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PREFACE

This PhD thesis and the following PhD defence are the true highlights
of my time as a Research Assistant at SMI®, Department of Health
Science and Technology, Aalborg University, Aalborg, Denmark. The
research projects for this PhD thesis were conducted between October
2017 and June 2020. Associate Professor Kristian Kjer Petersen and
The Aalborg University Talent Management Programme (j.no. 771126)
are sincerely acknowledged for project support.

The longitudinal studies for this PhD project were conducted in
collaboration with Viby Physiotherapy Clinic, Aarhus, Denmark, and
the Danish Army Logistics, Aalborg, Denmark. The experimental study
was conducted as an external research collaboration at the University
of Southern Denmark in a laboratory at the Pain Center, University
Hospital Odense, Odense, Denmark.

The thesis is a synthesis of three articles; two have been published in
international peer-reviewed journals and one is under review.
Throughout the thesis, these articles are referred to as:

Study I: Hansen S, Dalgaard RC, Mikkelsen PS, Serensen MB,
Petersen KK. Modulation of Exercise-Induced Hypoalgesia

Following an Exercise Intervention in Healthy Subjects.
Pain Med 2020 Sep 27;21(11):3556-3566.

Study II: Hansen S, Petersen KK, Sloth E, Manum LA, McDonald
AK, Andersen PG, Vaegter HB. Hypoalgesia after painful
versus non-painful muscle exercise — a randomized cross-
over study in healthy individuals (under review: Pain Med).

Study III: Hansen S, Vaegter HB, Petersen KK. Pretreatment
Exercise-induced Hypoalgesia is Associated With Change
in Pain and Function After Standardized Exercise Therapy
in Painful Knee Osteoarthritis. Clin J Pain. 2020
Jan;36(1):16-24.



The thesis will give an overview of the most important findings and
additionally unpublished findings from Study I-III, and relate the
findings to the existing literature within the field of exercise-induced
hypoalgesia (EIH) in healthy individuals and individuals with chronic
musculoskeletal pain. To enhance between-study comparability, all
findings troughout the thesis are presented using the same metrics
although other metrics may have been appilied in the articles related to
Study I-III.

This thesis contributes to the current understanding of the relationship
between the perception of pain and EIH, and explores the possibility of
modulating EIH by exercise interventions.



ENGLISH SUMMARY

One out of five people suffer from chronic pain. Regular physical
exercise may prevent more than 30 chronic disorders and is
recommended as first choice of rehabilitating treatment for several
chronic musculoskeletal (MSK) pain disorders to promote health,
reduce co-morbidities and for pain relief.

Current evidence suggest that endogenous central pain inhibitory
mechanisms are important for pain perception. It is also known that
these central pain mechanisms may be impaired in chronic pain
disorders across a wide variety of different etiologies. In addition,
regular physical exercise may prevent and reduce chronic MSK pain by
modulation of endogenous pain inhibitory mechanisms. However,
some individuals do not experience this pain relieving effect. Therefore,
understanding pain mechanisms related to pain perception and physical
exercise may have the potential to optimise future pain relieving
physical exercise interventions.

Exercise-induced hypoalgesia (EIH) is a well-established phenomenon
defined as decreased pain sensitivity after acute exercise. EIH is
considered a proxy of the balance between endogenous pain inhibitory
and pain facilitatory mechanisms. EIH responses are highly variable or
even hyperalgesic in chronic MSK pain populations, while moderate-
large EIH responses robustly have been demonstrated in healthy
individuals, suggesting that pain influence EIH. In addition, higher EIH
is observed in physically active individuals compared to physically
inactive individuals, indicating that regular physical activity (i.e.
exercise interventions of week-month duration) may modulate EIH.
Therefore, it was hypothesised that 1) pain is related to EIH, and 2) EIH
is modifiable by exercise interventions.

This thesis is based on two longitudinal studies on healthy individuals
(Study I) and individuals with chronic MSK pain (Study III),
respectively, and one randomised controlled cross-over study on
healthy individuals (Study II). The applied interventions were
standardised approx. 7-week exercise interventions for Study I and
Study III. Intramuscular injection of hypertonic saline was utilised as



an experimental model to investigate the isolated effect of pain on EIH
(Study II). In all studies, EIH was assessed as change in pressure pain
thresholds at exercising (local EIH) and non-exercising (remote EIH)
muscles after acute exercise conditions, and EIH modulation was
assessed as EIH change following the 7-week exercise interventions
(Study I and Study III). Pain perception was assessed using well-
accepted self-reported outcome measures in all studies.

No linear associations between pain intensity in relation to acute
exercise and EIH responses in all investigated cohorts were found
(Study I-III), and experimental pain did not influence EIH (Study II).
In healthy individuals (Study I), remote EIH was modulated after the 7-
week exercise intervention, whereas this effect was absent in chronic
MSK pain individuals (Study III). An exploratory association between
increased local EIH and decreased pain intensity after the exercise
intervention was described in Study II1.

In conclusion, this PhD project has provided novel evidence suggesting
that the presence of pain does not influence or associate with EIH
responses. EIH may be modulated in healthy individuals, albeit no EIH
modulation occurred after the exercise intervention in chronic MSK
pain individuals. However, increased EIH may be associated with pain
relief following standardised exercise treatment in individuals with
chronic MSK pain, which may indicate a link between endogenous pain
inhibitory mechanism effectivity and the perception of pain. These
novel findings add new knowledge into the translational interplay
between EIH, the perception of pain and exercise interventions as
treatment. The findings may have clinical implications in the guidance
of individuals with chronic MSK pain using exercise for pain treatment,
and the findings raise new important research questions on which
factors influence EIH and pain.



DANSK RESUME

En ud af fem voksne mennesker lider af kroniske smerter. Vedvarende
fysisk treening kan forebygge mere end 30 kroniske sygdomme og er
anbefalet som ferstevalg ved rehabiliterende behandling af kroniske
muskuloskeletale (MSK) smerter for at fremme sundhed, reducere
folgesygdomme og som smertelindring.

Evidens foreslar at kroppens egne centrale smerteh@mmende
mekanismer er vigtige for reduktion af smerteopfattelsen. Det er
ligeledes kendt at disse centrale mekanismer kan vare forringede hos
individer med kroniske smerter pd tvars af et bredt spektrum af
atiologier. Endvidere kan vedvarende fysisk trening forebygge og
reducere kroniske MSK smerter ved modulation af disse centrale
smertehemmende mekanismer. Dog er der nogle individer, der ikke
oplever denne smertelindrende effekt af fysiske trening. En dybere
forstdelse af de wunderliggende smertemekanismer relateret til
smerteopfattelse og fysisk treening har derfor potentialet til at optimere
fremtidige smertelindrende fysiske treeningsinterventioner.

Trenings-induceret nedsat smertefolsomhed (engelsk: exercise-
induced hypoalgesi, EIH) er et velbeskrevet faenomen defineret som
nedsat smertefolsomhed efter akut trening. EIH responset anses som
indirekte mal for balancen mellem kroppens egne smertehaemmende og
smertefremmende mekanismer. EIH responset er meget variabelt og
kan endda vise gget smertefalsomhed hos individer med kroniske MSK
smerter, mens det konsistent er moderat-stort hos raske, hvilket
indikerer, at smerte pavirker EIH. Yderligere er EIH storre hos fysisk
aktive individer sammenlignet med inaktive individer, hvilket
indikerer, at fysisk treening (f.eks. treningsinterventioner af uger-
maneders varighed) kan modulere EIH. Det blev derfor hypotetiseret,
at 1) smerte er relateret til EIH, og 2) EIH kan moduleres af
treeningsinterventioner.

Denne athandling er baseret pé to longitudinelle studier pa henholdsvis
raske (Studie I) og personer med kroniske MSK smerter (Studie III),
samt et kontrolleret lodtrekningsstudie med overkrydsning pd raske
(Studie II). De benyttende interventioner var standardiserede ca. 7-



ugers treeningsinterventioner pa raske (Studie I) og individer med
kroniske MSK smerter (Studie III). Intramuskuler smertegivende
saltvandsindsprgjtninger blev anvendt som eksperimentel smertemodel
for at undersoge den isolerede effekt af smerter pad EIH (Studie II).  alle
studierne blev EIH beregnet som @ndringen i tryksmertetreesklen pa
aktive (lokal-EIH) og inaktive (fjern-EIH) muskler efter akut treening,
og EIH modulationen blev udregnet som EIH @ndringen efter de 7-
ugers treeningsinterventioner (Studie I og Studie IIT). Smerteopfattelsen
blev i alle studierne vurderet med anerkendte selvrapporterede
effektmal.

Der blev ikke fundet linezre sammenhange mellem smerteintensitet i
forbindelse med akut trening og EIH 1 alle de underseggte populationer
(Studie I-IIT), og eksperimentel smerte pavirkede ikke EIH (Studie II).
Hos raske (Studie I) blev fjern-EIH moduleret efter den 7-ugers
treeningsintervention, mens denne effekt ikke blev observeret efter
treeningsinterventionen hos individerne med kroniske MSK smerter
(Studie III). En mulig sammenhang mellem oget lokal-EIH og nedsat
smerteintensitet efter den 7-ugers treningsintervention blev fundet i
Studie III.

Det kan konkluderes, at dette PhD projekt har frembragt ny evidens, der
foreslér, at tilstedeverelsen af smerte ikke pavirker eller er sammen-
haengende med EIH. EIH kan muligvis moduleres i raske, mens der
ingen EIH modulation blev fundet efter treeningsinterventionen hos
individer med kroniske MSK smerter. En mulig sammenhaeng mellem
oget EIH og smertelindring efter et treeningsforleb kan forekomme hos
individer med kroniske MSK smerter, hvilket antyder en sammenhang
mellem kroppens smerteh@mmende mekanismer og opfattelsen af
smerte. Disse nye fund tilfejer ny viden til det translatoriske
sammenspil mellem EIH, opfattelsen af smerte og trenings-
interventioner. Disse fund kan have kliniske implikationer 1
vejledningen af individer med kroniske MSK smerter ved anvendelse
af treningsinterventioner som smertebehandling, og fundene rejser nye
vigtige forskningsspergsmél om hvilke faktorer, der influerer pa EIH
og smerter.
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TERMS AND DEFINITIONS

Exercise-induced hypoalgesia (EIH) is used throughout the thesis as a
term of decreased pain sensitivity (e.g. pressure pain thresholds) during
or after one acute exercise condition.

Exercise condition is used throughout the thesis as term of the acute
exercise used to test EIH.

Exercise intervention is used throughout the thesis as term of physical
exercise programs with a typical duration of 6-12 weeks (but not limited
to this duration), aiming at modulating experimental pain or clinical
variables e.g. pain, disability, physical performance etc.

Throughout the thesis, the following terms are used in accordance with
the definitions from the International Association for the Study of Pain
(IASP)':

Pain: “An unpleasant sensory and emotional experience associated
with, or resembling that associated with, actual or potential tissue
damage.”

Pain threshold: “The minimum intensity of a stimulus that is perceived
as painful.”
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CHAPTER 1. INTRODUCTION

CHAPTER 1. INTRODUCTION

The 2020-updated definition of pain by the International Association
for the Study of Pain (IASP) with its concomitant notes highlights that
pain is always a personal experience that cannot be questioned, and that
pain may be influenced to varying degrees by biological and
psychosocial factors?.

1.1. THE BURDEN OF MUSCULOSKELETAL PAIN

Chronic pain is a global leading cause of disability affecting the society,
the individual suffering from pain and also their relatives®. Around one
in five individuals suffer from chronic pain*°. Worldwide, the burden
of musculoskeletal (MSK) pain disorders are increasing® with MSK
pain being the most prevalent disorder with around 1.7 billion
individuals that would benefit from rehabilitating treatment’. This
makes MSK pain the main cause of years lived with disability®. On an
individual level, this means that a 60-year old woman with chronic
MSK pain such as osteoarthritis (OA) or low back pain may have lived
more than a quarter of her life with pain and disability’. Several
different treatment paradigms are now available’!! with varying
success, and the focus on physical exercise as treatment for pain relief
is increasing!?'¢. Therefore, this thesis will focus on physical exercise
as treatment for chronic MSK pain.

1.2. PHYSICAL EXERCISE AS TREATMENT

Regular physical exercise or physical activity may prevent more than
30 chronic disorders'” and is a multimodal treatment option
recommended as first choice of rehabilitating treatment for several
chronic pain disorders including MSK pain to promote health!'?!3
reduce co-morbidities'>!* and for pain relief!*!®. Despite these
recommendations, a large proportion of chronic pain individuals,
irrespective of the pain disorder, do not gain beneficial and/or clinically
relevant pain relief after exercise interventions'®, presumably because
of the complexity of pain>'®. In example, pain relief following exercise
interventions may be due to getting attention rather than the exercise



THE INFLUENCE OF MUSCULOSKELETAL PAIN ON EXERCISE-INDUCED HYPOALGESIA IN HUMANS

itself!®. Furthermore, the pain relieving effect of exercise interventions
in individuals with chronic MSK pain is independent of radiographic
findings and there is discrepancy between pain intensity perception and
tissue damage (e.g. on radiographic findings) in chronic MSK
pain'®2%2! This implies that chronic MSK pain cannot be explained
alone by local tissue damage®??°. Therefore, research has focused on
sensitivity of the nervous system?®?°, which may be enhanced in
chronic MSK pain individuals®>%.

1.3. HYPERSENSITIVITY AND MECHANIMS

Hypersensitivity of the sensory nervous system may be caused by
peripheral and/or central sensitisation®>2%2%30 and acute exercise may
decrease (hyper)-sensitivity. This well-established phenomenon is
labelled exercise-induced hypoalgesia (EIH)*!'% The underlying
neural substrates influencing sensitivity in relation to acute exercise has
been reviewed extensively’!=%*>*} and include, but are not limited to,
opioids* 8 nitric oxide** and endocannabinoids*®*'* as well as
cardiovascular?’>**,  noradrenergic®*>  and  serotonergic®"?
mechanims. For instance, a recent human study® found that greater EIH
after an isometric exercise, normally known to be painful®, was
associated with weaker serotonergic level in combination with a gene
for stronger opioid signalling, which may suggest an antagonistic
interaction between serotonergic and opioid EIH mechanisms possibly
to avoid analgesia. In this respect, opiodergic, serotonergic and
noradrenergic pathways are known to be involved in the descending
pain inhibitory control pathways®*%. In 1979, Le Bars and colleagues
in their pioneering research showed that continuous tonic nociceptive
inputs inhibit other nociceptive inputs from convergent wide-dynamic
range spinal dorsal horn neurons®®. This ‘“pain-inhibits-pain”
phenomenon was labelled diffuse noxious inhibitory control
(DNIC)®%7. The term DNIC is still used in animal studies, while the
human proxy is known as conditioned pain modulation (CPM) and is
assessed using psychophysical testing-modalities®®. The underlying
neuroanatomical structures involved in DNIC include the
periaqueductal grey matter (PAG), locus coeruleus (LC) rostro-ventral
medulla (RVM) and subnucleus reticularis dorsalis®>%® (Figure 1). Also,
noradrenergic pathways from various cortical areas are crucial for LC
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64,65

and subnucleus reticularis dorsalis activity”®, collectively showing

that DNIC, and possibly CPM, do not derive from one specific nucleus,
but several brain areas and nuclei interact intrinsically in this
descending pain modulatory phenomenon. Furthermore, pain-inhibits-

pain phenomenons may also influence pain sensitivity during or after
70,71

painful exercise in humans

Figure 1. Descending pain modulation.

Descending pain modulation are the net effect of inhibitory (anti-nociceptive) and
facilitatory (pro-nociceptive) supraspinal mechanisms acting on the spinal dorsal
horns. PAG: periaqueductal grey matter. LC: Locus coeruleus. RVM: rostro-ventral
medulla.

The immune system, triggered by exercise, may also influence
hypersensitivity. For instance, pre-clinical evidence shows that
physically uninjured inactive rodents have a larger pro-inflammatory
response compared to active rodents’?. Also, in humans, the pro-
inflammatory cytokine IL6 plasma levels increase consistently during
acute exercise’> and this increase is exponentially related to exercise
duration”. However, the IL-6 increase is short-lasting (<1 hour after
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exercise) and also counteracted by increases in anti-inflammatory
cytokines and cortisol during and after acute exercise’*.

Taken together, EIH is the net result a wide array of local, segmental,
extra-segmental and supraspinal descending mechanisms. These
endogenous mechanisms, and their possible interplay with exercise,
may act to decrease pain sensitivity and/or pain perception for an
exercising individual.

1.4. SENSORY TESTING AND EXERCISE-INDUCED
HYPOALGESIA

Hypersensitivity may be assessed using quantitative sensory testing
(QST) modalities to attain information on the central integration of
sensory inputs as assessed by proxies of peripheral and central
sensitisation in acute and chronic pain®-?%2%3%  This mechanistic
approach may offer translational information having the potential to
understand the essential driving mechanisms behind the perception of
pain and pain relieving treatments such as exercise interventions®>’”>.

Numerous EIH reviews has been published within the last 10
years®!33:35-37.39-43.76-78 ‘The EIH response is considered a proxy of the
balance between endogenous pain facilitatory and pain inhibitory
mechanisms during and after one exercise session®”*. In general, EIH
responses are highly variable in chronic pain populations, while
moderate-large hypoalgesic responses have been consistently
demonstrated in healthy individuals*”>°, which may suggest that the
presence of pain impairs EIH. However, pain may also inhibits pain in
relation to exercise’’?® suggesting that pain can facilitate EIH.
Currently, the literature on the relationship between pain intensity and
EIH in healthy individuals*’>>6371787 and chronic MSK pain
individuals®®* show conflicting results; see Appendix A and B for
schematic overviews of cross-sectional EIH studies investigating
associations between EIH and pain ratings and studies comparing
exercise with and without experimental pain in healthy individuals and
individuals with chronic MSK pain, respectively.

Pre-clinical studies show that exercise interventions may prevent
chronic pain by modulation of central pain inhibitory and pain
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facilitatory mechanisms®?, and that pain relief after exercise

interventions may be linked to modulation of central pain inhibitory and
pain facilitatory mechanisms*!-*2. In humans, higher EIH is observed in
physically active individuals compared to physically inactive
individuals in cross-sectional studies”’® indicating EIH may be
increased by regular exercise, although other studies report conflicting
results in healthy individuals® %2, Exercise interventions lasting 4-16
weeks increase pressure pain thresholds (PPTs) in chronic MSK pain
disorders locally at the painful regions and to a lesser degree in remote
regions'®, while temporal summation of pain (TSP) may be
decreased'™ and CPM increased'®. However, EIH modulation
following exercise interventions in healthy individuals and chronic
MSK pain was only investigated to a limited degree at the time of
planning this PhD project; see Appendix C for a schematic overview of
longitudinal human studies investigating EIH modulation by exercise
interventions. Collectively, these studies show equivocal results
regarding if EIH is modifiable by exercise interventions in healthy
individuals'®1% and individuals with chronic MSK pain!®-1°,

In summary, pain may influence EIH. In spite of this, the direct
influence of pain (i.e. experimental pain) on EIH has only been
investigated to a limited degree. Also, the current sparse amount of
literature question if EIH is modifiable by exercise interventions.
Therefore, further knowledge on how pain intensity influences EIH, and
if EIH may be modified by exercise interventions of longer duration
may have important implications for the planning and
recommendations regarding exercise interventions for the individual
person suffering from pain***¢ which again may have a positive impact
on disability'? and societal costs®’.
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Based on the considerations in the introduction, the overarching aims
of this PhD project were to explore:

e Relations between EIH and pain intensity (Study I-I1I), and
e if EIH is modifiable by exercise interventions (Study I and Study
I1).

It was hypothesised that:

e EIH was related to pain intensity, and
e EIH was modifiable by exercise interventions.

A schematic overview of the study designs and of the thesis and are
presented in Figure 2 and Figure 3, respectively.

NRS at end exe.

Study |
Healthy (N=38)

EIH
exercise
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Demographics

Longitudinal, observational - )
Clinical pain

6.7 weeks between sessions

condition

NRS onset and at end exe.
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. Baseline . EIH
Healthy (exp. pain, N=34) Demogranhics Experimental .
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NRS onset and at end exe. NRS onset and at end exe.

Study Il
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Longitudinal, observational
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EIH EIH
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Figure 2. Schematic overview of study designs for study I-I11.

Exp. pain: Experimental pain by hypertonic saline injection. MSK: Musculoskeletal.

EIH: Exercise-induced hypoalgesia; NRS: Numeric rating scale, for pain intensity
assessment, *denotes exercise condition with unpublished data. Vertical arrows
denote pressure pain threshold assessment.
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Figure 3. Overview of the current PhD thesis.

This thesis explores relations between pain intensity and EIH (Study I-11l) and if EIH
is modifiable by exercise interventions (Study I and Study III). Exp. pain:
Experimental pain by hypertonic saline injection. MSK: Musculoskeletal.

Individuals with chronic painful knee OA was used in Study III to
investigate chronic MSK pain. The three journal articles (Study I-III)
are presented at a glance in Appendix D.

The following chapters provide a more in-detail description and
discussion of the rationales for the methods (EIH assessment, pain
ratings and the experimental pain model) utilised in this PhD project.
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EIH is assessed as decreased pain sensitivity during or after an acute
exercise condition®”*° (Figure 4).

Pain sensitivity
e.g. pressure pain threshold

Figure 4. The concept of exercise-induced hypoalgesia assessment.
Exercise-induced hypoalgesia (EIH) is the increase in e.g. pressure pain thresholds
after an acute exercise condition assessed with manual pressure algometry or other
pain sensitivity modalities.

3.1. PRESSURE PAIN ALGOMETRY

EIH is most often assessed using PPT*3-73%7¢ Both superficial and
deep-tissue nociceptors are activated when assessing PPT?® probably
with inputs mainly from deep-tissue nociceptors (group III and IV)!''%.
As physical exercise involves muscle effort, this makes PPT
assessments more relevant in relation to EIH and exercise compared to
thermal and tactile testing modalities which mainly assess gain or loss
of function in skin sensory neurons?®-!''2,

In this PhD project, PPTs for EIH calculation were assessed using
manual pressure algometry (Somedic AB, type II, Sweden; Figure 4)
with a standardised pressure rate around 30 kPa/s and a 1-cm? probe.
Computer-controlled algometry has also been utilised to assess pressure
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pain sensitivity and EIH**''>!%  However, manual algometry and
computer-controlled algometry are comparable for PPT assessment in
healthy individuals!!'>, and manual algometry was the feasible option
for Study I and Study III given the experimental settings and apparatus-
availability constraints. Hence, manual pressure algometry was a
consistent method throughout Study I-II1.

In healthy individuals, PPT assessed with manual pressure algometry
shows excellent within-session (intra-class correlation coefficients
[ICC] > 0.93) and good-excellent 1-week between-session (ICC 0.74 —
0.87) test-retest relative reliability at thigh and shoulder
muscles’1°111¢ which were the primary assessment sites in Study I-II1.
Similarly, in knee OA individuals''”!'"® and other MSK pain
disorders®®, 1-3-week between-session test-retest reliability is good-
excellent with ICCs ranging from 0.77 - 0.91. Further, two (Study I and
Study II) and three (Study III) PPT assessments at each assessment site
were made and averaged for each assessment time, as this enhances

reliability compared to single assessments'!®,

3.2. EIH RESPONSES AND EXERCISE CONDITIONS

In general, EIH responses can be categorized into three main categories.
EIH may occur in exercising body regions (local EIH), within a few
segments away from the primary exercising body regions (extra-
segmental EIH) and at remote non-exercising regions (remote
EIH)*"*-76, Generally, EIH responses are more pronounced at local
sites compared to remote sites®’**7® which may suggest differential
combined effects of local, segmental, extra-segmental and supraspinal
descending mechanisms at exercising regions compared to non-
exercising regions.

EIH may be assessed during or after different types of exercise.

- 70,120-123 . 92,124-130 . 83,85,99,116,131-133
Isometric , resistance , aerobic ,
anaerobic®!'134135 balance!3® and stretching'®’ exercises have all been
utilised in the assessment of EIH responses. Hence, no golden standard
for EIH testing is currently available. The exercise conditions utilised

to elicit EIH responses are presented and discussed below.
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In Study I and Study II, the 3-minute isometric wall squat exercise was
chosen as exercise condition, as this exercise condition has been shown
to elicit EIH responses both at local exercising and remote non-
exercising sites in healthy individuals’®!3®. Further, this exercise
condition has shown no l-week between-session systematic errors,
although poor between-session relative reliability (ICCs: 0.03 — 0.43)
and non-significant between-session agreement (Cohen’s kappa < 0.13,
P > 0.43) between EIH responders and non-responders has been
observed in healthy individuals’™. Lastly, it requires only simple
equipment (a wall and a stopwatch) and is short-lasting, making it
clinically feasible. Therefore, this exercise condition was considered
optimal at the time of planning these two projects.

In Study III, The 2-minute lateral raise resistance exercise (shoulder
condition) was chosen because the intensity is high and it involves
remote muscles in relation to the painful knee. This increases the
probability of inducing EIH*’, and significant EIH after upper-body
resistance exercises in knee OA individuals has been documented!?*.
Also, this exercise has been shown to decrease pain perception to
standardised pressure pain methods in individuals with chronic MSK
pain when performed two minutes each day for 10 weeks'*’, indicating
global effects on pain sensitivity by this exercise. Lastly, due to the
simple nature of the exercise, it was feasible in the clinical setting. The
6-minute walk test (walk condition) was chosen as part of Study III for
several reasons: First, it is part of the minimal core set of physical
function tests for knee OA individuals endorsed by the Osteoarthritis
Research Society International (OARSI)!*’. Second, pain flare during
this exercise has been reported positively associated to TSP in knee OA
individuals'*! which may indicate a relationship between pain flare
during this exercise and other dynamic QST measures, such as EIH, as
well. Third, as with the 3-minute isometric wall squat exercise, its
simple nature made it feasible in the clinical experimental setting. Note
that all pain intensity and EIH findings in relation to this walk condition
are unpublished.

In study I, local EIH responses were assessed at the dominant
quadriceps muscle, while remote responses were assessed at the
contralateral middle deltoideus muscle. In Study II, local EIH responses
were assessed at both quadriceps muscles (with experimental pain
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injection in the right quadriceps muscle, see Chapter 5) and remote EIH
was assessed at the left upper trapezius muscle. In study III, local EIH
responses were assessed at the quadriceps muscle on the side with the
most painful knee, while remote EIH was assessed at the contralateral
middle deltoideus muscle (walk condition). For the shoulder condition,
the same assessment sites were used with local responses being from
the shoulder site and remote responses being from the thigh site.

In this thesis, all local and remote EIH responses will be presented as
absolute change in PPTs immediately after exercise conditions
compared to before the exercise condition®”. Further, Cohen’s d effect
sizes'*? will be presented for all EIH responses to enhance between-site
and between-study comparability.

3.3. PAIN MAY DECREASE EIH

EIH responses are often decreased or absent in chronic MSK pain
individuals when compared to healthy individuals®’>%7® which may
indicate, that pain may decrease EIH. This is supported by studies on
chronic MSK individuals showing decreased EIH after exercise with
painful body regions compared to EIH after exercising non-painful
body regions!?%!124,

However, the existing literature is conflicting as no local EIH!36143-146
or even hyperalgesia'?®!47-14® also has been demonstrated in healthy
individuals. These no-EIH responses may be due to different factors: 1)
Time duration after exercise condition (PPT assessment ~1 hour after
the exercise condition'*® due to using the entire German Research
Network on Neuropathic Pain QST protocol)’®* since EIH is often
abolished 15-30 minutes after exercise’’%; 2) the exercise condition
may be of too low intensity to elicit EIH'* as EIH is intensity-
dependent in aerobic exercise'*~'*!; 3) 40-minute resistance exercise'**
and eccentric resistance exercise!?®!*® as exercise conditions. Further,
uncontrolled factors such as disturbed sleep'®?, systemic pro-
inflammatory up-regulation'>, psychosocial influences'>* are all
factors known to increase pain sensitivity and central pain facilitation
may counteract EIH. Although speculative, these factors may also
explain the general EIH difference between healthy individuals and
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chronic pain individuals, as chronic pain individuals more often report
decreased sleep quality'>®, poorer psychosocial status'>®!>7 and have
increased low-grade systemic inflammation'>® compared to healthy
individuals. Additionally, subgroup differences have been reported in
chronic MSK pain populations’*!'>® with a subgroup of chronic knee
OA individuals that presents a pain-inhibiting CPM response also
presents with EIH compared to healthy contols'®. Collectively, this
suggests EIH heterogeneity within specific diagnosis of MSK pain
disorders and within healthy individuals.

3.4. PAIN MAY INCREASE EIH

Exercise may be painful during or after exercise'®’, which may increase
EIH compared to non-painful exercise®. This is supported by findings
showing that isometric exercise, as utilised in Study I and Study II,
often is perceived as painful and elicit significant EIH responses’®’!.
Also, a systematic review and meta-analysis conclude that isometric
exercise may induce EIH with a large effect size in healthy
individuals®’. Further, several studies report a positive relationship
between EIH and CPM in healthy individuals®®$3:8699:161.162 a4
individuals with chronic MSK pain®>!%°, albeit controversial evidence
exists’18081,
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This chapter presents the pain ratings used in the current PhD project.

4.1. NUMERICAL RATING SCALE

Self-reported evaluation of pain intensity is considered a gold standard
of pain assessment in experimental and clinical research!®*!%*, In Study
I[-1II, pain intensity ratings were assessed in relation to the exercise
conditions and also as peak pain intensity within the last 24 hours
(Study III) using numerical rating scales (NRS) from 0-10 with 0
indicating “no pain” and 10 indicating “worst imaginable pain”.

NRS is a reliable, valid and well-established unidimensional measure
recommended for pain intensity assessment in experimental and clinical
settings'%1%5, NRS may be less sensitive than visual analogue scale
(VAS) ratings, but generally NRS and VAS are comparable'®® and
chronic pain individuals prefer NRS rather than VAS!®164 Further,
NRS was more applicable in relation to the exercise conditions due to
its verbal execution. Additionally, a pain flare index (NRS at exercise
condition end minus NRS at exercise condition onset) was calculated
as a measure of pain flare during the individual exercise conditions
(Study II and Study III) i.e. higher index indicate larger pain flare
during exercise as used previosly'*! and in a recent EIH study’*. Note
that all pain flare findings are unpublished. Peak pain intensity within
the last 24 hours was used in Study II as an indicator of the average pain
intensity'®®, as this rating has been used in similar studies in knee OA
individuals'®"-17°,

4.2. KNEE INJURY AND OSTEOARTHRITIS OUTCOME
SCORE

The Knee Injury and Osteoarthritis Outcome Score (KOOS)
questionnaire was applied in Study I and Study III. KOOS is a
composite self-administered questionnaire to individuals with knee
injury or knee OA to evaluate temporal aspects of the pain disorder and
for treatment evaluation'”!. KOOS contains five subscales: Pain, other
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Symptoms (Symptoms), Function in Activities of Daily Living (ADL),
Function in sport and recreation (Sport), and knee-related Quality of
Life (QoL) with scores ranging from 0 indicating “worst” to 100
indicating “best” for each subscale. The questionnaire is reliable, valid
and responsive in knee OA individuals'”>'7>. Further, KOOS has been
used previously to characterise healthy individuals from individuals
with painful knee disorders!’®!”’. The questionnaire also contains the
Western Ontario and McMaster Universities Osteoarthritis Index
(WOMAC) and is freely available online at http://www.koos.nu making
it more applicable and accessible compared to WOMAC.

In Study I, KOOS was used to identify any knee pain and functional
impairments, as these factors have been related to a hyperalgesic
response after acute exercise in knee pain individuals!'*!?4!% In Study
I11, all KOOS subscales and the average score of the four subscales for
Pain, Symptoms, ADL, and QoL (KOOS4) was applied to characterise
the knee OA individuals and as the primary outcome measure. KOOS4
has been applied previously in clinical longitudinal studies on painful
knee OA individuals'’®!”. Moreover, a responder in clinical studies on
knee OA individuals is specified by OMERACT-OARSI as having 1)
more than 50% improvement in pain and function or 2) more than 20%
improvement in two of the categories of Physical function, Pain and
Global assessment!®®, making KOOS ideal for this study.
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CHAPTER 5. EXPERIMENTAL PAIN -
SALINE INJECTION

The transition from acute to chronic MSK pain is still not well
understood®** which highlights the importance of translational
research. Experimental pain models provide opportunities to investigate
probable underlying mechanisms in the transition from pain-free/acute-
chronic pain®>!8!, The models mimic certain aspects of painful
conditions to investigate short-lasting muscle pain and sensitivity
changes. In this respect, intramuscular injections of hypertonic saline is
the most widely used exogenous model to induce pain and mechanical
pressure hypersensitivity to imitate MSK pain in otherwise pain-free
individuals'®2. It has been shown to produce a local deep muscle pain
by activation of group III and IV muscle nociceptors!'! and the pain
may refer to more distal body regions especially in chronic pain
disorders®>!83. However, this model and other experimental pain
models such as nerve-growth factor injection!®* and delayed-onset
muscle soreness (DOMS)!'®® are only short-lasting and they can
therefore only investigate the development of acute pain®>!8!,

Hypertonic saline (5.8%) injection has not previously been utilised to
investigate how pain influence EIH. Therefore, this model with
injection into the quadriceps muscle 1-2 minutes before exercise, and
isotonic saline (0.9%) injection as a control'®"1%7 was employed in
Study II.
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This chapter presents the results from Study I-III in relation to the first
aim of this thesis; to explore relations between EIH and pain intensity.
In addition, the results will be compared and discussed in relation to
previous human EIH studies on healthy individuals (with and without
experimental pain) and individuals with chronic MSK pain.

6.1. EIH RESPONSES

Local EIH responses were found before exercise interventions in Study
I and Study III (shoulder condition) with small-moderate effect sizes
(Figure 5A). Similarly, local EIH responses with small-moderate effect
sizes were evident after inducing experimental pain in Study II. In
addition, significant remote EIH responses with small-moderate effect
sizes were found in Study II (both conditions), while no remote EIH
was observed in Study I and Study III before exercise interventions
(Figure 5B).

(A) Local EIH (B) Remote EIH
Healthy Exp. pain Chronic MSK pain Healthy Exp. pain Chronic MSK pain
(Studly Iy (Stucly I1) (Stucly 11) (Study ) (Study 11) (Study 111}
Control inj. Painful inj. Control inj. Painful inj.
100 100
T 11 5 15
= =
z 50+ z 504
w ]
@ 25+ ® 25 ‘|‘
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] 254 <_25.
50 0441 0.287 0.776" 0.438" 0.759" 0627 -0.268 =50 0.049 0443 0.649" 0074 0.077
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thigh thigh thigh thigh cond. cond. cond. cond.

Figure 5. EIH responses at baseline for Study I-111.

Local (A) and remote (B) EIH responses for Study I-Ill, as reflected by absolute
change in PPT after acute exercise conditions. Shoulder cond.: 2-minute lateral
raises, Exp.: Experimental; Inj.: Injection; MSK: Musculoskeletal. Error bars denote
95% confidence intervals. Values denote Cohen’s d effect sizes for EIH responses
*denotes significant EIH (within-study Bonferroni adjusted P<0.05). Walk condition
(6-minute walk test) results are unpublished.
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In addition, no influence of pain on local and remote EIH were observed
in Study II, as no between-session differences (control injection vs
painful injection) were found (all P <0.135, Cohen’s d: 0.00 — 0.30).

At follow-up, significant local and remote EIH responses with moderate
effect sizes were found in healthy individuals, while only local EIH
(shoulder condition, moderate effect size) was observed in chronic
MSK individuals (Figure 6).

(A) Local EIH
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Figure 6. EIH responses following exercise interventions for Study I and Study II1.
Local (A) and remote (B) EIH responses for Study I and Study III at follow-up,
Shoulder cond.: 2-minute lateral raises; Exp.: Experimental; Inj.: Injection; MSK:
Musculoskeletal. Error bars denote 95% confidence intervals. Values denote Cohen’s
d effect sizes for EIH responses. *denotes significant EIH (within-study Bonferroni
adjusted P<0.016). Walk condition (6-minute walk test) results are unpublished.

22



CHAPTER 6. EIH AND PAIN INTENSITY

6.2. ASSOCIATIONS BETWEEN PAIN INTENSITY AND EIH

Pain intensity ratings in relation to all exercise conditions and bivariate
correlation analyses between pain intensity ratings and EIH responses
for Study I-III (unpublished) are summarised in Appendix E and
Appendix F, respectively.

Pain intensity was not significantly associated with EIH responses
irrespective of pain intensity assessment time-point. This was observed
in Study II (painful condition), where pain intensity in the injected leg
at onset of the exercise condition was not significantly associated with
subsequent local and remote EIH responses (all P> 0.05). Similarly, in
Study III, pain intensity at onset of either exercise condition was not
significantly associated with subsequent local and remote EIH
responses at baseline (all P > 0.05) and follow-up (all P > 0.05).
Furthermore, no significant associations between pain intensity at the
end of the exercise condition and EIH responses were found in Study II
(painful condition, all P> 0.05), or Study I and Study III at baseline (all
P > 0.05) or follow-up (all P > 0.05). No significant associations
between the pain flare index and local and remote EIH responses were
found in Study II (painful condition) or Study III at baseline (all P >
0.05) and follow-up (all P> 0.05).

6.3. DISCUSSION

EIH responses were small-moderate (effect sizes: 0.287 — 0.776) in
Study I and the control condition in Study II (Figure 5) after painful
isometric exercise. These numerical values were larger than estimates
from a recent systematic review with meta-analysis (including only
three controlled studies using isometric exercise conditions), showing
no consistent EIH after this type of exercise in healthy individuals®.
This may suggest differential responses to exercise on EIH in healthy
individuals or may be ascribed to methodological differences.
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6.3.1. PRE-EXERCISE PAIN AND EIH

The influence of pain intensity at exercise onset has been investigated
using other experimental pain models in healthy individuals. DOMS, as
induced by eccentric contraction of the target muscle'®®, in a remote
body region may inhibit EIH after aerobic cycling'*® as EIH normally
is induced after this type of exercise’"!'®. Also, when DOMS was
present in the exercising quadriceps muscle, isometric exercise did not
induce EIH when compared to a no DOMS group® conflicting the
results from Study II where experimental pain did not decrease EIH.
Further, using a CPM paradigm where pain was abolished shortly
before exercise onset, decreased EIH compared to a control exercise
condition without previous pain was found, indicating previous pain
may decrease EIH®.

In agreement with the findings from Study II and Study III, earlier
studies in painful knee OA individuals described no significant
associations between pre-exercise pain intensity'?* or other pain ratings
(WOMAC)'® and EIH. However, the study by Burrows and
colleagues'?* suggests that pre-exercise (chronic) pain in the exercising
body region may decrease EIH compared to healthy individuals.
Similarly, no association between baseline pain intensity (peak pain
intensity within the last week) and EIH was found in patellar
tendinopathy individuals®>. However, following EIH-inducing
exercise, pain intensity may decrease in a subsequent exercise, which
may indicate a link between EIH and the subsequent pain response
during physical activity'®’.

6.3.2. PAIN DURING OR AFTER EXERCISE AND EIH

The Study I null-findings on association between pain intensity and EIH
response at the end of exercise, are in agreement with earlier studies in
healthy individuals’!781:828485 vet contradicting evidence exists* 687
(appendix A). Furthermore, studies have reported EIH and no change
in pain intensity’*-87:12%190.191 " qecreased pain intensity*®:8%12%:190-193 apq
increased pain intensity'®, while one study has reported hyperalgesia
and increased pain intensity in response to acute exercise!%S,

collectively suggesting discrepant findings regarding the relationship
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between EIH and pain intensity during and after exercise in healthy
individuals.

In Study II (painful condition) and Study III, pain intensity at the end
of acute exercise and EIH responses were not associated, which is in
agreement with other studies in chronic MSK pain such as chronic
neck-shoulder pain'®*, temporomandibular disorder!'®> and whiplash-
associated disorder®. Additionally, earlier studies did not find a
difference in EIH responses between individuals with fibromyalgia and
healthy individuals, yet the fibromyalgia cohorts reported more intense
pain after acute exercise!?®!?!, which support the no-relationship
between EIH and pain intensity.

6.3.3. PAIN FLARE AND EIH

No significant linear relationships between pain flare during exercise
and EIH responses were found in Study II (painful condition) or Study
I11. Interestingly, in a recent study, Vaegter and colleagues’ reported
that EIH was induced in chronic low back pain individuals with low
pain flare index (NRS pain flare <2) after walking, while hyperalgesia
was provoked in individuals with higher pain flare index (NRS pain
flare >2). Furthermore, EIH and baseline pain intensity were associated
with the pain flare®*. Additionally, chronic MSK pain individuals with
high pain sensitivity show lower EIH compared to low pain sensitivity
individuals®®, and EIH was similar between low and high kinesiophobia
individuals with chronic MSK pain, although high kinesiophobia
individuals showed higher baseline pain intensity’!. This may indicate
that EIH can be elicited in individuals with chronic MSK pain who
report high pain intensity, which may suggests within-diagnosis
heterogeneity i.e. within-diagnosis subgroups.

6.3.4. PAINFUL VS NON-PAINFUL EXERCISES

A limited number of studies have compared EIH between painful and
non-painful exercises in healthy individuals*’>>%3, Greater EIH was
found during painful cycling compared to non-painful cycling®’, and
greater EIH was induced with painful high-pressure occlusion
compared to low- or no-occlusion resistance training*’. These findings
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may indicate that pain induced by the exercise may increase EIH in
healthy individuals. These findings contrast with the findings of Study
I, where experimental pain did not affect EIH responses compared to
the control session (Figure 5). Conversely, an earlier study reported
lower EIH responses in the cuff-occluded arm (painful) compared to
the non-occluded arm (non-painful) during cycling®®, which may
suggest that remote pain during exercise can decrease EIH™.
Methodological differences or simply that individuals may react
differently to painful stimuli in relation to exercise may explain these
contrasting findings.

No studies have investigated the influence of pain on EIH responses
using exogenous experimental pain models in individuals with MSK
pain. Earlier studies have examined EIH responses between painful vs
non-painful exercises!??"1?* and using different exercise intensities or
durations®®!2*1%_ For example, Lannersten & Kosek'?? observed ETH
in individuals with shoulder myalgia only after a lower extremity
exercise away from their clinical pain, while no EIH was elicited during
shoulder exercise. When fibromyalgia individuals performed the two
exercises, no EIH responses were found!?2. This may indicate that
different EIH responses occur comparing individuals with generalised
and local pain, and that exercising a pain-free region may be more
optimal for EIH than exercising a painful region'??. Study III supports
the latter speculation, and is further supported by findings in knee OA
individuals'?*. Additionally, lateral epicondylalgia individuals did not
produce a local EIH response after painful forearm exercise'?®. This
result corresponds to the walk condition no-EIH results from Study III,
but conflicts with the results from Study II, which may indicate that
pain duration influence EIH. Similarly, in fibromyalgia individuals,
isometric exercise to fatigue, using shorter duration or maximal
contractions, did not elicit EIH or changed pain intensity®s. However,
in fibromyalgia individuals, cycling at a self-selected intensity
provoked similar EIH compared with a higher submaximal intensity,
while pain perception decreased after exercises'*®. This could indicate
that self-selected intensity may be preferred and recommended over
higher intensities in treatment settings.
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CHAPTER 7. EIH MODULATION AND
PAIN INTENSITY

This chapter presents the results in relation to this thesis’ second aim;
to explore if EIH is modifiable by exercise interventions. The results
will be compared and discussed in relation to previous literature on EIH
modulation and modulation of other pain sensitivity measures and pain
ratings. In addition, possible mechanisms influencing EIH modulation
will be discussed.

7.1. EIH MODULATION

Seven-week exercise interventions did not modulate local EIH
responses, as reflected in no changes in absolute EIH responses from
baseline to follow-up, in healthy individuals or chronic MSK pain
individuals, while remote EIH was significantly increased in healthy
individuals (Figure 7).

An additional exploratory analysis revealed a significant association
between absolute change in local EIH and absolute change in pain
intensity (i.e. decreased pain intensity indicated by a negative numerical
value) following the exercise intervention (Study III shoulder
condition, » = -0.407; P = 0.048, unpublished) which may indicate, that
increased EIH and pain relief following exercise interventions may be
related. All other correlation analyses between change in EIH responses
following exercise intervention and change in pain ratings were non-
significant (all P > 0.05) (unpublished, see Appendix G).

27



THE INFLUENCE OF MUSCULOSKELETAL PAIN ON EXERCISE-INDUCED HYPOALGESIA IN HUMANS

(A) Local EIH modulation

Healthy Chronic MSK pain
_ (Study I) (Study IlI)
: 100 -
x~ shoulder cond. walk cond.
4 -
o 75
c
©
e 50
o
I 254
w |
2
ERE
o
(2] -25-
2 0.153 0.012 0.457%
<
(B) Remote EIH modulation
Healthy Chronic MSK pain
—_ (Study I) (Study IlI)
©
i 100 shoulder cond. walk cond.
l‘D -
> 75
<
S 50+
o
I 254
w |
3 .
z° 1
o
0 _25-
: 0.456* 0.059 0.294

Figure 7. EIH modulation after exercise interventions in Study I and Study I11.
Local (4) and remote (B) absolute EIH change after 7-week exercise interventions in
Study I and Study I11. Shoulder cond.: 2-minute lateral raises; MSK: Musculoskeletal.
Error bars denote 95% confidence intervals. Values denote Cohen's d effect sizes for
EIH modulation from baseline to follow-up. *denotes significant EIH modulation
(within-study Bonferroni adjusted P=0.016). tdenotes non-significant EIH
modulation (within-study Bonferroni adjusted P=0.152) although error bars are not
crossing zero. Walk condition (6-minute walk test) results are unpublished.

7.2. DISCUSSION

Evidence on EIH modulation using threshold testing is scarce. Exercise
interventions lasting at least six weeks in healthy individuals has only
been investigated in Study I and one recent study'®’ in pain-free
overweight men. While the recent study'?” demonstrated that local and
remote EIH could not be elicited at baseline using either high intensity
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interval cycling or moderate intensity continuous cycling, Study I
observed local EIH but not remote EIH at baseline. Furthermore, and in
contrast to the recent study'”’, the exercise intervention did increase
remote EIH responses in Study I (Figure 7). However, EIH modulation,
using pressure pain tolerances for EIH assessment, have been reported
following 6-week moderate-vigorous aerobic cycling!® and high-
intensity interval cycling in healthy individuals'®, which could indicate
that tolerance EIH responses may be more modifiable than EIH
threshold responses.

Although a moderate effect size for local EIH modulation after the walk
condition was observed in Study III no significant local or remote EIH
modulation were found (Figure 7). This is in agreement with a previous
study'® reporting that neither neuromuscular exercise therapy (similar
to the exercise therapy used in study III) for three months or total knee
replacement in knee OA individuals, did change EIH responses despite
an improvement in clinical pain intensity following both treatments'®’.
Similar findings have been reported in knee OA individuals with
moderate-severe pain intensity before total knee replacement at 6-
month follow-up after surgery!'*, and in rheumatoid arthritis
individuals after two years of health-enhancing physical activity!'!°,
Hence, the existing evidence suggests, that there may be no significant
EIH modulation in chronic MSK individuals regardless of the ability to

induce pre-treatment EIH responses or not.

The type of exercise may be of importance for EIH modulation as
eccentric exercise may affect PPT responses after acute exercise
differently comparing two exercise sesssions!?%!147197.198 For instance,
Lau and colleagues'’ observed hyperalgesia immediately after both
sessions, separated by four weeks, of eccentric exercise in healthy
individuals, with hyperalgesia present up to three days only after the
first session. In addition, the pain intensity ratings were elevated in the
first session compared to the second session for up to three days'®’.
Also, two sessions of eccentric exercise, separated by seven days, did
not elicit local or remote EIH immediately after exercise in both
sessions in healthy individuals'?®!°71% However, PPTs were reduced
(hyperalgesia) 24 hours only after the first session, showing a time-
dependent modulation on deep-tissue pain sensitivity and pain intensity
after this type of exercise'?®!°71% Further studies are warranted to
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investigate if longer exercise interventions using eccentric exercises
may modulate EIH.

EIH and EIH modulation may not be the main driver of pain perception.
This may be argued as no knee pain was reported in Study I before EIH
testing (indicated by KOOS Pain subscale scores) at baseline and
follow-up and no difference in pain intensity after acute exercise was
found comparing baseline to follow-up albeit remote EIH was
improved. This is further supported by the Study I-III findings on no
associations between pain intensity and EIH responses. Pre-clinical
evidence show that changes in PAG, RVM and spinal mechanisms (e.g.
serotonergic, endocannabinoid, opiodergic and NMDA mechanisms)
after exercise interventions may decrease (hyper)-sensitivity and be
linked to EIH modulation®'*%. Moreover, also from preclinical
evidence, immune system mechanisms such as reduced glial cell
activation and a balance-shift in pro- and anti-nociceptive inflammatory
cytokines®®?%!* may explain EIH modulation. Further, decreased low-
grade inflammation after exercise interventions may be caused by fat
loss, as fat loss is common after exercise interventions in
humans!332%%2%! and a large proportion of individuals in the general
population and in the military (Study I) are overweight or obese?’?.
Also, improved psychosocial aspects negatively related to EIH in
healthy individuals'** may explain the EIH modulation in Study I,
although this interaction is still inconclusive in healthy individuals*®.

A ceiling effect for EIH may exist, as significant baseline EIH
responses did not increase following exercise interventions. A ceiling
effect of psychophysical measures (i.e. PPT and CPM) is in agreement
with recent studies showing that non-invasive brain stimulation did not
modulate psychophysical measures in healthy individuals®®® and
chronic low back pain individuals®®* although non-invasive brain
stimulation may provide hypoalgesia in chronic pain individuals®®.
Similarly, recent findings in chronic low back pain individuals showed
no modulation of CPM and TSP although clinical pain improved
following guideline-recommended primary care treatment including
exercise’’S. However, this is in contrast to studies showing modulation
of CPM'® and TSP'" by exercise interventions in individuals with
chronic MSK pain. The latter notion was not supported by Study III-
results (not addressed in this thesis) as no TSP modulation was found
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after exercise intervention. Furthermore, modulation of other central
pain mechanisms (spatial summation of pain and widespread
hyperesthesia) have been reported in knee OA individuals becoming
pain-free after total knee replacement®”’ suggesting that these
mechanisms may be modulated by treatment. Lastly, and in agreement
with the PPT findings in Study III, a recent systematic review with
meta-analysis showed that PPTs are increased after exercise
interventions in chronic MSK pain disorders locally at the painful

region(s) and to a lesser degree in remote regions'®,
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CHAPTER 8. METHODOLOGICAL
CONSIDERATIONS AND LIMITATIONS

This chapter address considerations and limitations related to the
utilised EIH exercise conditions, the sample size calculations and
general considerations in relations to this PhD project.

8.1. EXERCISE CONDITIONS

EIH responses were elicited using a 3-minute isometric wall squat
(Study I and Study II), a 2-minute lateral raises resistance exercise and
the 6-minute walk test (Study III).

8.1.1. 3-MINUTE ISOMETRIC WALL SQUAT

In Study I, only local EIH was elicited after the wall squat test at
baseline. This is in contrast to previous studies showing both local and
remote EIH using this exercise condition’®!3® as also found in Study II.
This difference may be explained by psychosocial factors such as
cognitive stress during military training®®®> which again may decrease
EIH'>*. Additionally, natural variation or other unknown factors may
explain this difference.

8.1.2. 2-MINUTE LATERAL RAISES

No EIH was induced at the knee (remote EIH) by the 2-minute lateral
raises resistance exercise in Study IIIl. Exercises with non-painful
muscles have previously been able to induce EIH at the painful body
region in individuals with painful knee OA'?*, shoulder myalgia'??,
chronic low back pain®®® and chronic neck pain following trauma'3®,
The lack of remote EIH after this shoulder condition may be due to the
shorter-lasting nature of this exercise condition compared to e.g. the
study by Burrows and colleagues'?* who used three sets of three upper-
body resistance exercises to induce EIH. Also, non-controlled shoulder
pain at exercise onset was reported by five individuals (21%) at baseline

(NRS: 2.6 + 1.1, range: 1 - 4) and follow-up (NRS: 2.8 + 0.8, range: 2
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- 4) (unpublished). This may have affected the EIH responses, and may
partly explain the lack of remote EIH after this exercise condition.

8.1.3. 6-MINUTE WALK TEST

The 6-minute walk test did not induce local EIH at the thigh or remote
EIH at the shoulder in Study III. Other exercise conditions such as 15-
minute cycling at 70% aerobic capacity!'*!>® and 5-minute isometric
knee extension at 50% maximal voluntary contraction!®-*° have
previously been able to induce EIH in knee OA individuals, suggesting
that the intensity of the 6-minute walk test may be too low to induce
EIH. This is supported by findings showing that EIH after aerobic
exercise is positively intensity-dependent!**~1>!. Additionally, recent
findings have shown no EIH after this exercise condition in healthy
individuals'®® and individuals with chronic low back pain®*. This
highlights a possible limitation of this exercise condition for EIH testing
using PPTs, while significant EIH may be obtained using pressure

tolerance testing!*’.

8.2. STATISTICAL CONSIDERATIONS

Small sample sizes are a limitation in neuroscience in general which
may question the majority of study conclusions®”. This limitation is
probably also evident in the field of EIH research. The Study I-III
sample sizes are therefore relevant to reflect upon.

8.2.1. STUDY |

The pre-determined sample size (36 individuals) for this observational
study was based on an approximated moderate EIH modulation effect
size of 0.6 after military training, an estimated standard deviation of 0.9,
a statistical power of 80% and 0=0.05. The actual effect size for the
remote EIH modulation was 0.456 indicating that this study was slightly
under-powered.
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8.2.2. STUDY II

The pre-determined sample size (34 individuals) for this randomised
cross-over study was based on an approximated medium effect size of
0.5 on the EIH response at the injected thigh after exercise with
hypertonic saline (experimental pain session) compared to exercise
with isotonic saline (control session), a statistical power of 80% and
a=0.05.

The actual between-session EIH-difference effect size of 0.00 on the
main outcome in this study shows, that the estimated effect size was
clearly overestimated. However, a significant between-session EIH
difference could not have been achieved by increasing the sample size.

8.2.3. STUDY Il

The sample size calculation for this observational study was based on a
statistical power of 80%, 0=0.05 and a 20% improvement in KOOS4
after exercise intervention, as this is a responder criteria in clinical
studies on knee OA individuals stated by OMERACT-OARSI'®’,

The aims of Study III were to predict pain-related outcome (change in
KOQOSs) using baseline EIH and several other QST and clinical
variables before exercise intervention, and to investigate EIH
modulation following the exercise intervention. Hence, it could be
argues that the sample size calculation was not optimal. However, as
this was an observational proof-of-concept study, which for the first
time utilised EIH as an outcome predictor following exercise therapy in
a clinical setting, the inclusion of 24 individuals with painful knee OA
was deemed acceptable at the time of planning this study. The sample
size calculation for a larger-scale study of this kind should be based on
a multiple regression analysis with 11 relevant predictors (the actual
variables included in Study III) or more e.g. psychosocial factors** and
age?!? as these variables may also influence EIH. This gives an
estimated samples size of 110-150 individual also accounting for
dropouts.
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8.3. GENERAL CONSIDERATIONS

Several studies report EIH responses solely as the change in pain
sensitivity in relation to acute exercise. This method may, however, be
prone to methodological biases e.g. learning effects, participants
expectations etc.’>!3*, In example, the first systematic review with
meta-analysis found average moderate-large significant EIH effect
sizes in healthy individuals after different exercise types’’. However,
most of the included studies in this meta-analysis®’ are observational
studies without a control group or a resting control condition which
reduces the likelihood of detecting a true effect?!!. In agreement with
this, the most recent systematic review with meta-analysis, including
only controlled EIH studies, conclude that EIH effect sizes range from
no effect (isometric exercise) to large (aerobic exercise) in healthy
individuals®. Therefore, a resting control condition of equal length as
the exercise condition is recommended in EIH studies®, albeit EIH is
generally larger than the PPT change due to repeated testing in
itself’0-10L.116:212 " A resting control condition was not part of Study I and
Study III due to time constraints at the experimental settings. In Study
11, a control condition using non-painful isotonic saline was included in
this more rigorous cross-over design. Not including a resting control
condition is a limitation to all three studies.

Methodological artefacts related to the control injection itself may have
occurred in Study II. This was observed as significant negative
associations between EIH (local and remote) and pain intensity at the
end of exercise in both the injected and non-injected leg (all 7, <-0.523,
all P < 0.031). Furthermore, negative associations between the pain
flare index and EIH (local and remote) in the non-injected leg (all r; <

-0.502, all P <0.024) were found (Appendix F). These artefacts should
be properly controlled in future studies.

Not including a non-exercising matched control group is also a
limitation to Study I and Study II. This decreases the results’
generalisability, and the results should be replicated in more controlled
studies.
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CHAPTER 9. CONCLUSIONS

This thesis explored two specific aims: 1) Relations between EIH and
pain intensity and 2) if EIH may be modifiable by exercise
interventions.

The main findings are summarised in Figure 8.

EIH and
pain intensity

EIH modulation

Chronic MSK pain

Healthy Healthy (exp. pain)

Study | Study Il

Study Il

Figure 8. Overview of main findings from Study I-111.

No significant associations between exercise-induced hypoalgesia (EIH) and pain
intensity were found in Study I-III, and pain did not influence EIH (Study II). Only
remote EIH was modulated in healthy individuals (Study I), while no EIH modulation
occurred in individuals with chronic musculoskeletal (MSK) pain (Study IIl). An
association between EIH modulation and pain relief following exercise treatment was
observed in Study III. Red minus denotes no significant findings. Green plus in
brackets denotes some statistical significant findings.

No linear associations between pain intensity in relation to acute
exercise and EIH responses in all investigated cohorts were found
(Study I-1II), and experimental pain did not influence EIH (Study II).
In healthy individuals (Study I), remote EIH was modulated after the 7-
week exercise intervention, whereas this effect was absent in chronic
MSK pain individuals (Study III). An association between increased
local EIH and pain relief after the 7-week exercise intervention was
described in Study III.
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Overall, all three included studies in this thesis have presented novel
designs and findings within the scientific area of EIH. Utilizing
longitudinal and experimentally controlled approaches, this thesis has
attempted to add new knowledge into the translational interplay
between EIH, the perception of pain and exercise interventions. The
findings suggest that the perception of pain intensity is unrelated to
EIH, while the linear relationship between EIH modulation and pain
relief following exercise treatment warrants further research in
individuals with chronic MSK pain.
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CHAPTER 10. CLINICAL IMPLICATIONS
AND FUTURE DIRECTIONS

10.1. CLINICAL IMPLICATIONS

Looking beyond methodological considerations and limitations, the
presented results may have clinical implications in the guidance of
individuals with chronic MSK pain using exercise interventions.

As no associations between EIH and pain intensity were found, this
knowledge may be used by the clinician to inform the exercising
individual, that any change in palpable pressure sensitivity after acute
exercise may be unrelated to the perception of pain intensity before or
during exercise.

Pain relief following exercise treatment may be due to modulation of
endogenous pain inhibitory mechanisms®>*%?13 as also indicated by
Study III-findings. Hence, this information may be used by the clinician
to inform the individual with chronic MSK pain about possible
mechanisms of pain relief following exercise interventions.

Lastly, low baseline EIH was related to poorer outcome following
exercise intervention (Study III). However, the predictive value of
QST?'*215 including EIH?'® is limited, and it is currently unclear if EIH
could be advantageous in the shared-decision-making between the
clinician and the paining individual regarding exercise selection for
pain treatment.

10.2. FUTURE DIRECTIONS

No clear definition of EIH exist, as EIH is referred to as change in pain
sensitivity, but also clinical pain, during and after acute exercise®”.
Further, EIH has been used as the change in clinical pain after exercise
interventions in pain populations'’, collectively mixing pain sensitivity,
clinical pain and measurement time frame. Additionally, EIH responses
may be reported in absolute, relative or normalised values®’
complicating between-study comparisons if standardised effect sizes
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(e.g. Cohen’s d or z-scores) are not reported regardless of responses
being statistically significant or not. Based on this, a consensus
statement on EIH terminology and standardisation, similar to CPM
recommendations®®, is warranted.

Most EIH studies have not used a resting control condition as
mentioned previously, or the studies have used a fixed-order design
with the rest condition always being performed before the exercise
condition. Randomising order of conditions, as done in only a small
number of studies®>!?*?!7_ and Study III, and including a proper control
group (e.g. healthy individuals compared to symptomatic individuals or
a non-exercising control group) is warranted to further strengthen the
evidence level of future EIH studies. As an example, and in direct
continuation of Study III, a larger-scale controlled study (with or
without a non-treated control group) would be relevant to investigate if
EIH assessment may be relevant in clinical examinations as treatment
outcome predictor or as treatment target. In support of such a study, a
previous study?!® reported that pre-treatment CPM efficiency was
associated with pain outcome following treatment with duloxetine (a
serotonin and noradrenalin re-uptake inhibitor?!®) in neuropathic pain
individuals in such a way that individuals with lower pre-treatment
CPM gained better pain outcome following treatment'®. However, if
pre-treatment EIH may be used as treatment target and outcome
predictor in larger scaled studies using exercise interventions or
pharmacological treatments remains to be investigated.

A normative EIH database is non-existent and warranted. Such a
database on healthy individuals and clinically relevant cohorts may also
include optimal threshold limits for subgrouping individuals into two
or more categories of EIH responders, no-responders and hyperalgesic-
responders as examples. QST measures have previously been
demonstrated superior over traditional diagnosis criteria to identify
treatment responders and non-responders in individuals with e.g.
painful  chronic =~ OQA!#!167.169.170220-223 = However,  applied
methods®!1-212 to classify EIH responders and non-responders are
rather arbitrary as no consensus exits on a clinical meaningful EIH.
Future research should work towards a common understanding of a
threshold between EIH responder and non-responders. Along that line,
due to the complexity of the individual person’s pain perception’ and

40



CHAPTER 10. CLINICAL IMPLICATIONS AND FUTURE DIRECTIONS

the large EIH variability’”°, it is not likely that EIH-testing will emerge
as a single clinical diagnostic or predictive test, but it may be more
promising in a more comprehensive pain phenotyping assessment for
each individual person. This is supported by a study showing that a
multimodal QST-score may be positively associated to pain intensity in
chronic MSK pain®?**. Furthermore, multimodal QST-testing may be

more reliable compared to single modality-testing®?.

For EIH to emerge as a relevant clinical tool, its reliability in well-
controlled studies must be good-excellent. Despite the large amount of
EIH studies, only few studies have examined the test-retest EIH
reliability in healthy individuals’®!01116.195212. Across these studies,
between-subject reliability (e.g. ICC) was poor-moderate, while within-
subject reliability (e.g. Cohen’s kappa) was absent-moderate.
Additionally, no studies have examined EIH reliability in MSK pain
populations. Therefore, more EIH reliability studies are needed to find
the most reliable EIH assessment methods and to establish if EIH may
have a future role in the clinical management of healthy individuals and
individuals with MSK pain.

EIH has primarily been assessed using exercise conditions of short
duration (seconds-minutes), with only a limited number of studies
having investigated exercise conditions of longer duration!*®, using
eccentric resistance exercise'?!47 197198 or  geveral  resistance
exercises!'?#12%191 The latter resembles common exercise modalities for
individuals with MSK pain. From a clinical perspective, more studies
assessing EIH after exercise conditions resembling an exercise session
from clinically recommended treatment programs for MSK pain e.g.
neuromuscular exercises for knee OA individuals'%®!782%6 are needed to
guide the individual person in relation to the expected immediate pain
sensitivity response to exercise. Also, a 5-week eccentric exercise
intervention in female neck pain individuals modulated CPM compared
to controls'® and eccentric exercise treatment may be beneficial for
pain relief and improved function in tendinopathies®?’>?°. If eccentric
exercise interventions of at least five weeks in healthy individuals or
MSK pain individuals may modulate EIH remains to be investigated.

Verbal information may influence EIH positively or negatively in
healthy individuals®***! and communication about pain may induce
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long-lasting hypoalgesia?*2. Similarly, conditioning visual information
about painful movement may affect pain in relation to movement in
healthy subjects?*>. However, the influence of verbal or visual
information on EIH has not been investigated in individuals with MSK
pain. Such new knowledge is highly relevant as beliefs and expectations
are of utmost importance in the treatment of MSK pain disorders?**.

Lastly, the underlying neurophysiological mechanisms eliciting EIH
responses are not fully understood as described in the introduction.
While DNIC has been thoroughly investigated using -electro-
physiological methods in pioneering pre-clinical studies more than four
decades ago®®®’, similar studies investigating EIH mechanisms during
and after painful and pain-free exercise have not been conducted.
Additionally, duloxetine treatment may increase an impaired CPM in
painful rats®*, and ketamine (a NMDA-receptor inhibitor?*®) has been
shown to decrease TSP in humans>*’?*®, However, the effect of
duloxetine and ketamine on EIH has not been investigated; such studies
may be conducted using a controlled cross-over design as utilised in
Study II to gain further insight into EIH mechanisms.
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APPENDIX B. CROSS-SECTIONAL STUDIES INVESTIGATING RELATIONSHIPS BETWEEN EIH AND PAIN RATINGS

Appendix B. Cross-sectional studies
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APPENDIX B. CROSS-SECTIONAL STUDIES INVESTIGATING RELATIONSHIPS BETWEEN EIH AND PAIN RATINGS

IN INDIVIDUALS WITH CHRONIC MUSCULOSKELETAL PAIN
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Appendix C. Longitudinal EIH studies
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APPENDIX C. LONGITUDINAL EIH STUDIES IN HEALTHY INDIVIDUALS AND INDIVIDUALS WITH CHRONIC
MUSCULOSKELETAL PAIN

UOTJUDATINUT STBIA

0M) J19)Je uoyEmMpowt HIH ON
‘souatopip dnoi-usomiaq ou
£OS10IOXD JoYe soIs yloq e sTdd |

UOTJUSAIIUY SHII M

-9 Joyje uonempowr HIy ON
“e1sod[erodAy sjeropowr

01 e1saS1eodAy ojeropowr woiy
Surduer ‘A[opim paLIeA s109]J0 o)
(3SI0IOXA SNOR IJE PIAIIS]O SEM
100]J9 01503 [e0dAT] JUSISISUOO ON

INODYoujnq LITH

Ul JUIUIEIT) JIYJe (UODIPU0d
HIA Surmp adueidfo) ured
axnssaad |) uonempowr HIH

SONIANIA NIVIX

(SVA) sSuner ureq

ured

assaid proysoy-eidng
SNIPIOYSP Yo
‘sdeonpenb JySur : 1 Jd

sSunes ured oN

UOISSas Ise] pue S[ppIw
sy e ‘snizedern pue
JOLIUE SI[RIQI) ‘SLIOWA]J
S0l W3 (1 dd

(SYUN) sSuner ureq
dURID ~Oﬂ

ured anssaid oTwaYos]

SONILVYI NIVd ANV
ALIALLISNHS NIVd

(9) 09 08y
(91) 0Z=N
s[onuod Ayjesf]

1olqns-usomiog

100lqns-usomiog

NOILLIONOD
TOYINOO

(urux

¢ Xew) angnej [nun
OAN %0¢ -1
SIOSUQIXD

20t IS ‘01|

uw og :(q
(11~ a4
WRIH %$L —€9 T
wﬁOEQﬁ:Oo
AYISuSIUI 2JRISPOIN

"I 7 [e10}
‘S[eATOIUT WIW-T X 0T (T
(ST~ qdW)

e A 0600106 T
s[eAlaqul AJIsuaul ySrg
Surpoko ‘orqoroy

(urw (] Xew) 9[qeIa[o}

se 3uo[ se 1501 098

1 “UOTORIUO0 098 (]

OAN%0E ‘T

pueq 13

‘dugpuey ommowos]

(@ uoyeang

(1) Apsuayuy
NOILIANOD HIHd

19 98y
(£1) 9P=N
SULIYLIE
proeuwmaty
97 08y

() Z1=N
snonunuod
Apsuoyur
QJRISPON

0¢ 98y

(0) 91=N
S[eAIdIUT
Apsuayur y3ry
(Brom

-10A0) 931J-UreJ

LTo8Y
(0 01=N
dnoi8 INOD

LT 98y

(D) 01=N

dnoi3 111H
Aypresy

ueawn :(saeak) a8y

(sapeway) N
NOILVINdOd

SIEOA 7 “APyoom
oo1m) Sururery
ySuans pue
yoom Jod urt (G|
1se9] Je ANAnoR
TeorsAyd Aysuajur
-2JeISPOIN

SUOIIPUOD

HIH Yypa 3jaom
1od suorssas ¢
‘Sy2aM 9
Furpoh)

LITH

se arrpuadxo
A310U0 TRTTIUIS
(ILNOD) Sumuren
SnonunRuoy)

SurpoKo urw-¢g jo
$10q 8-9 :(LITH)
Sururen feaojur
Aysuoyur ySry
“oam B SUOISSIS
€ ‘Sfeam 9
Furpoh)

ININLVEIIL

orr810T “T®
10 U213JQ T

£01810T
“reie
uossueyeHq

001L10T “T®
19 K189 T.0

AdNLS

79



THE INFLUENCE OF MUSCULOSKELETAL PAIN ON EXERCISE-INDUCED HYPOALGESIA IN HUMANS

Sururen Areyjrar Suimor[oy

HI paseatout (spafgns o 997)
dnoi3qns orseSeradAy suroseq

Sururea) Lreyrru

SuIMO[[0J SNIPIOYPP J¢ HIF |
dn-morjoy 1e sas yioq Ldd |
qurjaseq e “Snoprojjop

Je jou Inq ‘sdooupenb e 144 |
Aderor

9S1019X3 FuImo[[oj Jorjar ured
petorpard O pue HIH Sureseg
Aderay) asIX

SuIMo[[oj HIH JO uUonempour oN
9s1019x9 Joye ‘sdooripenb

jou Inq ‘Sn3IPIo}p 1€ sTdd |

SONIANIA NIVIX

(SYN) sSunes ureg
o[osnu SNAPIOYOP
Jetoyeienuoo ‘sdooripenb
jueuriop L.dd

(Odd ‘AN

‘SO0 ssuner ureq
SNapIOYIP

[eId)e[RIIUOD ‘IOLIdUR
sterqr ‘e [njured jo
op1s uo sdeoupenb 144

SONILVYI NIVd ANV
ALIALLISNHS NIVd

jenbs [em
NUIW-¢ “OLNIWOS]

(. uonsneyxs,,

03) urw g :([

sdor gg~ T

SuoTONpqe

JOPINOT[S “00UR)SISNY

(@ uoyeang

(D Aysuapur
NOILIANOD HIH

$°0T 98y
8¢=N
Ayyeoy

€19 98y
(91 ¥Z=N
VO /Uy

ueawn :(saeak) a8y
(sapeway) N
NOILVINdOd

(yoes

sonurw ¢1-01)
SUOISSIs-0IoTtl
¢1-0T1 snid (yoea
SINUIW-()9—G1r)
SUOISSIS 0}

0] 0UO AN\
‘SIM L9
(AnmqouyAyqise
pue “sourInpud
pSuons) Sururen
Arejipiur orseg]

yoom

© 901M] SUOISSIS
INOY-1 “Sy2am 9°9
‘SISTOIXD

JRTNOSNWOINSN

ININLVEIIL

(1 Apmg)
020z “Te
12 ussuey

(111 Apmys)
0T0T “Te
19 usasuey

AdNLS

80



APPENDIX D. THE ARTICLES AT A GLANCE

Appendix D. The articles at a glance

The three journal articles of which the current thesis is based are presented at a glance
in the following table.

Main
objectives

Design

Intervention

Sample

PPT
measures
before/after
EIH

condition

EIH
condition
Pain
intensity
measures
Main
findings

Study I

To explore if military
training may modulate
mechanistic pain-
profiling measures
including EIH.

To explore if EIH
subgroups may exist.

Observational,
longitudinal (6.7 weeks)

Basic military training

38 healthy individuals
Age: 20.5 (18-24)

Dominant quadriceps
muscle (local)

Contralateral deltoideus
muscle (remote)

3-minute isometric wall
squat

NRS at end of EIH
condition

Remote EIH improved
after military training
suggesting exercise may
improve endogenous pain
inhibitory mechanisms.

Baseline hyperalgesic
subgroup (26% of
subjects) increased EIH
following military
training.

Study II

To compare EIH in the
thigh muscle with
experimental pain versus
no experimental pain.

To explore if pre-exercise
experimental pain
intensity was associated
with EIH.

Randomised experimental
crossover

Hypertonic/isotonic saline
injection (right quadriceps
muscle)

34 healthy individuals
Age: 25.5 (20-46)

Right quadriceps muscle
(local, injected)

Left quadriceps muscle
(local, non-injected)

Left upper trapezius
muscle (remote)

3-minute isometric wall
squat

NRS before, at end and
after EIH condition

No difference between
EIH responses between
sessions, suggesting that
acute pain itself in the
exercising muscle does
not reduce EIH.

Pre-exercise pain
intensity unrelated to
EIH.
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Study III

To explore associations
between mechanistic
pain-profiling measures
including EIH before
exercise therapy and self-
reported pain relief after
exercise therapy.

To explore if EIH may be
modulated by exercise
therapy.

Observational,
longitudinal (6.6 weeks)

Standardised
neuromuscular exercise
therapy

24 painful knee OA
individuals

Age: 64.3 (51-78)

Quadriceps muscle
painful leg (local).

Contralateral deltoideus
muscle (remote)

2-minute shoulder lateral
raises resistance exercise

Maximal NRS within last
24 hours

Pre-treatment EIH (and
PainDETECT
questionnaire) results
associated with relative
change in KOOS; after
exercise therapy,
indicating EIH as a novel
predictor for treatment
response after exercise
therapy.

EIH unchanged after
exercise therapy.
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Appendix E. Pain intensity ratings

Pain intensity ratings from exercising muscles in relation to EIH exercise conditions
in Study I-III. Pain flare index calculated as pain intensity (numeric rating scale, NRS)
difference from onset-end of the specific exercise condition as indicator of pain flare
during the exercise condition. Values denote mean + SD (95% confidence intervals)
[range]. All Study III and pain flare index results are unpublished.

Baseline Follow-up
mean £ SD (95% CI) [range] mean + SD (95% CI) [range]

NRS related to Onset End Pain flare Onset End Pain flare
exercise cond. index index
Study I (healthy)
thigh 6.5+1.9 6.1 £1.6

N/A (5.8-17.1) N/A N/A (5.6 —6.6) N/A

[2-9] [3-9]

Study II (experimental pain)

Painful inj.

Injected thigh 46+2.1 6.7+2.5 20+23
(3.8-53) (58-7.6) (1.2-2.9)

[1-9] [0—10] [-2—6]
N/A N/A N/A
Non-injected 0.0+0.2 63+2.6 6.2+25
thigh 00-0.1) (54-73) (52-7.1)
[0-1] [0—10] [0-10]
Control inj.
Injected thigh 03 +0.4 6.5+24 6.1+24
(0.1-04)  (5.6-74)  (5.2-7.0)
[0-1] [0 - 10] [0 - 10]
N/A N/A N/A
Non-injected 0.1+£0.3 6.6+2.4 6.4+24
thigh 00-02)  (5.7-75)  (55-7.3)
[0-1] [0 - 10] [0-10]
Study III (chronic pain)
Shoulder 04+12 22425 1.6£2.5 0.6+1.2 1.5+21 09=+1.6
condition 0.0-1.0) (1.1-32)  (06-27) (0.1-1.1)  (0.6-24) (0.3-1.6)
[0-4] [0-7] [0-6] [0-4] [0-6] [0-6]
Walk 1.5+1.6 3.8+2.7 22421 1.1+1.2 1.9+1.6 09+1.6
condition (0.8-22)  (7-50) (14-32)  (0.6-1.6) (1.2-25) (0.2-16)

[0-5] [0-9] [-1-6] [0-3] [0-5] [-2-4]
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APPENDIX F. CORRELATION ANALYSES BETWEEN PAIN INTENSITY RATINGS IN RELATION TO EXERCISE
CONDITIONS AND EIH RESPONSES

Appendix F. Correlation analyses

ings in

tensity rat

Inin

between pa

d EIH

Ions an

relation to exercise cond

responses

d
VIN VN VIN V/IN 4 Xoput daej ureq
6£9°0 8+8°0 €650 €240 d
6L00 T€0°0- 660°0" PEL0 ¥ pud
d
VN VN VN VN A PSUQ
o)s HIH pue (dum)
HIH Roway HIA [#20'T HIH 2powdy] HI [¥20] uonePLIO) UOIPUOD HIH 0} UOTP[AI UI SN
dn-mofoq auypsey (Apeay) 1 Lpmg

(S0°0 > ) SSuTpury JUROIITUSIS AJOUIP SON[RA P[Og "UONTPUOD ISTOIOXI JO JOSUO
QYN SNUIT UOTIIPUOS SSIOIOXS JO pud GYN ‘XOPUI oIe[J ured ‘o[eos Surjel ououwmy YN ‘synsa1 paysiqndun are xipuadde siy

ur sSurpury [y “Aniqereduos Apms-ueamiaq ooueyuo o) (%4 s ueteadg) spoyjour sueweted-uou SuIsn opew 218 SOSAJRUR [[V

TII-T Apmig 103 sosuodsax

HI4 1uonbasqns pue suonIpuod 9S1010Xd HH 0} uone[a1 ur sguner Aisuojur ured uoom)oq SosAJeuR UOTR[OLIO J)RLIRATY

83



THE INFLUENCE OF MUSCULOSKELETAL PAIN ON EXERCISE-INDUCED HYPOALGESIA IN HUMANS

Y200
66¢£°0"
€r0°0
19€°0-
7100
8¢r'0-
6100
11¥°0-
L8E0
€€1°0-
60T°0
120~

798°0
€00
8TT0
£2T0
Y80
w00
7080
9r0°0
L¥TO
¥0T0
86¢£°0
0s1°0-

jouwrdy

€00°0
20$°0-
L00°0
89¥°0-
£€00°0
60$°0-
700°0
£CS°0-
68L°0
8+0°0
691°0
1¥T0-

6€1°0
TLTO
890°0
TEE0
SS1°0
7970
870
00T°0
SIT°0
SLTO-
L£O0
0€€°0-

Ys1y pajoolur-uou ‘a0

NI HIA

LS00
0re0-
190°0
SEL0"
1€0°0
£8¢°0-
S$€0°0
€LE°0"
€190
0600~
01¥°0
oF1°0-

¥TTo
STT0
TEE0
6£0°0
SET0
0ZT0
£69°0
¥80°0
wio
LSTO-
128°0
0r0°0

ysy pajoafur qesoy

UONELIO))

pajoofur-uou — xapuy aaeyy ureq
paydalur - xopur axeg ureg
pajdafur-uou — puyy

payaafur — puy

pajosfur-uou — jasuQy

pajsafur —jasuQ

UOIIPUOD [OLJUO])
pagrlur-uou — xapui daeg ureJ
Ppagodfur - xapur daeg ureg
pajaafur-uou — puy
pajafur — puy
pajdafur-uou —JIsuQO

payaafur —psuQ
uoyIpUOD [nfub g

sy pue
(sury) UoYIPUOD HIF 0} UOHESI U SAN

(ured “dxod) 1 Apmg

84



APPENDIX F. CORRELATION ANALYSES BETWEEN PAIN INTENSITY RATINGS IN RELATION TO EXERCISE
CONDITIONS AND EIH RESPONSES
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Appendix G. Correlation analyses
between change in EIH and change in
pain variables following treatment

Bivariate correlation analyses (Pearson’s r, as all variables are normal-distributed)
between absolute change in EIH following treatment and absolute change in clinical
pain variables following treatment for Study III (i.e. improvement in NRS is a
negative value, while KOOS improvement is positive values). All findings in this
appendix are unpublished.

NRS: Numeric rating scale; KOOS: Knee Injury and Osteoarthritis Outcome Score;
KOOS;ain: KOOS Pain subscale score; KOOS4: average score of the KOOS subscale
scores for Pain, Symptoms, Activities of Daily living and Quality of life. Bold value
denotes significant finding (P < 0.05).

EIH site Pain variable following R P
absolute change exercise treatment,
absolute change

Shoulder condition

Local EIH NRS -0.407 0.048
KOOSain 0.381 0.066

KOOS4 0.330 0.115

Remote ETIH NRS -0.273 0.197
KOOSpain -0.133 0.534

KOOS4 -0.403 0.051

Walk condition

Local EIH NRS 0.092 0.670
KOOSpain 0.031 0.887

KOOS4 0.078 0.717

Remote EIH NRS 0.382 0.066
KOOSain 0.102 0.637

KOOS4 0.148 0.491
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