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Preface

This thesis has been submitted to the Faculty of Engineering and Science at
Aalborg University in partial ful�lment of the degree of Doctor of Philosophy in
Mechanical Engineering. The work has been carried out at the Department of
Materials and Production at Aalborg University and at the Department of Me-
chanics and Materials at Grundfos Holding A/S in the period from June 2016 to
June 2019 including a three-month research stay at the Mechanical Engineer-
ing Department at University of Auckland, New Zealand from February to May
2018. The work has been carried out as an Industrial Research Project enti-
tled �Vibro-acoustics of centrifugal pumps� funded partly by Grundfos Holding
A/S and partly by the Innovation Fund Denmark under the grant number
5189-00011B. The support is gratefully acknowledged.

The thesis is prepared as a collection of papers introduced by an extended
summary and with an associated online Annex. The Annex can be accessed
using either the QR-code below (smartphone) or through the link provided in
the caption. The full link can be found in [1].

Online Annex, [1]: forms.gle/Acx78Y5CN897XjVXA

In the Annex the reader will �nd most of the �gures embedded in the extended
summary in full size. Further, as the thesis is conducted under the Danish
Research Program �Erhvervsforsker� (Industrial PhD) part of the extended
summary will focus on industrial impact of the research conducted. To accom-
modate the industrial needs 'Plug-N-Play' Matlab tools have been developed.
The tools are elaborated in Chap. 2, while examples of various analysis and
functionalities provided by the tools can be found in the Annex. The industrial
partner, Grundfos, is a Danish pump manufacturer and therefore discussions
and emphasis in the extended summary may, at times, be directed towards
centrifugal pumps. The technical terminologies and basic knowledge required
is, however, limited to a minimum, but should the reader �nd the need for a
quick brush-up on centrifugal pumps, a short introductory video with the basic
concepts, terminology and working principle of the centrifugal pump can be
found in the Annex as well.
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Abstract

This thesis is concerned with a novel approach to analyse dynamic systems.
Dynamic systems appear everywhere in nature and may be everything from
chaotic to almost static (quasi-static) in behaviour. They appear in almost all
areas of science ranging from physics and engineering science to sociology and
psychology. More speci�cally, this thesis is concerned with time-invariant linear
dynamic systems, which is likely the most considered type of dynamic systems
in science; Yet the thesis primarily addresses examples from the �eld of vibro-
acoustics (�uid-structure interaction) as this have particular interest for the
industrial partner; Grundfos Holding A/S.

A novel approach for analysing the behaviour of linear dynamic systems
has been developed. The method is based on specially derived bi-orthogonality
relations which have origin in the classical reciprocity relation (or theorem). Ap-
plication of the bi-orthogonality relation provides, for a broad class of problems
in e.g. waveguide theory, convenient analytical closed-form solutions. These ex-
plicit solutions o�er full transparency when analysing e.g. the energy conveying
properties and thus permit an increased insight into the physical phenomena
occurring in waveguides. Likewise, the method o�ers insight into the forma-
tion of standing waves when extended to what is called '�nite' waveguides,
that is, waveguides subjected to boundary conditions. The novel approach of
bi-orthogonality developed here is found to be an e�cient tool for solving a
wide range of problems in physics such as, for example, in mechanics, acous-
tics, electromagnetics, seismics, optics and even quantum mechanics as well as
any coupled problem of the latter. From an industrial viewpoint the study and
enhanced physical understanding of performance of vibro-acoustic waveguides
related to pipe systems are of particular interest for Grundfos. Therefore, the
main focus and examples presented through the thesis are related to an elastic
�uid-�lled cylindrical shell even though the methods have been shown to ap-
ply much beyond vibro-acoustic waveguides. As receiving pipe systems may be
vastly di�erent it is the aim to study these properties in a generic way such as
to identify critical excitations, in terms of frequencies, modes and transmission
paths, that will be critical for all systems, no matter their size and shape. This
is accomplished by the advantages and transparency o�ered by the solution
through bi-orthogonality and has led to the development of two Matlab Tools:
Tool 1 to enhance the understanding of wave propagation and energy transmis-
sion phenomena of the receiving pipe system and Tool 2 to characterise, based
on CFD data (Computational Fluid Dynamics), the acoustic sources generated
and emitted by centrifugal pumps.
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Resumé

Denne afhandling omhandler en ny metode til analyse af dynamiske systemer.
Dynamiske systemer forekommer overalt og kan være alt fra kaotiske til næsten
statiske (kvasi-statiske) af natur. De forekommer i næsten alle felter af viden-
skab, lige fra fysik og ingeniørvidenskab til sociologi og psykologi. Mere præcist
omhandler denne afhandling tids-invariante lineære dynamiske systemer, som
med al sandsynlighed er blandt de mest betragtede typer af dynamiske syste-
mer i videnskaben. Dog fokuserer afhandlingen primært på eksempler fra feltet;
vibro-akustik (�uid-struktur interaktion), da dette er særligt interessant for den
industrielle partner; Grundfos Holding A/S.

En ny metode til analyse af lineær dynamiske systemer er udviklet. Metoden
er baseret på specielt udledte bi-ortogonalitets relationer, der har sin oprindelse
fra den klassiske reciprocitets relation. Brugen af bi-ortogonalitets relationer
giver, for en bred vifte af problemer i f.eks. bølgelederteori, eksplicitte ana-
lytiske udtryk, som tillader fuld transparens i analyse af f.eks. energi transmis-
sionsegenskaberne for en bølgeleder, og dermed tillader en øget indsigt i de fy-
siske fænomener, der forekommer i bølgeledere. Ligeledes er metoden videreud-
viklet til bølgeledere med en endelige længde, det vil sige, bølgeledere der er
pålagt et sæt af randbetingelser, og metoden bidrager derved også med indsigt
i formationen af stående bølger. Den nye metode baseret på bi-ortogonalitets
princippet har vist sig at være et e�ektivt redskab til at løse en lang række
problemer i fysikken f.eks. i mekanik, akustik, elektromagnetisme, seismologi,
optik og endda kvantemekanik, såvel som koblede problemer af disse. Fra et
industrielt perspektiv er det interessant for Grundfos at udforske og øge den
fysiske forståelse for performance af, specielt, vibro-akustiske bølgeledere re-
lateret til rørsystemer. Fokusområdet samt eksemplerne præsenteret gennem
denne afhandlingen er derfor primært baseret på en elastisk væskefyldt cylin-
drisk skal, selvom metoden har vist sig anvendelig for meget mere end blot
vibro-akustiske bølgeledere. Da rørsystemerne kan være meget forskellige, er
formålet at undersøge disse egenskaber på generisk vis, således kritiske ekscita-
tioner, i form af frekvenser, modes og transmissionsveje, der er kritiske for alle
systemer uanset deres facon, kan identi�ceres. Dette kan netop imødekommes
ved brug af bi-ortogonalitets metoden, som derved har ført til udviklingen af
to industrielle Matlab Tools: Tool 1 til at øge forståelsen for bølgeudbredelse
og energi-transmissions-fænomener i rørsystemer og Tool 2 til at karakteris-
ere, baseret på CFD data (Computational Fluid Dynamics), akustiske kilder
genereret og udsendt fra centrifugal pumper.
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1

Getting Acquainted

“ Science means constantly walking a tightrope between

blind faith and curiosity; between expertise and creativ-

ity; between bias and openness; between experience and

epiphany; between ambition and passion; and between ar-

rogance and conviction � in short, between an old today

and a new tomorrow. ”
� Heinrich Rohrer

1.1 Dynamic systems

A dynamic system can indeed be many things! But common for all of them is
that we may understand them as systems that varies in time. It is therefore
not di�cult to imagine that this covers a whole lot of areas, not just in science
and mathematics, but also in e.g. economics, sociology, psychology, anthropol-
ogy etc. A dynamic system can have everything from, mildly speaking, a very
rich behaviour to a more subtle, yes even steady, behaviour. The most violent
behaviours of dynamic systems are highly non-linear in nature and are known
as chaotic systems � studied in the �eld of Chaos theory. In general, a chaotic
system is a system with a vigorous transient behaviour characterised by be-
ing highly sensitive to what is known as initial conditions. Thus, the slightest
change in initial conditions could, potentially, cause a dramatic change in the
response of the system, if not immediately then as time passes. Imagine, for
instance, a chaotic universe where slight changes in initial conditions during
the big bang would change completely the world as we know it. To this day it
is still uncertain why matter exceeds anti-matter � Could this be the remains
of a chaotic beginning of our universe?

1



Chapter 1. Getting Acquainted

Moving on from this rather philosophical example to more tangible ones, we
in fact see chaotic systems everywhere in nature today, ranging from engi-
neering science to climate and even to road tra�c. Probably the �rst modern
encounter of such violently (or chaotically) behaved systems was made by the
famous Mathematician and Meteorologist Edward Norton Lorenz, who by pure
serendipity noticed that a very small round-o� error in his initial conditions
of a weather simulation completely changed the weather forecast over as little
as a few months. This led Lorenz to present his peculiar �ndings at the 139th

meeting of the American Association for the Advancement of Science and in
his quest for a proper title he came up with: �Predictability: Does the �ap
of a butter�y's wings in Brazil set o� a tornado in Texas�, [2]. Today this is
known as the �Butter�y e�ect� and has led to the famous saying: �A butter-
�y �apping its wings in Brazil can create a hurricane in Texas� � just one of
many formulations. The chaotic behaviour observed by Lorenz is now known
as a Lorenz system. What exactly has been the inspiration for the butter�ies is
unsaid but it may have had something to do with the solution to the system,
seen in Fig. 1.1, which is known as the Lorenz attractor.

Fig. 1.1: The chaotic Lorenz attractor. As time passes the solution sporadically orbits
the two equilibrium states of the problem. The way in which the solution orbits the equi-
librium change radically depending on the initial conditions. Source: https://pt.wikipedia-
.org/wiki/Ficheiro:Lorenz_system_r28_s10_b2-6666.png [Accessed 14-05-2019].

On the opposite extreme a dynamic system may behave so smooth and nicely
that they are almost static and may in this case, by a reasonable assumption,
be treated as a static system. Such systems are known as quasi-static systems.
Quasi-static systems are likely more apparent in our daily lives and therefore
of great importance in engineering science. In many of the products and struc-
tures we engage with in our daily lives the static performance often governs the
design and construction thereof. Within mechanics, quasi-static systems are,
for instance, useful for assessing the stress/strain (load/deformation) state and
even fatigue life of a product/structure. For example, determining how much
(quasi) static load a structure can carry before collapsing.

2
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1.1. Dynamic systems

Somewhere in-between these two extremes lie the dynamic systems relevant
for this thesis, namely genuine dynamic systems obeying linearity. In general,
linear dynamic systems reveal themselves everywhere in nature and science and
are, as the quasi-static ones, very important for the architecture of our daily
encounters. Limited to physics, much of what we use, see, hear and feel may be
su�ciently represented by a linear dynamic system such as, for instance, vibra-
tions through a structure, tra�c noise, the signal on a cell phone, internet, the
light and colours we see etc. And maybe even more intriguing, yet not likely a
daily encounter, is the peculiar �eld of quantum mechanics, which may also be
represented as a linear dynamic system through the Schrödinger equation.

An important part of linear dynamic systems is the �eld of stationary (or
steady state) dynamics. This is referred to as time-harmonic (or time-invariant)
systems, in which we assume a simple harmonic (or periodic) behaviour of the
system i.e. exp(−iωt). Thus, we say that we have transformed (or decomposed)
the problem into the frequency (or Fourier) domain. This simpli�cation is in-
deed useful as di�erentiation transforms into multiplication. Should we, on the
other hand, at a later stage want to assess the transient e�ects we may recover
this by collecting all information from the time-harmonic system. Thus, time-
harmonic problems are certainly among the most considered problems in linear
dynamics and do also constitute the problems considered in this thesis.

1.1.1 Waves

Common for the linear dynamic systems is that the dynamic behaviour is
caused by waves, although they may appear in various forms e.g. as electro-
magnetic waves, sound waves or mechanical waves. In general, waves may be
either dispersive or non-dispersive. Non-dispersive waves have a constant rela-
tion between wavenumbers, K (de�ned as the inverse of the wavelength), and
frequency, ω, whereas dispersive waves do not. Waves in unbounded medium
(free space) in e.g. acoustics and electromagnetics are non-dispersive whereas
waves in semi-bounded medium (guided waves) are generally dispersive.

Application of waves in the �eld of electromagnetics are vast and occur in
everything from tele- and radio communication, to remote controls, to optics,
to nuclear energy and in many other places, see for example Fig. 1.2. All the
latter cases are examples of electromagnetic waves although quantum physics
suggests that light does not always behave as a wave.

Waves also appear in the form of acoustic waves (or sound waves). Obvi-
ously, we use this in daily communication with other beings, when listening to
music or, on a more unpleasant note, perceive it as noise, in whichever form it
may be e.g. a passing car, construction, wind (�ow-induced) or even music. In
the �eld of acoustic waves we also �nd �uid-borne sound/noise. This is com-
monly used, for example, by �shermen to locate prey by sonars, which are also
used to map the landscape of the world and its oceans.

3



Chapter 1. Getting Acquainted

Fig. 1.2: The electromagnetic spectrum and its applications. For enlarged version access:
www.nasa.gov/analogs/nsrl/why-space-radiation-matters [Accessed 14-05-2019].

Mechanical waves also appear in many places. They may be thought of as
waves propagating through solids, for example, through the ground when a
train is passing or under construction when pillars are being slammed into the
ground or during an earthquake. As one can imagine from the latter examples,
mechanical waves couple with acoustic waves and are in fact responsible for
the noise/sound radiated from structures/products. Therefore, some refer to
propagation of mechanical waves as structure-borne sound/noise. In the �eld
of continuum mechanics, the course of air-, �uid- and structure-borne sound is
a sub-�eld known as vibro-acoustics (sometimes called structural acoustics or
�uid-structure interaction problems). Even though the methods developed in
this work are in no way restricted to vibro-acoustics, this sub-�eld is of prime
interest and we shall thus introduce this concept in more detail in Sec. 1.1.3.

1.1.2 Vibrations

In addition to waves and wave propagation we shall in this work also focus
on vibrations. To distinguish between the two, we may say that waves are
something found only in unbounded (or in�nite) structures e.g. those mentioned
just above. For purposes elaborated in Sec. 2.1 we have in this thesis a special
interest in in�nite �uid-�lled pipes. Vibrations, on the other hand, is something
found in bounded (or �nite) structures. In some sense we may therefore say
that vibrations are wider explored than waves. Nevertheless, vibrations are
indeed composed of the waves present in an unbounded structure, however, as
the boundaries con�ne the waves to remain within the structure they do not

4
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1.1. Dynamic systems

propagate but instead form what is called standing waves. Standing waves can
be formed in several ways, the most common of which is known as resonance- or
eigenfrequencies. In this sense, the formation of standing waves occurs because
the waves are constantly being re�ected at the boundaries and so the standing
waves are formed by constructive interference (superposition) of the re�ected
waves. Naturally, this occurs only at speci�c frequencies, which then compose
the spectrum of eigenfrequencies. At other frequencies destructive interference
occurs and we have what is known as anti-resonances. Since standing waves,
eigenfrequencies and vibrations are all composed of the waves in an unbounded
medium/structure the study of waves is of signi�cant interest. The same can
be said about waves in other areas of science.

Eigenfrequencies (or resonances) are a virtue of all �nite structures and
thus a naturally occurring phenomenon. In fact, a �nite continuous structure
has an in�nite number of eigenfrequencies, dispersed vividly throughout the
entire spectrum of frequencies. Unfortunately, eigenfrequencies are generally
perceived as an undesirable phenomenon, in particular, when excitation fre-
quencies and eigenfrequencies coincide. This often results in a compromise of
the structural integrity, leading, usually, to a prompt failure. The most fa-
mous example of this is probably the Tacoma bridge. In simple words, we may
say that eigenfrequencies are structural weak 'points' (frequencies) where the
structure is prone to excitation i.e. only a little e�ort is required to get a large
response. Of course, one can think of places where this is convenient but in
general we prefer engineering structures to be somewhat under control. Vibra-
tions in general, on the other hand, �nd very useful applications, for example,
as indicators (a vibrating cell phone) or for music e.g. a vibrating guitar string
or loud speaker membrane.

1.1.3 Vibro-acoustics

As already mentioned, vibro-acoustics is a �eld within continuum mechanics
that deals with coupling of a structure and an acoustic medium, e.g. air or wa-
ter. One of the most tangible and probably best examples (known by most) is
the famous cup-phone, see Fig. 1.3. For those unfamiliar, the working principle
of the cup-phones relies, as oppose to the newer versions, not on electromagnetic
waves but on good old-fashioned vibro-acoustics. Acoustic waves generated by
the 'caller' excite the 'phone' (cup) and thus air-borne sound is converted into
structure-borne sound (vibrations) that propagates through a pre-tensioned

Fig. 1.3: The vibro-acoustic cup-phone. Source: https://www.exploratorium.edu/science-
_explorer/ear_guitar.html [Accessed 30-05-2019].
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string into the receiver cup where it is converted back into air-borne sound
heard by the receiver. Although this is an excellent example for illustrating
vibro-acoustics, I do, however, believe we should be grateful for the invention
of the radio-wave-based phone. It just seems more handy for long distance calls.

In vibro-acoustics we distinguish between what is known as light and heavy
�uid loading. In heavy �uid loading the forces exerted by the �uid on the
structure is equally important as the structural forces exerted on the �uid. In
other words, we have heavy �uid loading when the presence of a �uid changes
the characteristics of the waves/vibrations in the structure and vice versa. In
such cases it is necessary to treat the problem as a fully (two-way) coupled one.
The light �uid loading may be understood as the coupling being so weak that
essentially only the structure exerts signi�cant forces on the �uid i.e. a one-way
coupling.

Imagine a vibrating structure, say, the string of a guitar. Vibrations of
the string causes the air pressure to �uctuate locally around the string and
sound is radiated. If the back response of the air is not su�cient to change
the vibration characteristics of the string, we have a weak coupling and thus a
light �uid loading. In this case we may greatly simplify the analysis of sound
radiation to consider the structural surface vibrations as acoustic sources and
use well-established methods of acoustics to calculate the radiated sound �eld
at a far distance (far-�eld). In general, the assumption of weak �uid coupling
is valid when the acoustic medium (�uid) is air. However, when the vibrating
structure is for instance a loud speaker membrane, it is almost certain that
loud speaker and hearing aid manufactures will object to this as being a simple
one-way (weak) coupling. Thus, heavy �uid loading may also be a matter of
the level of detail required. In Chap. 2 we shall use this approach of one-way
coupling when deducing acoustic sources from CFD simulations, however, here
with the acoustic sources mapped to the structure and the weak coupling may
therefore also apply reversely for some structures. Other examples of exotic
coupled (Multiphysics) problems are e.g. thermo-acoustics, Piezoelectrics and
all the way to psychoacoustics, bioacoustics and human-structure interaction.

1.2 Academic scope

In the framework of this thesis, in particular, the heavy �uid loading in terms
of structures submerged into or conveying water is of interest. Such types of
structures are widely exploited in e.g. the oil, gas and pumping industry. Vibro-
acoustic problems involving heavy loading have been studied for many years
and in recent times using mainly numerical tools and methods. Certainly, nu-
merical tools o�er great �exibility to the type of structures that can be assessed,
however, numerical solutions unfortunately tend to mask the understanding of
the underlying physical mechanisms governing the observed phenomena. There-
fore, the academic scope of this thesis is to enhance our understanding of the
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wave dispersion and propagation phenomena displayed by such vibro-acoustic
waveguides. Further, the transmission of energy through di�erent transmission
paths (structure or �uid) and other intriguing occurrences in such waveguides
are of interest here, in particular, for pipe and pipe-like structures. Why these
structures are of special interest is elaborated in Chap. 2. Likewise, it is of
interest to understand in detail how waves form to create standing waves for a
given set of boundary conditions. Therefore, the aim is to develop methods and
tools for both semi-bounded problems i.e. waveguides, and for fully bounded
standing wave (or vibration) problems, sometimes referred to as '�nite' waveg-
uides.

To get full transparency of the phenomena displayed by these waveguides
analytical tools are inevitable. Unfortunately, such solutions are not available
for the type of (�nite/in�nite) waveguides of interest here as they are tran-
scendental in nature (has an in�nite number of solutions) and further, even
retrieving approximate solutions through numerical tools can be challenging
for these problems. Nevertheless, to get full transparency, the tools and meth-
ods to be developed should preferably be analytic, or at least semi-analytic.

The challenges of solving such vibro-acoustic waveguide problems involv-
ing heavy �uid loading typically arise, because the equation system becomes
ill-conditioned due to coupling of essentially rigid and compliant constituents
and because the problem has an in�nite number of solutions as the structure
supports an in�nite number of waves; Thus, the solution eventually becomes
approximate. This complicates greatly the solution process and in�icts issues
such as convergence and accuracy of the solution, which are then important to
address.

The main methods developed in this work are based on the rather novel concept
of bi-orthogonality relations. In brief, bi-orthogonality relations reveal closed-
form analytical solutions by simple substitution into the formulas derived in
Paper A and C. Then, the challenge of �nding solutions to such waveguide
problems resolve to just �nding the bi-orthogonality relations for the problem
at hand. Fortunately, the derivation of bi-orthogonality can be generalised to
so-called self-adjoint operators (as shown in Paper C) and thus covers many
problems in science. The history and state-of-the-art of bi-orthogonality rela-
tions may be found in Paper A�C.

Additionally, the extension from in�nite waveguides to �nite ones (bound-
ary value problems) is done through the Boundary Integral Equations Methods
and as shown in Paper B application of the bi-orthogonality relation also, in
this framework, provides great advantages both to accommodate the mathe-
matical challenges but, in particular, to accommodate understanding of how
and which waves are engaged in the formation of standing ones. The state-of-
the-art related to this can be found also in Paper A through C.

Moreover, as emphasised already throughout the introduction, linear dy-
namic systems appear on the same form almost everywhere in science and
therefore it is natural to also generalised the methods and tools to cover a
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much broader range of problems also in other realms of physics, for example,
in electromagnetics, optics, quantum mechanics, seismics and beyond.

Finally, review of the state-of-the-art of the current methods and tools ap-
plicable for the scope of this thesis is relegated to each paper.

1.3 Key concepts and theoretical background

With the very basics of vibro-acoustics and linear dynamic systems covered
this section serves to introduce some key concepts and theoretical background
relevant for the present thesis, which will, to the unfamiliar at least, help ease
the reading of the appended papers. First, we are, as stated already, con�ned to
linear dynamics. When dealing with vibro-acoustics this means: linear constitu-
tive laws (linear materials/acoustic medium) and small displacements/pressure
amplitudes so that the problem may in general be expressed as

Lu(X, t) = F (X, t) (1.1)

where L is a linear partial di�erential operator acting on the �eld u(X, t),
F (X, t) is an external (known) forcing and X and t are, respectively, the spatial
and temporal coordinates, which, for typical physics problems, are con�ned by
X ∈ R3 and t ∈ |R|. Note that Eq. (1.1) may also be a system of equations
i.e. on matrix-vector form. For problems in linear dynamics the superposition
principle applies and the solution may be found in the form of an eigenfunction
expansion, see Eq. (1.2).

u(X, t) =

∞∑
n

A(n)Ψ(n)(X)Φ(n)(t) (1.2)

where u(X, t) solves the partial di�erential equation (PDE) from Eq. (1.1),

Ψ(n)(X) = ψ
(n)
1 (x1)ψ

(n)
2 (x2)ψ

(n)
3 (x3) are the eigenfunctions associated with the

spatial coordinates, Φ(n)(t) the temporal eigenfunctions and A(n) the unknown
amplitudes.

As already mentioned we also con�ne ourselves to time-harmonic systems
and therefore take Φ(n)(t) = exp(−iωt). In the same way we assume also time-
harmonic forcing and thus take F (X, t) = F (X) exp(−iωt). Moreover, we con-
sider also the system to be conservative i.e. a system in which no energy escapes,
change state or in other ways dissipate. Thus, we say that energy is conserved
and so exclude any type of damping.

Finally, the general system presented in Eq. (1.1) may represent both a waveg-
uide and a classical boundary value problem � also referred to as, respectively, a
semi- and fully bounded problem. As bi-orthogonality relations are derived for
the semi-bounded domains the obvious starting point of this thesis will be the
waveguides, which may then later be used to solve the subsequent boundary
value problem.

8
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1.3.1 Waveguide theory

From an industrial viewpoint there is a particular interest in studying vibro-
acoustic waveguides, as explained in Sec. 2.1. In general, a waveguide, as implied
by the name, supports what is called guided waves, that is, structures support-
ing a (�nite or in�nite) number of waves which then propagate in a preferred
direction. Visually, waveguides may therefore be perceived as a structure that
has at least one direction extending to in�nity. Mathematically this corresponds
to a boundary on which there are no prescribed boundary values. This de�ni-
tion is a rather abstract one and is treated further in Paper C. On the other
hand, the fully unbounded (free space) problem is typically not understood to
be a waveguide as waves propagate freely in all directions and are thus not
guided.

The terminology, waveguides, is broad and extends also to electromagnetic
and optical waves etc. Waveguides in vibro-acoustics comes in various forms
and shapes e.g. the in�nite Bernoulli-Euler beam (purely mechanical), an in�-
nite �uid layer bounded by plates or an in�nite �uid-�lled cylindrical shell. In a
waveguide the waves are usually dispersive as oppose to e.g. free space acoustic
waves. Dispersive waves are characterised by their dispersion relation, which
is found from the governing equation, Eq. (1.1), by employed the eigenfunc-
tions, Eq. (1.2), and equating to zero the determinant of the system; Hence the
characteristic equation de�nes the waveguide properties. Each solution to this
equation corresponds to what is known as a free wave. The dispersion relation
may be expressed on the general form

f(K,ω) = 0 (1.3)

where K are wavenumbers (possibly K = bkx1 , kx2 , kx3c
T
) and ω the angular

frequency. For most of the problems considered here the waveguide, and thus
dispersion relation, is symmetric and may thus be expressed as

f(K2, ω2) = 0 (1.4)

which means that the dispersion relation is expressed only in even powers of K
and ω. The solutions to the latter equation then reveal the (K,ω)-dispersion di-

agram shown in Fig. 1.4 for a �uid-�lled shell whereK = bkx1
, kx2
cT = bk,mcT .

In this case k is a function of m i.e. k(m) where m is an integer due to period-
icity of the cylindrical shell. For waveguides with a mathematically continuous
cross-section such as the �uid-�lled shell (a beam has only a point) there ex-
ists an in�nite number of solutions to the dispersion relation. These problems
are denoted transcendental problems/waveguides and are generally di�cult to
solve due to the ill-conditioned nature of the dispersion relation. However, the
Finite Product Method presented in Paper D indeed proves powerful for ap-
proximating and solving such problems.

As seen from the �gure, symmetry of the waveguide (and dispersion rela-
tion) manifests itself also in the dispersion diagram. I.e. for each k(n) wave
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Fig. 1.4: Example of a 3D dispersion diagram for a �uid-�lled shell together with the
decaying waves from an acoustic duct with rigid and soft walls. Source: Paper A.

there exists an identical opposite going wave, k(−n) = −k(n). We see also that
the waves are widely dispersive and in fact some waves more than others (non-
dispersive waves appear as straight lines in the dispersion diagram). From the
dispersion diagram alone, a lot of valuable information about the waveguide
and its properties can be deduced. This is explored in Paper E for an unsym-
metric waveguide (orthotropic shell); But, in fact, the dispersion diagram also
reveals valuable information about '�nite' waveguides, as shown in Paper B.
Moreover, we can deduce information about the energy transferring properties
of each wave through their group velocity, cg, and phase velocity, cp.

In general, there exist three types of waves (as also indicated in Fig 1.4),
namely propagating waves, attenuating waves and decaying waves. The wave
types may be de�ned alone by the domain to which the wavenumbers belong.
This is shown in the table in Fig. 1.5 together with the behaviour of the asso-
ciated eigenfunctions, exp(kx) (attenuating waves not shown).

88-

Source 
field

-k

-k

ikcg>0

k

k

x

ikcg<0ikcg>0 ikcg<0

Wavenumber

domain
Wave type

ik ∈ R Propagating
k ∈ R Decaying
k ∈ C Attenuating

Fig. 1.5: Di�erent wave types and the behaviour of the associated eigenfunctions. Eigenfunc-
tions/waves in black satisfy radiation/decay conditions while waves in red are non-physical.
Based on the eigenfunction: exp(kx). Complex (attenuating) waves are not illustrated.

As illustrated the waves (eigenfunctions), black in Fig. 1.5, satisfy radiation
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and decay conditions, which simply says that waves must decay/attenuate away
from a source �eld just as energy must radiate away from the source. The radi-
ation condition (sometimes called Sommerfeld's radiation condition) is ensured
by taking, for waves propagating in the positive direction, only waves with a
positive group velocity i.e. cg = dω

dk > 0, and for waves propagating in the
negative direction, only waves with a negative group velocity, see e.g. Paper A
or E. Waves not satisfying these conditions are non-physical as waves do not
grow unboundedly towards in�nity nor does energy spontaneously radiate from
in�nity towards the source. In particular, waves with positive group velocity
and negative phase velocity are an intriguing phenomenon. These are discussed
further in Paper E.

Each free wave of a waveguide is also associated with a number of state vari-
ables (vectors). The state variables are usually decomposed into forces, Q, and
kinematic (displacement) variables, U . For instance, a Bernoulli-Euler beam
features shear force and moment as forces and transverse displacement and
rotation as kinematic variables. The relation between the force and kinematic
state variables are given by the di�erential operator, L.

Q(X) = LU(X) (1.5)

In general, U(X) = u(X) only when the di�erential operator, L, from Eq. (1.1)
involves harmonic operators, while U(X) contains also derivatives e.g. ∇u(X)
when bi-harmonic operators are present (as in the Bernoulli-Euler beam). For
systems of equations the size of the matrix-vector system of Eq. (1.1) and (1.5)
may therefore di�er, see e.g. Paper A�C. Furthermore, the formulation of state
variables i.e. L, is not unique as they may be derived from di�erent techniques
e.g. the variational principle, �rst principles or the governing PDE. This is
elaborated in Paper C. Either way we may write the solution for the state
variables in terms of modal coe�cients, see Eq. (1.6).

Q(X) =

∞∑
n

A(n)Q̄(n)(X̃)Ψ(n)(Xm)

U(X) =

∞∑
n

A(n)Ū (n)(X̃)Ψ(n)(Xm)

(1.6)

where the inner relation between the entries in the modal coe�cient vectors
Q̄(n)(X̃) and Ū (n)(X̃) is derived easily from e.g. the governing PDE and the
model coe�cients will thus depend on coordinates not in the propagation di-
rection, X̃ i.e. Xm is the preferred direction(s) of wave propagation. This is
elaborated in Paper A�C. In this framework the unknowns reduce to the modal
amplitudes, A(n), while the modal coe�cients prove to hold important proper-
ties when the waveguide is symmetric according to Eq. (1.4). This is elaborated
and utilised in the Paper A�C.

Finally, the time-averaged total energy �ow of a free wave (without ampli-
tudes, A(n)) is de�ned from the state variables as in [3] i.e. as the inner product
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of forces with the complex conjugated of the velocities (time derivative of kine-
matic variables), see Eq. (1.7). In case of time-harmonic waveguides this may
be reduced to the equation on the bottom.

N (n) = −1

2
Re
(〈
Q(n), U̇ (n)∗

〉
∂V

)
⇓

N (n) =
ω

2
Im
(〈
Q(n), U (n)∗

〉
∂V

) (1.7)

where the inner product, 〈·, ·〉, is taken over the a cross-section of the waveguide,
indicated by ∂V i.e. over the coordinates, X̃. Thus, the inner product imply the
scalar product between Q(n) and U (n) integrated over ∂V i.e. 〈·, ·〉 =

∫
∂V
·ndS̃

1.3.2 Green's function

The method of Green's function is a very well established method that �nds
applications in almost any �eld of linear dynamics including those mentioned
in Sec. 1.1. It was introduced by the remarkable, mostly, self-taught George
Green in his Essay: �An Essay on the Application of Mathematical Analysis to
the Theories of Electricity and Magnetism� dating back to 1828, [4]. Here he in-
troduced the concept of what is today known as Green's functions, which is the
fundamental solution to any system of linear PDE's. In essence, Green's func-
tion constitutes the response (or �eld) to a system driven by a point/impulse
function, that is, the delta function. The method of Green's function is use-
ful for both the spatial and temporal domain and is used in many �elds of
engineering and science. For instance, it is equivalent to, what in structural
dynamics, is known as Duhamel's integral, [5], (the response to a temporal
impulse), which in the �eld of control theory typically is known just as the
impulse response function, [6] (usually treated in the Laplace-domain). In any
case Green's method o�ers much simpli�cation and �exibility to the problem
at hand.

Formally, Green's problem may be perceived as an auxiliary problem useful
for solving more general problems. Thus, the general form of Green's method,
left in Eq. (1.8), helps to solve the general problem on the right. In this for-
mat we have already assumed time-harmonics and thus we shall apply Green's
method only in the spatial domain throughout the thesis.

LG(X,X0) = δ(X −X0) Lu(X) = F (X) (1.8)

Here G(X,X0) is the Green's function which depends upon the spatial obser-
vation point, X, and excitation point, X0. As before, the system may be on
matrix-vector form.

A primitive way to illustrate the advantages and auxiliary properties of the
Green's function is by multiplying the left of Eq. (1.8) by F (X0) and taking
the inner product over the volume in X0 i.e. 〈·, ·〉V 0.

〈LG(X,X0), F (X0)〉V0
= 〈δ(X −X0), F (X0)〉V0

= F (X) (1.9)
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Comparing the right of Eq. (1.8) and Eq. (1.9) we may write

〈LG(X,X0), F (X0)〉V0
= Lu(X)

⇓
L 〈G(X,X0), F (X0)〉V0

= Lu(X)

(1.10)

and readily conclude that

u(X) = 〈G(X,X0), F (X0)〉V0
(1.11)

Thus, the solution to the general problem in Eq. (1.8) is simply found as a
convolution of the applied load with Green's function as the kernel. This o�ers
great �exibility for changing driving functions, F (X), and moreover the Green's
function is often much easier to obtain than the solution to the actual problem.

When the problem above is a system of equations the Green's function may
more appropriately be denoted Green's matrix (or tensor) i.e.

G(X,X0) =

g011 g012 g013
g021 g022 g023
g031 g032 g033

 (1.12)

where each row is the solution to a given fundamental loading condition i.e.
the �rst row solves the following problem

LG01(X,X0) = δ01(X −X0)

⇓l11 l12 l13
l21 l22 l23
l31 l32 l33

g
01
1

g012
g013

 =

δ(X −X0)
0
0


(1.13)

and the second row the problem with δ02(X − X0) = b0, δ(X −X0), 0cT etc.
As already mentioned in Sec. 1.3, the solution, and thus Green's function, is
sought as an expansion on eigenfunctions and may, as for the state variables in
Eq. (1.6), be expressed via modal coe�cients as

G(X,X0) =

∞∑
n

A(n)(X0)Ḡ(n)(X̃)Ψ(n)(Xm) (1.14)

where the amplitudes A(n)(X0) will depend on the excitation point, X0, and
Ḡ(n)(X̃) are the modal coe�cients related to Green's function. Again by intro-
ducing the modal coe�cients, the unknowns of this system of equations have
reduced to 'only' the in�nite number of amplitudes, A(n)(X0).

There are several ways of composing the equation system to �nd, if not exact,
then approximate solutions (amplitudes) for such transcendental Green's func-
tions. Most common is likely using the state variables associated with Green's
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solution, truncate their expansions and construct, besides the mandatory conti-
nuity and load conditions, additional equations based on, for instance, Galerkin
orthogonalisation. Either way convergence of the solution becomes a necessary
issue to address. However, as we shall see in both Paper A, B and C, this is
very conveniently handled when using the method of bi-orthogonality to solve
such problems. This method simply allows complete decoupling of the problem
and thus analytical closed-form solutions for each of the amplitudes, A(n)(X0)
i.e. no truncations are needed to solve the problem. Moreover, for the Green's
function to be of any physical relevance it must satisfy the radiation and decay
conditions mentioned in Sec. 1.3.1. This is discussed in detail in Paper A.

With the solution to the forcing problem for any given load already known (by
way of Green's method) an energy �ow analysis, as presented in Paper A, may
readily be conducted. As mentioned in Sec. 1.3.1 this requires the associated
state variables. In the framework of Paper A, we refer to these as the Green's
matrices where the principal matrix corresponds to the kinematic variables
and the second matrix to the forces. The Green's matrices thus refer to the re-
sponse of all state variables (kinematic and force) to a point source/excitation.
As mentioned in Sec. 1.3.1 the size of the state vectors may di�er from the size
of the governing PDE system when a bi-harmonic operator is present. In par-
ticular, this is the case for the Bernoulli-Euler beam, in which the fundamental
solution for a moment load corresponds to the solution to the derivative of the

delta function i.e. ∂δ(X−X0)
∂X0

.
In vibro-acoustics we refer to the state variables (Green's matrices) as forces

and displacements, Q and U , (Paper A and B) and as Lq and q in more general
terms (Paper C) where L corresponds to the di�erential operator from Eq. (1.5).
With known Green's matrices the energy �ow analysis may be carried out
following Eq. (1.7) or [7].

N
∑

=
ω

2
Im (〈Q,U∗〉∂V )

=
ω

2

∞∑
n

∞∑
j

Im
(〈
Q(n), U (j)∗

〉
∂V

) (1.15)

where each term of the scalar product (contained in the inner product) consti-
tutes the energy �ow in a physical transmission path. The energy analysis for
the �uid-�lled shell at a given frequency is shown in Fig. 1.6. Here we see that
even though the �uid-�lled shell is loaded by an acoustic source, the energy
rapidly escapes to the structure in which it is carried as axial and torsional
(membrane) deformation energy to the far-�eld. Detailed energy analysis of
this type indeed provides the necessary understanding of the wave propagation
and energy transmission properties sought in this thesis.

Further, as seen from Eq. (1.15) the calculation of energy �ow becomes
tedious for transcendental problems because each force and displacement con-
stitutes an in�nite expansion. As will be seen in Paper A and C this may be
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Fig. 1.6: Example of the energy �ow in an elastic �uid-�lled cylindrical shell. The transmis-
sion paths are, respectively: axial, torsional, bending (radial and moment) and �uid. Total
energy is conserved. Source: Paper A.

greatly simpli�ed when using the method of bi-orthogonality.
Since the �uid-�lled shell is a symmetric waveguide the energy �ow is skew-

symmetric with respect to the excitation point, x = 0. In Paper E a more
interesting energy �ow analysis is conducted, namely for a conservative helical
orthotropic (unsymmetric) waveguide. In the same way as in Fig. 1.6 the energy
is conserved, however, when the symmetry is disrupted the energy conveyed to
the left and the right is no longer the same. This provide means for tailoring
the energy carrying properties of waveguides to e.g. be conveyed only in one
direction while being re�ected in the other. As an example (from the �eld of
optics) one may think of a pair of sunglasses with a mirror lens; You can look
people in the eyes while they are not able to look into yours. This indeed
also constitutes a good example of tailoring of spectral properties to certain
frequency ranges i.e. while the optical spectrum passes, most of the ultraviolet
spectrum is re�ected.

1.3.3 Boundary Integral Equations Method

When it is desired to proceed from the in�nite waveguide to a '�nite' one it
is convenient to apply the Boundary Integral Equations Method (BIEM). This
method is widely used in, for example, mechanics, acoustics and civil engineer-
ing, see e.g. [8�10], but is also well-known in other areas of physics, for example,
as the surface/Green's function integral equations method in Nano-optics, [11]
or as the Method of Moments in electromagnetics, [12]. As the practical interest
of the present thesis is on vibro-acoustics we shall, however, stick to the BIEM
convention. The simple idea of the BIEM is to formulate a set of Boundary In-
tegral Equations (BIE) based on an auxiliary problem (for which the solution is
known in advance) and then solve them together with some prescribed bound-
ary conditions. There is no unique choice of an auxiliary problem, however,
there are some preferred choices amongst. For now it is convenient to choose
the Green's problem for the in�nite waveguide already treated in the previous
section. Although we are not restricted to Green's problem it is indeed advan-
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tageous. In a general format, we have the same problem as that of Eq. (1.8)
i.e.

LG(X,X0) = δ(X −X0) Lubvp(X) = F (X) (1.16)

where the left equation is the Green's problem from Eq. (1.8) and the right
equation the '�nite' waveguide problem, which is similar to the in�nite waveg-
uide problem, in that, ubvp(X) is acted on by the same di�erential operator, L.
However, additional requirements apply, and the state variables must therefore
satisfy prescribed boundary conditions. The right-hand equation then consti-
tutes a boundary value problem in the classical sense, as implied by the sub-
script (which we however omit in the following). The additional conditions that
must be satis�ed at each boundary may be written in the general form as

Q(X)|∂V − Z(X)U(X)|∂V = 0 (1.17)

where Z(X) is the prescribed boundary impedance (force-to-displacement ra-
tio) at the boundaries ∂V . For the �uid-�lled shell example the boundary con-
ditions are concerned with forces and displacements at each end of the shell i.e.
at x = a and x = b.

To formulate the BIE's we �rst formulate what in the �eld of mechanics
is known as Somigliana's identity (equivalent to the Kirchho� integral known
from acoustics). There are many ways to arrive at Somigliana's identity (cor-
responding to the derivation of state variables). However, for convenience we
shall derive it from the governing PDE. Thus, we multiply the right hand equa-
tion of Eq. (1.16) with G(X,X0) and the left hand equation by u(X), take the
inner product over the volume, V (in coordinate X), and subtract the right
hand equation from the left to arrive at

〈δ(X −X0), u(X)〉V = (1.18)

u(X0) = 〈LG(X,X0), u(X)〉V − 〈Lu(X), G(X,X0)〉V + 〈F (X), G(X,X0)〉V

We see here that the left-hand-side reduce by virtue of the property of the
delta function and thus emphasise why Green's problem is a convenient choice
of auxiliary problem. Then, by partial integration of the �rst two terms on the
right-hand-side, it is fairly easy to show that these inner products reduce to
an integral over the bounding surface, ∂V , and the latter equation reduces to
Somigliana's identity in Eq. (1.19). For some problems, e.g. in acoustics, the
volume integral of the �rst two terms vanishes by way of Green's identity, in
which case the integral becomes the well-known Kirchho� integral.

u(X0) = (1.19)

〈QG(X,X0), U(X)〉∂V − 〈Q(X), UG(X,X0)〉∂V + 〈F (X), G(X,X0)〉V

Here u(X0) is the solution (transformed intoX0) to the boundary value problem
where the �rst two terms on the right-hand-side constitute the homogeneous
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solution and the last the particular solution. F (X) is a known external load,
QG(X,X0) and UG(X,X0) are the known state variables related to Green's
function (and therefore depend on the excitation point, X0), while Q(X) and
U(X) are the yet unknown functions belonging to the boundary value problem
and must therefore satisfy Eq. (1.17). As the inner product over the volume of
these variables have vanished they need only be determined at the boundaries.
This reformulation of the problem by help of an auxiliary problem conveniently
reduces the dimensionality from a formulation in the volume to a formulation
only on the surface. This is one of the main advantages of the BIEM.

Further, in Paper C it is shown that the reduction to a surface formulation
is possible whenever the di�erential operator L is self-adjoint and so Eq. (1.19)
may be thought of as a generalisation of Green's identity. Nevertheless, by help
of the bi-orthogonality relation the problem formulation may be reduced even
further to an algebraic boundary identity, thus getting rid of all the tedious
integrals. This is the essence of Paper B.

To solve the boundary value problem i.e. �nd the unknowns from Eq. (1.19),
we formulate a number of Boundary Integral Equations simply by letting X0

in Somigliana's identity move towards each boundary separately and from in-
side the domain. Then, by whichever technique preferred, the BIE's are solved
together with the boundary conditions from Eq. (1.17) and the BIEM emerges.
For a �uid-�lled shell this corresponds to letting X0 move, �rst, towards the
boundary at x = a and then towards b. This leads to two BIE's for each
Somigliana identity and in this case a total of 10 BIE's.

If the BIEM is solved by discretising the boundaries into elements and for-
mulating the BIE's for each element the integrals dissolve to summations and
we get what is known as the Boundary Element Method (BEM). This is al-
most certainly the most popular method for solving the BIE's. Compared with
the classical Finite Element approach (de�ned for a volume) the BEM requires
only a boundary mesh and thus much less elements, in particular, when large
domains and high frequencies are considered. However, one drawback of the
method is that the equation system is fully populated � as oppose to a sparse
system in FEA. Other than that, the BIE's acquire singular points/integrals
when the excitation and observation point coincide, which is an artefact of
Green's function. Then, as always, the choice of strategy becomes a trade-
o�. In Paper B, however, it is shown how the bi-orthogonality relation can
be used, for a rather broad class of problems, to completely resolve the BIE's
to algebraic modal boundary identities. This immediately obviates the need
for discretisation methods as well as all concerns regarding singularities. Fur-
ther, for some special sets of boundary conditions the equation system may be
factorised completely (becomes diagonal) and closed-form solutions emerge.
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2

Industrial Impact

“ The science of today is the technology of tomorrow ”
� Edward Teller

The present thesis is conducted under the Danish research program �Erhvervs-
forsker� (Industrial PhD) supported partly by the Innovation Fund Denmark
and partly by the Danish pump manufacturer, Grundfos Holding A/S. As
part of the program the Innovation Fund supports industrial relevant research
through researchers employed by companies while being dedicated to a spe-
ci�c academic research project, evaluated under the requirements for obtaining
a PhD degree. The purpose of the program is to strengthen Danish compa-
nies' competitiveness and innovation internationally. Therefore, the PhD thesis
should, besides being academically novel, contain research with industrial im-
pact for Grundfos.

Throughout this chapter the required preliminary knowledge about cen-
trifugal pumps is limited to a minimum. Should the reader, however, not be
entirely familiar with certain terminologies and therefore �nds the need for a
quick brush-up, a short introductory video can be found in the online Annex , [1]
(QR code found in Preface). This video covers the basic concepts of centrifugal
pumps including working principle and most commonly used terminologies in
the pumping industry. Further, details can be found in The Centrifugal Pump
book by Grundfos, [13].

2.1 Industrial scope

With an annual production of more than 17 million pump units Grundfos is
one of the world's leading pump manufactures. Among others the main prod-
ucts are circulators for heating and air conditioning as well as other centrifugal
pumps for industry, water supply, sewage and dosing. Today Grundfos is the
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Chapter 2. Industrial Impact

largest manufacturer of circulators in the world, covering approximately 50%
of the world's market. Grundfos is represented in more than 55 countries with
headquarters in Bjerringbro, Denmark and employs more than 19,000 people
worldwide. Grundfos was founded by Poul Due Jensen in 1945 and is a family
business, owned entirely by family, employees and the Poul Due Jensen Foun-
dation. As a company Grundfos is known for being a high-end brand, deliver-
ing high quality and best-in-class energy e�cient solutions to their customers.
Grundfos is, and wants to remain, a trendsetter in the market, pushing the lim-
its for what is possible. Moreover, Grundfos is known for taking responsibility
in the world when it comes to sustainability, climate change, solutions for water
scarcity and pollution etc. and are also known to be a strong supporter of the
UN's Sustainable Development Goals 6 (Clean water and sanitation) and 13
(Climate action). For more information about Grundfos visit: Grundfos.com.

2.1.1 Motivation

The main business of Grundfos is moving water, sometimes over short distances
with a high pressure, sometimes over long distances with a high �ow and some-
times both with a high pressure and �ow. The source of water range from fresh
water for drinking to water for sanitation or heating/cooling applications, thus
spanning temperatures from 0◦C to 180◦C (−40◦C to 240◦C for special liquids).
In other cases, the pump medium is sewage/waste water where multiphase �ow
is indeed a frequently occurring phenomenon. For these applications the pumps
are usually submerged directly into the waste water and one can imagine that
a breakdown in such an environment is, to say the least, a sticky situation.

Indeed the latter cases all fall within the category of heavy �uid loading (as
discussed in Sec. 1.1.3) and in all cases vibro-acoustics play a vital role for the
performance and durability of the entire pump/supply system. Fig. 2.1 shows
a few cases where vibrations in the pipe system has caused (rapid) fatigue as
a consequence of formation of standing waves, better known as excitation of
eigenfrequencies. Although this �gure shows two cases where the pipe system
fails just after the pump this is not necessarily always the case. Since waves
propagate, re�ect, interact and convert throughout the entire pipe system the
structural integrity may be compromised anywhere in the pipe system depend-
ing, of course, on the level of excitation, on how the standing waves form, how
the �uid and structure interacts, how the energy carrying transmission paths
interchange along the system etc. Here the latter two depend on how and which
of the guided waves that are excited by the given load. This may therefore lead
to failures much further down the system and need not necessarily be in the
form of leakage but may also appear in the form of noise pollution generated in
e.g. the pipes or valves and emitted from (heat) radiators, walls, �oors, ceilings
etc. An example of this is shown in Fig. 2.2 where a pipe junction downstream
from the pump has su�ered fatigue damage as a consequence of vibrations and
thus required in-situ repair.

20

https://www.grundfos.com


2.1. Industrial scope

Fig. 2.1: Breakdown in a waste water system as a consequence of excessive vibrations. Top:
Auto-coupling, on which the pump is mounted, wrecked by fatigue. Bottom: Fatigued welding
in �ange connection leaking water.

Fig. 2.2: Fatigue failure of a downstream pipe junction caused by vibrations. In-situ repair
required.
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In addition, Grundfos always strives to optimise the pumps to be more en-
ergy e�cient and consume less resources (e.g. materials), yet they should re-
main robust while pushing the structural performance to the limit, making the
products, essentially, prone to noise and vibration issues. Unfortunately, with
an increase in energy e�ciency comes also an increase in the acoustic emission
and with an optimised mechanical design comes, in some cases, compliance and
in other cases increased rigidity, none of which helps to improve the air-, �uid-
or structure-borne sound performance of the pump. Therefore, Grundfos has
an increasing focus on improving, alongside with the e�ciency and structural
performance, also the vibro-acoustic performance of these pumps and this is
not an easy task.

Furthermore, to accommodate better energy performance, reducing CO2
emission and the usage of resources, narrowing product variants is an impor-
tant step for Grundfos. This means simply extending the application range of
some variants to cover the range of others. In pumps this means, for the �xed-
speed-pumps, to add frequency converters to allow for variable speed, and, for
the already variable-speed-pumps, to extend the range to cover sometimes up
to three times the normal rpm range. This has many great advantages for both
Grundfos, customers and climate, however, one of the main challenges is that
the spectrum of vibro-acoustic excitations/sources generated and radiated by
the pump increase accordingly, making it vital that the vibro-acoustic perfor-
mance of pumps can be assess in advance.

2.1.2 Challenges

As the pump acts as a power supply to the system it is no surprise that the
vibrations are inevitably caused by the dynamics introduced by the pump.
However, many of the latter discussed failures can easily be prevented by, �rst
of all, following the installation guidelines of the pump manufacturer e.g. on
how to properly �xate the pump but maybe more important by ensuring that
the pipe system is also properly �xated. But even in these cases problems may
arise. Why? In the design of pump systems the dimensioning of the pump is
determined alone by the pipe system and supply requirements of the customers
i.e. pressure and �ow. While this is su�cient criteria in statics it is not so in
dynamics, as the pump and pipe system interact through the �uid and thus
way beyond just at the interface. Despite this, pipe systems and pumps are
only very rarely designed to accommodate one another. Unfortunately, as a
pump supplier, Grundfos has only very limited (if any) control over the design
of the actual pipe system, which indeed complicates solving these vibration
problems from a Grundfos perspective. In other words, while the excitation
levels, frequencies, modes etc. are controlled by Grundfos, the formation of
standing waves and how easily they may be excited are in some way controlled
by the customers and are therefore beyond Grundfos' control.

Moreover, as pipe systems (for the same pump) may behave as everything
from an in�nite (non-re�ective � wave propagation) to a (almost) fully re�ective
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system, it covers the entire range of impedances from 0 to ∞. For this reason,
even knowing speci�c impedances of one (or several) customer's system does
not help to solve the issues for others. Besides, retrieving such impedances,
whether from numerical models or experiments, requires a huge e�ort and yet
it still only represents one system out of many. Thus, from a Grundfos perspec-
tive this problem must be treated in the most generic way possible. Inarguably,
this leads us back to the study of waves and propagation of waves as well as
the acoustic sources/mechanical excitations generated by the pump and trans-
mitted into the received pipe system. Therefore, an increased understanding of
these phenomena at an early stage in the design phase constitutes the indus-
trial scope of the present PhD thesis.

To accommodate these challenges two Matlab tools have been developed: Tool
1 to assess, in a generic way, the propagation of waves and energy transmission
properties of the receiving pipe system and Tool 2 to deduce acoustic sources
from the many CFD simulations (Computational Fluid Dynamics) done in the
early stage of a design.

2.2 Tool 1: Wave propagation in pipe systems

This tool is based on the work done in Paper A, B and D, however, with many
additional engineering functionalities and post processing features than those
presented in the papers. A picture of the main page of the tool is seen in Fig. 2.3.
The tool is concerned with various levels of detail, some useful for the design
engineer to understand/verify that the excitation characteristics of a speci�c
design (Tool 2) does not coincide with critical frequencies or modes, while other
features are useful for detailed studies as those needed for troubleshooting and
for intuitively optimising designs.

Depending on the readers experience with wave propagation in cylindrical
structures it may be appropriate to continue with Paper A before proceeding
here. Paper F also covers some of the very basics of vibration of cylindrical
shells (without �uid) and may also help to improve the understanding.

The purpose of this tools is, in a generic way, to be able to predict (or es-
timate) how prone a pipe system is to various excitations and frequencies.
Since the system is, as mentioned, generally unknown (and beyond Grundfos'
control) the best and most generic model is based on the in�nite �uid-�lled
shell waveguide addressed in Paper A. This model depends only on the ma-
terial (�uid/structure) and cross-sectional properties of the waveguide. Both
material and cross-sectional properties are determined a priory by the �ow and
pressure required and by standards. Thus, the outlet dimension of the pump
is predetermined and compatible with the standard's requirements. Hence, the
parameters do not depend on a speci�c customer's system and the �uid-�lled
shell waveguide is therefore the most generic system to study.
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Fig. 2.3: Main page � The tool is initialised when the root (wavenumber) calculation is
carried out. After the post processing the tabs below become available. 'Cut-on' tab can be
used without initialisation. Full size �gures can be found in the online Annex , [1].

In general, the vibro-acoustic performance of the pipe system may be assess
based on generic properties of the system, studying for instance the wave prop-
agation properties (wave dispersion) and the fundamental solutions provided
by Green's method i.e. the energy propagation/transmission properties of the
system. This gives indeed valuable physical insight of the system and its gov-
erning vibration phenomena and allows to deduce generic information about,
for instance, which frequencies, modes and transmission paths are critical to
excite. Common for all pipe systems, no matter their actual formatting i.e.
re�ective properties (boundary conditions), is that the critical modes, frequen-
cies and transmission paths of the in�nite �uid-�lled shell are critical for all
systems. Further, the tool also provide means for judging whether certain exci-
tations (frequencies, modes and transmission paths) are likely to radiate noise.
In summary the features of Tool 1 are:

Main page � Wavenumber calculation, Fig. 2.3: Before the post-proces-
sing tabs are available (except the 'Cut-on' tab) the wavenumbers at a speci�c
frequency and in some cases over a range of frequencies are needed. The mate-
rial and cross-sectional properties of the �uid-�lled shell are typed in together
with the desired frequency or frequency range (incl. frequency resolution) and
the circumferential mode of interest. Then the tool is initialised by calculating
the wavenumbers either based on the Finite Product Method alone (Paper D)
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or by solving the exact dispersion relation (where the solution from the FPM
is used as an initial guess).

Tab 1 � Cut-on frequencies, Fig. 2.3: Presented in table format (and bar
plot) the cut-on frequencies are calculated based on the speci�ed number of
cut-on frequencies (rows) and number of circumferential modes (columns) de-
sired. The cut-on frequencies are found at k = 0 where attenuating/decaying
waves transform into propagating ones. Note that this does not account for
cut-on frequencies of waves experiencing locking, see Paper E. The response at
and in the vicinity of a cut-on frequency is always substantial no matter the
system and should thus be avoided whenever possible. The tab may be used
without initialisation.

Tab 2 � Dispersion diagram, Fig. 2.4: Plots the dispersion diagram either
in the 3D (f,Re(k), Im(k))�space (Fig. 1.4) or as two 2D plots, one for the real
and one for the imaginary part (imaginary waves are the propagating waves
in this framework). The feature requires initialisation with a frequency range
speci�ed. To enhance the physical understanding of the wave dispersion and
interaction phenomena, the dispersion diagrams for, respectively, an in-vacuo
shell, a rigid and soft ba�e (cylindrical acoustic duct with rigid or soft walls)
may be mapped into the dispersion diagram. The feature is useful for under-
standing details of the wave and interaction phenomena occurring in �uid-�lled
pipes.

Fig. 2.4: Plot of dispersion diagram in either 3D or 2D.

In particular, this becomes interesting for compliant pipes such as PVC pipes
or rubber hoses (linear approximations only) where the �uid-structure interac-
tion appears much stronger.

Tab 3 � Energy distribution, Fig. 2.5: Allow detailed analysis of how the
energy is distributed and carried throughout the waveguide i.e. a transmission
path analysis (TPA). This analysis is useful since the energy carrying trans-
mission paths (membrane, torsional, bending and �uid � see Fig. 1.6) tend to
persist in the �nite systems as this is in general determined more by the waveg-
uide properties and frequency than the boundaries (at least in the relatively
low frequency range, which is the main interest in this work). The transmis-
sion path analysis is based on the theory in Paper A. The feature handles
both frequency range and single frequencies. If a range is speci�ed, frequencies
from this set can be selected individually without re-initialising. It holds sev-
eral practical engineering features divided into, respectively, a load dependent
and load independent part. The most essential features are: TPA similar to the
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Fig. 2.5: Sound indication, transmission path and energy �ow analysis.

energy �ow analysis from Fig. 1.6; The partition of modal energy into trans-
mission paths and waves, that is, how much energy (out of the total energy)
is carried in each wave and through which transmission paths i.e. governance
of waves; TPA comparing di�erent circumferential wavenumbers and �nally a
sound indicator. The sound indicator utilises the displacements at the surface
of the shell to hint towards potential noise pollution; I.e. if, for example, the
radial displacement is governing the response, the pipe system is likely to be
emit air-borne noise, whereas an axial or �uid governed response is not likely
to produce noise.

Tab 4 � Eigenfrequencies (beta-version), Fig. 2.6: Calculates the eigen-
frequencies (sweep of determinant over frequency) based on the method pre-
sented in Paper B. The length of the pipe is speci�ed together with �ve im-
pedance conditions at each boundary (force-to-displacement or pressure-to-
velocity ratio) � corresponding to the �ve state variables. The feature is useful

Fig. 2.6: Eigenfrequency analysis

for studying the eigenfrequencies/standing waves in speci�c pipe systems. How-
ever, proper impedances for the di�erent variables for a speci�c system is rarely
known and moreover di�cult to retrieve from both models or experiments.
The feature may therefore be more useful for sensitivity/limit-case studies e.g.
studying the extremes of the eigenfrequency spectrum.

Finally, note that the tool provides fast computations only by virtue of the de-
velopments in Paper A (analytical solution using bi-orthogonality) and Paper D
(the Finite Product Method). Further, the detailed modal energy transmission
analysis is possibly only by way of the proof of linearity of energy shown also
in Paper A (and C).

More examples of analyses using Tool 1 can be found in the online Annex ,
[1], or using the QR code found in the Preface.
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2.3 Tool 2: Source characterisation from CFD

simulations

This tool is based partly on work done in Paper F and during my time at the
University of Auckland. The purpose of the tool is to utilise the detailed re-
sults obtained from CFD simulations to deduce information about the acoustic
sources generated by the pump and emitted through the pipe system. The tool
consists of two tabs, see Fig. 2.7. The main tab is intended for hydraulic develop-
ment engineers to assess and improve the acoustic performance of their designs
and the second intended for a more detailed study of the acoustic sources, as
that needed for troubleshooting and by the engineers at Grundfos' Sound and
Vibration Laboratory. Theoretical details regarding the source characterisation
is elaborated in Sec. 2.3.1.

Fig. 2.7: Main page used by hydraulic development engineers to compare pressure pulsations
of di�erent designs with recent standards (API). Di�erent designs at di�erent operation points
may also be compared individually.

Main page (Tab 1) � Comparison with API-standard, Fig. 2.7: In
step 1 a number of pump designs, in terms of CFD data sets, are loaded into
the tool. In step 2 the data is processed through a calculation of the peak-2-
peak pressure pulsations at di�erent frequencies for all designs loaded into the
tool. In step 3 the results are compared to the maximum allowable pulsation
levels from recent standards, see Fig. 2.8 (in lack of better standards the API-
standard for reciprocating pumps is used, [14]). This allows evaluating di�erent
designs or a speci�c design at various operation/design points (where Q100 is
the design point of the pump � corresponding to the best e�ciency point) and
thus conclude whether a speci�c design satis�es the API requirements for the
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Fig. 2.8: Example of comparison of a speci�c design at di�erent operation points with
the requirements from the API-standard. Q150 means 150% �ow compared to the design
point (Q100). Performance at other rpm's may also be included. Symbols indicate the mean
pulsations over the outlet cross-section and bars the maximum pulsations found in a single
CFD-cell.

various operation points. Furthermore, the feature may also be used to compare
designs individually.

Tab 2 � Detailed analysis, Fig. 2.9: Each data set from the main tab can
be loaded individually into the detailed analysis (or as a separate �le if needed)
to enhance understanding of which particular frequencies and modes the pump
is emitting at a speci�c operation point. In the detailed analysis, the frequency

Fig. 2.9: Detailed analysis of each design at a speci�c operation point. Permits to assess if
critical frequencies and/or modes from Tool 1 are excited in this design.
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response of the data can be assessed in its original coordinate set i.e. F (x, y, ω),
to assess the frequency content. Further, the response may also be decomposed
into its circumferential modes following Paper F i.e. F (m, r, ω), see Fig. 2.10.
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Fig. 2.10: Example of CFD data decomposed into frequency and modal response. Of the
frequencies and modes displayed we see that the plane wave (m = 0) at f = 147.5Hz is the
governing acoustic source.

When this is compared to the information retrieved from Tool 1 it is possible
to conclude whether critical circumferential modes are signi�cantly excited at
critical frequencies e.g. near cut-on frequencies, and thereby compare di�erent
designs in detail. The detailed analysis tab also has several other interesting
features such as calculation of the energy content in each circumferential mode
at each frequency.

Tab 3 � Mechanical excitations from �uid (alpha-version): The pressure
from the surface along the outlet pipe (from CFD simulations) is decomposed
into its frequency and modal (circumferential) content to deduce the mechanical
excitations generated by the pump at the �uid-structure interface. The excita-
tions may be mapped onto the structure as a radial mechanical excitation of
the pipe system i.e. a one-way coupling. This procedure is in an early stage of
being tested and implemented and is therefore still an early alpha-version.

As a side note, it is interesting to see that if the response is also decom-
posed into axial modes (wavenumbers along the pipe, k) a signi�cant amount
of acoustic energy propagates with the mean �ow. This is caused by vortical
structures carried with the �ow.
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Finally, a rather interesting fact deduced from this tool is that there is a slight
rotation in the �ow (and pressure) and therefore all the acoustic circumfer-
ential modes deduced are in fact spinning helically (discussed in Paper E) as
they propagate through the pipe system i.e. they propagate through the system
with exp(imθ) and not cos(mθ) as normally expected. Thus, the receiving pipe
system is excited by a rotating force (pressure).

More examples of analyses using Tool 2 can be found in the online Annex ,
[1], or using the QR code found in the Preface.

2.3.1 Theoretical background

At Grundfos CFD simulations have been used for several decades to improve
and optimise the hydraulic e�ciency of pumps. These CFD simulations are
based on hydraulics alone and hence do not account for any acoustics. As the
main outcome when designing or improving a pump is a series of CFD simula-
tions at di�erent operation points (and for di�erent designs), it will be bene�cial
to reuse those to get an insight or indication about the acoustic sources gener-
ated by the pump. Thus, to avoid having to build additional (very complicated)
aeroacoustic models to get the full acoustic information (sources), it would be
highly advantageous to try and extract information about the acoustic sources
from the existing CFD data. Although the CFD simulations are generally of
very high quality they di�er much from the aeroacoustic models, for example,
by assuming rigid walls and incompressible �uids. Nevertheless, the deduced
sources may still provide reasonable information about which sources are gen-
erated and whether they are critical or not according to Tool 1. Besides, proper
aeroacoustic models for centrifugal pumps are extremely complicated and time
consuming since it requires solving fully compressible Navier-Stokes equations
and, in all likeliness, with full account for transient behaviours such as tur-
bulence. Similarly, the model should ideally also feature impedance boundaries
(rather than rigid) corresponding to the compliance (and damping) of the struc-
ture. In addition to being a very complicated problem by nature, it also requires
grid re�nements compared to the conventional CFD models in order to cap-
ture a reasonable frequency range. Although it seems that the hydraulic CFD
simulations are far from the aeroacoustic models there are, however, still hope
that they can provide reasonable acoustic sources.

As already mentioned an aeroacoustic model is needed to get full account
of the acoustic sources generated by the pump. In this case, where the in-
terest is mostly far-�eld wave propagation through a pipe system (a linear
phenomenon), we would prefer to use these non-linear acoustic sources in a
linear acoustic environment. This can be done by using Lighthill's acoustic
analogy developed by James Lighthill, [15]. Nowadays there exists indeed many
variations of Lighthill's acoustic analogy, some of most famous being: Curle,
Ffowcs-Williams Hawkings, Morfey, Lilley, Howe, Goldstein etc. see [16], where
the most general (and complicated) is probably the Ffowcs-Williams Hawking
(FW-H) shown in Eq. (2.1), formulated for a varying density �eld, ρ(X, t). De-
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tails and technicalities of the model are left out and should be found in [17].
The FW-H analogy is indeed relevant for the centrifugal pump as it accounts
also for sound generated by rotating surfaces such as the blades found in a ro-
tating impeller of a centrifugal pump (originally developed to assess the noise
pollution from helicopters).(

∂2

∂t2
− c2∇2

)
ρ(X, t) =

∂2Tij
∂xjxj

− ∂

∂xi

(
pijδ(f)

∂f

∂xj

)
+
∂

∂t

(
ρ0viδ(f)

∂f

∂xi

)
(2.1)

The simple idea of an acoustic analogy, whichever of the latter is taken, is to
combine and manipulate the mass and momentum equations to the above form,
in which we recognise the left-hand-side as the (acoustic) wave equation. Note
that this equation is in fact exact, nonetheless, very complicated due to its
non-linear form. In principle, this complicated equation should be solved on its
own, but instead we regard the right-hand-side as known acoustic sources i.e.
an external driving function, and the acoustic far-�eld may then be calculated
straightforwardly using linear acoustics. What is left is then to determine the
acoustic sources on the right-hand-side which is exactly the scope of Tool 2.

These sources have, in the acoustic terminology, simple interpretations: The
�rst term is known as Lighthill's tensor and describes the noise generated
by quadrupoles in the volume, typically, attributed to turbulences. The sec-
ond term is a dipole source generated by pressure �uctuations at the surfaces
(though this is not immediately clear from the equation), known as surface
noise, see [18]. The last term constitutes monopole sources generated by vol-
ume �uctuations at the surfaces.

Nonetheless, using the full FW�H method for source characterisation of cen-
trifugal pumps is pointless (mainly) for two reasons: 1) From Paper C it is
clear that the solution to this problem constitutes a convolution (volume in-
tegral) over the entire source region i.e. in this case the entire CFD domain.
Deriving and calculating these solutions is therefore a very tedious matter. Fur-
ther, literature suggests that the quadrupole sources (generated by turbulence)
are not su�ciently represented by conventional CFD. However, it is suggests
in e.g. [9] that the quadrupole sources can, by reasonable account, be deduced
from CFD simulations when Large eddy simulation turbulence models are used.
This is rarely used for standard CFD simulations of centrifugal pumps due to
low Mach numbers and further, as it rapidly increases the computational costs
of the CFD simulations themselves.

2) It is argued in many references, see e.g. [10,18], that for decreasing Mach
numbers the main noise generating mechanism becomes dipole noise. Fortu-
nately, in centrifugal pumps the representative Mach number is indeed low � in
the very extreme case no more than ≈ 0.06. This means that the �ow-induced
noise is generated almost entirely by pressure �uctuations. Fortunately, this
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is well captured by the available CFD simulations and our hope of extracting
valuable source information from the CFD simulations thus persist.

Note that in some extreme cases e.g. during cavitation, turbulent noise will
a�ect the noise radiated signi�cantly but as this is never an intended operation
regime for a pump it is out of scope of this thesis. Further, the monopole (vol-
ume) sources are typically only vaguely present in the �ow of centrifugal pumps
but does, however, appear occasionally when the internal �uid and structure
interacts strongly which, by the rigid wall assumption, is not captured by CFD
simulations and is thus also out of scope.

By the latter arguments the acoustic source characterisation may be con�ned
to considering only the dipole (pressure) sources. Further, we need only con-
sider the sources (essentially integrate) over the permeable outlet surface of the
pump as the CFD simulations involve the entire domain of the centrifugal pump
(including the rigid surfaces) and thus, all surface noise (source information)
generated at other internal surfaces is already contained in the information at
the permeable surface. Then the far-�eld wave propagation problem may eas-
ily be solved by, essentially, integrating the dipole sources over this surface as
suggested by the acoustic analogies. However, as we are interested in under-
standing the acoustic source generating mechanisms in a centrifugal pump, it
is not convenient to just solve the propagation problem but instead, decom-
pose the dipole sources on the permeable surface into its frequency and modal
content, and as a consequence avoid integration over the permeable surface.

With this in mind the technique used to deduce the acoustic sources may be
based on the same technique used in Paper F to decompose vibration response
into circumferential modes. Since the �uid (acoustic) domain and thereby the
CFD data is continuous over the cross-section of the outlet of the pump (as
oppose to the measurements on the circumference of the pipe in Paper F) the
method presented in Paper F need be slightly extended. The output of the
CFD simulations used is the pressure pro�le at the outlet cross-section of the
pump as a function of time. The pressure data is known only in discrete points
associated with each cell of the CFD grid, see Fig. 2.11(a). To ensure su�cient
quality of the data we require data for least one full revolution of the impeller.
Preferably, this revolution should be from a steady solution to avoid transient
start/stop e�ects and further, with a mass �ow condition at the outlet of the
pump as a pressure condition is expected to somewhat disrupt the pressure
�uctuations. Likewise, the resolution of the CFD data (time-step) determines
the frequency range we can consider and thus, the time-step should be small
enough that several harmonics are included (and ideally so that we are free of
aliasing issues).

Decomposition (or transformation) of the data from time to frequency do-
main is straightforward and is done using a Fast Fourier Transformation (FFT)
i.e. Ft : F (x, y, t) → F (x, y, ω). This is done for each cell. The transformation
into the spatial domain (circumferential modes) follows directly from Paper F
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Fig. 2.11: Pressure pro�le at a given time-step at the outlet cross-section of the pump.
(a) original CFD grid and (b) an example of a structured polar grid onto which the data is
mapped before spatial decomposition.

i.e. a spatial FFT. However, as the FFT requires equidistant data points this
becomes more cumbersome. As discussed in Paper F the FFT is highly sensi-
tive to deviations in equidistant grid points and therefore the CFD grid need
be (without exception) fully structured in terms of polar coordinates. As a fully
structured polar grid is not plausible for the CFD simulations the data must be
mapped from the original grid onto a structured grid before the spatial FFT is
performed i.e. Fxy : F (x, y, t/ω) → F (θ, r, t/ω), see Fig. 2.11(b). This may be
done in either the time or frequency domain and will obviously lead to a loss of
information if the grid is not chosen su�ciently. Then on the structured grid we
perform the spatial FFT, Fθ : F (θ, r, t/ω) → F (m, r, t/ω). The output of the
decomposition of CFD data into acoustic sources is thereby the cross-sectional
response at each frequency for each circumferential mode as seen in Fig. 2.10.

Finally, we have so far only considered sources/excitations generated in the
�uid by the pump (Tool 2) and how they propagate through the pipe sys-
tem, of course, accounting for the interaction with the pipe system through
the �uid-�lled shell model (Tool 1). Similarly, it is of interest to also deduce
the mechanical forces exciting the system at the pump/pipe interface. Charac-
terising these mechanical excitations, on the other hand, becomes much more
complicated, as it requires accurate calculations of the vibration levels of the
entire pump based on the di�erent loads exciting the structure � some of which
are not yet quanti�ed. These sources may arise from e.g. the motor (electro-
magnetic forces), unbalance, hydraulic forces etc. To deduce the excitations at
the pump/pipe interface a (very) high �delity model of the mechanics of the
pump is required and further, an investigation and quanti�cation of the gov-
erning sources in the pump (besides the hydraulic sources) is necessary. This
procedure of predicting the vibration levels (and thus the mechanical excita-
tions of the pipe system) for an operating pump is of high interest and thus
constitutes an essential part of the future work.
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2.4 Concluding remarks

As mentioned, the industrial scope of this PhD thesis is, in a generic way, to
assess the vibro-acoustic sources/excitations generated in a centrifugal pump
and how they will propagate into the receiving system. Since Grundfos has no
control over the actual supply system, the receiving system studied in the thesis
must be chosen as the one of most general character. Therefore, the in�nite
pipe system is considered (Tool 1) as its properties are characterised only by
the pump outlet and the material properties (both standardised). Although
only some systems behave in�nite it permits generic conclusion for critical
excitation of frequencies, modes and transmission paths. The acoustics sources
(Tool 2) may, following the acoustic analogies, be deduced from the pressure
�uctuations (predicted by CFD simulations) on the permeable outlet surface of
the pump. The acoustic sources deduced from several designs and/or operation
points may be compared with the requirements from the most recent standards.
Further, the acoustic sources may be decomposed into their frequency and
modal content, which matches also the output of Tool 1 and thus allow mutual
conclusions to be drawn.

Both developed tools have several levels of technical detail, some intended
as 'Plug-N-Play' design tools for the hydraulic and mechanical engineers in
the early design phase and others intended for specialists for troubleshooting
and detailed study of the source generating and propagating mechanisms. Both
tools are intended for early use and do thereby not rely on any experimental
�tting parameters and therefore neither on any prototypes. Thus, through these
tools the vibro-acoustic performance of centrifugal pumps may, in an overall
sense, be accounted for already from the initial designs. This is only treated at
a much later stage in Grundfos today (after, sometimes, several prototypes).
To build these tools the knowledge obtained through the Papers A, B, D, F is
crucial, whereas Paper E is interesting from the viewpoint of minimising the
energy transmission into the pipe system by tailoring the outlet pipes.

Finally, common for both tools is that we consider the pump as an 'ideal'
source not a�ected by and interacting with the system in which it is operating.
This assumption may seem contentious but is nonetheless valid in most cases.
On the other hand, accounting for both full �uid-structure interaction internally
in the pump and interaction with the entire pipe system becomes extremely
complicated and yet it is senseless because two systems are rarely alike.

2.5 Future work

From an industrial viewpoint the most apparent topics of future work are:

� In Tool 1 only the ideal sources related to Green's function are considered.
Ideally, actual mechanical and acoustic sources are known e.g. through
Tool 2 and therefore the actual energy transmission properties related to
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these excitations/sources should be implemented in Tool 1. As shown in
Paper A and C this is simply done by a convolution with the Green's
function. Nevertheless, at low frequencies the energy carrying properties
are determined mainly by the waveguide properties and therefore only
sometimes by the excitation type and location (in acoustics).

� As mentioned, impedances for actual systems may vary from everything
in-between low to high impedance and, in fact, in the presence of valves
and ori�ces, they may even be complex-valued. As these are basic com-
ponents in a pipe system, it may be interesting to implement and study
the e�ect of complex-valued impedances in Tool 1. This means that the
dispersion diagram need be extended to cover also complex frequencies,
which makes this a complicated task.

� When experimental results are available e.g. similar to those in Paper F
or as pressure pulsations along or around a pipe, it is always desirable
to compare these with the numerical simulation models. For convenience
and to ensure a uni�ed framework and terminology, it is desirable to treat
the comparison in one tool. Therefore, creating a fourth tab for Tool 2 to
process experimental data is desired. Further, this allows to implement
the methods developed in Paper F and thereby account for modal leakage
in the experimental data such that the comparison between numerical and
experimental results becomes transparent to this leakage.

� Source characterisation from both simulation models and experiments is
a very complicated matter and, in this thesis, only a naive attempt is
done to extract just some valuable information from the existing mod-
els regarding the acoustic sources. Though the methodology is based on
sound aeroacoustic theory a lot of additional work can be done on this
subject to improve even further. This subject is believed to have su�cient
depth for a separate PhD study. In such a study a �rst attempt could
be to develop further the method already initiated in tab 3 (Tool 2), but
requires, other than that, probably also advanced aeroacoustic modelling
and experimental validation, while keeping in mind that the existing CFD
models (or at least without a signi�cant increase in computation time)
must be at the core of the source characterisation. In addition, deducing
mechanical excitations from structural simulations should also be consid-
ered in such a study and as already discussed in Sec. 2.3.1 this is indeed
a complicated task.

� In Paper E it is illustrated, at particular frequencies at least, that waveg-
uide properties may be tailored to emit energy only in one direction for
a given rotating force excitation. 'Fortunately' the centrifugal pump gen-
erates rotating forces and thus, it is interesting to study if special pipe
sections or pump outlets can be designed such that close-to-zero energy
is emitted (through the structure) to the receiving system. And in this
regard, how will this a�ect the performance of the pump itself.
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3

Summary & Conclusions

of the Papers

“ To raise new questions, new possibilities, to regard old

problems from a new angle, requires creative imagination

and marks real advance in science. ”
� Albert Einstein

In the following each paper from the collection of papers included in the thesis
is summarised. The summary includes a brief motivation prior to the summary
and lastly the main conclusions and scienti�c contributions are listed for each
paper separately. Finally, the extended summary is concluded with a number
of selected topics of future work interesting from an academic viewpoint. Some
conclusions, scienti�c contributions or topics of future work may, in view of the
extended summary, seem to be rather unsupported and perhaps even appear
out-of-the-blue. In this case the full overview and details o�ered by the paper(s)
may be necessary.

3.1 Description of papers

Below, each paper is brie�y summarised following the structure: Motivation,
summary and main conclusions and scienti�c contribution.

3.1.1 Paper A

Under the title: �Bi-orthogonality relations for �uid-�lled elastic cylindrical
shells: Theory, generalisations and application to construct tailored Green's ma-
trices� Paper A deals with the classical vibro-acoustic waveguide problem of
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free/forced guided wave propagation in a �uid-�lled elastic cylindrical shell for-
mulated in the framework of thin shell theory. In the presence of a compressible
(inviscid) �uid this waveguide supports an in�nite number of waves. In this pa-
per a novel method based on special bi-orthogonality relations is developed.
The method permits deriving analytical closed-form solutions to this otherwise
complicated transcendental problem.

First, the free wave problem, in terms of the dispersion relation, is solved.
This problem is on its own challenging due to the transcendental and ill-
conditioned nature; The former caused by the continuous compressible �uid
and the latter by coupling of rigid and compliant constituents. Finding these
solutions may however be greatly simpli�ed using the method of Finite Prod-
ucts developed in Paper D. In the formulation of the free wave problem a set
of modal coe�cients are introduced, de�ned as coe�cients independent of the
waveguide direction. These coe�cients hold special properties denoted Class
properties and are essentially what makes up the powerful bi-orthogonality
relation. Second, the bi-orthogonality relation for this particular problem is
easily derived directly from the reciprocity relation using only the Class prop-
erties of the modal coe�cients. Following the same logic, the derivation of
bi-orthogonality relations is generalised to cover any waveguide with uniform
symmetric properties. This is generalised further in Paper C to cover entire
operators obeying self-adjointness. Then, through the formulation of tailored
Green's matrices, it is demonstrated how to �nd the unknown modal amplitudes
independent of each other and on algebraic form using just the bi-orthogonality
relation. Through conventional techniques this typically proves to be yet an-
other challenge due to the transcendental nature of the problem. This method-
ology applies to all the fundamental loading cases involved in the formulation
of Green's matrix and moreover simple relations between the amplitudes from
di�erent loading conditions are also derived.

In order to gain con�dence in the method and show its robustness, as that
required by engineers, completeness and (uniform) convergence of the solution
is proved. In addition, it has been found that unconverged solutions may be
easily spotted visually in the energy �ow analysis since an unconverged solution
disrupts continuity across the excitation point. This leads to the derivation of
exact error measures possible because the convergence targets are now well-
known. Thus, the method provides an instantaneous measure of convergence
for any truncated solution. Finally, it is shown that the total energy �ow may be
derived from the bi-orthogonality relation. This fact immediately leads to the
proof that the total energy �ow is a linear quantity because the bi-orthogonal
property ensures that all cross-products vanish, leaving only the principal (di-
agonal) terms. Further, this derivation also shows that only propagating waves
contribute to the total energy �ow and computation of the energy �ow may
thus be much simpli�ed.
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Main conclusions and scienti�c contribution

� The derivation of the bi-orthogonality relation is generalised to uniform
symmetric waveguides. Its derivation emerges directly from the reciprocity
relation using the Class properties of the modal coe�cients. The deriva-
tion is shown explicitly for the �uid-�lled shell.

� Using bi-orthogonality the modal amplitudes of Green's function may be
found individually and independent of each other.

� The convergence properties of a solution derived through bi-orthogonality
permits instantaneous assessment of convergence through exact error
measures and further, from the energy �ow analysis unconverged results
are readily visible.

� The explicit relation between the total energy �ow and bi-orthogonality
relation have been shown and have led to the proof that total energy �ow
obeys linearity. This greatly simpli�es calculation of the total energy �ow.

3.1.2 Paper B

This paper entitled: �On the application of the bi-orthogonality relations for
analysis of linear dynamical systems� considers how to apply the bi-orthogona-
lity relation in the framework of the Boundary Integral Equations Method
(BIEM) and may thus be seen as an extension of Paper A. In BIEM the solution
to the in�nite (or unbounded) waveguide problem is exploited to solve the
subsequent '�nite' (or fully bounded) waveguide problem and essentially, to
explore how propagating waves form into standing waves (eigenfrequencies).
As implied by the title the method applies to problems in linear dynamics,
con�ned to uniform symmetric domains e.g. uniform symmetric waveguides
with a preferred direction of propagation as considered in Paper A. Thus, the
method applies equally well in other realms of physics such as, for instance,
electromagnetics, optics, acoustics, seismics and even quantum mechanics. In
this paper, however, we consider three examples (of diverse complexity) from
mechanics and vibro-acoustics (respectively, a Bernoulli-Euler beam, a �uid-
loaded membrane and the �uid-�lled shell from Paper A)

First, the concept of modal coe�cients, Class properties and derivation of
bi-orthogonality from Paper A is brie�y summarised. The Boundary Integral
Equations (BIE) arise from Somigliana's identity and is therefore our point of
departure. Then by relatively simple means Somigliana's identity is reformu-
lated to modal form by expanding each state variable in the identity on its
eigenfunctions and take advantage of the bi-orthogonality relation to, even-
tually, reduce Somigliana's identity to modal form. Then, by formulation of
the BIE's from the modal Somigliana's identity it becomes obvious that the
integral equations vanish, and the BIE's thus resolve completely to algebraic
modal identities which we denote: Modal boundary identities. Technicalities of
the procedure are then illustrated for the three examples. When Somigliana's
identity involves also forcing terms the identities may still be resolved but are
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in this case denoted the inhomogeneous modal boundary identities. With the
BIE's fully resolved only the boundary conditions remain and setting up the
equation system for an arbitrary set of boundary conditions is therefore done
using the boundary identities and a modal projection technique based on the
bi-orthogonality relation. For the forcing problem the procedure is the same.

Then for two special sets of boundary conditions (denoted Class consistent
boundary conditions) the optimal choice of projection vector is easily iden-
ti�ed from the bi-orthogonality relation. For this choice the equation system
factorises completely, no matter the complexity of the problem, leading to the
fundamental canonical eigenfrequency equations: sin(kL) = 0 and cos(kL) = 0.
The eigenfrequencies are then found simply by substituting the solution, k, from
the latter canonical eigenfrequency equations into the dispersion relation and
use, for instance, the �nite product method of Paper D, to �nd the eigenfre-
quencies. This allows also identi�cation of eigenfrequencies directly from the
dispersion diagram as the intersection of the propagating wave branches with
horizontal lines corresponding to the solutions of the canonical eigenfrequency
equations. Finally, the modal projection method implies, as in Paper A, that
boundary conditions have become convergence targets and thus immediately
permits the same error measures introduced in Paper A. In case of an uncon-
verged solution caused by a prematurely truncated solution, the solution will
be exact, however, to a set of boundary conditions similar, but not identical,
to those prescribed. In the limit, however, the prescribed boundary conditions
are of course recovered. Contrary, no such conclusions can be deduced from un-
converged solutions in conventional techniques e.g. in the Boundary Element
Method. Lastly, perspectives on the possibility to introduce this method into
the framework of Wave Finite Element, extension to cover also unsymmet-
ric problems and how convergence may relate to experiments where boundary
conditions are rarely ideal, have been discussed.

Main conclusions and scienti�c contribution

� The Boundary Integral Equations may be fully resolved to simple modal
boundary identities between amplitudes at di�erent boundaries. It is done
by reducing Somigliana's identity to modal form using decomposition and
the bi-orthogonality relation. These identities can be derived both for the
homogeneous and inhomogeneous problem.

� With the boundary identities used, the equation system is concerned only
with the boundary conditions and does thereby not require any of the
technicalities related to BIEM. Further, two special sets of boundary con-
ditions can be identi�ed for which the eigenfrequency spectrum emerges
directly from the dispersion relation (or diagram), also for transcendental
problems.

� Using the modal projection method, the boundary conditions converge
to the prescribed ones in the limit, while unconverged results appear as
exact solutions for another, yet similar, set of boundary conditions. As
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in Paper A this permit exact error measures and thus an instantaneous
measure of convergence for arbitrary truncation orders.

3.1.3 Paper C

With the title: �(Bi)-orthogonality relation for eigenfunctions of self-adjoint op-
erators� it should be no surprise that the scope of Paper C is to generalise much
further the range of problems for which bi-orthogonality may be used. Thus,
Paper C is a generalisation of bi-orthogonality relations beyond the results in
Paper A where they were generalised to uniform symmetric waveguides. In this
paper we progress to cover entire operators i.e. operators that are self-adjoint
and with at least one empty boundary (explained in the paper). Such operators
very often constitute the core of problems treated in e.g. applied mathematics,
physics or science as a whole and cover, for instance, problems (di�erential
operators) derived from the variational principle. With this generalisation it
becomes clear that bi-orthogonality is not con�ned to any particular realm of
physics and further, covers also coupled multiphysics problems thereof. To il-
lustrate the derivations we use a non-trivial example: a �uid-loaded plate with
preferred direction of wave propagation in the radial direction i.e. formulated
in cylindrical coordinates.

To show that bi-orthogonality exists for general self-adjoint operators we
start at the very core of the problem: The governing partial di�erential equa-
tion. From this we may formulate the self-adjoint condition and through partial
integration reduce to the reciprocity relation. In this general format deriving
bi-orthogonality from reciprocity requires a di�erent approach than that out-
lined in Paper A. This is essentially done by showing that the bi-orthogonality
relation can be obtained as a linear combination of characteristic equations
for the eigenfunctions involved. In the framework of the waveguide example
this constitutes a linear combination of dispersion relations for the involved
waves. Through the non-trivial example, it becomes obvious that in e.g. cylin-
drical coordinates, the formulation of correct modal coe�cients (those ensuring
bi-orthogonality and having Class properties according to Paper A) may be de-
duced only from what is denoted the essential state variables (forces/displace-
ments).

With bi-orthogonality derived it is illustrated how to apply these to solve
the subsequent forcing problem. This procedure follows exactly the same steps
as for deriving bi-orthogonality and eventually by applying bi-orthogonality,
an analytical closed-form solution emerges. When applied to the example we
identify the Wronskian and note that the expression for the unknown modal am-
plitudes reduce to the same simple form derived for the �uid-�lled shell in Pa-
per A. Finally, the relation between total energy �ow and the bi-orthogonality
relation is derived in this general format as it was done for the speci�c problem
in Paper A. This again proves linearity of the total energy �ow and further,
shows that only the essential state variables contribute to the energy �ow. For
the �uid-loaded membrane example this implies that the terms associated with
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e.g. Poisson's ratio produce no net �ow of energy. Lastly, perspectives on how to
generalise further to '�nite' waveguides through the Boundary Integral Equa-
tions Method (as done in Paper B for a special class of problems) is discussed.

Main conclusions and scienti�c contribution

� The bi-orthogonality relation is generalised to the eigenfunctions of self-
adjoint operators. They are obtained as a linear combination of charac-
teristic equations for the relevant eigenfunctions and are thus invariant
to the choice of coordinate system. Further, the bi-orthogonality relation
consists only of essential components of the state variables.

� The solution to the inhomogeneous (forcing) problem may be found in
closed-form when using the bi-orthogonality relation i.e. the modal am-
plitudes may be found independently. Further, by the invariance of the
bi-orthogonality relation, the solution is on strong form.

� The relation between bi-orthogonality and the total energy �ow is derived
and linearity of the total energy �ow is thus proven in this general format.
Thereby it is shown that only the essential components produce a non-
zero net �ow of energy.

3.1.4 Paper D

As suggested by the title: �Using the Finite Product Method for solving eigen-
value problems formulated in cylindrical coordinates� Paper D focuses on ex-
tending the Finite Product Method (FPM) to problems formulated in cylindri-
cal coordinates. The purpose of the FPM is to introduce accurate and simple
polynomial approximations of transcendental equations similar to those found
in Paper A. As mentioned in Sec. 3.1.1 such problems are usually di�cult
to solve, mainly due to their transcendental and ill-conditioned nature. The
FPM has already been developed for the trigonometric functions (sine/cosine),
see [19], however, for some problems in cylindrical coordinates the transcen-
dental equation to be solved may rather involve Bessel functions (or a fraction
of Bessel functions). Thus, this paper is concerned with extending the FPM
to cover also Bessel functions. Although we focus again in this paper on the
vibro-acoustic example from Paper A (�uid-�lled shell) the FPM is in no way
restricted to such waveguide problems and may thus �nd many convenient ap-
plications elsewhere. The FPM for Bessel functions proofs particularly strong in
the presence of fractions of Bessel functions where properly adjusted approx-
imation orders ensure almost exact cancelling of Runge's phenomenon, thus
providing an excellent accuracy of the approximate solution for such problems.

First, the transcendental dispersion equation to be solved is presented. It
consists of combinations of polynomials and a fraction of Bessel functions of �rst
kind of integer order m (not restricted to integer orders). Then the transcen-
dental terms (Bessel functions) are replaced by their equivalent in�nite product
representations, which may be found in literature. In this representation the
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zeros of the respective Bessel functions are needed and are also available in
literature (or mathematics software). The in�nite products are then split into
a �nite and an in�nite product part by Ni, where Ni is denoted the approxima-
tion order. The in�nite part is neglected and the FPM emerges in a very simple
way, reducing the transcendental equation to a polynomial equation. Further, in
the presence of fractions the approximation order for each Bessel function, say,
(N1, N2), need be chosen properly to ensure cancelling of Runge's phenomenon.
The relation between the approximation orders, N1 and N2, were previously
found using Stirling's approximation and by ensuring correct limit behaviours.
However, it is found that by arranging the zeros used in the in�nite products
into a sorted set of ascending order we may simply truncate anywhere in the
sorted set and by including all zeros up until the truncation we automatically
ensure correct limit behaviour and the cancelling of Runge's phenomenon. This
holds likewise for multiple fractions of Bessel functions. For the example con-
sidered in the paper this corresponds to the two possible approximation orders
(N1, N1) or (N1, N1 + 1), corresponding to a lead of either the denominator or
numerator. Finally, accuracy of the solution is studied by comparing with the
solution to the actual transcendental equation. From this study conservative,
but simple, validity ranges of high accuracy are deduced. Lastly, the reason for
the excellent performance of the FPM is discussed. This owes to periodically
occurring grid points which are points where the approximate (FPM) disper-
sion relation is exact. Also, the dispersion diagram is compared to the di�erent
'limit' waveguides i.e. the in-vacuo shell and the cylindrical acoustic duct with
both rigid and soft walls.

Main conclusions and scienti�c contribution

� The FPM is extended to cover also problems formulated in cylindrical
coordinates i.e. the FPM is derived for Bessel functions of �rst kind.
Advantages of the FPM is its arbitrarily high accuracy, no spurious roots
but most importantly its simplicity.

� The correct approximation orders in the presence of fractions of Bessel
functions may be determined directly from a sorted set of the zeros in-
volved in the in�nite product representation of the transcendental terms.
This immediately ensures correct limit behaviour and the cancelling of
Runge's phenomenon without having to formally carry out any of these,
sometimes, tedious analyses.

� Simple and conservative measures for the validity range of the FPM are
deduced based on the chosen approximation order.

3.1.5 Paper E

With the title: �Wave propagation in helically orthotropic elastic cylindrical
shells and lattices� the scope is to study the behaviour of a helically orthotropic
cylindrical shell in which the orthotropy is de�ned by an angle and orthotropic
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material properties. This may be thought of as for instance a �bre reinforced
cylinder. The purpose is to study the wave propagation properties of such a
waveguide as well as how the two orthotropy parameters, angle and mate-
rial, a�ect the dispersion diagram. The shell is modelled using three di�erent
methods: 1) an analytical model based on thin shell theory, 2) the Wave Fi-
nite Element Method (WFEM) and 3) a lattice structure consisting of beam
elements � also in the framework of WFEM.

First the analytical model is introduced and the dispersion diagrams for
several orthotropy parameters are shown. A breaking of symmetry is observed
when the orthotropy parameters do not correspond to an isotropic shell. The
symmetry breaking manifests itself in the dispersion equation as a polynomial
having both even and odd powers of the wavenumbers, nevertheless, with real
valued coe�cients which ensures that symmetry is always preserved for the
decaying and attenuating waves. The symmetry breaking shows interesting be-
haviours, among others, the existence of waves with a positive phase velocity
but a negative group velocity. The symmetry breaking as well as other inter-
esting phenomena e.g. veering and locking of waves are studied in detail for
changing angles and material parameters. These phenomena are not observed
in the isotropic shell and the orthotropic shell thus permits tailoring to attain
special wave propagation properties. Then, the analytical model is compared
with the WFEM which uses solid rather than shell elements. Despite the dis-
crepancy the correlation between the models is good. For the simpli�ed lattice
structure (consisting of beam elements of various sti�ness) the same behaviour
and tendencies are observed. Finally, an energy �ow analysis for a rotating ra-
dial force is conducted in order to study the energy carrying properties of such
orthotropic shells. Here it is found that the symmetry breaking leads to an un-
even distribution of energy propagation in each direction, which for symmetric
waveguides split into equal shares. Thus, it is shown that the orthotropic shell
can be tailored to have di�erent energy �ow propagating in each direction, and
in fact, the waveguide may be tailored to have more or less all energy propa-
gating to the right and only very little energy propagating to the left � at least
for some frequencies. Moreover the total energy at a �xed frequency is studied
for varying �bre angles and it is found that the total energy may increase dras-
tically for some angles, explained here by cut-on/cut-o� of propagating waves
which corresponds to a signi�cant change of the waveguide properties.

Main conclusions and scienti�c contribution

� Breaking of symmetry of the propagating wave branches appears as soon
as both the angle and material parameters of orthotropy are chosen dif-
ferent from the isotropic values � explained by even and odd powers of
the wavenumber in the dispersion equation. The symmetry is retained
for the decaying and attenuating waves, since the dispersion equation has
only real valued coe�cients. All symmetry is recovered when the angle of
orthotropy aligns with the cylindrical coordinates or when the material
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parameters are chosen as isotropic.

� For orthotropic parameters the energy �ow carried by the waveguide for
a rotating applied force is no longer the same to the right and left. Thus,
at speci�c frequencies the orthotropic shell may be tailored to control
the energy �ow to have, for example, close-to-all energy propagating to,
say, the right. Further, the energy carrying properties to the left and
right are sensitive to the parameters of orthotropy as they may cause
radical changes to the waveguide properties e.g. changing cut-on/cut-o�
frequencies.

3.1.6 Paper F

Under the title: �Experimental analysis, simulation and decomposition of vibra-
tions in not perfectly axi-symmetric pipes� this paper deals with a comparison
of experimental and simulation results (model validation) when a signi�cant
amount of modal leakage is present (caused by experimental sources of error). In
many physics and engineering applications we see axi- and quasi axi-symmetric
structures. For such structures the experimentally measured response may be
decomposed into to circumferential modes by having accelerometers placed
equidistantly around the circumference, allowing for increased physical under-
standing of the behaviour of the structure and of the response produced by
these individual modes. However, this procedure is particularly prone to exper-
imental sources of error and therefore the decomposed spectra usually become
inconclusive because the response belonging, essentially, to one mode, leaks into
the decomposed spectrum of others. This is called modal, or in a more general
sense, spectral leakage. Modal leakage is inevitable and therefore the methods
presented in this paper are developed to provide a much clearer interpretation
in model validation in the presence of signi�cant leakage as well as a method
to distinguish authentic resonances from spurious (leaked) ones both by sim-
ple additional post processing of existing experimental data. In particular, this
paper deals with mechanical structures (pipes), but the methods developed are
equally valid for use in e.g. electromagnetics to decompose the forces in a motor
etc.

First, a sensitivity study using a mathematical model (based on thin shell
theory) is conducted, testing the e�ect of various experimental sources of errors
on various decomposition techniques. Here it is found that the main error is, by
far, caused by misplacement of accelerometers, which are meant to be placed
equidistantly around the circumference. In the mathematical model it is shown
that even slight (random) perturbation of the equidistant positions with just
±0.1% (corresponding to just ±0.4mm of the circumference of the test pipe)
introduce signi�cant leakage into the decomposed results and in fact enough
that it becomes incomparable with the initial mathematical model from which
it was decomposed. Therefore, no matter how carefully tests are conducted,
modal leakage is inevitable. Then, to accommodate model validation we need,
instead, to introduce similar leakage into the mathematical model. In the paper
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two simple methods for this are presented: one where the mathematical model
is simply decomposed with slightly perturbed 'measuring points' (as done in
the sensitivity analysis) and one where the decomposed experimental spectrum
is used as a scaling in the ideal mathematical model. While the latter method is
very simple it provides only visual aids as the relative errors remain unchanged;
The former method is much stronger and provides also better relative com-
parisons. Further, a method for how to distinguish modes of the decomposed
spectrum and conclude on whether they are authentic or not is developed. This
method is based on additional post processing of the experimental results. The
method simply compares two decomposition techniques where one is assuming
symmetry. These two methods have di�erent sensitivities to the misplacement
and therefore the decomposed response at the resonances are di�erent when
the resonance is spurious (i.e. belongs to another mode), while they coincide
when the resonance is authentic. Finally, spectral leakage is discussed in terms
of aliasing. In the time domain this can be handled by �ltering techniques, how-
ever, in the spatial domain no such techniques exist. Therefore, the number of
equidistant measurements points needed are determined by the last circum-
ferential mode with cut-on frequency in the chosen frequency spectrum. For
compliant structures such as PVC pipes, the cut-on frequencies decrease and
the number of necessary measurement points around the circumference must
be increased if the same frequency range is to be covered. So far, the cut-on
frequencies need be determined mathematically.

Main conclusions and scienti�c contribution

� It is found that the root cause of modal leakage in circumferential de-
composition owes to, just slight, misplacement of measurement points,
making modal leakage inevitable. The sensitivity to misplacement is ex-
tremely high.

� Amethod for model validation in the presence of signi�cant modal leakage
is developed. Leakage is introduced in the mathematical model either
using the experimental (decomposed) data as a scaling or by perturbing
'measurement points' in the mathematical model before decomposition.

� A method for distinguishing authentic and spurious resonances in a de-
composed spectrum is developed based on additional data processing
alone. By comparing two decomposition methods that are based on dif-
ferent assumptions the decomposed results coincide only when the reso-
nances are authentic.
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3.2 Future work

Based on this collection of papers a few interesting selected topics of future
work are listed below. To comprehend, in full, the perspectives and potentials
of the following topics of future work a detailed overview of the papers may be
necessary.

� In relation to Paper B the method developed for solving boundary value
problems by resolving integral equations into the algebraic modal bound-
ary identities and using the modal projection method is yet con�ned to
problems for uniform symmetric waveguides. In Paper C derivation of
bi-orthogonality is, however, generalised to cover self-adjoint operators
and therefore extending the methods of Paper B to also cover self-adjoint
operators in general is indeed of great interest. Potentially this can reveal
closed-form solutions (for Class consistent boundary conditions) for very
complicated boundary value problems.

� In relation to Paper C it is interesting whether the bi-orthogonality re-
lations can be extended further to cover also operators that are not self-
adjoint (unsymmetric). As the bi-orthogonality relation has proven to be
related to the dispersion (characteristic) equation and thus invariant, it is
likely that bi-orthogonality relations exist also for unsymmetric operators
e.g. for the orthotropic shell treated in Paper E. If such bi-orthogonality
relations can be found and generalised it will reveal analytical closed-form
solutions for many indeed very complicated semi-bounded problems and
therefore have a huge impact in the �eld of linear dynamic systems and,
in particular, in waveguide theory.

� Incorporating the bi-orthogonality relations into a numerical framework
such as, for instance, the much used Wave Finite Element Method is in-
deed an interesting extension of the methods developed in Paper A�C.
The standard output of the numerical tools used for assessing waveg-
uide properties provide wavenumbers and related mode shapes. Since the
bi-orthogonality relation is composed exactly of these two things, formu-
lating the bi-orthogonality relations in such a framework may be possible.
If it is possible the bi-orthogonality relations may be used to straightfor-
wardly solve the subsequent forcing problem using the explicit formula
from Paper C which is nothing but the inner product of properly de�ned
state vectors (eigenmodes).

� In addition, the �ndings of Paper B can potentially be utilised in a numer-
ical framework to obtain the dispersion curves related to the propagating
waves. From the solution for Class consistent boundary conditions in Pa-
per B it is known that there is an explicit relation between the spectrum
of eigenfrequencies and the wavenumbers of propagating waves and hence
the spectrum of eigenfrequencies may be converted into a spectrum of wa-
venumbers. Then by gradually changing the length of the structure the
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dispersion diagram may be obtained. One advantage of this is that there
will be no spurious roots.

� Often in experimental vibration analysis the main source of error is re-
lated to uncertainties in the actual boundary conditions, yet the sensitiv-
ity to these conditions is often very high, a�ecting, sometimes radically,
the spectrum of eigenfrequencies. It is therefore of particular interest to
characterise the actual boundary impedances to accommodate model val-
idation. When using the modal project method from Paper B the bound-
ary conditions converge in the limit as all necessary waves are included
in the solution and therefore it is interesting to adopt e.g. inverse charac-
terisation techniques, to characterise the boundary conditions. This may
also provide insight into which particular waves that are di�cult to con-
strain in practise and thus hint towards less sensitive boundary conditions
useful for experiments and perhaps even real-life systems.

� Studying limit cases of the eigenfrequency spectrum for varying boundary
impedances is of signi�cant interest for real-life pipe systems to determine
and possibly minimise the diversity of the spectrum. Moreover, it may
also be interesting to compare the di�erent limit cases with the Class
consistent solutions obtained in Paper B, to see whether these solutions, in
fact, constitute the limits of the eigenfrequency spectrum. If so, is it then
possible to approximate the spectrum for an arbitrary set of boundary
conditions based on the Class consistent spectrum alone and thus evade
solving the actual system of equations.

� In Paper D the Finite Product Method has shown to be a simple and
strong tool for approximating the dispersion relation such that the wave-
numbers are easily found. So far, the FPM is developed only for trigono-
metric functions and through the developments in Paper D, also for Bessel
functions of �rst kind. As it is indeed a strong tool, it is interesting to
study in more general terms, to which type of characteristic equations
the FPM may be applied i.e. in which realms of physics, for which types
of transcendental functions and for which types of fractions of transcen-
dental functions.

Indeed there are many more interesting topics of future work that can be
thought of. The topics above are, however, the author's �rst choice of top-
ics that could potentially have a signi�cant impact on the future of engineering
science. This concludes the extended summary, yet the appended collection of
scienti�c papers still remains.
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Abstract

The paper addresses the classical problem of time-harmonic forced vibrations of a
fluid-filled cylindrical shell considered as a multi-modal waveguide carrying infinitely
many waves. The forced vibration problem is solved using tailored Green’s matrices
formulated in terms of eigenfunction expansions. The formulation of Green’s matrix
is based on special (bi-)orthogonality relations between the eigenfunctions, which are
derived here for the fluid-filled shell. Further, the relations are generalised to any
multi-modal symmetric waveguide. Using the orthogonality relations, the transcen-
dental equation system is converted into algebraic modal equations that can be solved
analytically. Upon formulation of Green’s matrices, the solution space is studied in
terms of completeness and convergence (uniformity and rate). Special features and
findings exposed only through this modal decomposition method are elaborated and
the physical interpretation of the bi-orthogonality relation is discussed in relation to
the total energy flow which leads to derivation of simplified equations for the energy
flow components.

Keywords:
Bi-orthogonality relations, Modal decomposition, Tailored Green’s matrices,
Symmetric waveguides, Energy flow, Convergence and error calculation

1. Introduction

In this paper we address the classical problem of time-harmonic wave propaga-
tion in a thin elastic fluid-filled cylindrical shell loaded by an inviscid compressible
fluid without mean flow. This is a subject broadly covered in literature on applied
mathematics, see e.g. [1–6]. Among other applications, this formulation is used to
address transmission of vibro-acoustic energy which is of primary interest in e.g. the
oil and gas industry as well as in larger pumping systems conveying waste water or
distributing domestic water to inhabitants. While the analysis of free waves in such a
waveguide is a well-established subject, a forced response in various excitation con-
ditions has not yet been fully explored. To cover arbitrarily distributed acoustic and
structural sources it is convenient to derive Green’s matrices i.e. to study the response
to an excitation modelled as delta-functions. In this formulation of the problem it is
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Nomenclature

c f l Fluid sound speed – [m s−1]
cstr Structural sound speed ≡√

E
ρstr (1−ν2)

– [m s−1]

E Young’s modulus – [Pa]
h Shell thickness – [m]
k Non-dim. axial wavenumber ≡ k̃R
m Non-dim. circumferential

wavenumber
Nu Non-dim. axial energy flow

≡ 1−ν2

EhRcstr
Ñu

Nv Non-dim. torsion energy flow
≡ 1−ν2

EhRcstr
Ñv

Nw Non-dim. transverse energy flow
≡ 1−ν2

EhRcstr
Ñw

Nw′ Non-dim. bending energy flow
≡ 1−ν2

EhRcstr
Ñw′

Nϑ Non-dim. acoustic energy flow
≡ 1−ν2

EhRcstr
Ñϑ

N
∑

Non-dim. total energy flow
≡ 1−ν2

EhRcstr
Ñ

∑

p Non-dim. acoustic pressure
≡ 1

c2
f lρ f l

p̃

P Non-dim. amplitude of acoustic
pressure

ql Non-dim. external structural forces
≡ 1−ν2

E q̃l, (l = 1, 2, 3)

Q4 Non-dim. moment ≡ 1−ν2

Eh2 Q̃4

Ql Non-dim. forces ≡ 1−ν2

Eh Q̃l,
(l = 1, 2, 3)

Ql Non-dim. amplitude of structural
forces/-moment, (l = 1, . . . , 4)

r Non-dim. radial coordinate ≡ r̃
R

r0 Excitation point in r
R Shell radius – [m]
T Non-dim. external acoustic source

≡ R
c f l

T̃

u Non-dim. axial displacement ≡ ũ
R

U Non-dim. axial amplitude
v Non-dim. circumferential displace-

ment ≡ ṽ
R

V Non-dim. circumferential ampli-
tude

w Non-dim. radial displacement ≡ w̃
R

W Non-dim. radial amplitude
w′ Non-dim. rotation
W′ Non-dim. rotation amplitude
x Non-dim. axial coordinate ≡ x̃

R
γ Sound speed ratio ≡ cstr

c f l

ϑ Non-dim. acoustic velocity ≡ ϑ̃
c f l

V Non-dim. amplitude of acoustic
velocity

θ Non-dim. circumferential coordi-
nate

κ Non-dim. radial wavenumber
≡

√
k2 + γ2Ω2

µ Thickness-to-radius ratio ≡ h
R

ν Poisson’s ratio – [-]
ξ Excitation point in x
ρ f l Fluid density – [kg m−3]
ρstr Structural density – [kg m−3]
ρ Density ratio ≡ ρ f l

ρstr

φ Non-dim. velocity potential ≡ φ̃
c f lR

Φ Non-dim. amplitude of velocity
potential

ω Angular frequency – [rad s−1]
Ω Non-dim. frequency ≡ ωR

cstr

Jm(x) Bessel-function of first kind of
order m ∈ Z

δ(x) Dirac delta-function
sgn(x) Signum function
| x | Module of x
i Complex operator
∗ Complex conjugated
′

Derivative with respect to x
U U as a matrix or vector
¯ Indicates modal coefficients
˜ Indicates dimensional quantities
0F Indicates loading condition
(n)
m Modal components of circumfer-

ential, m, and axial wavenumber, n,
e.g. {k(n)

m ∈ C | n,m ∈ Z, n , 0}.
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expedient, on the one hand, to consider detailed analysis of the energy redistribution
and mode conversion in the near-field to gain additional physical insight. On the other
hand, the mathematical issues of completeness and convergence need to be addressed.

To understand the energy redistribution and mode conversion in the near-field e.g.
from pump to pipe or across flange connections, an accurate coupled vibro-acoustic
model of an infinite pipe needs to be formulated. In this paper we adopt the tai-
lored Green’s function/matrices as introduced in [5]. These functions deviate from
the canonical free-space Green’s function of acoustics, in that they satisfy additional
boundary conditions − continuity at the fluid-structure interface. Here we consider
only the tailored Green’s matrices (excitation by ideal sources), while the generation
of vibro-acoustic energy internally in a pump is not treated here. Due to the versatility
of Green’s formulation, see e.g. [7, 8], we can easily generalise to arbitrary sources
generated by a pump or to finite and/or compound pipes with arbitrary boundary con-
ditions and/or transition properties using the Boundary Integral Equations Method
(BIEM), see e.g. [2–4, 7–14]. However, in the heavy fluid-loading format the problem
becomes transcendental and the accuracy of the near-field solution is compromised by
the computational efficiency when solved using the conventional weak solution form
(integral average). Thus, the purpose of this paper is to improve both accuracy and
computational efficiency of the solution by solving the forced vibration problem using
modal decomposition (strong form).

The formulation of Green’s matrix is based on the eigenfunction expansion method
with the eigenvalues derived from the dispersion equation. This method is the most
commonly used method in vibro-acoustic problems. In [3, 15–17] authors have em-
ployed specially derived orthogonality relations to decompose the governing equations
into uncoupled algebraic modal equations which can easily be solved analytically;
providing the strong solution form of Green’s matrix. The decomposition is analogue
to the decomposition of circumferential modes by orthogonality of trigonometric func-
tions, see e.g. [2–4, 13, 14], however, with more advanced orthogonality relations be-
tween the involved eigenfunctions. In [3] this modal decomposition method was used
for the acoustic duct where the ’more advanced’ orthogonality relation reduces to or-
thogonality of cylindrical functions i.e. Bessel-functions, see relation in e.g. [18–20].
On the other hand, similar relations have been derived in [16, 17, 21–28] for plates,
strips, layers, laminates, springs, beams, shells etc. and facilitated in e.g. [15–17] to
analytically derive modal amplitudes for a strip, beam, spring and shell.

In this paper, we derive similar orthogonality relations for the elastic fluid-filled
cylindrical shell and use these to decompose the transcendental forced vibration prob-
lem into algebraic modal equations. More importantly the orthogonality relations are
generalised to any symmetric waveguide supporting wave-pairs, that is; waveguides
having similar properties in opposite direction (± wavenumbers). The generalisation
is done utilising Class properties similar to those defined in [29] and has to the best of
the authors’ knowledge not been done before.

The paper is structured as follows: Section 2 presents the governing equations, dis-
persion curves, definition of modal coefficients and Class properties. In Section 3 the
(bi-)orthogonality relations for the fluid-filled shell as well as for general symmetric
waveguides are derived. Section 4 illustrates how the (bi-)orthogonality relations are
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used to decompose the equation system and derive modal amplitudes for Green’s ma-
trix analytically. With the general solution established using the modal decomposition
method completeness and convergence (uniformity and rate) of the solution (Green’s
matrices) is assessed in Section 5. Finally, Section 6 highlights convenient features
obtained using this method and further, derives and discuss the relation between the
(bi-)orthogonality relation and the total energy flow. Details regarding the governing
equations can be found in Appendix A.

2. Free waves in an elastic fluid-filled cylindrical shell

To assess vibrations in a fluid-filled shell considered as a multi-modal waveguide
we employ the standard formulation for the fluid-structure interaction problem of a
thin elastic cylindrical shell filled with an inviscid compressible fluid with no mean
flow. The model is formulated in the framework of Novozhilov-Gol’denweizer’s shell
theory and standard linear acoustics and all necessary equations are derived from the
action integral assuming time-harmonic vibrations. Details of the derivation of the
equations of motion may be found in, for instance, [1, 2, 6].

In the following all equations are converted into non-dimensional form and the
time-dependence, exp(−iωt), is omitted. Further, the axi-symmetry of the shell allows
the m-spectra to be decoupled (indicated by the subscript, m) and each circumferen-
tial wavenumber can therefore be considered separately such that the circumferential-
dependence, exp(−imθ), may also be omitted. Similarly, the spatial distribution in the
axial and radial direction is exp(kx) and Jm(κr), respectively. For consistency, details
regarding the governing equations, conversion into dimensional quantities etc. are
given in Appendix A and the definition of non-dimensional parameters in the nomen-
clature.

The waveguide properties of the fluid-filled shell are found from the dispersion equa-
tion deduced from the determinantal equation of Eq. (1).

∣∣∣∣∣∣∣∣

d11 d12 d13
d21 d22 d23
d31 d32 d33

∣∣∣∣∣∣∣∣
= 0 (1)

where the elements of the linear algebraic equation system are given in Eq. (2).

d11 = −k2 +
1 − ν

2
m2 −Ω2 d12 = −1 + ν

2
km = −d21 d13 = −νk = −d31

d22 = −1 − ν
2

k2 + m2 −Ω2 +
1
12
µ2

[
m2 − 2(1 − ν)k2

]

d23 = m +
1

12
µ2

[
m3 − (2 − ν)k2m

]
= d32

d33 = 1 +
1
12
µ2

(
k2 − m2

)2 −Ω2 − ρ
µ

Ω2Jm(κ)
[

dJm(κr)
dr

∣∣∣∣∣
r=1

]−1

(2)
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The dispersion curves for the fluid-filled shell vibrating in (a) bending mode, m = 1
and (b) m = 3, with the following non-dimensional parameters: ρ = 0.1282, γ =

3.7773 and µ = 0.0175, are shown in Fig. 1 (colours recommended). These parameters
are used throughout the paper and are similar to those in [2] against which the model
is also validated. The latter non-dimensional parameters correspond to, for instance,
a water-filled steel-shell with the properties: E = 210 GPa, ν = 0.3, ρstr = 7800 kg
m−3, R = 20 mm, h = 0.35 mm, ρ f l = 1000 kg m−3, c f l = 1440 m s−1.
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Fig. 1: Dispersion of free waves in a fluid-filled shell with the non-dimensional parameters: ρ = 0.1282,
γ = 3.7773 and µ = 0.0175 vibrating in (a) bending mode, m = 1 and (b) m = 3. Only decaying waves are
shown for the acoustic duct and soft baffle. Colours recommended.

In the figures the dispersion curves are confined to displaying only the first 18 waves
of the otherwise infinite number of waves carried by this type of waveguide. In the
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absence of an acoustic medium (ρ→ 0), however, the dispersion equation reduces to a
polynomial of 4th order in k2 and 3rd order in Ω2. At any frequency this empty cylindri-
cal shell supports only four pairs of waves, propagating/decaying in positive/negative
direction of the waveguide (axial, x). The analysis of these waves is a standard subject
fully covered in literature, see e.g. [30–32]. However, as soon as the interaction of
a shell with a compressible fluid is introduced the dispersion equation becomes tran-
scendental. Besides the four pairs of structure-originated waves, it captures infinitely
many fluid-originated waves. Identification of these structure- and fluid-originated
waves is based on inspection of the modal coefficients introduced in Eq. (3). This is
also a subject already widely explored by other authors, mentioned in e.g. [1, 6, 32],
and will therefore not be treated further in this paper.

In turn we note that at low frequencies higher order waves (blue) tend towards
the waves of the acoustic duct (black) as seen in the figure. This entails that these
higher order waves see the shell as rigid (a duct). However, as the frequency increase
the fluid-originated (higher order) waves are influenced considerably by the structure
such that at a certain frequency each fluid-wave collide with a wave of the acoustic
(soft) baffle (magenta). This implies that the particular fluid-wave sees the shell as
compliant (pressure release). Finally, by inspection (mapping of the imaginary waves
onto the real plane) it can be shown that for increasing frequencies the location of these
pressure release (acoustic baffle) points of the higher order fluid-waves tend towards
the first structure-originated propagating wave. In particular, these frequencies are
interesting for the near-field analysis as we may expect, besides a significant energy
content, a substantial fluctuation/exchange of energy in the near-field response.

In terms of the scope of this paper it is, however, more interesting to note that
Fig. 1 reveals certain important symmetry characteristics of such waveguides consid-
ered here. From the figure it is seen that the waveguide properties are symmetrically
dispersed with respect to any of the coordinate planes − even for negative frequencies
(not shown). The symmetry of the waveguide properties for negative frequencies is
readily explained by the modelling of a time-harmonic conservative system in which
energy does not dissipate, while the symmetry of positive/negative going waves are
explained by the symmetry of the waveguide itself. The dispersion equation, Eq. (1),
is formulated in even powers of the wavenumbers i.e. k2. From this it is clear that the
waveguide supports wave-pairs of ±k and this defines its symmetry. Waveguides of
such properties are, for instance, the elastic layer, [15, 23], the empty shell, [2], the
acoustic duct and the fluid-filled shell without mean flow, [3]. In case of mean flow,
the latter waveguides do not retain these symmetry properties i.e. spatial symmetry
alone does not define a symmetric waveguide. In the following we will treat only
symmetric waveguides as defined here.

2.1. Modal coefficients
Each wavenumber, k(n)

m , found from the dispersion equation corresponds to a free
wave in the fluid-filled shell i.e.

{
k(n)

m ∈ C | n,m ∈ Z, n , 0
}
, which is characterised

by its displacements, forces and velocity potential. Here we distinguish between the
modal coefficients (indicated by ¯) defined as coefficients independent of the waveg-
uide direction and the modal response involving modal coefficients, amplitudes and
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the waveguide dependence, see Eq. (3) or Appendix A for further details. For defi-
niteness, in what follows, the modal coefficients are defined by scaling the amplitudes
with the amplitude of the lateral component of the displacement vector as seen in
Eq. (4). This scaling can, however, be chosen freely.

u(n)
m (x) = U(n)

m exp
(
k(n)

m x
)

= ū(n)
m W (n)

m exp
(
k(n)

m x
)

v(n)
m (x) = V (n)

m exp
(
k(n)

m x
)

= v̄(n)
m W (n)

m exp
(
k(n)

m x
)

w(n)
m (x) = W (n)

m exp
(
k(n)

m x
)

= w̄(n)
m W (n)

m exp
(
k(n)

m x
)

w
′(n)
m (x) = W

′(n)
m exp

(
k(n)

m x
)

= w̄
′(n)
m W (n)

m exp
(
k(n)

m x
)

φ(n)
m (x, r) = Φ(n)

m (r) exp
(
k(n)

m x
)

= φ̄(n)
m (r)W (n)

m exp
(
k(n)

m x
)

ϑ(n)
m (x, r) = V(n)

m (r) exp
(
k(n)

m x
)

= ϑ̄(n)
m (r)W (n)

m exp
(
k(n)

m x
)

p(n)
m (x, r) = P(n)

m (r) exp
(
k(n)

m x
)

= p̄(n)
m (r)W (n)

m exp
(
k(n)

m x
)

Q(n)
lm (x) = Q(n)

lm exp
(
k(n)

m x
)

= Q̄(n)
lm W (n)

m exp
(
k(n)

m x
)

(3)

for l = 1, . . . , 4

The latter modal coefficients are expressed in Eq. (4)–(6), where the displacement
coefficients are derived from the linear equation system in Eq. (1), the force coeffi-
cients from the action integral (see Eq. (A.6)) and the velocity potential and acoustic
variables from, respectively, the continuity condition in Eq. (A.4) and standard linear
acoustics.

ū(n)
m =

U(n)
m

W (n)
m

=
d12d23 − d13d22

d11d22 − d12d21
=
Po(k3, k1)
Pd(k4, k2, k0)

w̄(n)
m =

W (n)
m

W (n)
m

= 1

v̄(n)
m =

V (n)
m

W (n)
m

= −d11d23 − d13d21

d11d22 − d12d21
=
Pe(k4, k2, k0)
Pd(k4, k2, k0)

w̄
′(n)
m =

W
′(n)
m

W (n)
m

= k(n)
m

(4)

where Po(k3, k1) is an odd polynomial in k3 and k1, Pe is an even polynomial and
Pd an even polynomial in the denominator. The coefficients of each polynomial are
defined from the linear equation system in Eq. (1).

Q̄(n)
1m = k(n)

m ū(n)
m + mνv̄(n)

m + νw̄(n)
m

Q̄(n)
2m =

1 − ν
2

[
k(n)

m v̄(n)
m − mū(n)

m

]
+

1
12
µ2

[
2k(n)

m (1 − ν)v̄(n)
m + 2k(n)

m (1 − ν)mw̄(n)
m

]

Q̄(n)
3m = − 1

12
µ2

[
k3(n)

m w̄(n)
m − (2 − ν)m2k(n)

m w̄(n)
m − (2 − ν)mk(n)

m v̄(n)
m

]

Q̄(n)
4m =

1
12
µ
[
k2(n)

m w̄(n)
m − m2νw̄(n)

m − mνv̄(n)
m

]

(5)

φ̄(n)
m (r) =

Φ
(n)
m (r)

W (n)
m

= −iΩγ


dJm

(
κ(n)

m r
)

dr

∣∣∣∣∣∣∣∣
r=1



−1

Jm(κ(n)
m r)

ϑ̄(n)
m (r) = k(n)

m φ̄(n)
m (r) p̄(n)

m (r) = iΩγφ̄(n)
m (r)

(6)
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2.2. Properties of modal coefficients

By virtue of the symmetry of the waveguide (wave-pairs) it is seen that the modal
coefficients in Eq. (4)–(6) have certain even/odd properties in k. For instance, ū(n)

m
and w̄

′(n)
m are seen to be odd functions of k, while v̄(n)

m and w̄(n)
m are seen to be even

functions. Likewise, if we consider the remaining modal coefficients in Eq. (5)–(6)
we can divided these into classes of similar properties – consistent with the definition
by D. J. Mead in [29]. Hence, the modal coefficients can be divided into classes of
odd properties in k (Class A) and of even properties in k (Class B), as seen in Eq. (7).

Class A – odd:
{
ū(n)

m Q̄(n)
2m Q̄(n)

3m w̄
′(n)
m ϑ̄(n)

m (r)
}

Class B – even:
{
Q̄(n)

1m v̄(n)
m w̄(n)

m Q̄(n)
4m p̄(n)

m (r)
}

(7)

From these classes some interesting properties can be observed. First, associated
modal force/displacement coefficients are always of opposite Class e.g. ū(n)

m and Q̄(n)
1m.

This is obvious as their product (and energy flow) must change sign when waves in
the opposite direction are considered, see e.g. [11, 17, 29]. Second, if the amplitudes
are scaled with U(n)

m rather than W (n)
m the Class A components, as defined here, become

Class B components and vice versa. If, on the other hand, they are scaled with V (n)
m

the Class definitions remain as defined here. This entails that the Class properties of
the components may change (even ⇔ odd) but always generic for all components in
the Class. These Class properties are, fortunately, generic properties of any symmetric
waveguide.

3. (Bi-)orthogonality relation

In the previous section it was discussed that a fluid-filled shell with no mean flow
constitutes a symmetric waveguide with convenient even/odd properties for its modal
coefficients. Application of these properties are, based on e.g. [3, 15, 17, 21], hypothe-
sised to reduce the complexity of the fluid-filled shell problem and permit derivation of
essential formulae important to the physical interpretation of symmetric waveguides.
Initially, we consider the conventional reciprocity relation in Eq. (B.1), formulated for
any two general solutions at any two arbitrary locations; x = a and x = b, see e.g.
[21]. Derivation of the reciprocity relation for the fluid-filled shell can be found in [2].
The structure of this relation is dictated by the variational principle, which constitutes
the correct pairs of generalised forces and displacements necessary to assemble the
reciprocity relation. By virtue of ’by parts integration’ each pair contains components
of each Class (A and B) and the correctness of the formulation of forces/displacements
is ensured through the Hamiltonian derivation.

If the reciprocity relation is written for any two free waves it reduces to the con-
ventional orthogonality relation, see e.g. [16, 21–27, 33], which is characterised by
wavenumbers k(n)

m , k( j)
m and the modal response of Eq. (3). The relation thereby ex-

pands to Eq. (8) − shown in non-dimensional form with arbitrary amplitudes W (n)
m and
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W ( j)
m .

[
Q̄(n)

1mū( j)
m + Q̄(n)

2mv̄( j)
m + Q̄(n)

3mw̄( j)
m + µQ̄(n)

4mw̄
′( j)
m + i

ρ

γ3µΩ

∫ 1

0
p̄( j)

m (r)ϑ̄(n)
m (r)rdr

−Q̄( j)
1mū(n)

m − Q̄( j)
2mv̄(n)

m − Q̄( j)
3mw̄(n)

m − µQ̄( j)
4mw̄

′(n)
m − i

ρ

γ3µΩ

∫ 1

0
p̄(n)

m (r)ϑ̄( j)
m (r)rdr

]
(8)

× W (n)
m W ( j)

m

[
exp([k(n)

m + k( j)
m ]b) − exp([k(n)

m + k( j)
m ]a)

]
= 0

where the integral reduces to Lommel’s integral which has a convenient analytical so-
lution, see e.g. [18, 20].

Since the amplitudes are arbitrary and a , b the relation is satisfied only when ei-
ther of the expressions in square brackets are satisfied. The latter expression appears
from the limits in the reciprocity relation and is satisfied only for opposite going waves
of the same properties i.e. n = − j (≡ k(n)

m = −k( j)
m ), and is therefore of no further inter-

est. Equating to zero the former expression gives the modal (coefficient) orthogonality
relation, which can by the Class properties be shown not to be satisfied for n = − j and
to be trivial, nonetheless satisfied, for n = j.

The trivial case, n = j, is not an authentic relation between waves of the dispersion
equation since no degenerate roots exist in undamped conservative waveguides (as
considered here). This was studied in [32] where it was shown that dispersion curves
(waves) do not intersect but rather veer away or lock into complex (attenuating) waves
to be unlocked again at higher frequencies. Nevertheless, intersection occurs (only)
in the special case when waves transform from one type to another e.g. at cut-on
frequencies (k = 0), where, for instance, decaying waves transform to propagating.
Hence, the modal orthogonality and thereby the conventional orthogonality relation
in Eq. (8) satisfying n = j is not complete in its definition of orthogonality of waves.
This entails that the modal orthogonality relation may be generalised further.

3.1. Derivation of the bi-orthogonality relation

Following [28] we consider the modal orthogonality relation for any two distinct
wavenumbers, k(l)

m and k( j)
m .

[
Q̄(l)

1mū( j)
m + Q̄(l)

2mv̄( j)
m + Q̄(l)

3mw̄( j)
m + µQ̄(l)

4mw̄
′( j)
m + i

ρ

γ3µΩ

∫ 1

0
p̄( j)

m (r)ϑ̄(l)
m (r)rdr l , − j

−Q̄( j)
1mū(l)

m − Q̄( j)
2mv̄(l)

m − Q̄( j)
3mw̄(l)

m − µQ̄( j)
4mw̄

′(l)
m − i

ρ

γ3µΩ

∫ 1

0
p̄(l)

m (r)ϑ̄( j)
m (r)rdr

]
= 0 (9)

Now, subtract the latter by the modal orthogonality relation from Eq. (8) and let l
be the opposite going wave of n such that k(l)

m = k(−n)
m = −k(n)

m , then the identities in
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Eq. (10) hold by virtue of the Class properties in Eq. (7).

Class A: ū(l)
m = −ū(n)

m Q̄(l)
2m = −Q̄(n)

2m Q̄(l)
3m = −Q̄(n)

3m

w̄
′(l)
m = −w̄

′(n)
m ϑ̄(l)

m (r) = −ϑ̄(n)
m (r)

Class B: Q̄(l)
1m = Q̄(n)

1m v̄(l)
m = v̄(n)

m w̄(l)
m = w̄(n)

m

Q̄(l)
4m = Q̄(n)

4m p̄(l)
m (r) = p̄(n)

m (r)

(10)

Employing the latter identities we arrive at the reduced relation in Eq. (11) valid for
n2 , j2.

Q̄( j)
1mū(n)

m + µQ̄( j)
4mw̄

′(n)
m =

i
ρ

γ3µΩ

∫ 1

0
p̄( j)

m (r)ϑ̄(n)
m (r)rdr + Q̄(n)

2mv̄( j)
m + Q̄(n)

3mw̄( j)
m

n2 , j2 (11)

This relation comprises two relations as the indices n and j are interchangeable – fol-
lowing directly from the derivation. The relation(s) is denoted “The bi-orthogonality
relation” which is valid for an elastic fluid-filled cylindrical shell with no mean flow
and is, to the best of the authors’ knowledge, derived here for the first time. The bi-
orthogonality relation (either one) provides the complete definition of (bi-)orthogonali-
ty of waves of different magnitude i.e. orthogonality of wave-pairs, and holds also for
the special case of degenerate wave-pairs, k(± j)

m = k(±n)
m = 0, where waves transform

e.g. from decaying to propagating waves.
The corresponding orthogonality relation valid for any two waves of the dispersion

equation is written as in Eq. (12) in terms of the modal response. Note that the r-
dependence of the acoustic variables are omitted hereinafter.

[
Q( j)

1mu(n)
m + µQ( j)

4mw
′(n)
m

− i
ρ

γ3µΩ

∫ 1

0
p( j)

m ϑ(n)
m rdr − Q(n)

2mv( j)
m − Q(n)

3mw( j)
m

]x=b

x=a
= 0

n , j (12)

Comparing the conventional orthogonality relation in Eq. (8) with the orthogonality
relation in Eq. (12) (and the corresponding one with interchanged indices) it is seen
that the conventional orthogonality relation is separated into two relations. As will be
discussed in Sec. 6.3 the (bi-)orthogonality relation is a much stronger statement than
the conventional orthogonality relation from the viewpoint of physical interpretation
and application − especially in forced vibration problems as will be seen in Sec. 4.

Further, it is clear from this derivation, in particular Eq. (10), that given the Class
properties it is straightforward to derive the (bi-)orthogonality relation for symmetric
waveguides as it follows directly from the Classes i.e. the kinematic variables of Class
A gather (with their respective counterparts) on one side of the equality sign and the
force variables of Class A (also with their respective counterparts) on the other, see
Eq. (11).

Finally, useful limit cases can be retrieved from the bi-orthogonality relation for the
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elastic fluid-filled cylindrical shell. For instance, we can retrieve the bi-orthogonality
relation for the empty shell by letting ρ go to zero and γ to infinity or for the classical
Bernoulli-Euler (BE) beam by assuming an empty shell, vibrating in breathing mode
(m = 0) with no Poisson coupling (ν = 0) between u and w or for the acoustic duct by
letting ρ and γ go to infinity. The corresponding bi-orthogonality relations are shown
in Eq. (13). Remark that the bi-orthogonality relation for the acoustic duct reduce to
orthogonality of cylindrical functions (Bessel-functions).

Q̄( j)
1mū(n)

m + µQ̄( j)
4mw̄

′(n)
m − Q̄(n)

2mv̄( j)
m − Q̄(n)

3mw̄( j)
m = 0 (Empty shell)

µQ̄( j)
4m=0w̄

′(n)
0 − Q̄(n)

3m=0w̄( j)
0 = k( j)2

k(n) + k( j)3
= 0 (Bernoulli-Euler beam) (13)

∫ 1

0
p̄( j)

m ϑ̄(n)
m rdr =

∫ 1

0
Jm(κ( j)

m r)Jm(κ(n)
m r)rdr = 0 (Acoustic duct)

for n2 , j2

Notice here that the relation for the empty shell and BE beam, also derived in [17],
constitutes algebraic equations because the shell/beam is a 1D waveguide and supports
a finite number of waves − 8 and 4, respectively. The relation for the acoustic duct,
used in [3], is, however, formulated on integral form as it is a continuous waveguide
in r (2D) and thereby captures infinitely many waves. For the fluid-filled shell the
relation is on mixed algebraic-integral form because the waveguide is a composite
waveguide comprising both 1- and 2D components. Finally, note that verification of
each of these relations can easily be done by substituting any two waves (not opposite
going, ±k) of their dispersion equation into the relation.

3.2. Generalisation of the (bi-)orthogonality relation for symmetric waveguides

From Sec. 3.1 it follows that the general reciprocity relation for the fluid-filled
shell with no mean flow can be used to formulate the orthogonality relation and fur-
ther the bi-orthogonality relation for wave-pairs by utilising symmetry of the waveg-
uide (Class properties). This generalisation is therefore valid for eigenfunctions of any
symmetric waveguide.

For a waveguide with the aforementioned symmetry properties the generalised forces
and displacements can be formulated in terms of modal coefficients with Class proper-
ties similar to those defined in Sec. 2.2. For the nth free wave, displacements, U(n)(x),
and forces, Q(n)(x), may be written as in Eq. (14).

U(n)(x) = U(n) f (n)(x) =

(
Ū(n)

A
Ū(n)

B

)
U(n) f (n)(x)

Q(n)(x) = LB/AU(n)(x) =

(
Q̄(n)

B
Q̄(n)

A

)
U(n) f (n)(x)

(14)

where U(n)(x) is a function of the coordinate, x, along the waveguides’ propagation di-
rection, U(n) is the amplitude vector, f (n)(x) is a harmonic function, U(n) is the scaling
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amplitude and Ū(n)
A/B and Q̄(n)

A/B are the modal coefficients with Class A and B proper-
ties. Note that the modal coefficients may be im-/explicit functions of variables not in
the propagation direction such as frequency and spatial coordinates. Further, Q(n)(x)
is derived from the generalised displacements through a differential operator of ’Class
derivatives’, LB/A, meaning that Ū(n)

A transforms to Q̄(n)
B and Ū(n)

B to Q̄(n)
A when acted

on by the differential operator. Hence, the elements of U(n) corresponds directly to the
elements of Q(n) as discussed in Sec. 2.2 i.e. Ū(n)

A ∼ Q̄(n)
B and Ū(n)

B ∼ Q̄(n)
A .

From these generalised forces and displacements, the general reciprocity relation is
formulated as the inner product, 〈·, ·〉, between force/displacement vectors. The con-
ventional orthogonality relation is then retrieved from the general reciprocity relation
by considering any two free waves, n and j, as seen in Eq. (15).

〈(
U( j)(x)
Q( j)(x)

)
,

(
Q(n)(x)
−U(n)(x)

)〉∣∣∣∣∣∣
x=b

x=a
= < 

U( j)
A

U( j)
B

Q( j)
B

Q( j)
A


,



Q(n)
B

Q(n)
A

−U(n)
A

−U(n)
B

 >U( j)U(n)
[
f ( j)(x) f (n)(x)

]x=b

x=a
= 0 (15)

where the sign in front of U(n)(x) can be placed arbitrarily and ¯ is omitted here and in
what follows.

As implied by the inner product, modal coefficients are integrated over explicit
variables not in the propagation direction as seen, for instance, for the acoustic part in
Eq. (11), the acoustic duct in Eq. (13), the elastic cylinder of general cross-section in
[28] or the elastic layer in [15, 16, 23]. Thus, as implied by the inner product, Eq. (15)
is valid for any waveguide symmetric in the propagation direction.

As before, since the amplitudes are arbitrary for free-waves and a , b, only the square
brackets are of interest. Again, the harmonic functions ensure that

[
f ( j)(x) f (n)(x)

]x=b

x=a
=

0 only for opposite going waves (k( j)
m = −k(n)

m ), whereas the modal orthogonality rela-
tion, Eq. (16), is ensured for all other waves of the dispersion equation. As discussed,
there exist no degenerate roots in the dispersion equation of undamped conservative
symmetric waveguides, see e.g. [32], and so Eq. (16) does not constitute the complete
definition of orthogonality of waves in symmetric waveguides.

< 

U( j)
A

U( j)
B

Q( j)
B

Q( j)
A


,



Q(n)
B

Q(n)
A

−U(n)
A

−U(n)
B

 > = 0 n , − j (16)

Instead, to arrive at the bi-orthogonality relation, we expand the relation to wave-
pairs rather than individual waves and apply linearity of the inner product as seen in

12



Eq. (17).

< 

U( j)
A

U( j)
B

Q( j)
B

Q( j)
A


,



Q(n)
B

Q(n)
A

−U(n)
A

−U(n)
B

 > = < 

U( j)
A

U( j)
B

Q( j)
B

Q( j)
A


,



Q(−n)
B

Q(−n)
A

−U(−n)
A

−U(−n)
B

 > = 0

m

< 

U( j)
A

U( j)
B

Q( j)
B

Q( j)
A


,





Q(n)
B

Q(n)
A

−U(n)
A

−U(n)
B


±



Q(−n)
B

Q(−n)
A

−U(−n)
A

−U(−n)
B



 > = 0

n2 , j2 (17)

Again, confer to the Class properties of the modal coefficients the following identities
hold:

Q(−n)
A = −Q(n)

A U(−n)
A = −U(n)

A Q(−n)
B = Q(n)

B U(−n)
B = U(n)

B

Substituting these into Eq. (17) the bi-orthogonality relation for wave-pairs is ex-
pressed as in Eq. (18).

< 

U( j)
A

U( j)
B

Q( j)
B

Q( j)
A


,





Q(n)
B

Q(n)
A

−U(n)
A

−U(n)
B


±



Q(n)
B

−Q(n)
A

U(n)
A

−U(n)
B



 > = 0 n2 , j2 (18)

Now, consider either of the latter ± cases we arrive at the bi-orthogonality relation
formulated for wave-pairs. The upper in Eq. (19) is the + case and the lower the −
case.

< 

U( j)
A

U( j)
B

Q( j)
B

Q( j)
A


, 2



Q(n)
B
0
0
−U(n)

B

 > ⇒
〈(

U( j)
A

Q( j)
A

)
,

(
Q(n)

B
−U(n)

B

)〉
= 0

〈(
U( j)

B
Q( j)

B

)
,

(
Q(n)

A
−U(n)

A

)〉
= 0

n2 , j2 (19)

Note that since the sign is arbitrary (discussed earlier) each relation can be obtained
from the other by a simple index interchange. In conclusion, it is clear that each pair
of ± waves is bi-orthogonal to any other wave-pair. This simply means that the set

of Class B functions
(
U(± j)

B
Q(± j)

B

)
is bi-orthogonal to the set of Class A functions

(
Q(±n)

A
−U(±n)

A

)
,

where ± j and ±n indicate wave-pairs.
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Finally, the corresponding orthogonality relation is expressed as in Eq. (20), formu-
lated in terms of its modal response.

〈(
U( j)

A
Q( j)

A

)
,

(
Q(n)

B
−U(n)

B

)〉
U( j)U(n)

[
f ( j)(x) f (n)(x)

]x=b

x=a
= 0 n , j (20)

4. Green’s matrix

By definition Green’s matrix is the general solution to the inhomogeneous prob-
lem with a point force/source (modelled as a delta-function) applied at an arbitrar-
ily chosen excitation point, (ξ, r0), inside the domain under consideration, see e.g.
[7, 8]. In this paper, a tailored modal Green’s matrix is derived, which satisfy the
interfacial conditions at the fluid-structure interface. Since Green’s matrix is de-
rived for each circumferential mode, ring sources distributed with the circumferen-
tial wavenumber are considered. From the reciprocity relation in Eq. (B.1) it is clear
that there is a total of 5 fundamental loading conditions. For the fluid-filled shell
the response to the load vector; q01

m =
⌊
q01

1m, q
01
2m, q

01
3m,T

01
m

⌋T
= b−δ(x − ξ), 0, 0, 0cT

constitutes the first row in Green’s matrix, the second row is the response to; q02
m =

b0,−δ(x − ξ), 0, 0cT , the third to; q03
m = b0, 0,−δ(x − ξ), 0cT , the fourth (bending mo-

ment) to; q04
m =

⌊
0, 0,− ∂δ(x−ξ)

∂ξ
, 0

⌋T
and the fifth to an acoustic monopole given as;

q05
m =

⌊
0, 0, 0,− 1

r δ(x − ξ)δ(r − r0)
⌋T

, since the acoustic domain is continuous in r.

For linear boundary value problems as the one treated in this section the superposition
principle in terms of the auxiliary Green’s matrix is a strong tool in solving general
forcing problems and, in particular, when introducing Boundary Integral Equations,
see e.g. [9, 10]. The general response to an arbitrary load/source is retrieved through
its convolution with Green’s matrix as shown in Eq. (21) for the problem treated in
this paper. Derivation of the properties of Green’s matrix/function can be found in e.g.
[7, 8].

um(x, r) =

∫ b

a

∫ 1

0
Gm(x, ξ, r, r0)qm(ξ, r0)r0dr0dξ (21)

where Gm(x, ξ, r, r0) is the kernel of the convolution (Green’s matrix) and um(x, r) is
the forced response to the arbitrary load/source, qm, formulated in (ξ, r0).

To obtain the general solution of the forced vibration problem (Green’s matrix) the so-
lution ansatz from Eq. (3) is expanded on its modes and the coordinate shift x̂ = x − ξ
is introduced. The shift ensures alignment of the origin with the excitation point, ξ,
such that symmetry of the infinite waveguide (general solution) is retained. Due to
the symmetry, the general solution adopts the Class properties of Eq. (7) also in the x-
coordinate, where the content of the Classes are determined by the component loaded,
see [29]. Note here that in this general set-up symmetry of each mode is not ensured
since the relation between positive and negative going waves (wave-pairs) is yet to be
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established. This relation is introduced in Sec. 4.3.

Now, using symmetry of the infinite waveguide the initial problem can, straightfor-
wardly, be reformulated into a homogeneous problem with a set of both homogeneous
and inhomogeneous boundary conditions at the excitation point, see e.g. [34]. This
corresponds to dividing the shell into two semi-infinite segments separated at the ex-
citation point. The set of boundary conditions constitute continuity in all variables
across the two semi-infinite domains (homogeneous) except for a unit-jump in the
loaded component (inhomogeneous), formulated as; − 1

2 sgn(x − ξ), due to symmetry
of the waveguide.

4.1. Derivation of modal amplitudes

Consider a radial point force applied on the shell wall with the circumferential
wavenumber, m, and in accordance with the latter i.e. with a unit-jump and continuity
in all other variables at x→ ξ. Since Class B functions, by definition, ensure continu-
ity (even functions), the continuity conditions at x → ξ are formulated only for Class
A functions. For these functions continuity is ensured only when passing zero at the
excitation point and so the set of boundary conditions reduce to Eq. (22). Note that
since Q3m is loaded by an odd function in x and an even in k the components of the
Classes of Eq. (7) interchange with respect to k but remain for x, while for a load in
Q1m the components interchange with respect to x but remain for k.

u03
m =

∞∑

n=1

u03(n)
m = 0 w

′03
m =

∞∑

n=1

w
′03(n)
m = 0

Q03
2m =

∞∑

n=1

Q03(n)
2m = 0 ϑ03

m (r) =

∞∑

n=1

ϑ03(n)
m (r) = 0

Q03
3m =

∞∑

n=1

Q03(n)
3m = −1

2
sgn(x − ξ)

x→ ξ (22)

where (x, ξ) is omitted as the equations are formulated at the boundary for x → ξ
and 03 indicates that the unit-jump is applied in Q3m − the third fundamental loading
condition.

From Eq. (22) it appears that there are only five equations but infinitely many modal
amplitudes to be determined. Conventionally, the number of waves are truncated to a
finite, usually relatively low, number of waves (7-10 waves) and the remaining equa-
tions are found by averaging e.g. through Galerkin orthogonalisation, see [2]. Instead
the bi-orthogonality relation can be used to decouple the system into modal equations
similar to what has already been done for the circumferential modes.

Following [17] we multiply each of the five equations in Eq. (22) with its as-
sociated jth modal force/-displacement and sum the conditions according to the bi-
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orthogonality relation to arrive at Eq. (23).

∞∑

n=1

[
Q( j)

1mu03(n)
m + µQ( j)

4mw
′03(n)
m

− i
ρ

γ3µΩ

∫ 1

0
p( j)

m ϑ03(n)
m rdr −Q03(n)

2m v( j)
m − Q03(n)

3m w( j)
m

]
=

1
2

w( j)
m

(23)

where (r) on the acoustic variables is omitted and further, only the right segment of
the semi-infinite shell is considered for simplicity. Thus, for x → ξ with x > ξ such
that sgn(x − ξ) and exp

(
k(n)

m (x − ξ)
)

approach 1, the equation may be written in terms
of modal coefficients, see Eq. (24).

∞∑

n=1

[
Q̄( j)

1mū(n)
m + µQ̄( j)

4mw̄
′(n)
m

− i
ρ

γ3µΩ

∫ 1

0
p̄( j)

m ϑ̄(n)
m rdr − Q̄(n)

2mv̄( j)
m − Q̄(n)

3mw̄( j)
m

]
W03(n)

m W03( j)
m =

1
2

w̄( j)
m W03(n)

m

(24)

Note here that only the modal amplitudes preserve the load index as the sum in square
brackets is invariant to load and amplitude. Comparing this sum to Eq. (11) it is seen
to contain the bi-orthogonality relation and is therefore denoted the modal relation,
R̄(n, j)

m , defined as in Eq. (25), whereas its physical meaning is discussed in Sec. 6.3.

R̄(n, j)
m = Q̄( j)

1mū(n)
m + µQ̄( j)

4mw̄
′(n)
m − i

ρ

γ3µΩ

∫ 1

0
p̄( j)

m ϑ̄(n)
m rdr − Q̄(n)

2mv̄( j)
m − Q̄(n)

3mw̄( j)
m

where
{
R̄(n, j)

m | n2 , j2
}

= {0}
(25)

Now, Eq. (24) can be simplified by applying the modal relation in Eq. (25) in which it
is stated that for n2 , j2 the waves are bi-orthogonal and the relation equates to zero.
Thus, we arrive at Eq. (26).

R̄(n,n)
m W03(n)

m =
[
Q̄(n)

1mū(n)
m + µQ̄(n)

4mw̄
′(n)
m

− i
ρ

γ3µΩ

∫ 1

0
p̄(n)

m ϑ̄(n)
m rdr − Q̄(n)

2mv̄(n)
m − Q̄(n)

3mw̄(n)
m

]
W03(n)

m =
1
2

w̄(n)
m

(26)

from which it is straightforward to solve explicitly for the modal amplitudes, see
Eq. (27). In addition, we note from the derivation that n can be chosen freely such
that we arrive at a set of uncoupled equations for n ∈ N. Recall that w̄(n)

m ≡ 1 in this
paper, see Eq. (4).

W03(n)
m =

1
2

w̄(n)
m

R̄(n,n)
m

n ∈ N (27)

From the derivation it is seen that the problem of finding modal amplitudes can be
decomposed into an explicit algebraic equation for each modal amplitude by means of
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the bi-orthogonality relation. Remark that this decomposition method, using proper
(bi-)orthogonality relations, is analogue to what has been done for the acoustic duct
in [3], the elastic layer in [15, 16] and the beam, empty shell and helical spring in [17].

For the limit cases in Eq. (13) the load-independent modal relation, R̄(n,n)
m , from Eq. (25)

reduce to Eq. (28). For the case of an acoustic duct the definition of φ̄(n)
m (r) is different

than that of Eq. (6) and cannot be retrieved from the limits used in Eq. (13). See [3]
for details.

R̄(n,n)
m = Q̄(n)

1mū(n)
m + µQ̄(n)

4mw̄
′(n)
m − Q̄(n)

2mv̄(n)
m − Q̄(n)

3mw̄(n)
m (Empty shell)

R̄(n,n)
0 = µQ̄(n)

4m=0w̄
′(n)
0 − Q̄(n)

3m=0w̄(n)
0 =

1
6
µ2k(n)3

(Bernoulli-Euler beam) (28)

R̄(n,n)
m = −i

ρ

γ3µΩ

∫ 1

0
p̄(n)

m ϑ̄(n)
m rdr =

ρ

γ2µ
k(n)

m

∫ 1

0
Jm

(
κ(n)

m r
)2

rdr (Acoustic duct)

Remark that R̄(n,n)
m belongs to Class A by virtue of the product between odd/even func-

tions such that the amplitudes in Eq. (27) are also Class A.

4.2. Green’s matrix – Remaining loading conditions

To formulate Green’s matrix for the complete set of fundamental loading condi-
tions and thereby ensure compatibility with any arbitrary forcing condition the modal
amplitudes for the remaining structural and acoustic fundamental loading conditions
are derived following the procedure in Sec. 4.1. However, to get skew-symmetric/-
symmetric elements in Green’s matrix the applied loads are scaled as shown in Eq. (29).
Again we consider only the right-hand semi-infinite shell (x→ ξ with x > ξ) and may
therefore omit (x, ξ). Note that the radial delta-function of the acoustic monopole
cannot be reformulated further due to lack of symmetry.

Q01
1m = −1

2
Q02

2m = −1
2

Q04
4m = − 1

2µ
ϑ05

m (r, r0) = − 1
2r0

γ2µ

ρ
δ(r − r0) (29)

From these loading conditions the governing equation for the remaining modal ampli-
tudes become

R̄(n,n)
m W01(n)

m = −1
2

ū(n)
m R̄(n,n)

m W02(n)
m =

1
2

v̄(n)
m

R̄(n,n)
m W04(n)

m = −1
2

w̄
′(n)
m R̄(n,n)

m W05(n)
m =

1
2

i
γΩ

p̄(n)
m

∣∣∣
r=r0

(30)

By comparing Eq. (30) with Eq. (26) where only the right-hand-side change due to
the generic property of R̄(n,n)

m (independent of the applied load), it is seen that the
amplitudes of any fundamental loading condition can be expressed in terms of any
other fundamental loading condition by a simple modal scaling. This conveniently
allow us to express the modal amplitudes in Eq. (30) via, for instance, the modal
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amplitudes of the radial force, see Eq. (31), in which w̄(n)
m ≡ 1. Again, we note the

Class properties of the amplitudes.

Class A: W03(n)
m =

1
2

w̄(n)
m

R̄(n,n)
m

W02(n)
m = v̄(n)

m
W03(n)

m

w̄(n)
m

W05(n)
m =

i
γΩ

p̄(n)
m

∣∣∣
r=r0

W03(n)
m

w̄(n)
m

= − φ̄(n)
m

∣∣∣
r=r0

W03(n)
m

w̄(n)
m

Class B: W01(n)
m = −ū(n)

m
W03(n)

m

w̄(n)
m

W04(n)
m = −w̄

′(n)
m

W03(n)
m

w̄(n)
m

(31)

In this paper acoustic sources are of particular interest as accurate solutions for these
loads are challenging to find as compared to the solution for structural loadings. Using
the bi-orthogonality relation we can, following the latter procedure, easily derive the
modal amplitudes directly for arbitrary acoustic sources and thereby obviate the con-
volution. Thus for an arbitrary acoustic source, q(r), applied at ξ the modal amplitudes
are given as in Eq. (32) for x→ ξ with x > ξ.

ϑm(r) = −1
2

q(r) ⇒ W (n)
m = i

ρ

γ3µΩ

W03(n)
m

w̄(n)
m

∫ 1

0
p̄(n)

m (r)q(r)rdr (32)

where the amplitudes of the arbitrary source are also expressed through the amplitudes
of a radial force as in Eq. (31).

Returning to the modal amplitudes in Eq. (31) with w̄(n)
m ≡ 1 Green’s matrix can also

be expressed via the amplitudes from a radial force, see Eq. (33).

Gm(x, ξ, r, r0) =

∞∑

n=1

L(n)
m (r, r0)W03(n)

m exp
(
k(n)

m (x − ξ)
)

(33)

where L(n)
m (r, r0) is the modal coefficient/amplitude scaling matrix shown in Eq. (34).

L(n)
m (r, r0) = U(n)

m (r0)Ū(n)T

m (r) = (34)


−ū(n)
m

v̄(n)
m

w̄(n)
m

−w̄
′(n)
m

− φ̄(n)
m

∣∣∣
r=r0





ū(n)
m

v̄(n)
m

w̄(n)
m

w̄
′(n)
m

φ̄(n)
m



T

=



−ū2(n)
m −ū(n)

m v̄(n)
m −ū(n)

m w̄(n)
m −ū(n)

m w̄
′(n)
m −ū(n)

m φ̄(n)
m

−g12 v̄2(n)
m v̄(n)

m w̄(n)
m v̄(n)

m w̄
′(n)
m v̄(n)

m φ̄(n)
m

−g13 g23 w̄2(n)
m w̄(n)

m w̄
′(n)
m w̄(n)

m φ̄(n)
m

g14 −g24 −g34 −w̄2′(n)
m −w̄

′(n)
m φ̄(n)

m

g15|r=r0
− g25|r=r0

− g35|r=r0
g45|r=r0

− φ̄(n)
m

∣∣∣
r=r0

φ̄(n)
m



where U(n)
m is the modal amplitude scaling vector defined from Eq. (31), Ū(n)

m is the
modal coefficient vector and gn j are elements of the L(n)

m matrix indicating (skew-
)symmetry in that g12 refers to another entry in the matrix i.e. g12 = −ū(n)

m v̄(n)
m . Recall

that φ̄(n)
m is a function of r.
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From the coefficient/amplitude matrix in Eq. (34) it is seen that the scaling intro-
duced in Eq. (29) gives rise to skew-symmetric and symmetric elements in Green’s
matrix according to the Class properties. This (skew-)symmetry of the matrix is, if
substituted into the general framework of reciprocity, a manifestation of excitation
and observation points being interchangeable. The immediate manifestation of the
(skew-)symmetry of Green’s matrix is, however, that forces and displacements are
interchangeable for correct scaling of the load, meaning that applying a radial force
and measuring axial displacement is identical to applying an axial force and measur-
ing radial displacement. In particular, correct scaling applies to acoustic sources and
bending loads whereas the scaling between other structural forces is unity. Finally,
there may be other convenient scalings that are relevant depending on application but
is, however, not pursued further here.

To analyse the near- and far-field distribution and energy exchange between trans-
mission paths or generalise to finite/compound shells through the Boundary Integral
Equations Method (BIEM), see e.g. [9, 10], the generalised forces associated with
Green’s matrix must be calculated. These generalised forces, Qm, are defined from
the generalised displacements, Gm in Eq. (33), through a differential operator, Lm, as
seen in Eq. (35). However, using the ansatz and introducing the modal coefficients of
Eq. (5)–(6) Lm becomes a simple transformation map such that Qm can be assembled
similar to Gm in Eq. (33).

Qm(x, ξ, r, r0) = LmGm(x, ξ, r, r0) (35)

Thus, each row of Gm and Qm, which constitute the Green’s matrices, is associated
with the response (and forces) to a set of external unit forces.

In conclusion, it is seen from the latter derivation that we only need to calculate the
modal amplitudes for one fundamental loading condition from which we are able to
formulate the complete Green’s matrix using a simple modal scaling and an index
interchange to provide an arbitrary number of amplitudes for the analysis. Through
this method the formulation of Green’s matrix becomes computationally cheap – even
for an arbitrarily large number of waves, which implies that any desired accuracy of
the solution can be obtained independent of source, frequency and/or circumferential
wavenumber. This is discussed further in Sec. 6.

4.3. Decay and radiation conditions

The tailored Green’s matrices introduced here does not yet satisfy decay and radia-
tion conditions nor the solution for the left semi-infinite segment and the general solu-
tion is therefore incomplete. Following the same procedure for the left segment, x < ξ,
it is easily seen from the derivation in Sec. 4.1 that to cope with both semi-infinite seg-
ments the amplitudes of Eq. (31) simply adopt the sign-function from Eq. (22).

To satisfy decay and radiation conditions only wavenumbers which decay away
from the source and purely imaginary wavenumbers with positive group velocity,
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cg = dω
dki

> 0, are chosen, see [11] for details. To satisfy these conditions for arbitrary
x, only the wavenumbers for x > ξ are introduced, while correctness of the wavenum-
bers for x < ξ is ensured also by a sign-function such that k≺� = sgn(x− ξ)kx>ξ, where
k≺� satisfy decay/radiation conditions. Here the sign-function establishes the correct
relationship between negative and positive going waves (wave-pairs). In addition, it is
also convenient to introduce the identity; sgn(x − ξ)(x − ξ) = |x − ξ|.

Introducing the latter conditions and identities to the Class variables in Eq. (7) it is,
by virtue of their properties, given that only Class A functions adopt the sign-function
such that, for instance, R̄(n,n)

m becomes sgn(x− ξ)R̄(n,n)
m , ū(n)

m becomes sgn(x− ξ)ū(n)
m etc.

Further, exp
(
k(n)

m sgn(x − ξ)(x − ξ)
)

becomes exp
(
k(n)

m |x − ξ|
)

by virtue of the identity,
which implies that Gm(x, ξ, r, r0) becomes Gm(|x − ξ|, r, r0). Thus, for the feasible so-
lution the modal amplitudes in Eq. (31) are rewritten to Eq. (36) where we have used
the definition w̄(n)

m ≡ 1.

Class A: W03(n)
m =

1
2

1

R̄(n,n)
m

W02(n)
m = v̄(n)

m W03(n)
m

W05(n)
m =

i
γΩ

p̄(n)
m

∣∣∣
r=r0

W03(n)
m (36)

Class B: W01(n)
m = −sgn(x − ξ)ū(n)

m W03(n)
m W04(n)

m = −sgn(x − ξ)w̄′(n)
m W03(n)

m

Using these identities, the general solution (expansion on waves) ensures a generic
solution for all loading conditions since the modal response has adopted the Class
properties of Sec. 2.2 also in x, by virtue of the identity; sgn(x− ξ)(x− ξ) = |x− ξ|. In
previous papers, see e.g. [2], a generic solution was ensured manually by choosing an
appropriate ansatz specific to the loading condition.

With the versatile Green’s matrices assembled using modal decomposition through
the bi-orthogonality relation we may readily explore e.g. the energy flow for arbi-
trary sources/loads or the near-field transmission path analysis for ideal excitations
using the total energy flow derived for general forcing in Appendix C and for Green’s
matrices in Eq. (37).

N0F
∑

m (x, ξ) =
πχm

2
ΩIm

(
Q0F

1mu0F∗
m + Q0F

2mv0F∗
m

+ Q0F
3mw0F∗

m + µQ0F
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where χm=0 = 2, χm,0 = 1 and each term defines the different transmission paths
i.e. membrane paths, u, v (axial and membrane shear), flexure paths, w,w′ (transverse
shear and bending) and acoustic path, ϑ. See Appendix C for details.

The near-field analysis for an acoustic monopole (0F = 05) is seen in Fig. 2 for
f = 2kHz, m = 3 and M = 25 waves retained in the expansion.
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Fig. 2: Energy flow for an acoustic monopole at f = 2kHz, m = 3 and with M = 25 waves retained in the
expansion. Notice the near- to far-field transition around x ≈ 5. The case is chosen based on [2] and the
scaling to dimensional quantities can be found in Appendix A.

As indicated in the figure the near-field analysis, in which the energy rapidly escapes
from the fluid into membrane shear (torsional) energy in the shell wall, is consider-
ably different than the far-field analysis in which the energy distributes almost equally
between the axial and torsional components (only one propagating wave at this fre-
quency). The transition between near- and far-field is seen to be around x ≈ 5 (scaling
to dimensional quantities is found in Appendix A). This case is chosen based on and
validated against [2].

In the following, completeness and convergence of this new approach, as more
waves are included in the expansion, is studied to ensure correctness and study accu-
racy of the Green’s matrices.

5. Completeness and convergence of Green’s matrices

The method of eigenfunction expansion as used in this paper is a subject widely
explored in literature and is likely the most commonly used solution form for waveg-
uide problems. Among others it has been successfully applied in both elastodynamics,
[2, 6, 29, 35], acoustics, [3], and vibro-acoustics, [1–4, 6, 12]. The completeness of
the solution to the linear problem considered here is ensured by virtue of the derivation
through the variational principle which provides the complete set of basis functions
(eigenfunctions and corresponding eigenvalues), see e.g. [7, 8, 36, 37] for details on
completeness.

Convergence of general eigenfunction expansions for transcendental problems as con-
sidered here have been discussed in numerous papers e.g. [38–40] and applied math-
ematics books e.g. [7, 8, 37, 41]. With interest in these references we discuss con-
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vergence of Green’s matrices as more waves are included in the expansion in order
to ensure correctness of the solution and understand its (possible) limitations in en-
gineering applications. Related to these limitations is the discussion of the validity
range of the linearised (acoustic) fluid model of an inviscid fluid. As known, see
e.g. [42], the important parameter, which characterises the viscous effects in station-
ary fluid-structure interaction, is the frequency-dependent penetration depth. Roughly
speaking, it specifies the thickness of a viscous boundary layer at the surface of a vi-
brating structure. The model of a thin elastic shell filled with an inviscid compressible
fluid with no mean flow provides infinitely many evanescent waves, and their decay
rate grows with the sequential number. As soon as a wave, predicted by this modelling,
significantly decays within the distance equal to the penetration depth, the model of
an inviscid acoustic medium becomes inadequate. Therefore, the convergence study
within this model serves only to clarify mathematical limitations of the solution space,
rather than physical limitations of the model.

The modal decomposition method used in e.g. [3, 15, 17], and presented here for
the fluid-filled shell builds on decomposition of field variables as evident from the
previous section. Upon decomposition each modal contribution becomes independent
on the number of waves included in the expansion. This solution form is regarded as
the strong (physical) form since the contribution of a specific mode should not change
depending on the number of included waves as in the weak solution (integral average).
Thus, using the strong form, convergence is achieved when continuity and unit-jump
at x → ξ is satisfied and not when the contribution of each wave (amplitude) is con-
verged (weak solution). This is discussed and illustrated further in Sec. 6.

Unfortunately, this solution form does not ensure monotonic convergence. This is,
however, of no additional concern since the calculation of modal amplitudes by this
method is computationally cheap. Hence the study of convergence becomes straight-
forward and is eased even further by the explicit formulation of the amplitudes which
permit a strict mathematical study of convergence.

Particular complications in the convergence study are caused by acoustic sources as
the associated solution must comply not only with a unit-jump in x but also with a
delta-function in r. The unit-jump is, in general, of no significant concern as the (in-
finitely many) real-valued waves decay exponentially in x. This is, however, not the
case for the delta-function in the radial direction as radial standing waves built up and
thereby contribute ’harmonically’ to the expansion on Bessel-functions. Hence de-
caying waves are needed to properly resemble the radial distribution of the acoustic
variables in the near-field, making the acoustic domain more sensitive to evanescent
waves.

5.1. Uniform convergence

In this convergence study the interest lies within uniform convergence of Green’s
matrix and its derivative(s) as solutions obeying uniform convergence have convenient
properties such as term-wise differentiation and integration, see e.g. [7, 8, 37, 41].
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This is important because the associated force matrix is derived from Green’s matrix
through a differential operator (Green’s matrices), as seen in Eq. (35).

It is well-known from theory of wave propagation in infinite continuous waveg-
uides that there is a finite number of propagating and attenuating waves (purely imag-
inary and complex wavenumbers in this paper – indicated by iR and C, respectively),
while there is an infinite number of decaying waves (real-valued wavenumbers indi-
cated by R), see e.g. [10, 43]. Thus, the expansion of the components of Green’s
matrix in Eq. (33) can be expressed on the form shown in Eq. (38), where n counts the
number of propagating waves, j the number of attenuating waves and h the number
of decaying waves such that M = N + J + H is the number of waves included in the
expansion. We note here that J is an even number since the attenuating waves exist in
complex conjugated wave-pairs, see Fig. 1.

um(x, r) =

N∑

n

a(n)iR
m u(n)iR

m (x, r) +

J∑

j

a( j)C
m u( j)C

m (x, r) +

H∑

h

a(h)R
m u(h)R

m (x, r) (38)

It is widely acknowledged that only propagating waves carry energy in the far-field
and by virtue all propagating waves must be included in the expansion to ensure uni-
form convergence of the variables in the far-field. In the near-field, that is; around the
excitation point, ξ, where decay of the exponents of attenuating and decaying waves
have little effect, more waves are needed to recover the applied load and uncover the
correct distribution of energy between alternative transmission paths. The pair(s) of
complex conjugated attenuating waves (−kRe±kIm) usually contribute significantly and
should therefore always be included in the expansion for near-field analysis. Hence,
the study of convergence of Green’s matrices reduce to the contribution of the infinite
number of decaying waves.

Since the basis functions are chosen in accordance with the decay (and radiation)
conditions the expansion on real-valued waves is continuous, bounded and a mono-
tonic decreasing sequence in x. Thus, by Abel’s test, see e.g. [7, 8], the structural
components can be shown to converge uniformly everywhere only if the sequence of
amplitudes, {a(n)

m }, that is; modal coefficients times amplitudes, converge to zero −
equivalent to near-field convergence. Note, however, that confer to the sign-function
introduced by the loading in Eq. (22), the component with the applied unit-jump fails
to be continuous at ξ, while all other variables will be continuous everywhere as they
satisfy continuity in the limit (M → ∞).

It can easily be shown for any structural component of Green’s matrices that all
sequences of {a(n)

m } are convergent for any loading (structural/acoustic), making them
uniformly convergent. This can be observed by considering the limit of the amplitudes
in Eq. (31) times the modal coefficients in Eq. (4)–(5) as the wavenumbers go towards
those of the acoustic duct (zeros of the derivative of the Bessel-function). This is
discussed further in Sec. 6.

The solution to the cylindrical wave equation is also continuous and bounded in
the interval considered here (r ∈ [0; 1]), while for r ∈ R the solution is bounded
only if κ(n)

m ∈ R. Since the Bessel-function is not a monotonic decreasing sequence
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Abel’s test fails and by further inspection it can be shown that the acoustic variables
do not converge uniformly for any loading. For instance, it is seen from Fig. 3(a)
that the amplitude sequence of the acoustic velocity, that is; ϑ̄(n)

m W (n)
m from ϑ(n)

m =

ϑ̄(n)
m W (n)

m Jm(κ(n)
m r) exp(k(n)

m x), diverge for an acoustic monopole (as expected). However,
as the acoustic energy redistribute between alternative transmission paths the profile
of the acoustic variables smoothens rapidly away from the excitation point due to the
decay in x. In general, the decay is faster than the divergence of the acoustic variables
such that the profiles become sufficiently smooth and thereby uniformly convergent at
some small distance, ε, away from the excitation point.

If instead we consider an integral representation of the acoustic variables equivalent
to the average volumetric acoustic flow (or acoustic mass flow) it is easily verified that
the amplitude sequence is convergent for all loadings, see Fig. 3(b). Thus, once again
by Abel’s test it is shown that this integral representation of the acoustic variables (r-
independent) converge uniformly everywhere in x. The same can be observed for a
dipole source (not treated here).

Fortunately, uniform convergence of the integral is sufficient for problems solved
using Green’s matrices as it implies that uniform convergence holds true, not only for
all energy flow components, but also for the solution to arbitrary sources − provided
that the arbitrary source is sufficiently smooth.
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Fig. 3: Amplitude sequence for an applied acoustic monopole at f = 2kHz, m = 3, r0 = 0.95. (a) Diverg-
ing amplitude sequence of the acoustic velocity (without Bessel-function) and (b) converging amplitude
sequence of the average volumetric acoustic flow.

In conclusion, the structural variables as well as the integral representation of the
acoustic variables converge uniformly everywhere i.e. {x ∈ R}, except for the loaded
variable (unit-jump) where uniform convergence holds true for {x ∈ R\{ξ}}. For the
acoustic variables uniform convergence holds for {x ∈ R\{ε}, r ∈ [0; 1]}, where ε is
some small region around the excitation point determined by the smoothness of the
acoustic profile (decay rate).
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5.2. Convergence rate
In particular, for eigenfunctions with equally (or almost equally) dispersed ze-

ros e.g. harmonic- and Bessel-functions, convergence is, in general, slower than for
functions with zeros concentrated at the ends of intervals, say Legendre or Cheby-
shev polynomials. Nonetheless, as only propagating waves (having purely imaginary
wavenumbers) contribute harmonically to the expansion in x, convergence in the prop-
agation direction may be achieved relatively fast. On the other hand, convergence in
the acoustic domain may be slow as seen in Fig. 3.

The relative convergence rate between components of Green’s matrices can be as-
sessed considering the divergence/convergence rate of the modal coefficients as all
components of Green’s matrices are formulated with the same amplitude and spatial
distribution by virtue of the formulation in terms of modal coefficients, see Eq. (33).
First, it can easily be verified from Eq. (4) compared with Eq. (5) that the kinematic
variables converge faster than the forces and the structural variables faster than the
acoustic variables. Second, it can be shown by inspection of the amplitudes in Eq. (31)
that for structural loadings all variables converge, in general, faster for membrane
loads (axial and torsion) than for flexural loads − depending on frequency and circum-
ferential wavenumber. This has the physical interpretation that flexural loads excite
more fluid-originated waves than the membrane loads and thereby cause a stronger
interaction between fluid and structure than what is observed for membrane loads.

Applying acoustic sources, especially dipole (not discussed here), gives an even
slower convergence than the flexural loads and in addition the convergence depends
heavily on the location of the applied delta-function, r0, as illustrated in Fig. 4. For the
acoustic loads it translates also to a strong fluid-structure coupling and, in particular,
to the sensitivity of a fluid-loading as it tends to excite more higher order waves than
what is observed for structural loadings. This is mainly caused by the presence of
standing waves in the radial direction and does indeed emphasise the importance of
including the heavy fluid-loading format in deriving tailored Green’s matrices.

From Fig. 4 it is easily seen that convergence of the applied source is faster for in-
creasing r0. It is, on the other hand, more interesting to note that for each r0 the
solution has a number of (almost) converged points that are equally distributed with a
specific number of waves. Even though it may be difficult to determine the first point
of convergence it is easy to determine the remaining convergence points as the dis-
tance between is inversely proportional to the location of the source i.e. Mpack = 1

r0
,

as can be verified from Fig. 4. These equally spaced convergence points are con-
trolled by what we denote a ’wave-pack’ which is characterised by being (almost)
self-equilibrating. This simple relation between the source location and size of the
wave-pack arise from the dispersion of the zeros of the Bessel-function and empha-
sise the slow converging nature of such functions. Though the study of wave-packs
is not considered further here there are still interesting aspects of this subject to be
studied in future work, for instance, in relation to acceleration of convergence.

Nevertheless, the rate of convergence of Green’s matrices is, in general, of no ad-
ditional concern using this method since adding additional terms to the expansion is
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Fig. 4: Convergence of the average volumetric acoustic flow when an acoustic monopole is applied at
different locations for f = 2kHz, m = 3 and x→ ξ. Convergence rate is seen to increase with increasing r0.

extremely computational cheap and further, as this method provides the correct modal
contribution the feasible solution is considered to be the solution in which all relevant
(non-zero) amplitudes are included. Thus, accelerating convergence is not straight-
forward but is, however, of great practical interest for successive calculations such as,
for instance, energy flow calculations and application of the Boundary Integral Equa-
tions Method (BIEM) in order to ensure e.g. monotonic convergence or increase the
computational efficiency. Nonetheless, taking advantage of the simple algebraic equa-
tions for the modal amplitudes in Eq. (36) there are ways of accelerating convergence,
for instance, by rearranging terms according to their modal contribution (magnitude),
considering wave-packs and their equivalent response or through alternative manipu-
lations of Bessel-functions. This study is, however, a subject of future work.

6. Discussion

By virtue of the latter convergence study, limitations of the solution space have
been defined and the near-field energy flow can now be studied freely using this
method. This is done for acoustic mono- and dipoles in [13, 14]. In this section we
strive, however, to highlight additional advantages, besides the explicit formulation of
the modal amplitudes, of using modal decomposition as well as discuss the physical
interpretation of the bi-orthogonality relation.

6.1. Unconverged and numerical inaccuracy of solutions
As discussed in the previous section a convergence study can be carried out straight-

forwardly. However, for practical engineering purposes such studies are rarely con-
ducted, and the number of waves is rather chosen as a compromise between accu-
racy and computational time. Fortunately, unconverged results are, when using this
method, visible directly in, for instance, the energy flow graphs as illustrated in Fig. 5.
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Fig. 5: Applied acoustic monopole at f = 2kHz, m = 3, r0 = 0.95. (a) Unconverged energy flow for M = 5
and (b) converged energy flow for M = 25. The unconverged solution shows that the injected energy has
leaked into non-loaded components at the excitation point (ξ = 0) such that continuity is not satisfied.

As seen the unconverged results show that the injected energy has leaked into non-
loaded components at the excitation point (ξ = 0) and, therefore, continuity across
this point is not satisfied. This is only related to the near-field solution as the far-
field in Fig. 5(a) and (b) is converged when all propagating waves are included in the
expansion, as discussed in Sec. 5.1. In addition, the total energy flow is seen to be
constant also in the near-field which implies that only propagating waves contribute
to the total energy flow as discussed in [1, 6] and explicitly shown in Sec. 6.3.

Fortunately, since convergence targets are known by virtue of the formulation this
method immediately permits, by different means, error calculations such that the study
of convergence becomes redundant upon application of the method. Thus, for any
desired truncation of waves, M, we can calculate various relative errors that indicate
the accuracy of the current solution. This is treated in Sec. 6.2.

Remark that no such indications are given when the problem is solved using the
weak solution form because continuity and applied loads are strict conditions to be
satisfied in the integral average formulation, see e.g. [2]. Hence, error predictions are
not possible using the weak solution as the convergence targets are unknown such that
monitoring convergence of amplitudes for increasing M is a necessity for approximat-
ing the accuracy of the solution.

Similar to the unconverged results lack of numerical accuracy of the solution can also
be seen in the energy flow graphs, Fig. 6. In particular, the difference between the
unconverged solution in Fig. 5(a) and the solution in Fig. 6 is the non-uniformity of
the total energy in the near-field, where the total energy remains constant in the un-
converged solution. The cause of this inaccuracy of the solution arise from insufficient
precision of wavenumbers of the higher order decaying waves and is therefore a local
effect only present in the close vicinity of the excitation point. Thus at relatively short
distance from ξ = 0 the graphs of Fig. 5 and 6 become identical.

As will be discussed in detail in Sec. 6.3 and 6.4 these higher order waves does not
satisfy the bi-orthogonality relation to the same degree as the lower order waves and
does thereby introduce artificial energy into the total energy flow in Fig. 6 through the
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Fig. 6: Numerical inaccuracy errors caused by insufficient precision of wavenumbers of the higher order
decaying waves. Applied monopole at f = 2kHz, m = 3, r0 = 0.95 and M = 50.

cross-terms of the flexural components, making the solution appear unstable. From
Sec. 6.3 it will also be clear that the total energy flow must always be constant when
using this method as seen, for instance, for the unconverged solution in Fig. 5(a) and
in effect non-uniformities may be perceived as measures of numerical inaccuracy of,
in particular, the wavenumbers. The cause of insufficient precision of wavenumbers is
anticipated to arise from the merging of zeros (wavenumbers) and poles in the disper-
sion equation which causes inadequate accuracy of the zeros.

Finally, notice that the three graphs in Fig. 5 and 6, which present the same case
only with a different number of waves included in the expansion, highlight important
accuracy features of the solution. These features are highlighted only by virtue of the
modal decomposition method which makes them visible in the energy flow graphs but
more importantly makes them measurable in terms of errors and accuracy.

6.2. Error calculations

Based on the results observed for unconverged solutions and wavenumber accu-
racy it is expedient to derive a set of error measures to predict the accuracy of the
current solution. In what follows we, however, confine ourselves to consider only
the unconverged solution and three particular error measures, though more can be de-
fined: one measure for the applied load (volumetric flow for acoustic monopole), one
for the applied energy flow (or power) and one for the continuity conditions. These
error measures are all based on components that converge uniformly as discussed in
Sec. 5.1, why the error calculations are considered in the framework of the supremum
(maximum) norm, indicated by ‖ · ‖∞. In the following, the error calculations are pre-
sented only for an acoustic monopole but can be formulated for all load cases and
reduce conveniently for structural loadings. Further, we consider only errors at the
excitation point as x→ ξ (the supremum norm).

For the acoustic monopole we consider the average volumetric flow (discussed in
Sec. 5.1) as the acoustic variables themselves does not converge in the supremum
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norm. The error in the prescribed flow can then be expressed as in Eq. (39), while
the energy flow error is expressed as in Eq. (40). Recall, that for sufficiently smooth
arbitrary loads the supremum norm/error of the acoustic variables can be evaluated
directly since the convolution integral converge uniformly as discussed in Sec. 5.1.
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(40)

where (x, r) is omitted and ˆ indicates the truncated eigenfunction expansion. Note
that variables without ˆ are known convergence targets.

On the other hand, deviations in continuity of energy flow can also be calculated.
In this case the supremum norm is expressed as in Eq. (41).
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∥∥∥∞ = max
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m|, |Nv
m|, |Nw

m |, |Nw′
m |

}
⇒ |N%
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m

∥∥∥∞
|N

∑
m |

(41)

where
∥∥∥NC

m

∥∥∥∞ is the maximum value (at x→ ξ) of the non-loaded (continuity) energy
flow components from Eq. (C.1) and N

∑
m the total energy flow from Eq. (37) which

according to Fig. 5 is correct even for unconverged solutions (when all propagating
waves are included).

In accordance with Fig. 5(a), Eq. (41) gives the relative error between the maxi-
mum continuity jump (torsion − dashed blue) and the total energy flow (solid black),
while Eq. (40) gives the relative error between the energy in the fluid (solid green) and
the total energy flow approximated through the current expansion of p̂m. In the latter
it may be expedient also to compared with the total energy as for the continuity error,
however, the error measure becomes slightly more complex and the result is in general
the same when considering acoustic sources. Finally, note that we can also calculate
continuity errors of the Class A forces similar to that in Eq. (41) as well as capture
numerical inaccuracy issues as that illustrated in Fig. 6.
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In general, we note that force and continuity error(s) are more accurate since we
know the convergence targets in advance as oppose to the (approximated) energy flow
in Eq. (40), which may vary depending on the convergence of p̂m. In particular, errors
based on forces alone are more conservative – especially for the acoustic variables.
According to the discussion in Sec. 5 this is obvious as they converge slower than
the energy components because the kinematic variables converge faster than the force
variables. Further, as the variables does not converge monotonically we can not nec-
essarily expect that a higher number of waves provide a smaller error as seen, for
instance, from Fig. 4. However, if a set of wavenumbers are chosen according to
the ’wave-packs’ discussed in Sec. 5.2 a monotonic decrease of the errors may be
observed. This also constitutes an interesting topic for future studies.

6.3. Relation between the total energy flow and R̄(n, j)
m

In the following we consider the total energy flow for the different loading condi-
tions of Green’s matrix (where the index 0F is omitted). In effect, the general formula-
tion in Eq. (C.2) can be expanded in terms of modal coefficients as in Eq. (37) and/or
in terms of modes (modal coefficients times amplitudes) as in Eq. (42).
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or by a convenient interchange of summation indices as in Eq. (43).
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The structure of the total energy flow and the bi-orthogonality relation are similar and
suggests a definite relation between the energy flow components and the components
in the bi-orthogonality relation. In particular, we note from the structure of Eq. (37)
the resemblance to R̄(n, j)

m , Eq. (25) – shown in Eq. (44) in terms of modes.

R(n, j)
m = R̄(n, j)

m W (n)
m W ( j)

m n , j

= Q( j)
1mu(n)

m + µQ( j)
4mw

′(n)
m − i

ρ

γ3µΩ

∫ 1

0
p( j)

m ϑ(n)
m rdr − Q(n)

2mv( j)
m − Q(n)

3mw( j)
m = 0

(44)

Note that since the decay and radiation conditions are satisfied for Green’s matrix the
restrictions on the bi-orthogonality relation reduce from n2 , j2 to n , j.

Now, utilising Class properties and the bi-orthogonality relation we can show that
Eq. (43) is related to the imaginary part of Eq. (44) and further that the expression
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for the total energy flow can be reduced significantly. To show this we first establish
the domain and codomain (see e.g. [41]) of the modal forces/displacements (that is;
modal coefficients times amplitudes) i.e. the output domain (codomain) of the modal
forces/displacements for a given wavenumber (domain). This mapping is established
straightforwardly considering the Class properties of the modal coefficients and ampli-
tudes of Eq. (4)–(6) and (31), respectively. To generalise we consider in the following
the domain and codomain of the modal Class A and B functions. Recall here that the
content of the Classes depends on the loading condition (controlled by the amplitudes)
as discussed in Sec. 4.2. As there are three wave types: propagating, attenuating and
decaying (indicated with iR, C/C∗ and R as in Eq. (38)), we consider, separately, for
each of these domains the corresponding codomain. The Class A and B functions map
from the domains iR, R, C/C∗ to the codomains as defined in Eq. (45).

f A(k(n)
m ) = f A(n)

m :



iR → iR
R → R
C → C
C∗ → C∗


f B(k(n)

m ) = f B(n)
m :



iR → R
R → R
C → C
C∗ → C∗


(45)

where C∗ indicates the conjugated domain of C such that the notation C∗ → C∗

implies that f A/B
(
k(n)∗

m

)
= f A/B

(
k(n)

m

)∗
. In addition, we note that the set of Class A

functions are endomorphic (domain and codomain are similar), while the set of Class
B functions for propagating waves maps from iR to R, caused by the evenness of the
Class B functions i.e. (ik)2 = (−ik)2 = −k2. Further, it should be noted that as we
contrast acoustic variables (pressure times velocity) with the structural (force times
displacement) in Eq. (43) we need to multiply the codomains of ϑ by i. This is, how-
ever, compensated by the i on the fluid term in Eq. (43).

Returning to Eq. (44) and considering loading condition 0F = 02, 03, 05 such that the
components of index n in Eq. (44) belong to Class B functions we see from these maps
that for propagating and decaying waves the codomain is real, while for attenuating
waves conjugated pairs (−kRe ± kIm) exist in both domain and codomain. Thus, apply-
ing the conjugated operator to the Class B components we can reformulate Eq. (44) to
Eq. (46) which is then valid for n∗ , j instead. Recall the notation n∗ refers to k(n)∗

m .

Q( j)
1mu(n)∗

m + µQ( j)
4mw′(n)∗

m = Q(n)∗
2m v( j)

m + Q(n)∗
3m w( j)

m + i
ρ

γ3µΩ

∫ 1

0
p( j)

m ϑ(n)∗
m rdr n∗ , j (46)

Now, multiplying each side by exp
(
(k( j)

m + k(n)∗
m )|x − ξ|

)
we get

[
Q( j)

1mu(n)∗
m + µQ( j)

4mw′(n)∗
m

]
exp

(
(k( j)

m + k(n)∗
m )|x − ξ|

)
=

[
Q(n)∗

2m v( j)
m + Q(n)∗

3m w( j)
m + i

ρ

γ3µΩ

∫ 1

0
p( j)

m ϑ(n)∗
m rdr

]
exp

(
(k( j)

m + k(n)∗
m )|x − ξ|

) (47)
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which reduce to Eq. (48) using the holomorphic properties of exponents and the inte-

gral i.e.
∫ 1

0 p( j)
m ϑ(n)∗

m rdr =

(∫ 1
0 p( j)∗

m ϑ(n)
m rdr

)∗
.

[
Q( j)

1mu(n)∗
m + µQ( j)

4mw′(n)∗
m

]
exp

(
(k( j)

m + k(n)∗
m )|x − ξ|

)
=

[
Q(n)

2mv( j)∗
m + Q(n)

3mw( j)∗
m + i

ρ

γ3µΩ

∫ 1

0
p( j)∗

m ϑ(n)
m rdr

]∗
exp

(
(k( j)∗

m + k(n)
m )|x − ξ|

)∗ (48)

Substituting Eq. (48) into Eq. (43) we immediately see that by addition of complex
conjugated functions only real values preserve. From this we recognise that using only
Class properties and the bi-orthogonality relation we have proven that cross-terms do
not contribute with energy to the total energy flow since they are self-equilibrating. As
these properties have previously (Sec. 3.2) been proven to be generic for symmetric
waveguides we have proven that the total energy flow in symmetric waveguides is in
fact a linear quantity obeying the principle of superposition.

Now, it is easy to show that R(n,n)
m is related to the total energy flow through its imag-

inary part (scaled by πχm
2 Ω). As it has now been proven that the total energy flow in

symmetric waveguides obey superposition it may be formulated as

N
∑
m =

πχm

2
Ω

∞∑

n=1

Im
([

Q(n)
1mu(n)∗

m + Q(n)
2mv(n)∗

m + Q(n)
3mw(n)∗

m + µQ(n)
4mw′(n)∗

m

+i
ρ

γ3µΩ

∫ 1

0
p(n)∗

m ϑ(n)
m rdr

]
exp

(
(k(n)

m + k(n)∗
m )|x − ξ|

))
(49)

Given that we only consider the imaginary part we see, using again the maps of
Eq. (45), that the identities in Eq. (50) hold. Here index A and B refer to the Class
properties of the functions (valid for 0F = 02, 03, 05).

Im
(
QA

1muB∗
m

)
= Im

(
QA

1m

)
uB

m Im
(
QB

2mvA∗
m

)
= −QB

2mIm
(
vA

m

)

Im
(
QB

3mwA∗
m

)
= −QB

3mIm
(
wA

m

)
Im

(
QA

4mw′B∗m

)
= Im

(
QA

4m

)
w′Bm

Im
(
pA∗

m ϑB
m

)
= −Im

(
pA

m

)
ϑB

m

(50)

These identities are easily verified for decaying waves where all components are real
and for propagating waves where Class B components are real and Class A compo-
nents purely imaginary such that the conjugated may be replaced by a sign change.
For attenuating waves, however, the identities do not hold but since they exist in
conjugated wave-pairs in both domain and codomain the imaginary parts cancel and
leaves only a real part when in the expansion. Thus, the attenuating waves are self-
equilibrating as they carry energy of the same magnitude but in opposite direction and
need therefore not be considered further here.

Hence the total energy in Eq. (49) reduces to Eq. (51) and can thereby be expressed
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in terms of R(n,n)
m , see Eq. (52).

N
∑
m =

πχm

2
Ω

∞∑

n=1

Im
([

Q(n)
1mu(n)

m − Q(n)
2mv(n)

m − Q(n)
3mw(n)

m + µQ(n)
4mw′(n)

m

−i
ρ

γ3µΩ

∫ 1

0
p(n)

m ϑ(n)
m rdr

])
exp

(
(k(n)

m + k(n)∗
m )|x − ξ|

)
(51)

m

N
∑
m =

πχm

2
Ω

∞∑

n=1

Im
(
R(n,n)

m

)
exp

(
(k(n)

m + k(n)∗
m )|x − ξ|

)
(52)

where we clearly see the linearity of the total energy flow and further that the ex-
ponents become real-valued for any wavenumber due to the complex conjugated and
may therefore be move outside the brackets. Again, we note that the attenuating wave-
pair carry energy in opposite direction.

Now, to assess each wave types contribution to the total energy flow we define for
the domains the corresponding codomains of R(n,n)

m . These maps can easily be estab-
lished from those in Eq. (45) since the product between even/odd functions is an odd
function such that R(n,n)

m adopts the endomorphic properties of the Class A functions.
Note, however, that this is true only when n = j as indicated in Eq. (53).

R(n,n)
m :



iR → iR
R → R
C → C
C∗ → C∗


(53)

Using these maps, it is straightforward to see that decaying waves do not have an
imaginary part and do thereby not contribute to the total energy flow while attenuating
wave-pairs produce energy in opposite directions as already discussed. Thus, it is
obvious that only propagating waves contribute to the total energy flow as discussed
in [1, 6], however, not shown explicitly as in this paper. The total energy flow may
then conveniently be reformulated to Eq. (54), where n counts only the propagating
waves and the exponents become unity.

N
∑
m =

πχm

2
ΩIm


N∑

n=1

R(n,n)
m

 =
πχm

2
ΩIm


N∑

n=1

R̄(n,n)
m

(
W (n)

m

)2
 (54)

This reformulation of the total energy flow emphasises that though the cross-terms
may produce component-wise energy they produce a zero net energy. This simpli-
fication of the total energy flow is derived based on Class properties and the bi-
orthogonality relation alone and is therefore generic for any symmetric waveguide
as they retain both Class properties and bi-orthogonality relations as discussed in
Sec. 3.2. Obviously, this can easily be derived also for loading condition 0F = 01, 04 as
the indices are interchangeable and further, also for the general solution not satisfying
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decay and radiation conditions.

As illustrated in e.g. Eq. (52), R(n,n)
m constitute the sum of modal energy of all transmis-

sion paths and includes both real and imaginary parts in which the imaginary part is
authentic energy according to the definition in [43], and the real part may be perceived
as pseudo-energy. Hence, R(n,n)

m is the total energy of each mode and may therefore be
denoted the ’Total modal energy’. In view of the latter it is appealing to also discuss
R(n,n)

m in the framework of the governing equation for the modal amplitudes for a single
point source in a homogeneous waveguide (Green’s matrix) as derived in Eq. (31) and
reprinted here (0F = 03).

R(n,n)
m = R̄(n,n)

m

(
W03(n)

m

)2

=
[
Q̄(n)

1mū(n)
m + µQ̄(n)

4mw̄
′(n)
m − Q̄(n)

2mv̄(n)
m − Q̄(n)

3mw̄(n)
m (55)

−i
ρ

γ3µΩ

∫ 1

0
p̄(n)

m ϑ̄(n)
m rdr

] (
W03(n)

m

)2
=

1
2

w̄(n)
m W03(n)

m

⇓

W03(n)
m =

1
2

w̄(n)
m

R̄(n,n)
m

(56)

As seen from Eq. (55) the relation from which we derive the modal amplitudes consti-
tutes a modal energy balance in which the ’Total modal energy’ conveyed through the
structure (left-hand-side of Eq. (55)) balances the energy injected into that particular
mode by external forcing (right-hand-side of Eq. (55)) such that only a unique choice
of modal amplitudes satisfy the energy balance.

In conclusion, we note that since R(n,n)
m is formulated in terms of a real and imaginary

part it always preserves both the correct phase and magnitude of each modal ampli-
tude such as to ensure the correct contribution of energy of each mode, see Eq. (56).
Further, it ensures the correctness of the Class properties and thereby correctness of
the solution for all loading conditions. It is, however, important to note that there is
found no direct relation between the real part of Rm (where Rm =

∑N
n=1 R(n,n)

m ) and the
discarded real-part of the total energy flow but since R(n,n)

m preserves the correct mag-
nitude and phase of the modal amplitudes we may regard R(n,n)

m as somewhat stronger
than the total energy flow. Thus, formulating Eq. (55) using the total energy flow as
defined in [43] will not provide the correct modal amplitudes.

Further, the interpretation of the energy balance in Eq. (55) suggests that a similar
balance may be formulated for unsymmetric waveguides and is a subject of the ongo-
ing work. As shown here we may expect that the relation is closely related to the total
energy flow.

6.3.1. Alternative derivation using Eq. (42)
From the direct expansion in Eq. (42) the zero energy contribution of cross-terms

is not immediately clear as this formulation has no immediate relation to the bi-
orthogonality relation because the cross-energies retain an imaginary part. However,
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as the relation between total energy flow and Rm from the previous section must of
course also hold using this formulation, the cross-energy must be self-equilibrating
when in the expansion. For consistency, we show using the formulation in Eq. (42)
that the total energy flow is self-adjoint by showing that the cross-energy satisfy conju-
gated symmetry i.e. N

∑
(n, j)

m = N
∑

( j,n)∗
m , which emphasize the self-equilibrating nature

of the cross-terms. To show this we need just to prove that the relation in Eq. (57)
holds.[

Q(n)
1mu( j)∗

m + Q(n)
2mv( j)∗

m + Q(n)
3mw( j)∗

m + µQ(n)
4mw′( j)∗

m

+ i
ρ

γ3µΩ

∫ 1

0
p( j)∗

m ϑ(n)
m rdr

]
exp

(
(k(n)

m + k( j)∗
m )|x − ξ|

)
=

[
Q( j)

1mu(n)∗
m + Q( j)

2mv(n)∗
m + Q( j)

3mw(n)∗
m + µQ( j)

4mw′(n)∗
m

+ i
ρ

γ3µΩ

∫ 1

0
p(n)∗

m ϑ
( j)
m rdr

]∗
exp

(
(k( j)

m + k(n)∗
m )|x − ξ|

)∗

(57)

Using again the holomorphic properties we get

Q(n)
1mu( j)∗

m + Q(n)
2mv( j)∗

m + Q(n)
3mw( j)∗

m + µQ(n)
4mw′( j)∗

m + i
ρ

γ3µΩ

∫ 1

0
p( j)∗

m ϑ(n)
m rdr

−Q( j)∗
1m u(n)

m − Q( j)∗
2m v(n)

m − Q( j)∗
3m w(n)

m − µQ( j)∗
4m w′(n)

m − i
ρ

γ3µΩ

∫ 1

0
p(n)

m ϑ
( j)∗
m rdr = 0

(58)

m

Q(n)
1mu( j)∗

m + µQ(n)
4mw′( j)∗

m − Q( j)∗
2m v(n)

m − Q( j)∗
3m w(n)

m − i
ρ

γ3µΩ

∫ 1

0
p(n)

m ϑ
( j)∗
m rdr =

Q( j)∗
1m u(n)

m + µQ( j)∗
4m w′(n)

m − Q(n)
2mv( j)∗

m − Q(n)
3mw( j)∗

m − i
ρ

γ3µΩ

∫ 1

0
p( j)∗

m ϑ(n)
m rdr

(59)

Again we use the Class properties (and maps in Eq. (45)) to remove the conjugate
operator on the left-hand-side of Eq. (59) (for 0F = 02, 03, 05) and since we are only
concerned with the cancelling of each cross-term with its self-adjoint counterpart (n ,
j) we note that the left-hand-side is zero by virtue of the bi-orthogonality relation.
Thus, Eq. (59) reduce to Eq. (60) which may then be reformulated to Eq. (61).

Q( j)∗
1m u(n)

m + µQ( j)∗
4m w′(n)

m − Q(n)
2mv( j)∗

m − Q(n)
3mw( j)∗

m − i
ρ

γ3µΩ

∫ 1

0
p( j)∗

m ϑ(n)
m rdr = 0 (60)

m
(
Q( j)

1mu(n)∗
m + µQ( j)

4mw′(n)∗
m − Q(n)∗

2m v( j)
m − Q(n)∗

3m w( j)
m − i

ρ

γ3µΩ

∫ 1

0
p( j)

m ϑ(n)∗
m rdr

)∗
= 0 (61)

The relation in brackets is similar to the left-hand-side of Eq. (59), in that the conju-
gated operator may be removed on the Class B functions and the equation is again zero
by virtue of bi-orthogonality as the indices are interchangeable, see Sec. 3.1. Thus,
the relation in Eq. (57) holds and the formulation in Eq. (42) is therefore self-adjoint,
confirming that the cross-energy equilibrate and does not contribute to the total energy
flow.
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6.4. Discussion of cross-energy in the transmission paths
As discussed in Sec. 6.3 the total energy flow is produced by the principal val-

ues of propagating waves. However, the energy contribution to each of the physical
transmission paths defined in Appendix C does not obey such simplifications. The
contribution to energy in each transmission path by these cross-terms are discussed in
the following with interest in the discussion of energy flow in evanescent waves for
beams, [44], and the discussion of energy in shells, [6].

First, we generalise the study of energy flow in transmission paths by introducing
a general modal energy flow component, denoted NT P(n, j)

m , in which we require that
n always refer to Class A components and j always to Class B components. Hence,
NT P(n, j)

m (with T P omitted hereinafter) represents any given transmission path from
Appendix C and is expanded as in Eq. (62) where n , j constitutes the cross-terms
and n = j the principal values.

Nm =

∞∑

n=1

∞∑

j=1

Im
(
Nm(k(n)

m , k( j)
m )

)
=

∞∑

n=1

∞∑

j=1

Im
(
N (n, j)

m

)
(62)

Now, to characterise the energy contribution of each cross-term to the transmission
paths, N (n, j)

m , we study, initially, the most general case where x , ξ by considering
the domain/codomain (maps) as previously see e.g. Eq. (45) and (53). The maps are
established straightforwardly using the Class maps from Eq. (45) and the simple map
of exponents. From these maps it can easily be shown that when any index (n or j) is
’subjected’ to a propagating wave cross-energy is produced no matter the origin of the
corresponding wave ( j or n, respectively) and the waves are said to interact in the sense
that they produce cross-energy. On the other hand, evanescent waves (attenuating and
decaying) do not interact in the sense of producing cross-energy because the imaginary
part is either zero (decaying/decaying) or self-equilibrating (attenuating/attenuating or
attenuating/decaying). Thus, in brief, we may characterise the contribution of cross-
energy to the energy in each transmission path (for x , ξ) as

{
Im

(
N (n, j)

m

)
| k(n)

m ∨ k( j)
m ∈ iR

}
, {0} ⇒ Energy contribution

{
Im

(
N (n, j)

m

)
| k(n)

m , k( j)
m < iR

}
= {0} ⇒ No energy contribution

(63)

where evanescent waves ’interacting’ with any other evanescent wave is regarded as
non-contributing since they have either no imaginary part or exist in conjugated pairs
and therefore produce a zero net energy flow in the expansion.

Now, by virtue of the energy contribution from the cross-terms, defined in Eq. (63),
we can simplify the expansion of Eq. (62) to Eq. (64), where n counts propagating
waves and δ jn is Kronecker’s delta.

Nm =

N∑

n=1

∞∑

j=1

Im
(
N (n, j)

m + (1 − δ jn)N ( j,n)
m

)
(64)
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As mentioned the energy contribution characterised in Eq. (63) may be perceived as
the most general case, however, for the special case of x → ξ where the exponents
goes to 1 for all cross-terms the contribution of cross-energy is reduced to half of
those in Eq. (63). For this particular case where we consider the loaded cross-section
it is interesting to note that only special configurations of waves interact and produce
energy. When considering the cross-energy contribution to the transmission paths at
the excitation point through the maps we see that only when a propagating wave is
’applied’ in the Class A components (index n) does it produce energy with all other
waves, while no energy is produced if the propagating wave is ’applied’ in the Class
B components (index j). In this special case we can say, in brief, that;

{
Im

(
N (n, j)

m

)
| k(n)

m ∈ iR
}
, {0} ⇒ Energy contribution

{
Im

(
N (n, j)

m

)
| k(n)

m < iR
}

= {0} ⇒ No energy contribution
(65)

where we recall that n refer to Class A components as defined in Eq. (62). Note that at
the excitation point the cross-energy balance the principal value(s) in the non-loaded
transmission paths and in the loaded transmission path the energy sums to the total
energy.

In conclusion, the maps in Eq. (45) permit the necessary knowledge to assess the
generation of total energy flow and cross-energy flow in the different transmission
paths. This conveniently allow us to simplify the total energy flow as well as the indi-
vidual transmission path energy flow equations such as to improve the computational
efficiency of these energy calculations. Again, this can easily be generalised to any
waveguide for which the Class properties persist.

7. Conclusions

In this paper the tailored Green’s matrices for an elastic cylindrical shell filled with
an inviscid compressible fluid without mean flow in time-harmonic vibrations have
been derived. The formulation of these matrices based on the canonical modal de-
composition method has been facilitated by use of the specially derived orthogonality
relations. These relations give explicit formulas for modal amplitudes and, therefore,
allow for detailed convergence and error estimation studies. The main novel results
presented in the paper are summarized as follows:

• The bi-orthogonality relation for the canonical model of the fluid-filled shell
is derived and generalised to any symmetric waveguide. This derivation re-
lies upon the division of all variables, defining the state of such a waveguide,
into two classes having opposite oddness/evenness properties with respect to
wavenumbers

• The completeness and convergence of Green’s matrices for the fluid-filled shell
is assessed

• The relation between the bi-orthogonality relation and total energy flow is de-
rived and explained
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• Simplified equations for the individual energy flow components are deduced
by studying energy contributions from cross-terms (i.e. related to different
wavenumbers) in the total energy flow

As mentioned above and discussed throughout the paper the present method to con-
struct Green’s matrices and analyse the energy flow is restricted to symmetric waveg-
uides. However, as several significant advantages over the conventional solution have
been discovered, it is relevant to explore the possibilities to generalise the method to
unsymmetrical waveguides such as, for instance, the fluid-filled shell with mean flow
or anisotropic shells. This task constitutes the subject of our on-going work.

Appendix A. Novozhilov-Gol’denweizer’s shell theory and standard linear acous-
tics

The detailed derivation of the equations can be found in [2] and the equations are
therefore only presented in brief here, however, formulated in non-dimensional form
assuming time-harmonic vibrations. To reformulate the following equations and non-
dimensional quantities into dimensional form the scaling shown in Eq. (A.1) must be
applied.

u(n)
m (x, θ) =

1
R

ũ(n)
m (x, θ)

v(n)
m (x, θ) =

1
R

ṽ(n)
m (x, θ)

Q(n)
lm (x, θ) =

1 − ν2

Eh
Q̃(n)

lm (x, θ)

for l = 1, 2, 3

Q(n)
4m(x, θ) =

1 − ν2

Eh2 Q̃(n)
4m(x, θ)

q(n)
lm (x, θ) =

1 − ν2

E
q̃(n)

lm (x, θ)

for l = 1, 2, 3

w(n)
m (x, θ) =

1
R

w̃(n)
m (x, θ)

φ(n)
m (x, θ, r) =

1
Rc f l

φ̃(n)
m (x, θ, r)

ϑ(n)
m (x, θ, r) =

1
c f l
ϑ̃(n)

m (x, θ, r)

p(n)
m (x, θ, r) =

1
c2

f lρ f l
p̃(n)

m (x, θ, r)

T (n)
m (x, θ, r) =

R
c f l

T̃ (n)
m (x, θ, r)

(A.1)

where the dimensional quantities are indicated by ˜ and the non-dimensional quanti-
ties are given in Eq. (3) and (A.6).

From the action integral the governing equations for free vibrations of a fluid-filled
shell are given in Eq. (A.2), the fluid’s motion in cylindrical coordinates in Eq. (A.3)
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and the continuity at the fluid-structure interface in Eq. (A.4).

−∂
2u
∂x2 −

1 − ν
2

∂2u
∂θ2 −

1 + ν

2
∂2v
∂x∂θ

− ν∂w
∂x
−Ω2u = −q1
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The generalised displacements (field variables) of Eq. (A.2)–(A.4) are associated with
a set of generalised forces as illustrated in Eq. (A.5).

Q1(x, θ) ∼ u(x, θ) Q2(x, θ) ∼ v(x, θ) Q3(x, θ) ∼ w(x, θ)

Q4(x, θ) ∼ ∂w(x, θ)
∂x

p(x, θ, r) ∼ ϑ(x, θ, r)
(A.5)

The generalised forces (with (x, θ, r) omitted) are also derived from the action integral,
see Eq. (A.6).
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Q4 =
µ

12

[
∂2w
∂x2 + ν

∂2w
∂θ2 − ν

∂v
∂θ

]

p = iΩγφ

where Ql (l = 1, . . . , 4) is, respectively, the membrane axial force, membrane shear
force (which produce a torsional moment), flexural transverse shear force, flexural ax-
ial bending moment and p is the acoustic pressure.
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To solve the partial differential equations for free waves, i.e. q1 = q2 = q3 = T = 0,
we substitute the ansatz of Eq. (3) into the governing equations and arrive at the de-
terminantal equation shown in Eq. (1) – also known as the dispersion equation. This
equation is then solved for the axial wavenumbers to provide a set of eigenfunctions,
from which the general solution can be assembled through the method of eigenfunc-
tion expansion. Note that the ansatz for the velocity potential is simplified from the
general Hankel-function to the Bessel-function as the solution must be bounded at
r → 0.

Due to axi-symmetry of the cylindrical shell and orthogonality of the circumferen-
tial eigenfunctions, exp(−imθ), the governing equation is uncoupled in the m-spectrum
and the dispersion equation is solved at each circumferential wavenumber, m ∈ Z
− indicated by the subscript. Each uncoupled dispersion equation contains, due to
presence of a compressible fluid, an infinite number of roots (wavenumbers), k(n)

m ,
associated with each frequency and circumferential wavenumber. Finally, due to the
uncoupling of m, the general solution is also found for each circumferential wavenum-
ber as an expansion on the wavenumbers, k(n)

m and the θ-dependence may therefore be
omitted hereinafter. For further details, see e.g. [2].

Appendix B. Reciprocity relation

Following [2] we can also derive the reciprocity relation in non-dimensional form
for an elastic fluid-filled cylindrical shell, see Eq. (B.1). This relation is valid for any
two general solutions, n and j, and its dimensional form can be obtained by scaling
with EhR2

1−ν2 .

[
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1m(x)u( j)
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m (x) + Q( j)
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+i
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∫ 1

0
p(n)

m (x, r)ϑ( j)
m (x, r)rdr

]x=b

x=a

(B.1)

Appendix C. Energy flow

From the reciprocity relation in Appendix B we can generalise to the energy flow
formulation which is valid for any general response, see e.g. [1, 2, 6, 43]. Following
[2] and reformulating to non-dimensional form the individual energy flow compo-
nents, which we associate with physical transmission paths, can be expressed in terms
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of their generalised (non-dimensional) forces and displacements as seen in Eq. (C.1).

Nu
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πχm

2
ΩIm(Q1mu∗m)

Nw
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πχm

2
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2
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Nv
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πχm

2
ΩIm(Q2mv∗m)

Nw′
m (x) =

πχm

2
ΩµIm(Q4mw′∗m )

(C.1)

where ∗ indicates the complex conjugated, χm=0 = 2 and χm,0 = 1. According to the
definitions in relation to Eq. (A.6), Nu, Nv, Nw and Nw′ constitutes the energy flow
in the structural transmission paths, respectively, axial membrane, shear membrane
(torsion), transverse shear and axial bending energy and Nϑ is the energy flow in the
acoustic transmission path.

The total energy flow is then defined as the summation of the energy flow of the
individual transmission paths, see Eq. (C.2).

N
∑
m (x) =

Axial︷ ︸︸ ︷
Nu

m (x) +

Torsion︷︸︸︷
Nv

m (x) +

Flexural︷              ︸︸              ︷
Nw

m (x) + Nw′
m (x) +

Acoustic︷︸︸︷
Nϑ

m(x) (C.2)

where the dimensional energy flow is obtained by scaling the non-dimensional com-
ponents with EhR

1−ν2 cstr. Similarly, to the case of beam bending within Bernoulli-Euler
theory, [43], the transverse shear and axial bending in the thin cylindrical shell consti-
tutes the flexural transmission path.

Appendix C.1. Reformulation of the acoustic energy flow

From Eq. (C.1) it is seen that the structural energy flow components are calculated
straightforwardly through algebraic equations. The acoustic energy flow is, on the
other hand, an integral equation which is numerically cumbersome. Nonetheless, this
integral equation can be reformulated to an algebraic equation as well using some
mathematical manipulations and the analytical solution of Lommel’s integral (Bessel
products), see e.g. [18–20].

The definition of the acoustic energy flow in non-dimensional form is given as

Nϑ(x) =
1
2
ρ

γ3µ
Re

(∫ 2π

0

∫ 1

0
p∗ϑrdrdθ

)
(C.3)

By decomposing the m-spectra, substituting the ansatz from Eq. (3) into Eq. (C.3)
and utilising the holomorphic properties of the exponential- and Bessel-function i.e.
Jm(κ( j)r)∗ = Jm(κ∗( j)r), we arrive at Eq. (C.4). Note that the acoustic energy flow is not
a linear quantity and thus the general solution (eigenfunction expansion) is considered.
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where ϑ̂(n)
m = −iΩγk(n)

m
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W ( j)
m exp(k( j)

m x)

and the integral can be recognised as Lommel’s integral which has an analytical solu-
tion, see e.g. [18–20].

Now, Eq. (C.4) can be rearranged into the convenient matrix form shown in Eq. (C.5).

Nϑ
m(x) =

πχm

2
ρ

γ3µ

∑
Re

(
N̂m(x)Hm

)
(C.5)

where N̂m(x) = p̂∗m(x)ϑ̂T
m(x), Hm =

∫ 1

0
Jm(r)J∗Tm (r)rdr

T is the transposed, p̂, ϑ̂ and J are M×1 vectors of the modes of p̂( j)
m , ϑ̂(n)

m and Jm

(
κ(n)

m r
)

and M is the number of waves retained in the expansion. N̂ and H are M×M matrices
and

∑
indicates the sum of all elements of the matrix.

In this matrix formulation we note that Hm holds conjugated symmetry meaning that
Hm is Hermitian (self-adjoint) i.e. Hi j

m = H ji∗
m which can be shown by applying the

holomorphic properties of the Bessel-function and integral. This allow us, whether the
integral is solved numerically or analytically, to reduce the number of computations
of the cumbersome integral by

(
1
2 − 1

M2

)
which is approximately ≈ 1

2 for large M.
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On the application of the bi-orthogonality relations for
analysis of linear dynamical systems

Lasse S. Ledeta,, Sergey V. Sorokina
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Abstract
The reciprocity and orthogonality relations are generally recognised as robust and
convenient tools for solving a broad range of forced/free wave propagation and vibra-
tion problems in elastodynamics, acoustics and structural dynamics. Undeservedly,
the more powerful bi-orthogonality relation remains relatively obscure in literature
despite it has been known for many years, though mainly in the context of the forced
Rayleigh-Lamb problem and recently also for shells and springs. The purpose of the
paper is to promote the bi-orthogonality relation as the means not only to solve, in a
surprisingly simple way, a much broader class of problems for semi-bounded domains
in linear dynamics (e.g. waveguides), but also to find solutions to fully bounded prob-
lems. In addition, the bi-orthogonality relation reveals analytical closed form solutions
for arbitrarily complicated waveguides under certain conditions. The usefulness of the
bi-orthogonality relation, which may be applied in any realm of physics, is illustrated
here using examples from waveguide theory, ranging from elementary 1D to advanced
3D composite waveguides.

Keywords:
Boundary Identity, Modal Projection, Boundary Integral Equations (BIE),
Waveguides, Eigenfrequency analysis

1. Introduction

Solving linear boundary value problems is one of the core subjects of mathematical
physics. These problems generally involve a set of equations for the domain (volume)
and a set of equations for the bounding surfaces (boundary conditions). In stationary
dynamics, whichever realm of physics is taken, these problems are either concerned
with unbounded/semi-bounded domains, typically known as wave propagation anal-
ysis or with fully bounded domains, typically known as the analysis of formation of
standing waves. In this paper, we consider how to efficiently solve fully bounded prob-
lems using symmetric semi-bounded domains (waveguides), where symmetry proper-
ties imply that eigenvalues (wavenumbers) exist in pairs such that −k(n) = k(−n) (i.e.
waves having identical properties but propagate/decay in opposite direction). This
class of problems is dealt with in many realms of physics such as optics, acoustics,
electromagnetics, seismics, quantum mechanics, structural dynamics etc.

The overwhelming majority of tools to solve these problems are essentially nu-
merical, such as the Boundary Element (BE), Finite Element/Wave Finite Element

Preprint resubmitted to Journal of Sound and Vibration May 22, 2019



(FE/WFE), Wave Based (WB), Semi-Analytical Finite Element (SAFE), Spectral El-
ement (SE), Scaled Boundary Finite Element (SBFE), Partial Wave Root Finding
(PWRF), Pseudo-Spectral Collocation (PSC) and Thin layer (TLM) methods. The
obvious advantage of these tools is the generality, which allows wave propagation
analysis in compound, inhomogeneous arbitrarily shaped domains. However, this gen-
erality is achieved at the expense of an insight into the underlying physics of formation
of propagating and standing waves. To retain this insight, one has to employ the an-
alytical methods even if it narrows the range of problems to, say, canonically shaped
piecewise homogeneous domains.

A valuable tool to attain insight into the underlying physics is the reciprocity the-
orem (or relation), which is very regularly explored both in theory and experiments,
e.g. [1–3]. Application of reciprocity thus finds thousands of applications in literature
to achieve both experimental, numerical and analytical advantages, see e.g. [2–8].
The pioneering work [4] presents the analytical reciprocity method in elastodynamics
and illustrates its application to solve a broad range of problems in waveguide theory.
The usefulness of the reciprocity relation becomes particularly appealing for semi-
bounded domains in which the symmetry property is preserved. As proven in [9] the
reciprocity relation for symmetric semi-bounded problems is composed of the pair of,
indeed much stronger, bi-orthogonality relations. These have been used for finding an-
alytical closed form solutions for a number of specific problems such as semi-infinite
elastic layers, fluid-filled shells, helical springs, elastic strips etc., see e.g. [9–17].
Moreover, it was also proven rigorously in [9] that the physical properties of the con-
stituents of the bi-orthogonality relation are explicitly related to the emanating energy.
Despite their significant mathematical advantage and strong physical interpretation its
application, oddly, appears only very occasionally in literature.

Our goal is here to promote the bi-orthogonality relation as an efficient tool to study
the formation of standing waves in the fully bounded domain from the waves exist-
ing in its semi-bounded counterpart. Thus, our point of departure is the Boundary
Integral Equations (BIE), in which the volume equations are eliminated, so that these
boundary equations should be solved together with the boundary conditions. First, we
employ the bi-orthogonality relation to resolve the BIE’s into simple modal boundary
identities and, second, use them to handle boundary conditions in a similar but less re-
strictive manner as compared with the general projection techniques in e.g. [18–22].

To illustrate the derivation and clarify the novelties we begin with general formu-
lations and exemplify these using three structural/vibro-acoustic waveguide examples
of diverse complexity, that is, both algebraic and transcendental problems, charac-
terised by the waveguides’ ability to carry waves i.e. a finite number of waves for an
algebraic system and an infinite number for a transcendental system. The examples
are, respectively, a classical Bernoulli-Euler beam (1D algebraic problem), a fluid-
loaded membrane in the plane problem formulation (2D transcendental) and an elastic
fluid-filled cylindrical shell (3D transcendental) − all presented in non-dimensional
form (unless otherwise stated), all time-harmonic using exp(−iωt) and all with the
preferred direction of propagation, x, so that the waveguide properties are defined by
exp(kx) with k ∈ C (this implies uniformness of a waveguide in x-direction). Also
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the latter waveguide allows propagation of helical (spinning) waves through exp(imθ)
with m ∈ Z (axi-symmtric). To solve the semi-bounded waveguide problems, we em-
ploy tailored Green’s functions, which satisfy all continuity conditions in coordinates
other than x. These Green’s functions are found using the bi-orthogonality approach
outlined in [9]. Further, the methodology and derivations presented here are gener-
alised to accommodate uniform (in the above mentioned sense) symmetric problems
of various complexity (as those treated in [9]). Finally, in relation to the BIE’s, we use
the notion of Somigliana’s identity which may simply be perceived as a generalisation
(or equivalent) to the Kirchhoff Integral in acoustics.

The structure of the paper is as follows: In Section 2 application of bi-orthogonality
to convert the homogeneous BIE’s to a modal boundary identity is illustrated. Section
3 is concerned with formulation of the boundary value problem using the boundary
identity and modal projection of the boundary conditions. Then, in Section 4 we de-
rive the associated boundary identity for the inhomogeneous problem. In Section 5 the
boundary identity and modal projection method is discussed with respect to conver-
gence and physical interpretation. Perspectives of the method are also discussed here.
In Section 6 we conclude the findings and novelties of the paper and finally, technical
details and derivations are relegated to Appendix.

2. Resolving Boundary Integral Equations by means of bi-orthogonality rela-
tions

When Green’s function for an infinite waveguide is known it facilitates solving
the subsequent boundary value problem for a ’finite’ waveguide exposed to arbitrary
boundary conditions. This approach is generally recognised as the Boundary Integral
Equations Method. Through this section we illustrate how to resolve the Boundary
Integral Equations into a simple and very convenient identity between modal ampli-
tudes at the boundaries. We denote this identity the boundary identity. Conversion
of the BIE’s into boundary identities are enabled by bi-orthogonality relations which
exist both for algebraic and transcendental problems. In general, the boundary identity
holds for uniform symmetric waveguides of arbitrary complexity exposed to arbitrary
boundary conditions at plane cross-sections orthogonal to the propagation direction.

2.1. Bi-orthogonality relations
In this paper we shall use bi-orthogonality relations (derived for unbounded prob-

lems) as a tool to analyse free and forced boundary value problems such as vibrations
of bounded waveguides. All details of their derivations for problems governed by
self-adjoint operators are presented in [23]. According to the latter reference the bi-
orthogonality relations are expressed through the quantity R̄(n, j), where n and j stand
for any two eigenfunctions of the unbounded problem and thus, R̄(n, j) holds the prop-
erties:

R̄(n, j) = 0 for n2 , j2 (Bi-orthogonality)

R̄(n,n) = R̄(n,−n) = −R̄(−n,n) = −R̄(−n,−n) , 0 (Class properties)
(1)
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with −n indicating the opposite eigenfunction of n i.e. exp(k(−n)x) = exp(−k(n)x).
For the three examples considered here the bi-orthogonality relations may be de-

rived as

R̄(n, j) = −Q̄(n)w̄( j) + M̄( j)γ̄(n) (Bernoulli-Euler beam) (2)

R̄(n, j) = −w̄
′(n)w̄( j) + α

∫ 1

0
φ̄
′(n)(z)φ̄( j)(z)dz (Fluid-loaded membrane) (3)

R̄(n, j)
m =Q̄( j)

1mū(n)
m + µQ̄( j)

4mw̄
′(n)
m − Q̄(n)

2mv̄( j)
m − Q̄(n)

3mw̄( j)
m

− i
ρ

γ3µΩ

∫ 1

0
p̄( j)

m (r)ϑ̄(n)
m (r)rdr

(Fluid-filled shell) (4)

where each of the corresponding state variables (Q, w, u etc.) are either even or odd
functions of their eigenvalues (wavenumbers). These are denoted Class properties and
the state variables may be divided into these groups as

Bernoulli-Euler Fluid-loaded Fluid-filled
beam membrane shell

Class A − odd: {Q̄, γ̄} {w̄′, φ̄′(z)} {ūm, Q̄2m, Q̄3m, w̄′m, ϑ̄m(r)
}

Class B − even: {M̄, w̄} {w̄, φ̄(z)}
{
Q̄1m, v̄m, w̄m, Q̄4m, p̄m(r)}

(5)

The properties of the bi-orthogonality relation from Eq. (1) are invariant to the con-
sidered examples and, therefore, pivotal for the derivations throughout the paper. De-
tailed specification of the involved state variables (Q, w, u etc.) can be found in
Appendix.

2.2. Resolving the BIE’s
To resolve the BIE’s we first formulate Somigliana’s identity (from which the

BIE’s originate). Somigliana’s identity constitutes the solution to the boundary value
problem formulated by help of an auxiliary problem (Green’s functions) and is thus
based on a concept remote from the conventional eigenfunction expansion. However,
the link between the general solution (eigenfunction expansion) and Somigliana’s
identity can be shown explicitly using bi-orthogonality. For completeness, this is
shown in Appendix A. The subject of Somigliana’s identity is standard and details
are thus left to the literature, see e.g. [24, 25]. In the absence of external forcing
Somigliana’s identity may be expressed on the general form in Eq. (6) using the phys-
ical state vectors which are here composed as ’force’ (Q) and ’kinematic’ (U) state
variables, though they may have other interpretations in other realms of physics.

U(X0) = 〈U(X, X0),Q(X)〉∂VX
− 〈Q(X, X0),U(X)〉∂VX

(6)

where Q/U may be vectors, X/X0 multi-dimensional and the inner product imply in-
tegration in X over the surface of the bounding volume i.e. 〈 · 〉∂VX

≡
∫
∂VX
· dS X (with

subscripts omitted in what follows). The variables depending only on the observation
point, Q(X)/U(X), constitutes the unknown functions of the boundary value problem
and the variables depending also on the excitation point, Q(X, X0)/U(X, X0), are known
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force/kinematic Green’s functions (satisfy radiation/decay conditions).

Now, to reduce the Boundary Integral Equations to invariant algebraic form we first
formulate the BIE’s from Somigliana’s identity by letting the point, X0, move alter-
nately towards the boundaries from inside the domain. Then we expand their ker-
nels (Green’s functions) in terms of their eigenfunctions and adopt similar expansions
for the unknown boundary functions. Expanding on the eigenfunctions is very well-
known but is usually of no significant advantage (if any). However, by use of the bi-
orthogonality relation we resolve the integral (inner product) and arrive without much
effort at the identities in Eq. (7). These identities describe the relation between modal
amplitudes at different boundaries, W (n)

a /W (n)
b , for any wavenumber k(n) and since they

are derived directly from the Boundary Integral Equations via Somigliana’s identity it
is natural to name them boundary identities. The boundary identities in this form are
valid for any uniform symmetric waveguide with a preferred direction of propagation.

W (−n)
a = W (−n)

b exp(k(n)|b − a|)
W (n)

b = W (n)
a exp(k(n)|a − b|)

{n ∈ N | n , 0} (7)

If convenient, they may also be expressed as one

W (n)
b = W (n)

a exp(k(n)|a − b|) {n ∈ Z | n , 0} (8)

It is hardly surprising (see e.g. [4, 26]) that this is true for wave propagation in a
semi-bounded waveguide, however, it is not immediately apparent that these identi-
ties persist for the fully bounded waveguide independent of the choice of boundary
conditions and nature/complexity of the problem. This was, however, argued in [27]
to be the case for the beam, while it was said in the same reference that for more
complicated waveguides such boundary identities become cumbersome to derive, [27,
p. 245, ll. 6-7]. Indeed, a rigorous proof hereof is hardly possible without use of the
bi-orthogonality relation and does to the authors knowledge not exist in the literature.
Identification and derivation of these boundary identities thus constitutes one of the
main novelties of this paper.

Further, from the invariant form in Eq. (7) we find that dimensionality of the
boundary value problem has reduced remarkably from the original formulation (3D)
to boundary integral equations (2D) and finally into invariant algebraic ’point’ modal
equations (1D). Hence, the boundary identity demonstrates that the BIE’s are invari-
ant and defined fully by the eigenfunctions/-values themselves and therefore do not
depend on any problem specific properties. This alone implies that the homogeneous
Somigliana’s identity is merely an identity between boundary amplitudes and eigen-
functions of a uniform waveguide rather than an identity between state variables of a
specific problem – as we would expect for an eigenvalue (eigenfrequency) problem.

Example. To clarify derivation of the boundary identities we show here the details
for a non-trivial example: a fluid-loaded membrane, which in the presence of a com-
pressible fluid supports an infinite number of waves i.e. the solution to the wave prop-
agation problem involves infinite eigenfunction expansions. Details of the problem
formulation and all necessary preliminaries are presented in Appendix B.
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Somigliana’s identity for the fluid-loaded membrane involves two identities, which
are expressed with Kronecker’s delta, δi j, in Eq. (9) and without external forces.

δ1Fw(ξ) + δ2Fαφ(ξ, z0) = F = 1, 2
[
w′(x)w0F(x, ξ, z0) − α

∫ 1

0
φ′(x, z)φ0F(x, ξ, z, z0)dz

− w
′0F(x, ξ, z0)w(x) + α

∫ 1

0
φ
′0F(x, ξ, z, z0)φ(x, z)dz

]x=b

x=a

(9)

where F denotes each Somigliana identity (corresponding to a fundamental loading
condition) and for F = 1 (membrane load) the dependence upon z0 vanishes com-
pletely because the membrane does not feature dependence on z, see details in Ap-
pendix B. To arrive at the boundary identities, we convert Somigliana’s identity to
modal form by expanding the unknown boundary functions on a basis similar to that
of Green’s functions i.e.

w(x) =

∞∑

j=−∞
w̄( j)ψ( j)(x) w′(x) =

∞∑

j=−∞
w̄
′( j)ψ( j)(x)

φ(x, z) =

∞∑

j=−∞
φ̄( j)(z)ψ( j)(x) φ′(x, z) =

∞∑

j=−∞
φ̄
′( j)(z)ψ( j)(x)

(10)

where the modal coefficients are the same as those from Green’s function in Eq. (B.5)
and ψ(x) some yet unknown modal transport functions which are closely related to the
eigenfunctions. This choice of basis is eligible because the modal coefficients are de-
rived from the governing (volume) equations and thus apply to both the waveguide and
boundary value problem. Hence, at each cross-section the relation between state vari-
ables (in terms of modal coefficients) must persist. For the modal transport functions
we introduce, at the boundaries x = a and x = b, the modal boundary amplitudes

ψ( j)(a) = W ( j)
a ψ( j)(b) = W ( j)

b ψ(− j)(a) = W (− j)
a ψ(− j)(b) = W (− j)

b (11)

Now, substitute Eq. (10) and the Green’s functions from Eq. (B.5) into Somigliana’s
identity, Eq. (9), and rearrange to get

δ1Fw(ξ) + δ2Fαφ(ξ, z0) = F = 1, 2
∞∑

n=1

∞∑

j=−∞

[(
w̄
′( j)w̄(n) − α

∫ 1

0
φ̄
′( j)(z)φ̄(n)(z)dz

)

+

(
−w̄

′(n)w̄( j) + α

∫ 1

0
φ̄
′(n)(z)φ̄( j)(z)dz

)
sgn(x − ξ)

]

× ψ( j)(x)W0F(n)(z0) exp(k(n)|x − ξ|)
∣∣∣∣∣
x=b

x=a

(12)
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where we immediately recognise the brackets as the quantity R̄(n, j) from Eq. (3) and
may thus express Eq. (12) as

δ1Fw(ξ) + δ2Fαφ(ξ, z0) = F = 1, 2
∞∑

n=1

∞∑

j=−∞

[
R̄(n, j)sgn(x − ξ) − R̄( j,n)

]
ψ( j)(x)W0F(n)(z0) exp(k(n)|x − ξ|)

∣∣∣∣
x=b

x=a

(13)

Convenient for this modal form is that the unknown functions, ψ(x), have moved out-
side the integrals (which are all contained in R̄(n, j)). In the Boundary Element Method
(BEM) the integrals are evaluated element-wise using a priory approximations of the
unknown functions. Also recall from Appendix B that the Green’s functions (index n)
sum only over positive indices (wavenumbers) to satisfy radiation/decay conditions,
while the unknown boundary functions sum over all indices (wavenumbers) as they
are not restricted by these conditions.

Now, by using the bi-orthogonal property of R̄(n, j) from Eq. (1) the inner summa-
tion may be cancelled by an index interchange such that Eq. (13) reduce to Eq. (14)
and by using also the Class properties from Eq. (1) it reduces further to Eq. (15).

δ1Fw(ξ) + δ2Fαφ(ξ, z0) =

∞∑

n=1

[
R̄(n,n)sgn(x − ξ) − R(n,n)

]
ψ(n)(x)W0F(n)(z0) exp(k(n)|x − ξ|)

∣∣∣∣
x=b

x=a

+
[
R̄(n,−n)sgn(x − ξ) − R(−n,n)

]
ψ(−n)(x)W0F(n)(z0) exp(k(n)|x − ξ|)

∣∣∣∣
x=b

x=a

(14)

⇓
δ1Fw(ξ) + δ2Fαφ(ξ, z0) =

∞∑

n=1

{[
sgn(x − ξ) − 1

]
ψ(n)(x) +

[
sgn(x − ξ) + 1

]
ψ(−n)(x)

}

× R̄(n,n)W0F(n)(z0) exp(k(n)|x − ξ|)
∣∣∣∣∣
x=b

x=a

(15)

Expanding in terms of a and b while using the definitions in Eq. (11) we get

δ1Fw(ξ) + δ2Fαφ(ξ, z0) = (16)
∞∑

n=1

{[
sgn(b − ξ) − 1

]
W (n)

b +
[
sgn(b − ξ) + 1

]
)W (−n)

b

}
R̄(n,n)W0F(n)(z0) exp(k(n)|b − ξ|)

−
{[

sgn(a − ξ) − 1
]
W (n)

a +
[
sgn(a − ξ) + 1

]
W (−n)

a

}
R̄(n,n)W0F(n)(z0) exp(k(n)|a − ξ|)

As the BIE’s are derived by letting the point ξ move to the boundaries from inside
the domain we may suffice by considering only the interior domain of Somigliana’s
identity i.e. b > ξ > a, such that the sign functions become definite and the equation
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simplifies to

δ1Fw(ξ) + δ2Fαφ(ξ, z0) =

∞∑

n=1

2R̄(n,n)W0F(n)(z0)
{
W (−n)

b exp(k(n)|b − ξ|) + W (n)
a exp(k(n)|a − ξ|)

} (17)

Expanding also the left-hand-side (lhs) using Eq. (10) we get

∞∑

n=1

δ1F

[
w̄(n)ψ(n)(ξ) + w̄(−n)ψ(−n)(ξ)

]
+

∞∑

n=1

δ2Fα
[
φ̄(n)(z0)ψ(n)(ξ) + φ̄(−n)(z0)ψ(−n)(ξ)

]

=

∞∑

n=1

2R̄(n,n)W0F(n)(z0)
{
W (−n)

b exp(k(n)|b − ξ|) + W (n)
a exp(k(n)|a − ξ|)

}
(18)

Then, substitute the modal amplitudes, W0F(n), from Eq. (B.8) and Eq. (B.10) into the
latter and use the Class properties on the lhs we get

∞∑

n=1

w̄(n)
[
ψ(n)(ξ) + ψ(−n)(ξ)

]
= F = 1

∞∑

n=1

w̄(n)
{
W (−n)

b exp(k(n)|b − ξ|) + W (n)
a exp(k(n)|a − ξ|)

}

∞∑

n=1

αφ̄(n)(z0)
[
ψ(n)(ξ) + ψ(−n)(ξ)

]
= F = 2

∞∑

n=1

αφ̄(n)(z0)
{
W (−n)

b exp(k(n)|b − ξ|) + W (n)
a exp(k(n)|a − ξ|)

}

(19)

From this we immediately see that both Somigliana identities are satisfied only when
Eq. (20) holds.

ψ(n)(ξ) + ψ(−n)(ξ) =

W (−n)
b exp(k(n)|b − ξ|) + W (n)

a exp(k(n)|a − ξ|) {n ∈ N | n , 0} (20)

It is then straightforward, from this invariant form of Somigliana’s identity, to let
ξ alternately tend towards the boundaries and use the boundary definitions for ψ(x)
from Eq. (11) to arrive at the novel boundary identities in Eq. (7). Remarkably, we
see that the boundary integral equations have resolved to uncoupled modal identities,
which simply says that in any finite waveguide (no matter the boundary conditions) a
free wave of amplitude W (n)

a at x = a arrives at x = b as W (n)
b = W (n)

a exp(k(n)L) with
L = b − a.

Naturally, the identities (7-8) are valid for any uniform symmetric waveguide with
a preferred direction of wave propagation − also in any other realm of physics. Thus,
following the latter simple algebraic steps it is easy to arrive at the same results for
the beam and the fluid-filled shell through the Somigliana identities presented in Ap-
pendix C and Appendix D. �
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3. Eigenfrequency analysis using bi-orthogonality and boundary identities

When treating algebraic problems such as eigenfrequency analysis of a beam
where the number of free waves (and their modal amplitudes) exactly matches the
number of boundary conditions, construction and solution of the eigenfrequency equa-
tion emerges immediately. However, when transcendental problems are considered,
the number of boundary conditions and modal amplitudes no longer match. In that
case formulation of the eigenfrequency equation requires truncation of the eigenfunc-
tion expansion and alternative formulation of the eigenfrequency equation. Inherently,
this leaves convergence of solutions as an important issue to be addressed.

In the framework of BIEM the eigenfrequency equation is typically constructed
from the Boundary Integral Equations with boundary conditions already incorporated.
Solutions to this problem are then usually sought by dividing the boundaries into ele-
ments and the Boundary Element Method emerges, [24, 25]. However, this procedure
may be avoided and, therefore, the eigenfrequency analysis much simplified. Indeed,
since the BIE’s have been resolved to simple identities, Eq. (7), construction of the
eigenfrequency equation is concerned only with the boundary conditions. Therefore,
we convert the boundary conditions to their modal form and combine them into a
scalar modal condition by means of the bi-orthogonality relation. From this we ob-
tain a system of linear algebraic homogeneous equations with respect to the modal
amplitudes. Equating its determinant to zero yields the eigenfrequency equation.

3.1. Eigenfrequency solution for arbitrary boundary conditions

Consider a transcendental waveguide characterised (as in Sec. 2) by sets of phys-
ical ’force’ and ’kinematic’ state variables, denoted, respectively, Q and U. If the
waveguide is bounded at X = a and X = b the boundary conditions are given as

Q(Xa) − Z(Xa)U(Xa) = 0 Q(Xb) − Z(Xb)U(Xb) = 0 (21)

where Z are the prescribed boundary values known as the (diagonal) impedance matrix
and the subscript on Xa/b indicate that the conditions apply at the respective bound-
aries. This leaves unknown continuous boundary functions to be determined. The
conditions in Eq. (21) provide a finite number of equations but as the conditions must
hold at every point on the continuous boundary the number of unknowns are infinite.
Typically, these equations are solved together with the BIE’s through the BEM. How-
ever, we have resolved the BIE’s to identities and therefore we expand the unknown
boundary functions onto their modes in the same way as in Sec. 2.2 using Eq. (10). As
the boundary conditions are valid only at the respective boundaries we directly adopt
the boundary definitions of ψ(x) from Eq. (11) and obtain

∞∑

n=−∞

[
Q̄(n)(Xa) − Z(Xa)Ū(n)(Xa)

]
W (n)

a = 0

∞∑

n=−∞

[
Q̄(n)(Xb) − Z(Xb)Ū(n)(Xb)

]
W (n)

b = 0
(22)
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where the unknowns have transformed from boundary functions to modal amplitudes
that may be taken outside the brackets. Then, we introduce the boundary identities
to relate the equations at the different boundaries and as a result eliminate half the
unknowns.

∞∑

n=1

[
Q̄(n)(Xa) − Z(Xa)Ū(n)(Xa)

] (
W (n)

a + W (−n)
b exp(k(n)|b − a|)

)
= 0

∞∑

n=1

[
Q̄(n)(Xb) − Z(Xb)Ū(n)(Xb)

] (
W (−n)

b + W (n)
a exp(k(n)|a − b|)

)
= 0

(23)

Indeed, the choice of boundary identities is not unique, however, it is natural to choose
them to compose a stable system i.e. using only decaying exponents as done here
(given by the index definition, see Appendix B). Inherently, this makes the equation
system well-conditioned.

Then, to formulate a consistent set of equations so that the truncation order may
be chosen freely, the conditions at each boundary are projected into a scalar condition
through the inner product with modal projection vectors, C̄( j)(Xa/b), in which j is
taken from an appropriate subset of the complete set of eigenfunctions − Explanation
follows.

∞∑

n=1

〈[
Q̄(n)(Xa) − Z(Xa)Ū(n)(Xa)

]
, C̄( j)(Xa)

〉
a

(
W (n)

a + W (−n)
b exp(k(n)|b − a|)

)
= 0

∞∑

n=1

〈[
Q̄(n)(Xb) − Z(Xb)Ū(n)(Xb)

]
, C̄( j)(Xb)

〉
b

(
W (−n)

b + W (n)
a exp(k(n)|a − b|)

)
= 0

(24)

for { j ∈ J ⊂ N | |J| = |Ñ |}

where the inner product is defined over the prescribed boundaries at X = a and b as
indicated by the subscript. This methodology is similar to known projection methods
such as Ritz’ or Galerkin’s method, but, different in that the modal projection vec-
tor, C̄( j)(Xa/b), may be chosen freely i.e. as Q̄( j), Ū( j) or some combination thereof,
given that each entry of C̄ corresponds to that of Q̄/Ū (as dictated by the variational
principle).

Now, as a virtue of the modal expansion the unknown modal amplitudes remain
outside the inner product, making the problem a purely algebraic one. Formulation
of the necessary algebraic equations is then done simply by taking j as modes of the
complete set of eigenfunctions. In other words, if we define N to be the complete
(infinite) set of eigenfunctions of the transcendental problem and Ñ any appropriate
(finite) truncated subset of N (necessary to obtain numerical solutions), then we con-
struct the equations individually by taking j one-by-one from a subset J, where J is
an arbitrary subset of N restricted to being of the same size as the truncated subset, Ñ
− as indicated in Eq. (24).
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Example. For the fluid-loaded membrane the equation from (24) at x = a becomes

Ñ∑

n=1

[
w̄
′(n)w̄( j) + α

∫ 1

0
φ̄
′(n)(z)φ̄( j)(z)dz { j ∈ J ⊂ N | |J| = |Ñ |}

− Zw
a w̄(n)w̄( j) −Zφ

aα

∫ 1

0
φ̄(n)(z)φ̄( j)(z)dz

] (
W (n)

a + W (−n)
b exp(k(n)|b − a|)

)
= 0

(25)

and similar for x = b (not shown). Here the necessary truncation order Ñ ⊂ N is intro-
duced and C̄( j)(Xa) has been taken as C̄( j)(z) =

⌊
w̄( j), αφ̄( j)(z)

⌋T
. The superscript on Z

indicates the impedance type e.g. w the impedance between shear force and transverse
displacement. Technical details of the example may be found in Appendix B.

Then formulation of the equation system is simply done by taking J as a subset
of N of size Ñ and formulate each equation on modal form based on this subset i.e.
j ∈ J − as indicated in Eq. (25). From this we get a 2Ñ-system composed directly
from the boundary conditions, thus avoiding technicalities of BIE’s, Transfer matrices
and other methods. It should now indeed also be clear that the problem is a purely
algebraic one because the square brackets can be evaluated straightforwardly (analyt-
ically or numerically).

Obviously, this method applies also to inherently algebraic problems such as the beam.
Even in this case when N is finite (N = {−2,−1, 1, 2}) the choice of J and C̄( j) is
still not unique. Despite some choices may be favourable the exact solution emerges
for any choice, obviously. Formulation of the equation system for the beam with
C̄( j) = Ū( j) =

⌊
w̄( j), γ̄( j)

⌋T
is shown in Eq. (26).

Ñ=2∑

n=1

[
Q̄(n)w̄( j) + M̄(n)γ̄( j) − Zw

a w̄(n)w̄( j) − Zγ
a γ̄

(n)γ̄( j)
]

×
(
W (n)

a + W (−n)
b exp(k(n)|b − a|)

)
= 0

j ∈ J = {−1, 2}

Ñ=2∑

n=1

[
Q̄(n)w̄( j) + M̄(n)γ̄( j) − Zw

b w̄(n)w̄( j) − Zγ
b γ̄

(n)γ̄( j)
]

×
(
W (−n)

b + W (n)
a exp(k(n)|a − b|)

)
= 0

j ∈ J = {1,−2}

(26)

where we have chosen independent sets of J for each equation. This choice is free and
may also be chosen as, for instance, J = {−1, 1} or {1, 2} etc. �

As already indicated by the examples the subsets J and Ñ may be chosen completely
arbitrary (provided they are of the same size) and independent i.e. independent of each
other and independent at each boundary. In much the same way the projection vector
may be chosen arbitrarily (in the framework of the variational principle) and indepen-
dent at each boundary. Interestingly, this free choice of subsets and projection vectors
allow tailoring to accelerate convergence and as we shall see shortly, great advan-
tage can be achieved for some special cases, for which explicit closed form solutions
emerge − even for transcendental problems.
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This method is enabled by the existence of bi-orthogonality of free waves (modes)
and we denote it: ’The modal projection method’. Promotion of this novel method
constitutes also one of the goals of this paper.

3.2. Eigenfrequency solution for Class consistent boundary conditions

The structure of the Class A/B properties and the bi-orthogonality relation enables
identification of two special cases for which proper choice of projection vector(s) re-
veals an analytical closed form solution of the otherwise complicated eigenvalue prob-
lem. The special cases are concerned with homogeneous conditions at each boundary
which are consistent with the Class properties and therefore we denote them ’Class
consistent boundary conditions’. The first special case is when the boundary condi-
tions at each boundary are the same and prescribed according to either the Class A
or Class B state variables. The second case is when the boundary conditions are pre-
scribed as a mixture i.e. Class A at one boundary and Class B at the other. For an
elementary beam problem, these boundary conditions are known as simply supported
(pinned) and irrotationally sliding ends. The significance of these boundary condi-
tions has been stressed in [28], where they were used to determine relations between
eigenfrequencies and the stop/pass band properties of periodic structures.

Example – Eigenfrequency equations. First, consider the elementary Bernoulli-Euler
beam with Class A boundary conditions applied at both ends i.e. Q(a) = Q(b) =

γ(a) = γ(b) = 0. This problem is a classical text book example and it is therefore
no surprise that the eigenfrequency equation is on the well-known canonical form of
Eq. (27) with the length L = b − a.

sinh(kL) = 0 ⇒ k = 0 sin(kL) = 0 ⇒ k =
qπ
L

{q ∈ Z} (27)

Similarly, it should be no surprise that we obtain the same result when the boundary
conditions are prescribed in accordance with Class B components. However, it may
come as quite a surprise that we obtain the very same result also for the fluid-loaded
membrane and fluid-filled shell when exposed to their corresponding Class consistent
boundary conditions. For these transcendental problems the solution is indeed not
straightforward nor obvious and is to the authors knowledge not found in literature.

To show that this result holds also for the transcendental problems we follow the
modal projection method outlined in the previous section with some additional manip-
ulations. For the fluid-loaded membrane the Class A consistent boundary conditions
are: w′(a) = φ′(a) = w′(b) = φ′(b) = 0. Then following Sec. 3.1 we expand the
boundary conditions in terms of eigenfunctions and, this time, before applying the
boundary identities, project the boundary conditions into the scalar condition through
the inner product with C̄( j). The choice of C̄( j) is important and we choose it in ac-
cordance with the bi-orthogonality relation such that we exactly assemble R̄(n, j) at the
boundaries. Thus taking C̄( j)(z) =

⌊
−w̄( j), αφ̄( j)(z)

⌋T
and recalling that the inner prod-
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uct applies to the respective boundaries we get
∞∑

n=−∞

[
−w̄

′(n)w̄( j) + α

∫ 1

0
φ̄
′(n)(z)φ̄( j)(z)dz

]
W (n)

a = 0

∞∑

n=−∞

[
−w̄

′(n)w̄( j) + α

∫ 1

0
φ̄
′(n)(z)φ̄( j)(z)dz

]
W (n)

b = 0

(28)

where we immediately recognise the square brackets as the quantity R̄(n, j) from Eq. (3)
so that we may rewrite to

∞∑

n=−∞
R̄(n, j)W (n)

a = 0
∞∑

n=−∞
R̄(n, j)W (n)

b = 0 (29)

This problem can now be solved straight-away following the procedure in Sec. 3.1
by applying the boundary identities and set up the necessary equations one-by-one
from j ∈ J. However, for Class consistent boundary conditions we may continue and
manipulate the equations above to get a completely factorised system. Therefore we
multiply the condition at x = a by W ( j)

a and subtract it from that at x = b multiplied by
W ( j)

b so that we get

∞∑

n=−∞
R̄(n, j)

(
W (n)

b W ( j)
b −W (n)

a W ( j)
a

)
= 0 (30)

Now, if we take j to be a positive going wave, n (positive index), and employ the
bi-orthogonality properties of R̄(n, j) we get

R̄(n,n)
(
W (n)

b W (n)
b −W (n)

a W (n)
a

)
+

R̄(−n,n)
(
W (−n)

b W (n)
b −W (−n)

a W (n)
a

)
= 0

{n ∈ N | n , 0} (31)

Then we apply the boundary identities to transform W (n)
b into W (n)

a and further use the
Class properties of R̄(n, j) to get Eq. (33).

R̄(n,n)W (n)
a W (n)

a

(
exp(k(n)|b − a|) exp(k(n)|b − a|) − 1

)
+

R̄(−n,n)W (−n)
a W (n)

a

(
exp(k(n)|b − a|) exp(k(−n)|b − a|) − 1

)
= 0

{n ∈ N | n , 0} (32)

⇓
R̄(n,n)W (n)

a W (n)
a

(
exp(2k(n)|b − a|) − 1

)
= 0 {n ∈ N | n , 0} (33)

Similar for j = −n we get by proper choice of boundary identities (transforming W (n)
a

into W (n)
b )

R̄(n,n)W (−n)
b W (−n)

b

(
exp(2k(n)|b − a|) − 1

)
= 0 {n ∈ N | n , 0} (34)

Thus, for each wavenumber the otherwise coupled eigenfrequency equation has fully
decoupled into modal equations from which it is immediately clear that the eigenfre-
quencies are produced only by propagating waves i.e. when k(n) is purely imaginary.
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From this we straightforwardly deduce the canonical eigenfrequency equation from
Eq. (27). This result is for transcendental problems hardly possible to obtain with-
out the bi-orthogonality relation. Further, it also becomes clear that the positive and
negative going waves behave identically and in fact, due to factorisation, we see from
Eq. (34) that the eigenmodes’ standing waves are constructed solely from identical but
opposite freely propagating waves i.e. exp(k(n)x)−exp(k(−n)x) = 0⇔ exp(2k(n)x)−1 =

0, as prescribed by the phase closure principle, [29].
In particular, the decoupled equations expressed on matrix form, Eq. (35) (with

the condensed notation, ex, used), are surprising even for the beam since the matrix
is no longer fully populated as is the case for conventional BIEM/BEM. This, indeed,
provides an insight into the formation of the eigenfrequency spectrum.



. . . 0 0 0
0 e2k(n) |b−a| − 1 0 0
0 0 e2k(n) |b−a| − 1 0

0 0 0
. . .





...

W (n)
a

W (−n)
b
...


= 0 (35)

On the other hand, for mixed conditions (Class B at one end and Class A at the other)
factorisation is achieved by choosing C̄( j) independent at each end, corresponding to
the prescribed boundary conditions. Again it is no surprise that for the beam we arrive
at the eigenfrequency equation in Eq. (36). However, it can be shown (following
the previous steps) to hold for any uniform symmetric waveguide with a preferred
propagation direction, which is again not obvious.

cosh(kL) = 0 cos(kL) = 0 ⇒ k =
(2q − 1)π

2L
{q ∈ Z} (36)

To arrive at this we have added rather than subtracted in Eq. (30), a fact arising from
derivation of the bi-orthogonality relation, [9].

In more general terms we can write the decoupled eigenfrequency equations for the
two special cases on factorised form, see Eq. (37) for Class A or B (A/B) at both ends
and Eq. (38) for mixed conditions.

Ñ∏

n=1

(
e2k(n)L − 1

)2
= 0

Ñ∏

n=1

(
e2k(n)L + 1

)2
= 0 (37, 38)

which is the exact closed form solution when the ’truncated’ subset, Ñ, includes all
propagating waves in either positive or negative direction − even for complicated tran-
scendental waveguides. Thus, determining the truncation order for these special cases
becomes trivial and convergence of solutions becomes irrelevant. �

Example – Relation between eigenfrequency equation and dispersion diagram. For
the beam example the solutions to the latter eigenfrequency equations are found read-
ily by substitution of k = i qπ

L and k = i (2q−1)π
2L found from Eq. (27) and (36) (or equiva-

lently Eq. (37) and (38)) into the dispersion equation such that we get (in dimensional
form) the eigenfrequencies, ω.
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ωA/B =

(qπ
L

)2
crg ωMixed =

(
(2q − 1)π

2L

)2

crg (39, 40)

The eigenfrequency equation in (39) is remarkably similar to the dispersion equation
and in fact by taking L as half a wavelength, L =

qπ
k , we immediately recover the dis-

persion relation. Likewise, since both Eq. (27) and (36) are formulated for wavenum-
bers they may indeed be plotted directly into the dispersion diagram as horizontal lines
such that their intersections with the dispersion curves constitute the eigenfrequency
spectrum. This is shown in Fig. 1 for a hollow cylindrical beam, where the dimen-
sional parameters have been chosen for illustrative purposes only − explaining also
the large eigenfrequencies.

Prop. waves A/B Mixed
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Fig. 1: Dispersion diagram for a hollow cylindrical PTFE polymer (Teflon) Bernoulli-Euler beam with the
dimensional properties: R = 75 mm, h = 7.5 mm, E = 300 MPa, ρ = 2100 kg m−3 and L = rg = 1. The
intersection of the horizontal lines with the propagating wave branch constitutes eigenfrequencies for Class
A/B boundary conditions (dashed) and for mixed conditions (dash-dot).

As the results of Eq. (37) and (38) have been proven to be valid also for the transcen-
dental problems we may for the fluid-loaded membrane with Class A/B consistent
boundary conditions write the eigenfrequency equation as Eq. (41) by simple substi-
tution of k = i qπ

L into the dispersion equation from Eq. (B.2).

(
i
qπ
L

)2
+ Ω2

qnαβ −
Ω2

qnα cos
(√

Ω2
qn +

(
i qπ

L

)2
)

√
Ω2

qn +
(
i qπ

L

)2
sin

(√
Ω2

qn +
(
i qπ

L

)2
) = 0 (41)

for {n, q ∈ Z | n , 0}

This gives the eigenfrequency spectra Ωqn where n is the sequential number of branches
of propagating waves and q is the sequential number of eigenfrequencies in this spec-
trum. This generation of the spectra is readily exemplified by the second Timoshenko
spectrum, see for instance [30], that is, each propagating wave, n, generates an eigen-
frequency spectrum with the wavenumbers k = i qπ

L , q ∈ Z.
Computation of the eigenfrequencies then become a trivial task, as Eq. (41) may

easily be converted to a polynomial form with an arbitrarily high accuracy by means
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of e.g. the finite product method, see [31–33]. Again, eigenfrequencies may also be
found graphically from the dispersion diagram as intersection of the horizontal lines
at k = i qπ

L with the propagating wave branches. This is shown in Fig. 2.
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Fig. 2: Dispersion diagram for a fluid-loaded membrane with non-dimensional parameters: α = 0.113,
β = 2.218 and L = 1 − corresponding to, for instance, a rubber-membrane loaded by air with the properties:
T = 54.3 kN m−1, ρstr = 800 kg m−3, h0 = 0.147 mm, H = 43.29 mm, ρ f l = 1.225 kg m−3, c f l = 340
m s−1, L = H. The intersection of the horizontal lines with each propagating wave branch defines the
eigenfrequency spectra Ωqn at fixed n for Class A/B boundary conditions (dashed) and for mixed conditions
(dash-dot).

Similarly, we may substitute into the dispersion equation for the fluid-filled shell and
use the finite product method to find eigenfrequencies, but as this equation becomes
too extensive to show here we shall settle with the graphical representation in Fig. 3.
To factorise the equations for the fluid-filled shell we choose for Class A consistent
boundary conditions C̄( j)(Xa/b) as C̄( j)(r) =

⌊
Q̄( j)

1m, µQ̄( j)
4m,−v̄( j)

m ,−w̄( j)
m ,−i ρ

γ3µΩ
p̄( j)

m (r)
⌋T

and so forth for mixed conditions.
In particular, for the ’thickness-resonant’ modes (i.e. eigenfrequencies of uniform

transverse motion of the layer/shell) one sets q = 0 in Eq. (27) and in case of the
fluid-loaded membrane obtain the canonical Eq. (42), which also conveniently defines
the cut-on frequencies.

Ω0nβ − cos(Ω0n)
sin(Ω0n)

= 0 {n ∈ Z | n , 0} (42)

From this reservation we note that for symmetric ’finite’ waveguides bounded by Class
A/B conditions the fundamental (first order) modes (q = 0) defines the cut-on frequen-
cies of the infinite waveguide. Hence, we find that for a symmetric ’finite’ waveguide
constrained by Class A/B conditions, the fundamental frequencies will not depend on
the length of the waveguide. For some advanced problems this observation may lead
to convenient methods for retrieving cut-on frequencies.

Likewise, we can just as easily obtain the eigenfrequency equation for mixed Class

A and B boundary conditions by substituting k = i
(2q − 1)π

2L
into the dispersion equa-
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Fig. 3: Dispersion diagram for a fluid-filled shell vibrating in bending mode (m = 1) with non-dimensional
parameters: ρ = 0.1282, γ = 3.7773, µ = 0.0175 and L = 1 − corresponding to, for instance, a water-
filled steel-shell with the properties: E = 210 GPa, ν = 0.3, ρstr = 7800 kg m−3, R = 20 mm, h = 0.35
mm, ρ f l = 1000 kg m−3, c f l = 1440 m s−1 and L = R. The intersection of the horizontal lines with
each propagating wave branch defines the eigenfrequency spectra Ωqn at fixed n for Class A/B boundary
conditions (dashed) and for mixed conditions (dash-dot).

tion, or, equivalently, plot them as horizontal lines in the dispersion diagram − also
shown in Fig. 2 and 3 with dash-dot lines. �

3.2.1. Concluding remarks
The simplicity of solving eigenfrequency problems with Class consistent bound-

ary conditions becomes analogue to the analysis of free vibrations of a multi degree-
of-freedom mechanical system exposed to initial conditions, which excite a specific
eigenmode, see [34].

In the case illustrated in Fig. 3 the eigenfrequency of ≈ 20kHz (indicated by cir-
cle) corresponds to a standing wave generated by a pair of identical waves propa-
gating in opposite direction. This eigenfrequency is characterised solely by the first
branch of the dispersion diagram, while all other propagating and evanescent waves
(not shown) remain inactive. Thus, there are no modal interaction or mode conversion
at the boundaries and the eigenmodes become of simple sinusoidal shapes. Similar,
the pair of propagating waves characterised by the second branch produce, on their
own, a standing wave at f ≈ 55kHz (indicated by cross) and so forth.

For Class inconsistent boundary conditions, on the other hand, we cannot factorise
the equation system because we cannot assemble R̄(n, j) in full at the boundaries. Phys-
ically, this means that mode interaction and conversion happens at the boundaries and
so the eigenmodes will be a mixture of multiple modes of the waveguide in which
case truncation order and convergence is to be addressed.

4. Forcing problems and their boundary identities

From the derivation of Somigliana’s identity, see e.g. [35], we find that it is
straightforward to include the forcing term which constitutes the particular solution
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and thus superimpose directly to the homogeneous Somigliana identity from Eq. (6),
see Eq. (43). Then, by linearity of the inner products, all operations of Sec. 2 and 3
remain valid, also in the case of forcing problems. By the latter argument we follow
the steps from Sec. 2.2 for the particular solution to reduce Eq. (43) to what we shall
denote the inhomogeneous boundary identities in Eq. (44).

U(X0) = 〈U(X, X0),Q(X)〉∂VX
− 〈Q(X, X0),U(X)〉∂VX

+ 〈q(X),UV (X, X0)〉V (43)

W (−n)
a = W (−n)

b exp(k(n)|b − a|)
+

1
2R̄(n,n)

∫

V

[
q(X) · Ū(n)

V (X)
]

exp(k(n)|x − a|)dV
{n ∈ N | n , 0}

W (n)
b = W (n)

a exp(k(n)|a − b|)
+

1
2R̄(n,n)

∫

V

[
q(X) · Ū(n)

V (X)
]

exp(k(n)|x − b|)dV
{n ∈ Z | n , 0}

(44)

where the latter inhomogeneous boundary identity may also be taken as the general
one valid for all ± wavenumbers (as indicated). Here UV (X, X0) is the kernel of the
volume integral (Green’s functions for the field variables), which may, for some prob-
lems, differ from the kernel (Green’s functions) of the surface integral. ŪV is the
associated modal coefficients introduced in Sec. 2 and q(X) the external forcing.

We see here that as soon as the inhomogeneous boundary value problem is consid-
ered the identities preserve the physical properties of the problem (contained in R̄ and
ŪV ). Likewise, we note that the inhomogeneous part evaluates to a constant and thus
constitutes nothing but a right-hand-side to the equation system. Then, solving the
inhomogeneous boundary value problem using the inhomogeneous boundary identity
follows directly from the method outlined in Sec. 3, nevertheless, with a non-zero
right-hand-side, so that the solution is found by inversion. Again, for Class consis-
tent boundary conditions we may employ bi-orthogonality to factorise and find closed
form solutions to the problem.

Finally, the physical interpretation of the inhomogeneous boundary identity fol-
lows directly from the homogeneous identity discussed in Sec. 2, with the inhomo-
geneous part found to be remarkably similar to the modal amplitudes derived in Ap-
pendix B and [9]. Hence the physical interpretation follows directly from there (elab-
orated in [9]).

Example. To clarify the derivation of the inhomogeneous boundary identities we
show here the details for the non-trivial fluid-loaded membrane example. As dis-
cussed with Eq. (43) we may depart directly from Eq. (19) by adding the forcing
term with UV (X, X0) =

∑∞
n=1

⌊
w̄(n), φ̄(n)(z)

⌋T
W0F(n)(z0) exp(k(n)|x − ξ|) and q(X) =
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⌊
−qw(x), αqφ(x, z)

⌋T
, to get

∞∑

n=1

w̄(n)
[
ψ(n)(ξ) + ψ(−n)(ξ)

]
=

∞∑

n=1

w̄(n)
{
W (−n)

b exp(k(n)|b − ξ|) + W (n)
a exp(k(n)|a − ξ|)

}
+

∞∑

n=1

W01(n)
∫

V

[
−qw(x)w̄(n) + αqφ(x, z)φ̄(n)(z)

]
exp(k(n)|x − ξ|)dV

∞∑

n=1

αφ̄(n)(z0)
[
ψ(n)(ξ) + ψ(−n)(ξ)

]
= (45)

∞∑

n=1

αφ̄(n)(z0)
{
W (−n)

b exp(k(n)|b − ξ|) + W (n)
a exp(k(n)|a − ξ|)

}
+

∞∑

n=1

W02(n)(z0)
∫

V

[
−qw(x)w̄(n) + αqφ(x, z)φ̄(n)(z)

]
exp(k(n)|x − ξ|)dV

and by introducing the modal amplitudes from Eq. (B.8) and (B.10) we get

∞∑

n=1

w̄(n)
[
ψ(n)(ξ) + ψ(−n)(ξ)

]
=

∞∑

n=1

w̄(n)
{
W (−n)

b exp(k(n)|b − ξ|) + W (n)
a exp(k(n)|a − ξ|)

}
+

∞∑

n=1

w̄(n) 1
2R̄(n,n)

∫

V

[
−qw(x)w̄(n) + αqφ(x, z)φ̄(n)(z)

]
exp(k(n)|x − ξ|)dV

∞∑

n=1

αφ̄(n)(z0)
[
ψ(n)(ξ) + ψ(−n)(ξ)

]
= (46)

∞∑

n=1

αφ̄(n)(z0)
{
W (−n)

b exp(k(n)|b − ξ|) + W (n)
a exp(k(n)|a − ξ|)

}
+

∞∑

n=1

αφ̄(n)(z0)
1

2R̄(n,n)

∫

V

[
−qw(x)w̄(n) + αqφ(x, z)φ̄(n)(z)

]
exp(k(n)|x − ξ|)dV

from which it is clear that both equations are satisfied only when

ψ(n)(ξ) + ψ(−n)(ξ) =W (−n)
b exp(k(n)|b − ξ|) + W (n)

a exp(k(n)|a − ξ|)
+

1
2R̄(n,n)

∫

V

[
−qw(x)w̄(n) + αqφ(x, z)φ̄(n)(z)

]
exp(k(n)|x − ξ|)dV

(47)

which is similar to Eq. (20), nonetheless, with an inhomogeneous part. Then let ξ
alternately tend towards the boundaries a and b (as prescribed by the BIE’s) and use the
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boundary definitions from Eq. (11) to arrive at the boundary identities from Eq. (44)
– written here explicitly for the fluid-loaded membrane.

W (−n)
a = W (−n)

b exp(k(n)|b − a|) {n ∈ N | n , 0}
+

1
2R̄(n,n)

∫

V

[
−qw(x)w̄(n) + αqφ(x, z)φ̄(n)

]
exp(k(n)|x − a|)dV (48)

W (n)
b = W (n)

a exp(k(n)|a − b|) {n ∈ Z | n , 0}
+

1
2R̄(n,n)

∫

V

[
−qw(x)w̄(n) + αqφ(x, z)φ̄(n)

]
exp(k(n)|x − b|)dV (49)

Similarly, we may follow these simple algebraic steps and easily arrive at the same re-
sult for the beam and fluid-filled shell, nevertheless, with a different external force vec-
tor (see Appendix C and Appendix D) and corresponding Green’s functions. Hence,
changes only apply to the square bracket as also indicated by the general formulation
in Eq. (44).

To clarify the interpretation of the inhomogeneous identities we may apply a sim-
ple load, say, a transverse point force on the membrane at some section, c, prescribed
as qw(x) = −δ(x − c) and observe that the identity reduce to

W (n)
b = W (n)

a exp(k(n)|a − b|) +
1
2

w̄(n)

R̄(n,n)
exp(k(n)|c − b|) {n ∈ Z | n , 0} (50)

This essentially emphasise that the inhomogeneous part is obviously nothing but a su-
perposition of the modal contribution of the external force to the homogeneous iden-
tity. �

5. Discussion

Here we discuss in more detail the boundary identities and the modal projec-
tion method. From this discussion several interesting topics of future research have
emerged.

5.1. The boundary identity
Though the boundary identity may, to some, be perceived as obvious, it has to the

best of the authors knowledge been proved rigorously here for the first time in liter-
ature. It has been derived in Sec. 2 for a bounded homogeneous symmetric problem
and in Sec. 4 for the corresponding inhomogeneous problem. The derivation is valid
for uniform symmetric waveguides with a preferred direction of propagation and re-
lies only on the existence of bi-orthogonality, which fortunately holds for any such
problem, as discussed in [9]. In view of the derivation of these identities an alterna-
tive classification of state vectors, which differs from the common definition based on
their physical interpretation i.e. force and kinematic state vectors, see Eq. (51), may be
proposed. Instead the state vectors may conveniently be arranged according to the bi-
orthogonality relation i.e. in terms of their mathematical properties, see Eq. (52), such
that their inner product gives directly the quantity R(n, j). In doing so the derivation of
the boundary identity in Sec. 2 and Sec. 4 and the analytical closed form solution in
Sec. 3.2 will appear immediately.
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Example. For the fluid-filled shell this corresponds to changing from the classical
definition in Eq. (51) to the definition via bi-orthogonality in Eq. (52).

Q(X) = bQ1m(x),Q2m(x),Q3m(x),Q4m(x), ϑm(x, r)cT
U(X) =

⌊
um(x), vm(x),wm(x),w′m(x), pm(x, r)

⌋T (51)

⇓

CA(X) =

⌊
um(x),−Q2m(x),−Q3m(x),w′m(x),−1

γ
ϑm(x, r)

⌋T

CB(X) =

⌊
Q1m(x), vm(x),wm(x), µQ4m(x), i

ρ

γ2µΩ
pm(x, r)

⌋T (52)

where the composition in Eq. (52) should be obvious from R̄(n, j) in Eq. (4). �

Furthermore, interpretation of the boundary identity suggests that the relationship be-
tween the wave amplitudes at the various stations for the semi-bounded waveguide is
also perfectly valid for the amplitudes at physical boundaries regardless of the bound-
ary conditions. Thus, we may conclude that the homogeneous BIE’s conceal just a
unique identity between individual modal boundary amplitudes rather than being a
virtue of a specific problem. Only when the inhomogeneous boundary identity is con-
sidered does the identity rely on physical properties of the problem but does otherwise
apply the same way.

In the context of vibration analysis this means that the eigenfrequency spectrum
is formed by co-existence (superposition) of all positive/negative and propagating/-
evanescent waves more than by reflection thereof. In effect, the formulation of re-
flection matrices become redundant. The very same reservation was made by Mace
in [27] with the words: “For simple cases it is a straightforward procedure to write
relationships between the wave amplitudes at the various stations on the beam and
manipulate these equations to obtain the solution.” . . . “In more complex situations
writing the relations between wave amplitudes at different stations directly is a cum-
bersome procedure. It is easier, especially when numerical solutions are sought, to
extend the use of reflection matrices and proceed as follows.” − [27, pp. 244-245],
who then continued with reflection matrices in the absence of generalised boundary
identities.

Remarkably it is, that we arrive at the same modal identity regardless of which prob-
lem and Somigliana identity (loading condition 0F) is taken. Effectively, it makes
formulation of BIE’s equally redundant as the formulation of Transfer Matrices. In
view of this, it is also worth mentioning that the boundary identities are in no way
restricted to structural dynamics, acoustics or vibro-acoustics and their generality to
ever more complicated problems have huge potential for finding solutions to such
transcendental boundary value problems in linear dynamics.

Finally, the boundary identities establish a direct link between the methods typ-
ically applied for analysis of linear dynamical systems and in fact, it is straightfor-
ward to recover any of these methods by rather simple algebraic manipulations of the
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boundary identity. This is illustrated in Appendix A where Somigliana’s identities are
rewritten to the form leading to the modal Transfer Matrix Method (TMM).

5.2. The modal projection method
In this section the discussion is concerned with and relevant only for the transcen-

dental problems i.e. when the eigenfunction expansions (solution) are infinite. In the
modal projection method we convert the physical boundary conditions to their modal
form and take full advantage of the structure of state vectors shown in Eq. (52) to for-
mulate a scalar boundary condition. Here our projection basis, C̄( j), is taken in accor-
dance with the variational principle so that it may be composed freely from the kine-
matic/force state variables − preferably as the CA/B-vectors from Eq. (52). Notably, its
components need not satisfy kinematic boundary conditions as in the canonical Ritz
and Galerkin methods. By this novel formulation of the eigenvalue problem the nature
of convergence of field and state variables differs from conventional techniques such
as the Finite Element Method (FEM) and BEM and requires attention when it comes
to solving transcendental problems. The modal projection method builds on the very
same principle as elaborated in [9] and therefore the study of convergence is here also
concerned with how the field and state variables converge at the boundaries.

Since boundary conditions are projected into a scalar modal condition each indi-
vidual boundary condition in Eq. (21) is no longer ensured for any truncation order.
In the aforementioned conventional techniques the boundary conditions are ensured
at any truncation order as they are usually condensed out of the equation system from
the outset. In this case an unconverged solution manifests itself as only satisfying the
governing PDE’s in an integral average sense. Convergence is then ensured in the
limit as the number of elements is increased.

For the modal projection method, on the other hand, converged solutions are found
as those for which each individual boundary condition of Eq. (21) is satisfied, while
unconverged solutions can be interpreted as the solution (for example, an eigenfre-
quency spectrum) to another set of boundary conditions (determined by the truncation
order), because the field and state variables have not yet converged on the bound-
aries. Nevertheless, the governing PDE’s are satisfied for any truncation order. In
other words, at any truncation order a set of boundary conditions emerges for which
the spectrum of eigenfrequencies (solution) is indeed exact. Thus, for a set of arbi-
trarily prescribed boundary conditions any truncated solution will be the solution to
a similar but not identical set of boundary conditions, while in the limit we find, of
course, the spectrum to the prescribed ones. Then, by recovering the components of
Zapprox from the boundary values for a given truncation order and comparing them
with the prescribed boundary values, Z, the accuracy of the solution can be instanta-
neously characterised by exact error measures. This is possible because the prescribed
boundary values, Z, have become definite targets of convergence and we thus obtain
instant measures of convergence. An elaboration on the error measures can be found
in [9]. For the conventional techniques no similar error measures can be derived, so
that convergence is customarily traced by gradually increasing the truncation order.

In summary, the modal projection method promotes correctness of waves’ partic-
ipation to the solution rather than correctness of the boundary conditions. It means
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that the prescribed boundary values are achieved only when all waves relevant to the
spectrum of eigenfrequencies are retained. This makes the modal projection method
less restrictive yet somewhat more physically meaningful as compared with other pro-
jection methods.

Another convenient advantage of the projection method over the conventional BIEM/-
BEM is the size of the equation system. As just discussed, the size of the equation sys-
tem for the projection method depends fully on how each wave contributes to the given
spectrum of eigenfrequencies i.e. for some boundary conditions decaying waves con-
tribute whereas for others only the propagating waves do, as demonstrated in Sec. 3.2.
In the BIEM/BEM framework, on the other hand, the minimum number of equations
that a system can attain is indeed equal to twice the number of boundary conditions.
For the fluid-loaded membrane this becomes an 8-by-8 system and for the fluid-filled
shell a 20-by-20 system regardless the type of boundary conditions. For the Class
consistent case, however, it was just shown in Sec. 3.2 that a single equation defines
the exact eigenfrequency spectrum for both the fluid-loaded membrane and fluid-filled
shell. Further, in the FE formulation the number of equations usually increase much
beyond the latter as this formulation is based on volume discretisation.

5.3. Perspectives on future studies

Inspired by the latter discussion we formulate here just a few of the interesting
future research questions that have emerged:

• As mentioned in the introduction, a variety of numerical tools are available for
analysis of symmetric waveguides. The standard output of such an analysis
is wavenumbers and related mode shapes. Since bi-orthogonality is a generic
property of these waveguides, the quantity R̄(n, j) and the composition of Class
consistent boundary conditions may be retrieved by any of these tools. Then
the numerically obtained dispersion diagrams may be used to straightforwardly
solve the subsequent problems ranging from forced response and energy flow
of the infinite waveguide to forced response and eigenfrequency analysis of the
finite one.
In our opinion, the advantages that can be achieved by the method highlighted
in this paper fully justifies the effort of their incorporation in a Finite Element
environment, for example, in the framework of Wave-Finite Element. The ana-
lytical solutions presented in this paper may then be used as validation examples
for the numerical tools.

• Though derivation of bi-orthogonality relies heavily on the symmetry of a waveg-
uide its physical interpretation suggests that its generalised counterpart should
exist also for unsymmetric problems. Derivation in this framework may require
alternative methods but it is nonetheless hypothesised that such relations can be
found. This hypothesis is further supported by the interpretation of the bound-
ary identity stating that waves transfer individually between boundaries. This
should indeed persist for unsymmetric linear waveguides.

23



In addition, the boundary identity and projection method is yet confined to uni-
form symmetric waveguides with a preferred direction of propagation (in any
realm of physics). However, it is expected that by appropriate generalisation of
the steps in Sec. 2 and 3 they may be adjusted to multi-directional waveguides.

• In experimental vibration analysis the boundary conditions usually constitute
one of the largest uncertainties, yet they seem to affect radically the observed
spectrum, causing discrepancies between experiments and mathematical mod-
els. Since the convergence properties of the modal projection method suggests
an exact solution (to similar boundary conditions) for any truncation order, this
method may be used together with the discrepancies to characterise the actual
boundary impedances of the experimental set-up using much the same tech-
niques as for source characterisation. In the same way these discrepancies are
likely to reveal which waves are difficult to constrain and may thus hint towards
’ideal’ boundary conditions recommended for testing in order to minimise un-
certainties in boundary conditions.

6. Conclusions

In this paper we have demonstrated that the bi-orthogonality relations are equally
efficient for solving both infinite waveguide and boundary value problems. Moreover,
the method demonstrated apply equally to problems in any other realm of physics.
The novel results are summarised as follows:

• The modal decomposition and direct application of bi-orthogonality to Somig-
liana’s identity resolve the Boundary Integral Equations into a simple bound-
ary identity between individual modal amplitudes at different boundaries. This
holds for both homogeneous and inhomogeneous problems and immediately
obviates commonly used methods such as BIEM, Transfer Matrix Method, wave-
based methods etc. As suggested in earlier literature, [27], we find that applica-
tion of boundary identities superseded alternative methods.

• The modal projection method condenses all boundary conditions into a modal
scalar condition. Then, enabled by the boundary identities, a well-posed equa-
tion system is formulated directly from the boundary conditions.

• Enabled by the bi-orthogonality relation two special sets of boundary condi-
tions (Class consistent) are identified. For these Class consistent boundary con-
ditions, the eigenfrequency equation emerges from the dispersion equation no
matter the complexity of the problem.

• For Class inconsistent boundary conditions the modal projection formulation
suggests that free waves (eigenvalues) compose the prescribed boundary con-
ditions only in the limit. It means that for any (unconverged) truncation order
the solution is exact, however, to a set of boundary conditions similar but not
identical to the prescribed ones. Thus, clearly defined error measures may be
used to assess the instant state of convergence (as discussed in Sec. 5.2).
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• Based on the bi-orthogonality relation, boundary identity and modal projection
method an alternative composition of the state vectors, defined by the mathe-
matical rather than the physical properties of their components, has emerged.

In conclusion, we hope that the demonstration here and in [9, 23] of the advantages
of the bi-orthogonality approach over traditional methods inspire other researches to
commence to the subject.

Appendix A. From Somigliana’s identity to eigenfunction expansion

As the problems considered here are linear they must obviously obey uniqueness
of solution so that, for any two solution methods to be exact, they must be identical.
The direct link between the eigenfunction expansion and Somigliana’s identity is how-
ever not immediately clear as Somigliana’s identity originates from a different concept
and so the proof of their equivalence becomes somewhat challenging. As discussed
in Sec. 2 Somigliana’s identity constitutes the solution to the boundary value problem
and so we need to show its equivalence with the general eigenfunction expansion.

The challenging step here is to reduce the inner product to its invariant form. This
can, however, be done straightforwardly using the bi-orthogonality relation as shown
in Sec. 2. Thus, for the fluid-loaded membrane example we may take Eq. (19) directly
as starting point. Let us consider, first, loading condition 01 with the left-hand-side
in unexpanded form. Then, we apply the boundary identities transforming W (−n)

b to
W (−n)

a , use k(−n) = −k(n) and consider only the interior (b > ξ > a) so that we may
eventually dissolve the module and rewrite to

w(ξ) =

∞∑

n=1

w̄(n)
{
W (−n)

a exp(k(−n)|a − b|) exp(k(n)|b − ξ|) + W (n)
a exp(k(n)|a − ξ|)

}
(A.1)

=

∞∑

n=1

w̄(n)
{
W (−n)

a exp(k(−n)|a − ξ|) + W (n)
a exp(k(n)|a − ξ|)

}
(A.2)

=

∞∑

n=−∞
w̄(n)W (n)

a exp(k(n)[ξ − a]) =

∞∑

n=−∞
w̄(n)W (n)

b exp(k(n)[ξ − b]) (A.3)

which is exactly the complete eigenfunction expansion solving the governing equa-
tion, however, transformed into ξ with an arbitrary choice of origin. Note also from
Eq. (A.2) to (A.3) that we have used the Class properties of w̄(n). Likewise, we see that
we recover the boundary identities by letting ξ to either a or b. Similarly, for loading
condition 02 we get

φ(ξ, z0) =

∞∑

n=−∞
φ̄(n)(z0)W (n)

a exp(k(n)[ξ − a])

=

∞∑

n=−∞

iΩ
κ(n) sin(κ(n))

cos(κ(n)z0)W (n)
a exp(k(n)[ξ − a])

(A.4)
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So, in view of the latter proof of equivalence, we may conclude that the boundary iden-
tities (and bi-orthogonality relation) indeed constitute the direct link between these
methods, making them, essentially, interchangeable.

Appendix B. Fluid-loaded membrane

The fluid-loaded membrane in the plane problem formulation is a two-dimensional
vibro-acoustic (infinite) waveguide which consists of a layer of acoustic medium
bounded at one side by a rigid baffle and at the other side by a membrane, see Fig. B.4.
Though the waveguide has a preferred direction of propagation, x, the fluid layer de-
pends on the z-coordinate (as indicated in the figure), implying that the dispersion
equation becomes transcendental. In the formulation of Somigliana’s identity we have
two fundamental loading conditions: 01 a point force acting on the membrane at (ξ)
and 02 an acoustic source in the fluid at (ξ, z0). Note, as mentioned in Sec. 1, that we
employ tailored Green’s functions i.e. satisfying the continuity and baffle conditions
in z.

Fluid - ρ, c, ϕ(x,z)

Membrane - ρ0, T, w(x)

x
z

h0

H
Source - (ξ,z0)

Force - (ξ)

x=bx=a L

Fig. B.4: Sketch of the fluid-loaded membrane illustrating source/force locations, geometry and material
properties.

Appendix B.1. Reciprocity and bi-orthogonality relations
The time-harmonic problem (exp(−iωt) omitted) is formulated in the non-dimen-

sional form (with H as length scale) through the velocity potential, φ, and transverse
displacement, w.

∂2φ(x, z)
∂x2 +

∂2φ(x, z)
∂z2 + Ω2φ(x, z) = 0 (Wave equation)

d2w(x)
dx2 + Ω2αβw(x) + iΩαφ(x, z) = 0 (Membrane)

∂φ(x, z)
∂z

∣∣∣∣∣
z=0

= 0 (Rigid baffle)
∂φ(x, z)
∂z

∣∣∣∣∣
z=1

= −iΩw(x) (Continuity)

The solution ansatz to this problem is on the form

w(n)(x) = W (n) exp(k(n)x) φ(n)(x, z) = Φ(n) cos(κ(n)z) exp(k(n)x) (B.1)

and by substitution into the governing equation the transcendental dispersion equation
in Eq. (B.2) emerges. Thus, this waveguide supports an infinite number of waves
(eigenfunctions) i.e. {n ∈ Z | n , 0} where n = 0 is not an eligible index.

k2 + Ω2αβ − Ω2α cos(κ)
κ sin(κ)

= 0 (B.2)
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with the frequency parameter introduced as Ω = ωH
c , the non-dimensional axial

wavenumber as k =
kdim
H and the transverse wavenumber as κ =

√
Ω2 + k2. Further-

more, the non-dimensional parameters α and β are: α =
ρc2H

T and β =
ρ0h0
ρH , where c

is the sound speed in the fluid, ρ and ρ0, respectively, the fluid and membrane density,
H and h0 its thickness and T the membrane tension, see Fig. B.4. The parameter α
then characterises the stiffness ratio and β the inertia ratio between the components
of the waveguide. From the ansatz we see that the wavenumbers of negative real part
and positive imaginary part describe, respectively, waves decaying/propagating in the
positive direction of the x-coordinate, hence, a positive index.

The scaled kinematic and force state variables (vectors) associated with this problem
are, respectively, bw(x), φ(x, z)cT (displacement and velocity potential − proportional
to pressure) and

⌊
d
dx w(x), d

dxφ(x, z)
⌋T ≡ bw′(x), φ′(x, z)cT (force and velocity). The

modal coefficients interrelating the state variables (Q̄ and Ū) are defined by scaling
the amplitudes of the ansatz with W (n) such that

w̄(n) = 1 φ̄(n)(z) =
iΩ

κ(n) sin(κ(n))
cos(κ(n)z)

w̄
′(n) = k(n)w̄(n) φ̄

′(n)(z) = k(n)φ̄(n)(z)
(B.3)

from which the Class properties of Eq. (5) are immediately deduced. From these state
variables the reciprocity relation may be derived as

[
w
′( j)(x)w(n)(x) − α

∫ 1

0
φ
′( j)(x, z)φ(n)(x, z)dz

− w
′(n)(x)w( j)(x) + α

∫ 1

0
φ
′(n)(x, z)φ( j)(x, z)dz

]x=b

x=a
= 0

(B.4)

and following [9] the associated bi-orthogonality relation is derived as in Eq. (3).

Appendix B.2. Formulation of Green’s functions – Forcing problem

The composition of Green’s functions includes the response of the waveguide to
the two fundamental loading conditions characterised by delta functions in the right-
hand-side of the governing equation. In both cases, Green’s functions are formulated
by expansion on free waves, see Eq. (B.5), and must satisfy the radiation/decay con-
ditions. For symmetric waveguides the inhomogeneous problem may conveniently
be reformulated to two semi-infinite homogeneous problems with inhomogeneous
boundary conditions, see e.g. [9, 17, 36]. Writing out the solution for each segment
of the membrane (x > ξ and x < ξ) it is easily verified that the general solution for the
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state variables for both segments may be written using the module.

w0F(x, ξ, z0) =

∞∑

n=1

w̄(n)W0F(n)(z0) exp(k(n)|x − ξ|)

φ0F(x, ξ, z, z0) =

∞∑

n=1

φ̄(n)(z)W0F(n)(z0) exp(k(n)|x − ξ|)

w
′0F(x, ξ, z0) = sgn(x − ξ)

∞∑

n=1

w̄
′(n)W0F(n)(z0) exp(k(n)|x − ξ|)

φ
′0F(x, ξ, z, z0) = sgn(x − ξ)

∞∑

n=1

φ̄
′(n)(z)W0F(n)(z0) exp(k(n)|x − ξ|)

(B.5)

with summation only over positive indices to satisfy radiation and decay conditions
(by definition of index notation in Appendix B.1). Note that W0F(n) is only a function
of the source location, z0, for some 0F. Further, in the general solution we note that
the purpose of the module and accompanying sign function is to ensure the correct
propagation/decay away from the source and so the sign function is merely to be
viewed as a ’logical-type’ operator and is therefore not subject to differentiation, see
[9] for details. This holds for any symmetric problem.

Details of the derivation of modal amplitudes using bi-orthogonality are shown
in [9] and thus presented only in brief here. In case of a mechanical excitation the
loading conditions (equation system) are

w
′01(x, ξ) = sgn(x − ξ)

∞∑

n=1

w̄
′(n)W01(n) = −1

2
sgn(x − ξ)

φ
′01(x, ξ, z) = sgn(x − ξ)

∞∑

n=1

φ̄
′(n)(z)W01(n) = 0

at x = ξ ± |ε|, ε→ 0 (B.6)

Then following [9] we multiply each condition in Eq. (B.6) with its counterpart (from
the reciprocity relation) of index j and summarise according to the bi-orthogonality
relation to get

∞∑

n=1

[
−w̄

′(n)w̄( j) + α

∫ 1

0
φ̄
′(n)(z)φ̄( j)(z)dz

]
W01(n) =

∞∑

n=1

R̄(n, j)W01(n) =
1
2

w̄( j) (B.7)

for { j ∈ Z | j , 0}
with R̄(n, j) given in Eq. (3) or explicitly in Eq. (B.8). Then due to bi-orthogonality the
summation vanishes and each modal amplitude may be found individually as

W01(n) =
w̄(n)

2R̄(n,n)
{n ∈ Z | n , 0}

with R̄(n,n) = −k(n)
[
1 +

αΩ2

κ2(n) sin2(κ(n))

∫ 1

0
cos2(κ(n)z)dz

] (B.8)
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For the acoustic excitation the forcing problem is formulated as follows

w
′02(x, ξ, z0) = sgn(x − ξ)

∞∑

n=1

w̄
′(n)W02(n)(z0) = 0 at x = ξ ± |ε|, ε→ 0

φ
′02(x, ξ, z, z0) = sgn(x − ξ)

∞∑

n=1

φ̄
′(n)(z)W02(n)(z0) =

1
2

sgn(x − ξ)δ(z − z0) (B.9)

and following the same procedure the modal amplitudes are found as

W02(n)(z0) =
1
2
αφ̄(n)(z0)

R̄(n,n)
=

1
2

iαΩ cos(κ(n)z0)
R̄(n,n)κ(n) sin(κ(n))

{n ∈ Z | n , 0} (B.10)

where the amplitude, obviously, features dependence upon location of the acoustic
source, z0. Then following [35] the two Somigliana’s identities may be expressed as
in Eq. (B.11) with external forces, q.

δ1Fw(ξ) + δ2Fαφ(ξ, z0) = F = 1, 2
∫ b

a

[
−qw(x)w0F(x, ξ, z0) + α

∫ 1

0
qφ(x, z)φ0F(x, ξ, z, z0)dz

]
dx +

[
w′(x)w0F(x, ξ, z0) − α

∫ 1

0
φ′(x, z)φ0F(x, ξ, z, z0)dz (B.11)

−w
′0F(x, ξ, z0)w(x) + α

∫ 1

0
φ
′0F(x, ξ, z, z0)φ(x, z)dz

]x=b

x=a

Appendix C. Bernoulli-Euler beam

Time-harmonic wave propagation in a Bernoulli-Euler beam is indeed an elemen-
tary problem found in many text books. Therefore we have left the specific details to
the literature and in particular to [17] where the bi-orthogonality relations have been
used to solve the beam problem. The beam is characterised by the shear force and
moment i.e. the force state variables Q(X) = bQ(x),M(x)cT and the kinematic state
variables U(X) = bw(x), γ(x)cT i.e. displacement and rotation. As shown in [17] the
bi-orthogonality relation is easily derived as in Eq. (2).

To formulate Somigliana’s identities Green’s functions should be derived. Green’s
functions represent here the response (states) of the infinite beam to, respectively, 01
a point force and 02 a point moment. The derivations of Green’s functions may be
found in, for instance, [17]. Then, following [35] the two Somigliana identities are
formulated as in Eq. (C.1) with external forces, q.

δ1Fw(ξ) + δ2Fγ(ξ) =

∫ b

a
qw(x)w0F(x, ξ)dx + F = 1, 2

[
Q(x)w0F(x, ξ) + M(x)γ0F(x, ξ) − Q0F(x, ξ)w(x) − M0F(x, ξ)γ(x)

]∣∣∣∣
x=b

x=a

(C.1)
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From Somigliana’s identities the conventional boundary (integral) equations are de-
rived straightforwardly by letting ξ alternately tend towards the boundaries from inside
the domain. Then, following the derivation in Sec. 2 it is straightforward to substitute
the Green’s functions into Eq. (C.1), use the bi-orthogonality from Eq. (2) and arrive
at the boundary identities.

Appendix D. Fluid-filled shell

The elastic fluid-filled cylindrical shell characterised by an internal acoustic medi-
um and a Kirchhoff-Love type surrounding shell constitutes a three-dimensional vibro-
acoustic waveguide. This particular problem, depicted in Fig. D.5, is comparable with
the fluid-loaded membrane by being also transcendental in nature but is otherwise
more complicated as it allows for propagation of helical (spinning) waves in the pre-
ferred propagation direction. Details beyond those shown here can be found in [9]
where this specific problem is considered.

Fluid - ρfl, cfl, ϕ(x,r,θ)

Shell - ρstr, E, ν, [u(x,θ),v(x,θ),w(x,θ)]T

x
r

h

R
Source - (ξ,r0,θ0)

Force - (ξ,θ0)

x=bx=a L

Fig. D.5: Sketch of the fluid-filled shell illustrating source/force locations, geometry and material proper-
ties.

For this problem we exploit also the axial symmetry which allows decomposition into
circumferential wavenumbers, m ∈ Z, and we may thus consider each m-spectra in-
dividually (indicated by subscript m) so that (θ) may be omitted. Hence, the axial
wavenumbers, k(n)

m , depend on the circumferential modes as defined by the disper-
sion equation. For this waveguide there is a total of 10 state variables (five forces
and five kinematic) and five Somigliana identities. The five forces constitute axial,
tangential, transverse, bending moment and velocity and the five kinematic axial, tan-
gential, transverse, rotation and pressure, see Eq. (51). The Somigliana identities
associated with this problem can be found in [37] or adapted to the terminology of [9]
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in Eq. (D.1).

δ1Fum(ξ) + δ2Fvm(ξ) + δ2Fwm(ξ) + δ4Fw′m(ξ) + δ5F i
1
γΩ

pm(ξ, r0) =

[
Q1m(x)u0F

m (x, ξ) + Q2m(x)v0F
m (x, ξ) + Q3m(x)w0F

m (x, ξ)

+µQ4m(x)w
′0F
m (x, ξ) + i

ρ

γ3µΩ

∫ 1

0
p(0F)

m (x, ξ, r)ϑm(x, r)rdr
]∣∣∣∣∣∣

x=b

x=a

−
[
Q0F

1m(x, ξ)um(x) + Q0F
2m(x, ξ)vm(x) + Q0F

3m(x, ξ)wm(x)

+µQ0F
4m(x, ξ)w′m(x) + i

ρ

γ3µΩ

∫ 1

0
pm(x, r)ϑ(0F)

m (x, ξ, r)rdr
]∣∣∣∣∣∣

x=b

x=a

+

∫ b

a

[
q1m(x)u0F

m (x, ξ) + q2m(x)v0F
m (x, ξ)

+ q3m(x)w0F
m (x, ξ) + i

ρ

γ3Ω

∫ 1

0
Tm(x, r)p0F

m (x, ξ, r)rdr
]

dx

for F = 1, . . . , 5

(D.1)

with the external forces, q/T , included. As for the fluid-loaded membrane Green’s
functions also depend on the source location, r0, for some loading conditions, 0F −
not indicated here.
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Abstract

The bi-orthogonality relation for eigenfunctions of self-adjoint operators is derived.
Its composition is explained in view of the structure of a characteristic equation and
of the energy flow components. Application of the bi-orthogonality relation for solv-
ing forcing problems is generalised and the connection between the bi-orthogonality
relation and the virtual wave method is highlighted. Technicalities are illustrated in
a non-trivial example of propagation of free/forced cylindrical waves in a thin elastic
plate under heavy fluid loading.

Keywords:
Bi-orthogonality relation, Reciprocity relation, Self-adjoint operator, Fluid-loaded
plate, Energy flow

1. Introduction

Modelling of dynamic phenomena in structured media requires use of a versatile
’toolbox’ of various concepts and methods. We elaborate hereafter on the usefulness
of the bi-orthogonality relation, which is readily available from the reciprocity the-
orem, to solve both the inhomogeneous and the eigenvalue problems for self-adjoint
operators. An operator of this type emerges relatively often in many realms of physics,
for instance, in linear dynamics of electromagnetics, optics, quantum mechanics, seis-
mics, elastodynamics, vibro-acoustics etc.

An excellent historical overview of development and application of the reciprocity
theorem (also known as the Betty theorem) in physics is presented in the canonical
text [1, pp. 1-4]. This text also gives an exhaustive account of the problems in elas-
todynamics, which may conveniently be solved by the so-called virtual wave method
originated from the reciprocity relation. The book [1], however, has not been our
only inspiration to revisit the reciprocity relation and the closely linked orthogonal-
ity and bi-orthogonality relations. The orthogonality relations for Lamb waves have
been derived in [2, 3], and the bi-orthogonality relations have been used to find the
forced response of an elastic layer in [4, 5]. In a similar way (bi)-orthogonality for
wave modes in cylindrical shells have been derived in e.g. [6, 7]. L. I. Slepyan [8]
generalised these relations for a broad range of linear problems in dynamics in gen-
eral, and the recent papers [9, 10] illustrate their usefulness in structural dynamics and
vibro-acoustics.
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In what follows, we advance further and formulate the bi-orthogonality relations
for eigenfunctions of self-adjoint operators, not necessarily emerging from elastody-
namics. According to Mikhlin [11] differential operators derived from the variational
principle are on this form. Furthermore, we apply these relations to solve, in cylindri-
cal coordinates, a problem of wave propagation in a thin elastic plate under heavy fluid
loading. Solution of this non-trivial problem highlights several important and very
useful properties of the bi-orthogonality relation, which, to the best of our knowledge,
have not yet been identified and discussed.

To conclude the introduction, we clarify the terminology adopted hereafter. We
define the reciprocity relation as stated in [1, p. 3, 2nd paragraph]. The orthogonality
relation is defined as the reciprocity specialised for any pair of free waves (eigen-
values) as stated in [1, p. 73, Eq. (5.2.8)] for the Bernoulli-Euler beam and in [2,
Eq. (7)] for the canonical Rayleigh-Lamb problem. Then the bi-orthogonality relation
is defined as stated in [9, Eq. (6)] for the Bernoulli-Euler beam, in [10, Eq. (12)] for
a fluid-filled cylindrical shell and in [4, Eq. (19)] for the Rayleigh-Lamb problem.
It should be observed, however, that in [1] the same relation written in the form of
Eq. (9.4.23) on p. 152 is referred to as the orthogonality of Rayleigh-Lamb modes.
This ambiguity of definitions of the orthogonality relation and the bi-orthogonality
relation in the literature should be kept in mind.

Each section of the paper begins with a general formulation and derivation of the
proposed method followed by a non-trivial vibro-acoustic example, thus relating the
rather general mathematics to actual physics problems.

2. Generalisation of bi-orthogonality relations

As highlighted in the introduction the bi-orthogonality relation proves powerful
for solving problems in waveguide theory, see e.g. [4, 6, 9, 10]. In these problems
an important and much practically relevant issue is the assessment of energy flow in
the waveguide. Quite often calculation of energy flow is a tedious task. However,
as shown in [4, 10] a use of bi-orthogonality dramatically simplifies this calculation.
Common for the specific problems considered in the latter references is that preferred
directions of wave propagation exist (i.e. extend to infinity). For the fluid-filled shell
treated in [10] the preferred direction of propagation is axially and in the example
of the fluid-loaded plate considered in this paper, it is the radial direction. Thus, we
may treat any surface with the normal coinciding with this direction (a cross-section
at x = a for the fluid-filled shell and a cylinder at r = r0 for the fluid-loaded plate)
as a hypothetical boundary on which there are no prescribed boundary values of state
variables. As we shall generalise here to cover self-adjoint operators we denote such
boundaries as empty, implying simply that there is nothing prescribed on them.

Now, suppose that V is a volume with ∂Vm empty boundaries and ∂Vc
m = ∂V\∂Vm

physical boundaries with prescribed boundary values. Suppose that

Lu = 0 on V (1)
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where L is a linear self-adjoint system of partial differential equations (PDE) acting on
the vectorial field, u, where u constitute eigenfunctions with associated eigenvalues,
λ, and which satisfy boundary conditions on ∂Vc

m, see [11]. The eigenvalues are found
from the characteristic equation which is on the form

f (λ2) = 0 (2)

i.e. formulated in even powers of the eigenvalues, λ. Thus, the eigenvalues are
grouped in pairs of ±λ(±n), implying the index notation λ(−n) = −λ(n). For self-adjoint
L we may write the self-adjoint condition in Eq. (3) following e.g. [8, 12].

〈
Lu(n), u( j)

〉
V

=
〈
Lu( j), u(n)

〉
V

(3)

i.e. taking the inner product over the volume and with u(n) and u( j) being any two
solutions (eigenfunctions) to Eq. (1). Then employing ’by parts integration’ on Eq. (3)
and noting that boundary conditions on ∂Vc

m are fulfilled, the self-adjoint condition
reduces to the relation in Eq. (4).

〈
Lq(n), q( j)

〉
∂Vm
−

〈
Lq( j), q(n)

〉
∂Vm

= 0 (4)

where the differential operator, L, emerges directly from partial integration. The par-
tition into Lq(n) and q(n) corresponds to standard formulation of state variables e.g.
generalised forces, Q(n) = Lq(n) and the generalised displacements, U(n) = q(n). When
the operator L is harmonic, q(n) = u(n) and, therefore, Lq(n) = Lu(n). When the prob-
lem formulation involves a bi-harmonic operator (as in the example we consider in
Sec. 2.1) q(n) includes u(n) and ∇u(n). Accordingly, Lq(n) includes high-order deriva-
tives i.e. ∇2u(n) and ∇

(
∇2u(n)

)
. Moreover, the state variables Lq(n)/q(n) are not neces-

sarily equal to their counterparts, for instance, derived from the variational principle.
However, from [11, 13] we find that the energy flow is not affected by these differ-
ences, see Remark 2.3.

Since L is self-adjoint the relation in Eq. (4) with the state variables,Lq(n) and q(n),
may be much simplified due to cancellations of common terms in 〈Lq(n), q( j)〉∂Vm and
〈Lq( j), q(n)〉∂Vm . These cancellations are case-sensitive and will be illustrated in the
example to follow. The remaining terms in Lq and q may be called essential. Then
two groups of functions denoted: C(n/ j)

A ,C(n/ j)
B , are formed from these essential terms

as functions having odd (Class A) and even (Class B) properties of their expansion
coefficients with respect to the eigenvalues. Thus, each group consists of parts of Lq
and q. Definitions of Class functions and essential parts are elaborated in [10] and in
the example in Sec. 2.1. It can again be shown that only the essential part is necessary
to construct the energy flow, see e.g. [13] or Sec. 4. Now, using the Class functions,
Eq. (4) may be written as

〈
C( j)

A ,C(n)
B

〉
∂Vm

=
〈
C(n)

A ,C( j)
B

〉
∂Vm

⇔ R( j,n) − R(n, j) = 0 (5)

with R( j,n) =
〈
C( j)

A ,C(n)
B

〉
∂Vm

∧ R(n, j) =
〈
C(n)

A ,C( j)
B

〉
∂Vm

(6)
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which is simply a reduced form of Eq. (4) and thus holds also for all n and j over all
boundaries in ∂Vm. However, we see from either of the two formulations that when
n = j the relation is identically satisfied independent of the boundary ∂Vm. Similarly,
as suggested in [1] and illustrated in the following example, we can show that when
n2 , j2, Eq. (5) can be satisfied only if R(n, j) and R( j,n) vanish independently and
therefore also independent of the boundary. Thus, R(n, j) and R( j,n) must obey the bi-
orthogonal relation in Eq. (7).

R(n, j) = R( j,n) = 0 n2 , j2 (7)

For the case n = − j we can, however, not show that the relation in Eq. (5) is satisfied
independent of the boundary. This is illustrated in the example. Returning to Eq. (4)
it is then clear that only the case n = − j does not vanish independent of the boundary.
Fortunately, this proves useful for solving forcing problems of such type and moreover
it proves particularly meaningful from a physical viewpoint as also emphasised by the
’virtual wave’ method introduced for elastodynamics in [1].

The proof of bi-orthogonality, Eq. (7), is straightforward in Cartesian coordinates fol-
lowing for example [6] or [10]. However, in other cases such as, for instance, in
cylindrical and spherical coordinates an alternative approach should be taken. In the
following example, this is done by showing explicitly that the bi-orthogonality re-
lation, Eq. (7), can be converted to a linear combination of characteristic equations,
Eq. (2), for the involved eigenfunctions.

2.1. Example: Free cylindrical waves in a fluid-loaded plate
Let us consider the time harmonic waves (exp (−iωt)) in an r-infinite plate loaded

by an inviscid compressible fluid of finite depth, see Fig. 1.

Fluid - ρfl, cfl, ϕ(r,θ,z)

Plate - ρpl, cpl, w(r,θ)

r
z

h

H
Source - (r0,z0)

Force - (r0)

Fig. 1: Sketch of r-infinite fluid-loaded plate in cylindrical coordinates.

This vibro-acoustic problem is governed by the canonical PDE’s for the radial dis-
placement, w, and velocity potential, φ, in Eq. (8)-(11), see e.g. [14, 15].

β2µ3

ρ
∇4w(r, θ) − µ

ρ
Ω2w(r, θ) − iΩφ(r, θ, z)|z=1 = 0 (8)

∇2φ(r, θ, z) + Ω2φ(r, θ, z) = 0 (9)

∇φ(r, θ, z) · n|z=0 = −∂φ(r, θ, z)
∂z

∣∣∣∣∣
z=0

= 0 (10)

∇φ(r, θ, z) · n|z=1 =
∂φ(r, θ, z)

∂z

∣∣∣∣∣
z=1

= −iΩw(r, θ) (11)
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The length scale is chosen as H and the non-dimensional parameters are

Ω2 =
ω2H2

c2
f l

β =
cpl

c f l
µ =

h
H

ρ =
ρ f l

ρpl
(12)

Omitting technicalities, the solution to this problem is given as

w(r, θ) = w̄WH(1)
m (kr) cos(mθ) φ(r, θ, z) = φ̄(z)WH(1)

m (kr) cos(mθ) (13)

with W as the modal amplitude. Then the modal coefficients become

w̄ = 1 ∧ φ̄(z) = i
Ω

κ

cos(κz)
sin(κ)

with κ2 = Ω2 − k2 (14)

The transcendental dispersion relation is

k4 +
ρ

β2µ3

Ω2

κ

cos(κ)
sin(κ)

−
(

Ω

βµ

)2

= 0 (15)

This relation is invariant to the choice of coordinates and is thus the same in Cartesian
coordinates.

Then take the inner product of Eq. (8) for eigenfunction w(n) with the solution w( j)

and similar Eq. (9) for eigenfunction φ(n) with solution φ( j) − omitting the (r, θ, z)-
dependencies hereafter. Carrying out full by parts integration and superimposing the
two equations we arrive at
〈
∇4w(n)w( j) − Ω2

β2µ2 w(n)w( j) +
ρ

β2µ3

[
∇2φ(n)φ( j) + Ω2φ(n)φ( j)

]〉
V
− i ρ

β2µ3 Ω
〈
φ(n)w( j)

〉
∂V,z=1

=
〈
∇

(
∇2w(n)

)
w( j) − ∇

(
∇2w( j)

)
w(n) +

(
∇2w( j)

)
∇w(n) −

(
∇2w(n)

)
∇w( j)

〉
∂V

+
ρ

β2µ3

〈
∇φ(n)φ( j) − ∇φ( j)φ(n)

〉
∂V
− i

ρ

β2µ3 Ω
〈
φ(n)w( j)

〉
∂V,z=1

(16)

+

〈
∇4w( j)w(n) − Ω2

β2µ2 w(n)w( j) +
ρ

β2µ3

[
∇2φ( j)φ(n) + Ω2φ(n)φ( j)

]〉

V

where the scalar product implied by the inner product has already been carried out.
The inner products over the fluid and plate then imply only integration with: dV f l =

rdrdθdz, dVpl = rdrdθ and so forth for the surfaces. ∂V, z = 1 indicates the sur-
face/interface at z = 1.

Then using Eq. (8) and (9) the inner product over the volume vanishes, leaving
only the boundary terms. As mentioned in Sec. 2 the boundary terms correspond to
the standard formulation of generalised forces and displacements. Introducing these
as

γ(n) = ∇w(n) M̃(n) = ∇2w(n) Q̃(n) = ∇
(
∇2w(n)

)
p(n) = iΩφ(n) v(n) = ∇φ(n) (17)

we may rewrite the self-adjoint condition to
〈
Q̃(n)w( j) − Q̃( j)w(n) + M̃( j)γ(n) − M̃(n)γ( j) − i

ρ

β2µ3Ω

[
v(n) p( j) − v( j) p(n)

]〉

∂V

− ρ

β2µ3

〈
p(n)w( j) + p( j)w(n)

〉
∂V,z=1

= 0
(18)
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where M̃ and Q̃ originate from bending moment and shear force, γ is rotation angle
and p and v are pressure and fluid velocity. Recall that though Q̃, γ and v are vectors,
see Eq. (17), the inner product imply a scalar equation since the surface integral imply
projection with the surface normal i.e. ·nds.

As already discussed, the condition in Eq. (18) is identically satisfied on ∂Vc
m by

the boundary conditions. In this case, the integrals at θ = 0, 2π are eliminated due to
periodicity and the integrals at z = 0, 1 due to the boundary/continuity conditions in
Eq. (10)–(11). This leaves only the unbounded direction with normal n = b±1, 0, 0cT .
Since the fluid-loaded plate extends to infinity in r we take the definite integral over
some hypothetical cylindrical surface, r = r0, making this boundary, essentially, an
empty one and so the eigenfunctions themselves are bound to obey the remaining
relation in Eq. (19). This relation is typically known as the reciprocity relation and
corresponds to Eq. (4).

∫ 2π

0

{
Q̃(n)w( j) − Q̃( j)w(n) + M̃( j)γ(n) − M̃(n)γ( j)

−i
ρ

β2µ3Ω

∫ 1

0

[
v(n) p( j) − v( j) p(n)

]
dz

}
rdθ

∣∣∣∣∣∣
r=r0

r=a
= 0

(19)

where we have changed notation to the explicit integral form and in this case let a→ 0.
The forces/displacements from Eq. (17) (Lq(n)/q(n) from Eq. (4)) in the unbounded
direction (omitting amplitudes and cos (mθ)) are

w(n) = H(1)
m (k(n)r) γ(n) = −k(n)H(1)

m+1(k(n)r) +
m
r

H(1)
m (k(n)r)

M̃(n) = k2(n)H(1)
m (k(n)r) Q̃(n) = k3(n)H(1)

m+1(k(n)r) + k2(n) m
r

H(1)
m (k(n)r) (20)

p(n) = iΩφ̄(n)(z)H(1)
m (k(n)r) v(n) = φ̄(n)(z)

(
−k(n)H(1)

m+1(k(n)r) +
m
r

H(1)
m (k(n)r)

)

These forces/displacements may be simplified to only the first terms by noting that the
second terms of γ, Q̃ and v cancel within the reciprocity relation, Eq. (19). Take for
instance Q̃(n)w( j) − M̃(n)γ( j) we get

Q̃(n)w( j) − M̃(n)γ( j) =

[
k3(n)H(1)

m+1(k(n)r) + k2(n) m
r

H(1)
m (k(n)r)

]
H(1)

m (k( j)r)

− k2(n)H(1)
m (k(n)r)

[
−k( j)H(1)

m+1(k( j)r) +
m
r

H(1)
m (k( j)r)

]
(21)

=k3(n)H(1)
m+1(k(n)r)H(1)

m (k( j)r) + k2(n)k( j)H(1)
m (k(n)r)H(1)

m+1(k( j)r)

and similar for v(n) p( j) − v( j) p(n). Thus, the essential part of the forces/displacements
(represented without accents in the following) corresponding to CA/CB from Eq. (5)

6



are

w(n) = w̄(n)H(1)
m (k(n)r) = H(1)

m (k(n)r)

γ(n) = γ̄(n)H(1)
m+1(k(n)r) = −k(n)H(1)

m+1(k(n)r)

M(n) = M̄(n)H(1)
m (k(n)r) = k2(n)H(1)

m (k(n)r)

Q(n) = Q̄(n)H(1)
m+1(k(n)r) = k3(n)H(1)

m+1(k(n)r)

p(n) = p̄(n)H(1)
m (k(n)r) = iΩφ̄(n)(z)H(1)

m (k(n)r)

v(n) = v̄(n)H(1)
m+1(k(n)r) = −φ̄(n)(z)k(n)H(1)

m+1(k(n)r)

(22)

For this particular formulation of forces/displacements we immediately find that the
modal coefficients obey the Class properties defined in [10] i.e. being either odd (CA)
or even (CB) with respect to the eigenvalues, k(n). Thus,

Class A – odd: {γ,Q, v(z)} Class B – even: {w,M, p(z)} (23)

Substituting the essential variables into the reciprocity relation we get Eq. (24) when
having performed the circumferential integration. This corresponds to the reduced
form in Eq. (5).

[
R̄(n, j)H(1)

m (k( j)r)H(1)
m+1(k(n)r) − R̄( j,n)H(1)

m (k(n)r)H(1)
m+1(k( j)r)

]
r
∣∣∣∣
r=r0

r=a
= 0 (24)

m
[
R(n, j) − R( j,n)

]∣∣∣∣
r=r0

r=a
= 0 (25)

with

R(n, j) = R̄(n, j)H(1)
m (k( j)r)H(1)

m+1(k(n)r)r (26)

R̄(n, j) = Q̄(n)w̄( j) + M̄( j)γ̄(n) − i
ρ

β2µ3Ω

∫ 1

0
v̄(n) p̄( j)dz (27)

Then, expanding R̄(n, j) in full we arrive, after some algebraic manipulations, on the
form

R̄(n, j) =
k(n)

k2( j) − k2(n)

[
k4( j) − k4(n) +

Ω2ρ

β2µ3

(
cos(κ( j))

κ( j) sin(κ( j))
− cos(κ(n))
κ(n) sin(κ(n))

)]
(28)

where we recognise the square bracket as the dispersion relation, Eq. (15), formulated
for k(n) subtracted from the dispersion relation for k( j). Then, by the factor in front, it
becomes clear that R̄(n, j) = 0 only when n2 , j2. This immediately proves that R(n, j),
Eq. (26), also obeys bi-orthogonality as stated in Eq. (7) and furthermore independent
of which empty boundary (r = a or r = r0) we consider.

Continue further and expand the inner part of Eq. (25) we arrive after some algebraic
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manipulations at

R(n, j) − R( j,n) =

[
H(1)

m (k( j)r)H(1)
m+1(k(n)r)k(n)r − H(1)

m (k(n)r)H(1)
m+1(k( j)r)k( j)r

]

k( j) − k(n)

1(
k( j) + k(n))

[
k4( j) − k4(n) +

Ω2ρ

β2µ3

(
cos(κ( j))

κ( j) sin(κ( j))
− cos(κ(n))
κ(n) sin(κ(n))

)] (29)

which emphasise that this is zero if n , − j again independent of which boundary
we consider. Note, however, for the case when n = − j, H(1)

m (k(−n)r) must be taken as
H(2)

m (k(n)r) and the expression in square brackets can be identified as the Wronskian.
This essentially makes the relation R(−n,n) − R(n,−n) invariant to r, yet not zero at a
specific boundary, say, r = r0. Similar results for the Rayleigh-Lamb problem in polar
coordinates are presented in [1, p. 155]. Before proceeding with the applications of
bi-orthogonality we make the following remarks.

Remark 2.1. As R(n, j) and R̄(n, j) constitute a linear combination of dispersion rela-
tions they are, as the dispersion relation itself, indeed invariant to the choice of co-
ordinate system. This implies that when using R(n, j) and R̄(n, j) (bi-orthogonality) to
solve forcing problems the solution appears in its strong form. This is not immediately
obvious since reciprocity is generally perceived as a method to solve a problem in its
weak form.

Remark 2.2. Bi-orthogonality and thus invariance of Eq. (19) becomes obvious only
when using the correct (essential) formulation of forces/displacements from Eq. (22).
In the Cartesian formulation they appear immediately whereas for problems in cylin-
drical and spherical coordinates the correct formulation appears in a non-trivial way.

Remark 2.3. The forces whether from Eq. (20) or (22) are different from the conven-
tional definition of forces in classical literature, derived in e.g. [16, p. 283, Eq. (192)],
which is again different from those derived from the variational principle shown in
Eq. (30), see e.g. [12]. Most notably, the Poisson’s ratio is absent in M̃ and Q̃. De-
spite this ambiguity it is easy to show that the energy flow in a free wave using the
essential forces is exactly the same as the energy flow using the classical ones, see
e.g. Sec. 4, Fig. 3. This appears from the definition of energy flow in [13, Sec. 2.5]
which is derived directly from the equations of motion, in which Poisson’s ratio is also
absent. The same was also suggested by Mikhlin in [11, p. 169, Eq. (7)].

Qr =
∂3w(x, θ)
∂r3 +

1
r
∂2w(x, θ)
∂r2 − 1

r2

∂w(x, θ)
∂r

+
(2 − ν)

r2

∂3w(x, θ)
∂θ2∂r

− (3 − ν)
r3

∂2w(x, θ)
∂θ2

Mr =
∂2w(x, θ)
∂r2 + ν

(
1
r
∂w(x, θ)
∂r

+
1
r2

∂2w(x, θ)
∂θ2

)
(30)

The difference between the various forces and moments from Eq. (20), (30) and (22)
are shown in Fig. 2. As the main difference (Poisson’s ratio) appears only in the plate
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the real and imaginary part of the forces/moments are shown for the simple case when
ρ → 0 – corresponding to an ’in-vacuo’ plate. Note from the figure that the moments
from Eq. (20) and (22) fully align.
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Fig. 2: Different definitions of forces (a) and moments (b) as a function of r for an applied force at r0 = 0.5.
Only the plate is considered and the non-dimensional parameters are: ρ = 0, β = 3.7773, µ = 0.1, ν = 0.3,
Ω = 2.2 and m = 1. Note that the solid and dotted lines fully align in (b).

3. Application of bi-orthogonality to solve forcing problems

In this section we consider the following problem

Lu = f on V (31)

which is simply Eq. (1) with a non-zero right-hand-side (rhs). Then u is the entire
(infinite) eigenfunction expansion, u =

∑∞
j=−∞ u( j), where u( j) is a known eigenfunc-

tion with a yet unknown amplitude. For transcendental problems the solutions are
rather difficult to find. However, the bi-orthogonality relation dramatically simplifies
the procedure. To show this we follow Sec. 2 and formulate the self-adjoint condi-
tion with u(n) where u(n) is an individual eigenfunction satisfying the homogeneous
equation. In the presence of empty boundaries this simplifies to the inhomogeneous
reciprocity relation

〈
Lq, q(n)

〉
∂Vm
−

〈
Lq(n), q

〉
∂Vm

=
〈

f , u(n)
〉

V
(32)

which may be rearranged in terms of Class functions to get
〈
CA,C(n)

B

〉
∂Vm
−

〈
C(n)

A ,CB

〉
∂Vm

=
〈

f , u(n)
〉

V
(33)

m
∞∑

j=−∞

[〈
C( j)

A ,C(n)
B

〉
∂Vm
−

〈
C(n)

A ,C( j)
B

〉
∂Vm

]
=

〈
f , u(n)

〉
V

(34)

Then, confer to Sec. 2 bi-orthogonality (and the trivial case, n = j) ensures that on
a particular empty boundary in ∂Vm, say ∂Vn, the left-hand-side (lhs) of Eq. (34) is
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non-zero only when n = − j and we arrive at the modal equation in Eq. (35) valid for
n ∈ N.

〈
C(−n)

A ,C(n)
B

〉
∂Vn
−

〈
C(n)

A ,C(−n)
B

〉
∂Vn

=
〈

f , u(n)
〉

V
n ∈ N (35)

Pulling out the unknown amplitudes and introducing the following notation
〈
C( j)

A ,C(n)
B

〉
∂Vn

= R( j,n) = U( j)U(n)R̂( j,n) ∧ u(n) = U(n)û(n) (36)

we get

U(−n) =

〈
f , û(n)

〉
V

R̂(−n,n) − R̂(n,−n)
∧ U(n) = −

〈
f , û(−n)

〉
V

R̂(−n,n) − R̂(n,−n)
n ∈ N (37)

where the latter equation is obtained using instead Lu(−n) = 0 in the self-adjoint condi-
tion. Thus, we have found algebraic solutions for the amplitude of each eigenfunction
individually and hence independent of each other. In elastodynamics, this result for-
mulates the ’virtual wave’ method, [1].

3.1. Example: Forcing of a fluid-loaded plate in cylindrical coordinates
Given the details in the example in Sec. 2.1 it follows from the derivation in Sec. 3

that we may find the modal amplitudes directly using Eq. (37). For simplicity we
consider the Green’s function, first, for a structural excitation (indicated 01) by a unit
’ring’ force at some circumference r = r0 (see Fig. 1). This corresponds to a non-zero
right-hand-side in Eq. (8), while keeping the right-hand-side of Eq. (9) zero. Thus, the
force is formulated as: f =

⌊
1
r δ(r − r0) cos(mθ) exp(−iωt), 0

⌋T − omitting, however,
cos(mθ) exp(−iωt) in what follows. Green’s function needs also to satisfy radiation
conditions (propagation towards infinity), decay conditions at r → ∞ and be bounded
at r = 0. To ensure this, the admissible Bessel (eigen-)functions should be selected as
presented in the table.

Free waves Type r < r0 r > r0

k ∈ R, k > 0 Propagating Jm(kr) H(1)
m (kr)

ik ∈ R, k > 0 Attenuating Im(kr) Km(kr)

First, we consider the propagating waves by taking only purely real valued wavenum-
bers, say, k(n) ∈ R and substitute into Eq. (37) with û(n) =

⌊
ŵ(n)(r), φ̂(n)(r, z)

⌋T
. Then,

we take the inner product over the surface r = r0 and straightforwardly arrive at the
modal amplitudes

W01(n) = − Jm(k(n)r0)

R̄(n,n)
(
Jm+1(k(n)r0)H(1)

m (k(n)r0) − Jm(k(n)r0)H(1)
m+1(k(n)r0)

)
r0

(38)

in which we recognize the bracket in the denominator to be the Wronskian which
simplifies to: 2i

πk(n)r0
, so that Eq. (38) may be reduced to

W01(n) = i
πk(n)Jm(k(n)r0)

2R̄(n,n)
k(n) ∈ R (39)
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and similar for the attenuating waves. Next, let us consider an acoustic source (indi-
cated 02) corresponding to a non-zero right-hand-side in Eq. (9). The source corre-
sponding to a ’ring’ monopole is: f =

⌊
0, 1

r δ(r − r0)δ(z − z0) cos(mθ) exp(−iωt)
⌋T −

omitting again cos(mθ) exp(−iωt). Then, for the propagating waves with wavenumber
k(n) ∈ R, it is obvious from Eq. (37) that only the numerator changes and so, using the
modal coefficients in Eq. (14), we find the amplitudes as

W02(n) = iφ̄(n)(z0)
πk(n)Jm(k(n)r0)

2R̄(n,n)
= φ̄(n)(z0)W01(n) k(n) ∈ R (40)

For both cases we arrive at an algebraic expression in which the integrals may be
evaluated analytically. Furthermore, the invariance of R̄(n, j), discussed in Sec. 2.1 and
Remark 2.1, immediately suggests that the modal amplitudes are found within the
strong formulation of the forcing problem.

4. Energy flow

As mentioned in Sec. 2 the energy conveyed by an individual free wave is deter-
mined only by the essential state variables. For the inhomogeneous case we may show
this following [13]. First we formulate the inhomogeneous reciprocity relation as in
Sec. 3, however, in this case with known amplitudes for the eigenfunctions C( j)

A and
C( j)

B . Thus, we may depart directly from Eq. (35) in which bi-orthogonality have al-
ready been used. If we consider stationary dynamics with non-dimensional frequency,
exp(−iΩt), we may multiply Eq. (35) with −iΩ and get

〈
C(−n)

A ,−iΩC(n)
B

〉
∂Vn
−

〈
−iΩC(n)

A ,C(−n)
B

〉
∂Vn

=
〈

f ,−iΩu(n)
〉

V
(41)

Considering only the physical energy produced by the real part of the state variables
as in [13] the relation becomes
〈
Re

(
C(−n)

A

)
,Re

(
−iΩC(n)

B

)〉
∂Vn
−

〈
Re

(
−iΩC(n)

A

)
,Re

(
C(−n)

B

)〉
∂Vn

=
〈
Re ( f ) ,Re

(
−iΩu(n)

)〉
V

⇓ (42)

Ω
〈
Re

(
C(−n)

A

)
, Im

(
C(n)

B

)〉
∂Vn
−Ω

〈
Im

(
C(n)

A

)
,Re

(
C(−n)

B

)〉
∂Vn

= Ω
〈
Re ( f ) , Im

(
u(n)

)〉
V

Then it follows directly from [13] that the equation may be reduced to

N(n) = −Ω

2
Im

(〈
C(n)∗

A ,C(−n)
B

〉
∂Vn
−

〈
C(−n)

A ,C(n)∗
B

〉
∂Vn

)
=

Ω

2
Im

(〈
f , u(n)∗

〉
V

)
(43)

Considering the rhs we observe that this is exactly the energy injected through the
eigenfunction, u(n), as defined in [13]. Then, the left-hand-side must indeed represent
the fraction of the total energy flow transported by the same eigenfunction. As ob-
served in [10] for a fluid-filled shell, this proves linearity of the energy flow implying
that all cross terms cancel and thus produce no net flow of energy.

11



Likewise, it is easy to arrive also at Eq. (44) using Eq. (32) as starting point (with-
out employing bi-orthogonality).

N(n) = −Ω

4
Im

(〈
Lq(n)∗ , q

〉
∂Vn
−

〈
Lq, q(n)∗

〉
∂Vn

)
(44)

= −Ω

4

∞∑

j=−∞
Im

(〈
Lq(n)∗ , q( j)

〉
∂Vn
−

〈
Lq( j), q(n)∗

〉
∂Vn

)
(45)

Thus proving that the fraction of total energy flow conveyed by the eigenfunction u(n)

is the same no matter if we use the direct form of the forces/displacements (Lq/q) or
just their essential parts (CA/CB). However, note that only when using the essential
forces/displacements does the energy reduce to the linear form in Eq. (43).

Returning to Eq. (43) it can be shown following the example in [10] that N(n) from
Eq. (43) (or (44)) is the same as

N(n) =
Ω

2
Im

(〈
C(n)

A ,C(n)∗
B

〉
∂Vn

)
(46)

= −Ω

2
Im

(
R(−n,n) − R(n,−n)

)
(47)

where the former is exactly the definition of energy flow from [13] (however reduced
to linear form) and the latter, essentially, the imaginary part of Eq. (35). Then by
linearity of the energy flow it is obvious that the total energy flow (with known ampli-
tudes associated with each eigenfunction) may be expressed as Eq. (48).

N
∑

=
1
2

Ω

∞∑

n=1

Im
(〈
C(n)

A ,C(n)∗
B

〉
∂Vn

)
= −1

2
Ω

∞∑

n=1

Im
(
R(−n,n) − R(n,−n)

)
(48)

Moreover, following [10], only some products of eigenfunctions in Eq. (48) contribute
to the energy flow. In the theory of waveguides these energy conveying terms are
produced by propagating waves. Thus, the infinite sum reduces to a finite one

N
∑

= −1
2

ΩIm
N∑

n=1

(
R(−n,n) − R(n,−n)

)
(49)

where n counts only the energy conveying terms.
Indeed the latter emphasise the fact that the reciprocity relation, Eq. (4), bi-orthogo-

nality relation, Eq. (5) and inhomogeneous relation, Eq. (33), all constitute an energy
balance between the transmitted and accumulated energy. As suggested in Sec. 3 this
energy balance reduce to modal form thanks to bi-orthogonality and essentially each
amplitude may be found algebraically from a modal energy balance. Further,

Remark 4.1. We may conclude that the left-hand-side of Eq. (41) may be perceived
as more general than the expression from [13]:

N
∑

= −1
2

Re
(
〈Lq, q̇∗〉∂Vn

)
(50)
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This can be argued since R(−n,n) − R(n,−n) is essential in the derivation of modal ampli-
tudes and thus preserves both correct real and imaginary parts. Correctness of both
real and imaginary parts is not guaranteed from the former definition.

4.1. Example: Energy flow in a fluid-loaded plate in cylindrical coordinates
For the example treated in Sec. 3.1 it is easy to show that Eq. (46) holds. Confer

to Eq. (49) only the propagating waves contribute to the energy flow, which in this
case is easily shown following [10]. In this example it reduces to considering only
the Bessel/Hankel functions. Thus we proceed considering only the Bessel/Hankel
functions (justified by the proportionality sign) using the short notation: H(1)

m+1(k(n)r) =

H(1)
m+1, Jm(k(n)r) = Jm etc. Then for each propagating wave, k(n) ∈ R, we find by

help of the table in Sec. 3.1 and the Wronskian that Eq. (43), (46) and (47) reduce,
respectively, to

N(n) = − Ω

2
Im

(〈
C(n)∗

A ,C(−n)
B

〉
∂Vn
−

〈
C(−n)

A ,C(n)∗
B

〉
∂Vn

)

∝ Im
(
H(2)

m+1Jm − Jm+1H(2)
m

)
r =

2
πk(n)

(51)

N(n) =
Ω

2
Im

(〈
C(n)

A ,C(n)∗
B

〉
∂Vn

)
(52)

∝ − Im
(
H(1)

m+1H(2)
m r

)
= −Im (Jm+1Jm + Ym+1Ym + i [JmYm+1 − Jm+1Ym]) r =

2
πk(n)

N(n) = − Ω

2
Im

(
R(−n,n) − R(n,−n)

)
∝ Im

(
Jm+1H(1)

m − H(1)
m+1Jm

)
r =

2
πk(n) (53)

Comparing Eq. (52) and (53) we see, as noted in Remark 4.1, that correctness of both
real and imaginary part is not guaranteed by the definition in [13]. Furthermore, we
note that the Wronskian ensures that the expressions become invariant in r as expected
for conservative systems where the energy flow must be conserved at any station of
the waveguide. The same can easily be shown to hold also in Cartesian coordinates.

This is also illustrated in Fig. 3 where the total energy flow is shown using the def-
inition from [13], Eq. (50), with the forces/displacements from, respectively, Eq. (20)
and (30) and the novel definition from Eq. (49) with the essential forces/displacements.
Thus, Fig. 3 presents the total energy flow computed using three alternative definitions
of the forces/moments from Fig. 2 and hence supports Remark 2.3. In the figure we
see that only for the energy definition from Eq. (49) are both the real and imaginary
parts invariant. The same is true for the formulations in Eq. (43) and (44), whereas
Eq. (46) and (50) preserves only invariant imaginary parts. This is essential to as-
semble the invariant energy balance from which the amplitudes are derived and thus
supports Remark 4.1. Finally, remark that the novel definition of energy flow from
Eq. (49) gives the same result for any of the definitions of state variables shown in
Fig. 2 – corresponding to the dotted line in Fig. 3.
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Fig. 3: Total energy flow (blue) using Eq. (50), [13], with the forces/displacements from Eq. (20) and
(30) and the definition from Eq. (49) with the essential forces/displacements (all coincident). Red is the
complementary real part using Eq. (50) with Eq. (20) (solid) and (30) (dash-dot) and using Eq. (49) with
Eq. (22) (dotted). Non-dimensional parameters are similar to Fig. 2 but with ρ = 0.1282 i.e. fluid-load
included. The solution involves only the propagating waves: k = 1.9095 and k = 2.7931 – corresponding
to the far field solution.

An explicit formula for the total energy flow in the waveguide from the example in
Sec. 3.1 with loading condition 01 is found simply by writing out Eq. (49). With
integration in θ performed this becomes

N
∑

= − χm
π

2
Ω

N∑

n=1

Im
(
W01(n)W01(−n)R̄(n,n) (54)

×
[
Jm+1(k(n)r)H(1)

m (k(n)r) − Jm(k(n)r)H(1)
m+1(k(n)r)

]
r
)

= − χm
π

2
Ω

N∑

n=1

Im
(

2i
πk(n) W01(n)W01(−n)R̄(n,n)

)
(55)

= − χm
π

2
Ω

N∑

n=1

Re

πk(n)Jm(k(n)r0)H(1)

m (k(n)r0)
2R̄(n,n)



where χm=0 = 2, χm,0 = 1. Note again that when expressed via Eq. (49) the Wronskian
ensures conservation of energy. In Cartesian coordinates this is ensured immediately
by R(−n,n) since exp(k(−n)x) exp(k(n)x) = 1.

5. Perspectives on bi-orthogonality relations

The advantages of employing the bi-orthogonality relation are indeed remarkable
in the theory of unbounded waveguides − whether in elastodynamics, vibro-acoustics,
optics, electromagnetics, etc. Typically, it is also of interest to proceed and study the
response or eigenfrequencies of ’finite’ waveguides. When given the solution to the
unbounded waveguide problem this is conveniently done using the method of Bound-
ary Integral Equations (BIE). The essence of this method is the reciprocity between the
problem at hand and an auxiliary problem chosen such that its solution has a simple
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analytical form. Such a solution is referred to as the Green’s tensor, matrix or function
– depending on the dimensionality and complexity of the domain under considera-
tion. Since derivation of BIE’s is so much similar to derivation of the bi-orthogonality
relation, it is reasonable to suggest that bi-orthogonality may find equally powerful
applications in the BIE-method. In the derivation of BIE’s we should employ the
forcing problem from Sec. 3 (Green’s function) as the auxiliary problem to solve the
fully bounded one, just as we used the homogeneous problem from Sec. 2 to solve
the forcing problem in Sec. 3. In particular, since the fully bounded problem may be
expanded on the same eigenfunctions as the auxiliary problem (and solved with addi-
tional boundary conditions) the BIE’s reduce entirely to identities between the relevant
stations of the finite waveguide. Then the integral problem involving the BIE’s may
be reduced to a purely algebraic problem involving only the boundary conditions. As-
sembling boundary equations for ’primitive’ components of a fluid-loaded thin-walled
structure into a hierarchy of simultaneous equations proposed by L. I. Slepyan and co-
workers [17] is relevant to this concept. For some special sets of boundary conditions
the problem factorise completely into canonical eigenfrequency equations.

6. Conclusion

The novel results obtained in this paper are summarised as follows:
• The bi-orthogonality relation for any two distinct eigenfunctions exists in any

problem governed by a self-adjoint operator and it may be obtained as a linear
combination of characteristic equations for associated eigenvalues. Therefore,
its form is invariant to the choice of coordinate system

• The bi-orthogonality relation involves only essential components of state vari-
ables

• By means of the bi-orthogonality relation, in forcing problems governed by a
self-adjoint operator, the modal amplitudes are determined independently upon
each other. Therefore, the virtual wave method may be reliably used for solving
any problem of this type

• The bi-orthogonality relation in the waveguide theory provides a simple and
robust way to compute energy flow regardless the amount of propagating waves
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Using the Finite Product Method for solving eigenvalue
problems formulated in cylindrical coordinates

Lasse S. Ledeta,, Sergey V. Sorokina

aDepartment of Materials and Production, Aalborg University, Fibigerstraede 16, 9220 Aalborg, Denmark

Abstract

Analysis of free/forced wave propagation in multi-layered structures and structures
under heavy fluid loading constitute classical problems of fluid-structure interaction.
These waveguides and many similar ones support infinitely many waves and, in some
cases, e.g. at high-frequency excitations or in near-field analysis it is necessary to ac-
count for a large number of them. Finding the dispersion curves from these transcen-
dental dispersion equations is not a trivial task due to their ill-conditioned/unstable na-
ture as well as numerical algorithms’ ability to solve transcendental equations. These
issues can, however, be circumvented by using the Finite Product Method (FPM).
The FPM is generic and has been used to solve dispersion equations of homogeneous
waveguides derived in Cartesian coordinates with sine/cosine functions. However,
it is yet to be formulated in cylindrical coordinates when Bessel functions are in-
volved in the dispersion equations. We focus in this paper on extending the method to
the cylindrical problems and compound waveguides, illustrated here by a fluid-filled
cylindrical shell. The great advantage of the FPM is that it reduces the transcendental
dispersion equation to a polynomial equation easily solved by numerical algorithms
but more importantly it delivers only authentic roots of the dispersion equation i.e. no
spurious roots as often encountered when using Taylor approximations etc.

1. Introduction

The eigenvalue problems formulated in cylindrical coordinates condense to solv-
ing transcendental characteristic equations containing Bessel functions. These char-
acteristic equations may be written on the general form;

h(Ω, k,m) − g(Ω, k,m)
Gm [κ(Ω, k)]
G′m [κ(Ω, k)]

= 0 (1)

where h and g are some functions containing the physical properties of the problem,
Gm any Bessel function and G′m its derivative. In general, Ω, k and m are unknown
parameters. This equation, presented here in a rather general format, encloses a wide
variety of challenging physical and engineering problems, conveniently formulated in
cylindrical coordinates, see e.g. [1–4]. A broad range of these problems are concerned
with waveguides in various realms of physics such as; acoustics, optics, electromag-
netics and structural dynamics, so that the characteristic equation, Eq. (1), encounters
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the meaning of a dispersion equation for a waveguide supporting an infinite number
of waves.

To analyse performance of a waveguide the (Ω, k)-dispersion diagram is needed.
Thus, we need to find the solutions, k, to the dispersion equation as a function of
Ω. However, since such an equation system often evolve from interacting fields of
different nature (compound waveguides) e.g. vibro-acoustics or electromagnetics (es-
sentially rigid/compliant), finding (or approximating) these roots is not a trivial task
as discussed in [5]. Various methods to accommodate this exist, such as Wave Based
(WB), Semi-Analytical Finite Element (SAFE), Partial Wave Root Finding (PWRF),
Pseudo-spectral Collocation (PSC) methods etc. In engineering applications, the pre-
ferred choice is the methods based on geometrical discretisation into elements such
as the Wave Finite Element (WFE) or Spectral Element (SE) method, see e.g. [6, 7].
In particular, these methods are suitable for retrieving dispersion diagrams for com-
plicated waveguides but require CAD models for element discretisation. However,
when the dispersion equation is on analytical form as in Eq. (1), approximations are
nevertheless necessary, either as a substitute for the exact equation or as input to find
the exact solutions. Some of the most used approximations are polynomials such as
Chebyshev or Taylor series, where the former is good but tends to mask the physi-
cal nature and analytical structure of the problem, [5], while the latter offers a poor
accuracy and introduce spurious roots, [5]. In light of these drawbacks the Finite Prod-
uct Method (FPM) developed in [5] was proposed as a powerful alternative. Several
benefits of this method can be listed from [5], for instance, it offers arbitrarily high
accuracy at negligible expense, introduce no spurious roots and preserves the physical
nature of the problem at hand − but most important: It is surprisingly simple. Further,
the FPM also exhibits strengths similar to the Chebyshev polynomials by escaping
Runge’s Phenomenon.

However, the FPM is yet to be developed for problems formulated in cylindrical
coordinates as well as for compound waveguides and, given its advantages, this is the
obvious objective of this paper. As an example to illustrate the formulation of the
FPM for solving Eq. (1) we consider wave propagation in a conservative elastic fluid-
filled cylindrical shell (using exp[kx− imθ− iωt]) in which case Eq. (1) encounters the
interpretation of a dispersion equation, the Bessel functions become of first kind and
order m ∈ Z where m constitutes circumferential modes, k ∈ C are axial wavenumbers,
Ω ∈ |R| (conservative) is the frequency parameter, G′m(κ) = J′m(κ) = 1

κ
dJm(κr)

dr

∣∣∣
r=1 =

dJm(κ)
dκ and

g(Ω, k,m) =
α(Ω)
κ(Ω, k)

f1(Ω, k,m) h(Ω, k,m) = f2(Ω, k,m)

where κ(Ω, k) =

√
k2 + Ω2γ2 ∧ α(Ω) =

ρ

µ
Ω2

(2)

all formulated in their non-dimensional form (unless otherwise stated). Here κ is the
radial wavenumber, f2 = 0 corresponds to the dispersion equation for the in vacuo
shell, Gm(κ) → Jm(κ) = 0 to the soft baffle dispersion equation (pressure release)
and G′m(κ) → J′m(κ) = 0 to the rigid baffle dispersion equation. Since f1 and f2 are
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rather cumbersome for this problem they are not presented here but can be deduced
from e.g. [3, 4]. For the example used in this paper we use the non-dimensional
parameters; µ = 0.0175, ρ = 0.128, γ = 3.7773, corresponding to e.g. a water-filled
steel shell. Here µ is the thickness-to-radius ratio, ρ the fluid-to-structure density ratio
and γ the structure-to-fluid sound speed ratio, see e.g. [3, 4] for details.

2. The Finite Product Method for problems involving Bessel functions

To formulate the shell problem in the framework of FPM we follow [5] and in-
troduce, first, an equivalent infinite product formulation of the transcendental terms
(Bessel functions). This form is standard and can be found in e.g. [1, 8, 9] as

Jm (κ) =

(
κ
2

)m

Γ(m + 1)

∞∏

n=1

[
1 − κ2

j2m,n

]
=

(
κ
2

)m

Γ(m + 1)

N1∏

n=1

[
1 − κ2

j2m,n

] ∞∏

n=N1+1

[
1 − κ2

j2m,n

]
(3)

J′m (κ) =

(
κ
2

)m−1

2Γ(m)

∞∏

n=1

[
1 − κ2

j′2m,n

]
=

(
κ
2

)m−1

2Γ(m)

N2∏

n=1

[
1 − κ2

j′2m,n

] ∞∏

n=N2+1

[
1 − κ2

j′2m,n

]
, m , 0 (4)

where jm,n and j′m,n are the zeros of the transcendental functions, also found in e.g.
[8, 9] and is otherwise standard in most mathematical software. Further, we split
the product into a finite and an infinite one characterised by the approximation order
(N1,N2) ∈ N. Note that Eq. (4) holds only for m , 0 as indicated, however, at m = 0
we use instead the identity: J′0(κ) = −J1(κ), so that Eq. (3) applies.

Then, following [5] we may write the infinite product in terms of a so-called
gamma-conversion factor (converting Bessel functions to polynomials), which con-
stitutes an amplitude modulation of the Bessel approximation. However, since there
are no explicit form of the zeros of the Bessel function, one needs to apply approxi-
mate asymptotic zeros so that the conversion factor is accurate only up to some power,
p: O

(
1

N p

)
. This was shown in [1] for p = 1 with the asymptotic zeros from Eq. (5).

jm,n = j̃m,n + O
(

1
N

)
=

(
n +

1
2

m − 1
4

)
π + O

(
1
N

)

j′m,n = j̃′m,n + O
(

1
N

)
=

(
n +

1
2

m − 3
4

)
π + O

(
1
N

)
= j̃m,n − 1

2
π + O

(
1
N

) (5)

where we see that the asymptotic zeros corresponds to a shifted sine/cosine dispersion
and so they follow; j̃′m,n = j̃m,n − 1

2π = j̃m−1,n and incidentally j̃′m,n+1 = j̃m+1,n. Also, as
given in e.g. [8, 9], the actual zeros interlace as

jm,n < jm+1,n < jm,n+1 and j′m,n < j′m+1,n < j′m,n+1

j′m,n < jm,n < j′m,n+1 < jm,n+1
(6)

Obviously, we may always improve this approximation taking increasing asymptotic
orders of p. However, as the essential part of the FPM is that the conversion factors of
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Jm(κ) and J′m(κ) cancel almost exactly for proper choice of N1 and N2, increasing the
accuracy is indeed redundant. As in [5] this cancellation and corresponding choice of
N1/N2 can be found using e.g. Stirling’s approximation, but as this choice is more or
less obvious from Eq. (3) and (4) using (5) or (6) we take it for granted until returning
to it in Sec. 3 and use the approximation order (N1,N2) = (N1,N1 + 1). Thus, to get
the finite products, J̃m(κ) and J̃′m(κ), we simply discard the transcendental terms and
replace the Bessel functions with their FP-approximations in Eq. (7), assuming N1
large enough that the approximation remains good in some region of the real/complex
(Ω, k)-space.

J̃m(κ) =

(
κ
2

)m

Γ(m + 1)

N1∏

n=1

[
1 − κ2

j2m,n

]
J̃′m(κ) =

(
κ
2

)m−1

2Γ(m)

N2∏

n=1

[
1 − κ2

j′2m,n

]
(7)

with J̃m(κ) ≡ 1 and J̃′m(κ) ≡ 1 for N1 = N2 = 0. In contrast to Taylor approximations,
the FPM requires no derivatives, nor does it introduce spurious zeros. Further, Runge’s
phenomenon cancels (by way of the fraction, see e.g. Fig. 3) as in Chebyshev polyno-
mials, yet it preserves the physical nature of the equation system. In essence, the FPM
is extremely simple in that we use only an equivalent infinite product representation
of the transcendental terms (available in literature), introduce the approximation order
(N1,N2), discard the transcendental part of the product formulation and find the rela-
tion between the approximation orders to ensure correct limit behaviour. As we shall
see in Sec. 3 finding the approximation orders are equally simple.

In Fig. 1 dispersion diagrams for different approximation orders (N1,N1 + 1) are
shown for a water-filled steel shell in bending (m = 1). From the figures we find
that even for low order approximations the dispersion curves are surprisingly accurate
in a fairly large region of the real/complex (Ω, k)-space bounded approximately by

Ω =
j′m,N2
γ
≈ (N1+ 3

4 )π
γ

and k = j′m,N2
≈

(
N1 + 3

4

)
π for the cases shown here (m = 1). This

is discussed further in Sec. 3. Fortunately, as seen from the dimensional frequency
scale on figure (e,f) this constitutes a large accuracy range for waveguide problems.
Note also from figure (f) that a real-branch of the dispersion diagram is not captured
at all, explained by a too low approximation order since the branch originates from
j′m,N2+1.

3. Accuracy analysis and discussion

Proper relation between N1 and N2 may be found from a Stirling approximation
and/or a limit study to ensure the asymptotic behaviour. However, by using just the
distribution of zeros from Eq. (6) the relation appears directly from the fraction of the
finite products in Eq. (8).

J̃m(κ)
J̃′m(κ)

=

( κ
2 )m

Γ(m+1)
∏N1

n=1

[
1 − κ2

j2m,n

]

( κ
2 )m−1

2Γ(m)
∏N2

n=1

[
1 − κ2

j′2m,n

] =
κ

m

∏N1
n=1

[
1 − κ2

j2m,n

]

∏N2
n=1

[
1 − κ2

j′2m,n

] � κ

m

∏N1
n=1

[
1 −

(
κ

j̃m,n

)2
]

∏N2
n=1

[
1 −

(
κ

j̃m,n− 1
2 π

)2
] (8)
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Fig. 1: A comparison between the exact and the FPM dispersion diagrams for a fluid-filled shell vibrating
in bending (m = 1). Left figures show imaginary parts (propagating waves), right shows real parts with
approximation orders (0,1) for (a,b), (1,2) for (c,d) and (3,4) for (e,f). Grid points according to Sec. 3 are
shown and iR indicate purely imaginary wavenumbers.
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Then using Eq. (6) we see from Eq. (8) that the fraction is led by its zero jm,n (or
j̃m,n) for fixed n (seen explicitly using the first order asymptotic zeros, last in Eq. (8)).
This leaves only two obvious choices; either N1 = N2, (fraction lead by zero, jm,n) or
N2 = N1 +1 (fraction lead by pole, j′m,n). From this we may also deduce a conservative
validity range for k ∈ R based on the last zero included i.e. |κ| ≤ max{| jm,N1 |, | j′m,N2

|}
corresponding to

|κ| ≤ jm,N1 =

(
N1 +

1
2

m − 1
4

)
π + O

(
1
N

)
for N2 = N1

|κ| ≤ j′m,N1+1 =

(
N1 +

1
2

m +
1
4

)
π + O

(
1
N

)
for N2 = N1 + 1

(9)

For |κ| > max{| jm,N1 |, | j′m,N2
|} the FP-fraction in Eq. (8) diverges rapidly from the ex-

act, see Fig. 3b. Hence, the threshold of Eq. (9) constitute the arc in the (Ω, k)-space,
seen in Fig. 1 as κThres i.e. k(Ω) =

√
max{| jm,N1 |, | j′m,N2

|}2 − γ2Ω2. Though the validity
range for k ∈ iR (purely imaginary) extends beyond this as seen from Fig. 1 we may
use Eq. (9) also as a conservative range for the complex domain.

For any other choice of approximation order, zeros (and poles) are ’left out’ resulting
in the approximation being no better than min{ jm,N1 , j′m,N2

} since Eq. (8) will diverge
significantly already in this region as a consequence of the amplitude modulation.
Then by the same argument all zeros up to the chosen approximation order should
obviously be included. In general, the approximation order should be chosen as all
zeros, rn and qn, up to an arbitrarily chosen truncation in the sorted set of zeros:

{. . . , rN1 , qN2 , rN1+1, . . .} where . . . < rN1 < qN2 < rN1+1 < . . . (10)

corresponding to a lead of either qN2 or rN1+1. Indeed this corresponds to N2 = N1 and
N2 = N1 + 1 for the shell and using this generalisation it is easy from Eq. (5) to show,
for some hypothetical fraction Jm+2(κ)

J′m(κ) , that the proper relation between N1/N2 is either
N2 = N1 + 1 or N2 = N1 + 2.

Returning to the shell example, the two choices are in general equally good, in that,
taking N2 = N1 + 1 the validity range of κ extends by 1

2π + O
(

1
N

)
, however, at the

expense of an increase in the polynomial order of power two. Thus, we cannot im-
mediately argue one choice over the other as this depends on the problem at hand.
Though both choices are good and equally valid we wish to find the best choice. To
do so we study the nature of the problem. From this we find that f2 is quartic in k2 and
f1 quadratic, so that from the dispersion equation in Eq. (11)

f1(Ω, k,m)
f2(Ω, k,m)

=
µ

ρΩ2 κ(Ω, k)
J′m [κ(Ω, k)]
Jm [κ(Ω, k)]

(11)

we get that f1
f2

= O
(

1
k4

)
→ 0 as k → ∞. Hence, J′m [(κ(Ω, k)] must tend to zero for k →

∞ and we may conclude that κ → j′m,n so that the asymptotic solution for k becomes:
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k0 �
√

j′2m,n −Ω2γ2. For this reason it is indeed favourable to have j′m,n in the lead,
since we, besides increasing the approximation order, capture also another branch of
the dispersion equation. This, along with the asymptotic behaviour, is easily seen
from Fig. 2 at Ω = 0 where new branches depart only from j′m,n. For the waveguide
considered, it means that higher order waves converge towards the rigid duct waves,
as discussed in [3] and therefore the higher order waves do not notice the compliance
of the shell. For more details on this specific problem attention should be drawn to
e.g. [3, 4].

3.1. Grid points

The FP-approximation of the dispersion equation is concerned only with approxi-
mation of the transcendental terms and therefore we indeed have a number of solutions
(denoted grid points) for which the solution of the approximate dispersion equation
belongs to the solution set of the exact one. The grid points are readily available from
Eq. (1) (with the transcendental functions replaced by their FP-approximations) when
each term is simultaneously zero. In general, this gives the four cases:

1) h(Ω, k,m) = g(Ω, k,m) = 0 2) h(Ω, k,m) = Gm[κ(Ω, k)] = 0
3) g(Ω, k,m) = G′m[κ(Ω, k)] = 0 4) Gm[κ(Ω, k)] = G′m[κ(Ω, k)] = 0

in which not all cases necessarily hold in the real/complex (Ω, k)-space. In terms of
the fluid-filled shell this translates, by way of the definitions in Eq. (2), to nine cases:

1. (×) Ω = κ = 0⇒ (Ω, k) = (0, 0)
2. (◦) Ω = f2(Ω, k,m) = 0 ⇒ (Ω, k) = (0, f2(m, k, 0) = 0) − Structure originated

stationary wavenumbers (corresponds to the in vacuo shell)
3. (♦) Ω = J̃′m(κ) = 0⇒ (Ω, k) = (0,± j′m,n)− Fluid originated stationary wavenum-

bers (corresponds to the rigid duct)
4. (/) f2(Ω, k,m) = J̃m(κ) = 0⇒

(Ω, k) =

(
f2

(
Ω,

√
j2m,n − γ2Ω2,m

)
= 0,

√
j2m,n − γ2Ω2

)
– ’Periodic’ grid points

governed by structure (structure acts as soft baffle)
5. (.) f1(Ω, k,m) = J̃′m(κ) = 0⇒

(Ω, k) =

(
f1

(
Ω,

√
j′2m,n − γ2Ω2,m

)
= 0,

√
j′2m,n − γ2Ω2

)
– ’Periodic’ grid points

governed by rigid baffle (structure acts as rigid baffle)
6. (∗) f2(Ω, k,m) = f1(Ω, k,m) = 0 − Cut-on of structure originated wave
7. (+) κ = f1(Ω, k,m) = 0⇒ (Ω, k) = ( f1(Ω, iγΩ,m) = 0, iγΩ) – Solutions belong

to the Ω ∈ C-space
8. (· · · ) κ = J̃m(κ) = 0⇒ J̃m(0) = 0⇒ (Ω, k) = (Ω, iγΩ) for m , 0
9. (�) J̃′m(κ) = J̃m(κ) = 0⇒ (Ω, k) = (Ω, iγΩ) for m , {0, 1}

From these cases we effortlessly find the grid points shown in Fig. 1 and 2 plotted
with symbols corresponding to those above. The colours indicate whether the cases
are feasible (green) or infeasible (red). In particular, case 8 and 9 both originate from
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J′m(κ) (Eq. (2)) and constitute in fact spurious roots as a consequence of rearrang-
ing the dispersion equation (true both for exact and FP-dispersion equation), while
case 7 belongs to the complex Ω-space and is thus invalid for conservative systems
where (Ω, k) ∈ (R,C). From case 2 and 3 we see that only at the stationary fre-
quency (Ω = 0) is all fluid and structural waves fully uncoupled simultaneously and
behave respectively as a rigid duct and an empty shell. Case 6 gives only the cut-
on for the second structural wave. In addition, note that the grid points of case 3-5
depends on the approximation order meaning that all fluid governed wave branches

attain grid points lying on, respectively: k3. = ± j′m,n, k4.(Ω) =
√

j2m,n − γ2Ω2 and

k5.(Ω) =
√

j′2m,n − γ2Ω2.
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Fig. 2: Comparison of dispersion diagrams with grid points (case 8 discarded). Included are the terms
from Eq. (2) corresponding to exact, FP-approximation (N1,N2) = (7, 8), in vacuo shell, rigid duct and soft
baffle dispersion diagrams and f1. For higher order waves the dispersion curves of the exact and FPM are
inseparable by eye. (a) Imaginary part (propagating waves) (b) real part.

Note from the figure that the ’periodic’ grid points appear exactly when the soft baffle
and ’in vacuo’ shell branches intersect (move in phase) and when f1 intersects with the
rigid duct branches, which eventually also becomes in-phase ’movement’ of structure
and fluid. In addition, we note that when a dispersion curve veers away (introduced
in [10]) in the presence of veering (or cut-on) of others it ’looses’ the ability to attain
future grid points, yet it remains surprisingly accurate. For compound waveguides
this veering appears in the transition zone for a wave being structure to becoming
fluid governed − clear from Eq. (11) by the limit behaviour of the dispersion equation.
Effectively, a veering wave branch becomes fluid governed and so the wave of the
compound waveguide is bounded always by its two extremes, respectively, the waves
in a rigid and soft baffle, as seen from the figure. This ensures on its own a high ac-
curacy range for these wave branches and does in fact improve as Ω → ∞ since the
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asymptotes of these waves converge (compound, soft and rigid baffle).

3.2. Accuracy
Though we have already discussed the choice of N1/N2 as well as a simple accu-

racy limit, Eq. (9), we shall discuss here rather brief, following [5], other convenient
properties of the FPM and FP-fraction, causing the accuracy range to extend beyond
the conservative one based on the fraction itself, Eq. (9). First, consider the discarded
fraction, Eq. (12).

∏∞
n=N1+1

[
1 −

(
κ

jm,n

)2
]

∏∞
n=N2+1

[
1 −

(
κ

j′m,n

)2
] �

∏∞
n=N1+1

[
1 −

(
κ

j̃m,n

)2
]

∏∞
n=N2+1

[
1 −

(
κ

j̃m,n− 1
2 π

)2
] � 1 (12)

Obviously, the FP-approximations require this fraction to be close to one (� 1) for
the finite product to be a good approximation. From the equation and the chosen
approximation order it is obvious that the product tends monotonically to 1 for any
fixed κ as N1,N2 → ∞. Similar for κ from max{| jm,N1 |, | j′m,N2

|} to 0 the fraction is
uniform meaning that the product tends monotonically to 1 for any approximation
order as κ → 0. This is seen from Fig. 3(a) showing Eq. (12) approximated using
Gamma functions and the asymptotic zeros from Eq. (5) following [1]. However,
as discussed in [5] (and supported by the figure) this error measure does not fully
comprehend the excellent accuracy obtained by the FP dispersion equation. For one,
it does not capture the grid points which indeed belongs to the exact solution set. On
the other hand, it was argued in [5] that a proper error measure is to consider the
difference in tangents of the dispersion curves at the grid points. This fact appear
fairly obvious from the approximation methodology, find details in [5, Sec. 4], and as
it is a generic property it therefore also applies immediately to cylindrical problems.
Do, however, note that for compound waveguides this measure does likely not explain
properly the accuracy of the wave branches after veering (as the grid points are ’lost’),
which is nonetheless explained with Fig. 2.

Now, instead of reproducing these results we consider the FP-fraction plotted
in Fig. 3(b) from which we see that Runge’s phenomenon cancels almost exactly
in the presence of the Bessel fraction so that the amplitude modulation in the FP-
approximations vanish. As a consequence this ensures that the validity range extends
beyond the simplified on in Eq. (9) and in effect makes the FPM particularly powerful
in the presence of fractions. By this simple consideration we may safely extend the
accuracy range from the arc in Eq. (9) to the entire square

|Ω, k| ≤ jm,N1 =

(
N1 +

1
2

m − 1
4

)
π + O

(
1
N

)
for N2 = N1

|Ω, k| ≤ j′m,N1+1 =

(
N1 +

1
2

m +
1
4

)
π + O

(
1
N

)
for N2 = N1 + 1

(13)

As seen from Fig. 2 this proves well for propagating and decaying waves (real and
imaginary), while the attenuating waves (complex) seem to require higher approxima-
tion orders.
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Fig. 3: (a) Infinite fraction of Eq. (12) plotted for (N1,N2) = (1, 2) and (b) Bessel fraction from Eq. (1)
plotted together with the (N1,N2) = (1, 2) FP-fraction, Eq. (8).

Finally, as suggested by the figures, the validity range may in some cases, as for the
fluid-filled shell, extend significantly beyond the simplified measures deduced here.
Indeed better estimates may be derived for specific problems following the methodol-
ogy in [5], however, those derived here are generic and based alone on the last zero
included in the finite products, which is directly related to the approximation order.

4. Conclusion

In this paper we have developed and illustrated the Finite Product Method for
problems formulated in cylindrical coordinates and exemplified it using a conserva-
tive time-harmonic elastic cylindrical fluid-filled shell. The strength of the FPM is that
it introduces no spurious roots but most importantly: It is extremely simple. Essen-
tially, in the FPM, we simply replace the transcendental terms with their equivalent
infinite products (available in literature), truncate the products to finite ones and de-
termine proper approximation orders based on the sorted set of roots of the original
transcendental terms. In addition, a region of high accuracy for all wave branches is
defined directly from the chosen approximation order.

Given the simplicity and excellent accuracy of the FPM it is a particularly powerful
tool in the realm of waveguide theory and because of its generality and simplicity, it is
easily extended to more complicated dispersion equations such as e.g. multi-layered
compound waveguides, either in the format of circular plates or layered shells. Also,
the example presented here is indeed not restricted to integer m, hence pipes/profiles
of open cross-section can also be studied straightforwardly using the FPM.
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Abstract

A use of orthotropic materials such as fibre-reinforced composites can introduce en-
hanced vibro-acoustic performance of cylindrical structures that are not feasible when
an isotropic material is used. In this paper, free and forced wave propagation in cylin-
drical structures with helically orthotropic material properties is analysed to demon-
strate these effects. Two models, a thin cylindrical shell and a cylindrical beam lattice,
are considered and two methods, an analytical method of the thin shell theory and a
numerical Wave Finite Element method, are used. For both models, the symmetry
breaking effect concerned with the location of dispersion curves is captured by means
of these methods and explained. The influence of the helix angle and of the material
parameters on the location of dispersion curves is investigated. The Green’s matrix is
formulated for rotating forces and the forcing problems are solved to highlight some
unusual waveguide properties of the helically orthotropic cylindrical structures. The
results are discussed in view of a possible application for control of energy flow in
piping systems exposed to rotating excitation.

Keywords:
Helical structures, Wave propagation, Dispersion curves, Green’s matrix, Rotating
forces, Energy flow

1. Introduction

Wave propagation in helical waveguides has been a subject of interest for a long
time, see e.g. [1], and, as for many other research subjects, many original and inter-
esting studies and applications can be found in the literature. Due to difficulties in
solving partial differential equations for helical structures, in recent years there has
been an increased interest in numerical methods for the analysis of wave propagation
in helical waveguides, in particular, due to developments in structural health monitor-
ing techniques. Dispersion curves in helical springs were obtained in [2] applying an
asymptotic analysis and then the dominant balance method. Natural frequencies in he-
lical springs were calculated in [3] using a dynamic stiffness method, while vibrations
were studied in [4] applying a pseudo-spectral method and in [5] using the Green’s
matrix the Boundary Integral Method. Several numerical methods based on Finite El-
ement discretisation have been also proposed, each one showing some advantages or
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disadvantages with respect to the other. Vibration of helical springs with non-uniform
ends was studied in [6] using a hybrid Wave Finite Element method. In [7] a Semi
Analytical Finite Element method, based on translational invariance of curved waveg-
uides, was presented, while in [8] dispersion curves were obtained based on the Scaled
Boundary Finite Element. A Spectral Finite Element method was also recently applied
for investigation of wave propagation in a piezoelectric helical waveguide, [9].

Wave propagation in elastic cylindrical shells has been studied in numerous pub-
lications. The vast majority of those are concerned with shells made of an isotropic
material. Orthotropic shells have been considered in much fewer publications and
the principal directions of tensor of elastic constants are customarily taken as coin-
ciding with the cylindrical system of coordinates. It has been shown that all qualita-
tive features of dispersion curves known for isotropic shells are preserved with some
quantitative changes in magnitudes of cut-on frequencies, which, obviously, become
dependent upon the ratio of elastic moduli in principal directions. A detailed survey
of the literature on wave propagation in an orthotropic elastic shell lies beyond the
scope of this paper, but the state-of-the-art in this area can be found in [10]. Recent
advances in this area are highlighted in [11].

The technology of manufacturing elastic pipes (cylindrical shells) for some tech-
nical applications, however, is such that the principal directions of the tensor of elastic
constants are turned at a certain angle α to the cylindrical system of coordinates. This
angle is kept constant along the length of a pipe so that fibres in a ply are helically
wounded at the cylindrical surface. Often, an orthotropic cylindrical shell is made
of many plies and the pitch angle for consecutive plies is switched to the opposite.
By these means, the principal directions of elastic properties become aligned with the
cylindrical coordinate system. In the cases, when an odd number of plies is used,
and this number is small, the pitch angle affects the waveguide properties of the shell.
Rather surprisingly, just a few publications dealing with helical waves and helically
orthotropic cylindrical shells have been found by the authors. Specifically, helical
waves in an isotropic elastic cylindrical shell have been considered in [12]. In this
reference, the circumferential wave number has been treated as not necessarily inte-
gral, and, depending upon a chosen direction of propagation of the helical wave, the
dispersion equation has different solutions. References [13, 14] are concerned with
the wave propagation in a helically orthotropic cylindrical shell. However, most of
the results of wave propagation analysis presented in these references are obtained
for the axisymmetric wave. Bending vibrations are considered only for ’semi-infinite’
shells. Therefore, we conclude that, to the best of our knowledge, propagation of
non-axisymmetric waves in elastic cylindrical shells with helical orthotropy has not
yet been properly analysed and this task constitutes the research goal and the novelty
of this paper. Furthermore, in various technical applications, thin elastic cylindrical
shells (pipes) are exposed to time-harmonic rotating forces. We are unaware of any
publications dealing with the analysis of energy flow generated by such forces in a he-
lically orthotropic shell and consider such an analysis as yet another aspect of novelty
of our work.

The paper is structured as follows. Section 2 is concerned with the analytical
model of wave propagation in a thin helically orthotropic cylindrical shell. In Section
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3, this model is validated firstly by comparison of the dispersion diagrams with those
presented in [11] for a ’conventional’ orthotropic shell. Second, the Wave Finite El-
ement model is used for numerical analysis of wave propagation in a structure with
helical geometry, [15], and an agreement between numerical and analytical results is
demonstrated. Section 3 also presents parametric studies of free waves in helically
orthotropic cylindrical shells. In Section 4, a lattice beam model featuring the helical
pattern is analysed to confirm the results obtained in the previous section. The Green’s
matrix for a cylindrical shell with helical orthotropy is derived and used for analysis
of the energy flow generated by a rotating force in Section 5. Novel findings of the
paper are summarised in Section 6.

2. The analytical model of propagation of spinning waves in a thin helically or-
thotropic elastic cylindrical shell

The governing equations of time-harmonic dynamics of a thin elastic cylindrical
shell in the cylindrical coordinates (x, r, θ), with time-dependence taken as exp(−iωt)
and this multiplier being omitted, are written following Novozhilov-Gol’denweizer
theory [16, 17]:

∂Nx(x, θ)
∂x

+
1
R
∂S xθ(x, θ)

∂θ
+ ρhω2u(x, θ) = −qx

1
R
∂Nθ(x, θ)

∂θ
+
∂S xθ(x, θ)

∂x
+

1
R2

∂Mθ(x, θ)
∂θ

+
2
R
∂Hxθ(x, θ)

∂x
+ ρhω2v(x, θ) = −qθ (1)

− 1
R

Nθ(x, θ) +
∂2Mx(x, θ)

∂x2 +
2
R
∂2Hxθ(x, θ)
∂x∂θ

+
1

R2

∂2Mθ(x, θ)
∂θ2 + ρhω2w(x, θ) = −qr

The components of deformation in the cylindrical coordinates are

εx =
∂u(x, θ)
∂x

, εθ =
1
R
∂v(x, θ)
∂θ

+
w(x, θ)

R
, εxθ =

1
2

(
1
R
∂u(x, θ)
∂θ

+
∂v(x, θ)
∂x

)

κx = −∂
2w(x, θ)
∂x2 , κθ = − 1

R2

∂2w(x, θ)
∂θ2 +

1
R2

∂v(x, θ)
∂θ

(2)

κxθ = − 1
R
∂2w(x, θ)
∂x∂θ

+
1
R
∂v(x, θ)
∂x

The principal directions of orthotropy of the shell’s material are turned by the angle
α to the in-plane coordinates (x, θ) and constitute another orthogonal system (y, ψ), so
that x coincides with y and θ coincides with ψ when α = 0. It is convenient to write
Hooke’s law in the system (y, ψ), see [18, p. 55, Eq. (14.13)] (note the inverted indices
in notations for Poisson’s ratio):

Ny =
E1h

1 − ν21ν12

(
εy + ν12

E2

E1
εψ

)
, Nψ =

E2h
1 − ν21ν12

(
ν12εy + εψ

)

My =
E1h3

12(1 − ν21ν12)

(
κy + ν12

E2

E1
κψ

)
, Mψ =

E2h3

12(1 − ν21ν12)

(
ν12κy + κψ

)
(3)

S yψ = 2Geεyψ, Hyψ =
Geh3

6
κyψ
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The relations between components of deformation in these systems of coordinates are
(see [19, p. 74, Eqs. (2.72–2.73)]):

εy = εx cos2(α) + εθ sin2(α) + 2εxθ cos(α) sin(α)

εψ = εx sin2(α) + εθ cos2(α) − 2εxθ cos(α) sin(α)

εyψ = −εx cos(α) sin(α) + εθ cos(α) sin(α) + εxθ

(
cos2(α) − sin2(α)

)

κy = κx cos2(α) + κθ sin2(α) + 2κxθ cos(α) sin(α)

κψ = κx sin2(α) + κθ cos2(α) − 2κxθ cos(α) sin(α)

κyψ = −κx cos(α) sin(α) + κθ cos(α) sin(α) + κxθ

(
cos2(α) − sin2(α)

)

(4)

Respectively, the forces and moments in the (y, ψ) system are related to their counter-
parts in the (x, θ) coordinates as follows:

Ny = Nx cos2(α) + Nθ sin2(α) + 2S xθ cos(α) sin(α)

Nψ = Nx sin2(α) + Nθ cos2(α) − 2S xθ cos(α) sin(α)

S yψ = −Nx cos(α) sin(α) + Nθ cos(α) sin(α) + S xθ

(
cos2(α) − sin2(α)

)

My = Mx cos2(α) + Mθ sin2(α) + 2Hxθ cos(α) sin(α)

Mψ = Mx sin2(α) + Mθ cos2(α) − 2Hxθ cos(α) sin(α)

Hyψ = −Mx cos(α) sin(α) + Mθ cos(α) sin(α) + Hxθ

(
cos2(α) − sin2(α)

)

(5)

Eq. (2), (4) and (5) are substituted to the constitutive Eq. (3) and solved for Nx,Nθ, S xθ

and Mx,Mθ,Hxθ. By these means, the forces and moments in cylindrical coordinates
(x, θ) are expressed via displacements and their derivatives in the same system, while
the Hooke’s law has been formulated in helical coordinates (y, ψ), see [18, p. 62,
Eq. (16.2)] or [19, p. 77, Eqs. (2.84–2.85)]. Eventually, the forces and moments are
substituted to Eq. (1) to yield the governing equations of wave motion in an infi-
nite cylindrical shell with helical orthotropy in coordinates (x, θ). These equations
are very cumbersome, and, therefore, not presented here. The derivation has been
done in the analytical form using the symbolic manipulator Mathematica. It has been
checked by the same means that setting α = 0 gives conventional equations for an or-
thotropic cylindrical shell with the principal directions coinciding with the coordinate
axes. Setting elastic moduli to their values for an isotropic material gives equations
for an isotropic shell for any value of α.

This system of differential equations allows solution in the form

u(x, θ) = U exp(ikx + imθ)
v(x, θ) = V exp(ikx + imθ)
w(x, θ) = W exp(ikx + imθ)

(6)

Substitution of Eq. (6) into the governing equations and equating to zero the deter-
minant of the system of linear algebraic equations with respect to the amplitudes
(U,V,W) yields the dispersion equation in the polynomial form. The polynomial is
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of sixth order in the frequency parameter and of eighth order in the wavenumber. As
soon as α , 0 it contains both even and odd powers of the wavenumber, which sug-
gests a difference between the characteristics of waves travelling along the shell in
opposite directions.

In Eq. (6), the integral circumferential wavenumber m may be both positive and
negative. With the time-dependence in the form exp(−iωt), positive wavenumbers k
found from the dispersion equation for a positive m describe waves travelling in the
positive direction of the shell’s axis and rotating clockwise. If a negative circumfer-
ential wavenumber is plugged in the dispersion equation, then positive wavenumbers
describe waves travelling in the positive direction of the shell’s axis and rotating anti-
clockwise. It should also be noted that the conventional solution, which describes
waves travelling without rotation along the axis of an orthotropic shell i.e.

u(x, θ) = U exp(ikx) cos(mθ)
v(x, θ) = V exp(ikx) sin(mθ)
w(x, θ) = W exp(ikx) cos(mθ)

(7)

does not allow separation of trigonometric functions in the governing equations. This
separation is recovered, when either the elastic parameters describe the isotropic shell,
or α = 0. Therefore, we conclude that ’standing in the circumferential direction’
waves cannot propagate in an orthotropic cylindrical shell with α , 0. On the other
hand, solution in the form of Eq. (6) for an isotropic cylindrical shell allows separation
of exponents in the circumferential coordinate in the governing equations at any α.
The resulting dispersion equation remains the same as when the conventional form of
solution of Eq. (7) is used. It means that the properties of spinning and ’standing in
the circumferential direction’ waves are the same as for an isotropic cylindrical shell.
It is well-known and reported in classical texts on the dynamics of these shells.

3. Dispersion diagrams: Validation and discussion

In this section, the model introduced in the previous section is verified, and waveg-
uide characteristics of cylindrical shells with helically orthotropic material proper-
ties are discussed. In the following, dispersion diagrams are plotted in the non-

dimensional form with k = kdimR and Ω = ωR
√

ρ(1−ν12ν21)
E1

.

3.1. Verification of the analytical model of an orthotropic cylindrical shell

We begin with a validation of the model of an orthotropic shell for the case when
principal directions of orthotropy coincide with the cylindrical coordinates, i.e. when
α = 0. The parameters of a shell are taken as in [11, p. 25, Eq. (8)]: Ex = E1 =

207GPa, Eθ = E2 = 5GPa, Gxθ = G12 = 2.6GPa, νxθ = ν12 = 0.25 (and thus
ν21 = 0.006), h

R = 0.1 and m = 2.
The branches corresponding to propagating waves (purely real wavenumbers) and

to evanescent waves (purely imaginary wavenumbers) are marked dark blue and red
(in this order). The real parts of complex wavenumbers of attenuated waves are
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marked light blue, and their imaginary parts are marked magenta. In [11, Fig. 1]
only purely real wavenumbers are presented. Fig. 1 in this paper provides a more de-
tailed dispersion diagram, in which purely imaginary and complex-valued wavenum-
bers are also shown. There is a perfect agreement between characteristics of propa-
gating waves in these two Figures; as an example, the cut-on frequencies are exactly
the same: Ωcut-on,1 = 0.012026, Ωcut-on,2 = 0.22415, Ωcut-on,3 = 0.34789. In the case
α = 0, the dispersion equation contains only even powers of the wavenumber and
features the symmetry of the dispersion diagram with respect to the frequency axis.
Therefore, the common practice to show only its upper part, i.e. Re[k] ≥ 0, Im[k] ≥ 0
is followed in Fig. 1.

6

5

4

3

2

1

0.5 1 1.5 2 2.5 30

R
e[

k]
, I

m
[k

]

Ω
Fig. 1: Verification in comparison with Fig. 1 from [11].

As soon as α , 0, the symmetry is broken. This is illustrated in Fig. 2 for a shell with
the same parameters as in the previous case, but with α = π

6 . The colours are used in
the same way as in Fig. 1. It is more convenient to present the dispersion diagram in
3D as is done in Fig. 2(b).
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Fig. 2: (a) dispersion diagram for the shell with the same parameters as in [11] and α = π
6 (b) 3D represen-

tation of the dispersion diagram.

This diagram features the classical veering effect in the frequency range 0.135 < Ω <
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0.145 and the classical locking effect in the frequency range 0.34 < Ω < 0.36, see
[20, 21], but more importantly, it shows the unevenness of frequency-dependence of
wavenumbers, which describe waves moving with anti-clockwise rotation in the pos-
itive and negative directions of the axial coordinate. It manifests itself as the non-
symmetry of the location of dispersion curves with respect to the plane Re[k] = 0. On
the other hand, it is straightforward to check that there is symmetry with respect to
this plane between the dispersion curves for (m = 2, α = π

6 ) and the dispersion curves
for (m = 2, α = − π6 ).

Likewise, the symmetry is preserved for the dispersion curves plotted for (m =

2, α = π
6 ) and (m = −2, α = π

6 ). This is readily explained by the simple observa-
tion that the waves travelling in the positive direction of the x-axis and rotating anti-
clockwise are identical to the waves travelling in the negative direction of the x-axis
and rotating clockwise and vice-versa (if this rotation is viewed from the same point).

3.2. Comparison of results obtained by means of the analytical model and the wave
finite element method

The results, presented in the previous sub-section, have conclusively validated the
analytical model of an orthotropic cylindrical shell in the case when the principal
directions of orthotropy coincide with the axes of coordinates. Since no references,
which present dispersion diagrams for an orthotropic shell with α , 0, have been
found we choose to validate this model for a helically orthotropic shell by calculations
of wavenumbers by means of the Wave Finite Element method as presented in [15].

A pipe with thickness h = 0.01m and mean radius R = 0.2m (that gives h
R =

0.05m) is considered. Material properties are: Ex = E1 = 28.89GPa, Eθ = E2 =

9.63GPa, Gxθ = G12 = 4.128GPa, νxθ = ν12 = 0.06 (this implies that νθx = ν21 =

0.02), ρ = 1389kg/m3. The angle is α = π
6 . To apply the WFE approach the FE model

of a small periodic segment of the pipe of length Lx = Ly = 0.002m is discretised using
5 solid elements; this model allows to obtain accurate results up to high frequency
[15].

We note that the analytical model in Sec. 2 is based on the classical thin shell
theory, whereas the finite element model is constructed by means of 3D solid ele-
ments in the framework of the commercially available software ANSYS. Therefore,
the agreement between results obtained by the use of these so profoundly different
models should be regarded as the strong indication of the correctness of both. How-
ever, some discrepancies are likely to occur due to the difference between modelling
methods. The results are presented in Tab. 1 for two circumferential wavenumbers
and two excitation frequencies. As seen from this Table, the differences are small and
should be attributed to the difference in formulations of constitutive relations in the
finite element and analytical models. The detailed convergence studies and compari-
son of validity ranges of the models do not constitute the goal of this paper. We just
note that the closeness of the wavenumbers to each other suggests that both models
are applicable for the analysis of wave propagation in helically orthotropic cylindrical
shells.

As already mentioned, the remarkable feature of these results is the unevenness of
purely real wavenumbers (those corresponding to travelling waves) presented in the
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Analytical, m = −1, ω̃ = 0.1 -2.0088 1.5403 24.71±23.94i -24.71±23.94i 0.32±1.52i
WFEM, m = −1, ω̃ = 0.1 -2.0596 1.6294 25.69±25.34i -25.69±25.34i 0.21±1.62i
Analytical, m = −1, ω̃ = 0.6 -7.6834 5.0445 22.08±21.58i -19.15±21.61i 1.31±1.70i
WFEM, m = −1, ω̃ = 0.6 -7.6445 4.8194 23.35±22.93i -19.47±23.06i 1.21±2.21i
Analytical, m = −2, ω̃ = 0.1 -3.1665 2.5961 25.24±24.83i -19.46±25.18i 0.35±2.71i
WFEM, m = −2, ω̃ = 0.1 -3.1300 2.7207 26.53±26.32i -19.26±26.79i 0.30±2.89i
Analytical, m = −2, ω̃ = 0.6 -12.2693 8.3454 22.27±22.83i -16.79±23.65i 2.33±5.05i
WFEM, m = −2, ω̃ = 0.6 -12.1535 8.0039 24.01±24.16i -16.65±25.13i 2.09±5.88i

Tab. 1: Wavenumbers in m−1. Frequency is scaled as ω̃ = ω
Ωring

, Ωring = 1
R

√
E1

ρ(1−ν12ν21) .

first two columns of the Table. In what follows in this section, we briefly explore the
influence of geometry and material parameters on the location of dispersion curves by
means of the analytical model. It is a straightforward matter to show that the disper-
sion polynomial at the ’breathing mode’ m = 0 does not contain odd powers of the
wavenumber for any α regardless the helical orthotropy. The difference between wave
propagation in a general helically orthotropic cylindrical shell and an orthotropic shell
with α = 0 is the coupling of purely torsional and longitudinal-flexural axisymmetric
deformation. In what follows, we do not elaborate on this issue and do not consider
this mode any further. On the other hand, the performance of a helically orthotropic
shell at any other circumferential wavenumber is qualitatively the same. Therefore,
we restrict our subsequent analysis to the case m = 1.

3.3. The influence of the geometry parameter α

In Fig. 3(a), the non-dimensional parameters are chosen as E2
E1

= 8, ν12 = 0.3,
G12
E1

= 0.35, h
R = 0.05. Black curves are plotted for α = 0 blue ones for α = π

2 and red
ones for α = π

4 .
To begin with, it should be noted that the dispersion diagram is shown in the range

of complex-valued wavenumbers, in which not all eight branches can be seen. In
particular, when α = π

2 , the two curves chopped at Im[k] = ±1 may be traced to
the plane Ω = 0 in a broader window (Re[k], Im[k]). Only four branches are located
within this range of (Re[k], Im[k]) at α = 0 and α = π

4 . Naturally, at α = 0 and α = π
2

the dispersion diagrams are perfectly symmetric with respect to Re[k] = 0 plane, and
the second propagating wave cuts on in the standard ’divergence-type’ manner at k =

0, Ωcut-on,2 = n
√

G12
E1

= 0.5916. This value of cut-on frequency is obtained analytically,
and it is the same for both α = 0 and α = π

2 . For α = π
4 , the scenario of this cut-on is

different, and it is of ’flutter-type’, which is well-known in the theory of elastic waves
in layers and thin shells. As seen from Fig. 3, the transformation of two attenuated
waves to two propagating ones occurs at Ω ≈ 0.4152, k ≈ 0.2264 and the lower
branch in the frequency range 0.4152 ≤ Ω ≤ 0.4693 describes the anomalous (or
negative energy) wave, which has the positive phase velocity cphase > 0 and negative
group velocity cgroup < 0. Remarkably, in the analogous symmetric waveguides (say,
the second branch of symmetric waves in the Rayleigh-Lamb problem, see [22, p. 151,
Fig. 5.072]) such waves exist in pairs, whereas here, due to the symmetry break, this
wave does not have a counterpart of similar properties. In Fig. 3, the other branch
emerging from Ω ≈ 0.4152, k ≈ 0.2264 has both cphase > 0, cgroup > 0. This result is

8
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Fig. 3: (a) dispersion diagram for α = 0 (black), α = π
4 (red), α = π

2 (blue); (b) the second cut-on frequency
and associated purely real wavenumber, at which the group velocity is zero versus the orthotropy angle.

interesting on its own, but it also has some implications regarding solving the forcing
problems in general and constructing the Green’s matrix in particular. An elaboration
on this important issue is presented in Sec. 5. The evolution of the cut-on frequency
for 0 < α < π

2 is illustrated in Fig. 3(b). Effectively, this figure presents a dependence
of the position of a point (Ω0, k0) in the (Ω,Re[k])−plane, at which cgroup = 0, upon
the angle α. As seen (also from Fig. 3), Ω0 = Ωcut-on,2, k0 = 0 at both extreme values
α = 0 and α = π

2 . The dependence of (Ω0, k0) upon the angle α is not monotonic
and, for the given parameters of orthotropy, the angle α = π

4 does not appear to be the
one, at which the dispersion diagram is maximally distorted. Fig. 3(b) shows that the
second wave at α ≈ 1.0755 cuts-on when k0 = 0. However, this does not mean that
the whole dispersion diagram recovers symmetry, see Fig. 4.

In this figure, all branches of the dispersion diagram are plotted. Despite conven-
tional ’divergence’ type generation of the second propagating waves, the diagram is
lacking symmetry with respect to Re[k] = 0 plane. In the considered frequency range,
there are two waves propagating in the negative direction of the axial coordinate that
do not experience any transformations. The situation is different with waves travelling
in the positive direction: at around Ω = 0.78 two propagating waves cut on. One
of these waves interacts with the first propagating wave in the ’veering’ manner, see
[20], and, due to ’repelling’, interacts with the second branch in the ’locking’ man-
ner. Therefore, in the frequency range 0.815 ≤ Ω ≤ 0.931 this waveguide supports
four waves with positive phase velocity. Two of these waves have negative group ve-
locity. This result has a potential for tailoring the waveguide properties of helically
orthotropic cylindrical shells and, as already mentioned, is considered in Sec. 5, where

9
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Fig. 4: Dispersion diagram for α ≈ 1.0755.

the problem of excitation of elastic waves in a shell by a rotating force is solved.

3.4. The influence of the parameters of orthotropy

Obviously, the parameters of orthotropy strongly affect the location of dispersion
curves, and variation of the angle α adds one more dimension to the space of pa-
rameters. Therefore, the analysis reported in this subsection is purely illustrative and
highlights the influence of the stiffness ratios E2

E1
and G12

E1
with other ones being fixed

to the values used in Sec. 3.2: ν12 = 0.3, h
R = 0.05. In addition, α = π

4 . It is important
to observe the limitations on the values of the parameter E2

E1
, see [10]. For ν12 = 0.3,

the limitation is E2
E1
< 11. In Fig. 5(a), the influence of this parameter is illustrated for

G12
E1

= 0.35. As expected, the reverse change in the ratio E2
E1

tends the diagram in the
opposite directions. The quantitative differences between the case E2

E1
= 8 and E2

E1
= 1

8
are explained by, firstly, the scaling of the frequency parameter with E1 in both cases
and, secondly, by fixation of ν12 = 0.3.

Fully reversed choice of parameters gives the dispersion diagram ’mirrored’ with
respect to the plane Re[k] = 0. The dispersion diagram is recovered completely if, in
addition to the rescaling of the frequency parameter and fixing ν21, the circumferential
wavenumber is set to be m = −1. In Fig. 5(b), the dependence on the position of a point
(Ω0, k0) in the (Ω,Re[k])-plane, at which cgroup = 0, upon the ratio E2

E1
is illustrated.

Finally, we illustrate the influence of the shear stiffness parameter G12
E1

in Fig. 6 with
other ones being fixed to the values used in Sec. 3.3: ν12 = 0.3, E2

E1
= 8, h

R = 0.05,
α = π

4 . This parameter also strongly influences the location of dispersion curves and
triggers veering and locking interaction phenomena.

To conclude this brief analysis of dispersion diagrams of cylindrical shell with the
helical orthotropy, we notice that the symmetry of dispersion curves remains preserved
with respect to the Im[k] = 0 plane. In other words, the complex-valued and purely

10



imaginary roots exist only in complex conjugate pairs simply because the dispersion
polynomial has purely real coefficients in the absence of damping.
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Fig. 5: (a) dispersion diagrams for E2
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4. Waves in a cylindrical beam lattice with helical pattern

As shown in the previous section, wave propagation in a helically orthotropic
cylindrical shell is different depending upon the direction of propagation. Mathe-
matically, it manifests itself as the presence of both even and odd powers of the
wavenumber in the dispersion equation. On the other hand, as is well-known, the
dispersion equation for a helical spring contains only even powers of the wavenumber
and, therefore, there is symmetry in the waveguide properties of an isolated helical
fibre. It is realistic to assume that a helically orthotropic cylindrical shell is made of
a fibre-reinforced composite, which consists of a large number of identical helical fi-
bres uniformly embedded into a relatively soft matrix. A simplified discrete model of
a shell may then be set up as a lattice of beam elements forming helical fibres with the
matrix between them being modelled as discrete beams of lower stiffness.

In this section complex dispersion curves of an orthotropic lattice structure with
helical pattern are shown. Lattice structures have been extensively studied due to their
application in many engineering fields, see e.g. [23], and the investigation and opti-
misation of their properties is still the subject of many recent studies. As an example,
homogenisation of a two-dimensional lattice has been presented in [24], directional-
ity behaviour of lattices has been investigated in [25], while in [26] stress waves in
two-dimensional periodic lattices has been studied.

Floquet and Bloch analysis of a unit cell are particularly useful to investigate the
behaviour of beam lattice structures, and the WFE method [15] can be straightfor-
wardly applied to these structures. Although the interest here is not in the bandgap
formation of the lattice, see e.g. [27], these can be also easily investigated using the
present approach. Fig. 7 shows a schematic representation of the helical lattice consid-
ered, together with the skew periodic unit cell used for the WFE discrestisation, [15].
The latter is modelled using beam elements with six degrees of freedom per node:
displacements and rotations in the x, y and z directions. Orthotropy is assumed such
that Young’s modulus in the y direction is three time those in the helical direction, that
is: Ey

Ex′
= 3. The radius of the cylinder is 0.2m and 250 cells are considered around the

circumference; the beam cross section is square 0.01 × 0.01m, and the helix angle is
α = π

4 .

(a) (b)

Fig. 7: (a) schematic representation of the cylindrical beam lattice with helical pattern; (b) the skew periodic
unit cell.
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The estimation of the differences between the orthotropic cylindrical lattice, viz. rect-
angular periodic cell, and the orthotropic cylindrical helical lattice, viz. skew peri-
odic cell, is shown in Fig. 8, where the real valued dispersion curves for the first
circumferential mode are compared. Dispersion curves are plotted using the same
non-dimensional parameters as in Sec. 3. For the orthotropic cylindrical lattice, it can
be seen that the curves show symmetry with respect to Re[k] = 0 i.e. wavenumbers
occur in pairs ±k and waves propagating in positive and negative axial direction have
the same characteristics in terms of wavenumbers and wavemodes. It can also be
noticed that quasi-extensional wave modes (the second branch in the plot) propagate
below Ω = 1. As the frequency increases, the structure starts to be less stiff in the
radial direction, the extensional wave mode changes in the behaviour due to the trans-
verse motion of the cross-section, and a higher order mode starts propagating close to
Ω = 1 as expected.

6

4

2

0k

-2

-4

-6

0 0.5 1 1.5
Ω

Fig. 8: Comparison between the real-valued dispersion curves for the cylindrical beam lattice, first cir-
cumferential mode m = 1: +++ orthotropic cylindrical lattice (rectangular cell); ��� orthotropic helical
cylindrical lattice (skew cell).

The figure shows clearly that the presence of the helical orthotropy highly affects the
waves propagating in the lattice, which leads to changes in the cut-on frequencies and
in the wave propagation properties as described in the previous sections i.e. the sym-
metry of dispersion curves no longer holds and waves propagate differently in positive
and negative direction provided that the helical angle is different from 0 and π

2 . Com-
plex dispersion curves and some of the wavemodes for the orthotropic helical lattice
are shown in Fig. 9.

5. Formulation of Green’s matrix and energy flow analysis

The analytical model formulated in Sec. 2 may readily be used for analysis of
forced response of a cylindrical shell with helical orthotropy. The convenient tool to
handle arbitrary excitation conditions is the Green’s matrix. Since the studies of free
spinning waves have demonstrated their unusual properties of non-symmetry, formu-
lation of Green’s matrix is particularly interesting for rotating forces, which are typical
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Fig. 9: Complex dispersion curves for the helical orthotropic cylindrical beam lattice, first circumferential
mode m = 1: propagating waves; evanescent waves; complex waves (note that complex waves
occur as a pair of complex conjugated waves, and only one is shown here). The surrounding figures show
the corresponding wave modes.

for various technical applications, such as water-supplying pipes equipped with cen-
trifugal pumps, wind turbines and other rotating machinery.

5.1. The loading cases

We consider time-harmonic, exp(−iωt), external forces of unit amplitude concen-
trated in the axial direction (i.e. applied at the cross-section x = x0) and rotating in the
circumferential direction:

qF(n)
m (x − x0, θ) = δ(x − x0) exp(imθ) n = 1, 2, 3, 4 (8)

Forcing at each circumferential wavenumber may be considered individually, and the
four loading cases, n = 1, 2, 3, 4, in Eq. (8) correspond to the action of an axial force,
circumferential force, radial force and axial bending moment, respectively. Explicit
formulas for these forces in the case of isotropic cylindrical shells are well-known and
may be found, for instance, in [28]. However, in the case of helical orthotropy, the
closed form analytical expressions become cumbersome and so we do not reproduce
them here.

The derivation of Green’s matrix is based on the modal decomposition on free
waves. For an orthotropic cylindrical shell with the principal directions of orthotropy
coinciding with cylindrical coordinates (i.e. for a symmetric waveguide), it is suffi-
cient to formulate four loading conditions. These conditions, see [28], ensure sym-
metry of the wave propagation pattern to the left and to the right of the loaded cross-
section x = x0. Respectively, four wavenumbers k j ( j = 1, 2, 3, 4), each of which
satisfies radiation/decay conditions, are used and the solution ansatz for the radial
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displacement with the loading case qF(n)
m (x − x0, θ) has the form:

wF(n)
m (x − x0) =

4∑

j=1

A(n)
m j exp(ik j|x − x0|)

All other state variables (generalised forces and displacements) are expressed in the
closed analytical form via amplitudes A(n)

m j and wavenumbers k j using the modal coef-
ficients, for instance,

QF(n)
m1 (x − x0) =

4∑

j=1

Mm1 jA
(n)
m j exp(ik j|x − x0|)

see details in [28].
As soon as the symmetry is broken (the helical orthotropy is considered), all eight

wavenumbers should be involved in the formulation of Green’s matrix and eight con-
ditions at the loaded cross-section x = x0 should be formulated. Specifically, each
component of the displacement vector and three forces are continuous, while the re-
maining force experiences a unit jump. For the loading case 3 (rotating radial force)
at X0 = 0 these conditions are:

uF(3)
m+ (0) = uF(3)

m− (0) vF(3)
m+ (0) = vF(3)

m− (0)

wF(3)
m+ (0) = wF(3)

m− (0) γF(3)
m+ (0) = γF(3)

m− (0)

QF(3)
m1+

(0) = QF(3)
m1−(0) QF(3)

m2+
(0) = QF(3)

m2−(0)

QF(3)
m4+

(0) = QF(3)
m4−(0) QF(3)

m3+
(0) = QF(3)

m3−(0) + 1

(9)

Modal decomposition of the forced response in the region x < x0 is done using free
waves with wavenumbers which have Im[k−j ] < 0, ( j = 1, 2, 3, 4) and, if Im[k−j ] = 0
using dω

dk−j
< 0:

wF(n)
m− (x − x0) =

4∑

j=1

A(n)
m j− exp

(
ik−j (x − x0)

)

In the region x > x0, wavenumbers with Im[k+
j ] > 0 and, if Im[k+

j ] = 0, with dω
dk+

j
> 0

are used:

wF(n)
m+ (x − x0) =

4∑

j=1

A(n)
m j+ exp

(
ik+

j (x − x0)
)

As soon as α = 0 or α = π
2 , wavenumbers satisfy the condition k−j = −k+

j . Then the
symmetry is recovered and the Green’s matrix for rotating forces acquires the form
known for the isotropic cylindrical shell.
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5.2. The energy flow
The scaled energy flow through a cross-section of the shell is formulated as, see

[28–30]:

N(n)
m+ =

1
2

Re
{
QF(n)

m1+
(x)

[
iΩuF(n)

m+ (x)
]∗

+ QF(n)
m2+

(x)
[
iΩvF(n)

m+ (x)
]∗

+ QF(n)
m3+

(x)
[
iΩwF(n)

m+ (x)
]∗

+ QF(n)
m4+

(x)
[
iΩγF(n)

m+ (x)
]∗} x > x0 (10a)

N(n)
m− =

1
2

Re
{
QF(n)

m1−(x)
[
iΩuF(n)

m− (x)
]∗

+ QF(n)
m2−(x)

[
iΩvF(n)

m− (x)
]∗

+ QF(n)
m3−(x)

[
iΩwF(n)

m− (x)
]∗

+ QF(n)
m4−(x)

[
iΩγF(n)

m− (x)
]∗} x < x0 (10b)

In an orthotropic case, when α = 0 or α = π
2 , any force defined as Eq. (8) generates,

similarly to an isotropic shell, the same energy flow in the regions x < x0 and x >
x0 i.e. N(n)

m− = N(n)
m+. As soon as α , 0, the energy input is not split into equal

shares between these regions. This effect, introduced by the helical orthotropy, may
be utilised to control the transmission of vibro-acoustic energy generated by rotating
forces in various piping systems.

We illustrate this effect for an orthotropic shell with the parameters used in Sec. 3.3:
ν12 = 0.3, E2

E1
= 8, h

R = 0.05, G12
E1

= 0.35. We consider a rotating radial force (n = 3)
of unit amplitude with m = 1 at the excitation frequency Ω = 0.4. The scaled energy
flow as a function of the angle α is shown in Fig. 10, where α is measured in degrees
and varies from α = 0◦ to α = 45◦ with the step of 1◦. To explain peaks in the energy
input at the angles α ≈ 6◦ and α ≈ 16◦ it is necessary to address the dependence of
purely real wavenumbers upon α at the frequency Ω = 0.4, see Fig. 11.
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Fig. 10: The energy flow in a helically orthotropic cylindrical shell.

When α ≤ 6◦, there is only one pair of propagating waves, which have almost the
same absolute values of purely real wavenumbers. Therefore, there is little difference
in the energy flow in the positive and negative direction. This can be seen in Fig. 12(a),
where the contributions to energy flow are presented versus the axial coordinate for
α = 3◦. It can also be noticed that a second pair of propagating waves emerges at ≈ 6◦

(notably, not at the k = 0 axis, but rather following the condition dω
dk = 0, attained

when k+ = k− , 0). Their wavenumbers are pronouncedly different (first, in magni-
tude and, when α > 8◦, in sign) and, therefore, a preferred direction of energy flow
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Fig. 11: The purely real wavenumbers at Ω = 0.4 as functions of the orthotropy angle α.

(the negative direction of the axial coordinate) emerges. Partition of energy flow for
α = 12◦ is illustrated in Fig. 12(b). The waveguide properties of the shell are trans-
formed again at α ≈ 15◦. As seen in Fig. 11, a pair of propagating waves emerges
(cuts on) and the lower branch (the ’anomalous’ one characterised by the inequality
ω
k

dω
dk < 0) ’collides’ with the branch coming from α = 0◦ and this pair transforms back

(cuts off) to attenuated waves. After this transformation, the preferred direction of the
energy flow is reversed, as seen in Fig. 10. The partition of energy flow at α = 18◦

is shown in Fig. 12(c). As seen in Fig. 11, the structure of dispersion curves remains
unchanged up to α = 45◦. For consistency, the contributions to energy flow at α = 45◦

are presented in Fig. 12(d). In Fig. 12, each of the four components of the energy flow
from Eq. (10) is presented separately:

Nu
m=1 =

1
2

Re
{
QF(3)

11± (x)
[
iΩuF(3)

1± (x)
]∗}

Nv
m=1 =

1
2

Re
{
QF(3)

12± (x)
[
iΩvF(3)

1± (x)
]∗}

Nw
m=1 =

1
2

Re
{
QF(3)

13± (x)
[
iΩwF(3)

1± (x)
]∗}

Nγ
m=1 =

1
2

Re
{
QF(3)

14± (x)
[
iΩγF(3)

1± (x)
]∗}

Detailed analysis of the energy distribution between alternative transmission paths
illustrated in Fig. 12(a)–(d) lies beyond the scope of this paper, but two remarks should
be made. First, the energy input of the radial force is distributed to all transmission
paths already at the loaded cross-section, whereas in the isotropic shell and in the cases
α = 0 and α = π

2 the energy is pumped only to the directly excited path at x = x0, and
is redistributed in the near field. Second, the energy distribution between alternative
transmission paths is not the same in the regions x < x0 and x > x0.

The features of the energy transmission are sensitive to the material parameters of
the shell and to the excitation conditions. Therefore, optimisation of material layout in
order to control energy flow generated by a given rotating force is plausible and may
be much beneficial in various applications, for instance, for water-supplying pipes
equipped with centrifugal pumps operated at constant speed.

6. Conclusions

Elastic wave propagation in helically orthotropic cylindrical shells and in helical
lattices is studied using an analytical approach and a Wave Finite Element model. Both
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Fig. 12: Partition of the energy flow between alternative paths at Ω = 0.4. (a) α = 3◦, (b) α = 12◦, (c)
α = 18◦, (d) α = 45◦.

methods are very efficient in terms of computational cost, theoretical understanding
of the wave characteristics and utilisation of the model for parametric studies. Results
obtained by these methods are in a good agreement with each other, and contain the
following aspects of novelty:

1. The analysis of propagation of free waves demonstrates that the symmetry in the
location of dispersion curves for an orthotropic cylindrical shell with respect
to the Re[k] = 0 plane breaks as soon as the angle α between the principal
directions of orthotropy and the cylindrical coordinates depart from its extreme
values α = 0 and α = π

2 . Mathematically, it is explained by the simple fact that
the polynomial dispersion equation contains both odd and even powers of the
wavenumber. However, the symmetry of dispersion curves for an orthotropic
cylindrical shell with respect to the Im[k] = 0 plane is preserved at any α,
because the coefficients in the polynomial dispersion equation are purely real
so that it may have only complex conjugated roots. As soon as the orthotropy
angle acquires the limit values of the pitch angle α = 0 or α = π

2 the odd powers
vanish, and the symmetry with respect to the Re[k] = 0 plane is recovered.
The odd powers also vanish for an arbitrary α if the elastic parameters describe
an isotropic material of the shell. Exactly the same features of the location of
dispersion curves are detected for a helical lattice;

2. The non-symmetry of dispersion diagrams with respect to the Re[k] = 0 plane is
significant for applications, where a cylindrical shell is exposed to the excitation
by a rotating force. Solutions of forcing problems in these excitation conditions
show that the angle of orientation of principal directions of orthotropy strongly
influences partition of the energy flow in the positive and the negative direction
of the axial coordinate as well as the energy distribution between alternative
transmission paths in each direction. Therefore, the helical orthotropy may be
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used as a novel efficient tool to tailor the waveguide properties of cylindrical
shells in the prescribed direction of wave propagation and, therefore, to control
energy flow in piping systems at prescribed excitation frequencies.
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Abstract

In this paper we consider experimental analysis of vibrations in pipes and pipelines,
its decomposition into modal response and comparison with mathematical models.
The decomposition into modes is useful in many engineering disciplines to obtain ad-
ditional physical knowledge without additional effort. In general, decomposition is
possible for any structure that is uniform, axi-symmetric and obeys linearity, which,
fortunately, holds true for many engineering problems. Decomposition is widely used
in, for instance, vibro-acoustics, electromagnetics and/or mechanics and is important
in view of, for instance, suppression of vibrations or emitted noise, as some modes
may be critical from the viewpoint of vibrations and others from the viewpoint of
noise. In particular, the subject of decomposition becomes increasingly more im-
portant for larger and more compliant structures since resonances of the higher or-
der modes tend towards the lower frequencies. On the other hand, if the structure is
not perfectly axi-symmetric, for instance, due to inhomogeneous material properties,
shape imperfections (e.g. weldings or damages) or experimental sources of error (e.g.
misplacement of transducers), the circumferential modes mix up and cause what is
typically known as modal leakage. Specifically, each spectrum to be decoupled be-
comes contaminated by spurious response (resonances), belonging to other decoupled
spectrums. As a result, the decomposed spectra become inconclusive and the valu-
able insight of decoupling is lost. In this paper, however, we are concerned with how
to cope with these issues of modal leakage and retain the valuable insight – even for
structures with significant modal leakage – without demands for any additional data
or experimental work. Thus, the methods developed here are based purely on new
approaches to data processing. First, the main cause of modal leakage is studied math-
ematically by means of model disturbances i.e. a sensitivity study. From this study
two strong methods used to enhance transparency to modal leakage are deduced. The
first method is used for mode separation such as to permit modal characterisation of
each resonance, whereas the second is used in comparison with mathematical models
such as to avoid ambiguous conclusions in model validation. Lastly, the discussion is
extended to the general aspect of spectral leakage in terms of aliasing.
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1. Introduction

In many branches of engineering and science decomposition of measured response
is widely used to gain superior physical knowledge of the system or component at
hand. Decomposition is widely used in, for instance, electromagnetics to decompose
the fluctuating force density field, see e.g. [1, 2] or in vibro-acoustics to decompose
the response of a pipe into cross-sectional modes – known as modal response, see
e.g. [3, 4]. In particular, the interest of this paper is the study of decomposition of
uniform axi-symmetric structures in vibro-acoustics. This is important in view of, for
instance, suppression of vibrations or emitted sound, as some modes are critical from
the viewpoint of vibrations, while others are critical from the viewpoint of noise.

In [3] a convenient decomposition method, which allows for a reduction of the
number of measurement points from N to N/2 + 1, was developed. This work was
used and elaborated further in the PhD Thesis in [4] in which the decomposition of
experimental results was studied with special emphasis on reducing modal leakage
for comparison with mathematical models. Moreover, decomposition becomes in-
creasingly more important for larger pipe diameters since this, in general, lowers the
so-called cut-on frequency of the higher order modes as will be discussed in Sec. 2,
see e.g. [5, 6].

In almost all practical cases the data set (e.g. experimental results) to be decom-
posed will be contaminated with leakage errors caused by, for instance, inhomoge-
neous material properties, shape imperfections (e.g. weldings or damages) or exper-
imental sources of error e.g. due to misplacement and/or imprecise transducers etc.
which will cause the modes to mix up and become inseparable. This is known as
modal leakage since the response originating from other modes leak into spectrums to
which they do not belong. As a result, the decomposed spectrum becomes inconclu-
sive and the knowledge gained by decoupling is lost.

A typical example of modal leakage is shown in Fig. 1 for the modal response of
the fifth mode (m = 4) from vibration measurements on an empty thin-walled pipe.
Here three different decomposition methods are compared. From the figure we im-
mediately locate at least nine resonances (peaks) in the graph, while mathematical
analysis reveals only five resonances in the spectrum from 0 − 1600Hz with the first
resonance located around 1215Hz. Does this then mean that we have a poor model?
Or rather that the experimental data is contaminated with errors? As it turns out, the
ambiguity is caused by modal leakage from the measurements. This can immediately
be seen from the cut-on frequency of this mode, since no resonances can exist below
this frequency, see e.g. [5]. In addition, validation of mathematical models is usu-
ally also obscured when compared with leakage contaminated experiments, as seen
in Fig. 2. Thus, it is clear that we need stronger tools to separate authentic modes
from spurious and to compare model with experiments such as to avoid ambiguous
conclusions in both mode characterisation and model validation.

The structure of the paper is as follows: Section 2 serves as to shortly present the
preliminaries of the area of vibro-acoustics of pipes, their vibration modes and de-
composition as well as briefly summarise the experimental procedure. In Section 3
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Fig. 2: Decomposed response (red) compared to modal response from a mathematical model (blue) at
m = 1. The validity of the model is inconclusive.

the main cause of modal leakage is studied through sensitivities in a mathematical
model. Section 4 presents a straightforward method to distinguish and characterise
the circumferential modes of each resonance – in spite of significant modal leakage.
Section 4 also presents a generic method to make leakage transparent in validation of
mathematical models. Section 5 is devoted to discuss, in more general terms, other
aspects of modal leakage. Section 6 concludes the paper and Appendix briefly sum-
marises the experiments.

2. Preliminaries

As mentioned in Sec. 1 this paper is concerned with ways of retrieving detailed
physical knowledge through post-processing of measured data and therefore emphasis

3



will be on experimental data, whereas details of the mathematical model etc. may
be found in the provided references. Thus, to keep emphasis on data processing we
restrict ourselves to vibration measurements on a simple empty pipe of the dimensions
presented in Tab. A.1 in appendix. Nevertheless, the problem is still closely related
to Multiphysics in the sense that the methodologies developed here are generic and
therefore directly applicable to many Multiphysics problems, for instance, in vibro-
acoustics, electromagnetics and/or mechanics.

Alternatively, we could also consider the fluid-filled pipe. However, as this is in-
deed associated with many more sources of error from an experimental viewpoint a
significant effort is required to reduce these and thus emphasis will be led away from
the actual scope of this paper. In fact, as will be obvious later, the methods developed
require only that the test specimen obey linearity, is uniform and quasi axi-symmetric.
Fortunately, this holds true for many classical problems in engineering and science.

The mathematical model used in this paper is formulated in the framework of Novoz-
hilov–Gol’denvejzer’s shell theory for uniform axi-symmetric thin shells, [7]. The
model is expressed via a set of Partial Differential Equations (PDE) that are decou-
pled into circumferential modes, m, and solved assuming time-harmonic vibrations.
The solution is obtained through the method of Green’s matrix and is found analyti-
cally by means of bi-orthogonality relations and Boundary Integral Equations (BIE)
with unit loads applied, [8] – equivalent to the Boundary Element Method (BEM).
Further details concerning the model and its validity may be found in e.g. [9–12].

In this shell theory the solution to the governing PDE’s, when assuming time-
harmonic vibrations (linearity), can be decomposed into distinct circumferential vi-
bration modes by virtue of the axi-symmetry and orthogonality of the trigonometric
functions solving this linear problem. The deformation shapes of the circumference
of the first four modes (m = 0, 1, 2, 3) are presented in Fig. 3.
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3

Fig. 3: Illustration of a general cross-sectional response (black) decomposed into its circumferential modes.
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Thus, the general response (displacement) of the pipe may be expressed as an expan-
sion on all circumferential modes, as seen in Eq. (1).

w(x, θ, t) =

∞∑

m=0

Wm(x, t) cos(mθ) m ∈ Z (1)

where w(x, θ, t) is the radial response at the axial distance x, at time t and Wm(x, t)
is the amplitudes of each circumferential mode. These modes are the circumferential
vibration modes and are not to be confused with neither the resonances (shown in
Fig. 1) nor with the axial modes. For instance, the second mode (m = 1 – red in
Fig. 3) is the bending mode of the pipe i.e. horizontal (or vertical) translation of the
entire cross-section.

When assuming time-harmonic vibrations (exp(−iωt)) the accelerations follow di-
rectly from Eq. (1) as:

∂2w(x, θ, t)
∂t2 = −ω2w(x, θ, t) (2)

where ω is the angular frequency and i is the complex operator. Note that since vi-
brations are typically measured in accelerations, the notation; amplitudes, refers to
accelerations in what follows.

The circumferential modes shown in Fig. 3 are each associated with a characteris-
tic frequency at which the first wave of that specific mode starts to propagate through
the pipe and therefore convey energy. This characteristic frequency is known as the
cut-on frequency and since all waves below this frequency are evanescent, no reso-
nances of this specific mode can exist here, [5]. Furthermore, the cut-on frequency is
characterised only by the mechanical and cross-sectional properties of the pipe, which
implies that no matter the length of the pipe, modal resonances cannot exist below this
frequency. However, for changing cross-sectional properties e.g. increasing radius (or
decreasing thickness) both the cut-on frequency and resonances decrease.

2.1. Experimental procedure
A description of the experimental set-up, equipment and specifications of the test

specimen can be found in appendix, whereas the experimental procedure is briefly
presented here.

To decompose into modal response we need N equidistant measurements around the
circumference of the pipe. In general, this can be done by four different methods,
see e.g. [3, 4]. These methods are, ideally, identical but have individual disadvan-
tages/advantages from the viewpoint of the experimental procedure.

MD1 Attach all, N, transducers equidistantly around the circumference. Perform a
single measurement with any arbitrary excitation point – choose a few to avoid
stationary points.
Pros: All points are measured in a single measurement
Cons: Increased added mass effects and N transducers needed

5



MD2 Assume perfect symmetry in measurements and measure only on half the pipe,
[3].
Pros: Only N/2 + 1 transducers/measurements needed (accelerometer 1–6 in
Fig. A.9)
Cons: Rely fully on skew-/symmetry of the measurements and is therefore more
sensitive to imperfections/misplacement

MD3 Attach a single transducer and excite the structure at any arbitrary excitation
point. Move the excitation point equidistantly around the circumference and
continue to get the N measurements.
Pros: Reduced added mass effects and only one transducer with a fixed position
is needed (application dependent)
Cons: N measurements needed

MD4 Use the reciprocity theorem for MD3 (applicable for linear systems) and keep
a fixed excitation point, while moving the transducer equidistantly around the
circumference.
Pros: Reduced added mass effects and excitation point fixed (application de-
pendent)
Cons: N measurements needed and transducers need be attached/reattached
between each measurement

Note: MD2 applies also to MD3 and MD4.

To investigate the strength of these methods with respect to leakage the methods MD1-
3 are investigated in this paper.

2.2. Modal decomposition

The decomposition into modal response can be done in several ways provided
that we have a number of N equidistant measurements around the circumference. To
avoid aliasing N must be chosen specifically to the frequency spectrum of interest as
discussed in Sec. 5.

For continuous functions decomposition is done by the integral weighting method
known as Galerkin’s orthogonalisation. This is for this specific case, however, equiv-
alent to the (inverse) Fourier Transformation as defined in Eq. (3). For N equidis-
tant measurement points Eq. (3) reform to the Discrete Fourier Transform (DFT) in
Eq. (4) which gives the response of the first N/2 circumferential modes according to
the Nyquist-Shannon Sampling Theorem, [13]. For efficient computation of the DFT,
the Fast Fourier Transform algorithm (FFT) is usually preferred.

Wm(x, t) =
1
χmπ

∫ 2π

0
w(x, θ, t) exp(−imθ)dθ (3)

Wm(x, t) =
2

χmN

N−1∑

n=0

w(x, θn, t) exp(−imθn) (4)

where χm=0 = 2, χm,0 = 1 and θn = 2πn
N .
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This method is, however, only valid for the modal decomposition methods MD1, 3
and 4. For MD2 the decomposition proposed in [3] is used. In this decomposition the
skew-symmetry/symmetry of the ideal response, see Eq. (1), is utilised to reduce the
equation system to two separate systems; one for even modes and one for odd. This is
done by alternately adding and subtracting the mobility functions when expanded as
in Eq. (1) for which the system reduces to Eq. (5) (for accelerometer 1–6 in Fig. A.9)
by virtue of the skew-/symmetric properties.



w0 + w5
w1 + w4
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=
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2 2 cos
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(
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(5)

where wn is the measured mobility function at θn such that wn = w(x, θn, t) and
Wm = Wm(x, t) from Eq. (1). Subsequently, the amplitudes are retrieved simply by
inverting the systems in Eq. (5). It should be noted that this method is more sensitive
to leakage, since skew-/symmetry is strictly imposed for the measured mobility func-
tions. Thus, MD2 is expected to display more leakage.

The methodology can also be adopted to the sine part to retrieve the imaginary part of
the amplitudes and through Euler’s Identity, see e.g. [14], get the phase, as given di-
rectly by the latter Fourier Transform. However, ideally, the imaginary (sine) part
should be zero, since the radial response is ideally an even half-range expansion.
Hence, the leakage from the cosine part into the sine part can be viewed as an indica-
tion of modal leakage and occurs e.g. due to lack of symmetry from inhomogeneities,
imperfections or experimental errors, but may also arise from, unintentionally, mea-
suring part of the circumferential response as this is ideally an odd half-range expan-
sion. No matter the cause this will always occur, if not from the specimen then from
experimental errors, and will be perceived, in our measurements, as the unfavourable
modal leakage.

3. A sensitivity study on alternative leakage sources

First, we study the effects caused solely by lack of symmetry and added mass. For
perfectly axi-symmetric specimens it is given that the vibration pattern in the verti-
cal and horizontal plane is identical, meaning that each resonance will be a double
resonance related specifically to each plane of motion. However, when not perfectly
axi-symmetric specimens are considered the vibration pattern in the vertical plane dif-
fers from that of the horizontal plane and the double resonances start to depart for
increasing breach of symmetry, see Fig. 4 (zoom of Fig. 1).
From this notion, it is obvious that departed double resonances is caused solely by lack
of symmetry of the specimen itself e.g. from inhomogeneities or shape imperfections,
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Fig. 4: Zoom of Fig. 1 around two authentic resonances of m = 4. Note the departing resonances due to
lack of symmetry and the added mass effect from attached transducers.

and not as a consequence of experimental errors or imprecise transducers. Note also
the shift in resonances between MD1-2 and MD3, caused strictly by the added mass
effects i.e. the number of attached accelerometers.

Next, we focus on the effect of experimental sources of error on modal leakage through
a sensitivity study. From the radial modal response, wm, calculated in the mathemati-
cal model we can construct the general response, w, through Eq. (1). Obviously, this
response can be decoupled completely by any of the latter decomposition methods
provided that we have a number of equidistant sampling points around the circumfer-
ence (chosen in accordance with the Nyquist-Shannon Sampling Theorem).

Now, to reflect the experiments, only the first five modes (m = 0, 1, 2, 3, 4) need be
included in the general response and by virtue, at least, N = 10 measurement points
are needed in the decomposition. From this general response we can easily study, as
a function of frequency, the effect of imprecise transducers, not perfectly radial (off-
axis) excitation and misplacement of accelerometers. This is done by, respectively:

1. Adding ±5% (accuracy of transducers – see Tab. A.2) of the calculated circum-
ferential response to the radial response before decoupling

2. Calculating the general response when excited by a unit-vector different from
the unit-vectors in the direction of the coordinate axis and decouple

3. Decomposing the general response with slightly perturbed equidistant ’mea-
surement’ points

Through these studies it is found that imprecise transducers and off-axis excitation
have only small influence on the leakage – even for large perturbations, say ±10−15%.
The influence is mainly seen as moving anti-resonances and only for large perturba-
tions, slightly decrease/increase in magnitude. The insignificance of these parameters
is more or less obvious as these are somewhat ’controlled’ parameters, meaning that
the relative error stays within the same order of magnitude as the error (perturbation)
introduced. For the misplacement, on the other hand, the decomposition is found to
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be very sensitive to even the slightest perturbation in the measurement points. This is
seen in Fig. 5 at m = 4 for randomly generated perturbations within ±0.1% of each
equidistant measurement point. This corresponds to only ±0.4mm on the circumfer-
ence of the test specimen which is anticipated to be well below the actual accuracy at
which the accelerometers can be attached.
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Fig. 5: Ideal modal response from the model (blue) compared with the decomposed response (red) at m = 4
when measurement points are perturbed randomly by ±0.1%

From the figure it is clear that by even slightly perturbed measurement points the
decomposed response diverge significantly from the authentic response. The signif-
icance of the misplacement is potentially large as it may be regarded as an ‘uncon-
trolled’ parameter, meaning that we may encounter relative errors of several orders of
magnitudes higher than the error introduced – especially around resonances. Remark
that introducing more measurement points do not improve the quality of the decom-
position. Thus, it can immediately be concluded that the root cause of the modal
leakage arises from misplacement of accelerometers and further that the decomposi-
tion is highly sensitive to such misplacements. This implies that the method of modal
decomposition may be useless in practical applications, for instance, in model vali-
dation or mode characterisation of resonances due to the high sensitivities. Hence,
simple methods to cope with these issues are needed to draw correct conclusions de-
spite significant modal leakage.

4. Mode separation and model validation

In Fig. 1 the decomposed spectrum for m = 4 is presented. From this figure it is
evident that the decomposition contains significant modal leakage and that resonances
for this and other modes become inseparable. In this case, as the cut-on frequency is
known, it is given that resonances below this frequency are spurious. However, to keep
the methodologies completely general and applicable for other physics/applications
no such information may be used to detect authentic/spurious resonances. Thus, our

9



knowledge is confined to a given set of data measured equidistantly around some
circumference of a specimen that can be assumed uniform, axi-symmetric and obeys
linearity.

Obviously, characterising the modal origin of the resonances becomes difficult
even for perfectly axi-symmetric specimens due to the leakage introduced by the ex-
perimental errors. In fact, characterisation may be more or less impossible without, at
least, comparing to some simple mathematical models. Typically, in industry, there is
no ’easy’ way of characterising the modes of the resonances. One approach may be to
animate the deformation pattern based on the measured response and by visual means
characterise each resonance. However, this becomes increasingly more difficult for
increasing experimental errors and specimens moving away from perfect symmetry.
Hence this requires some experience. Nevertheless, when comparing MD1 with MD2
it is given that there will be a difference in the decomposition – especially around spu-
rious resonances as seen in Fig. 1 – due to the increased sensitivities in MD2 caused
by imposing strict skew-/symmetry conditions. Yet, at the authentic resonances the
modal response becomes so dominant that it abundantly exceeds the level of modal
leakage and the two methods will eventually give the same result. This is immediately
seen by comparing the decomposition methods MD1 and 2 at the authentic resonances
from Fig. 4 with the spurious ones in Fig. 6.
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Fig. 6: Zoom of Fig. 1 around two spurious modes originating from m = 3. Note that the difference between
the two methods is significant compared to Fig. 4. This is caused by the difference in leakage between MD1
and MD2.

In conclusion, it should be emphasised that this simple method/trick of separating
modes and thereby characterising the resonances is very powerful as it is independent
of the method used (MD1,3,4) and requires no additional measurements, only addi-
tional interpretation of the data.

On the other hand, in many engineering problems where mathematical models are
used as tools for optimised/improved designs, experimental tests for validation is a
prerequisite for using these. However, in modern engineering, experimental validation
becomes increasingly more difficult due to the increasing complexity of structures. In
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such cases, experimental sources of error may influence the results in a manner that
restricts proper validation and/or insinuate ambiguous conclusions. A convincing ex-
ample is the comparison between a model and decomposed experimental results con-
taining significant modal leakage. A such comparison for the case treated in this paper
was shown in Fig. 2 at m = 1, where only one authentic resonance is present – around
1315Hz. From Fig. 2 it is clear that the model predicts the region around the resonance
reasonably well (for this mode) but in all other regions we fail to conclude whether the
model is good or not. This was also concluded in [4]. For some industrial purposes
this conclusion is sufficient, while for others a more elaborated or broader conclusion
is needed. To get a better comparison – assuming that the model is profound – we
need to reduce the experimental sources of error (the leakage) and try again.

Inasmuch as the main cause of leakage originate from misplacement this may
be accounted for by introducing small random perturbations when decomposing the
mathematical model, as it was done in Sec. 3. This is valid since the characteristics
of the leakage is governed by the resonances and will therefore be similar no matter
the size of the perturbations. This approach is simple and advantageous depending on
the origin of the mathematical model. For instance, in case of transient or harmonic
analysis using commercial software where the solution is the general response and
therefore need be decoupled anyhow.

If, on the other hand, the governing equations are already decoupled and solved for
each mode the ’detour’ used in Sec. 3 need be applied to introduce leakage by mis-
placement i.e. assembly of the general response and subsequent decomposition back
into the modes. In this case we can instead use the decoupled spectrum from ex-
periments as a load scaling for proper comparison. Nevertheless, be aware that this
short-cut calls for proper attention and sound physical understanding of the measured
data in order not to over-interpret the results. The simple, but very useful, trick for
introducing leakage (misplacement) into our model follow from Eq. (6).

wExp.
m ≈ wMod.

m ⇔
(
wExp.

m

)1+ 1
p ≈ wMod.

m

(
wExp.

m

) 1
p p ∈ N (6)

where Mod. indicates response from the model and Exp. from the experiments, whereas p
may be perceived as a ’visualisation-factor’ belonging to the natural numbers, prefer-
able > 1.

At first instance, following the approach of Eq. (6) and multiplying each side by the
same quantity may seem trivial. However, by this simple trick we conveniently in-
troduce leakage from the experiments into the model and do thereby provide means
for better comparison, as seen in Fig. 7. Thus, this simple trick ensures that model
validation becomes somewhat transparent to leakage.

From this it is clear that there is a profound difference between the inconclusive
comparison in Fig. 2 – illustrating the left-hand-side comparison of Eq. (6) – and the
right-hand-side comparison shown in Fig. 7. The latter comparison reveals that there
is an excellent agreement between model and experiments, whereas the former is in-
conclusive due to the substantial amount of leakage.
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Fig. 7: The comparison in Fig. 2 scaled by the decomposed spectrum for p = 2. Experimental response
(red) and model (blue) both scaled by the decomposed spectrum.

Nevertheless, to avoid a distorted picture and possible over-interpretation, p is re-
stricted to the natural numbers as indicated in Eq. (6). This becomes obvious from
Eq. (6) if we let p go to zero, as the model will then converge uniformly to the ex-
perimental results. On the other hand, by letting p go to infinity the right-hand-side
will eventually converge uniformly to the initial comparison on the left-hand-side of
Eq. (6). Thus, to avoid over-interpretation p > 1 is recommended. However, the
choice of and sensitivity with respect to p should be considered for each individual
case. Note also that the choice of p, can be perceived as an analogue to the size of
the allowable perturbation in the former approach i.e. decreasing perturbation size is
analogue to increasing p. Finally, it is important to notice that no matter the choice of
p the absolute and relative errors between model and experiments are unaffected, why
this simple method only provide visual aids to disregard modal leakage.

In addition to the mathematical arguments for using this simple method, the argu-
ment from a physical viewpoint is: As misplacement has shown to be the root cause of
modal leakage, the leakage contaminated decomposed response can be perceived as a
measure of leakage more than the authentic modal response, why this scaling may be
appropriate for comparisons, depending on the choice of p.

5. Discussion

As discussed, the methods are developed to make the experimental results more
transparent to the sources of error that introduce modal leakage, no matter whether
they arise from inhomogeneities/shape imperfections or misplacement/imprecise trans-
ducers. However, one phenomenon of modal leakage that is not covered by these
methods is the aspect of aliasing, see [13] for further details.

In general, aliasing is avoided on spectral level (spectral leakage) by using, for
instance, low pass filters or controlled excitations to sort out higher order frequencies
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before they are measured. Yet, leakage in the modal spectrum between circumferen-
tial modes in the sense of aliasing cannot be circumvented by the same techniques as
it is a direct consequence of the chosen frequency spectrum and the mechanical and
cross-sectional properties of the pipe. Thus, if the overall spectrum contains leakage
in terms of aliasing, inevitably the leakage will also be present in the modal spec-
trum as a disguised spurious mode that cannot be detected by these (or any) methods.
If, on the other hand, there is no leakage in the overall spectrum, the modal spec-
trums may still contain spurious aliasing modes. This occurs if N is chosen too small
compared to the frequency range and mechanical and cross-sectional properties of the
specimen. For instance, in the spectrum considered in this paper (0 − 1600Hz) the
minimum number of sampling points around the circumference is chosen to N = 10
in accordance with the Nyquist-Shannon Sampling Theorem, [13], since the highest
mode with cut-on frequency in this spectrum is the fifth mode (m = 4). In other
words, N should be chosen such that; N ≤ 2(m̃ + 1) where m̃ is the highest mode that
has cut-on frequency in the chosen spectrum. Thus, N is obviously highly dependent
on the frequency range but likewise on the dimensions and mechanical properties of
the pipe. In general, the cut-on frequency of the circumferential modes decreases for
increasingly compliant structures e.g. increasing radius and/or decreasing thickness.
In this case more sampling points are needed to analyse the same frequency range.
Hence, to select a sufficient number of sampling points the cut-on frequencies of each
mode need be known or estimated. In some areas of engineering and science approxi-
mations for the lower order cut-on frequencies exists, for instance, for empty pipes up
to m = 3, see [6]. If such approximations do not exist, choosing the number of sam-
pling points may not be a trivial task and needs to be studied for the individual cases.
For certain problems, a frequency sweep may reveal the number of cut-on frequencies
present in the response, however, a such method is, to the authors knowledge, yet to
be developed.

6. Conclusion

In this paper we are concerned with studying the root cause of modal leakage in
decomposition of experimental results as well as additional post-processing of exper-
imental data to make conclusions transparent to such leakages. First, the root cause of
leakage is found to arise from misplacement of accelerometers (or excitations points)
as even slight misplacement will introduce significant leakage into the decomposed
spectrums. To cope with these leakage issues two simple methods are developed –
without demands for additional experimental work – just new approaches to post-
processing. The first method is used for mode characterisation of resonances. The
method compares different approaches to decomposition (one imposing strict skew-
/symmetry) that will immediately distinguish authentic modes from spurious in the de-
composed spectrum. The second method is used for model validation. In this method
leakage is introduced into the mathematical model to provide the necessary means for
comparison. This can, in general, be done in two ways depending on the mathemati-
cal model at hand: In one case by slightly perturbing the model before decomposing,
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and in another case by utilising the decomposed spectrum as a scaling for both ex-
periments and model. Finally, leakage caused by aliasing cannot be distinguished by
these methods and we are therefore in need of methods for systematically determining
the cut-on frequencies which we are yet to develop.

Appendix A. Experimental setup

As mentioned in Sec. 1 the experiments have been simplified to circumvent un-
necessary sources of error. Effectively the experiments are confined to an empty thin-
walled stainless steel pipe with the mechanical properties of Tab. A.1.

Ref. name Value Unit
Geometry – Thin-walled pipe

Radius – Median R 68.3 mm
Pipe thickness h 1.6 mm
Length L 743.5 mm

Material properties – Stainless steel
Young’s modulus E 205.1 GPa
Poisson’s ratio ν 0.3 -
Mass m 4067.1 g
Density ρ 7966.8 kg/m3

Tab. A.1: Details of the test specimen. Young’s modulus is found by fitting model to experiments and the
density calculated based on mass and volume.

The constraints used are free-free boundary conditions, mimicked by a soft suspen-
sion of compliant springs and fishline, as illustrated in Fig. A.8. For these boundary
conditions to be feasible the overall resonance of the one degree-of-freedom mass-
spring system should be low and not coincide with any structural resonances of the
pipe itself. Using simple mass-spring considerations and the values from Tab. A.1
the system resonance can be approximated to 2.20Hz by Eq. (A.1), which is indeed
anticipated to be well below the first resonance of the thin-walled pipe.

fsys =
1

2π

√
kequiv

M
=

√
1

2π2

k
M

(A.1)

No. Component Type Note
1 Fourier analyser (B&K) PULSE LabShop v18.0
2 Frontend (B&K) 3050-B-6/0 6 channels

3 Accelerometer (B&K) 4518-003
1.5g radial one-way
±5% circumferential

4 Modal hammer (B&K) 8202 w/ force transducer
5 Suspension line Fishline
6 Suspension spring Tension k = 390N/m

Tab. A.2: Equipment used in the experiments. Numbering associated with Fig. A.8. (B&K) abbrev. for
Brüel & Kjær.
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As illustrated in Fig. A.8 the specimen is excited by a modal hammer (tip chosen to
comply with the given frequency range) and 10 accelerometers are placed equidis-
tantly around the circumference according to Fig. A.9 at two arbitrarily chosen cir-
cumferences. Multiple measurements are needed to ensure that all modes are properly
excited and that accelerometers and/or excitation points are not placed at stationary
points (also known as nodal points).
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Fig. A.8: Sketch of experimental setup. Numbering elaborated in Tab. A.2.
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Fig. A.9: Picture of the experimental setup (left) and graphical illustration of placement (and reference
number) of the 10 accelerometers around the circumference (right).
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