
of that cluster in explaining the training data [6].
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The EM algorithm proceeds as follows: We first initialize the parame-
ters in Θ to some appropriate values; commonly the related K-means algo-
rithm [6] is used for the initialization of the parameters. Second, we alternate
between updating the expected responsibilities γ(zk[n]) for each cluster (E-
step), and updating the parameters in Θ = {µk, Σk, πk}K

k=1 (M-step). Pseudo-
code for the EM algorithm is provided in Alg. 6.

Algorithm 6: Pseudo-code of the EM algorithm for GMMs.
Input: D
Output: θ̂(t)

1 Initialization: θ̂(0)

2 for t = 1, ..., until convergence do

3 E-step:
4 for n = 1, ..., N do
5 for k = 1, ..., K do
6 γ(zk[n])← πkN (x[n]|µk ,Σk)

∑k′ πk′N (x[n]|µk′ ,Σk′ )

7 end
8 end

9 M-step:
10 for k = 1, ..., K do
11 N(t)

k ← ∑N
n=1 γ(zk[n])

12 µ
(t)
k ← 1

Nk
∑N

n=1 γ(zk[n])x[n]

13 Σ
(t)
k ← 1

Nk
∑N

n=1 γ(zk[n])(x[n]− µ
(t)
k )(x[n]− µ

(t)
k )T

14 π
(t)
k ←

Nk
N

15 end
16 end

The EM algorithm may also be derived from an alternative view point,
where we express our state of knowledge of both observed and unobserved
variables in Fig. 12, i.e., {x[n], z[n]} = {X̂, Ẑ}, in a direct manner. The set
{X̂, Ẑ} is commonly referred to as the “complete” data set, and the corre-
sponding log-likelihood log p(X̂, Ẑ|Θ) is referred to as the complete-data
log-likelihood. As Ẑ is unobserved, our state of knowledge about Ẑ is ex-
pressed by the posterior p(Ẑ|X̂, Θ). The EM algorithm then computes the
expectation (E-step) of the complete-data log-likelihood under this posterior,
and its subsequent maximization (M-step) with respect to the parameters.
Thus, in the E-step, the posterior of the latent variables is computed based
on the current parameter setting, i.e. θ̂(t−1), which in turn is used to express
the expectation of the complete-data log-likelihood for a general parameter
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setting θ ∈ Θ. This expectation may be written as

Q(θ, θ̂(t−1)) = ∑̂
Z

p(Ẑ|X̂, θ̂(t−1)) log p(X̂, Ẑ|θ), (116)

and the subsequent M-step proceeds as

θ̂(t) = arg max
θ

Q(θ, θ̂(t−1)). (117)

Note that the logarithm in Q(θ, θ̂(t−1)) acts directly on the likelihood [6].
Now, we consider how to derive the different components involved in this

formulation of the EM algorithm. First, using Bayes’ theorem, we can express
the posterior of the latent variables as

p(Ẑ|X̂, Θ) ∝ p(X̂|Ẑ, Θ)p(Ẑ|Θ)

∝
N

∏
n=1

K

∏
k=1

(πkN (x[n]|µk, Σk))
zk [n] . (118)

Note that under the posterior, the z[n] vectors are independent, as it appears
in Fig. 12. The expected value of the latent component zk[n] under this pos-
terior distribution can now be computed as

E[zk[n]] =
∑z[n] zk[n] ∏k′ [πk′N (x[n]|µk′ , Σk′)]

zk′ [n]

∑z[n] ∏k′ [πk′N (x[n]|µk′ , Σk′)]
zk′ [n]

=
πkN (x[n]|µk, Σk)

∑k′ πk′N (x[n]|µk′ , Σk′)
= γ(zk[n]), (119)

whereby we retrieve the responsibilities {γ(zk[n])} in Eq. 112 [6]. The ex-
pected complete-data log-likelihood may thus be written as

EẐ
[
log p(X̂, Ẑ|Θ)

]
=

N

∑
n=1

K

∑
k=1

γ(zk[n]) [log πk + logN (x[n]|µk, Σk)] . (120)

For this case, the EM algorithm thus amounts to successively compute the
responsibilities in Eq. 119 based on the current parameter setting (E-step)
and optimizing Eq. 120 with respect to the parameters in Θ (M-step), which
leads to the expressions in Eqs. 113–115 as before [6].

Finally, we may link the second deviation of the EM algorithm to our
discussion of variational inference in Sec. 5.4 (Eq. 87) by writing the log-
likelihood as

log p(X̂|θ) = Lq(θ) + KL[q ‖ p]

= ∑̂
Z

q(Ẑ) log
p(X̂, Ẑ|θ)

q(Ẑ)
− ∑̂

Z

q(Ẑ) log
p(Ẑ|X̂, θ)

q(Ẑ)
, (121)
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where q(Ẑ) is some distribution defined over the latent variables, i.e., sim-
ilar to the variational distribution of Sec. 5.4; KL[q ‖ p] is the Kullback-
Leibler divergence between q(Ẑ) and p(Ẑ|X̂, θ); and Lq(θ) is the evidence
lower bound, i.e., Lq(θ) ≤ log p(X̂|θ). That is, maximizing Lq(θ) is equiv-
alent to minimizing KL(q ‖ p). Note that Eq. 87 may easily be verified by
plugging in log p(X̂, Ẑ|θ) = log p(Ẑ|X̂, θ) + log p(X̂|θ) in the expression for
Lq(θ), whereby the KL[q|p] term cancels out, leaving only Eq[log p(X̂|θ)] =
log p(X̂|θ) on the right-hand side [6].

For this case, the EM algorithm therefore proceeds by sequentially opti-
mizing Lq(θ(t−1)) with respect to q(Ẑ) while holding θ(t−1) fixed (E-step),
and optimizing Lq(θ) with respect to θ while holding q(Ẑ) fixed (M-step). In
the E-step, Lq(θ(t−1)) is optimized when KL[q ‖ p] vanishes, which occurs
when q(Ẑ) = p(Ẑ|X̂, θ(t−1)). Thus, we arrive at the following expression for
Lq(θ) after the E-step

Lq(θ) = ∑̂
Z

p(Ẑ|X̂, θ(t−1)) log p(X̂, Ẑ|θ)− ∑̂
Z

p(Ẑ|X̂, θ(t−1)) log p(Ẑ|X̂, θ(t−1))

= Q(θ, θ(t−1)) + H[q], (122)

where the second term is the entropy of q(Ẑ), which is a constant with respect
to θ, thus we recover Eqs. 116–117 in the maximization [6].

Model selection The EM algorithm solves the problem of parameter estima-
tion, but one additional problem persists, namely how to choose the number
of mixture components K, i.e., the number of clusters represented in the data.
One approach to address this issue is to define a likelihood-based score met-
ric that penalizes model complexity, as the likelihood will simply increase as
more mixture components are considered, which eventually will lead to over-
fitting. Two such metrics are the Bayesian information criterion (BIC) [121]
and the integrated complete-data likelihood (ICL) [122], i.e.,

BIC(M) = log p(D|θ̂)− ν

2
log N (123a)

ICL(M) = BIC(M) +
N

∑
n=1

K

∑
k=1

ẑk[n] log γ(zk[n]), (123b)

where M reflects a given model in terms of the number of mixture com-
ponents and covariance structure, θ̂ is the maximum likelihood estimate for
the parameter vector under the model, ν is the number of free parameters
in the model, γ(zk[n]) is the responsibility of mixture component k in ex-
plaining x[n] (Eq. 119), and ẑk[n] is the hard cluster assignment of x[n] based
on γ(z[n]), i.e.,

ẑk[n] =

{
1 if arg maxk′ γ(zk′ [n]) = k
0 otherwise.

(124)
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We note that the hard cluster assignment ẑk in Eq. 123b may be replaced with
the soft cluster assignment, i.e., γ(zk[n]), leading to a reduction in the entropy
penalty for uncertain cluster assignments [119] (Paper B).

As the BIC score tends to select the number of mixture components
needed to reasonably approximate the density, rather than the number of
clusters, the ICL score is used for model selection in the present study. It
appears from Eq. 123b that the ICL score is a penalized version of the BIC
score, which adds further penalization through an additional entropy term
that reflects cluster overlap. In a Bayesian setting, the BIC metric appears
by maximizing an approximation to the integrated (observed) likelihood,
i.e., p(X̂) =

∫
p(X̂|θ)p(θ)dθ, with non-informative priors, leading to a

Laplace approximation at the MLE solution. The ICL metric appears by
maximizing an approximation to the integrated complete-data likelihood,
i.e., p(X̂, Ẑ) =

∫
p(X̂, X̂|θ)p(θ)dθ, under the same assumptions as for BIC,

see [119, 120, 123] for further details (Paper B).

Some practical considerations In practical applications, we need to address
two potential issues when seeking an MLE solution for mixture models,
namely singularities and identifiability. Identifiability issues arise in mix-
ture models, as there for a K-component mixture are K! equivalent solutions,
thus reflecting the K! ways in which we can assigning K sets of parameters
to K components. However, for the purpose of defining a density model, as
we consider here, it does not matter which of the K! equivalent solutions we
pick [6]. Singularities occur when one of the clusters mean coincides with
a point in the training data set and thus is an example of overfitting. One
solution to this problem is to define a prior for the parameter vector p(Θ),
in which case the EM algorithm leads to a MAP solution, which is equiva-
lent to parameter regularization, see e.g., Sec. 5.1. Another solution is to use
a suitable heuristic to detect singularities in the model during optimization,
and if they occur, we reset the parameters of that cluster and continue with
the optimization from that state [6].
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7 MODEL SELECTION AND AVERAGING,
AND DECISION OPTIMIZATION

In general systems modeling, the true causal relationships governing a given
problem domain are often not known or result in representations that are
not parsimonious. For such situations, model building typically leads to
multiple plausible model hypotheses that provide adequate descriptions of
the observed data, as only limited amounts of data are available and dif-
ferent modeling approaches may be utilized. In such situations, one best
system representation is commonly selected from the ensemble according to
some criterion, e.g., fit to data or predictive performance. After one model
is selected, all inferences are made and conclusions drawn assuming that the
selected model is the true model, thus ignoring model uncertainty (Paper F).

In this section, we consider two avenues for dealing with model uncer-
tainty in inferential modeling and decision-making. In Sec. 7.1 and Ap-
pendix B, we discuss predictive inference using model averaging, and in
Sec. 7.2, we introduce how the choice of system representation can be em-
bedded inside an overarching decision context, which enables us to select the
model best suited for a specific decision problem.

7.1 MODEL AVERAGING

Parts of this section appear in Papers D, and F.

Consider a finite ensemble of system representations M = {Mu}U
u=1, where

eachMu corresponds to one system representation. Using model averaging,
inferences are made by averaging over the ensemble of models as

YM =
U

∑
u=1

wuYu, (125)

where YM is the random outcome resulting from the weighted average of
the individual, random outcomes {Yu} with corresponding model weights
{wu} that add up to 1, i.e., ∑u wu = 1. The mean-squared error (MSE) for
this average estimator may now be decomposed as

MSE(YM) = E
[
(YM − y∗)2

]
= (E[YM]− y∗)2 + V[YM]

=

(
U

∑
u=1

wu(E[Yu]− y∗)

)2

+
U

∑
u=1

U

∑
u′=1

wuwu′ρu,u′σuσu′ (126)
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where the first term in the decomposition corresponds to the bias between
the average prediction and the truth, and the second term corresponds to the
variance of the estimator. Moreover, ρu,u′ is the correlation coefficient between
models Mu and Mu′ , and σu is the standard deviation of predictions from
modelMu [124].

From Eq. 126, we see that for a given set of weights, the error of the av-
erage prediction depends on (i) the bias of the average model, which results
from the biases of the averaged models, (ii) the predictive variance of the av-
eraged models, and (iii) the covariances between averaged models. Under the
assumption that the model bias of the averaged models tends to fall on both
sides of the truth, the bias contribution of the average model will decrease
compared to the individual model biases. Moreover, when the covariances
between the averaged models are negligible, and the variances of the models
are of similar size, i.e., σ, the resulting variance of the average model be-
comes σ2/U, under the assumption of equal weights, i.e., wu = 1/U. That is,
the benefit of model averaging generally increase with decreasing covariance
between the averaged models and decreasing mean bias of the averaged mod-
els [124].

We may further reduce the influence of poor models in the averaging by
estimating the weights, but this, of course, introduces additional variability
in the average model prediction, which can reduce the benefit of model av-
eraging [124]. Following Dormann et al. [124], weighting schemes for model
averaging can broadly be classified into four categories, which are listed be-
low in order of increasing probabilistic interpretability.

Equal weighting: The simplest weighing scheme is to assign a uniform
weight distribution over the averaged models, i.e., wu = 1/U. This
approach has been used with great success in ML applications, see Ap-
pendix B, and it is e.g., the approach taken in bagging [125, 126].

Heuristic weighting: We may also choose to optimize the model weights to
achieve the best predictive performance of the average model by e.g.,
defining the averaging weights of each model in accordance with its
predictive performance, usually obtained through cross-validation. In
this regard, predictive performance may e.g., be defined as the (average)
likelihood of a held-out data set under each of the averaged models.
This approach has also been used successfully in ML applications, see
Appendix B, and it is e.g., the approach taken in stacking [124, 126].

Information-theoretic weighting: Taking an information-theoretic prospec-
tive, the weights in model averaging reflect closeness, defined in terms
of the Kullback-Leibler (KL) divergence, between the individual aver-
aged models and the true, underlying data generating process. Com-
mon approximations to the KL-divergence is e.g., the Akaike informa-
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tion criterion and the minimum description length, which negation as
mentioned in Sec. 3.4 is equivalent to the Bayesian information crite-
rion [124, 127].

Bayesian weighting: The Bayesian interpretation of the averaging weights is
that they reflect the probability of the averaged models being the true
model of the data generating process. In practice, inferences are made
for the average model either by sampling from the joint distribution
over model and parameters, i.e., p(Mu, Θu|D), using a Markov chain
Monte Carlo scheme; or by approximating the posterior probability of
each of the averaged models independently and using a normalized
version of these posterior weights in Eq. 125, see e.g., [124, 126–128] for
further details.

Note that Papers D, and F consider model averaging. As an example, Pa-
per D uses a heuristic scheme, termed model-based model combination [124],
to define the model weights through a radial-basis function kernel with dis-
tinct scaling parameters along the input dimensions. This weighting function
is thus effectively equivalent to the automatic relevance detection kernel, as
introduced in Sec. 4.1.

7.2 CONTEXT-SPECIFIC MODEL SELECTION

Parts of this section appear in Papers A, C, and F.

In a decision context, a system modelM(a) provides a mapping from input
to output, conditional on a decision alternative a, which is measured in terms
of utility. In general, the system performance is uncertain, thus the optimal
decision alternative needs to be selected in accordance with Bayesian decision
theory [16] and the axioms of utility theory [17] by optimizing the expected
utility, i.e.,

a∗ = arg max
a

(E[U(a)]). (127)

The corresponding, principle decision event tree is illustrated in Fig. 13a. The
figure shows the procedure for a so-called prior or posterior decision anal-
ysis, which only differ in the information available at the time of decision-
making [129]. Thus, the decision maker has to choose between a set of deci-
sion alternatives (decision node) with uncertain outcomes (chance node) and
associated utilities (utility node), and the rational of Eq. 127 is to choose the
decision alternative that results in the maximum expected utility (benefit),
see e.g., [27] (Papers A, C, and F).

In case the true underlying system is unknown, and it is unknown which
is the most relevant representation of the system, the principle decision event
tree for a prior or posterior decision analysis may be depicted as in Fig. 13b,
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Figure 13: Systems role in decision analysis: (a) one possible system, (b) sev-
eral possible systems (Papers C, and F).

see also [10, 12]. Following [10], the corresponding optimization for this case
takes the following form

(s∗, a∗) = arg max
s,a

U(s, a) = arg max
s

(
P(u = s) arg max

a

(
EX|s[U(a, X)]

)
+ Eu′∈u\s

[
EX|u′ [U(a∗, X)]

])
.

(128)

In this regard, the true system is represented by a random event with possi-
ble realizations M = {Mu}U

u=1 of known components indexed by u, and s
represents the index of one choice of system representation in M. For this
case, an additional complication arises, as some of the decision alternatives in
a might not be admissible for some of the competing system representations.
Therefore, the optimization of decision alternatives needs be be seen in con-
sistency with the choice of system representation. For a given system choice,
a∗ is thus determined in accordance with Eq. 127 (Papers A, C, and F).

In Eq. 128, the robustness of the decision with regard to the choice of
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system may be assessed as the ratio of the first term to the sum of the two
terms, i.e.,

Robustness(s, a∗) =
P(u = s)EX|s[U(a∗, X)]

Eu′∈u

[
EX|u′ [U(a∗, X)]

] . (129)

This ratio takes a value between 0 and 1 (1=robust) that specify how sensitive
the decision is to the possibility that the optimization is conducted under an
erroneous system assumption [12, 130] (Paper C).

We may further have an option to collect additional information to sup-
port our decision analysis, see [12]. Thus, the pre-posterior decision analysis
for a joint optimization considering a choice of (potential) additional infor-
mation e, a choice of system s, and a choice of decision alternative a may be
formulated as

(e∗, s∗, a∗) = arg max
e

E′Z
[
arg max

s

(
P′′(u = s) arg max

a

(
E′′X|s[U(a, X)]

)
+ E′′u′∈u\s

[
E′′X|u′ [U(a∗, X)]

])]
,

(130)

where Z are the random outcomes of the experimental strategies, and z are
the corresponding realizations. Moreover, E′′ defines an expectation taken
with respect to the updated probability assignments of the random variables
included in the modeling, e.g., P′′(X|s) = P′(X|s, z) [12]. For this case, the
corresponding, principle decision event tree is illustrated in Fig. 14.

Decision Chance

Utility

System 
realization

s=k u=k 

Experiment Experiment outcome

System 
choice

Figure 14: Pre-posterior decision analysis considering several possible sys-
tems.

This joint approach to decision optimization, when uncertainty exists on
the optimal system representation, facilitates to integrate the model building
process and the decision optimization, whereby the available knowledge can
be fully utilized to optimize the expected utility associated with the consid-
ered system and consistently rank decision alternatives. This thus provides
a principled means of addressing the trade-off between simplicity and com-
plexity in modeling, as our models only need to be accurate in the domains of
“reality” that matter for the decision subject to optimization. The interested
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reader is referred to [12], as well as Papers A, C, and F, for further details on
the approach and its applications.
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8 APPLICATIONS IN OFFSHORE
ENGINEERING

Parts of this section appear in Papers A–F.

In the preceding sections, we have studied the theoretical aspects of systems
modeling and analysis with a special focus on the probabilistic representation
of systems. In this section, we consider how the theory apply within the con-
text of offshore engineering and point to the research papers in Part II, where
it is applied to real-world problems and associated real data. Note again that
practical implementations of the algorithms and numerical examples from
the papers are found at the GitHub repository.

Environmental loads such as wind, waves, and current play key roles in
the design and assessment of offshore structures [131, 132]. Figure 15 shows
how structural responses are generated in storm events, which are the pre-
dominant, environmental exposure events for offshore structures. In this
regard, the characterization of e.g., the wave loading in a storm follows a hi-
erarchical approach, where we initially specify the sea state events (typically
1 or 3 hours) in terms of e.g., the significant wave height, zero-crossing pe-
riod, direction, and directional spreading. Dependent on the sea state events,
we then provided the statistical descriptions of short-term wave load char-
acteristics of relevance for the structural responses, e.g., the crest height and
shape as well as relevant time partial derivatives of the water particle posi-
tions over the water column. This approach has been significantly facilitated
by wave tank experiments representing the sea surface elevation for given
sea states in conjunction with theoretical models of the sea surface elevation
within sea states, see e.g., [133–135].10
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Short 
term
event 
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model

Response
event

Hm0
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WS
...

Figure 15: Flowchart illustrating the generation of structural responses as a
result of exposure to environmental loads in a storm event.

Figure 15 focuses on how the environmental loads in a storm event lead
to structural responses (far right), but the response model itself is an equally
complex system composed of a set of subsystems, which are again composed

10https://vbn.aau.dk/da/projects/load-environment-modeling-and-forecasting
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of sub-subsystems and so on. Thus, to target our efforts in the modeling of
exposure events, it is imperative that we understand the drivers of critical
system responses as well. Figure 15 frames the research papers in the context
of offshore engineering as discussed in this section. In the following, the
papers are shortly summarized.

Paper A: A framework for offshore load environment modeling. This pa-
per is published in the proceeding of the ASME 2018 37th International
Conference on Ocean, Offshore and Arctic Engineering (OMAE2018). The
paper introduces a coherent framework for systems modeling and de-
cision optimization, which may e.g., be utilized in offshore engineer-
ing applications, i.e., it builds on the material presented in Sec. 3 on
Bayesian networks and Sec. 7.2 on context-specific model selection. The
paper also includes a description of the North Sea region and presents
the dominating phenomenology characterizing the offshore environ-
ment for this region. Moreover, the paper reviews current practices in
design of offshore structures and related design information. A princi-
ple example is included to showcase the use of the framework. The ex-
ample considers the modeling of environmental loads associated with
storm events, and decision optimization in the context of the possible
evacuation of an offshore facility in the face of an emerging storm event.

Paper B: Systems modeling using big data analysis techniques and evi-
dence. This paper is published in the proceeding of the IEEE 2019 4th
International Conference on System Reliability and Safety (ICSRS2019). The
paper explores how data mining and sensitivity analysis tools (Sec. 6)
can be used as a means to improve understanding of complex proba-
bilistic system representations. The proposed methodology to systems
analysis includes the following steps: (i) generate system responses un-
der given loading conditions, (ii) filter of system responses into failure
scenarios, (iii) perform model-based cluster analysis on the realizations
of the failure scenarios to detect distinct patterns and access regional-
ized sensitivities, and (iiii) access the sensitivity of system performance
characteristics to the uncertain factors in the system representations.
The individual steps of the methodology are illustrated in a principle
example, which considers a portal frame structure under annual ex-
treme loading conditions.

Paper C: A framework for offshore load environment modeling. This pa-
per is published in the Journal of Ocean, Offshore and Arctic Engineer-
ing. The paper elaborates on the framework presented in Paper A and
considers how to consistently account for parameter uncertainties in
system representations using Bayesian networks, and propagate these
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uncertainties in a decision optimization. This paper considers the same
principle example as Paper A.

Paper D: On normalized fatigue crack growth modeling. This paper is
published in the proceeding of the ASME 2018 39th International Con-
ference on Ocean, Offshore and Arctic Engineering (OMAE2020). The paper
considers a new approach for the modeling of fatigue crack growth in
structural details that accounts for the possible mutual dependencies
in parameter space, which is typically ignored in today’s best-practice
fracture mechanics modeling approaches, where several parameters are
assessed experimentally on an individual basis. We address the is-
sue of consistent, evidence-based parameter estimation for the new
so-called normalized fatigue crack growth model by framing it using
parametric Bayesian hierarchical modeling and model-based machine
learning (Secs. 3.5–3.6). The proposed probabilistic modeling scheme
is presented and discussed based on an example considering fatigue
crack growth for welds in K-joints. Finally, it is shown how the de-
veloped probabilistic crack growth model may be applied as basis for
risk-based inspection and maintenance planning by utilizing Bayesian
model averaging (Sec. 7.1).

Paper E: On a simple scheme for systems modeling and identification us-
ing big data techniques. This paper has been submitted to Reliabil-
ity Engineering & System Safety. As the paper title indicates, the pa-
per presents a simple scheme for systems modeling and identification,
where focus is directed on the representation of our current state of
knowledge about the considered system and letting the resulting so-
called digital twin “speak” for itself through simulations of system
responses. In this way, Monte Carlo simulation may be employed to
establish the relevant scenarios of realizations of the random variables
describing possible system states, including damage states, and sys-
tem performance characteristics. On this basis, supervised classification
provides a means for assessing the probability of the system being in
a given state, provided new observations. Note that most applications
on e.g., damage identification in civil engineering conduct the assess-
ment somehow in reverse, i.e., by initially defining what to look for in
terms of damage scenarios. This however has the disadvantage of not
providing a means for assessing the relevance of the considered sys-
tem states, measured in terms of likelihood of occurrence on the real
system. The proposed scheme is illustrated through two principle ex-
amples considering damage identification in structural systems subject
to extreme loading.
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Paper F: On systems modeling and context-specific model selection in off-
shore engineering. This paper has been submitted to Computer-Aided
Civil and Infrastructure Engineering. The paper builds on and extends
the material presented in Papers A and C by first introducing the ma-
chinery behind the learning of Bayesian network (Sec. 3) and Gaussian
process (Sec. 4) discrepancy modeling as a means for considering both
measurements and corresponding simulation data in the Bayesian net-
work modeling. Next, the paper goes on to present the competing sys-
tems frameworks of Sec. 7 and showcases how context-specific model
selection may be applied on a simple principle example concerning the
optimal design of a short concrete column, given a database of experi-
mental outcomes from concrete compression strength tests. Finally, the
paper considers how the modeling techniques and the decision analyti-
cal framework for model selection may be applied in a full-scale setting,
where the objectives are (i) the formulation of a storm event model,
based on measurements and corresponding hindcast data, and (ii) deci-
sion support on the potential evacuation of a set of offshore platforms,
given observed storm characteristics.
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9 CONCLUSIONS AND FUTURE WORK

This PhD study addresses the challenge of developing probabilistic models
for the representation of systems in consistency with knowledge and infor-
mation that might be or become available over time. Rather than following
the traditional approach to model building, a fundamental and new per-
spective has been followed, where the probabilistic systems modeling should
facilitate for the existence of several possible systems, which could underlie
and explain the available knowledge and information. This perspective and
conceptual abstraction might be considered to cause an increase in model
complexity, which is thus in opposition to the general principle of simplicity
in modeling, often expressed by Occam’s razor. Therefore, the study seeks
to understand how the trade-off between representativeness and simplicity
might be formally operationalized by integrating the model building with
the decision analysis, the modeling aims to inform.

Knowledge- and information-consistent systems modeling is paramount
for integrity management in general, and for offshore engineering in partic-
ular. Through an honest representation of the current state of knowledge,
and a deep understanding of the influences of and interactions between the
variables governing system characteristics, the risks associated with different
activities may be better understood. This in turn facilitates for the assessment
of the expected value of benefits associated with different decision alterna-
tives, and the corresponding ranking of these with the aim of managing the
risks. In relation to the general objective of our group at the Danish Hydro-
carbon Research and Technology Centre, namely to establish the knowledge
basis for lifetime extensions of the existing offshore structures in the Danish
North Sea, the research presented in this thesis brings us one step closer to
this end.

9.1 CONCLUSIONS

Parts of this section appear in Papers A–F.

The main contribution of this PhD study is a principled framework for sys-
tems modeling and analysis, which is true to the prior knowledge, the avail-
able information, the possible competing system representations, and the de-
cision context in which the system representations are applied. The principal
novelty being the explicit accounting for model multiplicity and its integra-
tion into the overarching decision problem. It is emphasized that although
the proposed framework is demonstrated within the context of (offshore)
engineering, it is fully generic and applies to any context of model develop-
ment, whereby it should be appreciated as a contribution to the general body
of knowledge in model building.
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In the following, the partial contributions within (offshore) engineering
are categorized according to the general elements of systems modeling and
analysis, which are addressed in the thesis, i.e., (i) representation of systems,
(ii) analysis of systems, and (iii) model selection and decision optimization.

REPRESENTATION OF SYSTEMS

Storm event modeling Storm events are as mentioned the predominant en-
vironmental exposure events for offshore structures. As such, one outcome
of this research is a generic approach for the modeling of storm events, which
uses data-driven learning based on Bayesian networks (BNs) and provides a
categorical representation of storm events. This approach further accommo-
dates for a joint utilization of phenomenological understanding and informa-
tion contained in databases by enabling prior knowledge to enter the data-
driven modeling procedure at different stages, i.e., as constraints in structure
learning and as priors in parameter learning. The potential of this approach
is demonstrated in Papers A, C, and F, where it is shown how the approach
may be used for inferring different (conditional) probability queries, for sam-
pling storm events in relation to e.g., fatigue assessments, for extreme value
assessments by conditioning on a category of storms likely to generate ex-
treme responses, and for decision support in regard to the risk of exceedance
of short-term load levels in a given storm event.

The approach thus consistently accounts for the available knowledge and
information as well as the associated uncertainties, and together with the
surveys provided in Paper A on the metocean environment of the North Sea,
the traditional design practices in offshore engineering, and the commonly
available metocean information sources, and the survey provided in Paper F
on probabilistic approaches in offshore engineering, this research addressees
all related research questions in Sec. 1.3 (Q1–Q4).

From the present research, the approach is found rather robust and ef-
ficient in representing storm event, and it is now at the stage of maturity,
where it can be applied in large scale simulations for e.g., fatigue life assess-
ments, provided the availability of an appropriate model for fatigue accumu-
lation given a storm category (future work). Accompanying this work are
two toolboxes for learning BNs – one for structure learning and automated
discretization and one for parameters learning – both of which are able to
handle a setting of fully observed data as well as partially observed data.
The toolboxes are hosted at the GitHub repository along with tutorials on
their use (Papers A, C, and F).

Normalized fatigue crack growth modeling Fatigue induced crack growth
poses an important risk to the integrity of offshore structures. Therefore, one
outcome of the study is a consistent approach for parameter estimation of a
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new, so-called normalized fatigue crack growth model based on experimental
evidence. The proposed approach is based on Bayesian hierarchical model-
ing in order to represent a super-population of experimental outcomes from
different laboratories in a coherent manner, where information is allowed
to flow between the models of the individual experiments by use of jointly
modeled hyper-prior distributions. This allows for the best possible use of
the data, as sparsely populated experiments gain statistical power in model-
ing from the other experiments under the assumption of similarity in crack
propagation between experiments. Inferences for new details may be based
on Bayesian model averaging over the hierarchically represented experiment
models, and, for this purpose, a weighting scheme based on the radial-basis
function kernel is proposed.

This work also addresses all related research questions in Sec. 1.3 (Q1–
Q4) by showcasing how to consistently handle the available and potential
future knowledge and information; by utilizing the state-of-the-art modeling
methodology of model-based machine learning; and by illustrating that the
proposed approach allow for a consistent representation of within and be-
tween group variability, contrary to the procedure currently in use, where
uncertainties are represented on a point-by-point basis.

The research is documented in Paper D, and all figures and results re-
lated to the model development in the paper are reproduced in a notebook
available at the GitHub repository. With this model, the basis for risk-based
inspection and maintenance planning is established, and thus Paper D also
provides a small principle example on how this may be performed using the
model (Paper D).

Discrepancy modeling In this study, discrepancy modeling is used as a
means for correcting simulator outputs based on corresponding measure-
ments, i.e., combining/fusing different data sources. Thus, this research
mainly addresses research questions Q1 and Q4 of Sec. 1.3 by consider-
ing how to combine different sources of information, and subsequently
propagate uncertainties related to the discrepancy model. To this end,
Gaussian processes (GPs) are found to be efficient emulators of the error
function, which are capable of representing the uncertainty in the model
representation.

An application of discrepancy modeling is shown in Paper F, where the
errors in a hindcast data set of storm events are modeled by considering a
data set of corresponding partial measurements of the storm events. More-
over, Paper E uses GPs to emulate cost functions related to general machine
learning algorithms in a Bayesian optimization scheme for hyper-parameter
tuning. At the GitHub repository, several notebooks considering GP surro-
gate modeling are available (Paper F).
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As a spin-off on this work, a collaboration with DTU Mechanical Engi-
neering has been initiated that until now has focused on discrepancy mod-
eling related to Morrison’s equation based on measurements of forces on a
cylindrical body under different turbulence intensities. This collaboration
has so far, apart from Paper F, resulted in a successful M.Sc. project on the
subject, and currently, among others, this work is being extended in a joint
research paper.

ANALYSIS OF SYSTEMS

Clustering and sensitivity assessments of system characteristics A system
representation of a real (offshore) system is a complex object comprised of an
ensemble of constituents interacting jointly to provide the functionalities of
the system. Thus, understanding the nature and drives of response charact-
eristics for such systems is generally challenging. This research takes up this
challenge by studying how modern techniques of data mining may be used
to this end. First, model-based cluster analysis is used to establish a proba-
bilistic representation of realizations leading to system performances of inter-
est. The research highlights that cluster analysis provides not only a strong
means for checking the relevance and physical adequacy of complex system
models, but also a significant insight into how complex models may be de-
signed, modified, and/or maintained to achieve adequate and cost-efficient
performance characteristics with respect to e.g., robustness and resilience.

Second, variance-based sensitivity analysis is used to decompose the vari-
ance of responses or their indicators in order to gain insight as to how uncer-
tainties in the system constituents propagate to and influence uncertainties
in system response characteristics. In this regard, the present research shows
how sensitivity analysis may be used for model reduction as well as for iden-
tifying response characteristics that contain significant information about the
state of the system, in the case of both uncorrelated system inputs (ANOVA)
and correlated system inputs (ANCOVA). The identification of the uncertain
system inputs driving the uncertainty in system outputs is of particular inter-
est in e.g., structural health monitoring, where response characteristics that
contain significant information about the state of the system must be identi-
fied and observed with the highest possible degree of accuracy.

This research, which is documented in Paper B, addresses both related
research questions in Sec. 1.3 (Q5–Q6) by exploring state-of-the-art technolo-
gies for systems analysis, and by devising (together with Paper E) a consistent
scheme for exploring the space of possible, competing systems and rank their
relevance in terms of occurrence. Note that the GitHub repository contains
tutorials on both cluster and sensitivity analysis, as they are explained and
used in this thesis (Paper B).

As a spin-off on this work, the authors of Paper B (myself included) are
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currently involved in a project named CodeWrapper undertaken by Total
E&P Denmark. In this regard, a significant number of Monte Carlo based
structural reliability assessments (SRAs) have been and are presently being
performed in order to support the understanding of how the reliability of
the considered portfolio of offshore structures varies over different structural
layouts. One of our tasks in this project is the identification of design load
cases, which among others entails the discovery of patterns of realizations
in the database that give rise to similar SRA responses. For this purpose,
cluster analysis as explained in Paper B is used on Monte Carlo filtered data
of different structural layouts and response levels.

Structural damage identification The identification of structural changes
due to different kinds of damages is one of two main pillars of a function-
ing structural health monitoring (SHM) system; the other being efficient and
accurate harvesting of information in terms of damage-sensitive, structural
response features, i.e., indicators for structural damages. Such SHM systems
may e.g., be used for condition screening to provide near real time predic-
tions regarding the integrity of structures in relation to the occurrence of
extreme load events, as it is framed in Paper E. This situation generally re-
flects a special case of competing system representations, where each damage
state represents one possible system, and the objective is to rank the systems
according to their likelihood in generating the considered response and man-
age the system accordingly based on the associated risks.

When analyzing damage scenarios in a simulation study or using real
data, these are most often unevenly distributed in likelihood of occurrence,
thus resulting in an imbalanced database in the damage scenarios, which if
not properly accounted for may result in a bias towards better represented
damage scenarios when fitting a model to the data. Therefore, one out-
come of this research is an efficient, random-walk Markov chain Monte Carlo
scheme for generating additional realizations of poorly represented damage
scenarios, which is explained and demonstrated in Paper E.

Based on the resulting balanced database of realizations of damage sce-
narios, a classifier can be fitted to the data, which enables a likelihood-based
(soft) classification of new realizations from the structure. In this regard, Pa-
per E displays how the hyper-parameters of state-of-the-art tree-based clas-
sification models may be tuned using GP-based Bayesian optimization to de-
fine well performing classifiers in terms of the cost function. The numerical
examples in the paper show that the resulting classifiers (i) with a high level
of precision (small type I and type II errors) identify the correct states of dam-
ages, (ii) scale well to the size of the training data set, and (iii) behave robustly
to changes in the number of training samples per damage scenario and the
observation noise level, respectively. Moreover, initial value of information
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assessments point to the potential benefits of embedding the classification
framework in a pre-posterior decision analysis, which enables the optimizing
of strategies for collecting observations of system responses.

This research is as noted documented in Paper E, which addresses both
related research questions in Sec. 1.3 (Q5–Q6) by exploring state-of-the-art
methodologies for systems identification, and by devising (together with Pa-
per B) a consistent scheme for exploring the space of possible competing sys-
tems and rank their relevance in terms of occurrence. The GitHub repository
contains a set of tutorials on tree-based modeling using gradient boosting, as
implemented in Paper E. These tutorials also consider different implementa-
tional details when defining a tree-based classifier and shows how GP-based
Bayesian optimization for such models may be implemented (Paper E).

MODEL SELECTION AND DECISION OPTIMIZATION

Phenomenological understanding as well as analysis of databases often lead
to the identification of several competing system representations that explain
the data almost equally well in terms of data likelihood. Traditionally, such
situations are handled by statistical model selection or averaging on the basis
of a data fitness criterion. However, if we acknowledge that the reason for for-
mulating system representations in the first place is to serve decision-making
in the generic context of systems performance management, we may be able
to choose the best suited system representation for the decision context at
hand. Therefore, one outcome of this research is a novel decision analyti-
cal framework for systems modeling in the context of risk-informed integrity
management of offshore facilities, where the problem of systems modeling
is embedded within an optimization problem to be solved jointly with the
ranking of decision alternatives (research question Q7 in Sec. 1.3). Note that
this work should be seen in conjunction with and related to the early devel-
opments in [10], and the resent contributions in [12], where, as mentioned,
I act as co-author.

The potential of this research is demonstrated in Papers A, C, and F,
where it is shown how the optimization may be setup and undertaken in
the case of previously identified competing system representations (research
question Q8(i) in Sec. 1.3), as well as in case the set of possible system repre-
sentations is dynamically adjusted to best accommodate the decision problem
at hand (research question Q8(ii) in Sec. 1.3). The latter case directly targets
the model building process by appreciating that our models only need to be
accurate in the areas of the problem domain, which matter for the decision
subject to optimization. This research thus presents a formal, theoretical ba-
sis for approaching the principle of simplicity (Occam’s razor) in a consistent,
quantifiable manner. Additionally, this work advances on the representation
and propagation of uncertainties in decision problems and the implications of
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doing so, both in terms of the interpretation of results and the computational
efforts needed (Papers A, C, and F).

9.2 FUTURE WORK

This study brings us one step closer to information-consistent systems mod-
eling and analysis in engineering under due consideration of the overarching
decision context, but it also sheds light on the elements still missing, things
that may be improved, and where to turn next. This section shares some
thoughts and ideas on these aspects and points towards future work. This
section is also organized according to the general elements of systems mod-
eling and analysis addressed in this thesis, i.e., (i) representation of systems,
(ii) analysis of systems, and (iii) model selection and decision optimization.

REPRESENTATION OF SYSTEMS

Storm event modeling Different improvements to and extensions of the
presented storm event model have been discussed. Among others, full-scale
examples on the use of the model and associated models in relation to fa-
tigue assessments, conditional extreme values analysis, and forecasting and
early warning systems. In this regard, a so-called storm evolution model, or
intra-storm model, will be developed in order to define the storm content in
terms of sea state parameters and their joint evolution over a storm event,
given storm characteristic. Moreover, in collaboration with DTU Mechani-
cal Engineering, a project on spatial and temporal modeling of extreme sea
state characteristics and their associated effects on structural responses will
be launched. This research will build on extensive laboratory experiments
conducted at the Danish Hydraulic Institute.

Algorithmically, the structure learning and automated discretization tool-
box (GitHub repository) will be extended by including an alternative to the
current greedy hill-climbing optimization strategy for dynamic discretiza-
tion. This alternative optimization algorithm will be based on dynamic-
programming and will provide a globally optimal discretization policy. Note
that this strategy will only be feasible for problems with a limited number
of domain variables. Also, a reimplementation of many of the existing func-
tions in the toolbox is needed to accommodate custom objective functions,
which will allow for a set of possible, competing system representations to
be dynamically adjusted during an enveloping decision optimization. Early
developments along this line are documented in Paper F.

Normalized fatigue crack growth modeling The implementation of the
normalized fatigue crack growth model is currently being and will further
be extended in the coming years, both by me and my co-workers, but also
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by a new project at the Danish Hydrocarbon Research and Technology Cen-
tre (DHRTC) called Corrosion and Fatigue of Offshore Structures. Currently,
we are working on harvesting more information in terms of fatigue experi-
ments for the model formulation, as well as algorithmic changes to the cur-
rent framework, which will make it more targeted and computationally ef-
ficient. Also, we are considering non-parametric alternatives to the current
model formulation.

Discrepancy modeling As mentioned, a joint research paper with DTU Me-
chanical Engineering on discrepancy modeling related to Morrison’s equa-
tion is on its way, and other related ideas on the modeling of the force field
on offshore structures are taking shape. This also includes ideas on multi-
fidelity modeling, which can be thought of as a way embedding discrepancy
modeling in the modeling of systems when data are available on different
fidelity levels, as for example in the database considered in Paper F, where
both hindcast and partial measurements are considered.

ANALYSIS OF SYSTEMS

Clustering and sensitivity assessments of system characteristics The po-
tential of using data mining and sensitivity analysis techniques as a means for
understanding complex systems is by no means exhausted in this and other
related studies. Among other, the authors of Paper B are currently using
these techniques for quantifying robustness and resilience as well as under-
standing how we can most efficiently improve these properties of a structural
system.

Structural damage identification Damage and anomaly detection using
statistical pattern recognition approaches have been active research topics
for at least two decades and important grounds have been covered, but work
is still needed in order to make technologies such as structural health moni-
toring accurate and efficient for the multitude of system changes experienced
in complex real-world systems. In this regard, the framework of Paper E for
the identification of relevant damage scenarios is currently being considered
in more complex settings with different failure modes. Also, approaches to
transfer findings from one system to other similar systems will be explored
in order to reduce the computational burden related to the identification of
relevant damage scenarios for similar systems. This is referred to as transfer
learning in machine learning.

A new project called InnoSHM has just been launched. In this project, we
are working together with among others Total E&P Denmark, Ramboll, and
DTU Civil Engineering on devising a structural health monitoring campaign,
where special attention is given to damage feature design, e.g., identification
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of potential indicators for different failures in offshore structures, feature se-
lection, and data fusion and normalization. Especially, feature normaliza-
tion poses a major challenge when realizing a structural health monitoring
campaign for offshore structures, as many benign system changes are experi-
enced on a daily basis e.g., due to mass changes in the form of filled/empty
tanks, and varying staffing and equipment.

MODEL SELECTION AND DECISION OPTIMIZATION

The early developments on the dynamic adjustment of the set of potential,
relevant competing system representations, as presented in this study (Pa-
per F), are currently being investigated for both simple, stereo-type design
settings, where there are potential for defining analytical solutions, and more
complex settings, e.g., the storm event modeling. Also, developments re-
garding the operationalization of the related ideas on consistent handing of
(conflicting) information and fake news presented in [12] are on the menu for
future research.
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A INFERENCE ALGORITHMS FOR BAYESIAN
NETWORKS

In this appendix, we highlight some commonly used methods for perform-
ing inference in Bayesian networks (BNs) and provide some key references.
In Sec. A.1, we consider methods for exact inference, and in Sec. A.2, we
consider methods for approximate inference.

A.1 EXACT INFERENCE

VARIABLE ELIMINATION

Variable elimination (VE) is a general and simple exact inference algorithm
for probabilistic graphical models, such as Bayesian and Markov networks.
It computes conditional probability queries by pushing summations into the
factor product Eq. 3, whereby the variables are marginalized out one by one
in smaller sub-products of the factors. That is, VE allows us to perform local
operations on relevant sub-products of factors, instead of having to work
with the entire joint distribution [24, 28].

BELIEF PROPAGATION

Belief propagation (BP) is an exact inference algorithm for probabilistic
graphical models when applied on junction trees, also known as clique trees.
A junction tree T is a secondary computational structure representing a BN
model, with nodes corresponding to subsets of the domain variables X, i.e.,
cliques. Evidence is propagated in a junction tree by passing messages be-
tween the cliques in two sweeps. First, one clique is selected as the root, and
messages are passed from the leaves towards the root. This is referred to as
collection of information. Second, messages are passed in the opposite direc-
tion, i.e., from the root towards the leaves. This is referred to as distribution
of information. After the evidence has been propagated, the junction tree is
said to be in equilibrium, and a query P(Y|E = ε) may be calculated from
any clique potential in the tree containing Y. In case we are interested in
a query P(Y |E = ε), where the query variables Y span several cliques, i.e.,
they are not present in the same clique, VE is performed on the unnormal-
ized joint distribution formed by the relevant clique potentials corresponding
to the (connected) subtree T ′, where Y ⊆ Scope(T ′) [24, 27].
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A.2 APPROXIMATE INFERENCE

PARTICLE-BASED INFERENCE

Particle-based methods use the probabilistic model (generative model) to
generate instances (particles) from the distribution P(Y |E = ε), and answer
queries based on these particles. Thus, particle-based methods perform ap-
proximate inference, and the accuracy of the approximation depends on the
efficiency of the algorithm applied as well as the number of particles sampled
from the distribution. There are a vast number of algorithms for generation
particles in BNs, e.g., rejection sampling and Gibbs sampling. In rejection
sampling, we sample directly from the desired distribution by disregarding
the samples that do not comply with our current query specification E 6= ε.
Thus, this procedure is computationally expensive, as we only expect to ac-
cept P(ε) of the particles we generate. In Gibbs sampling, we construct a
Markov chain, which eventually samples from the target distribution, see
e.g., Eq. 19. A Gibbs sampler is relatively easy to implement and computa-
tionally efficient to sample from but mixing may be slow, especially in models
where the variables are highly correlated [24, 36, 41]

VARIATIONAL INFERENCE AND EXPECTATION PROPAGATION

Variational inference (VI), also called variational Bayes, and expectation prop-
agation (EP) are two alternatives to particle-based methods for performing
full Bayesian inference over complex distributions that are hard to directly
evaluate or sample from. Whereas particle-based techniques provide a nu-
merical approximation to the exact posterior using a set of samples, VI and
EP provide a locally optimal, exact analytical solution to an approximation
of the posterior, which is termed the variational distribution or local likeli-
hood approximation. The variational distribution is defined by considering
a tractable family of distributions for which the parameters are optimized
to approximate the true posterior. Thus, VI and EP turn inference into an
optimization problem. One score metric that is often used to assess the qual-
ity of the variational distribution is the Kullback–Leibler (KL) divergence,
which generally measures the closeness of two distributions. In this regard,
VI minimizes KL[Q ‖ P], where P(X) is the true distribution and Q(X) is the
variational distribution, and EI minimizes KL[P ‖ Q]. Compared to particle-
based methods, both methods are fast and scales well to large data sets, but
the VI algorithm is mode seeking, and thus it may underestimate the vari-
ance of the true posterior, whereas the EP algorithm is moment matching,
and thus may lead to a poor approximation, if the true posterior is multi-
modal [6, 73, 136, 137].
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B MODEL AVERAGING IN MACHINE
LEARNING

Parts of this section appear in Paper D.

The machine learning literature contains a variety of general-purpose pro-
cedures for stabilizing model predictions of statistical learners. Among the
most popular are bagging, boosting, and stacking [126, 138]. In this ap-
pendix, we will briefly discuss these concepts and relate them to the general
introduction of model averaging in Sec. 7.1.

In bagging, or bootstrap aggregation, the original data set D is re-sampled
uniformly with replacement U times to produce a bootstrap sample {Du}U

u=1
of data sets, and a model (weak/base learner) Mu is trained on each boot-
strap replicate. Predictions for new data points are made by averaging
the outputs from each model in a regression setting or e.g., majority vot-
ing among the outputs in a classification setting [125]. Random forest is a
popular variant of bagging that leverages classification and regression trees
(CARTs) [126] and random selection among the input variables before each
split in the tree-growing process to further de-correlate the ensemble models.
After U trees are grown, the bagged (average) estimator follow from Eq. 125.
Note that this procedure corresponds to model averaging with equal weights.

In boosting, we also typically build an ensemble of tree models, but op-
posite to bagging, where the trees are grown in parallel, we grow the trees
sequentially, where each tree is grown using information on the predictive
performance of previous trees in the sequence. Thus, at each stage, we fit
a new model that focuses on the errors of the current ensemble model and
consequently add this new CART to the ensemble model. After U trees are
grown, the boosted (average) estimator follow from Eq. 125. No simple algo-
rithm exists for solving the sequential optimization problem in boosting for
general loss criteria, and we thus need to resort to numerical optimization
procedures like (functional) gradient decent [126, 138]. This gives rise to a
very popular variant of boosting called gradient boosting (machines), which
is continuously coming out in the top of machine learning competitions like
Kaggle;11 not at least to due efficient implementations such as XGBoost [139].
Note that this procedure corresponds to model averaging with optimized
weights (Paper E).

Where bagging and boosting typically consider an ensemble of homoge-
neous base models, e.g., each member of the ensemble is a CART, stacking
typically considers an ensemble of heterogeneous base models, e.g., we may
want to combine predictions from a linear regression and an neural network,
and the weights are chosen such that a hold-out cross validation error metric

11https://www.kaggle.com/
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is minimized. This procedure thus corresponds to model averaging with op-
timized weights. After U models are fitted in parallel on the original training
set D, one possible stacked (average) estimator follows from Eq. 125, but the
stacking framework is more general; in principle any learning algorithm from
the literature could be used in place of Eq. 125 to map predictions from the
base models to a (joint) stacked prediction [126]. For example, in a regression
setting, we may want to stack predictions from e.g., a k-nearest-neighbor re-
gression, a linear regression and a support vector regression using a neural
network, see e.g., [4, 6, 126] for a reference on the individual models. The
neural network then takes the outputs from the base models as inputs and
provides a stacked prediction.
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ABSTRACT

In the present paper, we propose a novel decision analytical framework for systems
modeling in the context of risk-informed integrity management of offshore facilities.
Our focus concerns the development of system models representing environmental
loads associated with storm events. Appreciating that system models in general serve
to facilitate the optimal ranking of decision alternatives, we formulate the problem of
systems modeling as an optimization problem to be solved jointly with the ranking of
decision alternatives. Taking offset in recent developments in structure learning and
Bayesian regression techniques, a generic approach for the modeling of environmental
loads is established, which accommodates for a joint utilization of phenomenological
understanding and knowledge contained in databases of observations. In this manner,
we provide a framework and corresponding techniques supporting the combination of
bottom-up and top-down modeling. Moreover, since phenomenological understand-
ing as well as analysis of databases may lead to the identification of several competing
system models, we include these in the formulation of the optimization problem. The
proposed framework and utilized techniques are illustrated on a principle example.
The example considers systems modeling and decision optimization in the context of
possible evacuation of an offshore facility in the face of an emerging storm event.

Keywords: ocean waves and associated statistics, structural safety and risk analysis,
system integrity assessment.

1 INTRODUCTION

In the context of the newly established Danish Hydrocarbon Research and
Technology Centre (DHRTC), major initiatives have been launched to iden-
tify new, safe, and more efficient frameworks and approaches to facilitate
optimization of assets integrity management decisions. The present study
shall be seen as an early report on one of these activities, where focus is
directed on how the rationale for the development of knowledge concern-
ing the offshore load environment may be improved. In particular, we asses
two avenues for improving probabilistic engineering modeling in support of
decision-making, namely modeling basis and model representation.

1.1 MODELING BASIS

Traditional models are most often based on a phenomenological understand-
ing, e.g., probabilistic physics model formulations with parameters estimated
based on statistical evidence achieved through observations and experiments
(“bottom-up” approaches). It is evident that such approaches rely strongly
on the adequacy of a-priori available knowledge and information, which is
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not always granted. As a result, it is generally the case that all focus of the
modeling is directed on what is understood to be the most likely physical
formulation of the phenomena of interest, and other possible explanations
are implicitly excluded. Moreover, possible variables not realized to affect
the phenomena of interest are systematically omitted in the modeling, which
in turn increases the uncertainty associated with the derived models. In re-
cent years robust so-called data-driven modeling approaches (“top-down”
approaches) have been formulated and increasingly applied with success in a
wide range of applications. Data-driven approaches facilitate that models are
derived directly from data contained in e.g., databases and do not necessitate
a prior understanding of the phenomena generating the data. Data-driven
approaches generally identify the most likely relationship between covari-
ates and observations and facilitates a quantification of this likelihood. The
downside of data-driven approaches is, however, that they may indeed result
in models contradicting the available knowledge.

One objective of the present research is thus to assess whether a com-
bination of bottom-up and top-down modeling may be formulated, which
facilitates a consistent utilization of prior phenomenological knowledge, and
knowledge extracted from information contained in databases. Moreover,
this formulation should accommodate that in principle all possible and rel-
evant likely models may be identified and quantified with respect to their
likelihood.

1.2 MODEL REPRESENTATION

Engineering modeling, e.g., in the context of assets integrity management, is
traditionally undertaken by interfacing domain specific models, established
individually by subject-matter experts. The domain specific models (e.g.,
models of the wave environment, water particle kinematics, hydraulic forces,
structural responses, and failure criteria) are generally developed in accor-
dance with the best available knowledge within the relevant domains of ex-
pertise, and they are optimized individually to provide the highest degree of
precision with available and achievable information. The decisions regarding
how to optimize precision are generally based on the prior understanding of
the domain experts and often assessed without specific consideration of the
context in which the models are applied. One example of this approach is
development of a so-called “digital twin” model of a structure, where a nu-
merical structural model is adopted to information collected using techniques
of structural health monitoring. Such approaches surely provide a basis for
supporting decisions; however, they neither facilitate for a context-driven op-
timization of the individual models nor a joint optimization of the interfaced
models. As a result, the models may be unnecessarily precise in domains,
which are not important for the decision context and not adequately precise
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in domains of special importance for the decision context.
Another objective of the present research is thus, under consideration

of the findings related to the first objective, to establish a theoretical and
methodical basis for engineering modeling, which facilitates for integrating
the optimization of model representation directly into the decision context,
through an assessment of how the precision of the modeling affects the rank-
ing of the considered decision alternatives.

2 THE NORTH SEA SYSTEM

The North Sea is a shallow shelf sea of the Atlantic Ocean on the Euro-
pean continental shelf. It is bounded by the northern and central European
mainland to the east and south, including Norway, Denmark, Germany, the
Netherlands, Belgium, and France. The East coast of Great Britain, and the
Orkney and Shetland islands constitute the western border, and above the
Shetland Islands, in the north, the North Sea connects with the Norwegian
Sea. Moreover, in the east, the North Sea connects with the Baltic Sea via
Skagerrak and Kattegat, and in the southwest, it connects with the Atlantic
Ocean through the English Channel, cf. Fig. A.1. This geographical area is
located in the mid-latitude cell, i.e., between 30- and 60-degrees northern lat-
itude, which is characterized by temperate climate and prevailing westerly
winds, the so-called westerlies.

In the North Sea region, extremes of winds and waves usually occur
during the passage of a depression. A depression is an area of low atmo-
spheric pressure and cyclonic airflow, which has a counter-clockwise rotation
in the Northern hemisphere due to the Coriolis effect. Depressions vary from
stormy and intense, which is characterized by a large area of strong winds;
to nebulous, which is cloudy or hazy areas with light winds. The most com-
mon type of depression in the North Sea area is the frontal depression, i.e.,
depressions and associated frontal systems crossing an area normally from
west to east. Another type of depression experienced in this region is the po-
lar low, also termed cold air depression. Such depressions do not have fronts
and are generally less intense than frontal depressions [1].

The sea bottom topology varies from a mean water depth of 200 m be-
tween the Shetland islands and Norway to 50 m between the Dogger Banks
and northern Denmark, and 20 m off the Dutch-German coast, with an over-
all mean water depth of 80 m. This topology influences the system of eigen-
oscillations, and thus the resonance to tidal forcing, as well as surface level
rise during storm surges [2]. The tides are semi-diurnal, with two high and
two low tides per day. The larges tidal range occur on the east coast of Great
Britain and in the English Channel. The highest storm surges are experienced
in the shallow southern part of the North Sea, usually subject to northerly
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Figure A.1: The North Sea.1

winds, but storm surges in general have a significant impact on areas with a
large tidal range [1, 2].

The current velocity at a given location is composed of tidal currents and
residual currents. Tidal current result from astronomical forcing, while the
components of the residual current include circulation, storm-generated cur-
rents, as well as short- and long-period currents generated by various phe-
nomena, such as density gradients, wind stress, and internal waves. Espe-
cially in the southern part of the North Sea with shallow waters and narrow
passages, tides and surges may be associated with strong currents [1, 2].

The nature of wind-driven waves varies according to the generating
winds, the water depth, and the fetch over which they were generated. Where
fetch is restricted, which is the case for shelf seas, storm waves tend to be
shorter, steeper, and lower than ocean waves. Oceanic areas are also sub-
ject to swell waves, which are waves that have moved out of the area in
which they were generated. Swell waves can penetrate to semi-enclosed ar-
eas like the North Sea, where significant waves may be experienced without
strong winds [1].

1Source: https://commons.wikimedia.org/wiki/File:North_Sea_map-en.png.
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3 DESIGN OF OFFSHORE STRUCTURES

Offshore environmental loads are loads caused by the environmental phe-
nomena at sea, i.e., wind, waves, currents, tides, earthquakes, temperature,
ice, seabed movement, and marine growth. The response of an offshore struc-
ture to environmental loads depends, among others, on its dynamic response
characteristics. Structures with significant dynamic response, e.g., with nat-
ural periods around the wave frequencies or their second order components,
require an analysis of wave energy spectra or time series of the surface el-
evation, whereas it may be sufficient to use individual periodic waves for
structures that only respond in a quasi-static manner [1, 3].

Dependent on the design checks needed for a given offshore structure,
different types of metocean information are required, including:

• Extreme and abnormal sea state parameters. These parameters are used to
define joint environmental actions for design checks in relation to the ulti-
mate limit state (ULS) and accidental limit state (ALS).

• Long-term probability distribution of sea state parameters. This probability dis-
tribution is used to define environmental actions for design checks in rela-
tion to the fatigue limit state (FLS).

• Long-term time series of sea state parameters. These time series are required
for response-based assessments of offshore structures.

• Short-term description of environmental conditions. This description is needed
to perform checks in relation to the serviceability limit state (SLS), as well
as short-term offshore operations [1].

Table A.1 summarizes some design considerations related to the different
design checks.

4 METOCEAN INFORMATION

The metocean parameters and their (joint) probability distributions for a
given location are usually specified by use of a metocean database. A meto-
cean database may be established by monitoring sea state variables, such as
significant wave heights, zero crossing periods, wave directions etc., over a
period of years and/or by hindcasting of historical events. If the database
is established based on numerical models, it is important that the simulated
results are calibrated against appropriate measurements. Moreover, the meto-
cean database should be sufficiently long to encompass all physical processes,
which may be encountered during the service life of the structure [1].
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Table A.1: Design considerations.

Design considerations related to ULS/ALS. ISO specifies three approaches for
defining extreme actions and action effects: (i) Specify return period wave height,
wind speed and current velocity, all determined by extrapolation of the individual
variables considered individually. (ii) Specify return period of primary variable,
i.e., the variable driving the response, and associated wave, wind, and current
characteristics. (iii) Perform a response-based analysis based on any reasonable
combination of wind, wave and current that result in; a significant global response
of the structure, i.e., base share or overturning moment, with a specified return
period; or a global extreme environmental action on the structure with a specified
return period [1].

Design considerations related to FLS. Fatigue is an accumulation of damage
caused by the repeated application of time-varying stresses, which in offshore
structures are due to time-varying actions caused by waves, currents, gust winds,
or a combination of these. In design assessments of fixed steel jacket structures,
wave loading is usually regarded as the primary load effect. A FLS assessment of
a structure requires that we specify all environmental conditions that are expected
to occur during its period of exposure, i.e., its construction phase, including trans-
port, and its design service lift [1, 3].

Design considerations related to SLS and short-term operations. Most offshore
operations are sensitive to the displacement and vibration level of certain structural
elements, thus these levels most be verified against acceptable limits for operations
on a structure. An approach, which is typically employed in e.g., planning of
maintenance operations, is the persistence analysis, or weather-window analysis,
where upper bounds are specified for a set of environmental parameters, while the
maintenance operations are conducted [1, 4].

Offshore metocean monitoring systems can vary from simple weather sta-
tions to complete data acquisition systems, including a range of sensors as
well as signal processing, display, storage, and transmission features. These
systems play an important role in ensuring safe offshore operations and struc-
tural integrity by providing real-time information for operational use and
long-term records for engineering purposes [1].

Apart from measurements and simulations, we may gain valuable infor-
mation from experimental results. Especially, wave experiments are an im-
portant source of information due to the fact that we do not fully understand
wave phenomena, such as formation, transformation and breaking, as well as
wave-wave and wave-structure interactions [5]. Thus, model tests also play
an important role in design assessments of offshore structures.
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4.1 METOCEAN DATABASE

The wave environment is usually sampled as sea states represented by a given
significant wave height, period, direction, and directional spreading. These
average quantities are calculated at a defined averaging interval, which varies
from 1 h to 3 h. Wave data are recorded by in-situ instruments (buoys, wave
staffs, radars, lasers, LASAR (array of lasers) and step gauges) and remote
sensing technique (satellites and aircrafts). Note that buoy measurements
can be used to estimate integral properties of a wave field, but crests heights
measured by buoys are generally smaller than those measured by other sen-
sors [1, 6, 7].

Current speed and direction are measured at a number of depths through-
out the water column. Ocean currents should be measured at minimum three
depth (or bins), i.e., near-surface, mid-depth and near-bottom, but in deep
waters more measurements are usually needed to capture the current pro-
file [1]. The mean speed and direction should be recorded at least once per
hour. Current data are recorded by local instruments (drifters and current
meters) and remote sensing techniques (satellites) [8].

Natural winds are defined by two components: mean or sustained wind
speed, and gust wind speed. The gust component is generated by the turbu-
lence of the flow field, whereby it has components in all three spatial direc-
tions. Mean wind speed and direction are specified at a defined averaging
interval, typically 10 min to 3 h, and reference elevation, typically 10 m to
20 m above mean sea level (MSL) [1, 3]. In-situ instruments (buoys, ships,
and platforms) and remote sensing technique (satellites and aircrafts) collect
wind data [7].

The water level at a given site consists of a more or less stationary com-
ponent, which is referenced to as chart datum, usually MSL, and variations
with time relative to this level, i.e., residual-water-level. The residual vari-
ations are due to astronomical tides, and wind and atmospheric pressure,
which can lead to storm surges. Variations in MSL are due to long-term cli-
mate effects and sea floor subsidence [1]. Local water depth measurements
may be conducted in a variety of ways, one approach is to use an echo-based
technique (e.g., ultrasonic instruments) [9]. Remote sensing techniques (satel-
lites) also produce bathymetric and residual-water-level data [10].

Other relevant parameters that are usually contained in a metocean data-
base include sea ice and icing, water and air temperature, air pressure, water
salinity, etc..

4.2 METOCEAN EXPERIMENTS

In some cases, design assessments of offshore structures need to be addressed
by mean of hydrodynamic model tests. As previously emphasized, this is the
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case when buoy measurements of the wave environment are available for a
specific site, and the crest height distribution is needed.

The behavior of surface waves is studied experimentally in wave tanks. If
the length and width of the tank is of comparable size, the tank is called a
wave basin; and if the length of the tank is significantly larger than its width,
the tank is called a wave flume. Wave basin tests are usually conducted
to study three-dimensional effects in relation to undisturbed wave fields as
well as loading on and response of scaled structure models, when exposed
to specific wave environments. The same phenomena are studied in a wave
flume tests but typically in a two-dimensional setting.

The fundamental premise of model testing is that the real phenomenon
being studied is emulated to a satisfactory degree by the model test. When
structural responses are considered, three general categories of similarity can
be defined: Geometric shape, kinematics of various motions, and dynamic
forcing. Geometric similarity reflects that all physical dimensions are scaled
down in the model by a certain ratio or ratios compared to the prototype.
Kinematic similarity requires that the model velocity and acceleration of the
various bodies and the fluid are proportional to those of the prototype. Dy-
namic similarity reflects that the dynamic forces in the model reflects the
dynamic forces in the prototype with the same scale ratio [11].

Other relevant categories of model tests in relation to the offshore envi-
ronment are current and tide experiments, wind tunnel tests, and different
hybrid tests, where multiple phenomena are studied simultaneously in one
experimental setup. For instance, air-water interaction effects may be studied
in a wind-wave flume. Additionally, physical model tests may be supple-
mented by numerical simulations, which then lead to considerations regard-
ing the transformation from the computational environment to the model or
prototype environment.

5 BASIC CONSIDERATIONS ON MODEL
BUILDING

Scientific models are established on the premise that they serve decision-
making in the generic context of systems performance management, noting
that systems may comprise any combination of interactions between applied
technology, humans, organizations, and the natural environment. In this con-
text, the objective of model building is to represent the available and relevant
knowledge about the performances and/or characteristics of systems in con-
sistency with scientific knowledge and evidence obtained from e.g., experi-
ments and observations. In the following, to represent knowledge and rank
decision alternatives, Bayesian probability theory and Bayesian decision anal-
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ysis are applied, see e.g., [12]. Moreover, the framework of Bayesian networks
is utilized to represent joint dependence relations in the problem domain, cf.
next section.

5.1 SYSTEMS AND DECISION-MAKING

At the simplest level, a model M(a) provides a relationship between input
and output, measured in terms of utility, conditional on a decision repre-
sented by a. Figure A.2a illustrates how a system provides this relation-
ship between decision alternatives a and the associated utilities U(a). The
system performance is generally associated with uncertainty, thus the per-
formance (output or utility) is random. In accordance with Bayesian deci-
sion theory [12] and the axioms of utility theory [13], the optimal decision
alternative is selected from a by optimizing the expected utility, i.e., a∗ =
arg maxa(E[U(a)]).

In the general case [14, 15], the system under consideration is unknown
in itself, and it is unknown which is the most relevant representation of the
system. In Fig. A.2b, the variable s represents one choice of system represen-
tation out of a set of system representations s, and σ represents a realization
of the real system. The optimization of decision alternatives is further com-
plicated by the fact that some of the decision alternatives within a are only
relevant for one or some of the competing system representations. The op-
timization of decision alternatives must thus be undertaken jointly with a
choice of system representation.

To account for the competing system representations, we introduce the
system model M(a):

M(a) = (Σ(a), C(a), X(a))T , (A.1)

where Σ(a) is a probabilistic system representation with realizations {σj}ns
j=1

corresponding to the set of system choices. Each system representation is
comprised of an ensemble of ncj constituents interacting jointly to provide
the functionalities of the system, i.e., mapping input to output. For a given
choice of system s, the performances of the constituents are modeled by a
set of constituent models C, and a prior probabilistic representation P′(X|s)
of all variables entering the model. For the sake of generality, we highlight
that in principle all the models defining the system have temporal and spatial
references; these are omitted here to simplify notation.

The optimization of decision alternatives, including system choice, may
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Figure A.2: Systems role in decision analysis: (a) one possible system, (b) sev-
eral possible systems.

now be written as

(s∗, a∗) = arg max
s,a

U(s, a) =arg max
s

(
P(Σ = s) arg max

a

(
E′X|s[U(a, X)]

)
+ E′Σ\s

[
E′X|{Σ\s}[U(a∗, X)]

])
,

(A.2)

where a∗ = arg maxa E′X|s[U(a, X)], see also [15]. In Eq. A.2, the robustness
of the decision with regard to the choice of system may be assessed as the
ratio of the first term to the sum of the two terms. This ratio, which will
take values between 0 and 1 (1=robust), indicates how sensitive the decision
is with regard to the possibility that the optimization is undertaken under an
erroneous system assumption.

Furthermore, as indicated earlier, we note that model building should be
seen as an integrated part of the decision optimization. There is no need
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for a model to be accurate in the domains of reality which are irrelevant
for the decisions subject to optimization. On the contrary, by embedding the
model building operation inside the optimization of decision alternatives, the
available knowledge may be fully utilized to optimize the utility associated
with the system under consideration, and thus consistently rank decision
alternatives.

5.2 INTERPRETATION OF AND REQUIREMENTS TO
SYSTEM MODELS

The available approaches for modeling the performance of systems may be
categorized as classical engineering understanding based bottom-up models
and data-driven top-down models. However, in either case, evidence can and
must be accounted for in the modeling process. As outlined in the forego-
ing, a model is a representation of reality in a context of decision-making,
meaning that a good model facilitates consistent ranking of the considered
decision alternatives.

In recent developments on data-driven modeling and data-driven learn-
ing, the perspective is often taken that such approaches are superior to
bottom-up modeling approaches, since they simply reflect the information
contained in the evidence. However, it must be appreciated that reality is
fundamentally subjective and should be understood as a proxy for truth, to
the extent that this (the truth) is objectively understood. Reality is thus asso-
ciated with uncertainty but may be framed through experience and informa-
tion (knowledge), i.e., a combination of philosophical and scientific insights,
and observations. Framing of reality is thus fundamentally subjective, since
it is based on a choice of which experience, which information (data), and
which class of models are used as the modeling basis.

The implication of this is that whether bottom-up or top-down ap-
proaches, or combinations hereof, are utilized as basis for modeling of sys-
tems performances, the models will always be subjective and thus influenced
by epistemic uncertainties. A framework for systems modeling from [16] in
the context of assets integrity management is illustrated in Fig. A.3.

In Fig. A.3, the concept of indicators is introduced as a means to account
for evidence, which is indirectly, and generally more weakly, related to the
performances of the system. As an example, an indicator of a short-term
maximum crest height could be the significant wave height. Observations of
indicators thus provide information; however, they are in general subject to
additional uncertainty. The concept of indicators provides a strong means
for including evidence in systems modeling, and they may further be used to
facilitate multi-scale systems representations. This principle of introducing
evidence achieved through observation of indicators is illustrated in Fig. A.4.

We emphasize that probabilistic system models must consistently account
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hierarchical approach reported in Nishijima et al. (2009) which 

takes basis in the system representation in Figure 3. The idea 

followed is that the performance of each potentially critical 

constituent (or subsystem) of the considered system is related to 

the performance of the system through the conditional 

probability of inadequate system performance given damage or 

failure of the individual constituents in a marginal sense. 

The extension of the prior decision analysis illustrated in 

Figure 1 is the pre-posterior decision analysis shown in Figure 4. 

 
 

Figure 4. Illustration of the pre-posterior decision analysis. 

 

The strong merits of the pre-posterior decision analysis is 

that it facilitates that different options or decision alternatives 𝐞 

which may exist for collecting additional information about the 

states and performances of the considered system and thereby to 

enhance the optimization of decisions on managing the state of 

the system, i.e. 𝐚, can be ranked. The possible decision 

alternatives for collecting additional information 𝐞 may be 

considered as experiments with outcomes 𝐳̂. As the outcomes  𝐳̂ 

are unknown these are modelled probabilistically based on prior 

information. The benefit of additional information depends on i) 

the quality of the experiment 𝐞 in terms of precision and ii) the 

degree to which the observed system states and performances 

relate to the system performance of interest. The scheme for 

including additionally collected information from the planned 

experiments is Bayesian updating (see also Lindley (1972)) i.e.:  

 

𝑓𝑋
′′(𝑥, 𝑒 |𝐳̂) =

𝐿(𝑥,𝑒|𝐳̂)𝑓𝑋
′ (𝑥)

∫  𝐿(𝑥,𝑒|𝐳̂)𝑓𝑋
′ (𝑥)

              (3) 

 

where: 

𝑓𝑋
′(𝑥) is the prior probabilistic model (pdf) of the state 

variable 𝑋, 

𝐿(𝑥, 𝑒|𝐳̂) is the likelihood of the state of the system 𝑥 given 

the experiment outcome 𝐳̂, 

𝑓𝑋
′′(𝑥, 𝑒) is the posterior probabilistic model (pdf) for the 

state variable 𝑋. 

 

The system modelling illustrated in Figure 3 may be adapted 

to accommodate for the pre-posterior decision analysis 

illustrated in Figure 4 – as shown in Figure 5. As indicated here, 

decision analyses with respect to SIM are undertaken at desktop; 

however, information from the real world may be accommodated 

for, and greatly enhances both quality and efficiency.  

In the context of SIM the decision event tree illustrated in 

Figure 4 may in a narrow sense be interpreted as the choice 

between different decision alternatives to perform inspections or 

to conduct monitoring of the state and performances of the 

structural system. Such choices include the selection of 

inspection or monitoring technique, e.g. ACFM techniques for 

fatigue crack detection and sizing, and the choices on how many 

and which locations to inspect for cracks. 

 

 
 

Figure 5. Illustration of the model basis for SIM. 

 

The outcome of the inspections can be crack detection and 

indications of the crack geometry or alternatively - no detection. 

As discussed in Straub (2004) the quality of the inspection 

technique and the state of the inspected system are decisive for 

the relevance of the inspection result and the interpretation of 

this. If the applied inspection technique has a poor performance 

it may lead to not identifying cracks which may actually be there. 

It could also lead to identification of cracks even if there are no 

cracks. The quality and appropriateness of inspection techniques 

should always be seen in the light of the prior information about 

the probability that cracks are present and relative to the 

geometry characteristics (size) of the cracks which are critical. It 

is obvious that there is no benefit from looking after cracks of a 

size so small that available techniques cannot find them with any 

reasonable precision. This will in general lead to either no 

detection or to false detections. If a crack indeed is found the 

next level of decision making illustrated in Figure 4 concerns the 

possible remedial actions, depending on the size of the detected 

crack as relative to what is considered critical. Depending on the 

choice of remedial action and its quality, the state of the system 

is realized and the benefit associated with the scenario of 

inspection and maintenance decisions and outcomes can be 

associated with consequences, quantified by the benefit function. 

INFOMAL DECISION ANALYSIS FOR RBI 
It is important to appreciate that a decision analysis can never 

provide better decision support than facilitated by the system 

representation. As a rule it applies that the system representation 

shall be selected such as to provide a clear separation of the 

expected values of benefits corresponding to the considered 

decision alternatives. The considered decision alternatives may 

Decision Event Benefit

 a  X

( , , )b e a x

 e  Z

Decision Event

C
o

lle
ct

In
fo

rm
at

io
n

C
h

an
ge

 s
ys

te
m

 (
re

p
ai

r,
 m

ai
n

te
n

an
ce

, 
st

re
n

gt
h

en
an

d
 r

en
ew

P
ri

o
r/

p
o

st
er

io
r

kn
o

w
le

d
ge

Desk Top Model Actual structure

Exposures/loads

Vulnerability / direct con.

Robustness / indirect con.

In
d

ic
at

o
rs

O
b

se
rv

at
io

n
s

Strategies for monitoring and inspections
including choise of indicators, technologies, 
placing and timing

Optimization
SIM objectives
- Reliability
- Availability
- Risk reduction
- Life-cycle costs
- Resilience

Exposure events

Direct consequences

Follow-up consequences

Constituent damage states

System damage states

Ex
p

o
su

re
C

o
n

d
it

io
n

Fu
n

ct
io

n
al

it
y

Hazards

Vulnerability

Robustness

Decision rules relating observations to 
repair/maintenance

Figure A.3: Systems modeling framework in the context of offshore asset
integrity management.
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Figure A.4: Illustration of the concept of indicators as applied in Fig. A.3.

for and distinguish between uncertainty associated with sparsity of evidence,
and possible model uncertainty and associated lack of fit. This is of crucial
importance in the context of model optimization, where an optimal trade-off
between complexity (in terms of representation, constituent, and parameter
models), and the associated statistical uncertainties must be identified.

In summary, with reference to Eqs. A.1 and A.2, probabilistic system mod-
els should facilitate:

• Representation of multiple possible competing systems and associated
likelihoods.

• Inclusion of probabilistic constituent models (including aleatory and epis-

130



PAPER A.

temic uncertainty).

• Probabilistic descriptions of the parameters of the constituent models (in-
cluding epistemic and aleatory uncertainty).

• Inclusion of evidence obtained from experiments on and observations (in-
cluding indicators) of the system.

• Consistent representation of statistical uncertainties due to sparsity of evi-
dence.

6 BAYESIAN NETWORKS

Bayesian networks (BNs), which constitute a branch of probabilistic graphical
models (PGMs), encode a joint distribution over a set of random variables X
by decomposing it into a product of local, conditional probability distribu-
tions according to a directed acyclic graph (DAG) G.

In the graph structure G, each vertex vi ∈ V corresponds to a random vari-
able Xi, and the edges E between the vertices represent a set of conditional
dependence relations implied by G. Moreover, by studying the missing edges
in G, we can directly read off a set of conditional independence relations be-
tween the random variables. For each random variable Xi in G, we specify a
conditional probability distribution P(Xi|Pai), which defines the dependence
of Xi on the random variables, which Xi is conditional dependent on in G,
termed the parent set Pai of variable Xi. The joint distribution encoded by a
BN is shown in Eq. A.3.

P(X|G, ΘG) = ∏
i

P(Xi|Pai), (A.3)

where ΘG denotes the set of model parameters. For discrete variables, the set
of parameters correspond to the probability masses of each combination of
states: ΘG =

⋃{P(xi|pai) = Θxi |pai
}. For continuous variables, the parameter

set correspond to the parameters needed to specify the probability density
functions of the random variables.

A classic example of a BN from [17] is shown in Fig. A.5. This network
shows how Mr. Holmes reasons about his burglary alarm A going off. If the
alarm goes off, his neighbour Dr. Watson W may call him, and the triggering
of the alarm will have one of two causes: (i) there is a burglar B in his house,
or (ii) there is an earthquake E in the area. Moreover, he may gain additional
information on the earthquake scenario by listening to the radio news R. The
joint distribution, which factorizes according to Fig. A.5, is written:

P(B, E, A, R, W) = P(B)P(E)P(A|B, E)P(R|E)P(W|A).
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Now, imagine that Holmes gets a call from Watson about his alarm going
off. Holmes rushes to his car believing that a burglar has triggered the alarm.
On his way home, the radio news reports an earthquake in the area. This
additional piece of information makes him change his belief in the burglary
scenario, as the reported earthquake “explain away” the triggered alarm.

A

B E

R

W

Figure A.5: Burglary or earthquake Bayesian network.

6.1 LEARNING BNs

As apparent from Eq. A.3, a BN is fully specified by its graph G and its
parameters ΘG . The process of specifying the pair {G, ΘG} is termed learn-
ing, and it is usually performed in two steps: structure learning and pa-
rameter learning. Structure learning refers to the construction of the graph
structure G, and parameter learning refers to the specification of the model
parameters ΘG .

Both learning tasks may be undertaken by use of a bottom-up or top-
down approach, or by a combining hereof. In a top-down approach, the
graph structure and parameters are established using information provided
in a database. In a bottom-up approach, domain experts are interviewed to
identify the graph structure and parameters [18]. As mentioned, BNs are
defined in terms of conditional dependence relations and probabilistic prop-
erties, without any implication that edges should point from causes to effects.
However, it is argued by Pearl that causal BNs pose a more reliable and natu-
ral way of expressing our knowledge about the domain we are modeling [19].
That is, we should strive to use a combined learning approach whenever pos-
sible, as it makes the best use of the available and relevant knowledge about
a given system.

In this paper, we only present a concise description of BNs. The interested
reader may refer to the seminal work by Pearl [17, 19], as well as recent
prominent textbooks [20–22].
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7 A PRINCIPLE EXAMPLE

In order to illustrate the principles and methods introduced in this paper,
a principle example is given in this section. We will consider the following
decision problem: The facility manager of an offshore facility is informed that
a storm is approaching from a westerly direction. She knows that the facility
will fail if the storm peak significant wave height Hm0 exceeds 6 m, and she is
now faced with a decision of whether or not to evacuate the facility. She does
not know which westerly direction the storm is approaching from, but if it
approaches from SW or W, she can choose to either evacuate by helicopter or
boat. If the storm approaches from NW, she can only choose to evacuate by
helicopter. Furthermore, dependent on the direction from which the storm is
approaching, failure will have different consequences.

The decision problem is outlined in Fig. A.6. In the figure, {sj}3
j=1 cor-

responds to the choice of storm model, i.e., SW, W, and NW; and {ak}3
k=1

corresponds to the decision alternatives, i.e., evacuate by helicopter, no evac-
uation, and evacuate by boat. Please note that the combination s3 and a3
is not possible, as she cannot evacuate by boat, if the storm is approaching
from NW. Moreover, the system dependent probability of failure is defined
as p f = P(Hm0 > 6 m|s), the maximum cost Umax = −1 monetary units,
and P(σj) represents the probability of storm direction j.

Now, we want to help the facility manager to make an optimal decision,
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Figure A.6: Illustration of the decision problem.
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thus, based on a metocean database (see below), we build a probabilistic
model (BN) for the joint distribution of the set of environmental variables in
the database. This model may then be used to estimate the probabilities in
Fig. A.6.

7.1 DATABASE

In this study, we consider simulated storm data for several locations (plat-
forms) in the North Sea. The data are produced by the Danish Hydraulic In-
stitute (DHI) by use of their spectral wave simulator. The database contains
observations of environmental variables at 23 platforms over 2187 storms,
corresponding to about 30 years of data measurements. The variables in-
cluded in the database appear in Tab. A.2.

Table A.2: Metocean database.

Variable Description Unit
Lng Longitude ◦

Lat Latitude ◦

Dpt Water depth m
WiS Maximum storm wind speed m/s
CS Current speed m/s
RWL Residual water level (surge + tide) m
TY Time of storm peak ◦

WaD Peak wave direction ◦

WiD Direction of max. storm wind speed ◦

CD Current direction ◦

Hm0 Storm peak significant wave height m

7.2 DISCRETIZATION

An important prepossessing consideration, when applying BNs to a real-
world domain, is how to handle continuous variables. To avoid distribu-
tional assumptions, continuous variables are discretized in this study. In this
regard, the number of intervals and their boundaries have to be chosen care-
fully, as valuable information about the distribution of the variables and their
dependency may be lost otherwise. For some of the variables, we predefine
the discretization boundaries. This is the case for all directional variables,
as well as for the time of storm peak and for the wave height variable, as
we need a specific granularity of these variables in regard to the decision
problem.

The remaining variables are discretized by use of a multivariate discretiza-
tion procedure, embedded in the structure learning procedure, which takes
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the interactions in the graph structure into account. The method we use is
based on [23], where it is assumed that a data set is generated in two steps:
First, an interval of a variable is selected from the distribution of the dis-
crete variable. Second, the corresponding continuous value is drawn from
a uniform distribution over the interval. We then seek an optimal discrete
representation D of the original continuous data set Dc, which maximizes
the objective function: P(D|G)P(Dc|D).

As the graph structure changes throughout the structure learning phase,
the discretization is adjusted dynamically to maximize the objective function
in a manner similar to that proposed in [24]. That is; first, the data are dis-
cretized without taking any interaction between the variables into account
(this corresponds to an initial empty graph); second, this discretization is
used to learn a BN. These two steps are repeated until the objective func-
tion converges to a local optimum. A similar scheme for combined structure
learning and discretization is used in [25].

In our implementation, we use functionalities from the publicly available
R package bnlearn [26] to learn the structure of the graph.

7.3 RESULTS AND CONCLUSIONS

Initially, the graph structure and optimal discretization are learned using the
database. In this regard, the structure learning is constrained by our causal
understanding of the domain, e.g., we force an edge going from TY to WiS,
WiD, Hm0, and RWL, as well as edges meeting at Hm0 from WiD, and
WiS; see Tab. A.2 for a reference on the variable names. The learned graph
structure and corresponding discretization appear in Fig. A.7 and Tab. A.3,
respectively.

Apart from the predefined connections, we observe that the BN encodes
an additional set of statistical dependencies. For instance, as we would ex-
pect, there is a statistical dependence between the water depth at a location
and the current speed in a storm, and between the maximum wind speed in a
storm and the wind direction. Furthermore, if we consider the discretization,
we see that the optimal discretization of the location variables Lng and Lat,
and the depth variable Dpt is binary.

By used of the BN model, the probabilities in Fig. A.6 are estimated, and
subsequently the decision problem is solved by use of Eq. A.2. The solution
is shown in Fig. A.8, where the optimal representation and decision alterna-
tive, given representation, are indicated by bold-faced boxes. It appears that
system representations s1 and s3 both optimize the expected utility. They
receive the same expected value of utility, because they agree on the optimal
action a∗ being not to evacuate.

Based on the example it may be concluded that the formulated approach
to systems modeling, which combine phenomenological knowledge with
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Lng

Lat

Dpt

WiS

CS RWL

TY

WaD

WiD

CD

Hm0

Figure A.7: BN model.

Table A.3: Discretization.

Variable Levels Comments
Lng 2 learned
Lat 2 learned
Dpt 2 learned
WiS 9 learned
CS 6 learned
RWL 9 learned
TY 4 predefined (Spring, Summer, Fall, Winter)
WaD 8 predefined (NW, N, NE, E, SE, S, SW, W)
WiD 8 predefined (NW, N, NE, E, SE, S, SW, W)
CD 8 predefined (NW, N, NE, E, SE, S, SW, W)
Hm0 16 predefined ((0, 2], (2, 2.5], (2.5, 3], ..., (9, In f ])

knowledge retrieved from databases of relevant information and embed the
model building within a decision analytic framework, appears feasible and
robust. Presently more studies are undertaken to understand in more detail
the sensitivities of the derived models and decisions to various algorithmic
choices involved in the modeling.

8 CONCLUSIONS

The present paper presents early developments on the formulation and im-
plementation of a novel decision analytic framework for systems modeling in
the context of risk-informed integrity management of offshore facilities, with
a focus on the development of system models representing environmental
loads associated with storm events. To account for the fact that system mod-
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Figure A.8: Decision tree for the optimal system choice decision problem.

els in general serve to facilitate the optimal ranking of decision alternatives,
we formulate the problem of systems modeling as an optimization prob-
lem to be solved jointly with the ranking of decision alternatives. Moreover,
based on recent developments in structure learning and Bayesian regression
techniques, a generic approach for the modeling of environmental loads is
established, which accommodates for a joint utilization of phenomenolog-
ical understanding and knowledge contained in databases of observations.
The developed framework and corresponding techniques greatly support the
combination of bottom-up and top-down modeling and facilitates for consis-
tently addressing the existence of possible competing systems in the context
of assets integrity management. The proposed framework and utilized tech-
niques are illustrated on a principle example, where we consider systems
modeling and decision optimization in the context of possible evacuation
of an offshore facility in the face of emerging storm events. The example
shows that the formulated modeling framework is indeed feasible, and fu-
ture research will be directed on further algorithmic optimization as well as
broader and more involved applications.
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NOMENCLATURE

a or a Decision alternative(s).
s of s System representation or set of system representations.
xi or x Realization of random variable(s).
E(·) Expectation operator.
M(·) System model.
P(·) Probability or (conditional) probability distribution.
Pai Parent set of variable Xi.
U(·) Utility function.
Xi or X Random variable or set of random variables.
σ System realization.
Σ Probabilistic system representation.
Θ or Θ Parameter or parameter vector.
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ABSTRACT

In the present contribution, the potentials of utilizing techniques of big data analysis
as a means to improve the understanding of complex probabilistic system representa-
tions are investigated. It is assumed that a probabilistic model is available for the rep-
resentation of the system performances and that an adequate Monte Carlo simulation
technique is available and applied for the probabilistic analysis of these. Model-based
cluster analysis is then applied to establish a visual representation of the Monte Carlo
simulated scenarios of events leading to different performances of the considered sys-
tem. Various conditioning events on the simulated scenarios, such as specific failure
events, are readily introduced by sorting. Assuming that the Monte Carlo simulated
scenarios of events are utilized to establish a surrogate representation of the consid-
ered system, variance-based sensitivities are derived for both the case of independent
and dependent random variables. To this end, so-called ANOVA and the very recently
formulated ANCOVA decompositions are applied. The proposed scheme is illustrated
on a simple example in which the probabilistic characteristics of non-linear structural
performances of a moment resisting frame structure are considered. It is seen from
the example that big data techniques may readily be applied to provide significant
insights on which scenarios of events govern the probabilistic characteristics of the
performances of the system, and with respect to how uncertainties associated with
the random variables used to model the system propagate in the system and affect its
responses. The latter is especially useful when aiming to reduce model complexity,
but also in the context of structural health monitoring where response characteristics
that contain significant information about the state of the system must be identified.

Keywords: model-based clustering, sensitivity analysis, system performance assess-
ment, Monte Carlo simulation.

1 INTRODUCTION

The probabilistic representation of systems performances is a challenging
but crucially important task in the context of engineering decision-making.
Across different engineering application areas a large variety of different
probabilistic approaches for the representation of systems performances have
been developed, see e.g., [1–5], all aiming to provide information-consistent
models of the systems performances, which govern the ranking of decisions
for their design and management.

In many cases, the considered systems are rather complex and may e.g.,
comprise interconnected systems subject to uncertainties, which are repre-
sented by high dimensional vectors of causally and stochastically dependent
random variables. Moreover, the considered systems may in general exhibit
significant non-linear characteristics at different scales between demands act-
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ing on and within the systems and their performances.
The output of analyses, based on the available probabilistic models, typ-

ically center around a relatively few key characteristics, such as the annual
probability of complete or partial system failure and various types of systems
damage events. This type of output may be seen to comprise the key infor-
mation with respect to what ultimately drives the expected values of con-
sequences associated with the performances of the systems. However, such
relatively sparse extracts of information offer very little, if any, information
and/or knowledge with respect to the characteristics of the event scenarios of
the physical processes, which lead to different states of failures and damages.

The immediate results of probabilistic systems analyses therefore do not
provide much insight on whether the developed and analyzed models behave
physically meaningful, how uncertainties associated with the probabilistic
modeling affect the probabilistic characteristics of systems performances, and
how the systems performances may efficiently be improved by changing the
physical characteristics of the system or by improving the knowledge about
the system. The latter is especially relevant in a context where it is possible
to observe, e.g., by means of monitoring, the performances of a system over
time and to utilize the collected information as a means for improving the
system model. Thus, there is a strong need to improve presently available
techniques for sensitivity analysis of probabilistic representations of systems.

This challenge is taken up in the present contribution, where the poten-
tials of utilizing techniques of big data analysis as a means to improve the
understanding of complex probabilistic system representations are investi-
gated. Our starting point is that a particular system is addressed for which
a probabilistic model is available for the representation of the system per-
formances. Furthermore, for the sake of simplicity, it is assumed that an
adequate Monte Carlo simulation based technique is applied for the prob-
abilistic analysis of these (see e.g., [6]). The overall scheme is illustrated in
Fig. B.1, where it is indicated that all available information from the Monte
Carlo simulations are gathered and stored in a database.

The basic approach followed in the present contribution is addressing the
middle part of Fig. B.1, highlighted in Fig. B.2. Going from left to right in
Fig. B.2, it is seen how a computer model of a real system is established in
order to generate a database of response characteristics by means of Monte
Carlo simulation, i.e., scenarios of events describing the responses of the con-
sidered system. The system responses addressed in the present study are
associated with failure scenarios, but in principle any system response char-
acteristic may be generated and analyzed in the same manner.

Next, as outlined in Sec. 2, the scenarios of events stored in the data-
base are exposed to modern data mining tools, using model-based clustering
based on multidimensional Gaussian mixtures. This facilitates derivation of
joint parametric representations of the probabilistic characteristics of the sys-
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Figure B.1: Framework for system modeling, analysis, and updating.
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Figure B.2: Workflow of the present paper.

tem for given failure scenarios, i.e., p(X). The cluster analyses provide sig-
nificant information in themselves, as they reveal patterns in the simulation
results, which are not otherwise observable, e.g., regions of jointly occurring
realizations of random variables that dominate the contributions to proba-
bilities of particular realizations of scenarios of system failures; commonly
referred to as most likely failure points or design points in structural reli-
ability theory. Moreover, cluster analysis may also efficiently reveal which
physical and/or organizational characteristics of the system contribute to the
robustness of the considered system.

Sensitivity analyses are then introduced to enhance the understanding
of how uncertainties associated with the probabilistic modeling of the sys-
tem affect the uncertainties associated with the performances of the system.
Variance-based sensitivity analysis, as described in Sec. 3, may be conducted
by application of the so-called ANOVA and ANCOVA decompositions for
the case of independent and dependent input variables, respectively.

The proposed approaches are finally illustrated on an example in Sec. 4.,
where the probabilistic characteristics of non-linear structural performances
of a simple moment resisting frame structure are considered. In the example,
as a means to establish a representation of the probabilistic characteristics of
the system responses, i.e., y = f (X), a surrogate model for the considered
response function is introduced using polynomial chaos expansions.
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2 MODEL-BASED CLUSTERING

In cluster analysis, it is assumed that the considered data set D is sampled
from a set of distinct base models, and the target of the analysis is to infer the
most likely generating base model for each realization, i.e., the latent cluster
assignment. In this regard, it is assumed that the data set D = {x[n]}N

n=1
consists of N i.i.d. observations of a random vector X in RM. Model-based
clustering is commonly used as a basis for cluster analysis, as it provides a
framework for choosing the relevant number of clusters in the data as well as
assessing the resulting partitioning of the data.

In a model-based setting, if it is further assumed that the base model for
each of the clusters is Gaussian, the joint distribution can be represented as a
Gaussian mixture model (GMM) of the form:

p(x|Θ) =
K

∑
k=1

πkN (x|µk, Σk), (B.1)

where Θ represent the collection of all model parameters, µk is the mean vec-
tor of cluster k, Σk is the covariance matrix of cluster k, and πk is the mixing
weight or probability of cluster k, such that ∑k πk = 1 with 0 ≤ πk ≤ 1.
The generative model for the data is shown in Fig. B.3, where z[n] ∈ {0, 1}
is a binary random variable with a 1-of-K encoding in which a particular
element zk is equal to 1 and all other elements are equal to zero. This vari-
able represent the latent cluster assignment for data item n with a marginal
distribution specified by the mixing weights, such that p(zk = 1) = πk and
p(z) = ∏k π

zk
k [7].

π z[n] x[n]

µk Σk

N

K

Figure B.3: Meta-network of a Gaussian mixture model.

The log-likelihood of the data under this model is:

log p(D|Θ) =
N

∑
n=1

log

(
K

∑
k=1

πkN (x[n]|µk, Σk)

)
. (B.2)

No closed form solution can be derived for the maximization of this expres-
sion with respect to the parameters, due to the summation over k that appears
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inside the logarithm, and thus it is necessary to resort to an iterative scheme,
like expectation maximization (EM), to estimate the parameters of the distri-
bution, see e.g., [7].

The EM algorithm solves the problem of parameters estimation, but one
additional problem persists, namely how to choose the number of mixture
components K, i.e., the number of clusters represented in the data. One
approach to address this issue is to define a likelihood-based score metric that
penalizes model complexity, as the likelihood in itself will simply increase
as more mixture components are considered, which eventually will lead to
overfitting. Two such metrics are the Bayesian information criterion (BIC) [8]
and the integrated complete-data likelihood (ICL) [9]:

BIC(M) = 2 log p(D|θ̂)− ν log N (B.3)

ICL(M) = BIC(M) + 2
N

∑
n=1

K

∑
k=1

ẑk[n] log τk(x[n]), (B.4)

whereM reflects the model choice, i.e., number of mixture components and
covariance structure, θ̂ is the maximum likelihood estimate for the parameter
vector under the model, ν is the number of free parameters in the model,
τk(x[n]) is the probability that x[n] belongs to the kth mixture component,
and ẑk[n] is the cluster assignment of x[n] based on τ(x[n]). Thus,

τk(x[n]) =
π̂kN (x[n]|µ̂k, Σ̂k)

∑K
k′=1 π̂k′N (x[n]|µ̂k′ , Σ̂k′)

(B.5)

ẑk[n] =

{
1 if arg maxk′ τk′(x[n]) = k
0 otherwise.

(B.6)

As the BIC score tends to select the number of mixture components needed
to reasonably approximate the density rather than the number of clusters, the
ICL score is used for model selection in the present study. It appears from
Eq. B.4 that the ICL score is a penalized version of the BIC score, which
adds further penalization through an additional entropy term that reflects
cluster overlap. In a Bayesian setting, the ICL approach is equivalent to max-
imizing an approximation to the integrated complete-data likelihood with
non-informative priors, whereas the BIC approach is equivalent to maximiz-
ing an approximation to the integrated likelihood with non-informative pri-
ors [10, 11].

3 VARIANCE-BASED SENSITIVITY ANALYSIS

In this section, it is outlined how variance-based sensitivity analysis can be
performed via the functional ANOVA decomposition for the case of indepen-
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dent inputs and via the functional ANCOVA decomposition for the case of
dependent inputs.

3.1 ANOVA DECOMPOSITION

In variance-based sensitivity analysis, it is assessed how the variance of the
output depends on the uncertain input variables by considering how the
output variance can be decomposed. The basis is Sobol’s decomposition [12]
of response function Y = f (X1, X2, ..., XM) into a set of functions of increasing
dimensionality, see Eq. B.7.

f = f0 + ∑
i

fi + ∑
i

∑
j>i

fij + ... + f12...M, (B.7)

where the individual terms are only functions of the factors in their index,
thus fi = f (Xi), fij = f (Xi, Xj) and so on.1 Given that each term in Eq. B.7
is defined to have zero mean, i.e.,

∫
fi(xi)dxi = 0 and

∫
f (xi) f (xj)dxidxj = 0,

the individual terms can be uniquely calculated by use of the conditional
expectation of the model output. Thus,

f0 =E[Y] (B.8)

fi =E[Y|Xi]− f0 (B.9)

fij =E[Y|Xi, Xj]− fi − f j − f0. (B.10)

The first-order sensitivity index corresponds to the variance of the univariate
terms Vi = V[ fi] = V[E[Y|Xi]] scaled by the unconditional output vari-
ance V[Y]:

Si =
VXi [EX∼i [Y|Xi]]

V[Y]
, (B.11)

where X∼i denotes all variables except Xi. The index Eq. B.11 represents the
main effect contribution from factor i to the output variance [13].

Two factors are said to interact when their effect on Y cannot be expressed
as a sum of single effects. For independent input factors, the output variance
decomposes as:

V[Y] = ∑
i

Vi + ∑
i

∑
j>i

Vij + ... + V12...M, (B.12)

where the terms Vij, Vijk et cetera correspond to interaction terms. Divid-
ing both sides of Eq. B.12 by the output variance, the following relationship
appear:

1 = ∑
i

Si + ∑
i

∑
j>i

Sij + ... + S12...M. (B.13)

1Note that the decomposition in Eq. B.7, also referred to as high-dimensional model repre-
sentation (HDMR), is not a series expansion, as it has a finite number of terms.
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Based on Eq. B.13, a set of properties can be derived for the first-order sensi-
tivity indices, see Tab. B.1 [13].

Table B.1: Properties of first-order sensitivity indices.

∑i Si ≤ 1 Always
∑i Si = 1 Additive models
1−∑i Si Indicates presence of interactions

The total effect index represents the joint effect of all contributions related
to a factor. That is, the first-order effect of a factor and its higher-order ef-
fects due to interactions. Hence, for a three-factor model, the total effect of
factor 1 is:

ST1 = S1 + S12 + S13 + S123. (B.14)

The terms in Eq. B.13 could in principle be used to construct the total effect
indices but in order to do this, 2k − 1 terms must be calculated. That is, this
procedure suffers under the curse of dimensionality. Instead, the law of total
variance is explored:

V[Y] = VXi [EX∼i [Y|Xi]] + EXi [VX∼i [Y|Xi]], (B.15)

or equivalently

V[Y] = VX∼i [EXi [Y|X∼i]] + EX∼i [VXi [Y|X∼i]]. (B.16)

In both factorizations, the first term represents the variance due the condi-
tioning set, and the second term represents the residual variance, i.e., the
variance due to variables not in the conditioning set. In Eq. B.16, the total
effect index of variable i is represented by the residual variance divided by
the output variance:

STi =
EX∼i [VXi [Y|X∼i]]

V[Y]
= 1− VX∼i [EXi [Y|X∼i]]

V[Y]
. (B.17)

Note that the first-order sensitivity index corresponds to the first term in
Eq. B.15 divided by the output variance, cf. Eq. B.11. Equation B.17 provides
a more efficient way of calculating the total effect index than the brute force
formulation Eq. B.14.

In a variance-based sensitivity assessment, the set of all Si and STi indices
provides a reasonable good description of the model sensitivity at a compu-
tationally cost that is tractable for most models. Thus, variance-based main
effects are suitable in a factor prioritization setting, while total effects address
a factor fixing setting [13].
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3.2 ANCOVA DECOMPOSITION

The basis for variance decomposition in the case of correlated inputs is again
Eq. B.7. For this case, the unconditional variance of the model output may be
written:

V[Y] =E
[
(Y−E[Y])2

]
(B.18)

=E

(Y− f0)( ∑
u⊆{1,..,k}

fu)

 (B.19)

=C

Y, ∑
u⊆{1,..,k}

fu

 (B.20)

= ∑
u⊆{1,..,k}

C [Y, fu] (B.21)

= ∑
u⊆{1,..,k}

V[ fu] + C

 fu, ∑
v⊆{1,..,k},v∩u=∅

fv

 (B.22)

where each function { fu|u ⊆ {1, .., k}} represents the combined contribution
of the variables Xu to Y. Moreover, Eq. B.21 holds because the variance of
Y can be written as the covariance of Y and its functional decomposition
minus the zero-order term f0, and Eq. B.22 holds because Y also contains the
functions fu [14, 15].

The variance-covariance decomposition in Eq. B.22 facilitates a separation
of the uncorrelated and correlated effects in the following sensitivity indices:

Su =
C[Y, fu]

V[Y]
(B.23)

SU
u =

V[ fu]

V[Y]
(B.24)

SC
u =

C
[

fu, ∑v⊆{1,..,k},v∩u=∅ fv

]
V[Y]

. (B.25)

From this definition of indices, it is seen that Su represents the total contri-
bution to output variance due to Xu, SU

u represents the uncorrelated share of
output variance due to Xu, and SC

u represents the correlated share of output
variance due to Xu, i.e., the contribution due to correlations between Xu and
the other input variables. Moreover, the relationship between the indices is:

Su = SU
u + SC

u . (B.26)

As a result of this definition, SU
u is always positive, the sign of SC

u depends
on the nature of the correlation between Xu and the other input variables,
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and thus the sign of Su depends on which of the structural contribution SU
u

and correlative contribution SC
u is largest. In this context, SC

u should be un-
derstood as a corrective term that indicates whether the total contribution is
overestimated or underestimated because of the correlation between inputs.
If |SC

u | is small the correlation has a weak influence of the contribution of Xu,
and if it is large the correlation has a strong influence of the contribution of
Xu [14, 15].

Finally, Saltelli ét al. [16] argue that the condition E[V[Y|X∼i]] = 0 is
a necessary and sufficient condition to deem Xi non-influential, under any
model or correlation/dependency structure among the inputs. Note that in
case of correlation among the inputs, the total effect terms can be smaller
than the first-order terms, see [16] for further details.

4 CASE STUDY

4.1 INTRODUCTION

The example considers a portal frame structure [17, 18] subjected to a hor-
izontal and a vertical concentrated load, i.e., P1 and P2, respectively. The
model has five nodes and four elements, and failure is defined to be an event
where any of the structural elements exceed the corresponding moment ca-
pacity Mj. Since a hinge can form at either side of an element, a total of 8
hinge locations are considered, which are denoted by 1, 2, . . . , 8 in Fig. B.4.
The loads and moment capacities are modeled as independent random vari-
ables according to Tab. B.2.

Figure B.4: Left: Portal frame structure. Right: Structural model properties.
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Table B.2: Probabilistic model.

Input Distribution Mean Unit CoV
P1 Weibull 23.75× 103 [N] 0.30
P2 Weibull 43.50× 103 [N] 0.09
M1 Lognormal 100× 103 [N·m] 0.05
M2 Lognormal 100× 103 [N·m] 0.05
M3 Lognormal 93.5× 103 [N·m] 0.05

4.2 RELIABILITY MEASURES

The probability of failure PFj associated with the failure event Fj is expressed
in terms of the probability integral:

PFj =
∫

gj(x)
q(x)dx, j = 1, . . . , 8, (B.27)

where the random variables X are fully characterized by the multidimen-
sional probability density function q(·). Moreover, the failure domain gj cor-
responding to the failure event Fj is defined as:

gj = 1− Dj ≤ 0, j = 1, . . . , 8. (B.28)

Failure occurs when the internal moments M̂j of any hinge node exceed
the capacity Mj of the corresponding element. Thus, the failure events Fj
associated with each hinge node is given by:

Fj = Dj > 1, j = 1, . . . , 8, (B.29)

where the normalized demand Dj is defined as:

Dj =
M̂j

Mj
. (B.30)

The properties of the structural elements are selected so that the reliability
of the structural system satisfies:

PFj ≤ 10−4, j = 1, . . . , 8. (B.31)

4.3 ROBUSTNESS INDEX

An incremental non-linear analysis is performed, where the loads are gradu-
ally increased while solving successive states of equilibrium. This allows to
calculate the corresponding robustness indices, see e.g., [19]:

IR =
cD,I

cD,I + cD,P
, (B.32)
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where cD,I and cD,P represent the direct consequences associated with the ini-
tiation phase and the propagation phase of the failure scenario of the system,
respectively. In this particular case we have:

IR =
1

NH
, (B.33)

where NH represents the number of failures or hinge locations when the in-
cremental non-linear analysis is finished. Table B.3 and Fig. B.5 show the 12
different scenarios, where it is indicated with 1 if the node immediately be-
comes plastic, with 2 if it becomes plastic after the first redistribution of in-
ternal forces, and with 3 if it becomes plastic after the second redistribution
of internal forces. Table B.3 also shows the number of realizations NF that
leads to the corresponding failure scenario, the probability of occurrence PF,
and the robustness index IR for each failure scenario from a total of 108 sim-
ulations.

Table B.3: Failure scenarios.

1 2 3 4 5 6 7 8 NF PF IR
SC 1 0 0 0 0 0 0 0 1 1,934 1.90 ×10−5 1.00
SC 2 0 0 0 0 0 0 1 0 18 1.80 ×10−7 1.00
SC 3 0 0 0 0 0 0 1 2 17 1.70 ×10−7 0.50
SC 4 0 0 0 0 0 0 2 1 249 2.50 ×10−6 0.50
SC 5 0 0 0 0 0 1 0 0 9,263 9.30 ×10−5 1.00
SC 6 0 0 0 0 0 1 0 2 181 1.80 ×10−6 0.50
SC 7 0 0 0 0 0 2 0 1 122 1.20 ×10−6 0.50
SC 8 0 0 0 1 1 0 0 0 19 1.90 ×10−7 1.00
SC 9 0 0 0 1 1 2 0 0 7 7.00 ×10−8 0.50
SC 10 0 0 0 2 2 1 0 0 47 4.70 ×10−7 0.50
SC 11 0 0 0 2 2 1 0 3 3 3.00 ×10−8 0.33
SC 12 0 0 0 3 3 1 0 2 1 1.00 ×10−8 0.33
∑ 11,861

4.4 CLUSTER ANALYSIS

In order to enhance the understanding of the probabilistic characteristics of
the performances of the considered structural system, a cluster analysis is
undertaken on the data related to the different failure scenarios (SCs) for
which PF ≥ 5 · 10−7, according to Tab. B.3, using Gaussian mixture models
(GMMs), as discussed in Sec. 2. Furthermore, also the optimal clustering of a
pooled database is computed, considering these SC realizations as one data
set. In our GMM implementation functionalities from the publicly available
R toolbox mclust [11] are utilized.
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Figure B.5: Failure scenarios.

Figure B.6 shows the mean vectors of all the considered SCs (all scenarios
are represented by either one or two clusters). It appears that the SCs are
generally governed by the larger positive realizations of P1 and to a lesser de-
gree P2. Moreover, it is seen that the M1 component of all mean vectors is ≈ 0,
which indicates that this variable is unimportant for this failure assessment.
The two last variables M2 and M3 seems to alternate between two bounding
patterns, i.e., (i) the M2 component is zero, and the M3 component take on
a large negative value; and (ii) the M2 component take on a large negative
value, and the M3 is zero. Bounding pattern (i) reflects failures in the beam,
and (ii) reflects failures in the right column, see Fig. B.5 and Tab. B.3.

If the optimal clustering of the pooled database is computed, it is seen
that the two governing patterns emerge; and adding additional mixture com-
ponents simply adds traces around these governing patterns. Figures B.7
and B.8 show the cluster means when two and three clusters are considered,
respectively. In Fig. B.8, for example, it is observed that by considering an ad-
ditional mixture component compared to Fig. B.7, both clusters in SC5 now
appear in the mixture distribution of the pooled database, but, for clustering
purposes, it may be so that these can be adequately represented by the red
cluster in Fig. B.7, depending on the application.

Finally, it should be noted that the cluster analysis significantly enhances
the understanding of which scenarios of realizations of loads and resistances
contribute to the structural robustness performances, and how much. The
identified scenarios are seen to either result in robustness indexes IR equal
to 1 or 0.5. However, it is also seen from Tab. B.3 that the probabilities of
scenarios leading to IR = 0.5 are one or two orders of magnitude lower than
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Figure B.6: Mean vectors of selected failure scenarios (standard normal
space). The line width indicates the number of data points assigned to each
cluster.

the probabilities of scenarios leading to IR = 1. The structure thus performs
rather robust in the sense that initial failures do not tend (in probability) to
propagate into further failures. Moreover, from Fig. B.6, it is seen that the sce-
narios leading to IR = 0.5 (e.g., SC6) are dominated by realizations of high
values of the load P1 and realizations of low values of the resistance M2 and
M3. This information sheds light on in which manner the robustness perfor-
mance of the structure might be improved by increasing the yield capacities
of M2 and M3.

4.5 SENSITIVITY ANALYSIS

As a means to investigate how uncertainties associated with the probabilistic
representation of the considered structural system affects structural perfor-
mances, which might be of interest in the context of structural health mon-
itoring for damage detection, a variance-based sensitivity analysis is con-
ducted in the following. To this end, the sample points related to failure
scenario 5 (SC5) are utilized together with the corresponding samples of the
horizontal displacement at node 4 (hinge 6–7). The displacement acts as an
indicator for damage and is regarded as the response variable in this assess-
ment.
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Figure B.8: Clustering of pooled da-
tabase (3 clusters; standard normal
space).

A surrogate model of the response variable is established utilizing a poly-
nomial chaos expansion (PCE) [20]. This greatly enhances the efficient evalu-
ation of the sensitivities, without having to run the underlying computational
model. This approach also has the very important merit that it scales well to
domains where the underlying computational model is computationally ex-
pensive to evaluate, as well as situations where the analyses are based on an
experimental data. Furthermore, an approximation to the sensitivity indices
defined in Sec. 3 can be derived directly from the parameters of the PCE
model, see e.g [15, 21]. The present PCE implementation uses functionalities
from the publicly available Python toolbox openTURNS [22].

Figure B.9 shows the marginal distributions and pairwise correlations in
the realizations of SC5. It is apparent from the figure that by conditioning
on this failure scenario, a conditional sample of correlated input variables is
produced from the original sample of uncorrelated input variables, which is
in agreement with the GMM representation of this failure scenario. Espe-
cially, a positive correlation is observed between P1 and M3, and between P2
and M3, and a negative correlation is observed between P1 and P2. Moreover,
it is observed that there is a strong correlation between the response and
P1, a correlation between the response and {P2, M3}, and a weak correlation
between the response and {M1, M2}.

To account for the correlation between the inputs, the ANCOVA decom-
position, as explained in Sec. 3, is applied for the sensitivity assessment. The
results of the sensitivity analysis is illustrated in Tab. B.4. The importance
ranking of the contributions is mostly influenced by model structure and to
a lesser degree by the correlation between inputs. The highest total contri-
bution is associated with P1, which has both a significantly higher uncorrel-
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Figure B.9: Marginal distributions and pairwise correlations amongst the
realizations of failure scenario 5 (standard normal space).

ative and correlative contribution than the remaining inputs. The inputs P2
and M3 both have relevant contributions, whereas insignificant contributions
are observed for M1 and M2. This is expected, as the response represents a
horizontal displacement of the beam, see Fig. B.5. Moreover, as the ANCOVA
decomposition allows to distinguish between which part of a contribution is
due to the variable itself, and which part is due to its correlation with the
other inputs, it is seen, for instance, that the structural contribution of P2
is three times the total contribution, due to a negative contribution from its
correlation with other inputs.

For comparison, the corresponding Sobol indices (ANOVA decomposi-
tion) are given in Tab. B.5. As the correlative contributions in Tab. B.4 are
generally small in magnitude, the correlations have only a weak effect on the
response sensitivity. The first order and total sensitivity indices in Tab. B.5
are equal, and the ranking of the parameters follows the total contribution of
the ANCOVA indices. The ANCOVA indices related to P1 and P2 (0.933 and
0.001) are slightly smoothed compared to the corresponding Sobol indices
(0.935 and 0.003) because of the mutual correlation between the two vari-
ables. The same observation holds true for M3, which has a positive mutual
correlated with both P1 and P2, see Fig. B.9. Finally, the total effect indices
of Tab. B.5 show that M1 and M2 provide non-significant contributions to
the output variance and may be fixed to an arbitrary value in their range.
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Table B.4: Ancova first-order sen-
sitivity indices.

Input Si SU
i SC

i
P1 0.933 0.932 0.001
P2 0.001 0.003 -0.002
M1 ≈ 0 ≈ 0 ≈ 0
M2 ≈ 0 ≈ 0 ≈ 0
M3 0.067 0.064 0.003
∑ 1.000 0.999 0.001

Table B.5: Sobol sensitivity
indices.

Input Si STi

P1 0.935 0.935
P2 0.003 0.003
M1 ≈ 0 ≈ 0
M2 ≈ 0 ≈ 0
M3 0.062 0.062
∑ 1.000 1.000

5 CONCLUSION

The challenge of understanding the responses of complex probabilistic rep-
resentations of systems is taken up from the perspective of utilizing the po-
tentials of modern techniques of data mining. Assuming that a probabilistic
model is available for the representation of the relevant performances of a
system, the suggestion in the present contribution is to (i) utilize model-based
cluster analysis as a means to achieve understanding of which scenarios of
realizations, represented by probabilistic system representations, govern sys-
tem performances of particular interest; and (ii) map how the uncertainties
associated with the probabilistic modeling of the system propagate and in-
fluence the uncertainties associated with the considered system responses.
Regarding (i), the approach taken in the present contribution is to perform
model-based clustering with a multidimensional Gaussian mixture model,
and with respect to (ii), it is shown how the so-called ANOVA and the very
recently formulated ANCOVA decompositions may be applied for variance
based sensitivity analysis.

The proposed scheme is illustrated on a simple example in which the
probabilistic characteristics of non-linear structural performances of a mo-
ment resisting frame structure are considered. The example clearly highlights
the significant potentials associated with the application of big data tech-
niques to improve the understanding of complex system models. The cluster
analysis provides not only a strong means for checking the relevance and
physical adequacy of complex system models but also a significant insights
on how complex models may be designed, modified, and/or maintained to
achieve adequate and cost-efficient performance characteristics with respect
to e.g., robustness and also resilience. The sensitivity analysis is especially
useful when aiming to reduce model complexity, but also, and very impor-
tantly, in the context of structural health monitoring where response char-
acteristics that contain significant information about the state of the system
must be identified.
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In this contribution, the cluster and sensitivity analysis are conducted as
separate tasks in an exploratory data analysis, but in general, these may be
used in combination. An example could be a scenario event with a sparse
representation in the database. In this case, the joint input model p(X) from
the cluster analysis could be used to simulated realizations from the consid-
ered failure domain, and subsequently these realizations may to propagate
through the surrogate model in order to produce a larger sample of realiza-
tions {x′n, y′n}N′

n=1 of the considered event scenario. Furthermore, both anal-
ysis convey essential information characteristics of the inputs leading to a
specific failure event, and they may thus be used in combination to better un-
derstand the underlying mechanisms driving the considered event scenario
or in sequence, where e.g., Morris screening [23] is used as a proxy for the to-
tal sensitivity index in order to screen out non-influential variables from the
domain of interest, before we proceed with a thorough analysis of the domain
through cluster analysis and the main effect index for factor prioritization.
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ABSTRACT

This paper presents a novel decision analytical framework for systems modeling in the
context of risk informed integrity management of offshore facilities. Our focus con-
cerns the development of system models representing environmental loads associated
with storm events. Appreciating that system models in general serve to facilitate the
optimal ranking of decision alternatives, we formulate the problem of systems mod-
eling as an optimization problem to be solved jointly with the ranking of integrity
management decision alternatives. Taking offset in recent developments in structure
learning and Bayesian regression techniques, a generic approach for the modeling of
environmental loads is established, which accommodates for a joint utilization of phe-
nomenological understanding and knowledge contained in databases of observations.
In this manner, we provide a framework and corresponding techniques supporting the
combination of bottom-up and top-down modeling. Moreover, since phenomenologi-
cal understanding and analysis of databases may lead to the identification of several
competing system models, we include these in the formulation of the optimization
problem. The proposed framework and utilized techniques are illustrated in an ex-
ample. The example considers systems modeling and decision optimization in the
context of a possible evacuation of an offshore facility in the face of an emerging
storm event.

Keywords: ocean waves and associated statistics, structural safety and risk analysis,
system integrity assessment.

1 INTRODUCTION

In the context of the newly established Danish Hydrocarbon Research and
Technology Centre (DHRTC), major initiatives have been launched to iden-
tify new, safe, and more efficient frameworks and approaches to facilitate the
optimization of assets integrity management decisions. This study is an early
report on one of these activities, where focus is directed on how the rationale
for the development of knowledge concerning the offshore load environment
may be improved. In particular, we asses two avenues for improving proba-
bilistic engineering modeling in support of decision-making, i.e., through the
modeling basis and the model representation.

1.1 ON INFORMATION AND KNOWLEDGE

Knowledge and information form the basis for representing the systems,
which are subject to decision optimization. Thus, before proceeding on the
topic of development of models, we will start out with a brief outline on how
we account for this basis. Following the guideline for system representations
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proposed by the Joint Committee on Structural Safety (JCSS) [1], Fig. C.1 pro-
vides a system representation in terms of the flow of consequences generated
as a result of exposure events. 

 
 
Figure 1 The JCSS framework for systems risk modelling (from JCSS (2008)). 

 

Following Shannon’s MTC, Weaver (1949) argued that the analysis of information can be viewed 

in terms of: (i) quantification of information in accordance with Shannon’s theory for the purpose 

of solving technical problems; (ii) analysis of semantic problems related to meaning and truth; and 

(iii) analysis of “influential” problems with regard to effects of information on human behavior. 

Clearly, in the context of risk management in support of societal decision making, all the above are 

relevant.  

Given the pervasiveness of the concept of information in a wide range of application areas from 

computer science to linguistics to biology, there is no agreed definition of information, rather a 

multiplicity of operational definitions that fit particular contexts. Before we say which of these 

definitions we prefer as befitting the context of our present inquiry, we briefly look at implications 

of the physical and semantic conceptions of information with regard to decision-making under 

uncertainty. The physical conception of information is formulated through Shannon’s MTC in the 

context of electrical engineering. It deals with the problems of data compression and data 

transmission. MTC is not concerned with the content or meaning of the data, but it does provide 

meaning about the potentiality of meaning through the concept of statistical significance. In the 

words of Weaver (1949): “The mathematical theory of communication deals with the carriers of 

information, symbols and signals, not with information itself. That is, information is the measure of 

your freedom of choice when you select a message”. By treating information as a physical entity, 

MTC postulates that a lower degree of randomness or entropy is associated with less information 

and vice versa. 

The semantic conception of information considers the content of information through the 

satisfaction of three criteria: meaningfulness, consistency and truth. Those who require the first two 

criteria only are proponents of the theory of weakly semantic information; those who require all 

three subscribe to the theory of strong semantic information. Floridi (2015) distinguishes further 

between instructional information (which must be meaningful in order to convey the need for action) 

and factual information (a declarative statement which may be true or false). Floridi has come to be 

known as the academic authority on the newly coined branch of philosophy – philosophy of 

information, particularly on ethical aspects of the uses of information. He argues (2004, 2015) that 

truth is a defining criteria of factual information and that misinformation and disinformation 

regardless of intent, or the lack thereof, are not to be considered as factual information. Opposed to 

this view, Fetzer (2004) and Dodig-Crnkovic (2005) have argued that false information, including 

contradictions are also instances of semantic information by virtue of fulfilling the truth-neutral 

Figure C.1: The JCSS systems representation.

The flow of consequences and their magnitude are generally subject to
uncertainty of both aleatory and epistemic character. In accordance with
JCSS [1], this uncertainty may be adequately represented by means of the
Bayesian probability theory. Following Bayesian decision analysis [2] and the
axioms of von Neumann and Morgenstern [3], decision optimization on the
management of the system, as illustrated in Fig. C.1, may be supported by
the available knowledge and information about how decisions change the
generation of the expected value of consequences. Nielsen et al. [4] points
out that the knowledge and information, which is relevant to consider, when
establishing a probabilistic systems representation (a model), is the knowl-
edge and information that affects the identification of optimal decisions, i.e.,
the ranking of decision alternatives. With this insight, it becomes obvious
that the process of model building and systems management, i.e., the context
of the model building, should not be separated.

1.2 MODELING BASIS

Traditional models are most often based on a phenomenological understand-
ing, e.g., probabilistic physics model formulations with parameters estimated
based on statistical evidence achieved through observations and experiments
(“bottom-up” approaches). It is evident that such approaches rely strongly on
the adequacy of a-priori available knowledge and information, which is not
always granted. As a result, it is generally the case that all focus of the model-
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ing is directed on what is understood to be the most likely physical formula-
tion of the phenomena of interest, and other possible explanations are implic-
itly excluded. Moreover, possible variables not subjectively realized to affect
the phenomena of interest are systematically omitted in the modeling, which
in turn increases the uncertainty associated with the derived models. In re-
cent years, robust so-called data-driven modeling approaches (“top-down”
approaches) have been formulated and increasingly applied with success in
a wide range of applications, see e.g., [5–9]. Data-driven approaches facilitate
that models are derived directly from data contained in e.g., databases and
do not necessitate an understanding of the phenomena generating the data
by the analyst. Data-driven approaches generally identify the most likely re-
lationship between covariates and observations and facilitate a quantification
of this likelihood. However, the downside to data-driven approaches is that
they may indeed result in models contradicting established knowledge, e.g.,
generally accepted causal relationships.

One objective of the present research is thus to assess whether a com-
bination of bottom-up and top-down modeling may be formulated, which
facilitates a consistent utilization of prior phenomenological knowledge and
knowledge extracted from information contained in databases. Moreover,
this formulation should facilitate that in principle all possible and relevant
likely models may be identified and quantified with respect to their likeli-
hood.

1.3 MODEL REPRESENTATION

Engineering modeling, e.g., in the context of assets integrity management, is
traditionally undertaken by interfacing domain-specific models, established
individually by subject matter experts. The domain-specific models (e.g.,
models of the wave environment, water particle kinematics, hydraulic forces,
structural responses, and failure criteria) are generally developed in accor-
dance with the best available knowledge within the relevant domains of ex-
pertise, and they are optimized individually to provide the highest degree
of precision with the available and achievable information, see e.g., [10, 11].
The decisions regarding how to optimize precision are generally based on the
prior understanding of the domain experts and often assessed without spe-
cific consideration of the context in which the models are applied. One ex-
ample of this approach is development of a so-called digital twin model of a
structure, where a numerical structural model is adopted to information col-
lected using techniques of structural health monitoring, see e.g., [12–14]. Such
approaches surely provide a basis for supporting decisions; however, they
neither facilitate for a context-driven optimization of the individual models
nor a joint optimization of the interfaced models. As a result, models may be
unnecessarily precise in domains, which are not important for the decision
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context and not adequately precise in domains of special importance for the
decision context.

Another objective of the present research is thus, under consideration
of the findings related to the first objective, to establish a theoretical and
methodical basis for engineering modeling, which facilitates for integrating
the optimization of model representation directly into the decision context,
through an assessment of how the precision of the modeling affects the rank-
ing of the considered decision alternatives.

The remainder of this paper is organized as follows: Secs. 2 and 3 present
a novel decision analytical framework for systems modeling in the context
of the risk-informed integrity management of offshore structures, and, in ad-
dition, we provide modeling techniques supporting the combination of the
bottom-up and top-down modeling. Section 4 presents the suggested ap-
proach considering systems modeling and decision optimization in the con-
text of a possible evacuation of an offshore facility in the face of an emerging
storm event. Finally, the proposed approach is discussed in relation to the
present best practice and concluded in Secs. 5 and 6.

2 BASIC CONSIDERATIONS ON MODEL
BUILDING

Scientific models are established on the premise that they serve decision-
making in the generic context of systems performance management, noting
that systems may comprise any combination of interactions between applied
technology, humans, organizations, and the natural environment. In this
context, the objective of model building is to represent the available and rele-
vant knowledge about the performances and/or characteristics of systems in
consistency with scientific knowledge and evidence obtained from e.g., ex-
periments and observations. In the following, to represent knowledge and
rank decision alternatives, Bayesian probability theory and Bayesian decision
analysis are applied, see e.g., [2]. Moreover, the framework of Bayesian net-
works (BNs) is utilized to represent joint dependency relations in the problem
domain, compare with Sec. 3.

2.1 SYSTEMS AND DECISION-MAKING

At the simplest level, a model M(a) provides a relationship between input
and output, measured in terms of utility, conditional on a decision repre-
sented by a. Figure C.2a illustrates how a system provides this relation-
ship between decision alternatives a and the associated utilities U(a). The
system performance is generally associated with uncertainty, and thus, the
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performance (output or utility) is random. In accordance with Bayesian de-
cision theory [2] and the axioms of utility theory [3], the optimal decision
alternative is selected from a by optimizing the expected utility, i.e., a∗ =
arg maxa(E[U(a)]).

In the general case [15, 16], the system under consideration is unknown
in itself, and it is unknown which is the most relevant representation of the
system. In Fig. C.2b, the variable s represents one choice of system represen-
tation out of a set of system representations s, and σ represents a realization
of the real system. The optimization of decision alternatives is further com-
plicated by the fact that some of the decision alternatives within a are only
relevant for one or some of the competing system representations. The op-
timization of decision alternatives must thus be undertaken jointly with a
choice of system representation.

Decision Chance

Utility

System 

realization

System 
choice

σisi

Decision Chance

Utility

Decision System Utility

Random realization

Decision Utility

Random realization

System

(a)

Decision Chance

Utility

System 

realization

System 
choice

σisi

Decision Chance

Utility

Decision System Utility

Random realization

Decision Utility

Random realization

System

(b)

Figure C.2: Systems role in decision analysis: (a) one possible system, (b) sev-
eral possible systems.

To account for the competing system representations, we introduce the
system model M(a):

M(a) = (Σ(a), C(a), X(a))T , (C.1)
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where Σ(a) is a probabilistic system representation with realizations {σj}ns
j=1

corresponding to the set of system choices. Each graph model is comprised
of an ensemble of ncj constituents interacting jointly to provide the func-
tionalities of the system, i.e., mapping input to output. For a given choice
of system s, the performances of the constituents are modeled by a set of
constituent models C and a prior probabilistic representation P′(X|s) of all
variables entering the model. For the sake of generality, we highlight that
in principle all the models defining the system have temporal and spatial
references; these are omitted here for ease of notation.

The optimization of decision alternatives, including system choice, may
now be written as:

(s∗, a∗) = arg max
s,a

U(s, a) =arg max
s

(
P(Σ = s) arg max

a

(
E′X|s[U(a, X)]

)
+ E′Σ\s

[
E′X|{Σ\s}[U(a∗, X)]

])
,

(C.2)

where a∗ = arg maxa E′X|s[U(a, X)], see also [16]. In Eq. C.2, the robustness
of the decision with regard to the choice of system may be assessed as the
ratio of the first term to the sum of the two terms. Thus,

Robustness(s, a∗) =
P(Σ = s)E′X|s[U(a∗, X)]

E′Σ
[
E′X|Σ[U(a∗, X)]

] (C.3)

This ratio, which attain values between 0 and 1 (1 = robust), indicates to
which degree the expected value of benefits associated with a chosen de-
cision alternative depends – in expected value – on the correctness of the
underlying system assumption. That is, how sensitive the chosen decision is
with regard to the possibility that the optimization, based on which the deci-
sion is identified, is undertaken under an erroneous system assumption. As
mentioned by Nielsen et al. [4], an example of decision optimization from off-
shore engineering in the face of competing systems concerns inspection and
maintenance of fatigue crack growth in welded details of steel jacket struc-
tures. For a long period, inspection and maintenance were undertaken based
on the assumption that findings from inspections originated from the fatigue
crack growth. It was later realized, however, that a large proportion of inspec-
tion findings originated from welding defects such as slag inclusions and had
nothing to do with growing cracks. Robustness of decisions has not attained
much systematic attention in the engineering literature, where the tradition
for strong model assumptions is widespread and rarely questioned. In the
context of global climate change, there is, however, an increased focus on the
uncertainties associated with the possible different societal developments that
drive the climate changes, see e.g., [17], and the effects of these uncertainties
on the adequacy of decision alternatives for mitigation and adaptation.
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Furthermore, as indicated earlier, we note that the model building should
be seen as an integrated part of the decision optimization. There is no need
for a model to be accurate in the domains of “reality”, which are irrelevant
for the decisions subject to optimization. On the contrary, by embedding the
model building operation inside the optimization of decision alternatives, the
available knowledge may be fully utilized to optimize the expected value of
utility associated with the system under consideration and thus consistently
rank decision alternatives.

2.2 INTERPRETATION OF AND REQUIREMENTS TO
SYSTEM MODELS

The available approaches for modeling the performance of systems may be
categorized as classical engineering understanding-based bottom-up models
and data-driven top-down models. However, in either case, evidence can and
must be accounted for in the modeling process. As outlined in the forego-
ing, a model is a representation of reality in the context of decision-making,
meaning that a good model facilitates consistent ranking of the considered
decision alternatives.

In recent developments on data-driven modeling and data-driven learn-
ing, the perspective is often taken that such approaches are superior to
bottom-up modeling approaches, since they simply reflect the information
contained in the evidence. However, it must be appreciated that “reality” is
fundamentally subjective and should be understood as a proxy for “truth”
to the extent that this (the truth) is objectively understood. Thus, “reality”
is associated with uncertainty, but may be framed through experience and
information (knowledge), i.e., a combination of philosophical and scientific
insights and observations. Framing of “reality” is thus fundamentally sub-
jective, since it is based on a choice of which experience, which informa-
tion (data), and which class of models are used as the modeling basis.

The implication of this is that whether bottom-up or top-down ap-
proaches, or combinations hereof, are utilized as the basis for modeling of
systems performances, the models will always be subjective and thus subject
to epistemic uncertainties. A framework for systems modeling from [18] in
the context of assets integrity management is illustrated in Fig. C.3.

In Fig. C.3, the concept of indicators is introduced as a means to account
for evidence, which is indirectly, and generally more weakly, related to the
performances of the system. As an example, an indicator of a short-term
maximum crest height could be the significant wave height. Observations of
indicators thus provide information; however, they are in general subject to
additional uncertainty. The concept of indicators provides a strong means
for including evidence in systems modeling, and they may be further used
to facilitate multi-scale system representations. This principle of introducing
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hierarchical approach reported in Nishijima et al. (2009) which 

takes basis in the system representation in Figure 3. The idea 

followed is that the performance of each potentially critical 

constituent (or subsystem) of the considered system is related to 

the performance of the system through the conditional 

probability of inadequate system performance given damage or 

failure of the individual constituents in a marginal sense. 

The extension of the prior decision analysis illustrated in 

Figure 1 is the pre-posterior decision analysis shown in Figure 4. 

 
 

Figure 4. Illustration of the pre-posterior decision analysis. 

 

The strong merits of the pre-posterior decision analysis is 

that it facilitates that different options or decision alternatives 𝐞 

which may exist for collecting additional information about the 

states and performances of the considered system and thereby to 

enhance the optimization of decisions on managing the state of 

the system, i.e. 𝐚, can be ranked. The possible decision 

alternatives for collecting additional information 𝐞 may be 

considered as experiments with outcomes 𝐳̂. As the outcomes  𝐳̂ 

are unknown these are modelled probabilistically based on prior 

information. The benefit of additional information depends on i) 

the quality of the experiment 𝐞 in terms of precision and ii) the 

degree to which the observed system states and performances 

relate to the system performance of interest. The scheme for 

including additionally collected information from the planned 

experiments is Bayesian updating (see also Lindley (1972)) i.e.:  

 

𝑓𝑋
′′(𝑥, 𝑒 |𝐳̂) =

𝐿(𝑥,𝑒|𝐳̂)𝑓𝑋
′ (𝑥)

∫  𝐿(𝑥,𝑒|𝐳̂)𝑓𝑋
′ (𝑥)

              (3) 

 

where: 

𝑓𝑋
′(𝑥) is the prior probabilistic model (pdf) of the state 

variable 𝑋, 

𝐿(𝑥, 𝑒|𝐳̂) is the likelihood of the state of the system 𝑥 given 

the experiment outcome 𝐳̂, 

𝑓𝑋
′′(𝑥, 𝑒) is the posterior probabilistic model (pdf) for the 

state variable 𝑋. 

 

The system modelling illustrated in Figure 3 may be adapted 

to accommodate for the pre-posterior decision analysis 

illustrated in Figure 4 – as shown in Figure 5. As indicated here, 

decision analyses with respect to SIM are undertaken at desktop; 

however, information from the real world may be accommodated 

for, and greatly enhances both quality and efficiency.  

In the context of SIM the decision event tree illustrated in 

Figure 4 may in a narrow sense be interpreted as the choice 

between different decision alternatives to perform inspections or 

to conduct monitoring of the state and performances of the 

structural system. Such choices include the selection of 

inspection or monitoring technique, e.g. ACFM techniques for 

fatigue crack detection and sizing, and the choices on how many 

and which locations to inspect for cracks. 

 

 
 

Figure 5. Illustration of the model basis for SIM. 

 

The outcome of the inspections can be crack detection and 

indications of the crack geometry or alternatively - no detection. 

As discussed in Straub (2004) the quality of the inspection 

technique and the state of the inspected system are decisive for 

the relevance of the inspection result and the interpretation of 

this. If the applied inspection technique has a poor performance 

it may lead to not identifying cracks which may actually be there. 

It could also lead to identification of cracks even if there are no 

cracks. The quality and appropriateness of inspection techniques 

should always be seen in the light of the prior information about 

the probability that cracks are present and relative to the 

geometry characteristics (size) of the cracks which are critical. It 

is obvious that there is no benefit from looking after cracks of a 

size so small that available techniques cannot find them with any 

reasonable precision. This will in general lead to either no 

detection or to false detections. If a crack indeed is found the 

next level of decision making illustrated in Figure 4 concerns the 

possible remedial actions, depending on the size of the detected 

crack as relative to what is considered critical. Depending on the 

choice of remedial action and its quality, the state of the system 

is realized and the benefit associated with the scenario of 

inspection and maintenance decisions and outcomes can be 

associated with consequences, quantified by the benefit function. 

INFOMAL DECISION ANALYSIS FOR RBI 
It is important to appreciate that a decision analysis can never 

provide better decision support than facilitated by the system 

representation. As a rule it applies that the system representation 

shall be selected such as to provide a clear separation of the 

expected values of benefits corresponding to the considered 

decision alternatives. The considered decision alternatives may 
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Figure C.3: Systems modeling framework in the context of offshore asset
integrity management.
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Figure C.4: Illustration of the concept of indicators as applied in Fig. C.3.

evidence achieved through observation of indicators is illustrated in Fig. C.4.
We emphasize that probabilistic system models must consistently account

for and distinguish between uncertainty associated with sparsity of evidence,
and possible model uncertainty and associated lack of fit. This is of crucial
importance in the context of model optimization, where an optimal trade-off
between complexity (in terms of graph, constituent, and parameter models)
and the associated statistical uncertainties must be identified.

In summary, with reference to Eqs. C.1 and C.2, probabilistic system mod-
els should facilitate:

• Representation of multiple possible competing systems (graph models)
and associated likelihoods.
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• Inclusion of probabilistic constituent models (including aleatory and epis-
temic uncertainty).

• Probabilistic descriptions of the parameters of the constituent models (in-
cluding epistemic and aleatory uncertainty).

• Inclusion of evidence obtained from experiments on and observations (in-
cluding indicators) of the system.

• Consistent representation of statistical uncertainties due to sparsity of evi-
dence.

3 BAYESIAN NETWORK

As mentioned in Sec. 2, we use the framework of Bayesian networks (BNs)
to represent probabilistic systems. BNs, which constitute a branch of prob-
abilistic graphical models, encode a joint probability distribution over a set
of random variables X by decomposing it into a product of local, conditional
probability distributions according to a directed acyclic graph G.

In the graph structure G, each vertex vi ∈ V corresponds to a random vari-
able Xi, and the edges E between the vertices represent a set of conditional
dependence relations implied by G. Moreover, by studying the missing edges
in G, we can directly read off a set of conditional independence relations be-
tween the random variables. For each random variable Xi in G, we specify a
conditional probability distribution P(Xi|Pai), which defines the dependence
of Xi on the random variables that Xi is conditional dependent on in G,
termed the parent set Pai of variable Xi. The joint distribution encoded by a
BN is given in Eq. C.4:

P(X|G, ΘG) = ∏
i

P(Xi|Pai), (C.4)

where ΘG denotes the set of model parameters related to graph G. For dis-
crete variables, the set of parameters corresponds to the probability masses
of each combination of states: ΘG =

⋃{P(xi|pai) = Θxi |pai
}. For continuous

variables, the parameter set corresponds to the parameters needed to specify
the probability density functions of the random variables, see e.g., [19].

3.1 INFERENCE IN BNs

One of the most common inferences made in BNs is the so-called conditional
probability query. In a conditional probability query, we compute the poste-
rior distribution P(Y |Ev = ev) of a subset Y of the variables in the BN, given
a (possibly empty) evidence set Ev = ev on some of the other variables in

173



3. BAYESIAN NETWORK

the network. By the definition of conditional probability, we may write this
probability distribution as follows:

P(Y |Ev = ev) =
P(Y , ev)

P(ev)
. (C.5)

In Eq. C.5, the numerator is computed from the factorization of the joint
distribution P(X), defined by the BN, by marginalizing out the variables
W = X − Y − Ev, which are neither query nor evidence variables:

P(Y , ev) = ∑
W

P(Y , W , ev). (C.6)

Here, we assume that the variables are discrete, but the considerations in
this section applies equally well to continuous variables or to a combination
of discrete and continuous variables, in which case, the summations are re-
placed, where appropriate, by integrations.

Because Y , W and Ev are all the variables in the BN, each term in the
summation P(y, w, ev) is simply one entry in the joint distribution. The de-
nominator in Eq. C.5 may now be computed as follows:

P(ev) = ∑
Y

P(Y , ev), (C.7)

which allows us to reuse the result of Eq. C.6, instead of having to marginal-
ize out both Y and W from the joint distribution P(X) of all variables in
the BN [20, 21].

Equation C.6 represents a brute force procedure for computing P(Y , Ev =
ev) called sum-product, where we first compute the product of factors in
the summation and then marginalize out the variables W that are not of
immediate interest, but there exists a variety of more efficient inference algo-
rithms, both exact, like the sum-product algorithm, and approximate. Some
of the more common algorithms are variable elimination, belief propagation,
particle-based methods, and variational inference (see e.g., [20] for further
details).

3.2 LEARNING BNs

As apparent from Eq. C.4, a BN is fully specified by its graph G and its pa-
rameters ΘG . The process of specifying the pair (G, ΘG) is termed learning,
and it is usually performed in two steps: structure learning and parameter
learning. Structure learning refers to the construction of the graph structure
G, and parameter learning refers to the specification of the model parame-
ters ΘG .
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Both learning tasks may be undertaken by use of a bottom-up or top-
down approach or by a combination hereof. In a bottom-up approach, do-
main experts are interviewed to identify the graph structure and parame-
ters. In a top-down approach, the graph structure and parameters are estab-
lished using information provided in a database. The graph structure may
be learned either by performing conditional independence test on the data-
base, called constraint-based structure learning, or by optimizing a fit-to-data
score metric, called score-based structure learning. Moreover, both frequen-
tistic and Bayesian approaches may be employed for parameter learning [22].
As indicated, BNs are defined in terms of conditional dependence relations
and probabilistic properties, without any implication that edges should point
from causes to effects. However, it is argued by Pearl [23] that causal BNs
pose a more reliable and natural way of expressing our knowledge about the
domain we are modeling. That is, we should strive to use a combined learn-
ing approach whenever possible, as it makes the best use of the available and
relevant knowledge about a given system.

In this paper, we only present a concise description of BNs. The interested
reader may refer to the seminal work by Pearl [19, 23], as well as recent
prominent textbooks [20, 24, 25].

4 ILLUSTRATION OF THE PROPOSED
APPROACH

To illustrate the ideas and methods introduced in this paper, an example is
introduced. We consider the following decision problem: The facility man-
ager of an offshore facility is informed that a storm is approaching from a
westerly direction. She knows that the facility will fail, if the storm peak sig-
nificant wave height Hm0 exceeds 6 m, and she is now faced with a decision
of whether to evacuate the facility. She does not know which westerly direc-
tion the storm is approaching from, but if it approaches from SW or W, she
can choose to either evacuate by helicopter or boat. If the storm approaches
from NW, she can only choose to evacuate by helicopter. Furthermore, de-
pendent on the direction from which the storm is approaching, failure will
have different consequences.

The decision problem is outlined in Fig. C.5. In the figure, {sj}3
j=1 cor-

responds to the choice of storm model, i.e., SW, W, and NW; and {ak}3
k=1

corresponds to the decision alternatives, i.e., evacuate by helicopter, no evac-
uation, and evacuate by boat. Please note that the combination s3 and a3 is
not possible, as evacuation by boat is not possible, if the storm is approaching
from NW. Moreover, the system-dependent probability of failure is defined
as p f = P(Hm0 > 6 m|s), the maximum cost Umax = −1 monetary units,
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Figure C.5: Illustration of the optimal system choice decision problem.

and P(σj) represent the probability of storm direction j.
Now, we want to support the facility manager in identifying the opti-

mal decision. Therefore, we build a probabilistic model (BN) for the joint
probability distribution of the set of environmental variables in a metocean
database (Sec. 4.1). This model is then used to estimate the system-dependent
probabilities of failure in Fig. C.5, and thereafter, the decision problem may
be solved. The individual steps are described in Secs. 4.1–4.3.

4.1 DATABASE

In this study, we consider the ocean environment of an area located approxi-
mately 220 km offshore the west coast of Jutland, Denmark in the North Sea
at a water depth of approximately 40 m. The related metocean database is
composed of wind fields and corresponding wave hindcast simulator out-
puts for a period of 37 years from 10th January 1979 to 30th December 2015.
Within the considered area, the simulator outputs are sampled at 23 locations.

The hindcast data are produced by use of a MIKE21 spectral wave sim-
ulator model [26], with climate forecast system reanalysis wind fields [27]
as input. This model is run for a number of different combinations of hind-
cast tuning and set-up parameters, specified using a Latin hypercube design,
to generate multiple sets of wave hindcast outputs, and a single central set-
ting of the parameters is chosen in consultancy with hindcast experts after
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verifying that the effect on the outputs is small, when varying the parame-
ter setting.

The simulator outputs for this central parameter setting are then filtered
to identify storm peak wind and wave characteristics for storm events using
a procedure similar to that used in [28]. Thus, a total of 2187 storm events
are defined by exceedances of a threshold, which is non-stationary with re-
spect to season and direction and therefore may not necessarily comply with
the meteorological definition of storms. The hindcast storm events are char-
acterized by the variables in Tab. C.1. Note that wind and wave direction
are defined as the direction from which they emanate, measured clockwise
from north in degrees. More details on this metocean database may be found
in [29].

Table C.1: Metocean database.

Variable Description Unit
Lng Longitude ◦

Lat Latitude ◦

Dpt Water depth m
WiS Maximum storm wind speed m/s
CS Current speed m/s
RWL Residual water level (surge + tide) m
TY Time of storm peak ◦

WaD Peak wave direction ◦

WiD Direction of max. storm wind speed ◦

CD Current direction ◦

Hm0 Storm peak significant wave height m

4.2 LEARNING BNs AND DYNAMIC DISCRETIZATION
OF CONTINUOUS DATA

An important prepossessing consideration, when applying BNs to a real-
world domain, is how to handle continuous variables. In this study, we
discretize random variables with continuous sample spaces. By casting the
discretization process as part of the learning problem, we hereby strive to
make as few assumptions as possible regarding the distribution family of the
domain variables, when learning a BN representation of a given system. In
this regard, the number of intervals and their boundaries have to be chosen
carefully, as valuable information about the probability distribution of the
variables and their dependencies may be lost otherwise. For some of the
variables, we predefine the discretization boundaries. This is the case for all
directional variables, as well as for the time of storm peak and for the wave
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height variable, as we need a specific granularity of these variables in regard
to the decision problem.

The remaining variables are discretized by use of a multivariate discretiza-
tion procedure, embedded in the structure learning procedure, which takes
the interactions in the graph structure into account. The method we use is
based on [30], where it is assumed that a data set is generated in two steps:
First, an interval of a variable is selected from the distribution of the discrete
variable. Second, the corresponding continuous value is drawn from a distri-
bution over the interval. We then seek an optimal discrete representation D of
the original continuous data set Dc, which maximizes the objective function:
P(D|G)P(Dc|D).

As the graph structure changes throughout the structure learning phase,
the discretization is adjusted dynamically to maximize the objective function
in a manner similar to that proposed in [31]. Thus, we start by learning the
optimal discretization of an initial graph structure, which in turn is used to
learn a new graph structure. These two steps are repeated until the score
function converges to a local optimum. A similar scheme for the combined
structure learning and discretization is used in [32].

In our implementation, we use functionalities from the publicly available
R package bnlearn [33] to learn the structure of the graph, using the Bayesian
Dirichlet equivalent score metric within a tabu search algorithm, which is a
score-based learning algorithm.

4.3 RESULTS AND CONCLUSIONS

Initially, the graph structure and optimal discretization are learned using
the database. In this regard, the structure learning is constrained by our
causal understanding of the domain, e.g., we force an edge going from TY
to WiS, WiD, Hm0, and RWL, as well as edges meeting at Hm0 from WiD
and WiS; see Tab. C.1 for a reference on the variable names. The learned
graph structure and the corresponding discretization appear in Fig. C.6 and
Tab. C.2, respectively.

Apart from the predefined connections, we observe that the BN encodes
additional statistical dependencies. For instance, as we would expect, there is
a statistical dependence between the water depth at a location and the current
speed in a storm, and between the maximum wind speed in a storm and the
wind direction. Furthermore, if we consider the discretization, we see that
the optimal discretization of the location variables Lng and Lat and the depth
variable Dpt is binary. This discretization policy is supported by the scatter
plot in Fig. C.7, where we see that the samples of the three variables are
clustered in two regions (black and gray).

Having defined the graph structure and discretization, we quantify the
model parameters using Bayesian statistics with Dirichlet equivalent uni-

178



PAPER C.

Lng

Lat

Dpt

WiS

CS RWL

TY

WaD

WiD

CD

Hm0

Figure C.6: BN model.

Table C.2: Discretization.

Variable Levels Comments
Lng 2 learned
Lat 2 learned
Dpt 2 learned
WiS 9 learned
CS 6 learned
RWL 9 learned
TY 4 predefined (Spring, Summer, Fall, Winter)
WaD 8 predefined (NW, N, NE, E, SE, S, SW, W)
WiD 8 predefined (NW, N, NE, E, SE, S, SW, W)
CD 8 predefined (NW, N, NE, E, SE, S, SW, W)
Hm0 16 predefined ((0, 2], (2, 2.5], (2.5, 3], ..., (9, In f ])

form priors. By use of this BN model (G, ΘG), the failure probabilities in
Fig. C.5 are evaluated, and subsequently, the decision problem is solved by
use of Eq. C.2.

In Fig. C.8, the solution is shown for the case of maximum a posteriori
(MAP) inference in the BN model. The optimal representation(s) and deci-
sion alternative, given representation, are indicated by bold-faced boxes. It
appears that both system representations s1 and s3 optimize the expected
utility, because they agree on the optimal action a∗ being not to evacuate.

In case we include the statistical uncertainties in the model evaluation,
instead of using the MAP parameters, we obtain probability distributions for
p f |s instead of just fixed quantities. Propagating these through the decision
analysis, we obtain probability distributions for the expected utilities E[U|s]
and robustness’s as well.

In Fig. C.9, the probability distribution for failure probability, expected
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Figure C.8: Solution to the optimal system choice decision problem.
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Figure C.9: Optimal system choice decision problem including statistical un-
certainties: (a)–(c) show the distribution of failure probability, expected value
of utility, and robustness corr. system choice s1. (d)–(f) and (g)–(i) show the
results corr. system choices s2 and s3, respectively.

utility, and robustness are shown for the three different system representa-
tions. The first column of the figure shows the system-dependent failure
probabilities, the second column shows the system-dependent expected val-
ues of utilities, and the third column shows the system-dependent robust-
ness. From the first two columns, we see that the quantities spread around
the MAP assignments of Fig. C.8 as expected.

As mentioned, the robustness in the third column indicates how sensi-
tive the decisions are with regard to the possibility that the optimization
is undertaken under an erroneous system assumption. It appears that the
spread around the MAP assignment is largest for system s3 and smallest for
system s2. Furthermore, we see a significant difference in the robustness
for the different system representations. Thus, based solely on the system-
dependent expected utilities, we are not able to choose between system rep-
resentation s1 and s3, but from the assessment of the robustness, we see that
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the decision based on s3 is significantly more robust than the decision based
on s1.

In general, the decision analysis may result in different rankings of the
systems, and corresponding optimal decision alternatives, for different in-
stantiations of the parameters, whereby we must resort to, for instance, ma-
jority voting in the sample to choose the pair (s∗, a∗). In the simple decision
problem, we consider in this study, all instantiations of the parameters re-
sulted in the same ranking as of Fig. C.8.

5 DISCUSSION

The approach to integral modeling and decision optimization proposed, out-
lined, and illustrated in the foregoing provides several advantages compared
with traditional, present best practice modeling approaches. The main ad-
vantage being that the model building is “value-driven” in the context of its
application, whereas traditional modeling approaches at best implicitly or
indirectly account for the application of the model when this is formulated
and its parameters estimated. A second advantage is that the proposed mod-
eling approach explicitly accounts for possible competing systems, which
may influence the adequacy of chosen decision alternatives. Moreover, the
presented formulations provide information on the degree to which possi-
ble competing systems may influence the optimality of decision ranking. A
third advantage of the presented approach is that its technical implemen-
tation through the use of Bayesian networks greatly accommodates for the
joint utilization of both the prior knowledge and the knowledge that may
be extracted from the analysis of the data. This concerns both the causal
relationships between model variables and the probabilistic characteristics
of these. Finally, it should be highlighted that the proposed modeling ap-
proach accommodates for a consistent representation of both aleatory and
epistemic uncertainties in the same manner as is normally pursued in tra-
ditional modeling schemes. Presently, the proposed modeling approach is
being further applied, investigated, and refined in the context of the ongoing
DHRTC projects, not only focusing on the probabilistic modeling of the off-
shore loading environment but also addressing other modeling challenges,
such as the stochastic representation of non-linear structural responses and
fatigue crack growth in welded tubular joints. These ongoing studies will
serve to assess the broader significance of the proposed approach compared
to traditional approaches and to improve understanding of its added value.
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6 CONCLUSION

The present paper presents early developments on the formulation and im-
plementation of a novel decision analytic framework for systems modeling in
the context of risk-informed integrity management of offshore facilities, with
a focus on the development of system models representing environmental
loads associated with storm events. To account for the fact that system mod-
els in general serve to facilitate the optimal ranking of decision alternatives,
we formulate the problem of systems modeling as an optimization prob-
lem to be solved jointly with the ranking of decision alternatives. Moreover,
based on recent developments in structure learning and Bayesian regression
techniques, a generic approach for the modeling of environmental loads is
established, which accommodates for a joint utilization of phenomenolog-
ical understanding and knowledge contained in databases of observations.
The developed framework and corresponding techniques greatly support the
combination of bottom-up and top-down modeling and facilitates for consis-
tently addressing the existence of possible competing systems in the context
of assets integrity management. The proposed framework and the utilized
techniques are illustrated in an example, where we consider systems mod-
eling and decision optimization in the context of possible evacuation of an
offshore facility in the face of emerging storm events. The example shows
how a probabilistic model for storm events may be formulated using the
Bayesian networks modeling paradigm and how the corresponding system
representations may be used in a decision optimization; first, based on MAP
inference in the BN model and second, including statistical uncertainties in
the model formulation. On the basis of this assessment, we conclude that
this decision framework is indeed feasible, and future research will focus on
broader and more involved applications of the framework, as well as further
algorithmic developments and optimization.
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NOMENCLATURE

a or a Decision alternative(s).
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ABSTRACT

Modeling of fatigue crack growth plays a key role in risk-informed inspection and
maintenance planning for fatigue sensitive structural details. Probabilistic models
must be available for observable fatigue performances such as crack length and depth,
as a function of time. To this end, probabilistic fracture mechanical models are gen-
erally formulated and calibrated to provide the same probabilistic characteristics of
the fatigue life as the relevant SN fatigue life model. Despite this calibration, it is
recognized that the rather complex fracture mechanical models suffer from the fact
that several of their parameters are assessed experimentally on an individual basis.
Thus, the probabilistic models derived for these parameters in general omit possible
mutual dependencies, and this in turn is likely to increase the uncertainty associated
with modeled fatigue lives. Motivated by the possibility to reduce the uncertainty
associated with complex multi-parameter probabilistic fracture mechanical models, a
so-called normalized fatigue crack growth model was suggested by Tychsen (2017). In
this model, the main uncertainty associated with the fatigue crack growth is captured
in only one parameter. In the present contribution, we address this new approach for
the modeling of fatigue crack growth from the perspective of how to best estimate its
parameters based on experimental evidence. To this end, parametric Bayesian hierar-
chical models are formulated taking basis in modern big data analysis techniques. The
proposed probabilistic modeling scheme is presented and discussed through an exam-
ple considering fatigue crack growth of welds in K-joints. Finally, it is shown how
the developed probabilistic crack growth model may be applied as basis for risk-based
inspection and maintenance planning.

Keywords: structural safety and risk analysis, system integrity assessment.

1 INTRODUCTION

Fatigue crack growth in welded details is a major contributor to service life
costs of offshore facilities. Fatigue induced crack growth poses an impor-
tant risk to the integrity of offshore structures. Thus, to ensure an adequate
level of safety and reliability over the service life of offshore facilities, in-
tegrity management measures must be implemented to ensure that possible
developments of fatigue cracks are kept within acceptable limits. Due to the
substantial uncertainty associated with the offshore fatigue loading environ-
ment, fatigue and crack growth degradation processes in general, as well
as the quality of inspection and maintenance activities, this poses a rather
significant challenge. Over especially the last three decades, significant re-
search and development effort has been invested to identify methods and
techniques facilitating optimal integrity management of welded details in off-
shore oil and gas production systems. Based on risk assessments, so-called
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risk-based inspection (RBI) planning methods have been developed and im-
plemented especially for jacket type steel structures, FPSOs and FSOs, see [1]
for a comprehensive overview. Using RBI techniques, inspection and mainte-
nance activities may be optimized in such a manner that requirements to the
safety of personnel and to the qualities of the environment are fulfilled, and
at the same time service life costs are minimized.

One of the key challenges associated with the development of robust and
efficient methods for RBI concerns the probabilistic modeling of the crack
growth process. In past research and development efforts, the focus to this
end has been on the application of fracture mechanics as a means to model
the development of cracks from the phase of initiation over propagation to
failure in terms of crack through or loss of critical stiffness. In principle
this approach works well, and operational RBI techniques have been devel-
oped and implemented into practice over the years, see e.g., [2]. However,
since the probabilistic characterization of the various parameters entering the
fracture mechanical models for practical reasons traditionally is undertaken
on a marginal basis, i.e., parameter-wise, the dependencies between these
parameters are generally not accounted for, and this might lead to an over-
estimation of the uncertainty associated with the modeled crack growth. To
circumvent this weak point of present best practice in RBI for fatigue sensi-
tive details, Maersk Oil and Gas initiated a research and development project
to investigate if it would be possible to develop an alternative formulation of
fatigue crack growth models, see [3]. As a result of this initiative, a so-called
normalized fatigue crack growth model was formulated by which the crack
dimensions, normalized with respect to the critical crack size, may be rep-
resented as a function of the fatigue loading (time), normalized by the time
until fatigue failure assessed through traditional SN experiments. This type
of fracture mechanical representation of fatigue crack growth is thus made
possible by normal SN experiments, augmented with observations of crack
growth at a selected number of intervals during the experiments.

With this new approach to the modeling of fatigue crack growth, the ques-
tion arises on how best to estimate the parameters of the models consistently
based on experimental evidence. The present paper offers a contribution
to this end by considering modern techniques of big data analysis, such as
model-based machine learning in conjunction with Bayesian inference. In this
paper, we first introduce these techniques. Thereafter, the normalized fatigue
crack growth model is outlines, and subsequently the presented techniques
and methods are applied to an example addressing probabilistic fatigue crack
growth modeling of welded details of K-joints. Finally, it is shown how the
developed probabilistic normalized fatigue crack growth model may be ap-
plied to derive risk-based inspection plans.
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2 MODEL-BASED MACHINE LEARNING

In this section, we describe an emerging methodology for applying machine
learning (ML) called model-based machine learning (MBML) [4]. In tradi-
tional ML, the practitioner typically selects a suitable ML algorithm from the
literature when faced with a new problem. If the algorithm requires mod-
ification to comply with the problem at hand, the practitioner must either
modify the existing algorithm or combine the algorithm with other ML al-
gorithms from the literature, both of which can be challenging. In contrast,
when applying MBML, a custom ML algorithm is formulated for a given
problem by decomposing the algorithm construction into two distinct parts,
namely (i) probabilistic model representation, and (ii) inference engine. The
model representation covers the set of application specific assumptions made
about the problem domain, i.e., the process generating the data, where any
assumptions regarding uncertainties are expressed using probabilities. The
model representation is typically implemented in a compact modeling lan-
guage from which custom code for learning and inference can be generated
automatically based on the chosen inference method. This is referred to as
the inference engine. In some cases, of cause, the MBML algorithm might
correspond to an existing ML algorithm, while in other cases it may not.
The important distinction here is that a MBML algorithm makes the model
assumptions explicit through the model representation, while in traditional
ML algorithms these are often implicitly defined [4, 5].

As indicated above, the MBML framework offers several advantages when
defining a ML algorithm for a given problem, e.g., the ease with which highly
tailored models can be created for specific applications; rapid model proto-
typing and modification for model comparison; compact model representa-
tion that permits debugging and collaboration; and the fact that practitioners
can focus their attention on understanding a single modeling environment,
as many traditional ML algorithms will appear as special cases of the MBML
framework [4].

The MBML framework can in principle be implemented using a variety of
different approaches [4]; however, here we focus on an approach that lever-
ages Bayesian inference in probabilistic graphical models, e.g., Bayesian net-
works (BNs), and recent developments in probabilistic programming.

Bayesian networks define a joint probability distribution over a set of ran-
dom variables X by decomposing it into a product of local, conditional prob-
ability distributions according to a directed acyclic graph (DAG) G, i.e., the
model structure. In the DAG G = (V , E), each vertex vi ∈ V corresponds
to a random variable Xi ∈ X, and the edges E between the vertices rep-
resent the set of direct dependence relations implied by G. Moreover, by
studying the edges and missing edges in G, we can directly read off a set
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of (conditional) independence relations between the domain variables. For
each random variable Xi in G, we specify a conditional probability distribu-
tion P(Xi|Pai), which defines the dependence of Xi on the random variables,
which Xi is directly dependent on in G, termed the parent set Pai of vari-
able Xi. The joint distribution defined by a BN is shown in Eq. D.1.

P(X|G, ΘG) = ∏
i

P(Xi|Pai), (D.1)

where ΘG denotes a set of model parameters. For discrete random variables,
the set of model parameters correspond to the probability masses of each
combination of states: ΘG =

⋃{P(xi|pai)}. For continuous random vari-
ables, the parameter set corresponds to the parameters needed to specify the
probability density functions of the random variables [6].

Probabilistic programming is a programming paradigm in which prob-
abilistic models are specified, and the corresponding inference code gen-
erated automatically, based on the chosen inference method. Moreover, it
allows probabilistic and conventional, deterministic code to be combined,
which provides a modeling flexibility beyond conventional graphical model
notation [4]. Programming languages used for probabilistic programming
are referred to as probabilistic programming languages. Some examples are
BUGS [7], Infer.NET [8], JAGS [9] and Stan [10].

3 BAYESIAN INFERENCE

One of the most common inferences made in probabilistic models is the so-
called conditional probability query. In a conditional probability query, we
compute the posterior distribution P(Z|Ev = ev) of a subset Z of the variables
in the BN, given a (possibly empty) evidence set Ev = ev on some of the
other variables in the network. By the definition of conditional probability,
this probability distribution may be written as

P(Z|Ev = ev) =
P(Z, ev)

P(ev)
. (D.2)

In Eq. D.2, the numerator is computed from the factorization of the joint
distribution P(X), defined by the BN, by marginalizing out the variables
W = X − Z− Ev, which are neither query nor evidence variables:

P(Z, ev) = ∑
W

P(Z, W , ev). (D.3)

Here, it is assumed that the variables are discrete, but the considerations in
this section applies equally well to continuous variables, or to a combina-
tion of discrete and continuous variables, in which case, the summations are
replaced, where appropriate, by integrals.
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Because Z, W and Ev are all the variables in the BN, each term in the
summation P(z, w, ev) is simply one entry in the joint distribution. The de-
nominator in Eq. D.2 may now be computed as

P(ev) = ∑
Z

P(Z, ev), (D.4)

which facilitates reuse of the result of Eq. D.3, instead of having to marginal-
ize out both Y and W from the joint distribution P(X) of all variables in the
BN [11, 12].

Equation D.3 represents a brute force procedure for computing P(Z, Ev =
ev), called sum-product, where; first, the product of factors in the summation
is calculated and second, the variables W that are not of immediate interest
are marginalized (integrated) out. However, there exists a variety of more ef-
ficient inference algorithms, both exact, like the sum-product algorithm, and
approximate. Some of the more common algorithms include variable elimi-
nation, belief propagation, particle-based methods, and variational inference.
See e.g., [11] for further details.

4 NORMALIZED FATIGUE CRACK GROWTH
MODELING

In this section, it is shown how the MBML methodology can be used to define
a customized ML algorithm for assessing normalized fatigue crack growth.

The first step of our implementation of MBML is to represent the as-
sumptions about the problem domain using the BN formalism. This means
specifying the DAG G and a prior assignment of the parameter vector ΘG ,
which holds the parameters of the corresponding (conditional) probability
distributions. In this study, the following parametric form, originally pro-
posed by Tychsen [3], is considered for the normalized relationship between
load cycles x = (N/Nc) and crack depth y = (a/ac) as obtained from SN
experiments:

y = (1 + γ)xβ − γ s.t. γ ≥ 0, (D.5)

where N is the number of load cycles, Nc is the critical number of load cycles,
a is the crack depth, ac is the critical crack depth, β is a scalar parameter that
specifies the growth rate, and γ is a scalar parameter that accounts for crack
initiation. Furthermore, it is assumed that the β’s and σ’s of D experiments
can be similar and that the similarity can be inferred based on data, i.e., it
is assumed that the β’s and σ’s have a common population distribution, see
Fig. D.1. In this regard, the normalized crack depth yd is assumed to follow
a normal distribution with covariate xd and standard deviation σd, which
is assumed to be half-Cauchy distributed with hyper-parameters µs and σs.
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fd[n]

βd

xd[n] yd[n]

σdγd

µ0 σ0 µs σs

N

D

Figure D.1: Meta-network of the hierarchical model.

Moreover, the exponent βd is assumed to follow a log-normal distribution
with hyper-parameters µ0 and σ0. Thus,

fd(x) = (1 + γd)xβd − γd (D.6a)

yd ∼ N ( fd(x), σ2
d ) (D.6b)

σd ∼ half-Cauchy(µs, σs) (D.6c)

log(βd) ∼ N (µ0, σ2
0 ). (D.6d)

The remaining parameters are represented probabilistically through non-
informative prior probability assignments. This model is well suited for ex-
periments conducted under different laboratory conditions, where the noise
associated with measurements may vary.

The structure of Fig. D.1 is known as a hierarchical or multilevel model,
as it expresses the relationship between a set of sub-model (experiments)
using hyper-parameters. Note that this is a conditional model for the nor-
malized crack depth yd given the corresponding normalized load cycles xd,
i.e., P(Y|X), and thus does not comprise a model for P(X).

In the second step of the implementation of MBML, an inference engine
must be selected. In the present study, the probabilistic programming lan-
guage Stan with a Hamiltonian Monte Carlo inference method is selected.

5 BAYESIAN MODEL AVERAGING

So far, the focus has been directed on how to model a set of fatigue exper-
iment outcomes, together with their hyper-parameters, by means of hierar-
chical modeling. However, in support of inference modeling in the case of
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new applications, the framework of Bayesian model averaging (BMA) is in-
troduced in this section.

BMA is an approach to combining queries (predictions or forecasts) from
an ensemble of models subject to uncertainty associated with modeling as-
sumptions. The BMA predictive distribution of a quantity of interest provides
a weighted average over the posterior predictions for each model, weighted
by the model probability, and thus reflect the model’s relative contribution to
the inference [13].

Consider an ensemble of system representations M = {Md}D
d=1, where

each Md corresponds to one system representation. Using Bayesian model
averaging, inferences are made by averaging over the ensemble models as

P(∆|D) =
D

∑
d=1

P(∆|Md,D)P(Md|D), (D.7)

where ∆ is a query assignment, e.g., an inference, P(∆|Md,D) is its proba-
bility distribution given the model representation Md, and P(Md|D) is the
probability of model Md, given the available data. The model probabilities
add up to 1, i.e., ∑d P(Md|D) = 1. See e.g., [14] or [15] for further details.

In this study, the radial-basis function kernel is used as weighting function
in the BMA formulation, see Eq. D.8.

P(Md|D) ∝
J

∏
j=1

exp(−λj||ũj − ũd,j||2), (D.8)

where ũ = {ũj}J
j=1 = {T̃nom, Ñ∆σ

c } is the normalized vector of nominal
thickness and load cycles till fatigue failure for the considered detail, and
ũd = {ũd,j}J

j=1 = {T̃nom,d, Ñ∆σ
c,d } is the normalized vector of nominal thick-

ness and load cycles till fatigue failure for the d’th experiment in the avail-
able data (training set). In this context, the normalizer for nominal thick-
ness is selected as Tre f = max({Tnom,d}D

d ), i.e., T̃nom = (Tnom/Tre f ) and
T̃nom,d = (Tnom,d/Tre f ); and the normalizer for the number of load cycles till
fatigue failure is chosen as N∆σ

re f = max({N∆σ
c,d }D

d ), i.e., Ñ∆σ
c = (Nc/∆σ3)/N∆σ

re f ,

and Ñc,d = (Nc,d/∆σ3)/N∆σ
re f . Here, ∆σ is the stress range considered with

exponent 3 reflecting steel materials. This normalization is chosen so that the
maximal, marginal distance (along the T̃nom or Ñ∆σ

c,d axis) in the training set
is 1, thus λ = {λj} controls the strength of the weighting along each axis.

Figures D.2 and D.3 show the relative weighting of the radial-basis func-
tion kernel for λ = (4.6, 4.6)T . This corresponds to a one-dimensional case
where e.g., the experiment with maximum wall thickness in the ensemble is
assigned a relative weight of 1%, when evaluating a specimen with a wall
thickness corresponding to the minimum in the ensemble. In practice, the λ
vector is set by cross-validation.
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Figure D.2: Bi-variate radial-basis
function kernel for λ = (4.6, 4.6)T .
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Figure D.3: Marginal radial-basis
function kernel for λj = 4.6.

6 CASE STUDY: APPLICATION TO RBI

In this section, a simple example is considered, which illustrates how the
normalized fatigue crack growth model corresponding to Fig. D.1 may be
applied in the context of RBI for one hot spot. An actual field implementation
example is given by [16].

6.1 DATABASE OF FATIGUE EXPERIMENTS

The fatigue experiment results used as basis for the example are taken
from [17]. The authors of [17] conducted fatigue tests on six tubular K-
joints. For four of the tests (K2, K4, K5 and K6), four crack states have been
observed. These states are marked by (1) cracks detected by any available
means, (2) visible surface cracks, (3) through thickness cracking, and (4) loss
of brace stiffness. For each of the states, the fatigue cycle count, and nominal
and maximum stresses are also reported. Alongside these observations, the
relative crack depths (y = a/ac) vs relative fatigue lives (x = N/Nc) are pro-
vided in a graph. ac (through thickness) and Nc (ultimate fatigue life) refer to
state (4) that marks the end of the experiment. Figure 4 from [17] was used
to pick x and y values for the development of the model. Two parameter
sets influence the weighting of experiments via a radial-basis function. The
first parameter set contains the stress ranges, and the second parameter set
contains the wall thicknesses, which are 16 mm for all joints.
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6.2 ESTIMATION OF THE NORMALIZED FATIGUE
CRACK GROWTH MODEL

In this section, the estimation of the normalized fatigue crack growth model
is addressed, see Fig. D.1. As mentioned, the model is implemented by use of
the probabilistic programming language Stan [10], from which custom code
for learning and inference is generated automatically based on the chosen
Hamiltonian Monte Carlo inference method.

Figure D.4 shows the hierarchical model with estimated parameters based
on the individual data series (K2, K4, K5 and K6). The sub-figures show the
data points used for the estimation, the observational models (Eq. D.6b) and
the latent functional relationships (Eq. D.6a), along with the corresponding
95% credible bounds. We see that the hierarchical model generally provides
a good fit to the data, but the mean residuals have patterns non-conformable
with a Gaussian white noise assumption. This is due to the restricted para-
metric form of the functional relationship, see Eq. D.6a. Moreover, it appears
that the individual experiments have distinct noise levels and different crack
initiation characteristics.

The modeling of a new fatigue detail is established by averaging the mod-
els shown in Fig. D.4 according to their relative relevance defined by the
radial-basis function kernel, see Eq. D.8. In this regard, the λ vector needs
to be fitted. This can be achieved by omitting one experiment at a time in a
cross-validation scheme and choosing the λ vector that minimizes the aver-
age root mean square error of the omitted experiments. The K-joints data set
considered in this study only reflect one material thickness, thus the radial-
basis function kernel is one dimensional in this case, and λ reduces to a scalar
value λ. For the K-joints data set, the optimal value of λ is found to be 15.6.
The corresponding weighting function is shown in Fig. D.5.

Based on the foregoing, it is now possible to establish the normalized
fatigue crack growth model through Eq. D.7. An example is shown in
Fig. D.6. The figure shows the observational model and the latent func-
tional relationship, along with the corresponding 95% credible bounds for
a fatigue detail with Ñ∆σ

c = 0.284 (a value not represented in the training
set), thus {Ñ∆σ

c,d }D
d=1 = {0.179, 0.184, 0.307, 1.000}. Given that the crack depth

is bounded by the interval [0, 1], the function and corresponding credible
bounds are truncated at the boundaries. Moreover, the figure shows 10 sam-
ple experiments drawn from the latent function.

6.3 RISK-BASED INSPECTION PLANNING

The fatigue reliability problem may be expressed by the fatigue limit state
function L:

L = R− f , (D.9)
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Figure D.4: Hierarchical model fit.

where log(R) ∼ N (0, 0.1) is the fatigue resistance, and f is the actual (latent),
relative fatigue crack depth distribution.

As a first step, the BMA model (Eq. D.7) has to be evaluated at the re-
quired x-points using the Monte Carlo samples from the Hamiltonian Monte
Carlo inference method. For each x, an approximate continuous density dis-
tribution is built from the samples using kernel density estimation (KDE) in
order to conduct the reliability estimation. Due to the fixed-point constraints
at (0,0) and (1,1), and the presence of a crack initiation phase, some points
in the damage evolution cannot be represented by distributions but by de-
terministic scalars. Furthermore, in order to guarantee that the crack depth
cannot regress, each KDE is truncated at an upper bound equal to 1, and a
dynamic lower bound equal to the crack depth of the previous time step. A
visualization of the dynamically truncated distribution is shown in Fig. D.7
for a fatigue detail with Ñ∆σ

c = 0.284.
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Figure D.5: Marginal radial-basis function kernel for λ = 15.6.
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Figure D.6: BMA model for the observational model (y) and the latent func-
tional relationship ( f ).

Risk-based inspection (RBI) planning requires to update the failure proba-
bility P(a(t) ≥ ac) with inspection information, once a pre-defined threshold
is reached [1, 16]. In this regard, a(t) is given by the function f as used in
Eq. D.9 with a scaling in order to match the dimension of the actual wall
thickness and critical crack depth ac, and a threshold of P(a(t) ≥ ac) = 10−4

is applied. Moreover, a basic variant of RBI is considered, where only no
damage detection is treated. The reasoning behind this is that if a damage is
detected, it will be repaired and in principle the fatigue crack growth starts
from initial conditions corresponding to e.g., a new or grind repaired weld.
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Figure D.7: Examples of dynamically truncated distributions to be drawn
from crack size samples.

The updating is performed using Bayesian inference, where the posterior
failure probability given no damage detection is calculated, see Eq. D.10.

P(a(t) ≥ ac|a(t) < ad(t)) =
P(a(t) ≥ ac ∩ a(t) < ad(t))

P(a(t) < ad(t))
, (D.10)

where ad(t) represents the crack depth detectable in an inspection at time t;
t is expressed in terms of years, and the normalized fatigue cycles x must
be calibrated accordingly. The commonly used exponential threshold model
provides the probability of detection. Equation D.11 is treated as a cumu-
lative distribution function, used to sample a detectable crack depth and to
determine by comparison with a(t) if the fatigue damage is detected.

CDF (ad(t)) = P0

(
1− exp

(
− 1

λ0
ad(t)

))
, (D.11)

the parameters for the example case are P0 = 1 and λ0 = 2.67.
For the case of Ñ∆σ

c = 0.284, the resulting inspection plan is given in
Tab. D.1. The corresponding evolution of the failure probability with time
and recurring inspections is depicted in Fig. D.8. Each color represents one
stage of inspection information; from no inspection (very left) to last inspec-
tion (very right). The unusually short inspection intervals are due to a fatigue
design factor of 1, which is chosen in order to show the inspection threshold
exceedance several times.
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Table D.1: Listing of the inspection plan.

Inspection # Year
Failure probability
Pre-inspection Post-inspection

1 44.25 1.0133×10−4 0.9990×10−5

2 45.08 1.1527×10−4 1.5106×10−5

3 46.16 1.1329×10−4 1.4801×10−5

4 47.50 1.1027×10−4 0.7243×10−5
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Figure D.8: RBI diagram showing the evolution of failure probability with
subsequent inspections and no damage detection.

7 CONCLUSION AND OUTLOOK

The present contribution presents a method for the estimation of a proba-
bilistic normalized fatigue crack growth model and illustrates how this prob-
abilistic model may be applied for the purpose of deriving risk-based inspec-
tion plans for fatigue sensitive details in welded offshore structures. The ap-
proach presented is based on so-called model-based learning in conjunction
with Bayesian estimation. From the present research, we find that the pur-
sued approach is rather robust and very efficient when applied in the context
of risk-based inspection planning. Presently, more studies are in process to
expose the developed approach to larger data sets covering a broader range
of fatigue crack growth experiments collected from the literature. Moreover,
investigations are initiated to assess whether non-parametric Bayesian mod-
eling techniques might prove more efficient than the presently applied para-
metric model-based approach.
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NOMENCLATURE

ac Critical crack depth.
ad Crack depth detectable in an inspection.
f Latent/unobserved functional relationship.
xi or x Realization of random variable(s).
x Observed normalized load cycles.
y Observed normalized fatigue crack depth.
Md A system/model representation.
Xi or X Random variable or set of random variables.
D Training data set.
G Directed acyclic graph.
M Ensemble of system/model representations.
β Crack growth rate parameter.
γ Crack initiation parameter.
λ or λ Parameter(s) of the radial-basis function kernel.
µ Location parameter.
∆σ Stress range of fatigue experiment.
σ Scale parameter.
ΘG or ΘG Parameter or parameter vector related to G.
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ABSTRACT

In the field of reliability engineering and systems safety it is a common challenge,
with basis in a limited set of observations of system performances, to identify the
state of the system. Often there are a multitude of different possible system states, in-
cluding states of damages, which compete in explaining the observations. To account
for these in the context of risk-informed management of the systems, the probabili-
ties of the relevant possible different states are needed. In the present contribution,
an idea on how this might be supported through big data techniques is presented.
Starting point is to establish a knowledge-consistent probabilistic representation of
the system, its key performance characteristics, and the observations that may be
collected from the system in reality. Monte Carlo simulations are then employed to
establish the relevant scenarios of realizations of the random variables describing pos-
sible system states, system performance characteristics and observations. Using big
data classification on the simulated scenarios, the probabilities of the system being
in a given state, given particular outcomes of observations, may then be straightfor-
wardly evaluated. The application of the presented idea is illustrated through two
principle examples considering damage identification in structural systems subject
to extreme loading.

Keywords: systems modeling, observations, big data, system identification, struc-
tural damage identification.

1 INTRODUCTION

As highlighted in [1], a key issue in the governance and management of sys-
tems is to ensure that the representation of available knowledge concerning
systems consistently accounts for uncertainties, accommodates for the pos-
sibility that there might be different (competing) system models, and not
least facilitates for utilization of any observation of system performances as
a means for updating their representation, see also [2]. Such situations are
important to consider in a wide variety of societal decision contexts ranging
from structural integrity management, over mitigation of and adaptation to
climate change, to hybrid warfare.

Generally, for relevant practical societal decision problems, the systems
to be represented are rather complex and may comprise interconnected sub-
systems with multiple domains of stability and susceptibility to cascading
failure event scenarios. The available knowledge of the performances of the
systems is subject to significant uncertainties, the representation of which
involves high dimensional vectors of random variables subject to causal and
stochastic dependencies. In addition, the systems generally exhibit significant
non-linear relationships between demands acting on and within the systems
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and the systems performances.
In support of establishing adequate system representations, it is possi-

ble to take benefit of observations of any observable system performance,
e.g., functions and/or services provided by the system. In structural health
monitoring, such observations include static and dynamic structural response
characteristics. As outlined in [1, 2], a Bayesian approach lends itself to
this end. However, given the aforementioned complexities, this comprises
a rather challenging task and so far, most achievements in this direction have
been targeted on specific applications with respect to both general framing,
modeling, and analysis.

In engineering, a variety of different probabilistic approaches for the rep-
resentation of systems have been developed across different application areas,
see e.g., [3–7]; all with the objective to inform the ranking of decision alterna-
tives based on information-consistent models of the systems performances.
In the general context of systems identification, and specifically when em-
ploying structural health monitoring technologies, one of two avenues is
commonly taken when defining a database of realizations of the possible
competing systems to consider in the analysis; either extensive numerical
or laboratory experiments are performed for a-priori defined systems, see
e.g., [8–12].

These approaches generally provide the means for identifying the con-
sidered systems or system states, but they do not provide the means for
assessing the probabilities of their realizations, and thus the relevance of the
systems. Along the same line, they do not account for systems of differ-
ent origins with response characteristics similar to the studied systems, and
they often do not naturally handle the issue of propagating, global system
changes, e.g., cascading failure event scenarios, as local system changes, e.g.,
changes enforced on individual system components, are often the basis for
constructing a database used to classify response characteristics.

In the context of structural health monitoring, important contributions to
account for possible competing systems have been proposed first in [13] and
more recently in [14]. The formulations provided in these works address
the core issues of the problem and provide solutions targeted for the con-
sidered applications. However, the proposed approaches are not generic and
involve extensive numerical efforts. In [15] the representation of uncertain
systems is taken up from the novel perspective of applying techniques of big
data analysis as a means of enhancing the understanding of the probabilistic
characteristics of the system performances. However, in this contribution the
observations addressed concern information, which is already accounted for
in a given probabilistic model of the system and does as such not contribute
to an improved understanding of whether the system model is representative
or not.

Following similar ideas, Kurian and Liyanapathirana [16] apply big data
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analysis techniques in the context of structural health monitoring as a means
of damage identification, e.g., damage detection, localization, and severity as-
sessment. To this end, they take benefit of structured learning as a means to
classify observations to different scenarios of possible damages states (com-
peting systems). In their contribution, however, basis is taken in information
which only relates to observations from conducted experiments for which the
actual damage states are known. In practical applications, the actual system
or the actual state of change or damage in a system is not known and thus
cannot be utilized as a means for modeling.

2 APPROACH AND OUTLINE

In the present contribution, basis is taken in recent ideas regarding the uti-
lization of big data techniques as a means for modeling and understanding
systems as well as for identifying, in probabilistic terms, possible candidates
of system representations. To this end, the general idea of modeling from [1]
is combined with the approaches in [15, 16] to achieve fully information-
consistent probabilistic representations of systems, which account for the
possibility of competing system models as well as prior knowledge and in-
formation collected through observations of in principle any observable char-
acteristics of the systems performances.

With reference to Fig. E.1, a system is addressed for which a probabilistic
model of its performances is available. It might be assumed that such a model
is established initially by applying classical bottom-up phenomenological en-
gineering modeling. Furthermore, for the sake of simplicity, it is assumed
that an adequate Monte Carlo simulation based technique is applied for the
probabilistic analysis of the system, see e.g., [17]. As indicated in Fig. E.1,
all available information from the Monte Carlo simulations is gathered and
stored in a database.

In addition to the phenomenological engineering model, observations of
system performances from “reality” may be utilized – using techniques of
big data analysis as a means to improve or calibrate the model – ultimately
achieving what is also referred to as digital twins. For common systems
and for common system performances, the amount of observable informa-
tion might be very considerable. For more unusual systems and for rarely
occurring systems performances, the opposite holds, and substantial model
uncertainties persist.

As highlighted previously, there may be several competing system mod-
els both at a given time and for any future time, and these must in principle
all be accounted for. The scenarios of the systems performances, which are
stored in the model database, provide information about this. Using clus-
ter analysis these scenarios may be analyzed with the objective to identify
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Figure E.1: Framework for system modeling, data mining and evidence based
system identification.

and understand possible regularities in the realizations of random variables
related to particular system performances of interest, see [15]. The cluster
analysis provides information on which uncertainties affect the system per-
formances of interest and which domains of realizations of these contribute
to the probabilities of their occurrences.

Finally, and of core importance for the present contribution, supervised
classification of the (big) data, generated through the MC simulations and
stored in the model database, may be utilized to establish probabilistic rela-
tionships between system responses and system states of particular interest.
Based on such classifications, it is possible to relate observations of reality to
the states of the system in probabilistic terms.

Whereas the approach presented is fully generic and may be applied for
the representation of in principle any system, the illustration of the approach
in the present contribution is directed on applications in the context of struc-
tural integrity management. For simplicity, it is assumed that only one prob-
abilistic model is relevant for the representation of a structure in its intact
state. This model might have been optimized based on extensive utilization
of observations of the structural performances, using ideas of digital twin
technology. The possible competing candidates for the system model come
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into the picture in cases where the considered system might have undergone
development of damages, e.g., due to extreme load events. It is to this end
that the probabilistic classification of system states, which might explain the
observations of system performances, is utilized.

It should be highlighted that it is not the intention of this contribution
to provide an overview of available research on big data techniques or on
approaches for utilization of structural health monitoring in the context of
structural integrity management. In all its simplicity, the present contribu-
tion might be summarized as providing a rather simple, generic, and robust
approach for assessing the probabilities of possible states of a system of in-
terest, given a (possibly limited) set of observations of the performances of
the system. The core steps of the suggested approach are:

1. Establish a knowledge-consistent probabilistic model of the considered
system, including probabilistic models of the observations of system per-
formances, which may be collected from the systems in reality.

2. Employ Monte Carlo simulation to establish scenarios of realizations of
the random variables describing the system, the realizations of system per-
formances, and the corresponding realizations of the observations, which
might be collected (in reality) in regard to these.

3. Assess the probabilities of the system performances identified under step 2
and disregard those scenarios for which the probabilities are insignificant
in the context of the systems management problem. As an example, if
the context at hand regard structural integrity management and the sys-
tem performances relate to the development of structural damages, then
scenarios to be disregarded could be those for which the probabilities are
below the highest acceptable probability of failure.

4. Utilize big data classification techniques on the Monte Carlo simulated
scenarios as a means for establishing probabilistic relationships between
outcomes of observations and system performances of particular interest.
As an example, in the context of structural integrity management, such
states could be different possible damage states.

As indicated in the foregoing, the objective of the present contribution is
not to explore different technologies of big data analysis but rather to show
how state-of-the-art big data techniques might be applied in support of sys-
tems modeling and analysis. The interested reader is referred to e.g., [18] for
a recent review on the application of big data technologies in structural health
monitoring. For ease of reference though one such generally well performing
technique for classification, namely tree-based classification, is outlined in
Sec. 3, along with recommendations on model selection for such techniques.
In Sec. 4, the proposed approach is illustrated on two principle examples
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from structural engineering. Again, it should be underlined that practical
relevance of the two examples is not an objective of the present paper; the ex-
amples are principle examples of systems exhibiting the main characteristics
of complex systems in general, including multiple possible relevant perfor-
mances and non-linear relationships between system demands and system
performances.

The first example is devised such as to present the general idea in a
tractable and easily reproducible manner. In this example, a simple moment
resisting frame subject to extreme loads is considered. Based on observations
of deflections of the frame during the extreme loading, the task is to identify
whether the structure is subject to damage and to assess the probabilities of
relevant damage states.

The second example considers a similar case but for a more complex 3-
story, 3-bay frame structure for which the number of interesting system per-
formance states (damage states) is significantly increased compared to the
first example. Again, due to the idealizations introduced on the mechani-
cal modeling side, to ensure tractability, this example is also not of direct
practical relevance but rather intended to illustrate some of the robustness
properties of the proposed methodology, as well as to indicate how the pro-
posed methodology might also support value of information analysis in the
context of monitoring supported structural integrity management. Finally,
in Sec. 5, the findings and conclusions are summarized and suggestions for
further research are given.

3 TREE-BASED CLASSIFICATION AND
MODEL SELECTION

In supervised learning, a mapping from system inputs to system outputs is
defined based on a database of observations of input-output pairs. If the
outputs are real numbers, i.e., variables with a continuous sample space,
then the task is called regression, and if the outputs are integer valued, i.e.,
variables with a discrete sample space, then the task is called classification.

In the following, tree-based supervised learning is introduced in Sec. 3.1.
Subsequently, the focus is directed on how to reduce the uncertainty in model
predictions by forming an ensemble of tree-based models in Sec. 3.2. Most
learning algorithms come with a set of hyper-parameters that needs to be
specified in order to get the best possible predictive performance when map-
ping new inputs to outputs. In Sec. 3.3, it is discussed how the hyper-
parameters of general machine learning algorithms may be specified using
Bayesian optimization with a Gaussian process prior.
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3.1 CLASSIFICATION AND REGRESSION TREES

Classification and regression trees (CART) [19, 20], also referred to as decision
trees in the machine learning literature, partition the input space into a set of
disjoint regions (hyper-cubes) {Rj}J

j=1 by recursively applying binary splits
on an input variable, as shown in Fig. E.2. The figure illustrates the mapping
of an input vector x to a region Rj as a sequential decision-making process
corresponding to the traversal of a binary tree, which is a tree that splits into
two branches at each node, where the regions Rj appear as leaf nodes [21].

X1 ≤ t1

X2 ≤ t2

X1 ≤ t3

R1

R2

R3

X3 ≤ t4

R4

R5

T

F

T

F

T

F

T

F

Figure E.2: Principle classification and regression tree. The labeling of the
edges mark whether the presiding statement is true (T) or false (F), and
{tv}V

v=1 is the set of threshold values used in the binary splits.

Given a training data set D = {X̂, ŷ} = {x[n], y[n]}N
n=1 of N i.i.d. observa-

tions of input-output pairs, learning in a CART setting amounts to defining
the tree structure, including which input variable is chosen at each node and
the corresponding splitting criterion, and the prediction model for each re-
gion. The regional prediction models define the task of the machine learning
application; for regression problems, an appropriate constant might be as-
signed to the region, and for classification problems, a class label may be
assigned to the region, i.e.,

x ∈ Rj ⇒ f (x) = cj, (E.1)

where cj is an appropriate constant or class label depending on the applica-
tion. Thus, a tree can be formally expressed as

T (x; Θ) =
J

∑
j=1

cjI[x ∈ Rj], (E.2)
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where I is the indicator function, and Θ = {Rj, cj}J
j=1 is the parameter vector,

see e.g., [19] for further details on CARTs and their training. Moreover, Ap-
pendix A gives some recommendations on how to evaluate the performance
of general classifiers.

3.2 ENSEMBLE LEARNING WITH BOOSTING

CARTs as presented in the previous section are simple, approximately unbi-
ased models that suffer from high predictive variance. Thus, a small change
in the data can result in a very different series of splits and thus predictions.
The literature contains a variety of general-purpose procedures for reducing
the variance of statistical learners, which e.g., leverage simple models like
trees. Among the most popular are bagging and boosting [19, 22].

In boosting, an ensemble of tree models is established, but opposite to
bagging where the trees are grown in parallel, they are grown sequentially,
i.e., each tree is grown using information from previous trees in the sequence.
That is, at each stage, a new CART is estimated that focuses on the errors of
the current ensemble model and consequently add this new CART to the
ensemble model. After B trees are grown, the boosted (average) predictor
becomes

f (x; θ̂) =
B

∑
b=1
T (x; θ̂b), (E.3)

where θ̂b is the estimated parameter vector for one tree model. A popular
variant of boosting that is continuously coming out in the top of machine
learning competitions, like Kaggle,1 is gradient boosting (machines). This is
not at least to due efficient implementations, such as XGBoost [23].

Tree-based ensemble learners come with a set of hyper-parameters that
needs to be tuned in order to gain the best possible performance. Among
the set of parameters are the tree depth J, the number of trees in the en-
semble B, the amount of shrinkage when boosting, and the extent of sub-
sampling among the inputs and training points when fitting the tree mod-
els [19, 22, 23]. Hyper-parameter tuning is therefore discussed in Sec. 3.3.

3.3 BAYESIAN OPTIMIZATION FOR MODEL SELECTION

In this section, the problem of finding a global minimizer of a function f
defined by covariate(s) x is considered, i.e.,

xmin = arg min
x∈X

f (x). (E.4)

Bayesian optimization (BO) is a sequential model-based approach for op-
timizing a loss function, which is computationally expensive to evaluate

1https://www.kaggle.com/
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and/or has no closed-form expression, but from which (noisy) observations
can be obtained [24]. BO techniques are among the most efficient optimiza-
tion techniques in terms of number of functional evaluations required, due
to their use of Bayesian updating as

p( f |D) ∝ p(D| f )p( f ),

where D = {X̂, ŷ} = {x[n], y[n]}N
n=1 is a data set of observations of the loss

function [25].
The example considered in the present section is the optimization of

hyper-parameters for a general machine learning model, like gradient boost-
ing, where the objective is to find the hyper-parameters that result in the low-
est validation loss, see Appendix A. Traditionally, strategies such as manual-,
grid- and random-search are employed for the optimization, where random-
search is found superior to grid-search [26], but BO techniques have been
show to outperform manual- and random-search in terms of both perfor-
mance and efficiency, see e.g., [27–29].

Bayesian optimization using Gaussian processes (GPs) leverage Bayes rule
to build a surrogate model of the loss function (validation loss) with a prior
over functions and combine it with new observations to form a posterior over
functions, in an online fashion. This permits a utility-based selection of the
next point to sample from the loss function, which should account for the
trade-off between exploration (sampling from areas of high uncertainty) and
exploitation (sampling from areas that are likely to provide an improvement
over the current best setting x(t)min) [24, 25]. See [21, 30] for details on GPs, and
their training.

In order to conduct a utility-based selection of the next sampling point,
a utility function is needed. Such functions are commonly referred to as
acquisition functions in the BO literature. The acquisition function takes the
mean and variance information of the predictions into account to model the
utility of new sampling points, such that high acquisition values correspond
to potentially low loss values, either because the prediction is low or the
uncertainty is great, or both. The argmax value of the acquisition function
is chosen as the next sampling point of the loss function, and the process is
repeated, considering the data set D augmented with the new sample point
{x[N + 1], y[N + 1]} [25].

Acquisition functions traditionally used in relation to BO are (i) the prob-
ability of improvement, (ii) the expected improvement, and (iii) the lower
confidence bound. See e.g., [24] for a detailed listing of acquisition functions
used in practice as well as how to conduct the optimization. Moreover, note
that the choice of probabilistic model is often considered more important
than the choice of acquisition function [24].
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4 NUMERICAL EXAMPLES ON STRUCTURAL
DAMAGE IDENTIFICATION

4.1 INTRODUCTION

In order to illustrate the application of the foregoing ideas and techniques,
two systems from structural engineering are considered, namely a simple
moment resisting, portal frame structure and a more complex 3-story, 3-bay
moment resisting frame structure. In both cases, the structure is subjected
to concentrated horizontal load(s) in the beam element(s) and vertical load(s)
at mid-span of the beam element(s); the former representing annual extreme
wind loading, and the latter representing daily extreme operational loading.
Appendix B contains a detailed description of the numerical modeling of the
two systems.

4.2 MONTE CARLO SIMULATIONS

In the present study, Monte Carlo simulation is initially applied for gener-
ating the realizations of random variables (patterns) and the corresponding
failure scenarios. As the number of realizations of the different failure scenar-
ios in the resulting database may vary significantly – and for some scenarios
be very low – a strategy for increasing these is devised. Thus, for each realiza-
tion of a failure scenario, a random-walk Markov chain Monte Carlo (MCMC)
sampler is initiated to produce additional realizations of that failure scenario.
Note that these additional MCMC samples are not used to alter the proba-
bility of a failure scenario but only contribute with additional realizations to
balance the database in the failure scenarios. This scheme is similar to the
scheme used in subset simulation [31, 32]. In this regard, a new sample is ac-
cepted if it belongs to the considered failure scenario, i.e., a hard-assignment,
and the standard deviation of the random-walk, Gaussian proposal distri-
bution is tuned to give an acceptance rate of approximately 0.25. Moreover,
in order to reduce the auto-correlation of the resulting samples, only every
fifth sample is used for further analysis. This is referred to as thinning, see
e.g., [33] for further details on MCMC simulation.

4.3 EXAMPLE I: MOMENT RESISTING PORTAL FRAME
STRUCTURE

This example considers a portal frame structure subjected to a concentrated
horizontal and vertical load, i.e., P1 and P2, respectively [34, 35]. The model
has five nodes and four elements, and a total of 8 hinge locations are consid-
ered, which are denoted by 1, 2, . . . , 8 in Fig. E.3. The moment of inertia of

216



PAPER E.

 

Figure E.3: Left: Portal frame structure of Example I. Right: Structural model
properties.

the cross sections are 4.412× 10−5 m4 and 4.770× 10−5 m4 for the beam and
the column, respectively, both with a Youngs modulus of 210 GPa.

A load case is considered, which is dominated by the horizontal loading,
where the annual maximum horizontal load P1 and the daily maximum ver-
tical load P2 are assumed to follow Weibull distributions. For P1 the expected
value and coefficient of variation (CoV) are 21.75 kN and 0.30, respectively,
and for P2 the expected value and CoV are 28.70 kN and 0.10, respectively.
The yield stress capacities of the nodes are assumed to follow Log-normal
distributions with expected values equal to 250 MPa and CoVs equal to 0.05.

Based on a total of 108 Monte Carlo simulations, Fig. E.4 and Tab. E.1
show the resulting failure scenarios {FSc, c = 1, 2, .., NFS}, along with the cor-
responding numbers of realizations NF and probabilities of occurrences PF.
In this regard, a state vector describes the order in which the plastic hinges
are formed in each state of the simulation, where 0 indicates that the node
does not become plastic, 1 indicates that the node is the first to form a plastic
hinge, 2 indicates that the node becomes plastic after the first redistribution of
internal forces, and so on. After completed analysis, the state vector contains
the so-called failure scenarios.

Figure E.5 shows the MC realizations of the random variables leading

 

FS1 FS2

FS3 FS4

Figure E.4: Failure scenarios identified in Example I.
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Table E.1: Failure scenarios identified in Example I.

1 2 3 4 5 6 7 8 NF PF
FS1 0 0 0 0 0 0 0 1 942 9.42 ×10−6

FS2 0 0 0 0 0 1 0 0 9,881 9.88 ×10−5

FS3 0 0 0 0 0 1 0 2 171 1.71 ×10−6

FS4 0 0 0 0 0 2 0 1 123 1.23 ×10−6

∑ 11,117

to the different failure scenarios and their expected values. It is observed
that the failure scenarios are generally governed by large positive realizations
of P1 and to a lesser degree P2. Note in this regard that all realizations of
P1 reflect this tendency (P1 > 0), i.e., it is significant, whereas this in not
the case for P2. Moreover, the mean values of the realizations of M1 are
approximately equal to zero for all failure scenarios. This indicates that this
variable is insignificant and in principle might be omitted. The realizations of
M2 and M3 alternate between two bounding patterns, i.e., (i) the realizations
of M2 are equal to zero, and the realizations of M3 take on a large negative
value; and (ii) the realizations M2 take on large negative values, and the
realizations of M3 are equal to zero. Bounding pattern (i) reflects a failure
scenario governed by a weak right column, and (ii) reflects a failure scenario
governed by a weak beam, see Figs. E.3 and E.4.

 

Figure E.5: Realizations in standard normal space of the random variables
(gray) and expected values (black) in Example I. Top-left: FS1. Top-right: FS2.
Bottom-left: FS3. Bottom-right: FS4.
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DAMAGE IDENTIFICATION

In this section, observations are utilized for the purpose of identifying
whether the structure under an extreme load event is loaded to failure, and
if so, which failure scenarios might have developed. To this end, observa-
tions of P1 and P2 are considered, along with the corresponding horizontal
displacements at the upper right corner of the frame (δ1) and vertical dis-
placements at the mid-span of the beam element (δ2), at the final stage of a
failure scenario, see e.g., Fig. E.3. In this regard, the structure may still be
undamaged (baseline, FS0), or it may have transitioned to one of the failure
scenarios considered above, i.e., {FSc, c = 1, . . . , 4}. Thus, we seek an identi-
fication of the existence and probable location of damage, represented by the
most likely failure scenarios.

A training set of 8,000 realizations of each failure scenario and a test set
of 2,000 realizations are considered. That is, in total 40,000 training realiza-
tions and 10,000 test realizations (including the scenario with no damage).
A gradient boosting classifier is fitted to the training database based on the
cross-entropy loss function, as described in Secs. 3.1 and 3.2, using function-
alities from the publicly available toolbox XGBoost [23]. In this regard, the
hyper-parameters of the classifier are chosen based on 5-fold cross-validation
using GP-based Bayesian optimization with a squared exponential kernel and
the expected improvement acquisition function, see Sec. 3.3, using functional-
ities from the publicly available toolbox GPyOpt [36]. Moreover, to maximize
the performance of the classifier, the principal components of the original
training and test set are used as inputs to the classifier, as CARTs generally
prefer orthogonal inputs, see e.g., [37].

The test set confusion matrix of the final classifier is shown in Fig. E.6.
The final classifier has an overall training set accuracy of 1.00, and a test set
accuracy of 0.97. Furthermore, the macro F1-score as well as the correspond-
ing macro precision and recall are 0.97, and the test set cross-entropy is 0.097.
For this simple example, it appears that the classifier can almost perfectly
classify the test set examples, thus the main diagonal of the confusion matrix
contains most of the test data. However, when it misclassifies test data, they
typically belong to FS2, FS3 or FS4, see Fig. E.6. Considering the correspond-
ing rows of the confusion matrix, it is seen that FS2 is sometimes mistaken
for FS3, FS3 is mistaken for FS2 or FS4, and FS4 is mistaken for FS1 or FS3.
This makes sense, as FS2 may lead to FS3 and FS1 may lead to FS4, and the
only difference between FS3 and FS4 is the order in which the hinges form,
see Fig. E.4. These effects may further be emphasized by setting the elements
on the main diagonal in Fig. E.6 to zero and rescaling the color map, leading
to the error matrix in Fig. E.7. In this figure, the error pattern of the classifier
is easily identified, e.g., also along the columns, when the classifier predicts
FS4 and it makes an error, the misclassified realization most likely belongs to
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Figure E.6: Scaled test set confusion matrix when considering 8000 training
samples of each failure scenario in Example I. The confusion matrix is scaled
by the number of test samples of each failure scenario, such that the diagonal
terms reflect the accuracy related to each failure scenario.
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Figure E.7: Scaled test set error matrix corresponding to the confusion matrix
in Fig. E.6.

FS1 or FS3, thus in this case there are symmetries in the error pattern. Note
that this is not always the case, see e.g., [37].

So far, the performance of the classifier has been assessed mostly by con-
sidering hard class assignments through the performance metrics and the
confusion matrix, but for probabilistic damage identification the multi-class
posterior probabilities for each realization are needed. These are provided in
Tab. E.3 for the random realizations of Tab. E.2. In Tab. E.3, the conditional
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class probabilities are provided first, followed by the posterior class proba-
bilities in parenthesis, which thus account for the prior class probabilities in
Tab. E.1.

Again, it appears from the conditional class probabilities that the classi-
fier in general assigns most probability mass to the target label, but additional
information on the certainty with which the classifier assigns the hard class
assessments is gained from Tab. E.3, e.g., the off-diagonal elements (prob-
ability masses assigned to classes other than the target class) are generally
small for the conditional class probabilities of the realizations in Tab. E.2,
except for the first realization with target label FS3, where FS4 also attracts
significant probability mass. For decision support, the posterior class prob-
abilities in parenthesis should be considered in combination with associated
class utilities in accordance with Bayesian decision theory [38], and the ax-
ioms of utility theory [39], to choose the decision alternative that optimizes
the expected utility.

Table E.2: Realizations of random variables for multi-class posterior proba-
bility estimation in Example I.

Input ∗

P1 P2 δ1 δ2
FS0 0.124 0.961 -0.009 0.002

-0.973 0.219 -0.007 0.001
-0.808 0.287 -0.007 0.002

FS1 3.447 0.865 -0.013 0.004
3.645 -0.296 -0.012 0.004
3.505 1.684 -0.013 0.004

FS2 3.257 1.946 -0.013 0.004
2.331 2.035 -0.012 0.003
2.916 1.019 -0.012 0.004
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FS3 4.063 1.303 -0.014 0.004
4.067 1.630 -0.014 0.004
3.266 1.559 -0.013 0.004

FS4 4.084 0.207 -0.014 0.004
3.763 0.611 -0.014 0.004
4.021 1.41 -0.014 0.004

* The realizations are shown in standard normal space.

4.4 EXAMPLE II: 3-STORY, 3-BAY MOMENT RESISTING
FRAME STRUCTURE

This example considers a 3-story, 3-bay frame structure subjected to con-
centrated horizontal loads and vertical loads at the mid-span of the beam
elements, see Fig. E.8. The structural analysis model has 30 elements and a
total of 60 hinge locations are considered. Note that for reasons of modeling
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Table E.3: Multi-class probabilities for realizations in Tab. E.2. The condi-
tional class probabilities are provided first, followed by the posterior class
probabilities in parenthesis, which thus account for the prior class probabili-
ties in Tab. E.1.

Prediction

FS0 FS1 FS2 FS3 FS4
FS0 ≈ 1 (≈ 1) ≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 0 (≈ 0)

≈ 1 (≈ 1) ≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 0 (≈ 0)
≈ 1 (≈ 1) ≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 0 (≈ 0)

FS1 ≈ 0 (0.010) 0.992 (0.989) ≈ 0 (≈ 0) ≈ 0 (≈ 0) 0.008 (0.001)
≈ 0 (0.202) 0.997 (0.798) ≈ 0 (≈ 0) ≈ 0 (≈ 0) 0.002 (≈ 0)
≈ 0 (0.140) 0.978 (0.858) ≈ 0 (≈ 0) ≈ 0 (≈ 0) 0.022 (0.002)

FS2 ≈ 0 (≈ 0) ≈ 0 (≈ 0) 0.928 (0.998) 0.072 (0.001) ≈ 0 (≈ 0)
≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 1 (≈ 1) ≈ 0 (≈ 0) ≈ 0 (≈ 0)
≈ 0 (0.010) ≈ 0 (≈ 0) 0.995 (0.990) 0.005 (≈ 0) ≈ 0 (≈ 0)
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FS3 ≈ 0 (0.480) ≈ 0 (≈ 0) ≈ 0 (≈ 0) 0.802 (0.442) 0.198 (0.078)
≈ 0 (0.243) ≈ 0 (≈ 0) ≈ 0 (0.005) ≈ 1 (0.751) ≈ 0 (≈ 0)
≈ 0 (0.007) ≈ 0 (≈ 0) ≈ 0 (0.012) ≈ 1 (0.981) ≈ 0 (≈ 0)

FS4 ≈ 0 (0.032) ≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 1 (0.968)
≈ 0 (0.021) ≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 1 (0.979)
≈ 0 (0.001) ≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 0 (≈ 0) ≈ 1 (0.999)

convenience the beam elements are split into two equal model elements at
the location of the vertical loads.

A load case dominated by the horizontal loading is considered, where
the annual maximum horizontal loads {PH

i , i = 1, 2, 3} are assumed to fol-
low Weibull distributions with expected values equal to 21.75 kN, 26.97 kN
and 16.97 kN, respectively, and coefficients of variation (CoV) equal to 0.30.
The horizontal loads are modeled as dependent random variables with a cor-
relation factor of 0.40. The daily maximum vertical loads {PV

ij , i = 1, 2, 3, j =
1, 2, 3} are also assumed to follow Weibull distributions with expected values
equal to 34.34 kN and CoVs equal to 0.05. The vertical loads are modeled as
independent random variables. The yield stress capacities at the location of
the nodes are assumed to follow Log-normal distributions with an expected
value of 250 MPa and a CoV of 0.05. The yield stress capacities are modeled
as dependent random variables by assuming a correlation coefficient equal
to 0.8 for elements sharing the same design variable, according to Tab. E.4,
and 0.4 otherwise. Thus, the total set of random variables involved in the
reliability problem amounts to 33, i.e., 3 horizontal load components, 9 ver-
tical load components, and 21 yield stress capacities, whereof 9 corresponds
to beam elements and 12 to column elements. Note that as the beam ele-
ments are split into two model elements at the location of the vertical loads,
as mentioned above, a total of 18 model elements correspond to beams. Thus,
two consecutive beam model elements share the same random variable cor-
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Figure E.8: Left: 3-story, 3-bay frame structure of Example II. Right: Struc-
tural model properties.

responding to the yielding stress capacity.
For the calibration process, the target failure probabilities for the columns

and beams are 10−5 and 10−4, respectively. In this case, 9 design variables are
considered in the optimization process, and their resulting numerical values
and the associated elements are indicated in Tab. E.4. The Young modulus
for all elements is equal to 210 GPa.

Figure E.9 and Tab. E.5 show the resulting failure scenarios {FSc, c =
1, . . . , NFS}, along with the number of realizations NF that lead to each fail-
ure scenario and the corresponding probabilities of occurrences PF, resulting
from a total of 108 Monte Carlo simulations. Note that a total of 913 fail-
ure scenarios are identified from the MC simulations, but the assessments in

Table E.4: Design variables and associations considered in Example II.

Design variable Value Model elements
[10−5 m4]

X1 3.62 1, 4
X2 2.19 11, 14
X3 1.64 21, 24
X4 5.73 2, 3
X5 3.83 12, 13
X6 1.45 22, 23
X7 5.02 5, 6, 7, 8, 9, 10
X8 3.63 15, 16, 17, 18, 19, 20
X9 2.09 25, 26, 27, 28, 29, 30
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this example, only considers failure scenarios for which PF ≥ 10−6, i.e., fail-
ure scenarios with a relevant contribution to the system failure probability.
Moreover, due to the large number of nodes, only the nodes that fail in the
failure scenarios appear in Tab. E.5.

Table E.5: Failure scenarios identified in Example II for which PF ≥ 10−6.
Note that the nodes indicated in the upper row only include those for which
failure are involved in the failure scenarios.

2 4 12 16 26 28 32 46 48 52 NF PF
FS1 0 0 0 0 0 0 0 0 0 1 8642 8.64× 10−5

FS2 0 0 0 0 0 0 0 0 1 0 419 4.19× 10−6

FS3 0 0 0 0 0 0 0 1 0 0 626 6.26× 10−6

FS4 0 0 0 0 0 0 1 0 0 0 5811 5.81× 10−5

FS5 0 0 0 0 0 0 2 0 0 1 119 1.19× 10−6

FS6 0 0 0 0 0 0 1 0 0 2 151 1.51× 10−6

FS7 0 0 0 0 0 1 0 0 0 0 286 2.86× 10−6

FS8 0 0 0 0 1 0 0 0 0 0 193 1.93× 10−6

FS9 0 0 1 0 0 0 0 0 0 0 6390 6.39× 10−5

FS10 0 0 1 0 0 0 2 0 0 0 271 2.71× 10−6

FS11 0 0 1 2 0 0 0 0 0 0 236 2.36× 10−6

FS12 0 0 2 0 0 0 1 0 0 0 341 3.41× 10−6

FS13 0 1 0 0 0 0 0 0 0 0 317 3.17× 10−6

FS14 0 2 1 0 0 0 0 0 0 0 111 1.11× 10−6

FS15 1 0 0 0 0 0 0 0 0 0 185 1.85× 10−6

∑ 24,098

Figure E.10 shows the MC realizations of the random variables leading
to FS1, FS3, and FS14, and their expected values. The random variables
corresponding to the yield stress capacities are indicated with the number of
the associated element. For FS1 and FS3, it appears that failures are generally
governed by low capacities of the beam element 25–26 (the failing beam)
and column element 22 (the failing column), respectively, along with large
valued realizations of PH

3 (the horizontal load at story 3) and to a lesser
degree PH

1 , PH
2 , and PV

31 (the vertical load at story 3, left bay). Regarding
FS14, it is observed that failures are generally governed by low capacities of
the column elements 1 and 4 (the lower leftmost and rightmost column) and
beam element 5–6, along with large valued realizations of PH

1 (the horizontal
load at story 1) and to a lesser degree PH

2 , and PH
3 . This is the most frequent

failure scenario involving both a beam and column failure.
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Figure E.9: Failure scenarios identified in Example II for which PF ≥ 10−6.
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Figure E.10: Realizations in standard normal space of the random variables
(gray) and expected values (black) in Example II. Top: FS1. Middle: FS3.
Bottom: FS14.

DAMAGE IDENTIFICATION

This section considers the identification of the 15 failure scenarios in Fig. E.9
through observations of loads and displacements. To this end, different cases
are assumed with respect to the number and locations of load and displace-
ment observations, and the associated uncertainties. Again, the observations
are assumed to be collected at the occurrence of an annual extreme load
event, and the target of the analysis is to assess whether the structure is still
undamaged (baseline, FS0) or whether one of the failure scenarios considered
above, i.e. {FSc, c = 1, . . . , 15}, have occurred. The classification approach is
the same as the one used in Example I, i.e. using a gradient boosting classi-
fier, and setting the hyper-parameters based on 5-fold cross-validation using
GP-based Bayesian optimization with a squared exponential kernel and the
expected improvement acquisition function, see also Sec. 3 for further details.

Perfect information This assessment considers observations of all load vari-
ables, along with the corresponding horizontal displacements of the beam
elements, measured on the right hand side of the structure, and vertical dis-
placements at mid-span of the beam elements, at the final stage of a failure
scenario, see e.g., Fig. E.8. Like in Example I, the realizations are taken di-
rectly from the structural analysis program and are thus free of potential
measurement uncertainties (noise).
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To target the analysis, a sensitivity analysis is initially undertaken to as-
sess the influence of the size of the training data set. In this regard, three
settings are considered: (i) a training set of 8000 realizations of each failure
scenario, as in Example I, i.e., 128,000 training realizations in total; (ii) a train-
ing set size of 4000 realizations of each failure scenario, i.e., 64,000 training
realizations in total; and (iii) a training set of 2000 realizations of each failure
scenario, i.e., 32,000 training realizations in total. In all situations, the same
test set of realizations is considered, which is comprised of 2000 realizations
of each failure scenario, i.e., 32,000 test realizations in total.

The results of the sensitivity analysis are summarized in Fig. E.11 in terms
of the test set accuracy, the macro F1-score, and the cross-entropy. The cor-
responding error matrices appearing in Fig. E.12. Figure E.11 shows that
the test set performance decreases steadily as the number of training exam-
ples are reduced, thus the accuracy and the macro F1-score decrease and the
cross-entropy (loss) increases. At the same time, the classifier training time
is approximately halved as the training samples are halved. Thus, there is a
trade-off between performance and training time; up to a certain level, the
performance may be increased by adding more training samples, but this
comes with the cost of increased training time. Within the range of train-
ing samples considered in Fig. E.11, it is concluded that the classifier globally
performs rather robust, as e.g., the test set accuracy reduces by only 5% (from
0.89 to 0.84) when the number of training samples are reduced by a factor of
four. From Fig. E.12, it is seen that this conclusion also holds on a local scale,
as the patterns in the error matrices are the same, and only the error rates
change as a function of training set size.

In the remainder of this example, the influence of uncertainty associated
with the observations, as well as the amount and location of observations,
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Figure E.11: Influence of training set size in case of perfect information in
Example II.
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Figure E.12: Scaled test set error matrices in case of perfect information in
Example II: (a) using 8000 training samples for each failure scenario; (b) using
4000 training samples of each failure scenario; and (c) using 2000 training
samples of each failure scenario. The error matrices are scaled by the number
of test samples of each failure scenario.

are studied. To this end, situation (iii) is considered as the baseline, i.e., 2000
training and test realizations of each failure scenario.

Uncertain information In the following, a training and test set of 2000 real-
izations of each failure scenario, respectively, are considered, corresponding
to situation (iii) above. For this case, all observations are now modeled as
independent random variables with expected values equal to the realizations
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returned by the structural analysis program and additive uncertainty mod-
eled by a zero mean Gaussian random variable, with different variances to re-
flect the influence of measurement uncertainty on the classifier performance.
In this regard, the random variables representing measurement uncertainties
associated with load measurements are assigned variances equal to 5%, 10%
and 15%, respectively, of the variance of the realizations of the loads acting
on the structure. Similarly, the random variables representing the uncertain-
ties associated with observations of the displacements are assigned variances
corresponding to 1% and 5%, respectively, of the variance of the realizations
of displacements as returned by the structural analysis program. This gives a
total of 6 combinations of uncertainties associated with the observations for
which the analysis summaries are provided in Tab. E.6.

Table E.6: Performance of the classifier in Example II when uncertainties
associated with observations of loads and displacements are accounted for.

Added noise to Performance metric
Loads Displacements Accuracy Macro F1-score Cross-entropy
0.05 0.01 0.71 0.71 0.80
0.05 0.05 0.66 0.66 0.93
0.10 0.01 0.69 0.69 0.87
0.10 0.05 0.64 0.64 0.98
0.15 0.01 0.67 0.67 0.89
0.15 0.05 0.63 0.63 1.01

Table E.6 shows that the test set performance reduces steadily with in-
creasing uncertainty associated with observations of loads and displace-
ments; the accuracy and the macro F1-score reduce and the cross-entropy
(loss) increases. Moreover, it is observed that the classifier seems to be more
sensitive to uncertainties associated with observations of displacements than
uncertainties associated with observations of loads. This is seen from e.g.,
the reduction in accuracy from 0.71 to 0.66 (5%) when changing the variance
of the random variables modeling the uncertainties associated with obser-
vations of displacements from 1% to 5%, while keeping the variance of the
random variables modeling the uncertainties associated with observations of
loads at 5%. The accuracy only reduces from 0.71 to 0.69 (2%) when changing
the variance of the random variables modeling the uncertainties associated
with observations of loads from 5% to 10%, while keeping the variance of
the random variables modeling the uncertainties associated with observa-
tions of displacements at 1%. Within the range of uncertainties considered
in Tab. E.6, it is again concluded that the classifier globally performs rather
robust, as e.g., the test set accuracy reduces by only 8% (from 0.71 to 0.63)
when the variance of the random variables modeling the uncertainties in ob-
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servations of loads and displacements are increased from 5% and 1% to 15%
and 5%, respectively. By considering Fig. E.13, it is seen that this conclusion
also holds on a local scale, as the patterns in the error matrices are very simi-
lar, but, of cause, the rate of erroneous classifications increases with the level
of uncertainties associated with observations.

FS1 FS3 FS5 FS7 FS9 FS11 FS13 FS15
Prediction

FS
1

FS
3

FS
5

FS
7

FS
9

FS
11

FS
13

FS
15

Ta
rg

et

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a)

FS1 FS3 FS5 FS7 FS9 FS11 FS13 FS15
Prediction

FS
1

FS
3

FS
5

FS
7

FS
9

FS
11

FS
13

FS
15

Ta
rg

et

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b)

Figure E.13: Scaled test set error matrices in case of uncertain information in
Example II: (a) 5% of load variances and 1% of displacement variances; and
(b) 15% of load variances and 5% of displacement variances. The error ma-
trices are scaled by the number of test set examples of each failure scenario.

Value of information In order to study the significance of the number of
observations and their location on the structure, the following situations are
studied: (i) only the horizontal displacement of all beam elements, measured
on the right hand side of the structure, are used as input to the classifier;
(ii) same as situation (i), but including the vertical displacement at mid-span
of the beam elements of the upper story; (iii) same as situation (ii), but in-
cluding the vertical displacement at mid-span of the beam elements of the
middle story; (iiii) same as situation (iii), but including the vertical displace-
ment at mid-span of the beam elements of the lower story, i.e., this situation
considers observations of all displacements as input to the classifier. Note
that in this assessment, the realizations of displacements are again taken di-
rectly from the structural analysis program and are thus not associated with
any uncertainty.

Table E.7 shows the test set performance as a function of the available in-
formation in terms of displacement observations. It appears that the perfor-
mance of the classifier increases steadily with increasing information on the

230



PAPER E.

structural displacements, thus the accuracy and the macro F1-score increase
and the cross-entropy (loss) decreases. Moreover, by considering Fig. E.14, it
appears that the patterns in the error matrices are similar, and as more in-
formation is considered, the confusion around the main diagonal diminishes,
i.e., the main diagonal in Fig. E.14a is wider than in Fig. E.14b.

Table E.7: Performance of the classifier in Example II, when different situa-
tions regarding available information are considered.

Input information Performance metric
Displacements * Accuracy Macro F1-score Cross-entropy
H 0.34 0.33 1.78
H, V-3 0.42 0.41 1.59
H, V-3, V-2 0.50 0.50 1.34
H, V-3, V-2, V-1 0.63 0.63 1.02

* H (horizontal), V (vertical) with index referring to story.
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Figure E.14: Scaled test set error matrices in Example II, when different situa-
tions regarding available information are considered: (a) Horizontal displace-
ments only; (b) All horizontal and vertical displacements. The error matrices
are scaled by the number of test set examples of each failure scenario.

The value of the additional information between the four situations may
be quantified in different ways. Ideally, a full structural analysis assessment
should be performed to assess the actual cost related with the individual fail-
ure scenarios, and the value of information (VoI) should be quantified as the
cost reduction resulting from a more optimal choice of structural design –
facilitated by the knowledge gained by the observations – in a pre-posterior
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decision analysis context, see e.g., [38]. This elaboration will be considered
in future research. Another common way of quantifying the VoI in data sci-
ence is through a model fitness metric, like the ones reflected in Tab. E.7.
Thus, using e.g., the cross-entropy to quantify the VoI, it appears that the
value of considering all displacement observations (situation (iiii)), as op-
posed to only horizontal displacement observations (situation (i)), is 0.76.
Again, whereas this indicates the effect of improvements in knowledge with
respect to damage identification, it does not provide much information with
respect to whether such an effect is actually worthwhile.

5 CONCLUSIONS AND DISCUSSIONS

In the present contribution, a novel approach for modeling and analysis of
systems based on modern techniques of big data analysis is proposed. Due
to the generic character of the suggested approach, it is in principle appli-
cable for any type of real-life system for which a probabilistic model may
be established to represent the relationship between realizations of system
characteristics, system performances, and observations of these.

The approach utilizes Monte Carlo simulation as a means to generate
large numbers of realizations of system states of interest together with cor-
responding realizations of observable system performances. Classification
techniques from big data analysis are then applied to identify probabilis-
tic relationships between specific observations of system performances and
system states of interest. These probabilistic relationships may finally be uti-
lized for the management of a real-life system supported by observations
of its performances under classified conditions. The proposed approach is
illustrated on two principle examples addressing damage identification in
idealized structural systems subject to extreme loading. These examples il-
lustrate the application of the suggested approach and its robustness with
respect to the complexity of the considered system as well as to the uncer-
tainty associated with observations of system performances.

From the examples, it is seen that the suggested approach with a high
level of precision (small type I and type II errors) identifies the correct
states of damages. This is indeed very promising since, besides being fully
information-consistent, the suggested approach is very efficient in terms of
computational efforts. The ability of establishing the damage state assign-
ments in terms of type I and type II errors is a strong feature of the proposed
approach, as it facilitates for direct inclusion of the modeling into the frame-
work of risk-informed decision-making.

From the 3-story, 3-bay frame structure example, it is seen that the pro-
posed scheme is indeed robust, even when relatively substantial uncertainties
are associated with observations of structural responses, and when the num-
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ber of observed structural responses are reduced. Moreover, initial value
of information assessments point to the potential benefits of embedding the
proposed scheme in a pre-posterior decision analysis to optimize strategies
for collecting observations of system responses.

It should be highlighted that an instance-based classification of system
performances has been applied in the present study, i.e., classifications based
on only one realization of system performances. However, a straightforward
extension of the proposed scheme allows for a classification of system states
based on any set of functions of system performances; typically referred to
as features in structural health monitoring.

In the examples, it is assumed that all possible states of the systems are
considered, i.e., the system representations are exhaustive with respect to
possible states. This assumption, which is common in the research literature
on systems and damage identification, could be argued to be overly idealized,
i.e., neglecting the possibility of system states that due to considerations of
practical character, or due to model uncertainties, have not been included
in the database of system responses. When addressing systems and system
states for which a large number of observations from reality are available,
it may be assumed that the effect of this is negligible. However, for more
unusual systems and system states, which only occur rarely, observations of
relevance from reality may be very sparse or not available. To circumvent this
potential problem is in principle straight forward; introduce an additional
system state that represents any system state not explicitly accounted for.
Questions relating to the assignment of probabilities of such events however
remain to be adequately considered and answered. The assignment of model
uncertainties in probabilistic models concerning rare systems performances
is still an important research area.
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A ASSESSING CLASSIFIER PERFORMANCE

The performance of a classifier is commonly assessed using a so-called con-
fusion matrix, see Fig. E.15, where the rows represents the true target labels
and the columns represent the predictions. Thus, along the rows, the di-
agonal terms reflect the so-called true positives (TP) for a class, while the
off-diagonal elements reflect the so-called false negatives (FN) or type II er-
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rors; and along the columns, off-diagonal elements reflect the so-called false
positives (FP) or type I errors [37]. That is, an ideal confusion matrix has high
non-zero entries along its main diagonal, from left to right, as in Fig. E.15.
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Figure E.15: Principle confusion matrix for a three-class classification prob-
lem considering 100 realizations of each class.

A common metric used in relation to the confusion matrix is the accuracy,
i.e., the complement of the misclassification error, which is defined as the sum
of the diagonal terms to the total number of realizations N used to build the
confusion matrix. Furthermore, for all classes, the precision, i.e., TP/(TP+FP),
and recall, i.e., TP/(TP+FN), may be calculated and jointly summarized by
their harmonic mean, called the F1-score, to reflect the trade-off between FP
and FN by giving higher weight to low values [37], i.e.,

F1 = 2
precision · recall

precision + recall
. (E.5)

Thus, the F1-score favors classifiers that have similar precision and recall. If
this is not a desirable feature, and we want to e.g., give higher weight to FP
than to FN, the so-called Fβ-score may be used instead of the F1-score, see
e.g., [40]. The per-class F1-score may now be averaged to produces a so-called
macro F1-score [20], i.e.,

macro F1 =
1
C

C

∑
c=1

F1(c), (E.6)

where C is the number of classes in the classification problem.
Similarly, the general fitness of a classifier may be summarized by the

cross-entropy [19, 37], or log-loss, which is also a commonly used loss func-
tion when fitting gradient boosting classifiers in classification problems. The
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cross-entropy for a multi-class problem is defines as

H(p, q) = −
N

∑
n=1

p(x[n]) log q(x[n]), (E.7)

which reflects the closeness between the true class-probabilities p(x[n]) and
the predicted class-probabilities q(x[n]). Thus, a classifier that accurately
predicts the class-labels receives a value close to 0.

B NUMERICAL MODELING

B.1 RELIABILITY MEASURES AND CALIBRATION

The probability of failure PFj associated with the failure event Fj is expressed
in terms of the probability integral

PFj =
∫

gj(x)
p(x)dx, j = 1, . . . , nr, (E.8)

where p(x) is a multidimensional probability density function defining the
random input vector X, nr corresponds to the number of control points con-
sidered, and the failure domain gj, corresponding to the failure event Fj, is
defined as

gj = 1− Dj ≤ 0, j = 1, . . . , nr. (E.9)

Failure is defined as the event where the internal moment M̂j exceeds
the capacity Mj at any control point, which are located in the nodes at both
ends of each element of the structural model, in which case a plastic hinge
will appear. Thus, a failure event Fj associated with one hinge location is
given by

Fj = Dj > 1, j = 1, . . . , nr, (E.10)

where the normalized demand Dj is defined as

Dj =
M̂j

Mj
, j = 1, . . . , nr. (E.11)

In this regard, the structure is calibrated such that the reliability of the failure
events satisfies the following conditions

PFj ≤ P∗Fj
, j = 1, . . . , nr, (E.12)

according to a linear structural analysis, where P∗Fj
corresponds to the target

failure probability of the control point j. The calibration is performed using
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the moment of inertial of the structural elements as design variables. An op-
timization problem is defined aiming to reduce the total cost of the structure,
which is assumed to be proportional to the sum of the design variables. To
solve the optimization problem, the approach proposed in [41] is adopted,
where subset simulation [31] is used as reliability technique to solve the reli-
ability problem.

B.2 NON-LINEAR STRUCTURAL ANALYSIS

In the following, the approach followed for non-linear structural analysis in
the examples is outlined. The purpose of this outline and the scope of the
non-linear analysis as such is solely to facilitate tractability of the results pre-
sented in the examples. Surely more refined and accurate non-linear struc-
tural analysis approaches are available and may be selected as found appro-
priate. The particular choice of non-linear structural analysis has no impor-
tance as such in the context of the present paper. An incremental non-linear
structural analysis is performed based on a finite element beam representa-
tion of structural elements. The loads acting on the structure are increased
gradually by a load factor r1 ∈ [0, 1] and r2 ∈ [0, 1], respectively, where the
former is a multiplier for the horizontal loads, and the latter is a multiplier
for the vertical loads. In this regard, r2 is first gradually increased to 1, while
keeping r1 = 0, and then r1 is increased gradually, while keeping r2 = 1.

This loading pattern allows for solving successive states of equilibrium.
For each of these states, a linear analysis is performed and the normalized
demand for each node is verified. In case it is exceeded for one or more
node(s), taking advantage of the linear analysis properties, the value r∗1 or r∗2
of the load factors that achieves Dj∗ = 1 is identified, where j∗ corresponds
to the control point with the larger value of the normalized demand. Then,
a plastic hinge is imposed at node j∗, allowing to continue increasing the
horizontal or vertical load from the value r∗1 or r∗2 , previously identified, and
a new state of equilibrium is sought. In this manner, the procedure continues
until r1 and r2 are equal to 1, unless a global or local mechanism is formed in
which case the procedure is terminated.
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ABSTRACT

Motivated by an increasing industrial and regulatory focus on integrity manage-
ment of ageing offshore oil and gas production plants, we take up the challenge of
developing an improved basis for the probabilistic representation of systems and ap-
ply this to model the offshore load environment. To this end, we propose and outline
a framework that takes basis in Bayesian networks and Gaussian processes. This
framework provides for a consistent treatment and representation of all prevailing
epistemic and aleatory uncertainties, and it facilitates for model updating at the same
rate as new information is made available. The main novelty of our contribution
is that we account explicitly for possible competing system representations and in-
tegrate the systems representation problem – the modeling – into the context of the
decision analysis problem the models aim to serve. Our proposed approach is first
illustrated by a principle example showing all the aspects of our approach. There-
after, we introduce a real case application, where we derive a Bayesian network for
the probabilistic representation of storm events. Finally, we embed the probabilistic
storm representation into a decision problem concerning the ranking of possible al-
ternatives for the evacuation of a set of offshore structures, provided information on
an emerging storm event.

Keywords: systems modeling, Bayesian network, Gaussian processes, multiple data
sources, model selection and decision optimization.

1 INTRODUCTION

Over the last decade, a variety of different probabilistic modeling frameworks
have been proposed to facilitate for an information consistent joint represen-
tation of the metocean variables, which are commonly used to represent the
load environment for offshore energy production facilities. These modeling
frameworks aim to adequately account for the available statistical informa-
tion in the probabilistic representation of the metocean variables marginally
as well as jointly, especially in domains of realizations where one or more of
the variables take extreme values. Such dependencies are often not accounted
for consistently in normal engineering design practice, where e.g., the max-
imum load effects originating from the jointly occurring metocean variables
are typically modeled by an aggregation of the maximum load effects origi-
nating from the metocean variables individually [1, 2]. This may thus result
in design loads of unknown probabilities of occurrences.

Whereas the recent progress on modeling frameworks for the probabilistic
representation of the offshore load environment comprise significant contri-
butions to enhanced consistency in the modeling, they still leave potential for
important improvements. Indeed, the present state-of-the-art on planning of
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statistical experiments and the associated probabilistic modeling of systems
do not account for two important aspects, namely (i) the decision context in
which the results and the associated probabilistic models are applied, and
(ii) the fact that more than one model might be adequate for the probabilistic
representation of the system at hand.

In the context of probabilistic systems modeling in civil engineering, only
a few contributions related to the consideration of these two aspects are
known to the authors. In [3, 4], the problem of optimizing statistical experi-
ments is integrated into the context in which the resulting model is applied,
and in [5], the possibility of competing probabilistic models in engineer-
ing decision-making is accounted for in the ranking of decision alternatives.
In [6] the philosophical and theoretical framework for the representation and
treatment of critical information in decision-making is outlined. This frame-
work forms the basis for [7, 8] in which a novel contribution is presented on
how to consistently integrate both optimization of collection of information
(aspect (i)) and the possibility of competing probabilistic system represen-
tations (aspect (ii)) into the decision context, which the probabilistic system
representations aim to support.

In the present contribution, we build on [6] and [7, 8] to formulate and
demonstrate how Bayesian modeling techniques may be applied to establish
probabilistic representations of offshore load environments in the context of
risk modeling and integrity management for offshore structures with a joint
consideration of both aspect (i), i.e., decision context, and (ii), i.e., model
multiplicity. This approach allows for an integration of both classical engi-
neering bottom-up modeling, i.e., models based on phenomenological under-
standing of the problem domain, and the emerging techniques of top-down
(data-driven) modeling using e.g., big data and deep learning.

To illustrate the novel modeling framework and the associated techniques,
we consider a full-scale application example, where offshore environmental
load models are established in the decision context of safety management
and re-qualification of offshore structures in the Danish part of the North
Sea. The example addresses the general aspects of developing a probabilistic
environmental load model based on records of past storm events. Consider-
ing this load model, it is shown how decisions regarding possible platform
evacuation in the face of an approaching storm event may be supported based
on the associated risks. The example further points to the potentials of the
developed model framework in the context of establishing load models for
ultimate and fatigue limit states.

The remainder of the this paper is organized as follows: Sec. 2 reviews
the literature on load environment modeling in offshore engineering, which
forms the basis for a discussion on system representations using Bayesian
networks and Gaussian processes in Secs. 3 and 4, respectively. Section 5
presents how competing system representations may be accounted for in rela-
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tion to inference and decision support, and the ideas are applied on a simple,
principle example in Sec. 6. Sections 7 and 8 apply our novel methodol-
ogy to a full scale application, and the paper is summarized and concluded
in Sec. 9.

2 LOAD ENVIRONMENT MODELING IN OFF-
SHORE ENGINEERING

Probabilistic load modeling in relation to safety assessments of offshore struc-
tures normally focus on either the fatigue limit state (FLS), the ultimate limit
state (ULS), or the accidental limit state. The most important load component
in relation to FLS assessments of welded offshore structures is wave loading,
but also winds and currents contribute to fatigue damage accumulation.

The statistical properties of ocean waves are most often represented by
integral properties of sea states, such as significant wave height and zero-
crossing period, with a reference frame of 1 to 3 hours over which the param-
eters are assumed to be stationary. Within each sea state, the water surface
elevation is commonly modeled by a stationary Gaussian process with a site-
specific spectral representation, e.g., the JONSWAP spectrum for the North
Sea region. Moreover, this representation of the surface elevation may be
supplemented with a correction for non-linear effects [7, 9].

A FLS assessment of an offshore structure requires that we specify all
relevant environmental conditions that are expected to occur during its pe-
riod of exposure, i.e., its construction phase (including transport) and its
design life [2]. This means that we need the long-term distribution of the sea
states variables.

Traditionally, the long-term distribution of sea state variables is estab-
lished by bottom-up modeling approaches, i.e., by combining constituent-
based phenomenological models to form a sea state system representation.
If the available information about the joint set of sea state variables is lim-
ited to the marginal distributions and the mutual correlations, then the Nataf
transform may be used [10, 11]. Provided that sufficient domain specific
knowledge is available to directly apply the chain rule of probability theory,
a joint model may be established by a sequence of conditional probability
distributions, see e.g., [11–13]. This modeling approach is often referred to
as conditional modeling. A modern approach based on assumptions regard-
ing the parametric relations in a problem domain is Copula modeling, where
Sklar’s theorem [14] is employed to represent a multivariate joint distribution
in terms of univariate marginal distribution functions and one or more Cop-
ulas, which describe the dependency structure between the variables [15, 16].

In top-down modeling, the joint probabilistic model is constructed by ex-
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posing a joint set of observations of the variables to modern machine learning
techniques. The reader is refereed to e.g., [17–19] for a comprehensive cover-
age of the various techniques, and applications in offshore engineering may
be found in e.g., [20, 21], which illustrate the use of neural networks and
Gaussian process regression, respectively, as statistical emulators in relation
to record extension of sea state data.

Assessing the structural safety related to extreme load events, i.e., ULS,
requires estimation of e.g., the maximum wave height or crest for a given
return period, together with the dependence between their extremes and si-
multaneous realization of the remaining domain variables. In this regard,
the domain variables are the variables included in the system representation.
That is, rather than defining the dependency relation for the bulk of the data,
as captured by the long-term distribution, focus is directed on the modeling
of the tail behavior, which enables extrapolation beyond the original sample
to quantify extreme quantiles of the distribution.

When dealing with extremes, a first challenge is to answer the funda-
mental question: What makes a multivariate observation extreme? Thus,
it must be framed whether an extreme event is defined by an extreme re-
alization of one variable, or several variables attaining extreme realizations
simultaneously. Furthermore, since extreme value models are motivated by
asymptotic assumptions, it is generally required to define a threshold in or-
der to assess which realizations should be considered in the extreme value
analysis [22, 23].

In case domain specific knowledge provides the necessary means for the
construction of a joint extreme value model, the bottom-up techniques listed
above may be applied. In ocean engineering, for instance, extreme events
are often defined as observations where one variable, usually the significant
wave height, is extreme. For this case, a joint model is constructed by first
estimating the marginal distribution for this variable, and then the remain-
ing variables are modeled conditional on this variable being extreme. See
e.g., [24–26] for applications of bottom-up modeling of extremes in ocean
engineering.

When sufficient domain specific knowledge is not available to formulate
an extreme value model, it is generally necessary to resort to the approach
of modeling conditional extremes [27] or similar, see [23] for a review on
extreme value analysis in ocean engineering. Some applications of the con-
ditional approach to metocean data can found in [28–32].

In this study, focus is directed on the modeling of the long-term, mul-
tivariate distribution of storm events using Bayesian networks (BNs), also
known as directed graphical models, which is a branch of probabilistic graph-
ical models that uses Bayesian inference for probability computations. Rea-
soning processes can operate on BNs by propagating information in any di-
rection, which enables not only prediction (forward propagation) and abduc-
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tion (backward propagation, or reasoning to a problem cause) but also inter-
causal reasoning (explaining-away), where the confirmation of one cause in-
creases or decreases belief in others. This last form of reasoning gives BNs a
competitive edge compared to other machine learning techniques, like rule-
based systems and neural networks, and makes them an important tool for
risk assessment and decision analysis [33]. Applications of BNs in relation to
offshore asset integrity management appear in e.g., [34–40].

3 SYSTEM REPRESENTATIONS USING
BAYESIAN NETWORKS

In this section, the representation of systems is addressed using the frame-
work of Bayesian networks (BNs). Starting point is taken by defining BNs in
Sec. 3.1, and we proceed to discuss learning of BNs in Secs. 3.2 and 3.3 for
fully observed and partially observed data sets, respectively. The reader is
referred to e.g., [8, 41] for a general introduction to inference in BNs.

3.1 INTRODUCTION TO BAYESIAN NETWORKS

BNs are probabilistic graphical models that allow for reasoning and learning
in complex, uncertain domains; where reasoning refers to the task of per-
forming probabilistic inference on one or several variable(s) in the problem
domain, e.g., querying the (conditional) distribution of a variable, potentially
given observations on some other variables in the model; and learning refers
to the task of specifying the BN model, i.e., model structure and parameters
given a training data set.1

The dependencies between the domain variables X are represented as
edges in a directed acyclic graph (DAG) G, wherein the variables appear as
vertices. A factor P(Xi|Pai) is specified for each variables Xi, which encodes
its conditional probability distribution, given the variables that Xi depen-
dents directly on in G, i.e., the so-called parent set Pai of the variable [42].
The BN model then defines a probability distribution over the domain vari-
ables as

P(X|G, ΘG) = ∏
i

P(Xi|Pai), (F.1)

where ΘG denotes the set of model parameters needed to represent the fac-
tors, see e.g., [8] for further details.

Like most machine learning frameworks, BNs provides a means for mod-
eling an uncertain domain based on noisy observations, but what distin-
guishes this modeling scheme from most others is the ease with which

1In classical statistics this is often referred to as model estimation.
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prior knowledge can be included in the modeling on both the structural
level (DAG) and parameter level (factors). This makes BNs an ideal tool
for combining bottom-up and top-down modeling [43].

3.2 LEARNING FROM COMPLETE DATA SETS

In this study, a Bayesian approach to learning is adopted, which necessitates
that prior beliefs are specified with respect to {G, ΘG}, i.e., the model struc-
ture and parameters, as P(G, ΘG). After we observe some data D, our beliefs
about {G, ΘG} may then be updated to obtain posterior beliefs as

P(G, ΘG |D)︸ ︷︷ ︸
posterior

∝ P(D|G, ΘG)︸ ︷︷ ︸
likelihood

P(G, ΘG)︸ ︷︷ ︸
prior

. (F.2)

In this setting, the data set D = {x[n]}N
n=1 is composed of N i.i.d. realizations.

The change in distribution represented by Eq. F.2 reflects the information
gain we get by observing some data, and it further illustrates what it means
for a machine to “learn from data”. Moreover, the posterior distribution in
turn becomes the prior distribution to be used with new observations, which
makes the updating process inherently sequential and therefore well suited
for online learning [41].

In the remainder of this section, we consider learning of system repre-
sentations for discrete-valued random variables, or accordingly dynamically
discretized continuous-valued random variables. In this way, we try to keep
the distributional assumptions for the domain variables at a minimum when
learning BN models.

PARAMETER LEARNING

In this section, we show how to learn the parameters of a BN from data, when
the corresponding DAG G is given, and the available data set D consists of
complete assignments to all variables. In this setting, with reference to Eq. F.2,
parameter learning is usually performed by searching for a set of parameters
in ΘG that maximizes

P(ΘG |G,D) = P(G, ΘG |D)
P(G) ∝ P(D|G, ΘG)P(ΘG |G), (F.3)

where P(G, ΘG) = P(ΘG |G)P(G). The likelihood P(D|G, ΘG) factorizes ac-
cording to G, and the prior P(ΘG |G) is decomposed by assuming global and
local parameter independence, together with a Dirichlet equivalent uniform
prior for the parent configurations ui in the factors, see e.g., [44].
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Based on these assumptions, the posterior of the parameters also decom-
poses into a product Dirichlet distribution:

P(ΘG |G,D) = ∏
i

∏
ui∈Val(Pai)

Dir

({
α

xj
i |ui

+ N[xj
i , ui]

}|Xi |

j=1

)
, (F.4)

where α
j
xi and N[xj

i , ui] are the prior weight and the number of samples in
bin j of variable Xi with parent configuration ui [44, 45].

STRUCTURE LEARNING

Attention is now directed on how to learn the DAG of a BN from complete
data. Taking basis in Eq. F.2, structure learning is usually performed by
searching for a DAG G that maximizes

P(G|D) ∝ P(G)P(D|G) = P(G)
∫

P(D|G, θG)P(θG |G)dθG , (F.5)

where P(G, ΘG) = P(ΘG |G)P(G), and the prior over DAG structures P(G) is
usually assumed to be uniform. As is apparent from Eq. F.5, it is not possible
to perform this computation without also considering the parameters ΘG of
the BN model. Therefore, to make P(G|D) independent of any specific choice
of ΘG , ΘG needs to be integrated out of the equation [43, 45].

Under the assumptions stated above for parameter learning, P(D|G) may
be estimated in closed form as

P(D|G) = ∏
i

∏
ui∈Val(Pai)

Γ(αXi |ui
)

Γ(αXi |ui
+ N[ui])

∏
xj

i∈Val(Xi)

Γ(α
xj

i |ui
+ N[xj

i , ui])

Γ(α
xj

i |ui
)

, (F.6)

where Γ(·) is the Gamma function, N[ui] is the number of samples with
configuration ui, and N[xj

i , ui] is the number of samples in bin j of variable
Xi with parent configuration ui [44, 46].

Finding a DAG that maximizes Eq. F.6 is generally an intractable prob-
lem [47]. One approach to deal with this problem is to resort to a heuris-
tic search strategy to find a high-scoring DAG. In this study, we apply hill-
climbing strategies to perform score-based structure learning. A greedy hill-
climbing strategy proceeds as follows: In each iteration, we define the neigh-
borhood of the current DAG G(t) as all DAGs, we can produce from G(t) by
adding an edge, removing an edge, or reversing an edge. In this neighbor-
hood, we pick the DAG that has the highest score and update G(t+1). This
strategy only guaranties to find a local optimum, but we may improve our
chances of finding a “good” optimum by including a tabu list of previously
visited structures and/or performing random restarts, when a local optimum
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is reached [43, 48]. Score-based algorithms, and tabu search in particular,
have been shown to perform well in practice in terms of accuracy and speed
of network reconstruction for both small and large sample sizes [48].

STRUCTURE LEARNING AND AUTOMATIC DISCRETIZATION

In this section, we consider how to learn the DAG of a BN and, at the same
time, the optimal discretization of continuous variables from complete data.
In this setting, we assume that the data are generated by first sampling a
realization of the discrete-valued variables form their joint distribution, and
then drawing continuous values within the discrete-numbered intervals in-
dependently [49].

By including the discretization policy ΛG of the observed continuous-
valued data Dc in the learning problem, we need to specify beliefs on the
triple {G, ΘG , ΛG}. Analogously to Eq. F.2, the joint posterior distribution for
this problem takes the following form

P(G, ΘG , ΛG |Dc) ∝ P(Dc|G, ΘG , ΛG)P(G, ΘG , ΛG), (F.7)

where ΛG specifies a set of interval boundary points for each variable. Fur-
thermore, as implicitly implied by the generative process forDc, it is assumed
that given {D, ΛG}, Dc is conditionally independent of {G, ΘG}, whereby
Eq. F.7 may be rewritten as

P(G, ΘG , ΛG |Dc) ∝ P(Dc|D, ΛG)︸ ︷︷ ︸
likelihood (continuous)

P(D|G, ΘG , ΛG)︸ ︷︷ ︸
likelihood (discrete)

P(G, ΘG , ΛG)︸ ︷︷ ︸
prior

.

(F.8)
Under the assumptions stated above for structure learning, together with

the additional assumption of an uniform prior over the discretization policies,
the product of the two last terms in Eq. F.8 (the discrete part) corresponds to
the evaluation of Eq. F.6. Furthermore, the following formulations of the
continuous likelihood are considered in the literature [49, 50]:

P(Dc|D, ΛG) =∏
i

∏
xj

i∈Val(Xi)

(
1

λ
j
i − λ

j
i

)N[xj
i ]

(F.9a)

P(Dc|D, ΛG) =∏
i

∏
xj

i∈Val(Xi)

(
1

N[xj
i ]

)N[xj
i ]

, (F.9b)

where N[xj
i ] is the number of samples in bin j of variable Xi, regardless of

the parent configuration, and λ
j
i and λ

j
i are the lower and upper boundary
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point in bin j of variable Xi. Moreover, only the N− 1 midpoints of each data
vector Dc

i are considered as candidate boundary points for Xi.
Based on these assumptions, Eq. F.8 aims to establish a trade-off between

model simplicity and representativeness. On one hand, the formulations of
P(Dc|D, ΛG) in Eq. F.9 rewards model complexity and prediction accuracy
with respect to the continuous variable, and thus it increases with an in-
creasing number of intervals. On the other hand, the discrete part of Eq. F.8,
penalizes model complexity, whereby it balances the resolution of the dis-
cretization by decreasing as the number of intervals increase [49, 50].

The learning problem is solved by successively applying the following two
steps until convergence: (i) discretize the data based on the current DAG, and
(ii) learn a new DAG based on this discretization of the data, see [7, 8, 50, 51]
for further details.

3.3 LEARNING FROM INCOMPLETE DATA SETS

In this section, learning of BN models is considered, when the set of available
data is incomplete. That is, we have a data set D = {Dobs,Dhid}, where Dobs
denotes the observed data and Dhid denotes the hidden data. Now, assuming
that the incomplete data set has been generated from a complete data set
by a process that hides some of the data. One of three assumptions for the
missing-data mechanism is typically considered: (i) data missing completely
at random (MCAR), where the mechanism is assumed to be independent of
the data; (ii) data missing at random (MAR), where it is assumed that the
mechanism do not depend on the hidden data; and (iii) data missing not at
random (MNAR), where the mechanism depends on both the observed and
the hidden data [52].

Most applications assume the data to be MAR, and in the remainder of
this section the same assumption is made. In this case, the data likelihood in
Eq. F.2 may be evaluated as

P(D|G, ΘG) = ∑
Dhid

P(Dobs,Dhid|G, ΘG). (F.10)

In order to evaluate this likelihood, inference for the hidden variables of each
instance n must be undertaken, which means that the property of parameter
independence is lost, and we thereby also lose the decomposability of the
likelihood function [44].

PARAMETER LEARNING

The basis for parameter learning is again Eq. F.3 with a product Dirichlet
equivalent uniform prior that satisfies both global and local parameter in-
dependence, but as the posterior distribution is a product of likelihood and
prior, and the likelihood is not decomposable, no closed form solution exists.
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One way of addressing this problem is to learn the parameter setting that
maximizes the posterior utilizing, for instance, a generic gradient based op-
timization algorithm or the expectation maximization (EM) algorithm. An-
other way of addressing the problem is to use a sampling based method, like
Gibbs sampling, to approximate the posterior distribution [44, 53]. A review
on common algorithms used for parameter learning in BNs may be found in
e.g., [54, 55].

STRUCTURE LEARNING AND AUTOMATIC DISCRETIZATION

Learning the DAG structure of a BN (in addition to the parameters) from
an incomplete data set is challenging from both a methodical and a compu-
tational point of view. The score metrics defined in the previous sections,
i.e., Eqs. F.5 and F.8, are functions of the sufficient statistics N[·] through the
definition of the (discrete) data likelihood in Eq. F.6, and thus these are not
defined for incomplete data sets. To circumvent this problem, the definition
of the (missing) data likelihood in Eq. F.10 may be adopted, and thereby the
data likelihood may be established on the basis of the expected sufficient
statistics.

As for the case of parameter learning given a graph structure, this may
be accomplished by utilizing a deterministic optimization algorithm, such as
EM, or a stochastic procedure, like Gibbs sampling. The former approach
is now termed structural EM [56, 57], and it proceeds by embedding the
structural search inside the EM procedure. The latter approach is usually
termed data augmentation [58], and it utilizes a sampling approach to pro-
duce several completions of the training data set, which may then be used
for structure learning in a complete data setting.

By use of one of the approaches outlined in the foregoing, the (discrete)
data likelihood may now be evaluated and learning of the triple {G, ΘG , ΛG}
can again be performed in accordance with Eq. F.8.

4 DISCREPANCY MODELING USING
GAUSSIAN PROCESS REGRESSION

In this section, we discuss how to correct simulator outputs for model bias
using measurement results and discrepancy modeling. This is a natural pre-
processing step before formulating the system representation(s) in Sec. 3,
when measurements exists that correspond to some of the simulator out-
puts. First, Sec. 4.1 introduces the general concept of discrepancy modeling,
and then Secs. 4.2 and 4.3 explain how Gaussian processes can be used for
discrepancy modeling in a single-output setting and multiple-output setting,
respectively.
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4.1 INTRODUCTION TO DISCREPANCY MODELING

Deterministic computer-based simulators are used extensively to predict the
response of complex systems, such as weather systems [59], structural sys-
tems [60], and systems representing climate changes [61, 62]. For such
cases, the relationship between the true response y(x) and the simulator out-
put g(x), evaluated at input x, may be formulated as

y(x) = g(x) + f (x), (F.11)

where f (x) is a systematic, additive discrepancy function. Moreover, if only
a set of noisy measurements of the true system responses are available, the
relationship may be formulated as

z(x) = g(x) + f (x) + ε, (F.12)

where ε is the noise related to our response measurements z(x). Now, defin-
ing r(x) = z(x)− g(x), the following formulation is obtained:

r(x) = f (x) + ε. (F.13)

Based on Eq. F.13, we can define a discrepancy function, which enables
us to correct the simulator outputs for model bias at unmeasured inputs
before proceeding to learn a probabilistic system representation using e.g.,
the BN approach outlined in the foregoing. In this regard, any paradigm from
the literature on regression theory may be applied to define the discrepancy
function. In the following sections, it is shown how this can be accomplished
by use of single- and multi-output Gaussian process regression.

4.2 SINGLE-OUTPUT GAUSSIAN PROCESSES

A Gaussian process (GP) is a collection of random variables indexed by e.g.,
time or space, such that any finite subset of the variables have a joint Gaussian
distribution.

Taking basis in Eq. F.13, the discrepancies between simulator outputs and
measurements at known inputs x are considered, and it is assumed that ε
is an additive white noise process given by ε = N (0, σ2). Moreover, f is
assumed to be a non-linear, non-parametric function with a GP prior, i.e.,

f (x) ∼ GP(m(x), k(x, x′)), (F.14)

where m(x) = E[ f (x)] is the expected value function, and k(x, x′) =
cov[ f (x), f (x′)] is the positive semi-definite covariance, or kernel, function.
This definition allows us to evaluate the mean function at an arbitrary input
setting and assess how the value of the function at an input point covary
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with the value of the function at other points in input space. Therefore, a GP
may be interpreted as defining a probability distribution over functions, and
inference accordingly takes place directly in the space of functions [63].

Given a data set D = {X̂, r̂} = {x[n], r[n]}N
n=1 of vector-valued input and

scalar output, the GP prior is established by evaluating the expected value
and covariance function at the data points, which leads to a multivariate
Gaussian distribution over the corresponding function values, i.e.,

f (X̂) ∼ N (m(X̂), k(X̂, X̂)). (F.15)

Under proper normalization of the data, the expected value of the process
can be assumed to be zero without loss of generality. The covariance function
should capture basic aspects of the process, such as stationarity, ergodicity,
isotropy, smoothness, and periodicity. When data points that are close in
input space tend to produce similar outputs, a common choice of covariance
function is the squared exponential kernel or the Matérn kernel [63].

One attractive feature of the GP formulation as described in this section
is that exact inference in tractable. Consider the prediction f∗ for a new in-
put x∗. Under a Gaussian noise assumption in Eq. F.13, i.e., r ∼ N ( f (x), σ2),
the joint distribution of the observed discrepancies r̂ and the discrepancy
function at the test location under the prior may be written as[

r̂
f∗

]
∼ N

(
0,
[

k(X̂, X̂) + σ2I k(X̂, x∗)
k(x∗, X̂) k(x∗, x∗)

])
(F.16)

where I is the identity matrix, and it is assumed that the data are properly
normalized, so that m(x) = 0.

By direct application of the standard rules for conditioning of Gaussian
distributed random variables, this joint prior distribution can be restricted to
contain only those functions that agree with the observations, i.e., by condi-
tioning the prior on the observed data points. The predictive distribution for
f (x∗) may then be written as

p( f (x∗)|D, x∗, Θ) = N (m∗(x∗), k∗(x∗, x∗)), (F.17)

where Θ denotes the set of model parameters, and m∗ and k∗ are defined as

m∗(x∗) =kx∗(k(X̂, X̂) + σ2I)−1r̂

k∗(x∗, x∗) =k(x∗, x∗)− kx∗(k(X̂, X̂) + σ2 Î)−1kT
x∗ ,

with kx∗ as a shorthand notation for k(x∗, X̂). Note that if the corresponding
noisy prediction r∗ is desired, all what is needed is to add σ2 to the predictive
variance expression above. See [17, 63] for further details.
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4.3 MULTI-OUTPUT GAUSSIAN PROCESSES

In the following, the framework presented in the foregoing section is ex-
tended to cover multi-output processes, thus the available data set for this
case is D = {X̂, R̂} = {x[n], r[n]}N

n=1, where both the inputs and outputs
are vector-valued. Moreover, in the further treatment, it is assumed that all
inputs are applied in the regression for all outputs.

In multi-output learning the output space is a vector space, thus leading to
a vector-valued estimator f = { fd}D

d=1, which is assumed to follow a GP, i.e.,

f ∼ GP(m, K), (F.18)

where m = {md(x)}D
d=1, i.e., the expected value functions of the outputs,

and K = (K(x, x′))d,d′ is a positive semi-definite, matrix-valued function,
such that the entries correspond to the covariances between the outputs fd(x)
and fd′(x′) [64].

The prior distribution over f takes the following form

f (X̂) ∼ N (m(X̂), K(X̂, X̂)), (F.19)

where m(X̂) is a vector that concatenates the expected value vectors of the
outputs, which under proper normalization of the data can be assumed to be
the zero vector without loss of generality, and K(X̂, X̂) is a block partitioned
matrix defined as

K(X̂, X̂) =


(K(X̂, X̂))1,1 · · · (K(X̂, X̂))1,D
(K(X̂, X̂))2,1 · · · (K(X̂, X̂))2,D

...
. . .

...
(K(X̂, X̂))D,1 · · · (K(X̂, X̂))D,D


If again a Gaussian likelihood model is assumed, i.e., r ∼ N ( f (x), Σ),

where Σ represents a diagonal matrix with diagonal components {σ2
d}D

d=1, the
predictive distribution for a new data point x∗ has a closed form solution, i.e.,

p( f (x∗)|D, x∗, Θ) = N (m∗(x∗), K∗(x∗, x∗)) (F.20)

where Θ denotes the set of model parameters, and m(x∗) and K∗(x∗, x∗) are
defined as

m∗(x∗) = Kx∗(K(X̂, X̂) +ΣΣΣ)−1r̂c

K∗(x∗, x∗) = K(x∗, x∗)− Kx∗(K(X̂, X̂) +ΣΣΣ)−1KT
x∗ ,

with r̂c being a vector of length N×D that concatenates the observed output
vectors, ΣΣΣ = Σ⊗ IN is the Kronecker product between the noise covariance
matrix and an identity matrix of size N, and Kx∗ = (K(x∗, X̂))d,d′ . Note that if
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the corresponding noisy predictions r∗ are of interest, these may be achieved
by adding Σ to the predictive variance expression [64].

If we further assume that the kernel function is separable, we can form
the kernel as a product between an input kernel and an output kernel as

(K(x, x′))d,d′ = kx(x, x′)kr(d, d′), (F.21)

where kx and kr encode the covariances between the inputs and outputs,
respectively. This is referred to as the intrinsic coregionalization model (ICM)
in the Bayesian literature. Other more general kernel structures are sums of
separable kernels, as in the linear model of coregionalization (LMC), and
process convolutions. See [64, 65] for further details.

5 MODEL AVERAGING AND CONTEXT-
SPECIFIC MODEL SELECTION

It is common that the statistical modeling of a problem domain result in
multiple system representations that provide an adequate description of the
observed data, as only limited amounts of data are available and different
modeling approaches may be utilized. In such situations, one best system
representation is typically selected from the ensemble according to some cri-
terion, e.g., fit to data or predictive performance. After one model is selected,
all inferences are made and conclusions drawn assuming that the selected
model is the true model, thus ignoring model uncertainty.

In this section, we describe two avenues for dealing with model uncer-
tainty in statistical modeling and decision-making, namely Bayesian model
averaging (BMA), and an approach we will refer to as context-specific model
selection (CSMS).

5.1 BAYESIAN MODEL AVERAGING

Bayesian model averaging is an approach to combine queries (predictions
and forecasts) from an ensemble of models, where we are uncertain about
the modeling assumptions. Consider an ensemble of system representations
M = {Mu}U

u=1, where eachMu corresponds to one system representation.
Using Bayesian model averaging, inferences are made by averaging over the
ensemble models as

P(∆|Dc) =
U

∑
u=1

P(∆|Mu,Dc)P(Mu|Dc), (F.22)

where ∆ is the query assignment, e.g., a model prediction, and Mu is spec-
ified by the triple {G, ΘG , ΛG} in the case of BN emulators and continu-
ous data. For this case, the model posterior probability P(Mu|Dc) is given
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by Eq. F.8. Thus, BMA provides a weighted average of the posterior pre-
dictions from each model, weighted by the posterior model probability, see
e.g., [66–68].

5.2 CONTEXT-SPECIFIC MODEL SELECTION

Appreciating that scientific models are established to support decision-
making in the context of systems performance management, the aim of sys-
tems modeling is to represent the available and relevant knowledge about
systems in coherency with data obtained from e.g., observations and/or ex-
periments to aid the ranking of decision alternatives.

Following [6–8], a system model M(a) in this context provides a map-
ping from input to output, conditional on a decision alternative a, which is
measured in terms of utility. Figure F.1a shows this relationship. In general,
the system performance is uncertain, and the optimal decision alternative is
selected in accordance with Bayesian decision theory [69] and the axioms of
utility theory [70] by maximizing the expected utility (benefit):

a∗ = arg max
a

(E[U(a)]). (F.23)

If we now account for multiplicity in the model formulation, i.e., multi-
ple competing system representations, Fig. F.1b shows the true system rep-
resented as a random event with possible realizations belonging to the set
M = {Mu}U

u=1 of known components indexed by u, and s represents the
index of a selected system representation. It might be so that some of the de-
cision alternatives only have an influence on some of the competing system
representations, and thus an optimization of the decision alternatives has to
account for the selected system representation.

Following [5], the joint optimization over decision alternatives and system
representations can expressed as

(s∗, a∗) = arg max
s,a

U(s, a) =arg max
s

(
P(u = s) arg max

a

(
EX|s[U(a, X)]

)
+ Eu′∈u\s

[
EX|u′ [U(a∗, X)]

])
,

(F.24)

where a∗ = arg maxa EX|s[U(a, X)]. In Eq. F.24, the robustness of the deci-
sion, conditional on system choice, may be assessed as the ratio of the first
term to the sum of the two terms. This ratio takes a value between 0 and 1
(1=robust) that indicates how sensitive the decision is to the possibility that
the optimization is undertaken under an erroneous system assumption [71].

Through this approach, we emphasize that systems modeling should be
seen as an integrated part of the decision optimization; the models do not
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Figure F.1: Decision analysis including system choice: (a) a single system,
(b) multiple possible systems.

have to be accurate outside the areas of the problem domain that have an
impact on the decisions subject to optimization. By integrating systems mod-
eling into the optimization of decision alternatives, all available knowledge
can be utilized to optimize the expected utility for the considered system and
thereby consistently rank decision alternatives, see [5–8] for further details.

6 A SIMPLE PRINCIPLE EXAMPLE ON
CONTEXT-SPECIFIC MODEL SELECTION

6.1 INTRODUCTION

As a simple, principle example on the application of context-specific model
selection (CSMS), we consider an example of probabilistic modeling from
structural engineering. Assuming that we have N experiment outcomes from
a concrete compression strength tests (MPa) collected in the vector z. Based
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on the information contained in z, the task is now to inform a decision on the
optimal design of the cross section of a short column, with the cross-sectional
area A as design variable. It is assumed that the design cost of the column
CD(A) is directly proportional to the cross-sectional area and thus may be
modeled as

CD(A) = Cd × A, (F.25)

where Cd is the cost per mm2 of cross sectional area.
The design should however be safe – in the sense that the risk of failure

must be accounted for. The expected value of the failure costs E[CF(A)] is
thus included in the decision problem as

E[CF(A)] = Pf (A)× C f , (F.26)

where C f is the failure cost, and Pf (A) may be assessed through the prob-
ability of the event that the load l exceeds the compression capacity of the
short column, i.e.,

Pf (A) = P({R(A)− l ≤ 0}), (F.27)

where R(A) = A× Z is the compression capacity of the short column, and Z
is a random variable representing the compression strength per mm2.

The design optimization problem for a given load may now be written as

A∗ = arg min
A

(CD(A) + E[CF(A)]). (F.28)

In order to solve this decision problem, a model is needed to represent R
in consistency with the observations contained in z; however, at the same
time the model must be chosen such as to facilitate the optimal design. To
this end, it is assumed that the set of possible histograms, which can be
established based on z, are considered as model candidates. In this regard,
the statistical uncertainty in the probability masses of the histograms, arising
from the estimation based on the finite sample z, must be accounted for.

The situation is further complicated by the fact that l is associated with
uncertainty and represented in the problem by the random variable L with
given probability distribution function. This situation may be framed under
the CSMS framework by considering a set of realizations of L as possible
system choices in Eq. F.24. That is, for each choice of loading system l ∈ L,
an optimization is undertaken, which results in an optimal capacity model R
and an associated optimal area A, and we choose the loading system, with
associated R and A, that minimizes the expected cost, which accounts for the
possible disbenefits of optimizing under an erroneous system assumption.
This optimization problem may be formulated as

(l∗, A∗) = arg min
l,A

(CD(A) + E[CF(A, l)]). (F.29)
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For the numerical evaluations in the section, we assume Cd = 1 and
C f = 100, both in monetary units (MU). Moreover, the realizations of the
compression strength are drawn from the probabilistic model: log(z) ∼
N (3.5, 0.13) (MPa), and the load is assumed to comply with the probabilistic
model: log(l) ∼ N (5.3, 0.2) (Newton). One possible capacity model for a
sample of 1000 realizations from Z is shown in Fig. F.2 together with the load
distribution, assuming an area of 12 mm2.

Strength, Stress [MPa]

D
en

si
ty

10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12 Strength

Stress

Figure F.2: One possible capacity model and the load model for A = 12 mm2.

6.2 OPTIMIZATION PROCEDURE

The numerical optimization for the optimal discrete representation of z is
undertaken as described in Sec. 3.2, under consideration of the objective
function in Eq. F.29 in place of Eq. F.8, in a coordinate descent procedure,
which successively adjusts the area to the current capacity model. In this re-
gard, the statistical uncertainty in the probability masses of a given capacity
model (discretization of z) is represented by a Dirichlet distribution in the bin
counts, which enables the calculation of the expected failure cost in Eq. F.26.

The optimization procedure described above forms an inner loop, which
is wrapped by an outer loop in the loading systems. This outer loop pro-
ceeds in a divide and conquer mode by first representing the proposal load
systems as the central value of an equal-width, discrete representation of the
load distribution, and then successively subdividing the bin resulting in the
lowest expected cost with respect to Eq. F.24 until convergence in the load.
At convergence, the algorithm thus provides an optimal load (system), along
with an associated optimal capacity model and area of the concrete column,
but as the convergence guarantees of a greedy hill-climbing strategy like this

260



PAPER F.

are only local, multiple random restarts are performed in order to increase
our chances of finding a “good” local (global) minimum, and the resulting
solutions are again weighted according to Eq. F.24.

6.3 RESULTS AND DISCUSSION

As mentioned, the optimization as described above result in an optimal triple
{A∗, R∗, l∗}, where A∗ is the area of the concrete column, R∗ is the discrete,
capacity model (discrete representation of z), and l∗ is the load (system). We
found the optimal area and load to be 10.89 mm2 and 257 Newton, respec-
tively, and the corresponding, optimal capacity model is shown in Fig. F.3
for the data sample. It appears from the figure that as the model only needs
to be accurate in the lower tail (near the load stress of 23.59 MPa) to reliably
estimate the probability of failure, the body and upper tail of the distribu-
tion are represented by only one bin. The corresponding distribution of the
failure probability, represented by draws from a Dirichlet distribution in the
bin counts, is shown in Fig. F.4. Note that the mode in Fig. F.4 coincide with
the sample estimate, i.e., P̂f = 0.007. For this solution, the expected cost is
11.68 MU, whereof 10.89 MU (Cd × A∗) are attributed to the design cost and
the remaining 0.79 MU (11.68− 10.89) are attributed to failure costs.
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Figure F.3: Optimal capacity model.
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Figure F.4: Sample distribution for the probability of failure under the opti-
mal capacity model.

7 AN EXAMPLE ON STORM EVENT
MODELING

7.1 INTRODUCTION

In the Danish sector of the North Sea, the existing offshore facilities for oil
and gas exploration are aging and some are about to reach their expected
design service lives. Furthermore, new evidence indicates that the original
design assumptions regarding the offshore wave load environment result in
an underestimation of the extreme loads [72, 73]. Thus, the continued oper-
ation of the existing structures necessitates that the structures are reassessed
with a refined modeling of loads, load effects and structural performances
to ascertain that strategies for structural integrity management fulfill crite-
ria for acceptable risks for personnel and reliability performances of struc-
tural systems.

In the following, basis is taken in this decision context to illustrate how
the proposed framework for systems modeling may be adequately and ef-
ficiently applied on a realistic full-scale application with a particular focus
on the probabilistic representation of the storm loading environment. In this
regard, information contained in a database of measurements and hindcast
simulations of storm events in the Danish North Sea is used to build a dis-
crepancy model for the hindcast simulator, and then a system representation
for the discrepancy-corrected hindcasts is defined for the region. Note that
Sec. 8 builds on the findings in this section to solve a decision problem con-
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cerning risk management in the context of wave in deck (WID) events.

7.2 METOCEAN DATABASE

This study considers the North See ocean environment of an area located ap-
proximately 220 km off the west coast of Denmark, where the ocean depth is
approximately 40 m. The metocean records for the site includes wind fields
and corresponding wave hindcast simulator outputs as well as wave mea-
surements for a period of 37 years from 10th January 1979 to 30th December
2015. The hindcasts are produced for 23 locations using the spectral wind-
wave model MIKE21 SW [74] and the hydrodynamic model MIKE21 HD [75],
with climate forecast system reanalysis (CFSR) wind fields as input [76], and
corresponding incomplete observations of the wave environment are avail-
able for seven of the locations, see also [8, 21].

By filtering of the records, 2187 storm events are detected for the reference
period by exceedances of a threshold that is non-stationary with respect to
season and direction [77], and a set of so-called characteristic variables are
defined to summarize the storm events [32], see Tab. F.1. In this regard, both
wind and wave directions are measured clockwise from north in degrees
as the direction from which they are approaching, and current direction is
defined as the direction towards which the current is flowing. Moreover,
Hm0 and LgS are defined in terms of an equivalent, Gaussian bell-shaped
storm profile with mean Hm0 and standard deviation proportional to σst as

Hm0∗(t) = Hm0 · exp

(
−1

2

(
t

T02σst

)2
)

, (F.30)

where LgS = log10 σst, and Hm0∗(t) is the equivalent storm significant wave
height as a function of time. As noted by [32], the contribution to maximum
short-term responses from sea states (1 hour) with Hm0∗(t) < 0.75Hm0 is
negligible, thus an equivalent storm event only considers sea states for which
Hm0∗(t) ≥ 0.75Hm0 when assessing extreme responses. Further information
about these metocean records may be found in [8, 21, 32].

In the following, we consider the data related to the seven platforms for
which both hindcasts and incomplete measurements are available.

7.3 PROBABILISTIC MODELING

The probabilistic modeling scheme followed proceeds according to three
steps: First, a GP discrepancy model (Sec. 4) is built for the sea state pa-
rameters Hm0, Tp, T02, and LgS based on the subset of complete measure-
ments (4615 realizations) and the corresponding hindcast data of the sea state
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Table F.1: Metocean storm records.

Variable Explanation Unit
Lng Geographical longitude deg
Ltt Geographical latitude deg
Dpt Ocean depth m
WSm Wind speed m/s
CSm Current speed m/s
WLa Residual water level (surge + tide) m
Ssn Time of storm deg
XDm Wave direction deg
WDm Wind direction deg
CDm Current direction deg
Hm0 Significant wave height m
Tp Peak wave period s
T02 Second-moment wave period s
LgS log10 of duration parameter σst -

parameters. The remaining variables are considered as covariates in the re-
gression.

Second, an ensemble of BN structures (Sec. 3.2), and corresponding dis-
cretization policies, is learned based on the full set of mean-corrected hind-
cast data (7 × 2187 = 15309 realizations), i.e., hindcast data corrected by
the mean function of the GP discrepancy model according to Eq. F.13, by
running the learning algorithm multiple times with different non-parametric
bootstrap replicates of the data set. In this way, the posterior over BN struc-
tures is represented by a set of high scoring structures, and we avoid the need
to sum over a (exponentially) large number of equivalence classes in the pos-
terior evaluations [78]. Two DAGs having the same d-separation properties
are said to belong to the same equivalent class. For two such DAGs, a proba-
bility distribution that factorizes along one of the DAGs also factorizes along
the other [79]. Therefore, post-processing is conducted on the ensemble to
remove BN structures belonging to the same equivalence class, and thus only
the highest scoring BN structure within an equivalence class is kept for fur-
ther analysis. The remaining BN structures are ranked according to their
posterior probability (Eq. F.8), with the effect of ΘG marginalized out). That
is, this process accounts for the model uncertainty of the BN representation,
i.e. graph structure and discretization policy.

Third, the parameter distributions for each member of the ensemble of
BN structures considered above are estimated. To account for the model un-
certainty of the discrepancy process, a number of realizations are drawn from
the discrepancy process and the parameters of the distributions for each real-
ization of the discrepancy function are estimated. In this way, when conduct-
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ing inference, initially a graph structure G(t) is sampled from the ensemble
of BN structures. For this graph, a realization of the parameter distribution
is sampled, i.e., Θ(t)

G , and finally also a realization of the parameters θ
(t)
G is

sampled. Thus, this process preserves the uncertainty of the discrepancy pro-
cess as well as the parameter uncertainty of the BN representation (parameter
vector).

7.4 RESULTS AND DISCUSSION

DISCREPANCY MODELING

A multi-output GP with an intrinsic co-regionalization model (ICM), featur-
ing a squared exponential input kernel, is used for modeling the discrep-
ancy between measurements of the sea state parameters and hindcast simu-
lations, see Eqs. F.20 and F.21. In this regard, the remaining variables of the
hindcast simulations (Tab. F.1) are considered as covariates in the regression.
Figure F.5 shows the uncorrected hindcast simulator outputs and the mean-
corrected simulator outputs for Hm0 on a held-out data set (20% of the data),
respectively, plotted against the measurements. It appears that a significant
reduction in model discrepancy is achieved by use of the discrepancy model,
and the remaining scatter around the center line in Fig. F.5b can be attributed
to measurement uncertainty. The same holds true for the remaining outputs,
i.e., Tp, T02, and LgS, for which the plots are not shown to keep the presen-
tation concise.

STORM EVENT MODELING

Model structures An ensemble of BN structures and corresponding optimal
discretization policies are learned using different non-parametric bootstraps
of the mean-corrected hindcast database. In this regard, the structure learn-
ing is constrained by prior causal understanding of the problem domain.
First, the wind and wave properties are governed by the season, which is
graphically encoded by imposing an edge going from Ssn to WSm, WDm,
and Hm0; refer to Tab. F.1 for a listing of the variable names. Second, the
depth is fully defined by the platform position, which is enforced by edges
meeting head-to-head at Dpt from Lng, and Ltt. Furthermore, the discretiza-
tion policy for some of the domain variables is predefined, namely seasonal,
directional, and locational variables. The seasonal variable is defined based
on the four seasons, the directions variables are defined based on eight di-
rections (N, NE, E ...), and the locational variables are clustered into two
groups (black and gray), as shown in Fig. F.6. A similar binary discretization
of the location variables is learned in [8] using the entire hindcast data set
(23 platforms).
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Figure F.5: Realizations of the variable Hm0: (a) measured vs uncorrected
simulations, (b) measured vs mean-corrected simulations.

The individual ensemble graph structures and corresponding discretiza-
tion policies are then grouped according to their equivalence class, and only
the highest scoring BN structure within each equivalence class is considered
for further analysis. The remaining, unique BN structures are then scored
on the original database using Eq. F.8, with the effect of ΘG marginalized
out, and ranked according to their score. When the scores are transformed
from log space to probability space, only one model class has a relevant con-
tribution. This may be expected since, in cases when the amount of data is
large relative to the size of the model, the posterior will be sharply peaked
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Figure F.6: Geographical location of data points in degrees longitude and
latitude, and ocean depth in meters.
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Figure F.7: BN structure.

around a single model, and this model will be a reasonably good approxi-
mation to the posterior [44, p.829]. This high scoring graph structure and the
corresponding discretization appear in Fig. F.7 and Tab. F.2, respectively.

In Fig. F.7, a set of stochastic relations that were not prespecified appear
in the DAG. For example, there are stochastic dependencies between e.g.,
Hm0 and T02, T02 and Tp, and WSm and CSm. Furthermore, considering
the discretization, it is observed that the dynamically discretized variables
are generally represented by 6-9 levels, except for the periods (T02 and Tp),
which are represented by 17 levels. This added complexity in regard to the
resolution of the periods is allowed in the optimization, as these variables
constitute a separate branch in the DAG coming from Hm0, see Fig. F.7.
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Table F.2: Discretization.

Variable Bins Remarks
Lng 2 predefined ((4, 4.42], (4.42, 5.5])
Ltt 2 predefined ((55, 56.1], (56.1, 56.5])
Dpt 2 predefined ((39, 56], (56, 67.5])
WSm 7 learned
CSm 8 learned
WLa 6 learned
Ssn 4 predefined (Spring, Summer, ...)
XDm 8 predefined (N, NE, E, ...)
WDm 8 predefined (N, NE, E, ...)
CDm 8 predefined (N, NE, E, ...)
Hm0 9 learned
Tp 17 learned
T02 17 learned
LgS 7 learned

Figure F.8 shows the discrete marginal representation of Hm0 and T02,
respectively, together with the corresponding empirical densities. It appears
that the discretization policies for both variables provide a reasonable ap-
proximation to the continuous distributed probabilities. In the remainder of
this example, basis is taken in the MAP graph (Fig. F.7) together with its
corresponding discretization policy.

Model parameters In order to account for the model uncertainty related to
the discrepancy function, 1000 realizations drawn from the discrepancy func-
tion are considered and the parameter distributions are estimated based on
each individual realization. Thus, when sampling from the model, a realiza-
tion is first sampled from the discrepancy function, which defines a param-
eters distribution ΘG , and subsequently, a realization of the corresponding
parameter vector θG is sampled from the posterior distribution (Eq. F.4).

Applications of the storm event model Based on the procedure outlined in
the foregoing, a fully specified BN model is established representing the typ-
ical composition of storm events for the considered geographical area. This
may be utilized for different purposes. First, the model may be used to infer
different (conditional) probability queries. As an example, Fig. F.9a shows
the joint distribution of Hm0 and Tp without conditioning on observations
of the remaining variables, and Fig. F.9b shows the joint distribution of Hm0
and Tp conditional on an observation of wave direction, i.e., XDm = NW. It
may be observed that by conditioning on waves coming from NW, the small
waves in the lower-left part become less likely, and the large waves in the
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Figure F.8: Optimal discretization policies: (a) marginal distribution of Hm0,
(b) marginal distribution of T02.

upper-right part become more likely.
Second, the model may be applied in the context of fatigue assessments.

In this regard, samples of storm events over the lifetime of a structure may
be generated, and Eq. F.30 can be used to define the content of the storms in
terms of significant wave heights. These may subsequently be combined with
an appropriate spectral representation of the short-term variability within sea
states and a fatigue damage model to estimate fatigue damages in structural
details. Figure F.10 shows 10 randomly sampled storm events for the lower-
right cluster in Fig. F.6. A future research activity will address the develop-
ment of a response surface in the storm event parameters (Tab. F.1) of the
accumulated fatigue damage over a storm event.

Third, the model may be used to explore extreme events originating from
different areas of the model. In this regard, focus may be directed on the pop-
ulation of storm events emanating from NW at the leftmost platform in the
lower-right cluster in Fig. F.6, which fall in the highest Hm0 bin ((7.08, inf])
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Figure F.9: Joint distribution of Hm0 and Tp: (a) without evidence on the re-
maining variables, (b) with evidence on the wave direction, i.e., XDm = NW.
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Figure 9: Joint distribution of Hm0 and T p: (a) without evidence on the remaining variables, (b) with evidence on the wave
direction, i.e., XDm = NW .

WSm CSm WLa Ssn XDm WDm CDm Hm0 Tp T02 LgS

1 (15.8,17.7] (0.194,0.252] (0.132,0.302] Winter SW S SE (4.12,4.79] (8.46,8.72] (6.43,6.61] (3.67,3.73]

2 (17.7,20] (0.0793,0.118] (0.132,0.302] Fall N NW SW (4.79,5.87] (10.6,11] (8.01,8.47] (3.83,4.01]

3 (20,23.3] (0.302,0.412] (0.0143,0.132] Winter W SW E (7.08,Inf] (11.6,12.3] (8.47,8.96] (3.73,3.83]

4 (15.8,17.7] (0.118,0.152] (0.302,1.5] Winter W W SE (4.79,5.87] (10.6,11] (7.6,8.01] (3.83,4.01]

5 (13.3,14.3] (0,0.0793] (-0.0626,0.0143] Spring NW N S (2.14,2.59] (6.86,7.2] (4.92,5.17] (3.34,3.52]

6 (17.7,20] (0.302,0.412] (0.0143,0.132] Fall SW SW NE (4.12,4.79] (8.96,9.2] (6.61,6.82] (3.52,3.67]

7 (15.8,17.7] (0.194,0.252] (0.0143,0.132] Winter NW W SE (3.58,4.12] (8.72,8.96] (6.43,6.61] (3.73,3.83]

8 (15.8,17.7] (0.194,0.252] (0.132,0.302] Fall N N SW (3.05,3.58] (7.53,7.85] (5.87,6.04] (4.01,5]

9 (20,23.3] (0.194,0.252] (0.302,1.5] Winter NW NW SW (5.87,7.08] (11,11.6] (7.6,8.01] (3.73,3.83]

10 (17.7,20] (0.252,0.302] (0.0143,0.132] Fall W SW E (4.12,4.79] (8.96,9.2] (7,7.29] (3.52,3.67]

Figure 10: Storm event realizations for lower-right cluster in Figure 6, i.e., Lng ∈ (4.42,5.5], Ltt ∈ (55,56.1], and Dpt ∈ (39,56].

we assume that these platforms are older and have a lower
free air gab under the deck (17.5 m), than the other four plat-
forms (20 m).

At the point in time where the emerging storm arrives at
the location of the six platform, knowledge with respect to
the storm characteristics may be observed and the proba-
bilistic models of extreme waves may be updated accord-
ingly. Based on this, the probability of a WID event for all
the platforms may be assessed and compared with the max-
imum allowed probability of WID events for manned plat-
forms, through the corresponding WID risk acceptance crite-
ria (AC). Depending on the risk management option initially
selected before the arrival of the storm, and the actual com-
position of wave events in the storm, a WID event will have
different expected values of consequences. The base cost of
the mitigation measures related to {ad}3

d=1 are C0 = 0 MU,
C3 = 2×20 ·103 MU and C4 = 6×20 ·103 MU, respectively,
where 20 ·103 MU is assumed to be the cost per platform of
a preventive evacuation, i.e., the case where a platform is de-
manned before the arrival of the storm.

When the actual storm event is realized, we know whether
P(WID) ≥ AC, and if this turns out to be the case, the plat-

forms must be de-manned. The associated costs of emer-
gency evacuation are assumed to be 40 · 103 MU per plat-
form (C2). To account for the possibility that a WID event
occurs at a platform before de-manning is completed, it is
assumed that four 1 h extreme sea states may occur before
de-manning. For this reason, the probability of a WID event
within four hours of extreme sea states, i.e., Pf =P(WID|4 h)
is also assessed. If a WID event occurs at a platform before
de-manning, it is assumed that the lives of 10 crew mem-
bers are lost. The corresponding costs are assumed to be
10× 25 · 106 MU (C1), where 25 · 106 MU is the compensa-
tion cost of a human life, see also Fischer et al. (2019). Note
that only the cost related to evacuation and the loss of human
lives are considered in the decision problem; costs related to
platform damages are neglected.

8.2 Probabilistic modeling

To calculate the probability of a WID event at a platform,
given storm event characteristics (discrete/cluster represen-
tation), we need to define the short-term variability of the
storm event in terms of sea state content, and crest heights

Figure F.10: Storm event realizations for lower-right cluster in Fig. F.6, i.e.,
Lng ∈ (4.42, 5.5], Ltt ∈ (55, 56.1], and Dpt ∈ (39, 56].
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Figure F.11: Extreme (mean-corrected) realizations at the leftmost platform
of the lower-right cluster in Fig. F.6 for which XDm = NW and Hm0 > 7.08.

in Fig. F.8a. On this basis, a joint extreme value model based on the realiza-
tions in the database that comply with these conditions may be established.
Figure F.11 shows the realizations in the database that comply with these
conditions. Note that the BN model additionally provides the probability of
realizing a storm event in this area of the model, which when related to the
reference period of the database, i.e., 37 years, gives an estimate of the an-
nual probability of a storm event in this area of the model. As an example
of an ULS assessment for a given structure, all areas of the model that have
a relevant probability contribution in generating extreme responses may be
considered, and a joint extreme value distribution model for these areas may
be established, which will enable extrapolation to extreme fractile values.
This is also on the agenda for future research.

There are several additional applications of the current model; Sec. 8 con-
stitute one such by considering decision optimization in regard to platform
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shut down and evacuation of personnel, provided information on an emerg-
ing storm event.

8 AN APPLICATION OF THE STORM EVENT
MODEL AND CONTEXT-SPECIFIC MODEL
SELECTION

8.1 INTRODUCTION

With basis in the storm event model formulated in Sec. 7, a risk-informed
assessment of whether or not a set of offshore platforms in operation, i.e., the
six platforms in the lower-right part of Fig. F.6, should be closed down and
evacuated, given the information that a particular storm event is approach-
ing. In this regard, the inherent clustering imposed by the storm event model
is used to predict storm conditions at the lower-right cluster in Fig. F.6 from
an observation at the upper-left cluster.

The decision problem, which is illustrated in Fig. F.12, concerns risk man-
agement in the context of wave in deck (WID) events. Based on obser-
vations on the emerging storm event, decision alternatives with respect to
de-manning should be assessed and subsequently ranked by their expected
value of benefit. Three decision alternatives are considered possible before
the storm arrives, namely (i) do nothing (a1); (ii) evacuate the personnel of
the two most exposed platforms (i.e., the two leftmost platforms of the lower-
right cluster in Fig. F.6) to the other four platforms (a2); and (iii) evacuate the
personnel of all six platforms to shore (a3). The two platforms related to a2
are considered more exposed, as we assume that these platforms are older
and have a lower free air gab under the deck (17.5 m) than the other four
platforms (20 m).

s=
1

s=U

P(u=1)

P(u=U)

a1

a3

a2

P(WID)<AC

P(WID)≥AC

C0

C1 + C0

C2 + C0

Pf
1-Pf

...
...

P(WID)<AC

P(WID)≥AC

Pf
1-Pf

C3

C1 + C3

C2 + C3

C4

system
choice

system
realization

decision
alternatives state of nature utility

Figure F.12: Decision event tree for the storm risk management problem.
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At the point in time where the emerging storm arrives at the location of
the six platform, knowledge with respect to the storm characteristics may
be observed and the probabilistic models of extreme waves may be updated
accordingly. Hereafter, the probability of a WID event for all the platforms
may be assessed and compared with the maximum allowed probability of
WID events for manned platforms, through the corresponding WID risk ac-
ceptance criteria (AC). Depending on the risk management option initially
selected before the arrival of the storm and the actual composition of wave
events in the storm, a WID event will have different expected values of con-
sequences. The base cost of the mitigation measures related to {ad}3

d=1 are
C0 = 0 MU, C3 = 2 × 20 · 103 MU and C4 = 6 × 20 · 103 MU, respectively,
where 20 · 103 MU is assumed to be the cost per platform of a preventive
evacuation, i.e., the case where a platform is de-manned before the arrival of
the storm.

When the actual storm event is realized, we know whether P(WID) ≥
AC, and if this turns out to be the case, the platforms must be de-manned.
The associated costs of emergency evacuation are assumed to be 40 · 103 MU
per platform (C2). To account for the possibility that a WID event oc-
curs at a platform before de-manning is completed, it is assumed that four
1-hour extreme sea states may occur before de-manning. For this reason,
the probability of a WID event within four hours of extreme sea states, i.e.,
Pf = P(WID|4 hr) is also assessed. If a WID event occurs at a platform before
de-manning is completed, it is assumed that the lives of 10 crew members are
lost. The corresponding costs are assumed to be 10× 25 · 106 MU (C1), where
25 · 106 MU is the compensation cost of a human life, see also [80]. Note that
only the cost related to evacuation and the loss of human lives are considered
in the decision problem, i.e., costs related to platform damages are neglected.

8.2 PROBABILISTIC MODELING

To calculate the probability of a WID event at a platform, given storm event
characteristics (discrete/cluster representation), we need to define the short-
term variability of the storm event in terms of sea state content and crest
heights within sea states. In this regard, a continuous-valued storm event
may be defined using the realizations in the database that comply with the
discrete storm representation by e.g., choosing a specific realization using
the CSMS framework or a bootstrap approach. In either case, given the con-
tinuous representation of the storm event, the storm content can be defined
in terms of significant wave heights (Eq. F.30), and for each sea state, the
distribution of the hourly maximum crest height can be defined by adopt-
ing the model of [81]. This model is based on extensive laboratory-scale
experiments performed in the wave basin at the Danish Hydraulic Insti-
tute (DHI), see [81, 82] for further details on the experimental data and its
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post-processing. The model is provided in terms of a response surface in the
sea state characteristics: Ursell number, wave steepness and wave directional
spreading angle, and the water depth. Equivalently, it may be specified in
terms of the significant wave height (Hm0), the sea state peak period (Tp),
the wave directional spreading angle (SpAng), and the water depth (Dpt).
The present BN model does not include a variable for DirSp, thus average
quantities are used. However, the model may easily be extended to include
this information as well.

8.3 RESULTS AND DISCUSSION

SHORT-TERM MODELING

It is assumed that a storm event with properties as in Tab. F.3 is observed
at the upper-left cluster in Fig. F.6. Based on the storm event characteris-
tics (Tab. F.3), the realizations in the database, which comply with the storm
event, are considered as possible continuous realizations of the storm proper-
ties in the lower-right cluster. For each case and for each platform, the storm
content in terms of significant wave heights, which have a relevant contri-
bution to the probability of a WID event, is defined according to Eq. F.30.
As a simplifying, conservative assumption, the significant wave height is not
reduced over the storm event, but instead the storm peak significant wave
height is used together with related quantities for all relevant sea states in a
storm, i.e., sea state for which Hm0∗ ≥ 0.75Hm0.

Table F.3: Storm event related to short-term modeling.

Variable Bin
Ssn Winter
XDm NW
Hm0 (7.08, In f ]
Tp (12.3, 20]
LgS (3.52, 3.67]

As an example, Fig. F.13 shows the predictive distribution for the max-
imum crest height (Cr) in a sea state (1 hour) corresponding to one of the
realized (mean-corrected) storm events, i.e., Hm0 = 10.7 m, Tp = 16.0 s, and
Dpt = 41.9 m, at the leftmost platform of the lower-right cluster. Note that
the directional spreading is assumed to be 19.0 deg.

DECISION OPTIMIZATION

For the platforms in the lower-right cluster of Fig. F.6, we compute the prob-
ability distribution of the maximum crest height for the storm peak sea states
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Figure F.13: Probability distribution function of the maximum crest height in
a sea state (1 h) characterized by Hm0 = 10.7 m, Tp = 16.0 s, DirSp = 19 deg,
and Dpt = 41.9 m.

corresponding to the individual realizations in the database that comply with
the observation in Tab. F.3 at the upper-left cluster. In this regard, the uncer-
tainty of the discrepancy model is propagated by considering variations in
the defining sea state parameters corresponding to 1000 realizations from the
discrepancy model.

For the numerical evaluations in the example, an annual acceptance cri-
teria for a WID event of 10−5 is assumed, whereby the average criteria per
storm amounts to 1− (1− 10−5)1/59, given that 2178 storm events are ob-
served in 37 years. Thus, the acceptance criteria per storm AC = 1.695× 10−7.
Moreover, six realized storm event in the database comply with the specifi-
cations in Tab. F.3, thus providing six competing systems for the decision
optimization (Fig. F.12), which are equally likely, i.e., each realized once.

Given these assumptions, the decision problem is solved. The expected
costs of the decision alternatives are assessed and ranked, and the optimal
decision alternative for each of the six competing storm system realizations
is provided in Tab. F.4. It appears that system realizations 1, 3, 4 and 5
agree on the optimal decision alternative being de-manning of the two most
vulnerable platforms (a2), i.e., the two leftmost platforms in the lower-right
cluster of Fig. F.6, before the storm arrives at the platforms. These system
choices all result in an expected cost of 0.48 · 105 MU when accounting for
the competing systems, as only system realization 1 predicts an additional
platform for which P(WID) ≥ AC, besides the two vulnerable platforms
that are already evacuated.

The two remaining system realizations, i.e., 2 and 6, are less severe, and
the optimal action under these systems is thus to do nothing (a1). Within the
CSMS framework, these system choices receive a significant penalty when
evaluating a1 under the remaining systems, as the expected failure cost is

275



9. CONCLUSIONS AND OUTLOOK

Table F.4: Solution to the storm evacuation decision problem.

System Optimal action Expected cost
1. a2 (evacuate two) 0.48 · 105 MU
2. a1 (do nothing) 7.06 · 105 MU
3. a2 (evacuate two) 0.48 · 105 MU
4. a2 (evacuate two) 0.48 · 105 MU
5. a2 (evacuate two) 0.48 · 105 MU
6. a1 (do nothing) 7.06 · 105 MU

underestimated. In this case, the expected cost is 7.06 · 105 MU when ac-
counting for the competing systems, which is roughly 15 times as much as
the expected cost found above for a2.

In the decision optimization, the same expected cost is found for system
realizations 1, 3, 4 and 5, under the corresponding optimal action a2. This
means that these system realizations are equally good at informing the de-
cision in this specific decision context, but as only system realization 1 has
an additional relevant contribution to the expected failure cost, apart from
the contribution from the two most vulnerable platforms, this may be pre-
ferred. This is equivalent to choosing the most robust system realization, as
discussed in Sec. 5.2.

9 CONCLUSIONS AND OUTLOOK

In the present contribution, a Bayesian probabilistic framework for the rep-
resentation – or modeling – of systems in the face of incomplete knowledge
and uncertainty is outlined. Its application is illustrated both on a simple
principle example, as well as on a full-scale application considering the prob-
abilistic modeling of offshore storm events acting on oil and gas facilities.

Starting point is taken in a general review of current approaches for prob-
abilistic load environment modeling in offshore engineering, after which fo-
cus is directed on the most recent developments in the area of Bayesian net-
works and Gaussian processes. This is followed by a description of how the
ever-prevailing challenge of possible competing system representations con-
sistently may be accounted for in the decision analysis, which the system
representations serve to inform. The proposed and described approaches are
then applied to a very simple but principally representative case of estimating
a probabilistic model for the compression strength of concrete in the context
of classical risk-based decision optimization of structural reliability. From this
example, the fact that optimal model selection depends strongly on the deci-
sion context is evident, as the derived discrete probability mass model differs
significantly from what would be found through the classical approach.
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Subsequently, we apply the Bayesian network and Gaussian process-based
systems representation framework to establish a probabilistic representation
of storm events based on a large sample hindcast and measurement database
from the Danish part of the North Sea. This part of the modeling could be
said to follow an advanced but classical approach to modeling, which ex-
plicitly includes the representation of possible different systems that might
critically affect optimal decision-making. Thus, to illustrate this, we finally
provide an example in which the developed storm event model is integrated
into a decision analysis, which concerns the ranking of decision alternatives
with respect to de-manning of offshore platforms, provided information on
an emerging storm event. This example underlines the significance of ac-
counting for possible competing systems in the context of the decision anal-
ysis, which the system representations aim to inform.

Based on our experience from the ongoing research, it appears that for
complex decision problems like the de-manning options ranking problem
addressed in the present contribution, the required analysis efforts will be
somewhat extensive. Surely, there is some potential for optimizing analysis
strategies and improving algorithms, but no closed form solutions is likely
to be identified. However, in more standard and simple decision contexts,
similar to the principle example we provided in the present study, there actu-
ally could be closed form solutions. The identification of these is one of our
objectives for future research.
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