
Aalborg Universitet

Efficient Model Checking: The Power of Randomness

Kiviriga, Andrej

DOI (link to publication from Publisher):
10.54337/aau534292082

Publication date:
2023

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Kiviriga, A. (2023). Efficient Model Checking: The Power of Randomness. Aalborg Universitetsforlag.
https://doi.org/10.54337/aau534292082

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025

https://doi.org/10.54337/aau534292082
https://vbn.aau.dk/en/publications/b5b15e76-dd81-43e6-8eba-9351b9fefd59
https://doi.org/10.54337/aau534292082

A
n

d
r

ej K
ivir

ig
A

effic
ien

t M
o

d
el c

h
ec

K
in

g
: th

e Po
w

er
 o

f r
A

n
d

o
M

n
ess

efficient Model checKing:
the Power of rAndoMness

by
Andrej KivirigA

Dissertation submitteD 2023

Efficient Model Checking:
The Power of Randomness

Ph.D. Dissertation
Andrej Kiviriga

Dissertation submitted February, 2023

Dissertation submitted: February, 2023

PhD supervisor: Professor Kim Guldstrand Larsen
 Aalborg University

PhD Co-supervisor: Associate Professor Ulrik Nyman
 Aalborg University

PhD committee: Associate Professor Martin Zimmermann (chair)
 Aalborg University, Denmark

 Associate Professor Cristina Seceleanu
 Mälardalen University, Sweden

 Professor Dr. Habil Martin Leucker
 University of Lübeck, Germany

PhD Series: Technical Faculty of IT and Design, Aalborg University

Department: Department of Computer Science

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-740-6

Published by:
Aalborg University Press
Kroghstræde 3
DK – 9220 Aalborg Ø
Phone: +45 99407140
aauf@forlag.aau.dk
forlag.aau.dk

© Copyright: Andrej Kiviriga

Printed in Denmark by Stibo Complete, 2023

Dedicated to the memory of my beloved grandfather.
I am eternally grateful you have persuaded me to undertake this adventure

and heartbroken I cannot share it with you anymore.

Присвячується пам’ятi мого улюбленого дiдуся.
Я нескiнченно вдячний, що ти переконав мене пiти на цю пригоду, i дуже

шкодую, що бiльше не можу подiлитися цим з тобою.

Посвящается памяти моего любимого дедушки.
Я бесконечно благодарен, что ты убедил меня пойти на это приключение,

и очень сожалею, что больше не могу поделиться им с тобой.

Abstract

In modern, computerized world, many safety and business critical operations
are now performed by embedded software and the need for correct, safe and
optimal systems continues to grow. Unlike testing procedures, the method
of model checking allows us to provide guarantees on correctness and op-
timality of such systems. The main obstacle that impedes the widespread
success of model checking is that of the state space explosion – a problem
that quickly exposes the limits of verification algorithms when dealing with
large and industrial-sized systems.

Apart from proving the correctness of systems, model checking can also
be used for falsification of requirements and generating error traces for de-
bugging. In this thesis, we attempt to improve the applicability of falsification
and optimization model checking techniques for three problem domains in
large safety critical systems – correctness, refinement and optimization. More
specifically, we exploit randomness and use it at various steps of our methods
to reduce computational demands. As the result, we provide lightweight,
efficient and scalable falsification and optimization techniques that in many
cases significantly reduce time and memory requirements, and in some cases
expand the type of models which can be analyzed.

The body of this thesis consists of two parts. In the first part we give
an overview of model checking and motivate the necessity for new tech-
niques. We also give a brief introduction of the modelling formalisms rel-
evant to our scope: different extensions of Timed Automata. The second,
main part of the thesis consists of four papers. The first paper presents a
randomized refinement checking algorithm for an efficient falsification of the
refinement relation between two specifications expressed as Timed I/O Au-
tomata. In the second paper, a randomized reachability analysis for Timed
and Stopwatch Automata is developed, implemented and made available in
the model checker Uppaal. A large number of models are used to show-
case the strengths of our method, including the model of the industrial-sized
Herschel-Planck satellite system. In the third paper, we adapt Monte Carlo
Tree Search for verification of optimization problems for models expressed
as Priced Timed Automata. The final paper presents a framework for usage-

v

aware falsification of Cyber-physical systems. The framework computes a list
of counterexamples that are ranked according to their probability.

Resumé

I en moderne, computeriseret verden udføres mange sikkerheds- og forret-
ningskritiske operationer nu af indlejret software, og behovet for korrekte,
sikre og optimale systemer fortsætter med at vokse. Model checking giver i
modsætning til testprocedurer mulighed for at give garantier for korrekthe-
den og optimaliteten af sådanne systemer. Den største hindring for at model
cheking bliver en udbredt success, er tilstandsrumeksplosion (state space ex-
plosion) - et problem, der hurtigt afslører grænserne for model checking, når
man har med store og industrielle systemer at gøre.

Udover at bevise systemers korrekthed, kan model checking også bruges
til falsificering af krav og generering af fejlspor til debugging. I denne afhan-
dling forsøges det at øge anvendeligheden af falsificering og optimerings
model checking metoder på tre problemdomæner i store sikkerhedskritiske
systemer - korrekthed, forfining og optimering. Tilfældighed bliver forsøgt
anvendt i forskellige trin af metoderne til at reducere mængden af nød-
vendige beregning. Dette resulterer i letvægts, effektive og skalerbare falsifi-
cerings og optimerings teknikker, der i mange tilfælde reducerer kravene til
verifikationstid og hukommelse markant og udvider mængden af modeller,
der kan analyseres.

Hoveddelen af denne afhandling består af to dele. Første del giver en
oversigt over model checking og motiverer nødvendigheden af nye teknikker.
De modelleringssformalismer der er relevante for afhandlingen introduceres
også. Disse er alle forskellige udvidelser af tidsautomater (Timed Automata).
Den anden hoveddel af afhandlingen består af fire artikler. Den første artikel
præsenterer en randomiseret raffineringskontrolalgoritme (refinement check-
ing algorithm) til effektiv falsificering af raffineringsrelationen (the refinment
relation) mellem to specifikationer udtrykt som I/O tidsautomater (Timed
I/O Automata). I den anden artikel er en randomiseret reachability analyse
for tidsautomater (Timed Automata) og stopursautomater (Stopwatch Au-
tomata) blevet udviklet, implementeret og gjort tilgængelig i modelcheck-
eren Uppaal. Et stort antal modeller bruges til at vise metodens styrker,
herunder modellen af det industrielle Herschel-Planck satellitsystem. I den
tredje artikel tilpasses Monte Carlo Tree Search til verifikation af optimer-

vii

ingsproblemer for modeller udtrykt som tidsautometer med omkostninger
(Priced Timed Automata). Den sidste artikel præsenterer en metode, der an-
vender brugsmøstre til fejlfinding i indlejrede systemer (Cyber-physical sys-
tems). Metoden beregner en liste af fejlscenarier, der er rangeret efter deres
sandsynlighed.

Contents

Abstract v

Resumé vii

Acknowledgements xiii

I Introduction 1

Introduction 3
1 State of the Art . 6

1.1 Models . 6
1.2 Formal requirements . 16
1.3 Tools . 16
1.4 Approaches . 17

2 Randomization in Model Checking 23
2.1 Related work . 23
2.2 Our take . 26

3 Thesis Summary . 27
References . 31

II Papers 41

A Randomized Refinement Checking of Timed I/O Automata 43
1 Introduction . 45
2 TIOA, Composition and Refinement 48
3 Random Walk Heuristics . 51

3.1 Selecting transition . 52
3.2 Selecting delay . 53
3.3 RET vs RCF . 54
3.4 Delay probability distribution changes 55

ix

Contents

4 Test setting . 56
4.1 Milner’s scheduler . 56
4.2 Leader Election protocol 57
4.3 Implementation . 57

5 Experiments . 58
6 Conclusions and Future Work . 62
References . 62

B Randomized Reachability Analysis in UPPAAL: Fast Error Detection
in Timed Systems 67
1 Introduction . 69
2 Stopwatch Automata . 73
3 Randomized Reachability Analysis 76
4 Usage in the tool Uppaal . 82
5 Experimental Setting . 84
6 New Results on Herschel-Planck 87
7 More Schedulability . 89
8 Gossiping Girls . 90
9 Scalability Experiments . 92
10 Operating System models . 92
11 Strengths and limitations . 94
12 Conclusion . 97
13 Future Work . 97
14 Acknowledgments . 98
References . 98

C Monte Carlo Tree Search for Priced Timed Automata 103
1 Introduction . 105
2 Priced Timed Automata . 106
3 Monte Carlo Tree Search . 109
4 General PTA Challenges . 112
5 Policies . 113
6 Enhancements . 116
7 Experiments . 116
8 Conclusion . 122
References . 123

D Usage-aware Falsification for Cyber-Physical Systems 127
1 Introduction . 129
2 Methodology . 132

2.1 Baseline Solution . 133
2.2 Efficient Solution . 134

3 Hybrid Systems . 135

x

Contents

3.1 Stochastic Semantics of Hybrid Automata 137
4 Formalized Requirements . 139
5 Falsification Testing w/ Randomized Accelerator 140

5.1 Guiding of RRA . 141
5.2 Adaptive Simulation Duration 142

6 Estimating Counterexample Probability 142
6.1 Importance Splitting . 143
6.2 Counterexample Probability 143

7 Case Study . 146
8 Experiments . 147

8.1 Baseline Solution . 147
8.2 IS Simulation Sensitivity 149
8.3 Efficient Falsification Evaluation 150

9 Conclusion and Future Work . 150
References . 151

xi

Contents

xii

Acknowledgements

I would like to express my gratitude to my supervisor Kim G. Larsen and
co-supervisor Ulrik Nyman for all the given opportunities and guidance
throughout my journey as a PhD student. This thesis would not have been
possible, had it not been for your support and invaluable lessons. Thank you
for being there when I needed you the most.

A big thanks to Dejan Nickovic for great hospitality and supervision dur-
ing my external stay in Vienna. I truly enjoyed our collaboration, which I
hope we will continue.

For the invaluable help with the implementations inside Uppaal as well
as many other crucial lessons that only you could give, I attribute part of my
achievement to Marius Mikučionis and Peter Gjøl Jensen.

It is hard to underestimate many fascinating discussions and countless
laughs we had over the years with you, Martin Kristjansen. I am grateful to
have had you as my office-buddy and I am sure my time as a PhD student
would have been boring without you.

Andrej Kiviriga
Aalborg University, February 24, 2023

xiii

Acknowledgements

xiv

Part I

Introduction

1

Introduction

Over the last decades computers have been integrated into our society and it
is hard to imagine the world without them. By now countless systems exist
to satisfy various needs. However, there is a number of challenges that come
along with such technological progress.

Firstly, systems tend to contain errors that can make them unsafe and
unreliable. Despite all the effort of software engineering practices, increasing
complexity of systems also entails increasing difficulty of error discovery and
prevention. Therefore, systems’ correctness is crucial; it is vital to insure the
strict accordance of the system to the intended behavior, especially for crit-
ical systems found in medical equipment, nuclear power plants, aircraft and
satellites.

Secondly, system compatibility is an important challenge. With multiple
existing systems, it has become a successful strategy to assemble smaller
components into multiplex systems and tailor them according to the user
needs. In practice, these components tend to be developed independently
and might not be suitable for being combined into larger systems. More
concretely, in the reasoning about system compatibility, we are interested
in the refinement feature that allows one to compare components and safely
replace one component by another one in a large system design.

And thirdly, the optimality of a system is an increasing concern in the
light of such global problems as the climate change and economic crises. A
system might contain no errors, but make an inefficient use of the resources,
such as time and money, as well as result in unnecessary high consumption
of electricity or emission of gases, to mention a few examples. Such class of
problems is known as optimization problems. These three problem classes –
correctness, refinement and optimization – are gathering significant attention
and can be addressed in several ways.

For the first two challenges – correctness and refinement – the most widely
known approach is that of testing. It allows one to focus resources on “im-
portant” parts of the system and is usually used as a falsification approach.
Carefully crafted testing procedure can help to eliminate most, if not all, is-
sues in the system and for many applications that is enough. Unfortunately,

3

the major drawback of the testing is its lack of guarantees on correctness
of the system as testing procedures are designed and carried out by humans
who naturally tend to make mistakes. In safety-critical systems such an error-
prone approach cannot be relied on.

To address this, the approach of formal verification can be used. It allows
reasoning about the correctness of a system with respect to some formal re-
quirements. In particular, interesting to us is the method of model checking
that was pioneered in the 1980s [38, 39, 55, 111]. Model checking is a method
of checking a finite-state model of the system against properties typically ex-
pressed in logical formula. In these terms, the model can either be exact,
representing an existing implementation of the system, or abstract, defining
an overall specification. Model checking lends itself to automation and uses
mathematical algorithms to perform exploration of the model. This allows
one to provide guarantees, while reasoning about satisfaction of the require-
ments, for any of the three mentioned problem classes: correctness, refine-
ment and optimization. In recent years formal methods are becoming increas-
ingly popular and are by now used in such tech “giants” as Amazon [23, 103]
and Meta [105]. In these companies, formal methods help to prevent subtle
but serious bugs from reaching production - bugs which would not be found
by any other technique.

Ever since model checking has emerged, a number of different modelling
and logic formalisms have been developed that can capture different types of
problems and respective requirements. Each formalism has its own trade-off
in terms of complexity, captured features and applicable methods. For all of
them, a problem known as state space explosion is the most prominent obstacle
that refers to an exponential growth of the state space as the size of the model
increases. As a consequence, the wide use of automated verification in the
industry is hampered. To combat this problem and reduce the computational
demands, an immense number of techniques have been put through in the
last three decades, giving rise to such model checking tools as Uppaal [17],
SPIN [76], Kronos [27], Prism [91], NuSMV [37] and more. However, despite
all the effort, model checking still remains an expensive approach.

An important observation to be made in the setting of verification is that
not all states in the state space are equally important. While some types
of requirements demand the entire state space to be searched to provide an
answer, other requirements can be concluded on early, once some target be-
havior is discovered. For example, reaching a state that violates a safety
requirement allows us to conclude the verification of a safety property with-
out the need to proceed with the rest of the state space. However, in many
industrial systems the target behavior constitutes a very small fraction of the
state space and is difficult to find. With ever growing systems, the state space
explosion is still an ongoing problem that can quickly expose limits of model
checking – a problem that will probably never go away.

4

A very promising way to tackle the state space explosion is by using ran-
domness. Deterministic or probabilistic choices in model checking algorithms
can instead be replaced with random or semi-random decisions. Randomness
can help to discover the target behavior of the system quickly and efficiently,
allowing to reason about the imposed requirements well before the whole
state space is unfolded. The reasons for that are a few. Random choices
are typically much cheaper than computationally expensive decision making
techniques, which improves the speed of the search. It also turns out that ran-
dom variations in the search order can produce huge variations in the result
or in the performance of the technique [52]. Last but not least, randomized
methods will often consume significantly less memory during the search.

As we shall see, existing research hints that randomness can have a dra-
matic effect on the performance of algorithms, greatly improving their scal-
ability; therefore, in this thesis we study the potential of employing ran-
domness in different domains of model-checking that include correctness,
refinement and optimization problem classes.

Outline

The rest of this chapter is organized as follows. We review the state of the
art for model checking, including models, tools, logical formalisms and ap-
proaches used to deal with correctness, refinement and optimization problem
classes. Next we focus on the explanation of how randomness is employed
in some of those approaches. After this follows a summary of contributions
from each of the four papers that make up the basis of this thesis.

5

1 State of the Art

This section gives an overview of the model checking field and relevant to
this thesis formal models, logics, tools and approaches.

1.1 Models

In this thesis we primarily focus on timed systems, the central model being
that of Timed Automata [8]. It is the type of automaton that supports the
notion of time represented by continuous variables that are called clocks. All
clocks evolve over time at the same rate and can be reset when needed. This
allows modelling of a large variety of systems that have a certain timing
behavior to them. In addition to Timed Automata, a number of extensions
exist that further expand the features that can be captured.

We start by formally defining an Extended Timed Automata – an exten-
sion of Timed Automata with integer variables. Let C be a finite set of clocks
and X be a finite set of integer variables. A valuation function is a mapping
v : (C ∪ X) → (R≥0 ∪ Z) such that clocks are mapped to reals R≥0 and
variables are mapped to integers Z. Let y ▷◁ n be a linear constraint where
y ∈ C ∪ X , n ∈ Z and ▷◁ ∈ {<,≤,=, ̸=,>,≥}. Let B(C,X) be a set of
guards such that each guard is represented as a finite conjunction of linear
constraints. Let U be a set of all possible update operations in the form c = 0
and x = e, where c ∈ C, x ∈ X and e is an arithmetic expression over X .

Definition 1
An Extended Timed Automaton (TA) is a tuple (L, l0, C,X , Σ, E, I) where:

• L is a finite set of locations,

• l0 is the initial location,

• C is a set of clocks,

• X is a set of variables,

• Σ is a finite set of actions,

• E ⊆ L×B(C,X)× (Σ ∪ ϵ)× 2U × L is a finite set of edges. An edge
is represented as (l, g, a, u, l′) ∈ E, connects two locations l and l′,
and contains a guard g, an action a and an update u, and

• I : L→ B(C,X) is a set of location invariants.

Example 1.1 (Timed Automaton)
Figure 1 (a) shows an example Timed Automaton with the clock x that

6

1. State of the Art

models the behavior of a simple CPU. The two locations Idle and Work

represent two modes where CPU is either idling or processing a task,
respectively. Starting in the idle mode, CPU will transition into the working
mode after at least 1 and at most 5 time units. The timing constraints are
are imposed by the guard x>=1 on the edge and the invariant x<=5 on the
Idle location. From there, CPU is processing a task for a time interval
between 2 (x>=2) and 3 (x<=3) time units and only then can return to the
Idle location again. Both of the edges have an update x=0 that resets the
clock x. In addition, variable i acts as an integer counter of the number of
times CPU has entered the working state and is incremented (i++) every
time the edge from Idle to Work is taken. The dynamics of the clock x and
the variable i can be seen in the simulation of CPU automaton (b).

(a) Timed Automaton (b) Simulation of Timed Automaton.

Fig. 1: CPU Timed Automaton (a) and its simulation (b).

A Timed Automaton is a syntactic construct whose semantics is given in
terms of a Timed Transition System that we now define.

Definition 2
A Timed Transition System (TTS) is a tuple (S, s0, Σ,→) where

• S is a set of states,

• s0 is the initial state,

• Σ is a finite set of actions, and

• → ⊆ S × (Σ ∪ ϵ ∪R≥0) × S is a set of transitions that connect the
states. We write s a−→ s′ instead of (s, a, s′) ∈→.

For our TTS, we require both delay and discrete transitions to be deter-
ministic. We also require delay transitions of our TTS to be time reflexive such
that a zero-delay does not change the state. Lastly, we impose the require-
ment of time additivity so that a larger delay can be split into two smaller

7

delays that, if taken consecutively, will lead to the same state as the larger
delay. The three requirements are formally defined as follows [47]:

• Time determinism: if s a−→ s′ and s a−→ s′′ then s′ = s′′,

• Timed reflexivity: s 0−→ s for all states of TTS, and

• Time additivity: if s
d1−→ s′

d2−→ s′′ then s
d1+d2−−−→ s′′ for all d1, d2 ∈ R≥0.

Before we can proceed to definition of Timed Automata semantics, we first
need to explain some operations on clock valuations. Given a valuation v we
can change the valuations of clocks and variables with an update operation
v[u], where u ∈ 2U . Also, given a valuation v and a delay d ∈ R≥0 we can
progress in time with delay operation such that clocks change their valuations
and variables remain the same. More formally, (v+ d)(c) = v(c)+ d for c ∈ C
and (v + d)(x) = v(x) for x ∈ X . With these operations at hand, we can
proceed to define the semantics of TA as follows.

Definition 3
The semantics of a TA A = (L, l0, C,X , Σ, E, I) is given by a TTS JAKsem =
(L× v(C,X), (l0, 0), Σ,→) where 0 is a function that maps all clocks to 0
and all variables to some initial value set by the user such that 0 |= I(l0),
Σ is the same action set as in A, and the transition relation → is given by
the following two rules:

• delay transition: (l, v) d−→ (l, v′) iff d ∈ R≥0 and v′ = (v + d) and
v′ |= I(l), and

• discrete transition: (l, v) a−→ (l′, v′) iff ∃(l, g, a, u, l′) ∈ E, s.t. v |= g and
v′ = v[u] and v′ |= I(l′).

A timed run of a Timed Automaton A is a sequence of alternating delay
and discrete transitions starting from the initial state s0:

π = s0
d1−→ s′0

a1−→ s1 . . .
di−→ s′i−1

ai−→ si . . .

Example 1.2 (Timed run)
Below we give an example run for the Timed Automaton from Figure 1 (a):

π1 = (Idle, x = 0, i = 0) 3.5−→ (Idle, x = 3.5, i = 0) ϵ−→ (Work, x = 0, i = 1)
2−→ (Work, x = 2, i = 1) ϵ−→ (Idle, x = 0, i = 1) 4.22−−→ (Idle, x = 4.22, i = 1)
ϵ−→ (Work, x = 0, i = 2) 2.17−−→ (Work, x = 2.17, i = 2) . . .

8

1. State of the Art

The reachability analysis for Timed Automata without discrete variables
was shown to be decidable and PSPACE-complete [8]. We note that the ad-
dition of unbounded integer variables lifts the expressivity to be Touring-
complete and the problem thus becomes undecidable. However, in practice
and for tools like Uppaal, the variables are usually bounded and hence do
not influence the decidability of the problem.

Timed Input/Output Automata

The action set Σ of a Timed Automaton is split into (observable) inputs Σi and
outputs Σo. Syntactically, this is denoted by an postfix ! and ? to the action
label for outputs and inputs, respectively. The action set consists of inputs
and outputs which are disjoint, i.e. Σ = Σi ∪ Σo and Σi ∩ Σo = ∅. There can
also be an empty action ϵ that represents an internal (unobservable) action
within the automaton. Extending Timed Automata with input and output
action separation, we get Timed I/O Automaton [47]. The role of inputs
and outputs can be viewed as a way for different components to synchronize
their behavior. The input actions are not controlled by the component itself
and edges with input actions can only be taken once a corresponding output
action is provided by the environment.

We point the reader’s attention to the fact that there exists another formal-
ism for Timed I/O Automata and its respective transition system by Lynch et
al. [83], in which the used input/ouput model has been initially proposed by
Lynch [99]. However, we use the Timed I/O Automata formalism proposed
by Larsen et. al [47] instead which shall be viewed as an extension with the
addition of quotient and conjunction operators, and game-based treatment of
refinement, composition and quotient operators. There are more differences be-
tween the two formalisms of Timed I/O Automata. We refer the interested
reader to [47] (and [83]) for all the subtle details on those.

Example 1.3 (Timed I/O Automaton)
Figure 2 (a) extends our CPU example by replacing previously unobserv-
able actions ϵ with input an output action labels. More specifically, CPU
will start processing a task only after receiving an input start! (consumed
by start?), which can happen after at least one time unit is spent idling.
Once at Work, CPU is in control to decide when the task is finished by
outputting on stop! (action) channel after between 2 and 3 time units.

An arbitrary number of automata can be parallelly composed into a net-
work of automata. In such network, different components synchronize on
inputs and outputs, and all together act as a single system. The input actions
of one component can be synchronized with the same label output action of

9

(a) CPU automaton (b) CPU automaton
(c) Environment

automaton

Fig. 2: Timed I/O Automata examples of CPU (a), (b) and the environment (c).

another component. The synchronization can either be a handshake, where
only 2 components change their states, or a broadcast, where all components
that can consume the output advance their states. Here we don’t delve into
the semantics of composition and different types of synchronization, and in-
stead refer the interested reader to [47, 97] for more details. We, however,
need to define the notion of input-enabledness of specifications.

Definition 4
A Timed Transition System is a specification if each of its states s ∈ S is

input-enabled: ∀i ∈ Σi.∃s′ such that s i−→ s′.

Input-enabledness supports the belief that the input cannot be prevented
from being sent to the system, i.e. the system must be able to consume any
input from the input set and do so at any state. If there is no special be-
havior that a component exhibits on a certain input at a certain time, the
input-enabledness is usually ensured by location self-loop transitions with
the action label of that input and with necessary guards such that the input
is available at all times while respecting the requirement of non-determinism.
In practice, such self-loop transitions are typically left out, to improve read-
ability of a syntactic automaton design, and assumed to be implicit.

Example 1.4 (Composition)
The previously examined automaton from Figure 2 (a) can be composed
with the component (c) that represents the environment. The environment
(c) is then in control of when CPU should start processing a task by broad-
casting output start!, which can happen only once in 10 time units. If the
start! action is send by the environment when CPU is not ready to receive
it, the action gets consumed by an implicit location self-loop transition.

The specification theory for Timed I/O Automata [47] supports formal
comparison between components, allowing to reason about the refinement
relation between different specifications to decide whether one component can
be safely replaced by another one in a larger system design.

10

1. State of the Art

Definition 5
A specification K = (SK, ko, Σ,→K) refines a specification T =

(ST , to, Σ,→T), denoted K ≤ T, iff there exists a binary relation R ∈
SK × ST containing (k0, t0) such that for each pair of states (k, t) ∈ R the
following three conditions hold:

• if t i?−→
T

t′ for some t′ ∈ ST then there must be k i?−→
K

k′ for some
k′ ∈ SK and (k′, t′) ∈ R

• if k o!−→
K

k′ for some k′ ∈ SK then there must be t o!−→
T

t′ for some
t′ ∈ ST and (k′, t′) ∈ R

• if k d−→
K

k′ for some d ∈ R≥0 then there must be t d−→
T

t′ for some
t′ ∈ R≥0 and (k′, t′) ∈ R

Example 1.5 (Refinement)
Consider two Timed I/O Automata (a) and (b) from Figure 2. Both au-
tomata have an input action start? controlled by some external environ-
ment, e.g. such as previously seen component (c), that decides when CPU
should start the work. On the other hand, CPU is in charge of an edge
with an output action stop! which can be executed once the work is done
(in accordance with the timing constraints). In fact, automaton (a) refines
automaton (b): the invariant of location Work and the guard of a stop!
action edge have been tightened. We now show the refinement relation R
between (a) and automaton (b):

R = {⟨(Idlea, x = v, i = n), (Idleb, x = v, i = n) | v ∈ R≥0 ∧ n ∈ Z≥0⟩,
⟨(Worka, x = v, i = n), (Workb, x = v, i = n) | 0 ≤ v ≤ 3∧ n ∈ Z≥0⟩}

Stopwatch Automata

Allowing to stop and start clocks by setting their evolution rate to either 0
or 1, gives rise to Stopwatch Automata [34]. With the ability to stop and re-
sume clocks it becomes possible to apply a model-based approach to solve
such problems as schedulability with preemption. The traditionally used for
schedulability analysis Worst Case Response Time approach (WCRT) [33, 81]
is known to be over-approximate and might falsely declare system unschedu-
lable. Unlike WCRT, the model-based approach with Stopwatch Automata
helps to keep track of more parameters, allowing for less pessimistic and
more precise analysis.

11

Definition 6
A Stopwatch Automaton (SWA) is a tuple (L, l0, C,X , Σ, E, I, D) represent-
ing a Timed Automaton extended with D, where D : L× C → {0, 1} gives
derivatives of clocks at locations, limited to either 0 or 1.

In the underlying semantics of a Stopwatch Automaton, only the delay
transition is affected:

• (l, v) d−→ (l, v′) iff d ∈ R≥0 and ∀c ∈ C.(v′(c) = (v(c) + d · D(l, c))
and v′ |= I(l)

Thus, only those clocks progress in time whose derivative is set to 1. In
practice, for readability purposes, the derivative of each clock at all locations
is assumed to be 1 per default, unless explicitly stated otherwise. Stopwatch
Automata was proven [34] to be as expressive as Linear Hybrid Automata and
shown to be semi-decidable [6].

Example 1.6 (Stopwatch Automaton)
Adding a stopwatch s yields a Stopwatch Automaton (a) in Figure 3. The
stopwatch measures the time CPU spends working. It progresses normally
at location Work but is stopped at location Idle (s’==0). The simulation (b)
observes the evolution of the stopwatch occurring only in location Work.

(a) Stopwatch Automaton (b) Simulation of Stopwatch Automaton.

Fig. 3: CPU Stopwatch Automaton (a) and its simulation (b).

Priced Timed Automata

Another extension of Timed Automaton, namely Priced Timed Automata [18],
allows us to model resource-consuming systems. In addition to simple clocks,
a cost variable is present in the model and can evolve according to non-
negative integer rates. The rates can depend only on the discrete state of
the model, i.e. discrete variables or locations. In essence, the cost variable

12

1. State of the Art

is an observing, implicit clock in the automaton that cannot be used in con-
straints and cannot be reset. Performing certain actions or spending time in
certain locations can now have a price. This provides a way to model e.g.
different planning problems, as well as search for optimal solutions by either
minimizing or maximizing the cost of a witnessing trace.

Definition 7
A Priced Timed Automaton (PTA) is a tuple (L, l0, C,X , Σ, E, I, P) repre-
senting a Timed Automaton extended with P, where P : (L ∪ E) → Z≥0
assigns cost rates and cost increments to locations and edges.

In the underlying semantics of a Priced Timed Automaton, both delay and
action transition now have a cost:

• delay transition: (l, v) d−→p (l, v′) iff d ∈ R≥0 and v′ = (v + d) and
v′ |= I(l) and p = d · P(l), and

• discrete transition: (l, v) a−→p (l′, v′) iff ∃(l, g, a, u, l′) ∈ E, s.t. v |= g
and v′ = v[u] and v′ |= I(l′) and p = P((l, g, a, u, l′)).

At any point in time, the cost of a timed run in Priced Timed Automaton
is the sum of costs of all taken delay and action transitions. In practice, the
cost of a Priced Timed Automaton is tracked by an implicit cost variable.
The problem of cost-optimal reachability was shown decidable [18], and later
proven to be PSPACE complete [25].

Example 1.7 (Priced Timed Automaton)
To track the cost, variable C is used that evolves according to non-negative
integer rates. This gives a Priced Timed automaton and its simulation in
Figure 4 (a) and (b), respectively. Here, the cost of working is twice higher
than the cost of idling (represented by cost evolution rates 2 and 1). Both
edges have no cost increments. Consider a finite example run for this

(a) Priced Timed Automaton. (b) Simulation of Priced Timed Automaton.

Fig. 4: CPU Priced Timed Automaton (a) and its simulation (b).

13

Priced Timed Automaton:

πPTA = (Idle, x = 0, i = 0) 2−→2 (Idle, x = 2, i = 0) ϵ−→0 (Work, x = 0, i = 1)
3−→6 (Work, x = 3, i = 1) ϵ−→0 (Idle, x = 0, i = 1) 4−→4 (Idle, x = 5, i = 1)

The cost of πPTA is thus 2 + 6 + 4 = 12.

Hybrid Automata

To capture systems with more complex and rich dynamics, the formalism
of Hybrid Automata [70] shall be used. Here, the evolution rates for clocks
may not only be expressed with discrete variables, but can also depend on
continuous variables including other clocks. Effectively, this allows capturing
the dynamics with ordinary differential equations (ODEs).

Definition 8
A Hybrid Automaton (HA) is a tuple (L, l0, C,X , Σ, E, I, F) representing a
Timed Automaton whose clock rates can now be set to be either constants
or expressions that may depend on other variables. The delay function
F(d, v) provides a new valuation given delay d ∈ R≥0 and valuation v.

In the underlying semantics of a Priced Timed Automaton the delay tran-
sition is defined as follows:

• (l, v) d−→ (l, v′) iff d ∈ R≥0 and v′ = F(d, v) and v′ |= I(l)

Unfortunately, the expressivity of Hybrid Automata comes at a cost. The
decidability of different subclasses of Hybrid Automata has been intensely
studied [6, 24, 70, 73, 94, 101, 110]. The most interesting to us is a subclass
known as Rectangular Hybrid Automata (RHA) [71, 72]. RHA has two re-
strictions: (1) a variable must be reset of before its slope can change and
(2) the two variables with different activities must not be compared. It was
shown by [73] that relaxing any of the two restrictions renders RHA undecid-
able w.r.t. reachability and language emptiness problems, which proves that
RHA resides on the border of what is decidable. Hence, reachability is also
undecidable for the general class of Hybrid Automata.

Example 1.8 (Hybrid Automaton)
In case of a Hybrid Automaton (a) in Figure 5, we track the temperature of
CPU which follows rich dynamics specified by ODEs. The temperature T

decreases at a rate of -T*T/30 when CPU is idling, and increases at a rate
of x*x*5/(T+0.1) when CPU is processing a task. The simulation of (b)
displays the evolution of CPU temperature (blue line) in degrees over time.

14

1. State of the Art

In this simulation, the temperature stays under 10 degrees as the “work”
is done quickly and there is plenty of time spent idling, which allows CPU
to cool down.

(a) Hybrid Automaton. (b) Simulation of Hybrid Automaton.

Fig. 5: CPU Hybrid Automaton (a) and its simulation (b).

Stochasticity

All of the models described above can exhibit stochastic behavior by em-
ploying race-based stochastic semantics. In a stochastic model, the non-
deterministic choices of delays and transitions are replaced by stochastic
ones1. The stochastic semantics has been studied for Stochastic Timed Au-
tomata [7], Stochastic Priced Timed Automata [45] and Stochastic Hybrid
Automata [44]. It is possible to compose an arbitrary number of stochas-
tic automata (components) into a network of stochastic automata where the
components together act as a single system. The winning component at each
step is decided according to the race – the component with the smallest delay,
the winner, is the one that gets to perform its output action while the rest of
the network may follow. The race-based stochastic semantics gives a basis
for interpretation of the specification formalism and can be used to generate
random, realistic simulations of the system. In fact, the graphs shown in Fig-
ures 1 (b), 3 (b), 4 (b) and 5 (b) showcase such stochastic simulations where
both delays and transitions were chosen uniformly at random.

Along with the stochastic variants of Timed Automata and respective ex-
tensions, also reside timed variants of Markov Chains: Discrete Time Markov
Chains (DTMC) [43] and Continuous Time Markov Chains (CTMC) [12] –
both probabilistic models. Each state in DTMC has an explicitly specified
probability distribution over the outgoing transitions which determine how
likely each successor is to be picked. CTMC extends DTMC with exponential
distributions of explicitly specified rates in each state which determine the
probability of spending certain amount of time in that state.

1In Uppaal Stratego the standard choices are either uniform of exponential; however, any
other distribution can be encoded.

15

1.2 Formal requirements

In addition to the model of the interest, model checking requires a formal
requirement specification of the desired behavior (property) to validate the
model against. Two classical examples are reachability and safety properties.
Reachability property asks whether there exists a behavior that eventually
satisfies the property, i.e. reaches the desired configuration. On the other
hand, safety property requires that a certain condition is always satisfied
(e.g. the temperature never exceeds a threshold). However, conclusive veri-
fication of safety properties cannot be done with non-exhaustive falsification
techniques. Crucial to us, a safety property can be expressed as a reachability
problem that upon satisfaction violates the safety property (e.g. it is possible
to exhibit a behavior where the temperature exceeds a threshold).

More general behavioral properties can be expressed in different temporal
logics. The two most relevant for this thesis, conventional families of tempo-
ral logics are linear-time (path-based) Linear Temporal Logic (LTL) [109] and
branching-time (state-based) Computation Tree Logic (CTL) [40]. LTL views
only a single successor (of behavior), i.e. a single trace, whereas CTL has a
tree-like, branching structure and considers all alternative successors. Both
logics allow to reason about infinite behavior of reactive systems and are a
subset of CTL∗ [56]. Both LTL and CTL in their core support only discrete-
time which suffices for the class of synchronous systems. To capture the real-
time constraints and express properties of Timed Automata systems, Timed
CTL (TCTL) [5] has been proposed, augmenting CTL with timing modalities.
CTL has also been extended for probabilistic system with time and probabil-
ities, resulting in Probabilistic CTL (PCTL) [66]. LTL has also been extended
to continuous time and generalized to Metric Temporal Logic (MTL) [90].
Since full MTL over infinite traces is undecidable, an often preferred formal-
ism is Metric Interval Temporal Logic (MITL) [9]. MITL is subset of MTL
where the bounds of the operator time intervals are constrained to be either
natural-valued or infinite.

1.3 Tools

There is a number of automated verification tools that have emerged as a re-
sult of the intensive research and improvement of the model-checking tech-
niques. We now give a short summary of the closely related tools to the
modelling and logic formalisms presented earlier.

Uppaal [17] is the prominent family of tools for design, specification and
verification of real-time systems modelled as networks of Timed Automata
that uses a subset of TCTL as the query language to define formal require-
ments. For verification of Timed Automata and TCTL formulae, the Kronos

tool [27] can also be used; however, with the latest release in 2002, many of

16

1. State of the Art

the new and efficient methods are not present in Kronos.
The implementation of Statistical Model Checking (SMC) is available in

Uppaal SMC branch that supports simulation of stochastic Timed Automata
models (including Priced, Stopwatch and Hybrid Automata). The more com-
plex dynamics of Hybrid Automata defined by ODEs are approximated dur-
ing generation of simulation. A well-known alternative for evaluation of
stochastic models is the symbolic probabilistic model checker PRISM [91]
which supports a range of Markov Chain and Markov Decision Process mod-
els, such as DTMC and CTMC, and a wide range of temporal logics including
LTL and PCTL. As of one of the more recent versions, PRISM 4.0 [92] also
operates on (Priced) Probabilistic Timed Automata [62, 78, 93], that can be aug-
mented with costs or rewards (similarly to Priced Timed Automata, but with
probabilities).

For verification of networks of Priced Timed Automata, the tool Uppaal

Cora [20] exists, where resource-allocation problems are recast as optimal
reachability problems. The algorithm of Uppaal Cora can find optimal solu-
tions, without providing anytime results2. Some of the more recent advance-
ments in the methods for analysis of Priced Timed Automata gave rise to
the tool TiaMo [26]. It only supports a subset of the syntax of Priced Timed
Automata, but provides anytime solutions.

Uppaal Ecdar [46] is a tool that can be used to check refinement relation
between specifications expressed as Timed I/O Models. Behind the scenes,
an engine of Uppaal Tiga [16] is used, which in itself is a Uppaal extension
that supports the class of Timed Games and can synthesize strategies for
those. The refinement between specifications is resolved in a 2-player game,
where the inputs are controlled by the environment and the outputs by the
component itself. There also exists an open-source spin-off tool Ecdar 2.x [1]
which introduces new graphical interface and currently has two underlying
engines with a constantly developed set of supported features.

1.4 Approaches

This section gives a summary of approaches that can be used to address the
three problems classes – correctness, refinement and optimization of systems.
It also highlights some other, relevant to the second part of this thesis, areas.

Testing

The most straightforward and widely used approach is that of testing. It al-
lows one to identify most of the errors in the system rather quickly and cost-
efficiently by executing a finite set of test-cases. In applications where the

2Intermediate (anytime) solutions are unfortunately not provided in the current distribution
of Uppaal Cora.

17

tolerance to errors is high, testing is a sufficient approach. However, discov-
ery of more subtle bugs requires an increasing effort in test-case generation
– often a manual process that involves creativity and discipline, and is prone
to errors. Different testing techniques have been put through to improve
the ability to detect bugs by e.g. generating corner-case test procedures as
in boundary-value testing [112], generating test cases based on equivalence
partitioning [21], or generating malformed inputs as in fuzz testing [87] to
name a few. Moreover, a large number of automated testing and deployment
tools exist today that help to reduce human involvement by process automa-
tion. Nevertheless, the major disadvantage of both functional (black-box) and
structural (white-box) testing – lack of correctness guarantees – facilitates the
need for different approaches.

Model checking

The approach of automated verification of system models against formal-
ized requirements – known as model checking – has been established as a
useful technique for providing correctness guarantees. Unfortunately, the
state space grows exponentially in relation to the size of the system under
analysis; this creates a problem known as state-space explosion – the most con-
straining obstacle that severely limits the applicability of model checking. A
vast amount of effort has been directed over the last three decades to alleviate
this problem, putting forward a large number of techniques all with the goal
of reducing computational demands and improving scalability of verification
methods.

Such techniques can be divided into four categories [41, 108]: reducing
number of states to be explored (including symbolic methods), reducing
memory requirements for storing these states, exploring abstractions of sys-
tems (over-approximation), exploring state-space in a parallel or distributed
manner and exploring only part of the state-space at the cost of certainty
(under-approximation).

In the setting of timed systems, different symbolic and discrete methods
have been proposed. With discrete time, such algorithmic structures as Bi-
nary Decision Diagram [30] can be used to represent Boolean functions. This
allows handling astronomically sized, but finitely representable, systems [32].
Difference Bound Matrix (DBM) [50] is the current state-of-the-art data struc-
ture used for symbolic state space representation in Uppaal, which is often
referred to as zone. Clock Difference Diagrams (CDD) [13] is a BDD-like data
structure that allows for saving space by a more efficient representation and
manipulation of unions of zones than that provided by DBMs.

Some of the other prominent reduction techniques include partial order re-
duction [4, 22, 96] that reasons about redundancy of equivalent interleavings
of independent concurrent events. Extrapolation abstraction techniques [14,

18

1. State of the Art

15, 119] reduce the number of states to explore which are semantically equiv-
alent to already explored ones. Symmetry reduction [104] exploits user-defined
symmetries in the models with the help of equivalence classes.

Probabilistic model checking

Some systems are designed in a way that imposes probabilities for certain
events to occur. Examples include randomized algorithms, computer net-
works, concurrent protocols, and others. The traditional for model checking
yes/no answer is then futile; instead, we are interested in the probability
the target behavior can occur. Probabilistic model checking can be used to
compute the probability of an event to occur from a probabilistic models like
DTMC and CTMC and check whether that probability is below/above some
desired threshold. The most prominent tool in this area is PRISM [91, 92].
Probabilistic model checking similarly suffers from the state space explosion
as model checking, but also requires real-valued matrices and vectors, the
calculations for which limit the size of tractable models even further.

Optimization and planning

Problems from temporal planning domain can be effectively expressed in
Planning Domain Definition Language (PDDL) [3] specification language. Dif-
ferent PDDL extensions have improved the expressivity of the language over
time, which includes probabilistic effects [124], temporal and numeric prop-
erties [57], and soft and strong constraints on plan trajectories [59]. A num-
ber of planner tools exist (e.g. FastDownward [68]) that implement classical
planning algorithms, such as greedy best-first search with the FF heuristic for
sub-optimal plans [75] and A∗ with LM-Cut for optimal plans [69].

Resource-allocation problems, such as optimization and planning prob-
lems, can be encoded also into Priced Timed Automata, effectively expressed
as optimal reachability problems. It fact, PDDL can be translated [51] into
Priced Timed Automata and analyzed with Uppaal Cora. The symbolic, ex-
haustive algorithm of Uppaal Cora performs an optimal reachability anal-
ysis of networks of Priced Timed Automata with the help of so-called priced
zones [10] – an extension of standard, symbolic DBM-based zones. The algo-
rithm is exhaustive and is guaranteed for find the most optimal solution.

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [42] is a family of algorithms to find optimal
solutions that has proven to be effective for a wide range of problems [29],
particularly game playing and planning problems. The search operates by
simulating the model and building the search tree while prioritizing more

19

promising regions based on observed rewards. MCTS has a number of use-
ful characteristics: it (1) performs an incremental and asymmetric exploration
of the state space, which helps to (a noticeable extent) avoid the state space
explosion, (2) provides anytime solutions, and (3) is aheuristic in nature mean-
ing it does not require any domain-specific knowledge.

MCTS makes choices based on past observations and addresses the explo-
ration vs. exploitation dilemma as a multi-armed bandit problem in order to
maximize the cumulative reward. More specifically, an optimal choice (of a
bandit arm) can be done with the help of upper confidence bound (UCB1) [11]
which expects a logarithmic growth of the regret uniformly over the number
of choices. Proposition to use UCB as a mechanism for choice of successor
in the model gave rise to now most popular upper confidence bound for trees
(UCT) [88, 89] algorithm in the MCTS family.

Refinement verification

The problem of refinement checking is addressed by the specification theory
of Timed I/O Automata [47]. Here, the contract-based relationship between
decomposed systems is examined. The introduced notion of conjunction is
used to express the intersection of requirements of components. Structural
composition, similarly as in networks of timed systems, helps to combine
specifications. The operation of quotienting is dual to composition and rather
“subtracts” the behavior from a larger system, allowing incremental design.
Finally, if one component refines another one, an equivalent system can be
obtained by replacing the second component with the first.

Schedulability

Schedulability problems can also be solved with model-based approach. Here,
the use of Stopwatch Automata allows us to encode preemption. In fact,
the power of Stopwatch Automata is truly impressive: it was shown that
the Stopwatch Automata is as expressive as Linear Hybrid Automata [34].
The decidability of hybrid systems was intensely studied: reachability anal-
ysis for Linear Hybrid Automata was shown to be semi-decidable [6]. The
state-of-the-art algorithm for Stopwatch Automata analysis in Uppaal is over-
approximate as the underlying DBM data structure can encode difference be-
tween 2 variables only. This means the conclusive verification is only possible
when no error is discovered. Otherwise, the result may be spurious.

Simulation

An alternative to exhaustive, but expensive symbolic methods are simulation-
based approaches. They enjoy several significant advantages, mainly those

20

1. State of the Art

of being cheap, supporting larger class of models and requiring only a sim-
ulatable system, where samples can be drawn according to the distribution
defined by the system. The most renowned simulation-based method in the
area of formal verification is Statistical Model Checking (SMC) [118, 123].

The core idea of SMC is to monitor a number of random, independent
samples (traces), produced by simulation of a stochastic model, and use sta-
tistical methods (e.g. hypothesis testing) to estimate the probability that a
random run will satisfy a given property. Hence, SMC can be used for ver-
ification of both qualitative properties, e.g. by estimating whether the prob-
ability is larger than zero for a yes/no answer, and quantitative properties,
such as estimation of the probability being either below or above a certain
threshold. The probability estimate comes as an interval of a certain pre-
cision with a certain level of confidence which requires more independent
sample traces for higher precision and higher confidence. SMC is under-
approximate in nature and cannot provide correctness guarantees; nonethe-
less, SMC can improve or weaken our confidence in the hypothesis and all
together can be viewed as a compromise between traditional model check-
ing and testing techniques. Due to simulation-based methods being much
less time and memory demanding, they are often the only option for large
models. Moreover, for models like Stopwatch Automata, where the exist-
ing symbolic reachability analysis is over-approximate, SMC can be used to
generate concrete witnesses of property violation.

Importance sampling and splitting

From here we use the term of a rare event. A rare event is an event that has
an extremely low probability of occurring during a random simulation of a
system with respect to the stochastic semantics. The probability of a rare
event can reside in the range [0, 10−100]3 or even smaller. In other words,
rare events represent part of the state space that is either/both (1) very small
in relation to the rest of the state space and/or (2) is very difficult to reach
when exploring the model. Note that a rare event can equally be used in the
context of any of the three challenges brought up earlier: rare error in the
system, rare refinement relation violation or a rare optimal schedule.

In practice, we are often interested in applications with subtle and rare
events which are hard to find. In those cases, SMC cannot estimate the
probability reliably. This happens as the relative error (variance) of the sam-
ples grows inversely with the rarity of the searched event. One of the tech-
niques to reduce the variance of simulations is known as importance sam-
pling [82, 113]. It aims to increase the probability of reaching a rare event
so that more of the “important” traces can be obtained, allowing to draw
statistically significant conclusions faster. This is achieved by altering the

3In Paper D we encounter rare events with the probability smaller than 10−55.

21

probability distributions of the system under test; however, the obtained re-
sults then must be changed to compensate for introduced alterations and to
obtain an unbiased estimate. There exist different ways to implement the
biasing schemes, all with the goal of increasing the rare event probability in
comparison to the unbiased density.

Importance splitting [114] is an alternative variance reduction method. It
reformulates the problem by partitioning a rare goal into a number of not-so-
rare sub-goals. The observation is that while reaching the main goal from a
starting configuration is difficult, reaching each next sub-goal from the previ-
ous one is much easier. The probability estimate is computed as a product of
probabilities to reach sub-goals, and hence requires a much smaller number
of simulations for the same statistical confidence. Both importance sampling
and importance splitting techniques have also been implemented for Stochas-
tic Timed Automata and integrated into in Uppaal SMC [77, 98].

Counterexample detection

A different path to indirectly cope with the state space explosion is the re-
alization that some of the formal requirements can be violated as soon as a
single witness of target behavior – a counterexample – is found. If such coun-
terexample is found early in the search, no more effort needs to be spend
on exploring the rest of the arbitrary large state space. Such techniques, that
rely on quick and efficient violation of the property, can be grouped under
the name of counterexample detection or falsification techniques. One subtle ex-
ample is random depth first search (RDFS). It replaces deterministic nature of
the depth first search (DFS) model checking algorithm with a uniformly dis-
tributed, random choice of a successor. With enough luck, RDFS can discover
counterexamples quickly [52] in systems where other symbolic methods, even
such as DFS, would be intractable.

While symbolic RDFS in Uppaal is complete due to its exhaustive nature,
some counterexample detection techniques give up on the requirement of
completeness and explore only part of the state space in hope to find coun-
terexamples even faster. In the context of under-approximate simulation-
based techniques, one may naturally want to exploit already existing method
of SMC. While the stochastic semantics allows for a model to mimic the be-
havior of a real system, SMC may not be a productive approach for violation
discovery as it primarily exercises the most frequent behavior of the system.
This means that the SMC simulations are likely to be efficient at detecting fre-
quently occurring errors caused by the common usage of the system, whereas
very subtle and rare-to-occur bugs are likely to be missed. Performing mul-
tiple SMC simulations will eventually discover even counterexamples of an
extremely low rarity; however, the computational time demands might not
be better, if not worse, than that of the exhaustive model-checking. Therefore,

22

2. Randomization in Model Checking

counterexample detection methods require different heuristics in order to be
efficient.

2 Randomization in Model Checking

An interesting to us type of algorithms in computer science is randomized
algorithms which use some randomness as part of the algorithm logic, typi-
cally with the aim of reducing the running time. Some versions of the sorting
algorithm Quicksort [74] are a good example. Quicksort operates by separat-
ing the input sequence into two partitions based on whether the numbers are
smaller or larger than some selected “pivot” value. In early version of Quick-
sort, the pivot value was selected deterministically, causing a worst-case per-
formance for already sorted sequences that are a common use-case [35]. Re-
placing deterministic selection by a pseudorandomly generated choice was
an easy way to improve performance.

Employing randomness is also a promising direction in the model checking
algorithms. Some or all of the choices, such as choice of delays or transitions
in models, can be randomized to obtain efficient counterexample detection
methods. We now delve into a more in-depth discussion about the role of
randomness in the field of model checking.

2.1 Related work

We want to start this discussion by asking the reader to think about the fol-
lowing. How much can randomness affect the performance of model check-
ing methods? Even if we only introduce a small change e.g. by replacing
a deterministic search order with a random one? To provide insights into
how randomness affects the performance of DFS, the study [53] examined
the default search order of various path-sensitive error-detection techniques.
The authors believe that the reported performance benefits of different tech-
niques can in some cases be caused by the default search order rather than the
techniques themselves. In fact, the usage of randomness in DFS can provide
dramatic performance improvements [52] of up to several orders of magni-
tude in multi-threaded Java programs, showing that random variations in the
search order can produce huge variations in the results.

First application of randomness

One of the first steps in applying randomness were made by [67, 102, 115,
121, 122] to validate complex systems such as communication protocols. The
authors argue that for large systems exhaustive reachability analysis is not
effective due to astronomically large state spaces. Instead, the errors are

23

searched by means of random walks, i.e. randomized, independent simula-
tions. In its core form, a random walk is a simulation of a graph-like model
where successors are chosen uniformly at random.

Randomness in LTL model checking

The random walk has been formalized and extended to the setting of LTL
model checking by [65]. Their method is to explore an intersection of a model
with the Büchi Automaton [31] that represents a negated property. The target
of the exploration are so-called lassos – a prefix followed by an elementary
cycle. If the accepting state is present in the cycle portion then the lasso is
called accepting and represents a counterexample to the searched property.
The performed random walks draw successors uniformly at random.

A number of alternative sampling strategies are examined [95] in hope to
improve the efficiency of the search and reduce the amount of random walks
necessary to falsify the property. Furthermore, memory-efficient variants of
those strategies that store a small, finite number of tokens (states) are stud-
ied. The alternative strategies in general show an improved performance and
decreased memory consumption for tokenized variants. However, authors
note that for all of the strategies it is possible to construct difficult models
and advocate for running multiple strategies in parallel. Given that the coun-
terexample exists, the running time will then be that of the fastest strategy.
Regardless of the strategy, one persistent issue is rarity of counterexamples.
In such case, a very large number of random walks must be made to en-
sure high coverage of lassos. To aid the situation, an efficient algorithm for
counting and generating lassos uniformly was proposed [107], but only for a
sub-class of directed graphs, known as reducible flow graphs.

Randomness in guided search

In model checking some techniques focus on guiding the search towards
more promising areas of the state space to improve counterexample detec-
tion. In guided search, the states are ranked in a queue by a heuristic according
to some knowledge about the model or the property. During the exploration,
the search algorithm prioritizes the states that were estimated to lead to the
counterexample faster over the rest of the states. Guided search usually per-
forms better than DFS or BFS, provided the ranking heuristics are accurate,
and provides generally shorter traces to a counterexample, simplifying de-
bugging process.

The benefits of randomness have also been explored in the guided search
where a successor is chosen randomly from n best states in the priority
queue [80]. The authors claim that multiple parallel guided searches increase
the average expected time to find an error, but instead decrease the minimum

24

2. Randomization in Model Checking

expected time in the same setting; however, the results are not clearly in favor
of employing randomness. A convincing benefit of randomness was shown
by completely shuffling the states with equal heuristic ranking [116]. The
authors stress the importance of tailoring heuristic well to both the model
and the property as otherwise the efficiency of RDFS is better than that of
randomized guided search.

Randomization in Timed Automata

Random walks are often memory-less by nature and each next random walk
is independent of a previous one. Because of this, some of the states can be
explored multiple times. Such redundancy can be prohibitive and is one of
the main drawbacks of random walks. The amount of redundancy usually
depends on the model structure and exact behavior of the algorithm. The is-
sue gets worse in systems where random walks frequently end up in isolated
parts of the state space that contain no target behavior. A common way to
address this issue is by periodically restarting random walks to avoid block-
ing (being stuck) in some fraction of the state space. In the setting of Timed
Automata, a Deep Random Search (DRS) has been proposed [64]. DRS is an
exhaustive, symbolic Las Vegas algorithm4 where random walks traverse the
state space up to a specified cut-off depth. The random walks are restarted
from other, previously explored, states which helps to minimize redundancy
and reach deep states. Moreover, with its iterative deepening, DRS facilities a
search for shortest trace that is optimal up to a value of the increment for a
cut-off depth.

Decreasing memory requirements

While hardware became cheap and more accessible over time, memory is
still often a prohibitive factor when applying model checking for larger sys-
tems. To address that, randomness is also used specifically to harness mem-
ory requirements of algorithms. In [28], randomness helps to decide which
visited states to store and which ones to discard in the context of automata
based LTL model checking: a noticeable memory reduction is achieved at a
cost of only minor time overhead. Resource-aware algorithms have been in-
troduced [2] to conduct, among other options, a memory-aware exploration.
Their Uniform Random Search (URS) and Simplified Deep Random Search (SDRS)
– both memory-aware – have been shown to explore up to 40% more states
than breadth first search (BFS) that terminates after running out of mem-
ory. In [120], a randomized variant of BFS (RBFS) with the fixed amount of
memory is examined. In essence, their algorithm can be viewed as an array

4A Las Vegas algorithm employs randomness and is guaranteed to terminate and produce a
correct result (or report a failure).

25

of random walks with memory. Once the memory is filled, the algorithm
proceeds at lower speed instead of terminating completely. RBFS is reported
to be 100% slower in average, but explores 30% more state space in average
in comparison to deterministic exploration that exhausts the memory and
terminates.

In another take on Timed Automata, a number of efficient storing strate-
gies were explored to reduce the number of stored states [19]. One of such
strategies requires computation of a covering set – a set of edges with the
property that each cycle in the state space contains at least one edge for that
set. Randomness is used both as a separate storing strategy, but also as one of
the heuristics to compute the covering set – an otherwise NP-complete prob-
lem. The performance of randomness-employing methods is overall on-par
with the rest of the techniques and varies from model to model.

More randomness

Furthermore, randomness is used in a number of other model checking
related studies which include, but are not limited to state [60] and state-
space caching [58] techniques, HSF-SPIN model checker for safety and LTL-
specified liveness properties [54], analysis of Java programs using structural
heuristics [63], finding errors in very large concurrent reactive systems [61],
validating programs based on guiding statistical sampling of inputs [117],
cross-entropy based testing [36], uniform random sampling of traces in very
large models [49, 106], coverage-biased randomised exploration in composed
automata models [48], and parallel random exhaustive hardware in the loop
simulation [100]. In all of these applications, randomization has contributed
to an overall performance improvement of a method.

2.2 Our take

Based on the related work presented we believe that wisely used randomiza-
tion can have a huge potential on the performance of model checking w.r.t.
state space explosion problem. To the best of our knowledge, there were lit-
tle to no attempts to apply randomized checking for various extensions of
Timed Automata models in the context of a memory-less, cheap, lightweight
and efficient random walks. We want to investigate this promising direc-
tion and to work with concrete semantics which allows us to avoid expensive
computations of symbolic abstractions.

Hypothesis: We believe that by employing randomness we will be able to de-
velop lightweight, efficient and highly scalable methods for a quick checking of
correctness, refinement and optimization problems in timed systems.

26

3. Thesis Summary

3 Thesis Summary

We now give a overview of each paper and their respective contributions.

Paper A: Randomized Refinement Checking of Timed I/O Au-
tomata

Abstract: To combat the state-space explosion problem and ease system de-
velopment, we present a new refinement checking (falsification) method for
Timed I/O Automata based on random walks. Our memory-less heuristics
Random Enabled Transition (RET) and Random Channel First (RCF) provide ef-
ficient and highly scalable methods for counterexample detection. Both RET
and RCF operate on concrete states and are relieved from expensive compu-
tations of symbolic abstractions. We compare the most promising variants
of RET and RCF heuristics to existing symbolic refinement verification of
the Ecdar tool. The results show that as the size of the system increases
our heuristics are significantly less prone to exponential increase of time re-
quired by Ecdar to detect violations: in very large systems both “wide” and
“narrow” violations are found up to 600 times faster and for extremely large
systems when Ecdar timeouts, our heuristics are successful in finding viola-
tions.

Contribution 1
We designed and implemented a randomized refinement checking algo-
rithm, i.e. an algorithm for efficient falsification of the refinement relation
between Timed I/O Automata. We compared two proposed heuristics of
our algorithm, and their respective variants, to state-of-the-art alternatives
for refinement checking – Uppaal Ecdar and a Java implementation of
SMC for refinement reformulated as a reachability problem. Our methods
have shown a significant improvement in performance for all the experi-
ments: up to 5 order of magnitude faster than SMC and up to 3 orders of
magnitude faster than Uppaal Ecdar.

Publication History: This paper [84] was accepted and presented at 6th
International Symposium on Dependable Software Engineering. Theories, Tools,
and Applications (SETTA 2020) and published in proceedings of SETTA 2020
LNPSE volume 12153, pages 70-88.

27

Paper B: Randomized Reachability Analysis in UPPAAL: Fast
Error Detection in Timed Systems

Abstract: Randomized reachability analysis is an efficient method for detec-
tion of safety violations. Due to the under-approximate nature of the method,
it excels at quick falsification of models and can greatly improve the model-
based development process: using lightweight randomized methods early in
the development for the discovery of bugs, followed by expensive symbolic
verification only at the very end. We show the scalability of our method on
a number of Timed Automata and Stopwatch Automata models of varying
sizes and origin. Among them, we revisit the schedulability problem from
the Herschel-Planck industrial case study, where our new method finds the
deadline violation three orders of magnitude faster: some cases could pre-
viously be analyzed by statistical model checking (SMC) in 23 hours and
can now be checked in 23 seconds. Moreover, a deadline violation is dis-
covered in a number of cases that where previously intractable. We have
implemented the Randomized reachability analysis – and made it available
– in the tool Uppaal. Finally we provide an evaluation of the strengths and
weaknesses of Random reachability analysis exploring exactly which types
of model features hamper method’s efficiency.

Contribution 2
We developed and implemented a randomized reachability analysis that
performs an under-approximate, but efficient falsification of reachability
problems for Timed and Stopwatch Automata models. The method and its
respective heuristics were extensively tested on a number of academic- and
industrial-sized models, including Herschel-Planck satellite, Java bytecode
systems and ARINC avionics systems. The results were truly impressive:
the performance of the randomized reachability analysis algorithm man-
aged to find requirement violations up to three orders of magnitude faster
than other state-of-the-art alternatives.

Contribution 3
The randomized reachability analysis has been implemented and is now
available in the tool Uppaal for falsification of reachability queries in
Timed and Stopwatch Automata models.

Publication History: The first version [85] was accepted and presented at
26th International Conference on Formal Methods for Industrial Critical Systems
(FMICS 2021) and published in proceedings of FMICS 2021 LNCS volume
12863, pages 149-166. The present, extended version [86] was accepted and
published at International Journal on Software Tools for Technology Transfer (STTT
2022) volume 24 issue 6 (pages 1025-1042), devoted to FMICS 2021.

28

3. Thesis Summary

Paper C: Monte Carlo Tree Search for Priced Timed Automata

Abstract: Priced timed automata (PTA) were introduced in the early 2000s
to allow for generic modelling of resource-consumption problems for systems
with real-time constraints. Optimal schedules for allocation of resources may
here be recast as optimal reachability problems. In the setting of PTA this
problem has been shown decidable and efficient symbolic reachability algo-
rithms have been developed. Moreover, PTA has been successfully applied
in a variety of applications. Still, we believe that using techniques from the
planning community may provide further improvements. Thus, in this pa-
per we consider exploiting Monte Carlo Tree Search (MCTS), adapting it to
problems formulated as PTA reachability problems. We evaluate our ap-
proach on a large benchmark set of PTAs modelling either Task graph or
Job-shop scheduling problems. We discuss and implement different com-
plete and incomplete exploration policies and study their performance on
the benchmark. In addition, we experiment with both well-established and
our novel MTCS-based optimizations of PTA and study their impact. We
compare our method to the existing symbolic optimal reachability engines
for PTAs and demonstrate that our method (1) finds near-optimal plans, and
(2) can construct plans for problems infeasible to solve with existing symbolic
planners for PTA.

Contribution 4
We adapted Monte Carlo Tree Search (MCTS) algorithm for analysis of
Priced Timed Automata in search for optimal solutions. We implemented
discrete-time MCTS in Uppaal, including all developed tree unfolding
strategies and enhancements. We compared our method to other existing
state-of-the-art methods and tools, including classical algorithms from the
planning domain. Results demonstrate the superiority of MCTS in pro-
viding (near-) optimal solutions where other exhaustive methods do not
terminate.

Publication History: This paper [79] was accepted and presented at 19th
International Conference on Quantitative Evaluation of Systems (QEST 2022) and
published in proceedings of QEST 2022 LNCS volume 13479, pages 381-398.

29

Paper D: Usage-aware Falsification for Cyber-Physical Systems

Abstract: Verification of cyber-physical systems (CPS) is a challenging task.
A considerable effort has been invested to develop pragmatic methods, such
as falsification testing, which facilitate generation of inputs that lead to the
violation of the CPS requirements. The resulting counter-examples are used
to locate and explain faults and debug the system. However, CPS rarely op-
erate in fully unconstrained environments and not all counter-examples have
the same value – a fault resulting from a common usage of the system has
more impact than a fault that is triggered by an esoteric input sequence. This
aspect is neglected by the existing falsification testing techniques. We pro-
pose a new falsification testing methodology that is aware of the system’s
expected usage. Given a user profile model in the form of a stochastic hy-
brid automaton, an executable black-box implementation of the CPS and its
formalized requirements, we provide a test generation method that (1) uses
efficient randomized methods to generate multiple violating traces, and (2)
estimates the probability of each counterexample, thus providing their rank-
ing to the engineer.

Contribution 5
We extended randomized reachability analysis in Uppaal to support Hy-
brid Automata model where clocks can evolve according to ODEs. The
ODEs are solved by a Runge-Kutta approximation method. Moreover, we
extended the support to simulation queries that can now be used with ran-
domized exploration algorithm and outputs a simulation trace of desired
quantitative aspects of a model.

Contribution 6
We proposed and developed an efficient framework for falsification of
black-box cyber-physical systems. To the best of our knowledge, in the set-
ting of falsification-based testing this is the first framework that supports
reasoning about usage-awareness of system under test, generates multiple
counterexamples, and estimates the probability of each counterexample.
The probability is estimated by a combination of randomized and statisti-
cal simulation methods w.r.t. the stochastic semantics of the environment
model. The estimated probability allowed us to rank the counterexamples,
thus facilitating the debugging process.

Publication History: The paper was submitted to 14th International Con-
ference on Cyber-Physical Systems (ICCPS 2023), but was rejected. The paper
version presented in this thesis has been revised according to the review-
ers’ feedback. Currently, a new version of the paper is being prepared to be
submitted to another conference.

30

References

References

[1] Ecdar2.0. [Online]. Available: https://www.ecdar.net/

[2] N. Abed, S. Tripakis, and J.-M. Vincent, “Resource-Aware Verification Using
Randomized Exploration of Large State Spaces,” in Model Checking Software,
K. Havelund, R. Majumdar, and J. Palsberg, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 214–231.

[3] C. Aeronautiques, A. Howe, C. Knoblock, I. D. McDermott, A. Ram, M. Veloso,
D. Weld, D. W. SRI, A. Barrett, D. Christianson et al., “Pddl| the planning
domain definition language,” Technical Report, Tech. Rep., 1998.

[4] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani, “Partial-
Order Reduction in Symbolic State Space Exploration,” in Computer Aided Verifi-
cation, O. Grumberg, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997,
pp. 340–351.

[5] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking in dense real-time,”
Information and Computation, vol. 104, no. 1, pp. 2–34, 1993. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0890540183710242

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid
systems,” Theoretical Computer Science, vol. 138, no. 1, pp. 3–34, 1995, hybrid
Systems. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/030439759400202T

[7] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for probabilistic real-
time systems,” in Automata, Languages and Programming, J. L. Albert, B. Monien,
and M. R. Artalejo, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991,
pp. 115–126.

[8] R. Alur and D. Dill, “The theory of timed automata,” in Real-Time: Theory in
Practice, J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, Eds.
Springer, 1992, pp. 45–73.

[9] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing punctuality,”
Journal of the ACM (JACM), vol. 43, no. 1, pp. 116–146, 1996.

[10] R. Alur, S. La Torre, and G. J. Pappas, “Optimal Paths in Weighted Timed Au-
tomata,” in HSCC 2001, M. D. Di Benedetto and A. Sangiovanni-Vincentelli,
Eds. Springer, 2001, pp. 49–62.

[11] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed
bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–256, 2002.

[12] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton, “Model-checking continuous-
time markov chains,” ACM Trans. Comput. Logic, vol. 1, no. 1, p. 162–170, jul
2000. [Online]. Available: https://doi.org/10.1145/343369.343402

[13] G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi, “Efficient Timed
Reachability Analysis Using Clock Difference Diagrams,” in Computer Aided
Verification, N. Halbwachs and D. Peled, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, pp. 341–353.

31

https://www.ecdar.net/
https://www.sciencedirect.com/science/article/pii/S0890540183710242
https://www.sciencedirect.com/science/article/pii/030439759400202T
https://www.sciencedirect.com/science/article/pii/030439759400202T
https://doi.org/10.1145/343369.343402

References

[14] G. Behrmann, P. Bouyer, E. Fleury, and K. G. Larsen, “Static Guard Analysis in
Timed Automata Verification,” in TACAS 2003, H. Garavel and J. Hatcliff, Eds.
Springer, 2003, pp. 254–270.

[15] G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelánek, “Lower and Upper
Bounds in Zone Based Abstractions of Timed Automata,” in Tools and Algo-
rithms for the Construction and Analysis of Systems, K. Jensen and A. Podelski,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 312–326.

[16] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and D. Lime,
“UPPAAL-Tiga: Time for Playing Games!” in Computer Aided Verification,
W. Damm and H. Hermanns, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2007, pp. 121–125.

[17] G. Behrmann, A. David, and K. G. Larsen, “A Tutorial on Uppaal,” in Formal
Methods for the Design of Real-Time Systems, International School on Formal Meth-
ods for the Design of Computer, Communication and Software Systems, SFM-RT 2004,
Bertinoro, Italy, September 13-18, 2004, Revised Lectures, ser. Lecture Notes in Com-
puter Science, M. Bernardo and F. Corradini, Eds., vol. 3185. Springer, 2004,
pp. 200–236.

[18] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and
F. Vaandrager, “Minimum-Cost Reachability for Priced Time Automata,” in
HSCC 2001, M. D. Di Benedetto and A. Sangiovanni-Vincentelli, Eds. Springer,
2001, pp. 147–161. [Online]. Available: https://doi.org/10.1007/3-540-45351-2_
15

[19] G. Behrmann, K. G. Larsen, and R. Pelánek, “To Store or Not to Store,” in
Computer Aided Verification, W. A. Hunt and F. Somenzi, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 433–445.

[20] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Priced Timed Automata:
Algorithms and Applications,” in Formal Methods for Components and Objects,
F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, Eds. Springer,
2005, pp. 162–182.

[21] A. Bhat and S. M. K. Quadri, “Equivalence class partitioning and boundary
value analysis - a review,” in 2015 2nd International Conference on Computing for
Sustainable Global Development (INDIACom), 2015, pp. 1557–1562.

[22] F. M. Bønneland, P. G. Jensen, K. G. Larsen, M. Muñiz, and J. Srba, “Start
pruning when time gets urgent: Partial order reduction for timed systems,” in
Computer Aided Verification, H. Chockler and G. Weissenbacher, Eds. Cham:
Springer International Publishing, 2018, pp. 527–546.

[23] J. Bornholt, R. Joshi, V. Astrauskas, B. Cully, B. Kragl, S. Markle,
K. Sauri, D. Schleit, G. Slatton, S. Tasiran, J. Van Geffen, and
A. Warfield, “Using lightweight formal methods to validate a key-value
storage node in amazon s3,” in Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, ser. SOSP ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 836–850. [Online]. Available:
https://doi.org/10.1145/3477132.3483540

32

https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1145/3477132.3483540

References

[24] A. Bouajjani and R. Robbana, “Verifying ω-regular properties for a subclass of
linear hybrid systems,” in Computer Aided Verification, P. Wolper, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1995, pp. 437–450.

[25] P. Bouyer, T. Brihaye, V. Bruyère, and J. Raskin, “On the optimal reachability
problem of weighted timed automata,” Formal Methods Syst. Des., vol. 31, no. 2,
pp. 135–175, 2007.

[26] P. Bouyer, M. Colange, and N. Markey, “Symbolic Optimal Reachability in
Weighted Timed Automata,” in CAV 2016, S. Chaudhuri and A. Farzan, Eds.
Springer, 2016, pp. 513–530.

[27] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine, “Kronos: A
model-checking tool for real-time systems,” in International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems. Springer, 1998, pp. 298–302.

[28] L. Brim, I. Černá, and M. Nečesal, “Randomization Helps in LTL Model Check-
ing,” in Process Algebra and Probabilistic Methods. Performance Modelling and Veri-
fication, L. de Alfaro and S. Gilmore, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 105–119.

[29] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of monte
carlo tree search methods,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 4, no. 1, pp. 1–43, 2012.

[30] Bryant, “Graph-based algorithms for boolean function manipulation,” IEEE
Transactions on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[31] J. R. Büchi, On a Decision Method in Restricted Second Order Arithmetic. New
York, NY: Springer New York, 1990, pp. 425–435. [Online]. Available:
https://doi.org/10.1007/978-1-4613-8928-6_23

[32] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Symbolic Model
Checking: 1020 States and Beyond,” Information and Computation, vol. 98, no. 2,
pp. 142 – 170, 1992.

[33] A. Burns, Preemptive Priority-Based Scheduling: An Appropriate Engineering Ap-
proach. USA: Prentice-Hall, Inc., 1995, p. 225–248.

[34] F. Cassez and K. Larsen, “The impressive power of stopwatches,” in CONCUR
2000 — Concurrency Theory, C. Palamidessi, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2000, pp. 138–152.

[35] B. Chandramouli and J. Goldstein, “Patience is a virtue: Revisiting merge
and sort on modern processors,” in Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 731–742. [Online].
Available: https://doi.org/10.1145/2588555.2593662

[36] H. Chockler, E. Farchi, B. Godlin, and S. Novikov, “Cross-entropy based test-
ing,” in Formal Methods in Computer Aided Design (FMCAD’07), 2007, pp. 101–
108.

[37] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella, “Nusmv 2: An opensource tool for symbolic

33

https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1145/2588555.2593662

References

model checking,” in Computer Aided Verification, E. Brinksma and K. G. Larsen,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 359–364.

[38] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of
finite-state concurrent systems using temporal logic specifications,” ACM Trans.
Program. Lang. Syst., vol. 8, no. 2, p. 244–263, apr 1986. [Online]. Available:
https://doi.org/10.1145/5397.5399

[39] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization
skeletons using branching-time temporal logic,” in Logic of Programs, Workshop.
Berlin, Heidelberg: Springer-Verlag, 1981, p. 52–71.

[40] ——, “Design and synthesis of synchronization skeletons using branching time
temporal logic,” in Logics of Programs, D. Kozen, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1982, pp. 52–71.

[41] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds., Handbook of
Model Checking. Springer, 2018. [Online]. Available: https://doi.org/10.1007/
978-3-319-10575-8

[42] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree
search,” in Computers and Games, H. J. van den Herik, P. Ciancarini, and H. H.
L. M. J. Donkers, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 72–83.

[43] C. Courcoubetis and M. Yannakakis, “Verifying temporal properties of
finite-state probabilistic programs,” in Proceedings of the 29th Annual Symposium
on Foundations of Computer Science, ser. SFCS ’88. USA: IEEE Computer Society,
1988, p. 338–345. [Online]. Available: https://doi.org/10.1109/SFCS.1988.21950

[44] A. David, D. Du, K. G. Larsen, A. Legay, M. Mikuč ionis, D. B. Poulsen, and
S. Sedwards, “Statistical model checking for stochastic hybrid systems,” Elec-
tronic Proceedings in Theoretical Computer Science, vol. 92, pp. 122–136, aug 2012.

[45] A. David, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, J. van Vliet, and
Z. Wang, “Statistical model checking for networks of priced timed automata,”
in Formal Modeling and Analysis of Timed Systems, U. Fahrenberg and S. Tripakis,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 80–96.

[46] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wąsowski, “Ecdar: An
environment for compositional design and analysis of real time systems,” in
Automated Technology for Verification and Analysis, A. Bouajjani and W.-N. Chin,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 365–370.

[47] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski, “Timed I/O
Automata: A Complete Specification Theory for Real-Time Systems,” in Pro-
ceedings of the 13th ACM International Conference on Hybrid Systems: Computation
and Control, ser. HSCC ’10. New York, NY, USA: Association for Computing
Machinery, 2010, p. 91–100.

[48] A. Denise, M.-C. Gaudel, S.-D. Gouraud, R. Lassaigne, J. Oudinet, and S. Pey-
ronnet, “Coverage-biased random exploration of large models and application
to testing,” International Journal on Software Tools for Technology Transfer, vol. 14,
no. 1, pp. 73–93, 2012.

34

https://doi.org/10.1145/5397.5399
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1109/SFCS.1988.21950

References

[49] A. Denise, M.-C. Gaudel, S.-D. Gouraud, R. Lassaigne, and S. Peyronnet,
“Uniform random sampling of traces in very large models,” in Proceedings of the
1st International Workshop on Random Testing, ser. RT ’06. New York, NY, USA:
Association for Computing Machinery, 2006, p. 10–19. [Online]. Available:
https://doi.org/10.1145/1145735.1145738

[50] D. L. Dill, “Timing Assumptions and Verification of Finite-State Concurrent
Systems,” in Automatic Verification Methods for Finite State Systems, J. Sifakis, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp. 197–212.

[51] H. Dirks, “Finding Optimal Plans for Domains with Restricted Continuous Ef-
fects with UPPAAL CORA,” ser. ICAPS 2005. American Association for Arti-
ficial Intelligence, 2005.

[52] M. B. Dwyer, S. Elbaum, S. Person, and R. Purandare, “Parallel random-
ized state-space search,” in 29th International Conference on Software Engineering
(ICSE’07), 2007, pp. 3–12.

[53] M. B. Dwyer, S. Person, and S. Elbaum, “Controlling factors in evaluating path-
sensitive error detection techniques,” in Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser. SIGSOFT
’06/FSE-14. New York, NY, USA: Association for Computing Machinery,
2006, p. 92–104. [Online]. Available: https://doi.org/10.1145/1181775.1181787

[54] S. Edelkamp, A. L. Lafuente, and S. Leue, “Directed explicit model checking
with hsf-spin,” in Model Checking Software, M. Dwyer, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 57–79.

[55] E. A. Emerson and E. M. Clarke, “Characterizing correctness properties of
parallel programs using fixpoints,” in Automata, Languages and Programming,
J. de Bakker and J. van Leeuwen, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1980, pp. 169–181.

[56] E. A. Emerson and J. Y. Halpern, ““sometimes” and “not never” revisited: On
branching versus linear time temporal logic,” J. ACM, vol. 33, no. 1, p. 151–178,
jan 1986. [Online]. Available: https://doi.org/10.1145/4904.4999

[57] M. Fox and D. Long, “Pddl2. 1: An extension to pddl for expressing temporal
planning domains,” Journal of artificial intelligence research, vol. 20, pp. 61–124,
2003.

[58] J. Geldenhuys, “State caching reconsidered,” in Model Checking Software, S. Graf
and L. Mounier, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
23–38.

[59] A. Gerevini and D. Long, “Plan constraints and preferences in pddl3,” Technical
Report 2005-08-07, Department of Electronics for Automation . . . , Tech. Rep.,
2005.

[60] P. Godefroid, G. J. Holzmann, and D. Pirottin, “State-space caching revisited,”
Formal Methods in System Design, vol. 7, no. 3, pp. 227–241, 1995.

[61] P. Godefroid and S. Khurshid, “Exploring very large state spaces using genetic
algorithms,” in Tools and Algorithms for the Construction and Analysis of Systems, J.-
P. Katoen and P. Stevens, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2002, pp. 266–280.

35

https://doi.org/10.1145/1145735.1145738
https://doi.org/10.1145/1181775.1181787
https://doi.org/10.1145/4904.4999

References

[62] H. Gregersen and H. E. Jensen, “Design of real-time probabilistic logic,” Mas-
ter’s thesis, Aalborg University, 1995.

[63] A. Groce and W. Visser, “Model checking java programs using structural
heuristics,” in Proceedings of the 2002 ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA ’02. New York, NY, USA:
Association for Computing Machinery, 2002, p. 12–21. [Online]. Available:
https://doi.org/10.1145/566172.566175

[64] R. Grosu, X. Huang, S. A. Smolka, W. Tan, and S. Tripakis, “Deep Random
Search for Efficient Model Checking of Timed Automata,” in Composition of Em-
bedded Systems. Scientific and Industrial Issues, F. Kordon and O. Sokolsky, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 111–124.

[65] R. Grosu and S. A. Smolka, “Monte Carlo Model Checking,” in Tools and Algo-
rithms for the Construction and Analysis of Systems, N. Halbwachs and L. D. Zuck,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 271–286.

[66] H. Hansson and B. Jonsson, “A logic for reasoning about time and reliability,”
Formal aspects of computing, vol. 6, no. 5, pp. 512–535, 1994.

[67] P. Haslum, “Model checking by random walk,” in Proceedings of the ECSEL Work-
shop (CCSSE), 1999.

[68] M. Helmert, “The fast downward planning system,” Journal of Artificial Intelli-
gence Research, vol. 26, pp. 191–246, 2006.

[69] M. Helmert and C. Domshlak, “Landmarks, critical paths and abstractions:
what’s the difference anyway?” in Nineteenth International Conference on Au-
tomated Planning and Scheduling, 2009.

[70] T. A. Henzinger, The Theory of Hybrid Automata. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2000, pp. 265–292. [Online]. Available: https://doi.org/10.
1007/978-3-642-59615-5_13

[71] T. A. Henzinger and P. W. Kopke, “State equivalences for rectangular hybrid
automata,” in CONCUR ’96: Concurrency Theory, U. Montanari and V. Sassone,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 530–545.

[72] ——, “Discrete-time control for rectangular hybrid automata,” in Automata, Lan-
guages and Programming, P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 582–593.

[73] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, “What’s decidable about
hybrid automata?” in Proceedings of the twenty-seventh annual ACM symposium
on Theory of computing, 1995, pp. 373–382.

[74] C. A. R. Hoare, “Algorithm 64: quicksort,” Communications of the ACM, vol. 4,
no. 7, p. 321, 1961.

[75] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan generation
through heuristic search,” Journal of Artificial Intelligence Research, vol. 14, pp.
253–302, 2001.

[76] G. J. Holzmann, “The model checker spin,” IEEE Transactions on Software Engi-
neering, vol. 23, no. 5, pp. 279–295, May 1997.

36

https://doi.org/10.1145/566172.566175
https://doi.org/10.1007/978-3-642-59615-5_13
https://doi.org/10.1007/978-3-642-59615-5_13

References

[77] C. Jegourel, K. G. Larsen, A. Legay, M. Mikučionis, D. B. Poulsen, and S. Sed-
wards, “Importance sampling for stochastic timed automata,” in Dependable
Software Engineering: Theories, Tools, and Applications, M. Fränzle, D. Kapur, and
N. Zhan, Eds. Cham: Springer International Publishing, 2016, pp. 163–178.

[78] H. Jensen, “Model checking probabilistic real time systems,” 01 2002.

[79] P. G. Jensen, A. Kiviriga, K. Guldstrand Larsen, U. Nyman, A. Mijačika, and
J. Høiriis Mortensen, “Monte carlo tree search for priced timed automata,” in
Quantitative Evaluation of Systems, E. Ábrahám and M. Paolieri, Eds. Cham:
Springer International Publishing, 2022, pp. 381–398.

[80] M. Jones and E. Mercer, “Explicit state model checking with hopper,” in Model
Checking Software, S. Graf and L. Mounier, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 146–150.

[81] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time System,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 01 1986. [Online]. Available:
https://doi.org/10.1093/comjnl/29.5.390

[82] H. Kahn, Use of different Monte Carlo sampling techniques. Rand Corporation,
1955.

[83] D. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, “Timed i/o automata: a
mathematical framework for modeling and analyzing real-time systems,” in
RTSS 2003. 24th IEEE Real-Time Systems Symposium, 2003, 2003, pp. 166–177.

[84] A. Kiviriga, K. G. Larsen, and U. Nyman, “Randomized Refinement Checking
of Timed I/O Automata,” in Dependable Software Engineering. Theories, Tools, and
Applications, J. Pang and L. Zhang, Eds. Cham: Springer International Publish-
ing, 2020, pp. 70–88.

[85] ——, “Randomized Reachability Analysis in Uppaal: Fast Error Detection in
Timed Systems,” in FMICS 2021, A. Lluch Lafuente and A. Mavridou, Eds.
Springer, 2021, pp. 149–166.

[86] ——, “Randomized reachability analysis in UPPAAL: fast error detection in
timed systems,” Int. J. Softw. Tools Technol. Transf., vol. 24, no. 6, pp. 1025–1042,
2022. [Online]. Available: https://doi.org/10.1007/s10009-022-00681-z

[87] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating fuzz
testing,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 2123–2138. [Online]. Available: https:
//doi.org/10.1145/3243734.3243804

[88] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in Machine
Learning: ECML 2006, J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 282–293.

[89] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved monte-carlo search,”
Univ. Tartu, Estonia, Tech. Rep, vol. 1, 2006.

[90] R. Koymans, “Specifying real-time properties with metric temporal logic,” Real-
time systems, vol. 2, no. 4, pp. 255–299, 1990.

37

https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1007/s10009-022-00681-z
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804

References

[91] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: Probabilistic symbolic
model checker,” in Computer Performance Evaluation: Modelling Techniques and
Tools, T. Field, P. G. Harrison, J. Bradley, and U. Harder, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 200–204.

[92] ——, “Prism 4.0: Verification of probabilistic real-time systems,” in Computer
Aided Verification, G. Gopalakrishnan and S. Qadeer, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 585–591.

[93] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston, “Automatic
verification of real-time systems with discrete probability distributions,”
Theoretical Computer Science, vol. 282, no. 1, pp. 101–150, 2002, real-Time and
Probabilistic Systems. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0304397501000469

[94] G. Lafferriere, G. J. Pappas, and S. Yovine, “A new class of decidable hybrid
systems,” in Hybrid Systems: Computation and Control, F. W. Vaandrager and
J. H. van Schuppen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 137–151.

[95] K. Larsen, D. Peled, and S. Sedwards, “Memory-Efficient Tactics for Random-
ized LTL Model Checking,” in Verified Software. Theories, Tools, and Experiments,
A. Paskevich and T. Wies, Eds. Cham: Springer International Publishing, 2017,
pp. 152–169.

[96] K. G. Larsen, M. Mikučionis, M. Muñiz, and J. Srba, “Urgent partial order re-
duction for extended timed automata,” in Automated Technology for Verification
and Analysis, D. V. Hung and O. Sokolsky, Eds. Cham: Springer International
Publishing, 2020, pp. 179–195.

[97] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell,” International
Journal on Software Tools for Technology Transfer, vol. 1, no. 1, pp. 134–152, Dec
1997. [Online]. Available: https://doi.org/10.1007/s100090050010

[98] K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen, “Importance
splitting in uppaal,” in Leveraging Applications of Formal Methods, Verification and
Validation. Adaptation and Learning - 11th International Symposium, ISoLA 2022,
Rhodes, Greece, October 22-30, 2022, Proceedings, Part III, ser. Lecture Notes in
Computer Science, T. Margaria and B. Steffen, Eds., vol. 13703. Springer, 2022,
pp. 433–447. [Online]. Available: https://doi.org/10.1007/978-3-031-19759-8_
26

[99] N. A. Lynch and M. R. Tuttle, An introduction to input/output automata. Labora-
tory for Computer Science, Massachusetts Institute of Technology, 1988.

[100] T. Mancini, F. Mari, A. Massini, I. Melatti, and E. Tronci, “Anytime system level
verification via parallel random exhaustive hardware in the loop simulation,”
Microprocessors and Microsystems, vol. 41, pp. 12–28, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0141933115002045

[101] J. McManis and P. Varaiya, “Suspension automata: A decidable class of hybrid
automata,” in Computer Aided Verification, D. L. Dill, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994, pp. 105–117.

38

https://www.sciencedirect.com/science/article/pii/S0304397501000469
https://www.sciencedirect.com/science/article/pii/S0304397501000469
https://doi.org/10.1007/s100090050010
https://doi.org/10.1007/978-3-031-19759-8_26
https://doi.org/10.1007/978-3-031-19759-8_26
https://www.sciencedirect.com/science/article/pii/S0141933115002045

References

[102] M. Mihail and C. H. Papadimitriou, “On the random walk method for proto-
col testing,” in Computer Aided Verification, D. L. Dill, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994, pp. 132–141.

[103] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and M. Deardeuff,
“How amazon web services uses formal methods,” Commun. ACM, vol. 58,
no. 4, p. 66–73, mar 2015. [Online]. Available: https://doi.org/10.1145/2699417

[104] C. Norris IP and D. L. Dill, “Better verification through symmetry,” Formal Meth-
ods in System Design, vol. 9, no. 1, pp. 41–75, 1996.

[105] P. W. O’Hearn, “Continuous reasoning: Scaling the impact of formal
methods,” in Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, ser. LICS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 13–25. [Online]. Available: https:
//doi.org/10.1145/3209108.3209109

[106] J. Oudinet, “Uniform random walks in very large models,” in Proceedings of the
2nd International Workshop on Random Testing: Co-Located with the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2007), ser. RT
’07. New York, NY, USA: Association for Computing Machinery, 2007, p.
26–29. [Online]. Available: https://doi.org/10.1145/1292414.1292422

[107] J. Oudinet, A. Denise, M.-C. Gaudel, R. Lassaigne, and S. Peyronnet, “Uniform
Monte-Carlo Model Checking,” in Fundamental Approaches to Software Engineer-
ing, D. Giannakopoulou and F. Orejas, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 127–140.

[108] R. Pelánek, “Fighting state space explosion: Review and evaluation,” in Formal
Methods for Industrial Critical Systems, D. Cofer and A. Fantechi, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 37–52.

[109] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977), 1977, pp. 46–57.

[110] A. Puri and P. Varaiya, “Decidability of hybrid systems with rectangular differ-
ential inclusions,” in Computer Aided Verification, D. L. Dill, Ed. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1994, pp. 95–104.

[111] J. P. Queille and J. Sifakis, “Specification and verification of concurrent systems
in cesar,” in International Symposium on Programming, M. Dezani-Ciancaglini and
U. Montanari, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1982, pp.
337–351.

[112] M. Ramachandran, “Testing software components using boundary value anal-
ysis,” in 2003 Proceedings 29th Euromicro Conference, 2003, pp. 94–98.

[113] G. Rubino and B. Tuffin, Rare event simulation using Monte Carlo methods. John
Wiley & Sons, 2009.

[114] ——, Rare event simulation using Monte Carlo methods. John Wiley & Sons, 2009.

[115] H. Rudin, “Protocol development success stories: Part i,” in Protocol Specification,
Testing and Verification, XII, ser. IFIP Transactions C: Communication Systems,
R. LINN and M. UYAR, Eds. Amsterdam: Elsevier, 1992, pp. 149–
160. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780444898746500167

39

https://doi.org/10.1145/2699417
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1145/1292414.1292422
https://www.sciencedirect.com/science/article/pii/B9780444898746500167
https://www.sciencedirect.com/science/article/pii/B9780444898746500167

References

[116] N. Rungta and E. G. Mercer, “Generating counter-examples through random-
ized guided search,” in Model Checking Software, D. Bošnački and S. Edelkamp,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 39–57.

[117] S. Sankaranarayanan, R. M. Chang, G. Jiang, and F. Ivančić, “State
space exploration using feedback constraint generation and monte-carlo
sampling,” in Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ser. ESEC-FSE ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 321–330. [Online]. Available: https:
//doi.org/10.1145/1287624.1287670

[118] K. Sen, M. Viswanathan, and G. Agha, “Statistical Model Checking of Black-Box
Probabilistic Systems,” in Computer Aided Verification, R. Alur and D. A. Peled,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 202–215.

[119] S. Tripakis and C. Courcoubetis, “Extending promela and spin for real time,”
in Tools and Algorithms for the Construction and Analysis of Systems, T. Margaria
and B. Steffen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp.
329–348.

[120] E. Tronci, G. Della Penna, B. Intrigila, and M. Zilli, “A probabilistic approach to
automatic verification of concurrent systems,” in Proceedings Eighth Asia-Pacific
Software Engineering Conference, 2001, pp. 317–324.

[121] C. H. West, “Protocol validation in complex systems,” in Symposium Proceedings
on Communications Architectures and Protocols, ser. SIGCOMM ’89. New York,
NY, USA: Association for Computing Machinery, 1989, p. 303–312. [Online].
Available: https://doi.org/10.1145/75246.75276

[122] C. West, “Protocol validation by random state exploration,” in Protocol Specifica-
tion, Testing, and Verification, 1987, pp. 233–242.

[123] H. L. S. Younes and R. G. Simmons, “Probabilistic Verification of Discrete
Event Systems Using Acceptance Sampling,” in Computer Aided Verification,
E. Brinksma and K. G. Larsen, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2002, pp. 223–235.

[124] H. L. Younes and M. L. Littman, “Ppddl1. 0: An extension to pddl for expressing
planning domains with probabilistic effects,” Techn. Rep. CMU-CS-04-162, vol. 2,
p. 99, 2004.

40

https://doi.org/10.1145/1287624.1287670
https://doi.org/10.1145/1287624.1287670
https://doi.org/10.1145/75246.75276

Part II

Papers

41

Paper A

Randomized Refinement Checking of Timed I/O
Automata

Andrej Kiviriga, Kim Guldstrand Larsen, Ulrik Nyman

The paper has been published in the
Proceedings of Dependable Software Engineering. Theories, Tools, and Applications

SETTA 2020, LNPSE Vol. 12153, pp. 70-88, 2020.

© Springer Nature Switzerland AG 2020
The layout has been revised.

1. Introduction

Abstract

To combat the state-space explosion problem and ease system development, we present
a new refinement checking (falsification) method for Timed I/O Automata based on
random walks. Our memory-less heuristics Random Enabled Transition (RET) and
Random Channel First (RCF) provide efficient and highly scalable methods for coun-
terexample detection. Both RET and RCF operate on concrete states and are relieved
from expensive computations of symbolic abstractions. We compare the most promis-
ing variants of RET and RCF heuristics to existing symbolic refinement verification
of the Ecdar tool. The results show that as the size of the system increases our
heuristics are significantly less prone to exponential increase of time required by Ec-
dar to detect violations: in very large systems both “wide” and “narrow” violations
are found up to 600 times faster and for extremely large systems when Ecdar time-
outs, our heuristics are successful in finding violations.

1 Introduction

Model-checking has been established as a useful technique for verifying prop-
erties of formal system models. The most notable obstacle in this field,
state-space explosion, relates to the exponential growth of the state-space to
be explored as the size of models increases. Over the last three decades a
vast amount of research has attempted to combat this problem resulting in a
plethora of techniques that reduce the number of states to be explored [1–3].
Various symbolic and reduction techniques (e.g. [4–8]) have become a ground
for implementation of verification tools (CADP, NuSMV, Kronos, Spin, Up-
paal, etc.), allowing them to handle a much larger domain of finite state and
timed systems; however, for all cases symbolic and exhaustive verification
still remains an expensive approach.

Counterexample detection techniques (e.g. [9]) can be used to even fur-
ther avoid state-space explosion and facilitate a more efficient process of
model verification. A prominent example in this area is the Counterexample-
Guided Abstraction Refinement (CEGAR) [10] technique which has been in-
tensely studied and applied to a variety of systems in model-checking in-
cluding probabilistic systems [11], hybrid automata [12, 13], Petri net state
equations [14] and timed automata [15–17]. The core idea is to automatically
generate abstraction models (e.g. by reducing the amount of clocks), which
may have a substantially smaller state-space, and verify them in a traditional
model-checker to generate counterexamples if a property is not satisfied. The
counterexamples are in turn used to refine the abstraction models.

On the other hand, some counterexample detection techniques give up
on the requirement of completeness and only explore part of the state-space,
which no longer allows us to guarantee correctness but provides a powerful

45

Paper A.

mechanism for fault detection if one exists in the model. This is similar in
approach to using the QuickCheck tool [18] for testing of Haskell program
properties. Therefore, we believe a productive development method should con-
sist of two steps: running multiple cheap and approximate counterexample
detection algorithms early in the development for quick violation discovery
and performing an expensive and exhaustive symbolic model-checking at the
very end.

A very promising approach in counterexample detection methods is based
on employing randomness. The first steps in that direction were made by
[19, 20] where the state-space is explored by means of repeatedly performing
random walks. With a sufficient amount of such walks an existing violation
will eventually be found; nonetheless, designing efficient methods that excel
at counterexample detection is not a trivial task. The difficulty lies in unin-
tentional probabilities in the exploration methods that may lead to uneven
coverage of the models’ state-space. A recent example in the domain of un-
timed systems was done by [21] where the authors study verification of LTL
properties and compare their random walk tactics, namely continue walking
and only accepting and respective memory-efficient variants of those, to the
tactics of [19].

A first attempt to use randomness in the setting of timed systems was made
by [22], where a Deep Random Search (DRS) algorithm, which explores the
state-space of a simulation graph of a timed automaton (TA) [23] in a sym-
bolic manner, was presented. DRS performs an exhaustive exploration by
means of random walks in a depth-first manner until a specified cutoff depth.
Even though DRS conducts a complete search of the state-space, its compu-
tational advantage relies on detecting existing counterexamples quickly. In
some sense DRS conforms to both steps of the above-mentioned development
method - either counterexamples are detected potentially early in the search
or, if none exist, the entire state-space is explored. DRS has been experi-
mentally shown to outperform Open-Kronos and Uppaal model-checkers;
however, the experiments do not compare DRS with Uppaal’s Random Depth
First Search (RDFS) - a powerful method for TA with strong fault detection
potential.

In this paper we focus on carrying out random walks on networks of
timed I/O automata (TIOA) for refinement checking as a quick and efficient
falsification method. To improve performance we intend to work with the
concrete semantics which relieves us from expensive computations of sym-
bolic abstractions based on such data structures as Difference Bounded Matrices
(DBM) [24]. The refinement verification helps to determine if a system spec-
ification can be successfully replaced by a single or even a number of other
systems. Figure A.1 shows a common refinement application example where
a detailed system (a) refines a more general specification of desired behavior
(b). The detailed system models a token being passed around a ring. The

46

1. Introduction

(a) Concrete system (b) Overall specification

Fig. A.1: Detailed automaton (a) refines overall specification (b).

Fig. A.2: Timed I/O Automaton. Difficult case for SMC.

clock x ensures that the token is passed within the time bounds of x>d and x

<=D. The overall specification requires the whole loop to be completed within
x<=3*D.

An easy way to perform randomized exploration is to exploit the stochas-
tic semantics of TIOA allowing the use of existing Statistical Model Checking
(SMC) techniques [25, 26]. The idea of SMC is to produce a number of sample
traces from a stochastic model, that are then statistically analyzed to estimate
a probability that a random run of the model will satisfy a given property.
Moreover, the estimate comes with a level of confidence which requires more
sample traces for higher precision. The SMC method has been implemented
in a number of tools, including Uppaal SMC [27] which uses stochastic timed
automata (STA). For more details of this stochastic semantics see [27, 28]. Due
to its simplicity, SMC is widely accepted in industrial applications where ex-
haustive model-checking is not feasible.

For the purpose of violation discovery however, SMC simulation tech-
niques may not be a productive approach. Figure A.2 shows a trivial, yet
very difficult case for SMC to detect if an ErrorLoc is ever reached. Due to the
stochastic semantics SMC operates on, a delay is uniformly chosen between
0 and 106 making it nearly impossible to traverse “narrow guard” edges. The
probability of reaching ErrorLoc in one step is 1

2 ∗ 10−6, thus it requires in
average 2 ∗ 106 steps to reach that location. While such stochastic semantics
allows for a model to mimic the behavior of a real system, counterexample
detection methods require different heuristics in order to be efficient.

In this paper we present two lightweight, randomized and memory-less
techniques for refinement checking of Timed I/O Automata: Random Enabled
Transition (RET) and Random Channel First (RCF). Similarly to Uppaal SMC

47

Paper A.

and existing randomized techniques, our methods operate on concrete states
and perform random walks through systems to detect violations. We show
experimentally the potential of these algorithms on Milner’s scheduler and
Leader Election protocol with a varying number of nodes and compare their
performance to those of existing symbolic and discrete state-space explo-
ration methods - Ecdar and SMC for Timed I/O Automata. Our heuristics
detect violations of the overall specification up to 600 times faster than Ecdar

and scale better.

2 TIOA, Composition and Refinement

We now introduce key definitions of the formalism based on [29]. Let Clk be a
finite set of clocks. A clock valuation over Clk is a mapping u ∈ [Clk 7→ R≥0].
A guard is represented as a finite conjunction of expressions of the form
x ≺ n, where x ∈ Clk, ≺ is a relational operator (<,≤,>,≥,=, ̸=) and n ∈N.
A set of such guards over Clk is denoted as B(Clk), whereas P(Clk) is used
to denote a powerset of the clock set.

Definition 9 (Timed I/O Automaton)
A Timed I/O Automaton (TIOA) is a tuple A = (Loc, q0, Clk, E, Act, Inv)
where Loc is a finite set of locations, q0 ∈ Loc is the initial location, Clk is a fi-
nite set of clocks that represent time, E ⊆ Loc× Act×B(Clk)×P(Clk)× Loc
is a set of edges, Act = Acti ⊕ Acto is a finite set of actions, partitioned into
inputs and outputs respectively, and Inv : Loc → B(Clk) is a set of location
invariants.

An edge is a tuple (q, a, φ, c, q′) ∈ E where the source location is q, the
action label is a, the constraint over clocks to be satisfied is φ, the clocks to
be reset are c, and the target location is q′. The semantics of TIOA is given
by a Timed I/O Transition System S = (St, s0, Σ,→), where St is an infinite
set of states, s0 ∈ St is the initial state, Σ = Σi ⊕ Σo is a finite set of actions
and → : St × (Σ ∪ R≥0) × St is a transition relation (see [29] for complete
definition).

Fig. A.3: Researcher automaton.

An example of Researcher TIOA, shown
in Figure A.3, contains three locations - id0,
id1 and id2. Input and output actions are de-
noted by ? and ! respectively. A Researcher

can do some work w!(e.g. research) with at
least 8 and at most 10 time units required to
finish the job, defined as constraints on clock
x: the guard x>=8 on edge from id0 to id2

and invariant x<=10 at location id0, respec-
tively. Alternatively, if a researcher receives a

48

2. TIOA, Composition and Refinement

Fig. A.4: Machine specification. Fig. A.5: SlowMachine specification.

cup of tea (tea?) the work can be done faster - between 6 and 7 time units.
However, for now this TIOA has a flaw in that the initial work progress, if
any, is lost (due to the update x=0) when a researcher gets a cup of tea.

A run within TIOA is a sequence of concrete states defined as (l, u), where l
is a location and u is a function that assigns values to all clocks. The following
gives two sample runs ρ1 and ρ2 of the Researcher:

ρ1 ≡ (id0, x=0) 9.27−−→ (id0, x=9.27) w!−→ (id2, x=9.27)

ρ2 ≡ (id0, x=0) 1.14−−→ (id0, x=1.14) tea?−−→ (id1, x=0) 4.91−−→ (id1, x=4.91) w!−→
(id2, x=4.91)

Parallel composition, a feature allowing to combine specifications, is an
important aspect of refinement verification. An overall specification is of-
ten challenged to be refined by a number of parallelly composed systems.
Consider a simplistic Machine component, shown in Figure A.4, which is re-
sponsible for providing tea immediately after the payment (coin) is received.
It can be run in parallel (i.e. composed) with previously seen Researcher

(Figure A.3) where both components are able to interact with each other and
altogether act as a single system. To avoid state-space unfolding, composi-
tion is usually not constructed, but its behavior is deduced based on tran-
sition synchronization rules (see [29] for formal definition). For illustration
purposes, the automaton which captures the overall behavior of parallelly
composed Machine and Researcher components is given in Figure A.6 (a).

(a) Researcher || Machine. (b) Overall specification Spec.

Fig. A.6: Composition (a) refines overall specification (b).

Note that only automata whose output action sets are disjoint may be

49

Paper A.

composed. Moreover, input and output edges that synchronize on identical
signatures become output edges in a resulting composition (e.g. coin and
tea). Such internal synchronization reflects both components advancing to
new locations simultaneously. Since the composition component is now in
control of when the tea is received, the work progress of a researcher can no
longer be lost.

To capture the desired behavior of components a notion of specification is
introduced. Its concept of input-enabledness reflects a belief that an input can-
not be prevented from being sent to the system and thus requires an explicitly
modelled behavior. To improve the modelling process, model-checking tools
such as Ecdar treat unspecified behavior for inputs as location loops in the
automaton.
Definition 10 (Specification)
A TIOTS S = (St, s0, Σ,→) is a specification if each of its states s ∈ St is

input-enabled: ∀i? ∈ Σi.∃s′ ∈ St. s i?−→ s′.

The specification theory of TIOA supports a notion of refinement which
if satisfied allows us to replace a specification with another one in every
environment and obtain an equivalent system. For a specification S to refine
specification T, both outputs and delays done by S must be matched by T,
leading to a new pair of states in the refinement relation. Moreover, all inputs
of T are required to be matched by S, which is always the case due to input-
enabledness of specifications.

Definition 11 (Refinement)
A specification S = (StS, s0, Σ,→S) refines a specification T = (StT , t0, Σ,→T

), written S ≤ T, iff there exists a binary relation R ⊆ StS × StT containing
(s0, t0) such that for each pair of states (s, t) ∈ R we have:

Input rule: whenever t i?−→T t′ for some t′ ∈ StT then s i?−→S s′

and (s′, t′) ∈ R for some s′ ∈ StS

Output rule: whenever s o!−→S s′ for some s′ ∈ StS then t o!−→T t′

and (s′, t′) ∈ R for some t′ ∈ StT

Delay rule: whenever s d−→S s′ for d ∈ R≥0 then t d−→T t′

and (s′, t′) ∈ R for some t′ ∈ StT

Figure A.6 shows a refinement example where a Researcher || Machine

composition (a) is challenged to refine a more general desired behavior spec-
ification Spec (b). Since the composition requires between 6 to 10 time units
to perform the work, which is what the overall specification expects, the re-
finement relation holds. However, if the Researcher is composed with the
SlowMachine from Figure A.5 instead, the tea is no longer provided immedi-
ately but requires up to 4 time units to be prepared. Performing the work

50

3. Random Walk Heuristics

after getting the tea altogether now requires 11 time units at most. This is not
allowed by the overall specification with invariant z<=10 and thus refinement
fails.

The refinement in the Ecdar tool is handled by using the Uppaal Tiga en-
gine [30] for verification of timed games. This engine searches for a winning
strategy by playing a turn-based game between two players using the on-
the-fly algorithm proposed in [31]. The first player, being the attacker, plays
outputs of the left side and inputs of the right side of the refinement, while
the second player, the defender, plays inputs of the left side and outputs of
the right side. The refinement fails if the defender cannot match either a de-
lay or an action performed by the attacker. The underlying data structure for
the algorithm of [31] is based on zones which provides a zone-based symbolic
abstraction, allowing to effectively store and manipulate states. Zones repre-
sent sets of clock valuations, defined as lower and upper bound constraints
on clocks and on differences between each of the clocks. Unlike reachability
analysis, refinement verification requires keeping track of a pair of states -
one for each refinement side, which includes a single zone containing the
union of clocks from both sides of the refinement relation. All newly dis-
covered state pairs and already verified ones are stored in the waiting and
passed data structures respectively, the latter of which allows us to guarantee
termination and avoid repeated exploration of states.

3 Random Walk Heuristics

Conducting concrete-state based random walks means that we are no longer
able to verify refinement but are rather looking for violations of one of the
refinement rules. Verification of the delay rule is similar to the symbolic
approach. Following the definition, it suffices to check if the refinement right
side allows delaying at least as much as the left side. With a concrete state
as a starting point it is easy to compute the maximal delay available for that
state by selecting the smallest difference between the upper bound specified
by the invariant and the current value for each individual clock. Since such
computations are also necessary for determining transition’s availability, for
each encountered state pair we check if the maximal delay on the right side
is at least as big as on the left side, thus potentially capturing more delay rule
violations at a small cost.

To maintain quick state-space exploration, our random walks are com-
pletely memory free, i.e. no state pairs are stored in memory except for the
current one. When a transition is taken, we advance to the target state pair
and verify either input or output rule based on the action type of the tran-
sition. Due to input-enabledness, an input transition may only result in the
discovery of a new state pair, whereas an output transition on the left side, if

51

Paper A.

not followed by the right side, can provide a counterexample. Moreover, not
storing any information about already visited states introduces two issues:
termination guarantee and repeated exploration of the states.

Termination In the setting of concrete-state random walks, revisiting already
explored state pairs is not necessarily a bad thing; in fact, it can be benefi-
cial as it may lead to traversal of other, yet unseen, transitions. Termination
on the other hand requires certain conditions. Upon reaching a state with
either no outgoing transitions or no eventually enabled (after performing a
delay) transitions we terminate the random walk and issue a new one. This,
however, becomes a problem for cyclic systems where above-mentioned con-
ditions may never occur, resulting in an infinite exploration. We approach the
termination problem in a straightforward way by supplying random walks
with a parameter of steps (number of transitions) that can be taken before a
walk is terminated. Ideally, this parameter should be dynamically adapted
to the target system; however, finding the optimal value is far beyond from
trivial (e.g. see [32]). Therefore, we limit ourselves to a predefined (static)
number of steps.

3.1 Selecting transition

During a random walk through the model, the actions of both delaying and
traversing transition are made in sequence. We, however, reverse the process
such that the concrete delay is selected after the target transition is chosen. As
a result, not only do delays not determine transition choice, but a delay is no
longer made if there are no transitions available. Given that the delay rule is
checked by comparison of maximal delays of refinement sides, this strategy (of
choosing transition first) makes sense as with no available transitions no other
refinement rules can be violated. We propose two heuristics for selecting
transitions.

The idea of the Random Enabled Transition (RET) heuristic is to first com-
pute all eventually enabled transitions, i.e. transitions which are either cur-
rently available or will become such after a delay, for a given state of the
refinement left side. Contrary to the refinement input rule, we consider in-
put transitions starting from the left side as due to input-enabledness they
can never violate refinement relation, but can only lead to new, potentially
unexplored, state pairs. Next, we uniformly choose one of the computed
transitions as a target for traversal. The counterexample is found when the
right side cannot match an output transition.

Profiling has shown that computing eventually enabled transitions is the
most resource demanding operation in our random walks. It needs to con-
sider all parallelly composed automata and construct transitions on the fly.
Given a concrete state it is necessary to check potential availability, i.e. if
guards are satisfied, for each edge by computing lower and upper bounds

52

3. Random Walk Heuristics

that correspond to minimal and maximal delays after which a transition is
enabled. To reduce the total amount of such computations we propose an
alternative heuristic for choosing transitions - Random Channel First (RCF).
It chooses a random channel (same as action) from the list of all channels
and computes enabled transitions only for that channel. If none exist, the
selected channel is removed from the list. The process is repeated until either
transitions are found or the list of channels is exhausted, where the latter
option leads to termination of the random walk. If transitions are discovered,
a random one is uniformly chosen for traversal.

3.2 Selecting delay

Next, we need to select a concrete delay, i.e. value to increase all clocks by,
before traversing a transition as it potentially affects further choices. With
target transition being selected first, the choice of delay is made within avail-
ability bounds of the transition which are computed during transition selec-
tion. This keeps the process lightweight as no additional computations are
required. Choosing a target transition prior to delaying also allows for ex-
cluding the width (size) of the edge’s guard from affecting the probability for
that edge to be explored. A delay for the automaton from Figure A.2 would
therefore depend on a chosen transition and be in either of the two ranges -
[0; 106] or (106 − 1; 106]. In comparison to SMC our heuristics have a proba-
bility of 1

2 to traverse the edge leading to ErrorLoc thus requiring 2 runs in
average to discover the error. This leads to a better state-space coverage and
increases the chance to detect counterexamples since “narrow” and “wide”
edges become equally easy to traverse.

Initially, we selected the delay uniformly from the transition’s range of
available delays. We believe however that selecting lower bound (LB) or up-
per bound (UB) is often more efficient for violation detection. This is because
the prevailing amount of practical model-checking applications is concerned
with either meeting deadlines, i.e. something that has an upper limit, or sat-
isfying minimal requirements, i.e. something that cannot be done faster than
specified. For example, the overall specification from Figure A.6 (b) ensures
both upper and lower time limits to be followed by a more concrete system.
Similarly in QuickCheck [18] the random selection of datatype values is bi-
ased towards base-elements (empty list, empty tree, etc.) because they are
more likely to be the source of errors. Thus, we expect a more corner-case
oriented delay choice distribution (e.g. 40% LB, 20% uniform, 40% UB) to
show better results at violation detection.

53

Paper A.

Fig. A.7: Difficult case for RCF.

3.3 RET vs RCF

Since the RCF heuristic partitions the computation of eventually enabled tran-
sitions into smaller chunks, which are based on channel, and chooses a target
transition as soon as one of these chunks yields a result, it is less compu-
tationally demanding than RET. For models with outdegree of at least two
edges with different channels, RCF in average will perform fewer expensive
operations to compute transitions which implies a faster exploration of the
state-space; however, due to underlying probabilities this is not always the
case.

Consider the automaton from Figure A.7 where the Error location repre-
sents a counterexample. At the initial location Init both the values of clocks
x and y are set to 0 and the output edge with action f is not available un-
til x==0 and y==8. Moreover, the invariant (x<=1) on Init restricts us from
directly delaying until the f edge becomes available. This leaves three en-
abled edges: two of action a, both of which increase the clock y by 1 unit
upon returning to Init, and one of action u, which is “undesired” in a sense
that it prohibits the walk from reaching Error by resetting clock y and must
therefore be avoided during exploration.

While clock y is less than 8, only channels a and u can yield a result for a
target transition. The probabilities for RCF and RET to choose edges for these
channels is shown in Table A.1. RCF heuristic randomly chooses one of two
channels at a 50% probability, leaving a 50% chance to traverse either one of
the a! edges or the only existing edge for channel u, which “resets” the model
back to its initial state. On the other hand, choosing randomly amongst

Table A.1: RET and RCF
probabilities to traverse edges
while y<8.

Action RET RCF
a! (x<1) 33.3%

50%
a! (x==1) 33.3%

u! 33.3% 50%

all eventually enabled transitions regardless of
channel, RET selects any of the three edges at a
probability of 33%. To reach the Error location ei-
ther of the two a! edges must be taken 8 times in
a row, followed by the f! edge. The probability of
doing so in one attempt for RET is 0.678 ∗ 0.25 ≈

102
10000 , whereas for RCF it is 0.58 ∗ 0.33 ≈ 13

10000 . Af-
ter traversing the “undesired” edge, a random walk
continues making new attempts until either the vi-

54

3. Random Walk Heuristics

olation is found or the number of allowed steps is made. Given the proba-
bilities, RCF requires 769 attempts in average to reach Error compared to an
average of 98 attempts for RET.

3.4 Delay probability distribution changes

The drawback of the static delay choice proposed in Section 3.2 is that such
(or any) static distribution (40% LB, 20% uniform, 40% UB) naturally favors
some models more than others in terms of error detection. In fact, some
sophisticated systems might benefit the most from delaying only LB or UB;
however, it might be impossible to derive this knowledge from a static anal-
ysis of the system.

Algorithm 1 Check refinement

1: function checkRefinement

2: chanceUB← 0.5, chanceLB← 0.5
3: while violation not found do
4: perform random walk with chanceLB and chanceUB
5: if violation found then return f alse
6: else
7: chanceUB += 0.1; ▷ Increase UB by 10%
8: if (chanceUB > 1) then chanceUB = 0;
9: chanceLB = 1− chanceUB;

To fight this, we propose a strategy where each random walk has a differ-
ent delay choice distribution, as shown in Algorithm 1. First, a random walk
is executed where all the delays follow 50% LB / 50% UB distribution. If a
violation is not found, a new random walk is issued where the probability
to delay LB is decreased and probability to delay UB is increased by 10%, re-
sulting in 40% LB / 60% UB. Upon reaching a probability distribution which
guarantees the choice of an upper bound value (0% LB / 100% UB), the next
random walk has its probabilities “flipped”, s.t. only the lower bound value
is chosen for the delay. The process continues until the violation is found.
Naturally, if a random walk with the most efficient probability distribution
for a target model is unsuccessful at finding a violation, it will take another
11 random walks to reach that probability distribution again. However, the
main drawback of this strategy is its inability to detect the “in between” viola-
tions as only bounds of the potential delay range are considered; nonetheless,
while always missing a particular kind of violation, we believe this technique
will often be substantially more efficient than others.

55

Paper A.

(a) Node template. (b) Overall specification tem-
plate.

Fig. A.8: Real-time version of Milner’s Scheduler. Templates for the Ecdar tool.

4 Test setting

The experiments are performed on the models of Milner’s scheduler [33] and
Leader Election protocol [34], which operate on a ring topology and can be
instantiated for an arbitrary number of nodes that communicate in sequence.

4.1 Milner’s scheduler

We analyze a real-time version of Milner’s scheduler [33], where each node
Ni can perform two actions in parallel: do some work by outputting on wi!
and pass the token to the next node Ni+1 in the sequence by outputting on
reci+1!. Figure A.8 shows a node template (a) and a template for the overall
specification (b) that a ring of nodes has to refine. Templates allow multiple
instances of the same model as also used in Uppaal [35]. Each node starts at
a location where it waits to receive a token before any actions can be taken.
As soon as the token is received clocks are reset and all further actions are
limited by a lower bound of d and an upper bound D represented by guards
and invariants respectively.

Note that the first node of the system has to be instantiated with a dif-
ferent initial location (bottom one) to represent the initial ownership of the
token. The overall specification on the other hand only ensures that w0!, i.e.
work done by initial node, requires at most (N+1)*D time units. Later in our
experiments, we modify the overall specification such that it is violated in
order to create counterexamples that can be detected by RET, RCF and SMC.
To do so, we modify the invariant of the overall specification to be z<=(N+1)

D(1-v), s.t. {v ∈ R : 0 ≤ v ≤ 1} where v is the desired violation size
in percentage. The higher the value of v the wider, and therefore easier to
detect, violation is created. Apart from different node amounts, we also ma-
nipulate the lower bound variable on guards (d), the smaller values of which
drastically increase the state-space.

56

4. Test setting

(a) Node template.

(b) Overall specification tem-
plate.

Fig. A.9: Leader Election protocol templates for the Ecdar tool.

4.2 Leader Election protocol

The Leader Election protocol has each of its nodes assigned a unique prior-
ity in addition to id. The goal of the protocol is to elect a leader with the
highest priority by having nodes pass their current priority to the next node in
sequence. If the priority received by a node is higher than its own, the node
records that priority and further only sends it to the next node instead of its
own priority. Otherwise, the received priority is discarded. Upon receiving its
own priority the node knows it can claim the leadership since that priority has
travelled one full round without being discarded and is thus the highest.

The templates for this protocol are shown in Figure A.9. The overall spec-
ification (b) ensures that only the correct node (a) can declare itself a leader,
and only within N*MaxD-v time units, s.t. {v ∈ Z : 0 ≤ v ≤ N*MaxD}, where
v is used to modify specification to introduce refinement violations. Here,
two-dimensional channel arrays, e.g. send[id][pr], are used as way of value
passing, where the first and the second indices represent node id and priority
respectively. The cur variable, representing the highest received priority, is
initialized to pr (own priority) for each node. Contrary to Milner’s scheduler,
this protocol does not constrain nodes to acting only after having received the
token; instead, any node is free to send its priority at all times.

4.3 Implementation

We have implemented a Java prototype of both the RET and RCF heuristics
for refinement checking of TIOA. For a more fair comparison of our heuristics
with SMC, we reimplemented SMC in Java for the network of TIOA with the
stochastic semantics. Table A.2 gives an overview on performance differences

57

Paper A.

Table A.2: Average time (in seconds) to detect violation for Milner’s scheduler.

Settings Java SMC Uppaal SMC
N=8, d=20, v=6% 1.720 3.413

N=12, d=20, v=6% 33.869 57.762

Table A.3: Each cell represents an average time (in sec) to discover a violation calculated over all
discovered violations within 60 minutes in Milner’s scheduler. Not found (nf) cells represent no
discovered violations.

Settings RET-U RET-PD RET RCF-U RCF-PD RCF SMC

N=8
d=20

v=2% nf 0.042 0.011 nf 0.024 0.007 nf
v=4% 21.577 0.008 0.003 12.590 0.005 0.002 50.832
v=6% 0.558 0.004 0.003 0.361 0.003 0.002 1.720

N=8
d=4

v=2% nf 0.078 0.010 nf 0.043 0.005 nf
v=4% 491.800 0.044 0.010 1506.872 0.026 0.005 891.425
v=6% 58.688 0.033 0.010 42.996 0.017 0.005 96.811

N=12
d=20

v=2% nf 0.655 0.030 nf 0.336 0.017 nf
v=4% 2770.389 0.082 0.017 1376.237 0.043 0.010 2882.110
v=6% 26.082 0.021 0.008 13.564 0.012 0.005 33.869

N=12
d=4

v=2% nf 2.056 0.032 nf 0.886 0.017 nf
v=4% nf 0.851 0.031 nf 0.440 0.017 nf
v=6% nf 0.501 0.031 nf 0.254 0.017 nf

between Java and that of Uppaal C++ implementation of SMC. Surprisingly,
Java SMC appeared to be faster, however this is most likely due to it being a
prototype which does not retain all the features of Uppaal SMC. For the rest
of the paper we will be using Java SMC as it is not substantially different.

To use SMC in a refinement setting, we transform refinement into a reach-
ability problem by constructing a complement automaton of the refinement
right side and composing it with the left side.

5 Experiments

To understand how delay choice influences violation detection, we compare
the performance of three variants of each heuristic and the SMC approach.
The results are reported in Table A.3 for Milner’s scheduler where each case
ran for 60 minutes. RET-U and RCF-U did a uniform delay choice, RET-
PD and RCF-PD delayed based on a predefined distribution of 40% LB, 20%
uniform, 40% UB, and RET and RCF had changing probability distributions,
but could miss violations requiring “intermediate delays”, as described in
Section 3.4.

It is clear that delay choice strategies have a large impact on the efficiency
of random walks. Both the SMC approach and our heuristics with uniform
delay choice (RET-U, RCF-U) have the weakest potential in terms of coun-

58

5. Experiments

Table A.4: Each cell represents an average time (in sec) to discover a violation calculated over
all discovered violations within 60 minutes in Milner’s Scheduler. The v = 0% case can only be
verified by the complete exploration of Ecdar.

Settings ECDAR RET RCF

N=50
d=20

v=0% 0.619 - -
v=2% 0.686 0.638 0.314
v=4% 0.688 0.487 0.249
v=6% 0.689 0.360 0.176

N=50
d=10

v=0% 1.576 - -
v=2% 2.252 0.692 0.326
v=4% 2.208 0.613 0.291
v=6% 2.182 0.547 0.255

N=50
d=4

v=0% 160.015 - -
v=2% 224.724 0.688 0.322
v=4% 274.632 0.621 0.292
v=6% 295.818 0.576 0.268

Settings ECDAR RET RCF

N=100
d=20

v=0% 3.622 - -
v=2% 4.050 2.791 1.304
v=4% 3.942 2.206 1.024
v=6% 3.974 1.701 0.776

N=100
d=10

v=0% 9.510 - -
v=2% 13.367 2.873 1.302
v=4% 13.252 2.686 1.194
v=6% 12.832 2.383 1.080

N=100
d=4

v=0% 2631.751 - -
v=2% 693.688 2.856 1.279
v=4% 695.181 2.721 1.231
v=6% 689.754 2.490 1.102

terexample detection and are strongly affected by the size of the violation.
While “wide” violations are found relatively quickly, “narrow” counterex-
amples (v=2%) were not discovered at all. Therefore, the low efficiency of
SMC, RET-U and RCF-U approaches makes their practical application not
feasible for a number of nodes higher than 12. On the other hand, RET-PD,
RET, RCF-PD and RCF are significantly quicker at discovering violations and
less sensitive to increasing the number of nodes or decreasing the d vari-
able, both of which explode the state-space. The delay choice based on the
predefined distribution (RET-PD and RCF-PD) was, as expected, superior to
uniform choice and enabled detection of even “narrow” violations. The most
efficient appears to be RET and RCF heuristic variants with changing proba-
bilities, which have also shown the smallest difference in time for detection
of “wide” and “narrow” violations.

We further compare the most promising RET and RCF heuristics with Ec-
dar on a large number of nodes and report results in Table A.4. Increasing
the number of nodes or especially decreasing d significantly increases time
needed by Ecdar for verification. Contrary to that, RET and RCF are not so
sensitive to the change of d which shows that due to probability changes our
heuristics perform almost equally well on “narrow” and “wide” edge sys-
tems. For N = 100 and d = 4 Ecdar takes more than 10 minutes to detect
the violation, whereas RET and RCF require just under 3 and 1.3 seconds re-
spectively. Surprisingly, complete symbolic refinement verification in Ecdar

in case of v = 0% is still feasible on such high number of nodes as 50 and
100. Thus, the use of our proposed development method is supported: first
RET and RCF can be used to quickly detect possible violations, and once no
further violations are found using our heuristics an expensive and complete
verification by Ecdar is to be conducted.

59

Paper A.

Fig. A.10: RET and RCF comparison on Milner’s scheduler with d = 4 and v = 2%

Table A.5: Each cell represents an avg. time (in sec) to discover a violation calculated over all
discovered violations within 60 minutes in Leader Election protocol. The v = 0 case can only
be verified by the complete exploration of Ecdar. Not found (nf) cells represent no discovered
violations.

Settings ECDAR RET RCF

N=5

v=0 0.103 - -
v=2 0.127 1.411 0.403
v=4 0.130 0.080 0.024
v=6 0.085 0.009 0.003

N=7

v=0 nf - -
v=2 nf 102.653 26.617
v=4 nf 4.140 0.722
v=6 nf 0.345 0.073

Settings ECDAR RET RCF

N=6

v=0 17.190 - -
v=2 18.170 11.392 2.916
v=4 15.952 0.576 0.138
v=6 8.695 0.059 0.015

N=8

v=0 nf - -
v=2 nf 170.782 172.880
v=4 nf 38.217 5.166
v=6 nf 2.113 0.340

In Figure A.10 the performance of RET and RCF for Milner’s scheduler
increasing number of nodes is compared in the difficult setting of d = 4 and
v = 2% which significantly reduces chances to detect violations. The results
are very encouraging: even for 500 nodes RET and RCF manage to discover
violations in an average of under 100 and 50 seconds respectively.

We now compare most promising variants of RET and RCF (with chang-
ing probabilities) against Ecdar on a much heavier, non tokenized Leader
Evaluation protocol. The results (shown in Table A.5) demonstrate a severe
state-space explosion: even for 7 nodes Ecdar is not able to conclude verifica-
tion within an hour. On the positive note, RET and RCF are able to handle up
to 10 nodes; however, in comparison to Milner’s scheduler, here the “width”
of the violation has a much stronger impact on the performance. Moreover,
the exponential growth of channels (send[id][e]) makes the RCF heuristic
much more favorable.

To further examine the efficiency of our heuristics to quickly detect viola-
tions during iterative development, we perform mutation testing on Leader
Election protocol. Table A.6 reports the results where either one (M∃1−4) or
all (M∀1−4) nodes have been replaced with a certain type of mutant, s.t. the

60

5. Experiments

Table A.6: Mutation testing for Leader Election protocol. Each cell represents an avg. time
(in sec) to discover a violation calculated over all discovered violations within 60 minutes. Not
found (nf) cells represent no discovered violations.

Settings ECDAR RET RCF

N=6

M∃1 38.204 51.704 11.697
M∃2 25.183 0.002 0.001
M∃3 19.709 0.002 0.001
M∃4 18.007 0.002 0.001

N=6

M∀1 12.592 0.077 0.016
M∀2 11.452 0.006 0.001
M∀3 10.643 0.003 0.001
M∀4 11.183 0.005 0.001

Settings ECDAR RET RCF

N=7

M∃1 nf 563.254 125.991
M∃2 nf 0.005 0.001
M∃3 nf 0.005 0.001
M∃4 687.573 0.005 0.001

N=7

M∀1 nf 0.054 0.011
M∀2 nf 0.007 0.001
M∀3 nf 0.006 0.001
M∀4 35.230 0.001 0.001

refinement relation is violated. We have tried a mutant with the initial lo-
cation’s invariant bound doubled (M1), a mutant that always sends its own
priority instead of the recorded one (M2), a mutant that forgets to record the
received priority (M3) and a mutant that records its own id instead of the
received priority (M4).

The time to discover violation with mutants M2-M4 is surprisingly small,
which persists for even higher amount of nodes with very small increments
in time. This occurs due to the modifications in these mutants in different
ways leading to an overall inability of the “node ring” to elect a leader, which
most of the time can be detected with only a single random walk. Mutant M1
on the other hand does not prevent leadership from being correctly declared,
but creates the possibility of it happening too late, i.e. violating the time
requirement imposed by the overall specification. In cases where only one
such mutant is present in the “ring” (M∃1) it is significantly harder to detect
violation for both Ecdar, due to the state-space growth, and our heuristics,
due to decreasing underlying probabilities to find a violation.

Overall, for both of the models RCF appears to be noticeably faster than
RET. This is caused by frequently occurring states with the outdegree of at
least 2 transitions for different channels, which helps RCF to avoid a lot of ex-
pensive transition computations. This difference is especially large for Leader
Election protocol, where the amount of channels grows exponentially to the
amount of nodes. The general tendency is such that our heuristics are much
less affected by state-space explosion than symbolic verification using Ecdar.

The complete model, test results and Java prototype code are available at
http://www.cs.aau.dk/~ulrik/submissions/982983/SETTA2020.zip.

61

References

6 Conclusions and Future Work

We have presented what we believe to be the first randomized technique for
refinement checking of Timed I/O Automata by means of random walks.
Our two heuristics RET and RCF provide a fast and scalable way of detecting
counterexamples, the benefits of which are most noticeable in large systems
where the memory demands of symbolic verification are high. Such tech-
niques are best used for quick falsification to save time during development
of large and industrial sized systems. If no errors are found, a long and
expensive complete symbolic verification can be conducted.

The experiments have shown that the choice of delays can strongly influ-
ence the efficiency of the technique. The most efficient and scalable variations
of RET and RCF heuristics appeared to be the ones based on the adaptive ap-
proach, s.t. the delay choice distribution changes based on the outcome of
the previous run. We anticipate that some models may even require the delay
choice heuristic to be different for each state while for other systems it might
suffice delaying according to the same distribution. Therefore, we believe
that as more techniques appear, a successful violation detection strategy will
be to run multiple heuristics in parallel (see e.g [36]).

The direction for the future work is to test RET and RCF on more mod-
els to see if these heuristics are efficient or different strategies are required.
Our methods can also be applied for real time model-checking of other anal-
ysis problems than refinement. Furthermore, a better performance of the
heuristics can potentially be achieved by supplying random walks with the
dynamic number of steps based on a static analysis of the model and/or cer-
tain heuristics that manipulate the depth of each walk based on the outcome
of the previous one.

References

[1] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani,
“Partial-Order Reduction in Symbolic State Space Exploration,” in Com-
puter Aided Verification, O. Grumberg, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1997, pp. 340–351.

[2] G. Behrmann, P. Bouyer, K. G. Larsen, and R. Pelánek, “Lower and Up-
per Bounds in Zone Based Abstractions of Timed Automata,” in Tools
and Algorithms for the Construction and Analysis of Systems, K. Jensen and
A. Podelski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 312–326.

[3] C. Norris IP and D. L. Dill, “Better verification through symmetry,” For-
mal Methods in System Design, vol. 9, no. 1, pp. 41–75, 1996.

62

References

[4] G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi, “Efficient
Timed Reachability Analysis Using Clock Difference Diagrams,” in Com-
puter Aided Verification, N. Halbwachs and D. Peled, Eds. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1999, pp. 341–353.

[5] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Symbolic
Model Checking: 1020 States and Beyond,” Information and Computation,
vol. 98, no. 2, pp. 142 – 170, 1992.

[6] K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Efficient Verification
of Real-Time Systems: Compact Data Structure and State-Space Reduc-
tion,” in Proceedings Real-Time Systems Symposium, 1997, pp. 14–24.

[7] J. Lind-Nielsen, H. R. Andersen, G. Behrmann, H. Hulgaard, K. Kris-
toifersen, and K. G. Larsen, “Verification of Large State/Event Systems
Using Compositionality and Dependency Analysis,” in Tools and Algo-
rithms for the Construction and Analysis of Systems, B. Steffen, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 201–216.

[8] A. Valmari, “A Stubborn Attack on State Explosion,” in Computer-Aided
Verification, E. M. Clarke and R. P. Kurshan, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1991, pp. 156–165.

[9] S. Kupferschmid, M. Wehrle, B. Nebel, and A. Podelski, “Faster Than
Uppaal?” in Computer Aided Verification, A. Gupta and S. Malik, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 552–555.

[10] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
Guided Abstraction Refinement,” in Computer Aided Verification, E. A.
Emerson and A. P. Sistla, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 154–169.

[11] H. Hermanns, B. Wachter, and L. Zhang, “Probabilistic CEGAR,” in
Computer Aided Verification, A. Gupta and S. Malik, Eds. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2008, pp. 162–175.

[12] A. Zutshi, J. V. Deshmukh, S. Sankaranarayanan, and J. Kapinski, “Mul-
tiple shooting, cegar-based falsification for hybrid systems,” in Proceed-
ings of the 14th International Conference on Embedded Software, ser. EMSOFT
’14. New York, NY, USA: Association for Computing Machinery, 2014.

[13] P. Prabhakar, P. S. Duggirala, S. Mitra, and M. Viswanathan, “Hybrid
automata-based cegar for rectangular hybrid systems,” Formal Methods
in System Design, vol. 46, no. 2, pp. 105–134, 2015.

[14] H. Wimmel and K. Wolf, “Applying cegar to the petri net state equa-
tion,” in Tools and Algorithms for the Construction and Analysis of Systems,

63

References

P. A. Abdulla and K. R. M. Leino, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 224–238.

[15] T. Nagaoka, K. Okano, and S. Kusumoto, “An abstraction refinement
technique for timed automata based on counterexample-guided abstrac-
tion refinement loop,” IEICE TRANSACTIONS on Information and Sys-
tems, vol. 93, no. 5, pp. 994–1005, 2010.

[16] F. He, H. Zhu, W. N. Hung, X. Song, and M. Gu, “Compositional ab-
straction refinement for timed systems,” in 2010 4th IEEE International
Symposium on Theoretical Aspects of Software Engineering. IEEE, 2010, pp.
168–176.

[17] K. Okano, B. Bordbar, and T. Nagaoka, “Clock number reduction ab-
straction on cegar loop approach to timed automaton,” in 2011 Second
International Conference on Networking and Computing. IEEE, 2011, pp.
235–241.

[18] K. Claessen and J. Hughes, “Quickcheck: A lightweight tool for random
testing of haskell programs,” SIGPLAN Not., vol. 46, no. 4, p. 53–64, May
2011.

[19] R. Grosu and S. A. Smolka, “Monte Carlo Model Checking,” in Tools and
Algorithms for the Construction and Analysis of Systems, N. Halbwachs and
L. D. Zuck, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 271–286.

[20] J. Oudinet, A. Denise, M.-C. Gaudel, R. Lassaigne, and S. Peyronnet,
“Uniform Monte-Carlo Model Checking,” in Fundamental Approaches to
Software Engineering, D. Giannakopoulou and F. Orejas, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 127–140.

[21] K. Larsen, D. Peled, and S. Sedwards, “Memory-Efficient Tactics for Ran-
domized LTL Model Checking,” in Verified Software. Theories, Tools, and
Experiments, A. Paskevich and T. Wies, Eds. Cham: Springer Interna-
tional Publishing, 2017, pp. 152–169.

[22] R. Grosu, X. Huang, S. A. Smolka, W. Tan, and S. Tripakis, “Deep Ran-
dom Search for Efficient Model Checking of Timed Automata,” in Com-
position of Embedded Systems. Scientific and Industrial Issues, F. Kordon and
O. Sokolsky, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 111–124.

[23] R. Alur and D. Dill, “The theory of timed automata,” in Real-Time: Theory
in Practice, J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozen-
berg, Eds. Springer, 1992, pp. 45–73.

64

References

[24] D. L. Dill, “Timing Assumptions and Verification of Finite-State Concur-
rent Systems,” in Automatic Verification Methods for Finite State Systems,
J. Sifakis, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990, pp.
197–212.

[25] K. Sen, M. Viswanathan, and G. Agha, “Statistical Model Checking of
Black-Box Probabilistic Systems,” in Computer Aided Verification, R. Alur
and D. A. Peled, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 202–215.

[26] H. L. S. Younes and R. G. Simmons, “Probabilistic Verification of Discrete
Event Systems Using Acceptance Sampling,” in Computer Aided Verifica-
tion, E. Brinksma and K. G. Larsen, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 223–235.

[27] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen,
“Uppaal SMC tutorial,” International Journal on Software Tools for Technol-
ogy Transfer, vol. 17, no. 4, pp. 397–415, 2015.

[28] N. Bertrand, P. Bouyer, T. Brihaye, and P. Carlier, “When are stochastic
transition systems tameable?” Journal of Logical and Algebraic Methods in
Programming, vol. 99, pp. 41 – 96, 2018.

[29] A. David, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski, “Timed
I/O Automata: A Complete Specification Theory for Real-Time Sys-
tems,” in Proceedings of the 13th ACM International Conference on Hybrid
Systems: Computation and Control, ser. HSCC ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 91–100.

[30] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, and
D. Lime, “UPPAAL-Tiga: Time for Playing Games!” in Computer Aided
Verification, W. Damm and H. Hermanns, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 121–125.

[31] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime, “Efficient
On-the-Fly Algorithms for the Analysis of Timed Games,” in CONCUR
2005 – Concurrency Theory, M. Abadi and L. de Alfaro, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 66–80.

[32] G. Behrmann, K. G. Larsen, and R. Pelánek, “To Store or Not to Store,”
in Computer Aided Verification, W. A. Hunt and F. Somenzi, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 433–445.

[33] R. Milner, A Calculus of Communicating Systems. Berlin, Heidelberg:
Springer-Verlag, 1982.

65

References

[34] A. David, K. G. Larsen, A. Legay, M. H. Møller, U. Nyman, A. P. Ravn,
A. Skou, and A. Wasowski, “Compositional Verification of Real-Time
Systems Using Ecdar,” International Journal on Software Tools for Technol-
ogy Transfer, vol. 14, pp. 703–720, 2012.

[35] G. Behrmann, A. David, and K. G. Larsen, “A Tutorial on Uppaal,” in
Formal Methods for the Design of Real-Time Systems, International School on
Formal Methods for the Design of Computer, Communication and Software
Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lec-
tures, ser. Lecture Notes in Computer Science, M. Bernardo and F. Cor-
radini, Eds., vol. 3185. Springer, 2004, pp. 200–236.

[36] J. I. Rasmussen, G. Behrmann, and K. G. Larsen, “Complexity in Sim-
plicity: Flexible Agent-Based State Space Exploration,” in Tools and Al-
gorithms for the Construction and Analysis of Systems, O. Grumberg and
M. Huth, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 231–245.

66

Paper B

Randomized Reachability Analysis in UPPAAL: Fast
Error Detection in Timed Systems

Andrej Kiviriga, Kim Guldstrand Larsen and Ulrik Nyman

The paper has been published in the
International Journal on Software Tools for Technology Transfer 2022.

© Springer Nature Switzerland AG 2022
The layout has been revised.

1. Introduction

Abstract

Randomized reachability analysis is an efficient method for detection of safety vi-
olations. Due to the under-approximate nature of the method, it excels at quick
falsification of models and can greatly improve the model-based development process:
using lightweight randomized methods early in the development for the discovery of
bugs, followed by expensive symbolic verification only at the very end. We show the
scalability of our method on a number of Timed Automata and Stopwatch Automata
models of varying sizes and origin. Among them, we revisit the schedulability prob-
lem from the Herschel-Planck industrial case study, where our new method finds the
deadline violation three orders of magnitude faster: some cases could previously be
analyzed by statistical model checking (SMC) in 23 hours and can now be checked
in 23 seconds. Moreover, a deadline violation is discovered in a number of cases
that where previously intractable. We have implemented the Randomized reacha-
bility analysis – and made it available – in the tool Uppaal. Finally we provide an
evaluation of the strengths and weaknesses of Random reachability analysis exploring
exactly which types of model features hamper method’s efficiency.

1 Introduction

The problem of state space explosion is the major issue keeping formal veri-
fication of industrial sized models from becoming a truly impactful technol-
ogy. This paper presents a method, Random Reachability Analysis, which
can help to combat state-space explosion in one particular way. The method
searches the state space using randomization, the effect of this is a method
that is very efficient at finding bug in most systems, but cannot prove the
safety of a system. Throughout the process of developing formal models,
an array of sanity queries can be used in the same way as unit tests in soft-
ware development. Verifying these queries repeatedly between each addition
to the model can be prohibitively time consuming, especially for complex
systems that often grow large and become difficult to analyze. The method
presented in this paper is exactly a solution to this problem.

The main contribution of this paper is the implementation of randomized
reachability analysis in the tool Uppaal. Randomized reachability analysis
is a non-exhaustive efficient technique for the detection of errors (safety vi-
olations). The work was inspired by [1] where similar randomized analysis
was applied to refinement checking. The method can analyse Timed Au-
tomata and Stopwatch Automata models with the features already supported
by Uppaal. The randomized approach is based on repeated exploration of
the model by means of random walks and was inspired by [2]. It explores
the state space in a light and under-approximate manner; hence, it can only
perform conclusive verification when a single trace can demonstrate a prop-

69

Paper B.

erty. However, our randomized method excels at reachability checking and
in many cases outperforms existing model-checking techniques by up to sev-
eral orders of magnitude. The benefits are especially notable in large systems
where traditional model-checking is often intractable due to the state space
explosion problem.

Randomized reachability analysis is particularly useful for an efficient de-
velopment process: running cheap, randomized methods early in the devel-
opment to discover violations and performing an expensive and exhaustive
verification at the very end. Randomized reachability analysis supports the
search for shorter traces which improves the usability of discovered traces in
debugging the model. We have implemented randomized reachability anal-
ysis – and made it available – in the tool Uppaal

1 [3]. Unfortunately, our
randomized methods are not a panacea and there are certain types of model
features that the method is not well suited for exploring. These are discussed
in Section 11 on strengths and limitations, divided into three categories. All
categories relate to some way in which a certain part of the state space is
potentially hard for the method to explore.

Timed Automata models can also be used in the domain of schedulabil-
ity, which deals with resource management of multiple applications rang-
ing from warehouse automation to advanced flight control systems. View-
ing these systems as a collection of tasks, schedulability analysis allows us
to optimize usage of resources, such as processor load, and to ensure that
tasks finish before their deadline. A traditional approach in preemptive
priority-based scheduling is that of the worst-case response time (WCRT)
analysis [4, 5]. It involves estimating worst case scenarios for both the execu-
tion time of a task and the blocking time a task may have to spend waiting
for a shared resource. Apart from certain applicability limitations, classical
response time analysis is known to be over-approximate which may lead to
pessimistic conclusions in that a task may miss its deadline, even if in practice
such a scenario could be unrealizable. Model-based approach is a prominent
alternative for verification of schedulability [6–9] as it considers such param-
eters as offsets, release times, exact scheduling policies, etc. Due to this, the
model-based approach is able to provide a more exact schedulability analysis.

We continue the effort in using a model-based approach and the model
checker Uppaal to perform a Stopwatch Automata based schedulability anal-
ysis of systems [10]. Specifically, we re-revisit the industrial case study of the
ESA Herschel-Planck satellite system [9, 11]. The Danish company Terma
A/S [12] developed the control software and performed the WCRT analysis
for the system. The case we analyse consists of 32 individual tasks being
executed on a single processor with the policy of fixed priority preemptive
scheduling. In addition, a combination of priority ceiling and priority in-

1https://uppaal.org/downloads/

70

https://uppaal.org/downloads/

1. Introduction

Table B.1: Summary of schedulability of the Herschel-Planck system.

f = BCET
WCET 0-71% 72-80% 81-86% 87-90% 90-100%

Symbolic MC: maybe maybe maybe n/a Safe

Statistical MC: Unsafe maybe maybe maybe maybe

Randomized MC: Unsafe Unsafe maybe maybe maybe

heritance protocols is used, which in essence makes the priorities dynamic.
Preemptive scheduling is encoded in the model with the help of stopwatches
which allow to track the progress of each task and stop it when the task
is preempted. In Uppaal, existing symbolic reachability analysis for mod-
els with stopwatches is over-approximate [13], which may provide spurious
traces. In such models, our randomized reachability analysis allows us to
obtain exact, non-spurious traces to target states.

In the previous work of [9] the schedulability of Herschel-Planck was
“successfully” concluded, but with an unrealistic assumption of each task
having a fixed execution time (ET). To improve on this, the analysis of [11]
was carried out with each of the tasks given a non-deterministic execution
time in the interval of Best Case and Worst Case ETs [WCET, BCET]. Un-
fortunately, interval based execution times, preemption and shared resources
that impose dependencies between tasks, makes schedulability of systems
like Herschel-Planck undecidable [14].

Even in the presence of unschedulability, two model-checking (MC) tech-
niques were used in [11] to either verify or disprove schedulability for cer-
tain intervals of possible task execution times. First, the symbolic, zone-
based, MC was used. For stopwatch automata it is implemented as an over-
approximation in Uppaal which still suffices for checking of safety prop-
erties, e.g. if the deadline violation can never be reached. However, this
technique cannot be used to disprove schedulability of the system as result-
ing traces may possibly be spurious. Second, the statistical model-checking
(SMC) technique was used to provide concrete counterexamples witnessing
unschedulability of the model in cases where symbolic MC finds a poten-
tial deadline violation and cannot conclude on schedulability. The idea of
SMC [15, 16] is to run multiple sample traces from a model and then use the
traces for statistical analysis which, among all, estimates the probability of
a property to be satisfied on a random run of a model. The probability es-
timate comes with some degree of confidence that can be set by the user
among a number of other statistical parameters. Several SMC algorithms
that require stochastic semantics of the model have been implemented in Up-
paal SMC [17].

71

Paper B.

Our contribution to the Herschel-Planck case study is to use our proposed
under-approximate randomized reachability analysis techniques in hope to
witness unschedulability in places where previously not possible. The sum-
mary of (un)schedulability of Herschel-Planck that includes the new results
is shown in Table B.1. Symbolic MC finds no deadline violation with over-
approximate analysis and is able to conclude schedulability for BCET

WCET ≥ 90%.
SMC find a witness of unschedulability for BCET

WCET ≤ 71%. Finally, our ran-
domized reachability methods are able to further “breach the wall” of unde-
cidable problem by discovering concrete traces proving unschedulability for
BCET
WCET ≤ 80%. Moreover, for the same BCET

WCET , randomized reachability finds
the deadline violation by three orders of magnitude faster than SMC: the
case that took 23 hours for SMC now only takes 23 seconds with randomized
methods.

To further verify the proposed efficient development process, we look at
several different models of the Gossiping Girls problem made by the Mas-
ter’s thesis students – future model developers – and explore the potential of
our randomized method. We also perform experiments on a range of other
(timed and stopwatch automata) models and compare the performance of
our randomized reachability analysis in safety violation detection to that of
existing verification techniques of Uppaal: Breadth First Search (BFS), Depth
First Search (DFS), Random Depth First Search (RDFS) and SMC. The results
are extremely encouraging - randomized reachability methods perform up
to several orders of magnitude faster and scale significantly better with in-
creasing model sizes. Furthermore, randomized reachability uses constant
memory w.r.t. the size of the model and typically requires only up to 25MB
of memory. This is a notable improvement in comparison to the symbolic
verification of upscaled and industrial sized models. Each of the experiments
in this study was given 16GB of memory.

The main contributions of the paper are:

• A new randomized reachability analysis technique implemented and
made available in Uppaal.

• Detection of safety violations up to several orders of magnitude faster
than with other existing model-checking techniques.

• Possibility to analyze previously intractable models, including particu-
lar settings for the Herschel-Planck case study.

• Searching for shorter or faster traces with our randomized methods.

• Analysis of strengths and weaknesses of the method based on empirical
evidence.

The rest of the paper is structured as follows: In Section 2 we give formal
definition of Stopwatch Automata models and in Section 3 we describe the

72

2. Stopwatch Automata

different randomized methods we tried in this study. In Section 4 we show
the user interface of Uppaal. Section 5 gives the experimental setting. Sec-
tion 6 presents the new results on the Herschel-Planck industrial case study
and Section 7 provides more experimental results on other schedulability
models. Section 8 demonstrates the efficiency of our randomized method
applied on student models of the Gossiping Girls problem and Section 9 gives
the results on other upscaled models. Finally, Sections 12 and 13 give conclu-
sions and future work.

This STTT journal paper is an extended version of the paper published at
FMICS 2021. The major novel sections of this extension in comparison to the
original paper are the following (in reading order):

• Section 2 with formal definitions,

• Section 3 with the pseudocode for the randomized reachability algo-
rithm and its respective mentions,

• Section 4 that demonstrates the features of the Uppaal graphical inter-
face w.r.t. our randomized methods,

• Section 5 with experimental setting,

• Section 10 with experiments on research operating system models, and

• Section 11 with discussions about strengths and limitations of our ran-
domized methods.

2 Stopwatch Automata

Timed Automata (TA) are automata extended with real-valued clocks whose
values grow uniformly at any state [18]. TA are ideal for describing time-
dependent behaviors of systems; however, for preemptive scheduling it is
needed to measure the accumulated time the system spends in a certain state.
An example would be measuring the progress of a task and stopping it when
the task is preempted. To accommodate the need for stopping clocks, an ex-
tension that supports derivatives (rates of progression) for clocks being either
1, meaning the clock progresses as per usual, or 0, where the clock is stopped,
has been introduced as a Stopwatch Automata (SWA) [13]. Unlike Timed Au-
tomata, the reachability analysis of Stopwatch Automata is undecidable. In
this section, we present the key definition for Stopwatch Automata based on
the formalism from [13].

Let C be a finite set of clocks and V be a finite set of integer variables. Let
u(x) define a valuation of x ∈ C ∪V such that there is a mapping from C to
R≥0 and from V to N. Let LC(C, V) be a set of linear constraints. A guard
g ∈ LC(C, V) is represented as a finite conjunction of expressions of the form

73

Paper B.

c ≺ n, v ≺ n or v ≺ c where c ∈ C and v ∈ V, n ∈ N, and ≺ is a relational
operator (<,≤,>,≥,=, ̸=). A set of such guards over C and V is denoted as
B(C, V), whereas P(C, V) is used to denote a powerset. We can change the
value of clocks and variables with an assignment operation r(u) ∈ (P(C, V))
where assignments are restricted to be c = 0, effectively resetting the clock,
and v = n, where c ∈ C, v ∈ V and n ∈N.

Definition 12 (Stopwatch Automaton [13])
A Stopwatch Automaton (SWA) A = (L, l0, C, V, E, Act, I, D) is represented
as a tuple where:

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• C is a finite set of clocks that represent time,

• V is a finite set of integer variables,

• E ⊆ L×B(C, V)× Act×P(C, V)× L is a set of edges,

• Act is a finite set of actions,

• I : L→ B(C, V) is a set of location invariants, and

• D : L×C 7→ {0, 1} is a set of rates at which a clock can evolve at a given
location.

An edge e = (l, g, a, r, l′) ∈ E represents an edge from location l to location
l′ with the guard g, action a, and an assignment (reset) r. Semantics of SWA
is given in terms of the Timed Transition System that we now define.

Definition 13 (Timed Transition System)
A Timed Transition System (TTS) is a tuple T = (S, s0, Σ,→) where:

• S is an infinite set of states,

• s0 ∈ S is the initial state,

• Σ is a set of labels, and

• →⊆ S×Σ×R≥0× S is a transition relation. We write s α−→ s′ whenever
(s, α, s′) ∈→.

For SWA, a state s ∈ S is defined as a pair (l, u) with l ∈ L being a location
and u being a valuation over clocks C and variables V. There are two types of
transitions: delay and action transitions. Action transitions are the result of
following an edge. Delay transitions allow the time to pass and result in the
increase of clock valuations such that their valuations after delay d in location
l happen w.r.t. the derivative of the clock in the current location defined as
u(c + d) = u(c) + D(l, c) · d. We now formally define the semantics of SWA.

74

2. Stopwatch Automata

Definition 14
The semantics of a SWA A = (L, l0, C, V, E, Act, I, D) is given by a TTS
JAKsem = (S, s0, Σ,→), where S = L× u(C, V), s0 = (l0, u0), Σ = Act×R≥0
and→ is a transition relation defined as:

• (s, u′) a−→ (s′, u′) iff ∃(l, g, a, r, l′) ∈ E, s.t.
u |= g and u′ = r(u) and u′ |= I(l′)

• (s, u′) d−→ (s′, u′) iff l = l′ and
∀c ∈ C(D(l, c) = 0⇒ u′(c) = u(c)) and
∀c ∈ C(D(l, c) = 1⇒ u′(c) = u(c) + d) and ∀v ∈ V(u′(v) = u(v)) and
u′ |= I(l′).

Fig. B.1: Stopwatch Automaton example.

An example of an arbitrary Task SWA is shown in Figure B.1 which, be-
hind the scenes, is controlled by some arbitrary scheduler (not shown here).
Task contains a clock t that represents the global time, a clock c that tracks
the total time the automaton occupies CPU for, and a variable i that is used to
count the amount of times Task has been preempted. The automaton consists
of four locations - Start (initial), Idle, Run and Done. Once Task is released
by traversing the edge with action r?, the location Idle is reached where the
CPU time clock is paused (c’==0). From there, Task can be either started
(s?) and preempted afterwards (p?), with the latter action only available if
the task has not been completed yet, i.e. ran for less than 9 time units (c<9).
Each time the task is preempted we increase our preemption counter with
i++. Note that in Uppaal clock derivatives are defaulted to 1 for all clocks in
all locations, unless specified otherwise. Below we show two example traces
for the Task automaton:

75

Paper B.

π1 = (Start, t = 0, c = 0, i = 0) r?−→ (Idle, t = 0, c = 0, i = 0) s?−→ (Run, t = 0, c = 0, i = 0)

9−→ (Run, t = 9, c = 9, i = 0) d!−→ (Done, t = 9, c = 9, i = 0)

π2 = (Start, t = 0, c = 0, i = 0) r?−→ (Idle, t = 0, c = 0, i = 0) 7−→ (Idle, t = 7, c = 0, i = 0)

s?−→ (Run, t = 7, c = 0, i = 0) 2−→ (Run, t = 9, c = 2, i = 0)
p?−→ (Idle, t = 9, c = 2, i = 1)

3−→ (Idle, t = 12, c = 2, i = 1) s?−→ (Run, t = 12, c = 2, i = 1) 6−→ (Run, t = 18, c = 8, i = 1

p?−→ (Idle, t = 18, c = 8, i = 2) 9−→ (Idle, t = 27, c = 8, i = 2) s?−→ (Run, t = 27, c = 8, i = 2)

1−→ (Run, t = 28, c = 9, i = 2) d!−→ (Done, t = 28, c = 9, i = 2)

Among the infinitely many traces that reach location Done, π1 has the
minimum total time, that is equal to the CPU time, and does not get pre-
empted. In practice, a number of SWA are usually composed (executed in
parallel) and altogether function as a single system. For simplicity we skip
formal definition of composition as it depends on the exact model types and
extensions used. We refer the interested reader to [3, 16, 19] for more details.

3 Randomized Reachability Analysis

Algorithm 2 Randomized Reachability

1: function RRA(maxSteps, s0)
2: steps← 24

3: while within time budget do
4: s← DoRandomWalk(s0, steps)
5: if s is terminal then
6: return concrete trace
7: steps← min(steps ∗ 2, maxSteps)
8: function DoRandomWalk(s, steps)
9: i← 0

10: while i < steps and s is non-terminal do
11: t← SelectTransition(s)
12: d← SelectDelay(t)
13: s← DoDelay(d)
14: s← FireTransition(t)
15: i← i + 1
16: return s

The purpose of the randomized methods is to explore the state space
quickly and be less affected by the state space explosion. The general pseu-

76

3. Randomized Reachability Analysis

docode for the randomized reachability analysis is given in Algorithm 2. The
method is based on a repeated execution of concrete state-based random walks
through the system. Each random walk is quick and lightweight as it avoids
expensive computations of symbolic zone-based abstractions. Moreover, to
preserve memory our method does not store any information about already
visited states except for the trace of the currently executed random walk. If
the target state is found, the concrete trace (e.g. such as trace π1 from Sec-
tion 2) is returned (line 6); otherwise, the memory is released before a new
random walk is issued. The starting depth of the random walk (line 2) is
chosen arbitrarily as a sufficiently small number of steps that is reasonable to
explore in the model.

The flaw of such an analysis is its under-approximate nature of explo-
ration which does not allow to conclude on reachability if the target state has
never been found. However, the results of [1] hint that randomized reachabil-
ity analysis has a potential to provide substantial performance improvements
in comparison to existing model-checking techniques.

An already existing method – SMC – tries to give valid statistical predic-
tions based on the stochastic semantics. SMC is very similar to the random-
ized method as it performs cheap, non-exhaustive simulations of the model.
In cases where symbolic model-checking techniques of Uppaal are expen-
sive or even inconclusive (for stopwatch automata), SMC is often used as a
remedy to provide concrete traces to target states. The stochastic semantics
SMC operates on allows for a model to mimic the behavior of a real system;
however, this may not be efficient for reachability checking. Consider the
timed automaton model in Figure B.2 with the Goal location representing the
target state we want to discover. The guard x<=1 on the edge leading to Goal

requires clock x to be at most of 1 time unit. According to the stochastic
semantics, at the starting location Init SMC would select a delay uniformly
in range [0, 1000], which is bounded by the invariant x<=1000. This leaves a
probability of 1

1000 to discover Goal in 1 step; Alternatively, the “loop” edge is
taken which resets clock x with the update x=0 thus resetting all the progress
back to the initial state.

Fig. B.2: Timed Automaton model with a Goal target state.

We aim to improve the efficiency of detecting safety violations with our
new randomized method by experimenting with several different random-
ized heuristics and examining their efficiency through an extensive experi-
mental evaluation. A heuristic in this case dictates how a random walk is

77

Paper B.

Table B.2: Randomized reachability analysis heuristics.

Acronym Name Origin Status

SEM Semantic exploration New Implemented in Uppaal

RET Random Enabled Transition [1] Implemented in Uppaal

RLC Random Least Coverage New Implemented in Uppaal

RLC-A Random Least Coverage
Accumulative

New Implemented in Uppaal

performed, i.e. how delays and transitions are chosen. The summary of the
heuristics and their status is given in Table B.2. We emphasize attention on
the fact that in our algorithm the order in which delays and transitions are
selected is reversed from that of SMC: we require selecting a target transition
first (line 11). The exact delay is then chosen only from that target tran-
sition’s range of available delays (line 12). Selecting a transition first makes
exploration of the state space more uniform and removes a bias towards tran-
sitions with larger availability range. The mechanism for choosing delays is
common between the heuristics presented below and will be described later
in this section. We now explain each heuristic in detail.

SEM An intuitive heuristic we tried, denoted as SEM, is based on the natu-
ral semantic exploration of the system. Note that this heuristic is an exception
from the delay and transition selection order that was proposed earlier: here,
similarly to SMC, delay is selected first, meaning that lines 11 and 12 are
switched. In SEM, a meaningful delay, i.e. a delay that leads to an enabled
transition, is selected uniformly at random and then a transition is picked
uniformly from those available after the chosen delay has been made. In
the model from Figure B.2, SEM would choose a delay uniformly from two
ranges – [0, 1] and [901, 1000], thus having a probability of 1

100 to reach Goal

in 1 step. Overall, we believe this heuristic will struggle the most in systems
where certain specific delays are required to reach a target state, e.g. delaying
exactly the lower or upper bound of the transition’s availability range.

The remaining three heuristics differ only in the implementation of the
transition selection method (line 11) which we now explain.

RET As a continuation of our work on randomized techniques from [1] we
implement them in Uppaal for both Timed and Stopwatch Automata. The
study proposed two different heuristics for selecting a target transition. A
heuristic denoted as RET (Random Enabled Transition) selects one of the
eventually enabled transitions, i.e. transitions that are either currently en-
abled or will become such after a delay, uniformly at random. This means
that at each step each transition is equally likely to be selected. When used in

78

3. Randomized Reachability Analysis

the model from Figure B.2, RET would first choose one of the two transitions
at random, having a probability of 1

2 to reach the Goal location in 1 step.

Fig. B.3: Timed Automaton model of a difficult case for the RET heuristic.

RLC, RLC-A Here we introduce a heuristic denoted as RLC that chooses an
eventually enabled transition with the least coverage for the sending edge, the
least coverage being an integer counter that increments every time an edge is
traversed. If there is more than one transition with the same least coverage,
RLC picks one uniformly at random. In systems that are cyclic or contain
multiple loops, RLC provides a more uniform exploration of the state space
which may be useful for some models. Consider the model from Figure B.3
that uses two integer variables i and j. The only initially available edge is
the bottom loop edge at the Init location which increments the variable i by
1 upon each traversal. Once i==2, the leftmost loop edge can be taken, re-
sulting in a reset of i and increment of j (i=0,j++). Crucially, if the variable
i is incremented above the value 2, the leftmost loop edge becomes perma-
nently unavailable. Hence, to reach Goal the leftmost edge has to be taken
as soon as it becomes available and at least 7 times (j>=7) in one run. Since
the coverage of the leftmost edge is always lower, the probability for RLC
heuristic to discover Goal in 1 random walk is 100% while for RET it is less
than 1%. The coverage counters, however, are reset at the start of a random
walk, making each subsequent run independent of the previous one. We also
experiment with a similar heuristic that does not reset the coverage counters
and instead keeps them shared among all of the random walks. We denote
such accumulative heuristic as RLC-A.

Other randomized methods investigated A number of tokenized heuris-
tics, inspired by [20], have been attempted with the intent of storing a small,
fixed number of tokens in a clever way to increase the likelihood of reach-
ing the target state faster. Unfortunately, as no considerable improvements
have been observed we decided to exclude these heuristics and leave them as
future work.

We have also tried using traces of symbolic MC of Uppaal from verifica-
tion of the Herschel-Planck model to guide the random walks towards the
target state. However, even with the RDFS search strategy, all of the symbolic
traces have appeared to be spurious due to the over-approximate analysis of

79

Paper B.

Table B.3: Delay probability distributions used for RET, RLC and RLC-A.

Sequence 1 2 3 4 5 6 7 8 9 10 11
Lower bound 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 40%

Uniform 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 20%
Upper bound 40% 30% 20% 10% 0% 100% 90% 80% 70% 60% 40%

stopwatch automata. Hence, we could not gain any useful insights with this
approach.

To reduce resource demands for the most expensive operation in a ran-
dom walk – computation of eventually enabled transitions – an alternative
heuristic to RET was used in [1] denoted as RCF (Random Channel First).
Instead of computing all eventually enabled transitions, RCF first randomly
picks a channel and only computes transitions labeled with that channel.
However, during implementation of these techniques in Uppaal it became
clear that the RCF does not give performance advantages over RET due to
the differences in the underlying data structures of Uppaal and the Java pro-
totype from [1]. Therefore, we got rid of the RCF heuristic.

Choosing delay A naive way of choosing delays – uniformly at random
from a given range – is likely to not be very efficient. While in some systems
that are either small or not sensitive to specific delay values reaching a tar-
get state can be doable, in more complex models such a strategy may not be
optimal. In [1] we experimented with a few different strategies for choosing
delay values, such as 1) uniformly at random, 2) based on predefined prob-
ability distribution and 3) based on changing (adapting) delay probability
distributions. The experiments have shown the first strategy to be the least ef-
ficient, whereas the third one has shown the most potential. Hence, we reuse
the third strategy here with slight modifications for RET, RLC and RLC-A
heuristics in the implementation of the SelectDelay method at line 12.

The idea behind the adaptive delay choice algorithm is the following: the
delays are drawn in accordance to some predefined delay probability distri-
bution which changes with each unsuccessful random walk. Such distribu-
tion, in this case, defines probability for lower bound (LB), upper bound (UB)
or the values in between the bounds to be chosen. For example, a distribu-
tion of 40% LB/40% UB means that it is equally probable that either LB or
UB will be selected as a delay, while leaving 20% chance for intermediate
delay to be chosen uniformly at random from the range that excludes the
bounds. Table B.3 shows the sequence delay probability distributions used
in this study. Upon reaching the last distribution in the sequence, the next
random walk starts from the first one.

Previously, the cycle of delay probability distributions did not leave any
room for intermediate time delays, considering only LB or UB values. The

80

3. Randomized Reachability Analysis

downside is that for some systems it means that parts of the state space
become unreachable by the algorithm; however, experiments have shown this
strategy to be surprisingly efficient. To eliminate the flaw of intermediate
delay values never being chosen, here we add a 40% LB/40% UB probability
distribution, leaving 20% chance to select an intermediate time value. As a
result, a target state, if one exists, will be eventually found in any system.

Random walk depth To explore the state space gradually and reduce the
risk of a random walk being stuck in an isolated part of the state space with
no target state, we increase the random walk depth dynamically as the ex-
ploration continues. Specifically, the first batch of random walks at most can
perform 24 steps. After the full cycle of delay probability distributions is
completed, the random walks in the next cycle have their maximum allowed
depth doubled, but no further than 218 steps. This approach is similar to a
well-known approach of periodically restarting random walks to increase the
performance. Should one have some apriori knowledge of the system, it is
also possible to manually set the maximum allowed depth in Uppaal that is
a constant value used for all of the conducted random walks.

Shorter or Faster trace Since our techniques cannot disprove reachability of
a target state due to under-approximate analysis, searching for errors in large
systems, where symbolic techniques struggle, is one of the main expected ap-
plications. To aid the developer in analyzing error traces and fixing systems,
we implement an option to search for an optimal trace being the either short-
est, in the size of steps, or the fastest, in the amount of total delay. With either
one of these options selected, the algorithm searches for the initial trace and
afterwards restricts all subsequent random walks to either the current small-
est amount of steps or total delay taken, respectively. The exact delay and
action transitions taken are recorded in DoDelay (line 13) and FireTran-
sition (line 14) functions, respectively. Every randomized heuristic can be
used with the shortest or fastest option and we refer to those by appending
“-S” or “-F”, e.g. RET-S.

In symbolic model-checking, searching for an optimal trace requires an
exhaustive exploration of the state space. Thus, for larger systems, it often
drastically increases time and memory demands up to an extent where it
becomes impractical. As opposed to that, our randomized techniques do not
require more memory as the old trace is being discarded as soon as the new,
more optimal one is discovered. On the down side, being a non-exhaustive
technique the randomized search cannot guarantee that any discovered trace
is indeed the most optimal, endlessly continuing the search. In Uppaal we
let the user provide a timeout value (in seconds) which is defaulted to 300
seconds and used as a budget for the main loop at line 3.

81

Paper B.

Fig. B.4: The concrete simulator in Uppaal

4 Usage in the tool Uppaal

This section gives an overview of some features of the Uppaal GUI w.r.t.
to our randomized methods. Many orthogonal features of the tool are not
covered here and we refer the reader to [3] for a comprehensive presentation.

Figure B.4 shows the editor tab of Uppaal. This is the view used to
create and edit the model of the system that is going to be analysed. On
the left under the Project folder one can see all the templates that are part
of the current model. In the right pane one of the templates, in this case the
task template BSW from the Herschel-Planck case study, is open for editing.
Finally the model also contains global declarations, declarations local to each
template and System Declarations that define the composition of templates
into the complete system. Apart from the editor tab there are also three other
tabs visible in this version of Uppaal. The Symbolic Simulator tab will not
be shown in this paper as it is not used for the randomized reachability
analysis. The two other tabs are explained in the following.

Uppaal supports a subset of the Timed Computation Tree Logic (TCTL)
as its specification language. This includes liveness, reachability and leads-
to queries. The methods described in this paper supports only reachability
queries of the form either Invariantly p (A[] p) or Possibly p (E<> p), where

82

4. Usage in the tool Uppaal

Fig. B.5: The concrete simulator in Uppaal

p is a formula over locations, variables and clocks. For formulas of the type
A[] p finding a trace represents a proof that the property p does not hold for
all states of the system, while for E<> p a trace represents a proof that p can
be true in some state of the system.

Figure B.5 shows the Verifier tab of Uppaal. In the Engine Options

menu the Exploration technique can be selected. By choosing Randomized

(Concrete) here the techniques from this paper are activated. By selecting
Randomized parameters the small pop-up shown on top of the screen will
appear. The first drop down selects the heuristic to use, while the last field
sets a timeout for the random exploration. The middle field sets the max-
imum depth used for the randomized exploration, with a pre-filled default
value of 218.

Apart from setting these option globally for all queries, it is also possible
to set them individually for each query. This makes it possible to operate
with a set of queries that can be used as a set of unit test or sanity checks that
can be performed quickly after changes to the model.

Figure B.6 show the concrete simulator of Uppaal, where concrete traces
obtained from running Algorithm 2 (line 6 can be displayed if the Diagnostic

Trace option is set to search for some trace. There is also a symbolic simula-
tor, but the traces generated by our randomized methods are concrete traces
and can as such only be loaded into the concrete simulator. The ability to
view the traces in lower left corner of the simulator and to step forwards or
backwards through such a trace is important in order to understand the trace
and the model. The graphical representation of the model shows the active

83

Paper B.

Fig. B.6: The concrete simulator in Uppaal

locations while the middle pane shows the values of all clocks and other vari-
ables. The options for finding shorter or faster traces are especially relevant
when trying to manually debug a model by looking at a trace. As an illustra-
tive example we show a trace where error = 1 for the Herschel-Planck case
study, thus indicating that a deadline violation has happened. The message
sequence chart in the bottom right corner can help in getting an overview of
the communication between different parts of the model.

5 Experimental Setting

All experiments have been conducted on various Timed and Stopwatch Au-
tomata models to demonstrate the efficiency of our methods. Sections 6 to 10
give more details about each type of the model. The experiments were ran on
a cluster with each instance given 16GB of memory. In tables, we write ‘oom’
for experiments that ran out of memory and ‘nf’ for cases where concrete wit-
nessing traces were not found within the given time. All of the models used
in this study can be found online at github, except for the models of an op-
erating system from Section 10.

Symbolic, SMC and randomized methods are available in the newest re-

84

https://github.com/DEIS-Tools/uppaal-models/tree/master/CaseStudies/RandomizedReachability2021

5. Experimental Setting

lease of Uppaal Stratego at https://uppaal.org/downloads/. The release
comes with the executable and the GUI, the latter of which can be used to
open models, change them and perform verification as shown in Section 4.

Reproducibility In order to facilitate reproducibility of experiments, we
now explain the procedure of obtaining the experimental results presented in
this study. The tables were produced by running the Uppaal executable from
a terminal and measuring the execution time. Since both the SMC and ran-
domized methods may significantly vary in execution times among different
replicas of the same experiment, the data shown for these methods in each
cell of Tables 4, 6-10 is the average of 100 runs. Therefore, an exact repro-
duction of the tables is very unlikely. Table 5 is an exception where each cell
constitutes a single run. For symbolic, deterministic algorithms we perform
only 1 execution.

While the Uppaal GUI automatically takes care of passing necessary in-
structions to the engine based on selected options, directly running the en-
gine executable accepts a number of arguments that will determine which
methods and under which settings will be executed. The engine executable
is named verifyta and is contained in the bin folder of the Uppaal release.
All of the possible arguments can be viewed in the help menu accessible
by running the executable with -h argument. The usage of the engine is
the following: verifyta [OPTION]... MODEL QUERY, where OPTION is a space
separated list of arguments and MODEL is a path to the model file. QUERY is an
optional argument specifying the path to the query file; however, the neces-
sary query is already specified inside each model file in github and therefore
no query files are provided. We now provide the arguments necessary to
re-run the experiments from this study.

Selecting the search order (BFS, DFS or RDFS) for symbolic methods is
determined by the -o arg where arg is one of the following:

• 0: BFS (Breadth First Search) (Default)

• 1: DFS (Depth First Search)

• 2: RDFS (Random Depth First Search)

To select the randomized state space exploration it is necessary to specify
the exploration type with --exploration arg where arg is:

• 0: Exhaustive (Symbolic) (Default)

• 1: Randomized (Concrete)

Altering the randomized heuristic is achieved with --rand-heur arg where
arg is:

85

https://uppaal.org/downloads/
https://github.com/DEIS-Tools/uppaal-models/tree/master/CaseStudies/RandomizedReachability2021

Paper B.

• 0: RET (Random Enabled Transition) (Default)

• 1: RLC (Random Least Coverage)

• 2: RLC-A (Random Least Coverage Acc.)

• 4: SEM (Naive Semantic Exploration)

The depth of the random walks and the timeout for randomized explo-
ration is controlled with --rdepth arg and --rtimeout arg arguments, re-
spectively, where arg is a positive integer. Finally, to enable generation of the
diagnostic trace, pass the -t arg argument with arg being:

• 0: Some (first trace found)

• 1: Shortest

• 2: Fastest

The procedure of running experiments on different platforms (Linux/Ma-
cOS/Windows) is the same in regards to the argument usage. Here are two
example commands for running experiments on Linux, assuming the engine
executable verifyta and the model being in the same folder:

• ./verifyta -o 2 model.xml

Runs RDFS on “model.xml”.

• ./verifyta --exploration 1 --rand-heur 4 --rdepth 1000

model.xml

Runs SEM with a fixed exploration depth of 1000 on “model.xml”.

• ./verifyta --exploration 1 --rand-heur 0 --rtimeout 3600 -t 1

model.xml

Runs RET with 1 hour timeout, searching for the "shortest" trace in
“model.xml”.

In order to use SMC methods, it is necessary to verify SMC specific
queries [17]. The models with those queries are available at github in the
folders with "SMC" prefix. It is also possible to specify options for SMC
search (e.g. confidence interval for probability estimation), however in this
study we use SMC only for simulation until a single counterexample trace is
found and thus no options are required.

Figure B.7 can be reproduced by running RET-S method on the Herschel-
Planck model with f = 75% and a timeout of 20 minutes and plotting the
output data from the Uppaal engine. Each time a shorter trace is found,
a corresponding printout is issued by the executable with the new, smaller
depth and the time it took to find that trace.

86

https://github.com/DEIS-Tools/uppaal-models/tree/master/CaseStudies/RandomizedReachability2021

6. New Results on Herschel-Planck

Table B.4: Average time to detect non-schedulability in Herschel-Planck (in seconds). SMC
search is limited to 160, 640 or 1280 cycles of 250ms. Each cell shows an average of 100 runs,
each with a timeout of 48 hours.

f (%) SMC(160) SMC(640) SMC(1280) SEM RET RLC RLC-A

68 3378.82 3656.0 2626.11 nf 14.1 14.35 14.48
69 6087.64 3258.13 3565.49 nf 15.91 14.32 13.7
70 19408.04 16875.89 24322.69 nf 17.59 14.47 14.77
71 85837.23 nf nf nf 22.54 16.56 16.75
72 nf nf nf nf 27.81 18.42 18.96
73 nf nf nf nf 31.56 20.66 20.68
74 nf nf nf nf 52.53 38.08 40.31
75 nf nf nf nf 72.16 61.98 68.35
76 nf nf nf nf 83.12 328.03 327.32
77 nf nf nf nf 375.08 nf nf
78 nf nf nf nf 1155.50 nf nf
79 nf nf nf nf 2009.01 nf nf
80 nf nf nf nf 11194.43 nf nf
81 nf nf nf nf nf nf nf

6 New Results on Herschel-Planck

According to the previous results on Herschel-Planck model [11], symbolic
MC confirmed schedulability for f = BCET

WCET ≥ 90%. However, symbolic MC
cannot be used for disproving schedulability due to over-approximate anal-
ysis of automata with stopwatches, used to encode preemption. Thus, SMC
was used to generate concrete counterexamples, disproving schedulability
for f ≤ 71%. For the rest of f ∈ (71%, 90%) both symbolic and statistical
MC were inconclusive either due to over-approximation or due to burden in
computation time, respectively.

In our experiments we compare SMC to our randomized reachability
analysis techniques in an attempt to detect non-schedulability in the Herschel-
Planck model with varying execution times in the interval of [f ·WCET, WCET].
The results are shown in Table B.4 with each test case given 48 hours. As the
f value gets higher we see the expected growth in computational demands
with f = 71% requiring just under 24 hours for SMC to disprove schedu-
lability, confirming results of [11]. On the other hand, 3 out of 4 of our
randomized heuristics were able to detect an error for the same setting of
f = 71% in less than 23 seconds, improving on performance of SMC by three
orders of magnitude. Furthermore, the RET heuristic appeared to give the
best results, witnessing unschedulability for values of f up to and includ-
ing 80%. We have also tried running longer experiments of up to 7 days for
f = 81%, but no errors were discovered which hints at the possibility of the

87

Paper B.

Table B.5: Trace length comparison.

f(%) RET RET-S Timeout

68 6882 560 1h
69 7619 568 1h
70 8285 572 1h
71 10411 570 1h
72 12394 571 1h
73 15937 578 1h
74 26605 1549 1h
75 41003 1546 1h
76 40154 1529 1h
77 97258 1536 1h
78 119939 1540 5h
79 129387 1536 5h
80 145493 6455 20h

Herschel-Planck system being schedulable for f > 80%. The SEM heuristic
turned out to be the least efficient one, failing to discover any errors, which
is likely due to the exponentially small probability of hitting the “right” time
windows with the chosen delays. Overall, these experiments showcase the
strength of the randomized reachability analysis being fit as a part of an effi-
cient development process that speeds up falsification of models.

5*103

10*103

15*103

20*103

25*103

30*103

35*103

 0 200 400 600 800 1000

Tr
a
ce

 l
e
n
g

th

Time (in sec)

T

T T T T

Fig. B.7: 10 runs of RET-S for Herschel with f = 75%.

Once a trace leading to an error is discovered, it might be in the interest
of a developer to analyze it to find the cause for the error. The trace, how-
ever, can be arbitrarily long, especially for larger systems, making its analysis
difficult in practice. In our next experiment we look at the average length of
traces found for the Herschel-Planck system and compare the RET heuristic
from experiments in Table B.4 against the version of RET with the shortest

88

7. More Schedulability

trace option enabled - RET-S. In order for a non-exhaustive exploration of
RET-S to terminate, we specify the timeout value and increase it w.r.t. to
the average time required by RET to find an error. The results are shown in
Table B.5. With the given timeout, RET-S shortens the length of the trace by
a factor of 12 at minimum. Note that for f ∈ [75%, 79%] the length of the
shortest discovered trace is approximately the same – just under 1600 – while
the effort to discover such trace is roughly proportional to the average time
to detect the first trace (as shown in Table B.4).

The exact value of the timeout has to be decided on by the user which
may not be an easy parameter to estimate in the setting of randomized and
unpredictable exploration. To better understand how RET-S behaves, we plot
10 runs of RET-S for the Herschel-Planck system with f = 75% in Figure B.7.
In average it took 263.14 seconds to find a trace of sub 1600 steps, while the
longest run took 970 seconds.

7 More Schedulability

As already stated, application of symbolic techniques to stopwatch models
may provide spurious traces due to over-approximate analysis of Uppaal.
If the target state in these models is potentially reachable, we can use SMC
to generate concrete and exact traces witnessing the reachability of the goal
state. However, SMC can only be applied to systems with broadcast channels
as required by the stochastic semantics SMC operates on. In stopwatch mod-
els that use handshake channels, our randomized methods become the only
solution that can perform a more exact reachability analysis.

Table B.6: Average time of 100 runs to find target state in stopwatch automata models, with a
timeout of 2 hours for each run. Symbolic MC techniques provide potentially spurious traces.

Model #loc BFS DFS RDFS SMC SEM RET RLC RLC-A

IMAOptim-0 88 0.09 0.1 0.07 0.04 0.07 0.1 0.1 0.08
IMAOptim-1 88 0.21 0.2 0.08 0.05 0.05 0.08 0.08 0.06
IMAOptim-2 88 0.21 0.26 0.09 0.06 0.08 0.11 0.11 0.1
md5-jop 594 0.25 10.8 6.53 n/a 0.15 0.18 0.18 0.12
md5-hvmimp 476 0.41 0.85 0.49 n/a 0.1 0.14 0.14 0.09
md5-hvmexp 11901 oom oom oom n/a 14.17 19.85 20.18 8.71
MP-jop 371 0.39 0.14 0.12 n/a 0.08 0.12 0.12 0.09
MP-hvmimp 371 0.35 0.14 0.12 n/a 0.08 0.12 0.12 0.09
MP-hvmexp 4388 oom oom oom n/a 13.49 22.95 21.99 8.59
simplerts-opt 409 oom oom oom n/a 2.43 1.48 nf nf

We consider more schedulability systems modelled as stopwatch automata.
Table B.6 shows experiments for two different sets of schedulability prob-

89

Paper B.

lems: ARINC-653 partition scheduling of integrated modular avionics sys-
tems [21] (denoted as IMAOptim) and Java bytecode systems, originating
from TetaSARTS project [22], that are encoded as networks of automata and
represent the original layered structure of Java bytecode systems. Our ran-
domized methods discover the target state within 20 seconds even for a huge
system with almost 12 thousands of locations, where other techniques either
are not applicable or run out of memory.

8 Gossiping Girls

As claimed earlier, the randomized reachability analysis can serve as a useful
tool particularly for an efficient development process. It can be used early in
the development, as well as in late stages, for a quick falsification of models,
i.e. discovery of safety violations as reachability of error states.

To test the efficiency of our randomized methods and challenge them with
different model development styles, we look at models of the same problem
created by different developers. Specifically, we consider the Gossiping Girls
problem, where a number of girls n each know a distinct secret and wish
to share it with the rest of the girls. They can do so by calling each other
and exchanging either only their initial or all of currently known secrets. The
girls are organized as a total graph, allowing them to talk with each other
concurrently, but with a maximum of 2 girls per call. Some variations of the
problem have specific time constraints on the duration of the call or exhibit
a different secret exchange pattern, but all with the same final goal of all
the girls discovering all of the secrets. This is a combinatorial problem with
each girl having a string of n bits which can at most take 2n values. For a
total of n girls this amounts to a string of n2 with at most 2n2

values. This
makes it an incredibly hard combinatorial problem which, when scaled up,
quickly exposes the limits of symbolic model-checking due to the state space
explosion problem.

We have gathered 10 models of the Gossiping Girls problem made by
Master’s thesis students as the final assignment for the course on model-
checking at Aalborg University in Denmark. These students represent poten-
tial future model developers and we use their model to further experiment on
applicability of the randomized methods. The implementation details vary
from model to model, including timing constraints and secret exchange pat-
terns. We leave the models unchanged and only scale them up to a certain
amount of nodes to challenge both symbolic and randomized methods.

We first experiment on the models scaled up to 8 girls and look for a
state with of all the girls having exchanged their secrets, while bounded by
a certain global time constraint. The results are shown in Table B.7 where
each cell represents the average time of 100 runs, with the timeout of 2 hours

90

8. Gossiping Girls

Table B.7: Gossiping Girls with 8 nodes. Each cell represents the average time of 100 runs in
seconds, with each run limited to 2 hours. Searching for a state with all secrets shared within a
certain time.

Model BFS DFS RDFS SEM RET RLC RLC-A
Gosgirls-1 oom oom 697.13 nf 0.39 6949.95 nf
Gosgirls-2 oom oom 0.02 nf 0.04 0.04 0.04
Gosgirls-3 oom oom 44.49 nf 0.02 0.02 0.09
Gosgirls-4 oom oom 28.35 nf 0.03 0.03 nf
Gosgirls-5 oom oom 229.98 nf 0.02 0.02 0.02
Gosgirls-6 oom oom 64.00 nf 3.71 167.44 1530.99
Gosgirls-7 oom oom 55.61 nf 0.17 15.16 15.6
Gosgirls-8 oom oom 13.96 nf 0.04 0.03 0.03
Gosgirls-9 oom oom 2.08 nf 0.08 0.07 0.08

Gosgirls-10 oom oom 598.64 nf 0.24 1.72 nf

Table B.8: Gossiping Girls with 6 nodes. Each cell represents the average time of 100 runs in
seconds, with each run limited to 2 hours. Searching for a particular configuration of secrets
known.

Model BFS DFS RDFS SEM RET RLC RLC-A
Gosgirls-1 16.98 oom oom 2.17 1.35 1.60 0.23
Gosgirls-2 0.04 oom 360.43 0.04 0.04 0.04 0.04
Gosgirls-3 77.96 oom oom nf 1.44 0.19 0.10
Gosgirls-4 oom oom oom nf 0.03 0.02 nf
Gosgirls-5 oom oom oom nf 0.02 0.02 0.02
Gosgirls-6 oom 244.66 2596.62 5.92 7.10 nf nf
Gosgirls-7 oom oom oom nf 0.14 75.44 141.20
Gosgirls-8 32.63 oom oom nf 0.11 3.24 505.99
Gosgirls-9 oom oom 199.77 0.10 13.04 3.65 2.07

Gosgirls-10 oom oom 209.36 nf 0.02 0.03 0.04

for each run. For 9 out of 10 of the models our randomized heuristic RET
shows a massive improvement in performance compared to symbolic meth-
ods, whereas in 1 model the performance is on the same level. Since the
problem is time constrained, the worst performance is that of SEM heuris-
tic which fails to find the target state due to an inefficient way of selecting
delays. Importantly, for some models some of the RDFS runs were “lucky”
to discover the target state almost immediately, while other “unlucky” tries
instead ran out of memory (oom). The oom attempts of RDFS contribute to
the performance by noticeably dragging up the average time to find the goal
state. Another important factor is memory: unlike symbolic methods, that
are given 16GB of memory, our randomized techniques do not run out of
memory as its usage is constant w.r.t to the size of the model and amounts to
at most 14MB for any of the heuristics for this set of experiments.

91

Paper B.

Discovery of the state where all the secrets are known is arguably an
easy target as such state will eventually always appear as we traverse the
state space. This also explains why RDFS was sometimes “lucky” to detect
the searched state before it ran out of memory. We now experiment with
searching for a particular configuration of secrets in models with 6 girls and
show results in Table B.8. Concretely, we divide the 6 girls into two clusters
of 2 and 4 girls, and search for a state where each girl knows all the secrets
of the other girls in the same cluster, but none from the other cluster. Such
a state occurs less often in the state space and is easy to miss, making it a
more challenging problem; hence, only 6 girls are considered. Unlike in the
previous experiments, the most efficient symbolic search strategy is different
for each individual model due to the variance in model implementations. The
randomized methods appear largely superior in almost all cases, with the
RET heuristic being the most consistent and efficient across all the models.
Note that even for 6 girls in a lot of the cases symbolic techniques still run
out of memory, whereas our random methods use less than 15MB.

9 Scalability Experiments

We further investigate the efficiency of our randomized methods on a set
of standard Uppaal timed automata models. The models are scaled up in
order to challenge both symbolic and randomized techniques and the data
are provided in Table B.9. The results are truly impressive – randomized
methods perform up to 4 orders of magnitude faster and scale significantly
better.

Even though the SEM heuristic shows the best performance on many
models, its inefficient way of selecting delays causes it to completely miss
target states on some models as demonstrated by all of the experiments in
this study. Moreover, due to under-approximation, it is possible to construct
“evil” examples for any heuristic, rendering it inefficient. Therefore, we make
all of the heuristics available in Uppaal and provide a discussion on strengths
and limitations of the randomized reachability analysis in Section 11.

10 Operating System models

To further validate the strengths and weaknesses of our proposed methods,
we perform experiments on a large model of a research operating system
MCSmartOS [23] which is based on a micro-kernel architecture and provides
a set of features to the higher system layers. The Uppaal models for the
operating system have been developed by [24] as a network of Stopwatch
Automata (to model preemption). The models are limited to include a feature
set consisting of preemptive multitasking, priority-driven scheduling, task

92

10. Operating System models

Table B.9: Average time of 100 runs in seconds to find target state in Timed Automata within 2
hours per run.

Model BFS DFS RDFS SEM RET RLC RLC-A

csma-cd-20N 20.2 oom 0.02 0.03 0.07 0.06 0.21
csma-cd-22N 37.48 oom oom 0.03 0.08 0.08 0.31
csma-cd-25N 91.0 oom oom 0.05 0.09 0.1 0.55
csma-cd-30N 313.54 oom oom 0.05 0.12 0.19 1.43
csma-cd-50N oom oom oom 0.46 0.84 1.19 15.29
Fischer-10N 0.9 22.84 4.3 0.04 0.05 1.21 nf
Fischer-15N 8.35 6037.63 9038.96 0.09 0.09 5.06 nf
Fischer-20N 72.61 oom oom 0.3 0.28 17.28 nf
Fischer-25N 452.45 oom oom 0.64 0.73 36.93 nf
Fischer-50N oom oom 90.01 21.78 23.79 233.67 nf
FischerME-10N 7.15 0.14 0.02 0.01 0.02 0.01 0.02
FischerME-15N oom 11.45 0.05 0.04 0.04 0.03 0.16
FischerME-20N oom 970.33 0.4 0.11 0.09 0.05 0.04
FischerME-25N oom oom 83.29 0.25 0.21 0.08 0.07
FischerME-50N oom oom 174.32 14.87 15.26 0.49 4.04
LE-Chan-3N 0.03 0.35 0.04 0.01 0.01 0.01 0.01
LE-Chan-4N oom oom 107.7 0.95 0.54 4.36 0.07
LE-Chan-5N oom oom 1167.41 53.21 31.38 102.08 nf
LE-Hops-3N 0.02 0.02 0.02 0.01 0.01 0.01 0.01
LE-Hops-4N oom oom oom 49.40 14.57 428.96 1588.33
LE-Hops-5N oom oom 1108.15 63.44 35.15 36.49 49.00
Milner-N100 0.45 0.16 2.72 nf 0.11 0.11 0.12
Milner-N500 44.44 10.56 1619.75 nf 1.19 1.2 1.43
Milner-N1000 488.41 110.35 36455.73 nf 4.44 4.45 4.59
Train-200N oom 5.64 6.06 5.91 5.4 16699.98 nf
Train-300N oom 28.19 30.28 25.62 26.53 nf nf
Train-400N oom 85.22 90.66 67.91 70.87 nf nf
Train-500N oom 210.89 223.13 181.99 188.9 nf nf
Train-1000N nf 3461.17 3542.08 2192.12 2541.57 nf nf
Train-2000N nf 71286.92 oom 19229.02 23233.21 nf nf

synchronization, resource management, and time management. For more
details, including the models themselves, we refer the interested reader to
the mentioned paper.

Running symbolic and randomized methods produces the results shown
in Table B.10. SMC is not applicable due to presence of handshake commu-
nication between the components and RLC-ACC is not included in the Table
as it produced no results in given time. For larger models, e.g. with 5 tasks
and 3 resources (5T3R), randomized methods sometimes fail to discover the
target state within the time budget (denoted with italic font); such runs are
excluded from the average, indicating only the potential best-case average.
Overall, the performance of our randomized methods is significantly worse

93

Paper B.

Table B.10: Average time of 100 runs in seconds to find the target state in SWA models of the
MCSmartOS research operating system with 1 hour timeout per run. The numbers in italic
represent cases where some of the experiments have not produced any results (within 1 hour)
and are excluded from that average. The suffix -1k represents randomized methods limited to
1000 depth. Symbolic MC techniques provide potentially spurious traces.

Model BFS DFS RDFS SEM RET RLC SEM-1k RET-1k RLC-1k

OS-4T2R-Q1 3.75 4.13 0.81 492.77 326.49 1,161.65 4.35 3.47 9.54
OS-4T2R-Q2 13.02 4.14 0.46 160.85 184.23 280.97 4.20 1.85 1.99
OS-4T2R-Q3 12.90 3.99 0.45 222.72 158.55 250.33 2.91 1.46 1.54
OS-4T2R-Q4 4.34 3.25 0.27 54.34 45.49 89.87 1.11 0.72 0.70
OS-5T3R-Q1 63.32 550.49 33.12 1,571.20 1,428.50 1,273.75 69.47 49.69 85.56
OS-5T3R-Q2 337.89 550.74 20.58 1,708.53 1,360.02 1,824.89 99.94 47.53 79.29
OS-5T3R-Q3 337.16 368.22 18.08 1,594.32 1,575.52 1,370.53 94.31 42.90 76.22
OS-5T3R-Q4 73.08 157.79 8.63 942.57 1,074.10 1,314.64 28.81 11.85 27.68

than that of symbolic methods, especially of a clearly dominant RDFS. We
assume two potential reasons for that: (1) spurious traces of SWA automata
that are found quickly, but do not exist in the actual state space, and (2) the
randomized methods stumbling upon combination locks that we describe in
Section 11. In the first case (1) and similarly to Section 7, our methods yield
concrete and non-spurious traces, guaranteeing their existence in the model.
To improve against potential combination locks (2), we perform experiments
with randomized methods limited to a predefined depth of a 1000, denoting
each heuristic with a suffix -1k. This greatly increases performance and now
all experiments find the goal state. However, the performance is still worse
than that of symbolic counterparts. Randomized methods are clearly not a
panacea and we now discuss their limitations.

11 Strengths and limitations

In this section we elaborate on limitations and strengths of our randomized
reachability analysis that we have observed during various phases of experi-
ments. Note that the list may not be complete, but should give a good idea
on expectations when using methods.

“Hitting” exact delay

One of the main weaknesses for all of the presented heuristics are models
where a “wrong” delay choice in one state influences the availability of tran-
sitions in the following steps. Consider the automaton in Figure B.8 that has
two clocks - x and y. Regardless of the previous delay choices, the maximum
possible delay at location Mid will always be exactly 1 due to update y=0

and invariant y<=1. Since the transition leading to the Goal requires clock x

94

11. Strengths and limitations

∈ [3; 4] (x>=3 && x <= 4), it is clear that the delay choice made at location
Init must be in range [2; 4] for the Goal to be discoverable.

However, none of our heuristics are able to deduce this information be-
fore getting to the location Mid. The probability for RET, RLC or RLC-ACC
to detect Goal in a single run then amounts to 1

11 · 0.2 · 4−2
10−0 = 0.364%, where

the first fraction comes from only 1 out of 11 random walks being allowed to
do a uniform delay choice, but only at a 20% probability. This would require
an average of 275 random walks to detect the goal. For SEM this probability
constitutes 20% as each random walk is guaranteed to perform a uniform
choice of delay; nonetheless, with large possible delay value intervals and
potentially large number of such choices on the way, the probability to dis-
cover the target state can become so small that it will be practically infeasible.
In such cases, running symbolic methods with sufficient memory is likely to
detect the goal state faster.

This indicates that the way of modelling the problem can severely affect
the efficiency of the methods to find concrete witnessing traces. We believe
this can be a reason why different models in Table B.8 have been success-
fully verified by seemingly random methods (both symbolic and concrete),
without any of the methods being clearly dominant.

In order to maximize the performance of randomized methods one should
focus on creating models such that the invariants on the location would not
be able to limit time progression that disallows delaying “enough” to enable
an edge. An easy solution for Figure B.8 would be to introduce an extra
edge from Init to Mid, such that the allowed ranges for clock x would be
[0; 2) on one and (4; 10] on the other edge. This would reduce the problem
to selecting the right combination of delaying either LB or UB, which is what
our randomized heuristics are designed to be good at.

Fig. B.8: Timed Automaton model of a difficult case for any heuristic.

Combination locks

The general disadvantage of randomized and under-approximate methods is
their weakness to combination locks - cases where only a particular sequence
of delays and transitions leads to the target state, while any deviation from
that sequence potentially resets the whole progress. Storing no passed states
means that the probability of each separate random walk to detect the goal
state does not increase over time.

95

Paper B.

A hard combination lock will typically require not only a consistently
accurate choice of delays (as described above) and/or transitions, but also a
“correct” configuration of discrete variables, enabling transitions that lead to
the target state. Achieving such “correct” configuration of discrete variables
can in itself be considered a combination lock, and so on. In such cases, our
randomized methods will be easily surpassed by symbolic methods, as long
as sufficient amount of memory is provided.

Depth of exploration

Just like with any other method, limiting the depth of exploration signifi-
cantly reduces resource demands for verification. This is particularly relevant
for randomized heuristics as they do not store passed states.

The main advantage of our methods lays in conducting large amounts of
state space traversals in a short time, such that even the very unlikely events
eventually are discovered. This is likely the main reason why the simplest
heuristics (like SEM) often show surprisingly good performance – they are
much cheaper and therefore can be executed more times in the same time
period.

In large cyclic systems, randomized methods suffer from spending a sub-
stantial amount of time in unpromising parts of the state space, e.g. after
some “wrong” choice was made that prevents the discovery of the target
state. Iterative deepening of the search, described in Section 3, is a partial so-
lution to this problem that lets the model be explored with limited depth of
the search before committing to long and demanding random walks. An easy
way to improve the performance of randomized methods for large systems
is to specify a rough (over-approximated) estimate of the search depth. Such
an estimate could come from the depth of previously detected errors during
iterative model development. In many of our experiments we have observed
the performance benefit of specifying an estimate of the search depth as can
be seen in the results of Table B.10. We also note that even though it is (cur-
rently) not possible to directly limit the search depth for symbolic methods
in Uppaal, one may use a modelling trick e.g. a local step counter or an extra
component that halts the model after the desired amount of steps.

Summary

We emphasize that our randomized reachability methods should be used
as a supplemental method to symbolic verification and as a convenient tool
for quick checking of the model’s intended behavior. The advantage of our
methods is most prominent for models with a very large state space where
the potential benefits of saving time and memory are the highest or where
traditional symbolic methods do not terminate.

96

12. Conclusion

There are models where detection of target states can be practically infea-
sible with our methods. However, we believe that such “difficult” models are
not frequent in practice and that our non-uniform sampling of the automata
language is “guided” towards safety violation states that are often modelled
to be at LB or UB of transition availability ranges.

12 Conclusion

We have presented a new method of randomized reachability analysis in the
domain of model-based verification. The method excels at detection of safety
violation states, by means of quick and lightweight random walks through
the system. Randomized reachability analysis explores the state space in an
under-approximate manner and can only conclude on reachability if the tar-
get state is discovered. However, in many cases this method significantly out-
performs other existing techniques at reachability checking. Unfortunately,
our randomized methods are not a panacea and for some models reachability
checking may be impracticable due to e.g. combination locks. Randomized
reachability analysis should therefore be treated as a very useful addition to
the process of model development: it provides an efficient way of checking
models for potential bugs or violations during the development and can be
followed by exhaustive and expensive symbolic verification at the very end.
The randomized method also supports the search for either shorter or faster
trace to the target state, which improves the process of debugging the model.
The randomized reachability analysis is implemented and made available for
use in the model checker Uppaal.

To validate the efficiency of our method, we have performed extensive
experiments on models of varying size and origin. The results are extremely
encouraging: randomized reachability analysis discovers safety violations up
to several orders of magnitude faster. In particular, a case that could previ-
ously be analyzed by SMC in 23 hours now only takes 23 seconds. Moreover,
our randomized methods discover traces to target states in cases that were
previously intractable by any of the existing techniques either due to state
space explosion or inconclusiveness in verification of stopwatch models.

13 Future Work

Further investigations into tokenized, coverage-based and guided methods
can be done to improve the efficiency of the method. Some combinations of
static analysis of the models with either fixed or dynamic look-ahead for the
random walk could result in better performance of the method.

One future goal is to perform a more thorough and independent user
evaluation of the benefits of the randomized reachability analysis. This could

97

References

indicate the need for more parameters to be manually set by the user, such
as custom delay probability distribution, or could highlight other areas for
improvement of randomized methods.

Even though heuristics like RET aim at the equal probability of traversing
transition of a current state, by disregarding “width” of guards, they give
no guarantees regarding the uniformity of the exploration with respect to
the language inclusion measurement. This, however, has been demonstrated
possible by [25] and could be an interesting direction for the future work as
to guide the search towards the least explored areas of the state space as a
mean of discovering the target states hidden behind combination locks.

Automatic sanity checks is another improvement that can noticeably en-
hance the user experience and aid during model development. An imple-
mentation [26] for Uppaal of such sanity checks has been undertaken as a
master thesis project [27] in the Formal Methods & Tools group at Univer-
sity of Twente. This report demonstrates the usefulness of such sanity checks
and highlights the need for quick feedback to the tool user. Our randomized
method is highly suitable for this purpose.

14 Acknowledgments

This project is supported by the ERC Advanced Grant Project: LASSO: Learn-
ing, Analysis, Synthesis and Optimization of Cyber-Physical Systems, and by
the Villum Investigator project S4OS: Synthesis of Safe, Small, Secure and
Optimal Strategies for Cyber-Phyiscal Systems.

References

[1] A. Kiviriga, K. G. Larsen, and U. Nyman, “Randomized Refinement
Checking of Timed I/O Automata,” in Dependable Software Engineering.
Theories, Tools, and Applications, J. Pang and L. Zhang, Eds. Cham:
Springer International Publishing, 2020, pp. 70–88.

[2] R. Grosu and S. A. Smolka, “Monte Carlo Model Checking,” in Tools and
Algorithms for the Construction and Analysis of Systems, N. Halbwachs and
L. D. Zuck, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 271–286.

[3] G. Behrmann, A. David, and K. G. Larsen, “A Tutorial on Uppaal,” in
Formal Methods for the Design of Real-Time Systems, International School on
Formal Methods for the Design of Computer, Communication and Software
Systems, SFM-RT 2004, Bertinoro, Italy, September 13-18, 2004, Revised Lec-
tures, ser. Lecture Notes in Computer Science, M. Bernardo and F. Cor-
radini, Eds., vol. 3185. Springer, 2004, pp. 200–236.

98

References

[4] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time
System,” The Computer Journal, vol. 29, no. 5, pp. 390–395, 01 1986.
[Online]. Available: https://doi.org/10.1093/comjnl/29.5.390

[5] A. Burns, Preemptive Priority-Based Scheduling: An Appropriate Engineering
Approach. USA: Prentice-Hall, Inc., 1995, p. 225–248.

[6] A. Boudjadar, A. David, J. Kim, K. Larsen, M. Mikučionis, U. Nyman,
and A. Skou, “Statistical and exact schedulability analysis of hierarchical
scheduling systems,” Science of Computer Programming, vol. 127, pp. 103–
130, May 2016.

[7] ——, “A reconfigurable framework for compositional schedulability and
power analysis of hierarchical scheduling systems with frequency scal-
ing,” Science of Computer Programming, vol. 113, no. 3, p. 236–260, Dec.
2015.

[8] A. Brekling, M. R. Hansen, and J. Madsen, “Moves — a framework for
modelling and verifying embedded systems,” in 2009 International Con-
ference on Microelectronics - ICM, 2009, pp. 149–152.

[9] M. Mikučionis, K. G. Larsen, J. I. Rasmussen, B. Nielsen, A. Skou, S. U.
Palm, J. S. Pedersen, and P. Hougaard, “Schedulability analysis using
uppaal: Herschel-planck case study,” in Leveraging Applications of For-
mal Methods, Verification, and Validation, T. Margaria and B. Steffen, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 175–190.

[10] A. David, J. Illum, K. G. Larsen, and A. Skou, “Model-based framework
for schedulability analysis using uppaal 4.1,” Model-based design for em-
bedded systems, vol. 1, no. 1, pp. 93–119, 2009.

[11] A. David, K. G. Larsen, A. Legay, and M. Mikučionis, “Schedulabil-
ity of Herschel-Planck Revisited Using Statistical Model Checking,” in
Leveraging Applications of Formal Methods, Verification and Validation. Ap-
plications and Case Studies, T. Margaria and B. Steffen, Eds. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2012, pp. 293–307.

[12] S. Palm, “Herschel-planck acc asw: sizing, timing and schedulability
analysis,” Tech. rep., Terma A/S, Tech. Rep., 2006.

[13] F. Cassez and K. Larsen, “The impressive power of stopwatches,” in
CONCUR 2000 — Concurrency Theory, C. Palamidessi, Ed. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2000, pp. 138–152.

[14] E. Fersman, P. Krcal, P. Pettersson, and W. Yi, “Task automata:
Schedulability, decidability and undecidability,” Information and Compu-
tation, vol. 205, no. 8, pp. 1149–1172, 2007. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0890540107000089

99

https://doi.org/10.1093/comjnl/29.5.390
https://www.sciencedirect.com/science/article/pii/S0890540107000089
https://www.sciencedirect.com/science/article/pii/S0890540107000089

References

[15] K. Sen, M. Viswanathan, and G. Agha, “Statistical Model Checking of
Black-Box Probabilistic Systems,” in Computer Aided Verification, R. Alur
and D. A. Peled, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 202–215.

[16] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model checking: An
overview,” in Runtime Verification, H. Barringer, Y. Falcone, B. Finkbeiner,
K. Havelund, I. Lee, G. Pace, G. Roşu, O. Sokolsky, and N. Tillmann, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 122–135.

[17] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen,
“Uppaal SMC tutorial,” International Journal on Software Tools for Technol-
ogy Transfer, vol. 17, no. 4, pp. 397–415, 2015.

[18] R. Alur and D. Dill, “The theory of timed automata,” in Real-Time: Theory
in Practice, J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozen-
berg, Eds. Springer, 1992, pp. 45–73.

[19] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Priced timed au-
tomata: Algorithms and applications,” in Formal Methods for Components
and Objects, F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 162–182.

[20] K. Larsen, D. Peled, and S. Sedwards, “Memory-Efficient Tactics for Ran-
domized LTL Model Checking,” in Verified Software. Theories, Tools, and
Experiments, A. Paskevich and T. Wies, Eds. Cham: Springer Interna-
tional Publishing, 2017, pp. 152–169.

[21] Han, Pujie and Zhai, Zhengjun and Nielsen, Brian and Nyman,
Ulrik, “Model-based optimization of arinc-653 partition scheduling,”
International Journal on Software Tools for Technology Transfer, Feb 2021.
[Online]. Available: https://doi.org/10.1007/s10009-020-00597-6

[22] K. Søe Luckow, T. Bøgholm, and B. Thomsen, “A Flexible Schedulability
Analysis Tool for SCJ Programs,” http://people.cs.aau.dk/~boegholm/
tetasarts/, Accessed: 2021-05-07.

[23] R. Martins Gomes, M. Baunach, and L. Batista Ribeiro, “Mcsmartos: A
dependable os for compositional embedded systems,” Mar. 2017.

[24] L. Batista Ribeiro, F. Lorber, U. Nyman, K. G. Larsen, and M. Baunach,
“A modeling concept for formal verification of os-based compositional
software,” in Currently Under Review, ser. UnderReview’22. New York,
NY, USA: Association for Computing Machinery, 2022.

100

https://doi.org/10.1007/s10009-020-00597-6
http://people.cs.aau.dk/~boegholm/tetasarts/
http://people.cs.aau.dk/~boegholm/tetasarts/

References

[25] B. Barbot, N. Basset, M. Beunardeau, and M. Kwiatkowska, “Uni-
form sampling for timed automata with application to language inclu-
sion measurement,” in Quantitative Evaluation of Systems, G. Agha and
B. Van Houdt, Eds. Cham: Springer International Publishing, 2016, pp.
175–190.

[26] R. Onis, “UrPal,” https://github.com/utwente-fmt/UrPal, Accessed:
2021-05-18.

[27] R. Onis, “Does your model make sense? : Automatic verification
of timed systems,” December 2018. [Online]. Available: http:
//essay.utwente.nl/77031/

101

https://github.com/utwente-fmt/UrPal
http://essay.utwente.nl/77031/
http://essay.utwente.nl/77031/

References

102

Paper C

Monte Carlo Tree Search for Priced Timed Automata

Peter Gjøl Jensen, Andrej Kiviriga, Kim Guldstrand Larsen,
Ulrik Nyman, Adriana Mijačika and Jeppe Høiriis Mortensen

The paper has been published in the
Proceedings of the Quantitative Evaluation of Systems – QEST 2022

LNCS Vol. 13479, pp. 381–398, 2022.

© Springer Nature Switzerland AG 2022
The layout has been revised.

1. Introduction

Abstract

Priced timed automata (PTA) were introduced in the early 2000s to allow for generic
modelling of resource-consumption problems for systems with real-time constraints.
Optimal schedules for allocation of resources may here be recast as optimal reacha-
bility problems. In the setting of PTA this problem has been shown decidable and
efficient symbolic reachability algorithms have been developed. Moreover, PTA has
been successfully applied in a variety of applications. Still, we believe that using
techniques from the planning community may provide further improvements. Thus,
in this paper we consider exploiting Monte Carlo Tree Search (MCTS), adapting it
to problems formulated as PTA reachability problems. We evaluate our approach on
a large benchmark set of PTAs modelling either Task graph or Job-shop scheduling
problems. We discuss and implement different complete and incomplete exploration
policies and study their performance on the benchmark. In addition, we experiment
with both well-established and our novel MTCS-based optimizations of PTA and
study their impact. We compare our method to the existing symbolic optimal reach-
ability engines for PTAs and demonstrate that our method (1) finds near-optimal
plans, and (2) can construct plans for problems infeasible to solve with existing sym-
bolic planners for PTA.

1 Introduction

The world is full of planning and scheduling problems that have impact on
the real world. Finding optimal solutions for such problems can be of great
importance for profit maximization or resource minimization, affecting fi-
nancial success and sustainable development. In general such problems do
not just have one solution, but many solutions – with varying cost. These
scheduling problems are one sub-field within operations research, and lots
of effort has been put into finding both optimal and near optimal solutions
to them.

One technique that has been successfully applied to planning is that of
model checking, e.g. BDD based model checking [1]. For optimal planning
problems involving timing constraints, the notion of priced timed automata
was introduced in the early 2000s, with initial decidability results [2, 3] based
on so-called corner-point regions and later with efficient symbolic forward
reachability algorithms using so-called priced zones made available in the tool
Uppaal Cora. Here a generic and highly expressive modeling formalism is
provided, extending the classical notion of timed automata [4] with a cost-
variable (to be optimized), but also providing support for discrete variables
over structured (user-defined) types, as well as user-specified procedures [5].
In fact, the notion of PTA allows for an extension of Planning Domain Defi-
nition Language (PDDL) 2.1 at level 3 towards duration-dependent and con-

105

Paper C.

tinuous effects to be encoded as demonstrated by [6]. Most recently so-called
extrapolation techniques have been introduced for more efficient analysis of
PTA, implemented in the tool TiaMo [7].

Applications of PTA and Uppaal Cora are several and from a variety
of areas [8], e.g. power optimization of dataflow applications [9], battery
scheduling [10], planning of nano-satelites [11, 12], grape harvest logistic [13],
programmable logic controllers [14], smart grids [15], service oriented sys-
tems [16], and optimal multicore mapping of spreadsheets [17] to mention a
few.

Despite the success of PTA and Uppaal Cora, we still believe that the
performance may be improved by exploiting advances made by the plan-
ning community. Thus, we consider in this paper various ways of exploiting
Monte Carlo Tree Search (MCTS) to further improve performance of PTA
optimization. MCTS is a powerful technique that has seen application in
many domains requiring (near-) optimal planning, including problem in-
stances where the size of the search-space makes symbolic and complete
methods infeasible. In particular, MCTS [18] has already been applied di-
rectly to Job-shop [19] scheduling problems. We benchmark our implemen-
tations of MCTS based analysis of PTA on Job-shop and Task graph problems
and compare against the two tools Uppaal Cora [20] and TiaMo [7].

The rest of the paper is organized as follows: First we formally define
Priced Timed Automata, then we introduce a general formalization of Monte
Carlo Tree Search along with specific PTA policies. Finally we discuss addi-
tional enhancements and present our experimental evaluation.

2 Priced Timed Automata

The priced timed automaton [21] is an extension of timed automaton [4] with
prices on both locations and transitions. Delaying in locations entails a price
growth based on fixed price (cost) rate, while taking transitions is associated
with a fixed price. We now present the formal definition of priced time
automaton and its semantics based on [20].

Let C be a set of clocks. The set of constraints over clocks C, B(C), are
defined as the set of conjunctions of atomic constraints of the form x ▷◁ n,
where x ∈ C, ▷◁ ∈ {<,≤,=,>,≥} and n ∈ N≥0. Such constraints – guards
and invariants – allow to restrict the behavior w.r.t. the values of clocks. The
power set of C is denoted as 2(C).

Definition 15 (Priced Timed Automaton)
A Priced Timed Automaton (PTA) over clocks C and actions Act is repre-
sented as a tuple A = (L, l0, E, I, P) where:

• L is a finite set of locations,

106

2. Priced Timed Automata

• l0 ∈ L is the initial location,

• E ⊆ L×B(C)×Act× 2(C) × L is a set of edges where an edge connects
two locations and contains a guard, an action, and a set of clocks to be
reset,

• I : L→,B(C) is a set of location invariants, and

• P : (L ∪ E)→N assigns cost rates and cost increments to locations and
edges, respectively.

In the case of (l, g, a, r, l′) ∈ E, we write l
g,a,r−−→ l′. A clock valuation v over C

is a mapping v : C → R≥0 and RC denotes a set of all clock valuations. The
semantics of a PTA is defined in terms of a priced transition system:

Definition 16 (Priced Transition System)
A Priced Transition System (PTS) over actions Act is a tuple T = (S, s0, Σ,→)
where:

• S is a set of states

• s0 is an inital state,

• Σ = Act∪R≥0 is the set of labels, and

• →⊆ (S× Σ×R≥0 × S) is a set of labelled and priced transitions. We
write s a−→p s′ whenever (s, a, p, s′) ∈→.

Now a PTA A = (L, l0, E, I, P) defines a PTS TA = (S, s0, Σ,→), where the
set of states S are pairs (l, v), with l ∈ L is a location and v is a clock valuation
s.t. the invariant I(l) of l is satisfied by v, denoted v |= I(l).

There are two possible types of transitions between states: action transi-
tions and delay transitions. Action transitions are the result of following an
enabled edge in the PTA A. As a result, the destination location is activated
and the clocks in the reset set are set to zero, and the price of the transition
is given by the cost of the edge. Formally:

(l, v) a−→p (l′, v′) iff ∃(l, g, a, r, l′) ∈ E, such that

v |= g ∧ v′ = v[r] ∧ v′ |= I(l) ∧ p = P((l, g, a, r, l′))

where v[r] is the valuation given by v[r](x) = 0 if x ∈ r and v[r](x) = v(x)
otherwise.

Delay transitions allow the time to pass resulting in an increase of the
value of all clocks, but with no change of the location. The cost of a delay
transition is the product of the duration of the delay and the cost rate of the
active location. Formally:

(l, v) d−→p (l, v′) iff v′ = v + d ∧ v |= I(l) ∧ v′ |= I(l) ∧ p = d · P(l)

107

Paper C.

where v + d is the valuation given by (v + d)(x) = v(x) + d for all x. Finally,
the initial state is s0 = (l0, v0), where l0 is the initial location, and v0(x) = 0
for all clocks x. For networks of priced timed automata we use vectors of
locations and the cost rate of a vector is the sum of the cost rates of individual
locations.

Fig. C.1: Priced Timed Automata example

An example of a PTA is shown in Figure C.1 with clocks x and y and five
locations – ℓ0 (initial), ℓ1, ℓ2, ℓ3, and ℓg (goal), with cost rates P(ℓ0) = +5,
P(ℓ2) = +10 and P(ℓ3) = +1, and the cost of the edge from ℓ2 (ℓ3) to ℓg is
+1 (+7). Note that the invariant y = 0 in ℓ1 enforces that the location must be
left immediately. Below we show two example traces for the automaton:

π1 = (ℓ0, x = 0, y = 0) −→0 (ℓ1, x = 0, y = 0) −→0 (ℓ3, x = 0, y = 0)
2−→2 (ℓ3, x = 2, y = 2) −→7 (ℓg, x = 2, y = 2)

π2 = (ℓ0, x = 0, y = 0) 1.5−→7.5 (ℓ0, x = 1.5, y = 1.5) −→0 (ℓ1, x = 1.5, y = 0)

−→0 (ℓ2, x = 1.5, y = 0) 0.5−→5 (ℓ2, x = 2, y = 0.5) −→1 (ℓg, x = 2, y = 0.5)

We see that π1 reaches ℓg with a total cost of 2 + 7 = 9, whereas the reach-
ability cost of π2 is 7.5 + 5 + 1 = 13.5. In fact, among the infinitely many
traces that reach ℓg, π1 has the minimum cost. The question of cost-optimal
reachability was shown decidable by [2] and later proven to be PSPACE-
complete [22]. Here, extending the result for reachability of TAs in [23], it
is observed that a PTS semantics with natural-valued delays is complete for
PTAs with non-strict guards. Moreover, if k is the maximum constant to
which clocks are compared to in guards and invariants, it suffices to consider
delays no greater than k + 1. In short, in Definition 16 it suffices to consider
finite-state PTS with Σ = Act ∪N≤k+1

1 – as in the PTA of Figure C.1, where
k = 2.

These observations are crucial for our developments of non-symbolic MCTS-
based methods for optimal reachability of PTA as we shall see.

1N≤k+1 are all natural numbers less than or equal to k + 1.

108

3. Monte Carlo Tree Search

3 Monte Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a family of algorithms that has been in-
tensely studied in the last decades due to its high success in a range of do-
mains, in particular - game playing. MCTS works on a search tree that grows
in asymmetric fashion and in accordance to the results of random samples
(or heuristics) that are used to estimate the reward (potential) of the action
taken. The tree is iteratively expanded starting from the root node according
to four steps:

• Selection: Descend down the tree by selecting the best child according
to the chosen policy and until a first unexplored node is met. The
selection process typically tries to balance between exploration (visiting
promising nodes) and exploitation (visiting nodes with least visits).

• Expansion: Generate a successor of the given state according to the
chosen policy.

• Simulation: Estimate the reward of the expanded node by perform-
ing simulations, aka roll-outs until the terminal node is reached. Typi-
cally, the performance of the algorithm can be drastically improved by
a smart simulation strategy.

• Backpropagation: The estimated reward is "backed up" through the tree
to update reward estimates.

The first two steps (selection and expansion) are often referred to as tree
policy, whereas the simulation (roll-out) step is called default policy. The al-
gorithm does not have a predefined termination condition and is typically
running until either a computational budget (time, memory, etc.) is reached
or some different, domain-specific condition is met.

Some of the characteristics that have made MCTS popular in other do-
mains are particularly relevant in the setting of PTA. Tree policy allows one
to favor more promising regions of the model which over time leads to asym-
metric tree growth. This helps alleviate the state-space explosion – the most
prominent obstacle in model-checking. Moreover, MCTS being aheuristic –
easily applicable without the need for domain-specific knowledge – it can be
applied to any problem domain as long as it can be modelled as PTA.

We now introduce the formal definition of MCTS and then give the pseu-
docode of the algorithm – both adapted for the setting of PTA with non-strict
guards. Recall that for PTA A with non-strict guards and with maximum
constant k (to which clocks are compared) it suffices to consider the finite set
of labels Σ = Act∪N≤k+1 to get a finite and complete PTS FA. We let Σ∗ de-
note the language of finite (natural-valued and bounded) timed strings over
Σ and let ϵ ∈ Σ∗ denote the empty string.

109

Paper C.

By convention we let |ϵ| = 0 and otherwise define |a0 . . . an| = n to be the
length of a word. We denote by wi ∈ Σ the i’th index of the word w ∈ Σ∗.

A timed word w ∈ Σ∗ of a PTS T = (S, s0, Σ,→) is valid iff for n = |w| we
have:

s0
w0−→ s1

w1−→ . . . wn−→ sn+1

We let the function O : Σ∗ ⇀ S denote the outcome of such a valid trace
w be O(w) = sn+1. By convention we let O(ϵ) = s0.

Definition 17 (Search Tree)
We define ΥT = (N, n0,⇒) to be the search-tree for a natural- and bounded-
valued PTS T = (S, s0, Σ,→) as follows:

• N = Σ∗ is set of nodes,

• n0 = ϵ is the root node, and

• ⇒⊆ N × Σ× N is the transition relation such that (n, b, n′) ∈⇒ if and
only if nb = n′ with b ∈ Σ and (O(n), b, O(n′)) ∈→.

We delimit our attention to the most popular MCTS algorithm – the
upper confidence bound for trees (UCT) [24]. UCT uses upper confidence
bound (UCB1) formula as the tree policy, which addresses the exploration-
exploitation dilemma of selecting the most promising paths by treating it
as a multiarmed bandit problem. UCB1 makes a good candidate since it is
guaranteed to be within a constant factor of the best bound for regret.

Let us define the global functions of the MCTS algorithm. Let V : N →N

assign the number of node visits, Q : N → R assign the accumulative reward
of the node, P : N → N maps to the parent of a node s.t. P(n) = n′ where
n′ = nα and (n, α, n′) ∈⇒, and YX : N → P(N) defines all children of the
node that are valid according to the policy transition relation⇒

X
, s.t. YX(n) =

{n′ | n ⇒
X

n′}. The definitions for each policy and respective transition

relations are given in the following sections. Children are also partitioned
into unexplored (YU) and explored (YE) ones s.t. YX(n) = YU

X (n) ∪ YE
X(n)

and YU
X (n) ∩YE

X(n) = ∅.
Algorithm 3 gives a pseudocode for our PTA-adapted version of the UCT

algorithm. The selection strategy used is a standard UCT formula (line
26). The expected reward of a node, determined by the exploitation factor
QB

V(n′)
Q(n′) , is inversely proportional to the average cost found so far which is

normalized according to the currently best solution QB. The normalization
ensures the reward value to be in range between 0 and 1 and thus supports
domain (cost range) independence and eliminates the need for any prior
knowledge about the reward distribution, which is also apriori unknown for
PTAs. The significance of the exploration term is controlled by the value of
C constant.

110

3. Monte Carlo Tree Search

Algorithm 3 The UCT Algorithm. This is a PTA-adapted redefinition of the
Algorithm from [18].
1: function UctSearch(An initial state s0, a set of goal-states G, an empty set of solved nodes
S , an empty set of dead nodes D, and a Cp constant)

2: n0 ← s0
3: while budget remaining do
4: n← TreePolicy(n0, G, Cp,S ,D)
5: ∆← DefaultPolicy(n, G)
6: BackUp(n, ∆)
7: if O(n) ∈ G then
8: MarkSolved(n,S)
9: if O(n) ̸∈ G and Y(n) = ∅ then

10: Prune(n,D)
11: return BestChild(n0, 0, ∅,D)
12: function TreePolicy(n, G, Cp)
13: while O(n) ̸∈ G do
14: if YU

X (n) ̸= ∅ then
15: return Expand(n)
16: else
17: n← BestChild(n, Cp,S ,D)

18: return n
19: function Expand(n)
20: sample n′ ∈ YU

X (n)
21: V(n′) = Q(n′) = 0
22: YE

X(n
′) = ∅

23: add n′ to YE
X(n)

24: return n′

25: function BestChild(n, Cp,S ,D)

26: return argmax
n′∈YE

X (n)\(S∪D)
QB

V(n′)
Q(n′) + C

√
ln V(n)
V(n′)

27: function DefaultPolicy(n,G)
28: while n ̸∈ G and within roll-out budget and
29: YX(n) ̸= ∅ do
30: sample n′ ∈ YX(n) uniformly
31: n← n′

32: return reward for n
33: function BackUp(n, reward)
34: while n ̸= ϵ do
35: V(n)← V(n) + 1
36: Q(n)← Q(n) + reward
37: n← P(n)
38: function MarkSolved(n,S)
39: while n ∈ G or n′ ∈ S for all n′ ∈ YX(n) do
40: S ← S ∪ {n}
41: n← P(n)
42: function Prune(n,D)
43: if n ̸= ϵ and YX(n) = ∅ then
44: Prune(P(n))
45: D ← D ∪ {n}

111

Paper C.

Once a solution is found, we mark the given node terminal to avoid re-
exploration (lines 7 and 38-41). As long as the underlying search-tree is
complete (determined by the variant of ⇒

X
) , the algorithm is guaranteed

to (eventually) provide an optimal solution given that one exists.

4 General PTA Challenges

Infinite transition sequences:

MCTS algorithms have in large parts been developed for game playing, prob-
abilistic planning or other, typically finite, state-space problems. However, in
the setting of PTA, infinite transition sequences are possible, e.g. due to loops
in the model. First and foremost it means that traditional roll-outs, directed
at reward estimation, might never come to a halt. To overcome this problem
we introduce a maximum budget for a roll-out (line 28). An example of the
budget is an upper bound on maximum allowed steps that can be done in
the default policy before the simulation is terminated.

Reward evaluation:

In turn, capped roll-out length can pose a problem by introducing the need
to evaluate non-terminal states. Fortunately, PTA contains all the necessary
information needed to evaluate the current cost of any state, including non-
terminals. We evaluate and back-propagate the reward regardless of whether
the rollout has reached a terminal state.

‘Dead’ states:

Apart from infinite transition sequences, it is possible to encounter states
with no possible successors in PTA. In most MCTS algorithm domains such
no successor states are also terminal states; however, it is not necessarily the
case for PTA. This is an issue for UCT as it is not equipped to deal with such
dead states. In UCT, a dead state can be encountered either during expansion
or simulations step. For the latter we simply terminate the roll-out upon
reaching a dead state (line 29). In case of the former, if UCT expands into a
dead state, it must have highest so far expected reward. Simulating from a
dead state will not generate any new information, resulting in that state being
the best-so-far. To avoid computational overhead, we prune dead states and
their parent states from the search tree (lines 9 and 42-45) until no dead states
remain in the current branch of the tree.

112

5. Policies

5 Policies

In MCTS, the structure of the search tree is decided by the unfolding mecha-
nism of the tree policy. The same unfolding strategy is also used during the
simulation process of the default policy. In this section we discuss different
unfolding strategies that we refer to as policies. The specific choice of policy
can have a dramatic effect on the performance of MCTS (as we shall demon-
strate in the experiments). In particular, for PTA, the search-tree transition
function ⇒ for the PTA in Figure C.1 would for the state (ℓ0, x = 0, y = 0)
contain both the delay-action of 2 time units and the delay-action of 1 time
unit (which would be repeatable), leading to the exact same configuration
with the same total cost, namely (ℓ0, x = 2, y = 2) at cost 10.

We thus explore both incomplete and complete policies, all restrictions
over the full search-tree transition function⇒, with the latter category quar-
antining the existence of at least one optimal trace. Here, an incomplete
policy does not retain the entire search-tree and does not guarantee preser-
vation of an optimal solution. As the first policy, we introduce the Unit Delay
Policy.

Definition 18 (Unit Delay Policy)
The transition function ⇒

UDP
is given directly by ⇒

UDP
= (N × (Act ∪ {1}) ×

N)∩ ⇒.

While the UDP policy streamlines the application of delays, we observe a
decreasing probability to pick larger delays. A child node (in tree and default
policies) is chosen randomly between all available actions from that state and
a delay of a single time unit; consequently, the probability for sequential
choice of d unit-delay transitions at state s, i.e. delaying d time units, can be
captured as follows:

Pr(s, d) =
(

1
|Acts|+ 1

)d

where s ∈ S, d ∈ N and assuming that all actions Acts are available from
state s at all times. If a state has actions that are only valid after a certain
amount of time, then those actions are considerably less likely to be explored.
We anticipate that such a skewed construction of the tree severely affects the
ability of MCTS to find optimal solutions.

To alleviate this, we introduce a Delay Sampling policy (DSP) that allows
us to choose delays according to a more favorable probability distribution by
enforcing a particular structure where delay and action transitions are always
alternated. We also use this node layer alternation in the policies following
the DSP policy giving a clear cut between transitioning by delay or action.
Let X : S → P(N) be a function that given a state returns a set of natural-
valued delays w.r.t. to location-based constants, which includes the smallest

113

Paper C.

possible delay, the largest possible delay, and a certain amount of delays from
in between the bounds. We include only a subset of possible delays, which
is limited to contain at most 100 values and at most 30% of the number of
possible values (excluding bounds). The set of possible delays is selected in
an attempt to reduce potentially huge branching factor due to delay-actions
as to direct the search towards more cost-promising paths. Notice that X may
change with each subsequent execution of the algorithm, but will not change
during. Formally, DSP is defined as follows.

Definition 19 (Delay Sampling Policy)
The DSP policy ⇒

DSP
is defined s.t. if

(n, α, n′) ∈⇒ then (n, α, n′) ∈⇒
DSP

iff:

• n′ = na, a ∈ Act, n = n′′d, d ∈N, or

• n′ = nd, d ∈ X(O(n)), a ∈ Act and either n = ϵ or n = n′′a.

The policy solves the issue of uneven probability distribution for larger
delays. However, it is incomplete in the function X not guaranteeing preser-
vation of key delay values. In addition, we note that the policy still considers
a fair degree of delay values (up to 100), quickly leading to a significant de-
gree of branching in the search-tree.

As an alternative, we introduce a policy with the behavior inspired by
Non-lazy schedules of [25]. The idea behind non-laziness is to avoid unnec-
essary simultaneous idling of both jobs and corresponding resources. If the
resource is available, the job should claim the resource unless some other job
can also use it. In the latter case, the first job can be delayed to ‘pass’ the
resource to the second job. We do not give the formal definition of Non-lazy
schedules here to maintain readability and refer the interested reader to the
mentioned paper for more details.

We introduce our Non-Lazy policy with delays restricted to being either
zero, to mimic no delay, or a non-lazy delay, representing the smallest non-
zero delay leading to some action becoming enabled, similarly to non-lazy
schedules. In comparison to DSP this drastically reduces the breadth of the
search tree to at most 2 children and in part alleviates the state-space explo-
sion problem. Let NLD : S → P(N) give a set of zero and non-lazy delay,
and A′ = {α ∈ Σ | s ̸ α−→} be a set of actions that are not immediately enabled
from a given state.

NLD(s) ={0 | ∃α ∈ Σ s.t. s α−→ s′}∪

{d′ | d′ = arg min
d∈N>0

{∃α ∈ A′ s.t. s d−→ s′′ α−→ s′}}

We now give a formal definition of the policy.

114

5. Policies

Definition 20 (Non Lazy Policy)
The NLP policy ⇒

NLP
is defined s.t. if

(n, α, n′) ∈⇒ then (n, α, n′) ∈⇒
NLP

iff:

• n′ = na, a ∈ Act, n = n′′d, d ∈N, or

• n′ = nd, d ∈ NLD(O(n)), a ∈ Act and either n = ϵ or n = n′′a.

In [25] it is shown that non-lazy schedulers preserve optimal solutions for
Job-shop scheduling problems; however, this is not the case for all problems
expressible as PTA – implying that the method is incomplete for general
PTAs.

Lastly we introduce a policy inspired by Randomized Reachability Analysis
heuristics from [26]. The idea is to consider action transitions and select de-
lays based on availability range of the chosen action transition. This supports
an equal probability distribution to traverse each individual action transition
irrespective of its availability range in terms of delays and overall provides a
‘fair’ exploration. The authors of this heuristics demonstrated its efficiency
in finding rare events. We here adapt the idea for finding cost-optimal plans
under the heuristic that taking only the smallest possible delay for each tran-
sition will often lead to a lower cost.

We now give a formal definition of the Enabled Transition policy. Let
LB : S× Σ → N give the lower bound of the transition’s availability range
over the actions of a given PTS. Simply put, LB gives the smallest delay after
which a certain action can be taken. Formally:

LB(s, α) =

0 if ∄ d ∈N s.t. s d−→ s′ α−→ s′′

arg min
d∈N

s d−→ s1
α−→ s2 otherwise

Definition 21 (Enabled Transition Policy)
The ETP policy ⇒

ETP
is defined s.t. if

(n, α, n′) ∈⇒ then (n, α, n′) ∈⇒
ETP

iff:

• n′ = na, a ∈ Act, d ∈N, n = n′′d, d = LB(O(n′′), a), or

• n′ = nd, a ∈ Act, d ∈ {LB(O(n), a′) | a′ ∈ Act} and either n = n′′a or
n = ϵ.

Similarly to NLP, ETP is also an incomplete policy but with more relaxed
conditions allowing it to consider all eventually enabled (either now or after
delay) actions from a given state.

115

Paper C.

6 Enhancements

To improve on the performance of the MCTS algorithm, we propose the fol-
lowing modifications over the standard MCTS algorithm presented in Algo-
rithm 3.

Building Rollouts. The standard UCT algorithms uses rollouts to estimate
the reward of a node, but strictly in a way s.t. the tree is not expanded,
as to preserve memory. We propose to add a rollout to the tree under two
conditions: if

1. a roll-out reaches the terminal state, and

2. it does so with the so-far-best cost.

We denote such configuration as BR.

Tree pruning with steps. It can be beneficial to perform a step (advance the
root) once ‘enough’ information has been gathered to ensure near-optimal
action choice in the root of the search-tree. Two domain-independent tech-
niques – Absolute pruning and Relative pruning – have been introduced in [27].
They have shown that the Absolute pruning in fact preserves the optimality
of the search tree, but concluded that rather few nodes are actually being
pruned due to pruning conditions being too strict. We will thus only study
the Relative pruning technique.

We briefly recall the condition for Relative pruning (RP), which is depen-
dent on the tunable parameter µ.

Condition 1 (Relative pruning condition)
Node ni can be pruned if ∃j such that
V(nj) > V(ni) + µ, where i ∈ {1, · · · , k}, j ∈ {1, · · · , k}, i ̸= j and for all i we
have (n, α, ni) ∈⇒ with α ∈ Σ.

We also propose a simpler method of pruning based on a constant stepping
value, i.e. a number of samples required in the current root-node before
advancing the root of the tree. We denote this pruning technique Stepping
pruning (SP).

7 Experiments

We perform experiments on three benchmarks:

1. Job-shop scheduling2 problems,

2https://github.com/tamy0612/JSPLIB

116

https://github.com/tamy0612/JSPLIB

7. Experiments

2. Task graph scheduling3 problems of [28] translated to PTA by [29], and

3. satellite mission scheduling problems [30, 31].

We select 120 Task graph models (of thousands) and use all 162 Job-shop
models, and all of the satellite models. The largest Job-shop model contains
100 jobs using 20 machines and the largest Task graph consists of 300 tasks (83
chains) executed on 16 machines. To account for randomness of the MCTS
and random-search methods, we report the average of 10 executions. For
symbolic methods (which are deterministic) we only conduct one execution.
All experiments are limited to 10 minutes and the best found solution is
reported (if any). The experiments are conducted on AMD Opteron 6376
processors with frequency-scaling disabled running Debian with a Linux 5.8
kernel and limited to 8 GB of memory (except for experiments with TiaMo
which is given sufficient memory).

Solving using PDDL (Planning Domain Definition Language) Planners.
As a consequence of our restriction to natural-valued delays, it is possible
to compile the PTA models into (classical, deterministic) planning problems
and apply well-studied classic planning algorithms. To study this, we con-
vert the Job-shop PTA models to PDDL 2.2 with action costs from PDDL 3.1
and use the Fast Downward4 planner to find cost-efficient plans. We apply
some classical algorithms, e.g. greedy best-first search with the FF heuristic
for sub-optimal plans [32] and A∗ with LM-Cut for optimal plans [33]. How-
ever, the so-called grounding phase never terminates within the time and
memory limit, even for the smallest Job-shop model consisting of 6 jobs and
6 machines. Scaling down the models further (by gradually removing jobs)
reveals that the complexity of the model with 3 jobs already surpasses the
capabilities of the planner to find a solution in allotted time. It is well-known
that if the parameter-space of the actions in PDDL encoding grows large,
which is the case for our models, the state-space suffers from an exponential
explosion. We thus refrain from comparing to classical planners in the re-
mainder of this section and leave comparison to more complex planners (e.g.
temporal planning algorithms) to future work.

Presentation of results. In our graphs we present the relative performance
of a method against Best Known Solutions (BKS) which is known for the Job-
shop and Task graph problems. A 0% deviation indicates that the BKS was
found and a 10% deviation denotes a solution that is 110% of the BKS. We
refer to the BKS as the reference value. For all but the last experiment we
present the results over both benchmarks in one single plot. Figures C.2-C.9

3https://github.com/marmux/spreadsheets
4https://www.fast-downward.org/HomePage

117

https://github.com/marmux/spreadsheets
https://www.fast-downward.org/HomePage

Paper C.

are plotted as “Cactus” or “Survival” plots. The y-axis shows the quality
of the solution as "% worse than the BKS" (Fig. C.2-C.7). Each method is
sorted individually, resulting in monotonically increasing lines. Therefore,
data-points from different methods for a given x-value can be produced by
different models, showcasing the general trend of each individual method
over the benchmark.

We conduct the following sets of experiments:

• Building Rollouts where we construct the search-tree if a terminal node
is found during rollout,

• Impact of Stepping where we experiment with pruning techniques,

• Cp Sensitivity where we vary the exploration constant,

• Policy Study where we compare the proposed policies, and

• Comparison w. Existing Methods where we compare our best per-
forming method with existing solvers for PTA, and

• a study of the methods on a set of more general PTA models stemming
from the domain of satellite mission planning.

Building Rollouts. We initially study the impact of the BR enhancement as
any configuration without this enhancement is unable to yield results for a
significant portion of the benchmarks. As a representative configuration we
here present the results with the NLP policy both with and without the SP
pruning and the exploration constant C fixed to

√
2. Other configurations

demonstrate a similar tendency. We observe in Figure C.2 that only versions
with the BR optimization manage to find a solution to all the instances. In
particular, we see that the version without both SP and BR produces no re-
sults at all (red line). We witness the effect of BR from the plot and see that
the best performing configurations are deviating no more than 30% from the
reference. In addition, for roughly 50% of the models, this deviation is less
than 5%.

Impact of Stepping. In Figure C.3 we compare different stepping sizes for
SP and different upper-bounds number of visits (µ) for RP. We here restrict
the reported results to the BR variant of the NLP policy. We observe that SP
is highly sensitive to the stepping size and see that the smallest step sizes
result in worse performance due to a too rapid progression of the root-node
while too high values fail to reduce the search-space to a feasible size. We
observe a similar tendency with RP wrt. the sensitivity of the µ-value, albeit
to a lesser degree. Importantly we observe that SP (using a stepsize of 500)

118

7. Experiments

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250

%
 w

o
rs

e
 t

h
a
n
 B

K
S

Models

NLP
NLP-SP-500
NLP-BR
NLP-BR-SP-500

Fig. C.2: The effect of BR and SP
on the NLP policy.

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250

%
 w

o
rs

e
 t

h
a
n
 B

K
S

Models

SP-5
SP-50
SP-500
SP-5000
RP-5
RP-50
RP-500
RP-5000

Fig. C.3: Comparison of stepping values for
NLP using BR and with Cp =

√
2.

 0

 5

 10

 15

 20

 25

 30

 50 100 150 200 250

%
 w

o
rs

e
 t

h
a
n
 B

K
S

Models

C-0.00
C-0.40
C-0.71
C-1.00
C-1.41
C-1.70
C-100.00

Fig. C.4: Comparison of different Cp values
effect on NLP with BR and SP-500 options.

 1

 2

 4

 8

 16

 32

 64

 128

 50 100 150 200 250

%
 w

o
rs

e
 t

h
a
n
 B

K
S

Models

UDP
DSP
NLP
ETP

Fig. C.5: Comparison of UDP, DSP, NLP, ETP
policies with Cp =

√
2 and the best

enhancements used: BR and SP-500.

and RP (with µ = 5) perform similarly well – and we delimit ourselves to
reporting only on variants using SP in subsequent experiments.

While using Cp =
√

2 is often considered a good value to strike a bal-
ance between exploration and exploitation, we here study the sensitivity to
changes in the Cp-value, in particular as our setting is a single-player setting.
Specifically we can in Figure C.4 observe the difference in performance when
Cp ∈ {0, 0.4, 1√

2
, 1,
√

2, 1.70, 100} where the value 100 is chosen arbitrarily as
“a sufficiently large value” to force the algorithm to focus purely on explo-
ration. From Figure C.4 we observe that apart from Cp = 0, the choice of
Cp has little to no impact on the performance – likely due to the fact that
our setting is a single player setting. Regarding Cp = 0, we conjecture that
the effect observed stems from an intensive search around the initially found
solution. For instances with a positive effect we believe that a (near-)optimal
solution is found within the vicinity of any solution, where a negative effect
indicate a larger difference between local minima in the search-space. While
a small set of models clearly favor Cp = 0, we use Cp =

√
2 for the remainder

of the experiments as it provides overall good performance and is the value
recommended by literature.

119

Paper C.

Policy Study. The summary on the performance of different policies is
shown in Figure C.5. Here we fix the configuration to use the BR and SP
enhancements with a step-size of 500. We observe that UDP has the worst
performance with less than 20% of problem instances solved within the given
time-frame - and significantly worse quality solutions. We believe this to be
due to the low probability of selecting larger delays and the state-space explo-
sion of having to consider all possible delays. While DSP is an improvement
over UDP, it suffers from a similar problem in that the branching factor can
explode leading to a performance degradation. Both NLP and ETP were able
to solve all problem instances with near-optimal solutions of at most 28.88%
and 35.42% away from the reference value, respectively, however with a clear
advantage to NLP.

Comparison w. Existing Methods. Lastly we perform a comparison of our
best configuration with other existing state-of-the-art solvers for PTA, namely
Uppaal Cora and TiaMo. In addition, we have also adapted the Randomized
Reachability Analysis (RRA) methods of [26] to search for optimal schedules
rather than rare events. We experiment with several of the techniques pro-
posed for RRA (RET, RLC and RLC-A) to search for optimal solutions. We
refer the interested reader to the mentioned paper for more details.

 1

 2

 4

 8

 16

 32

 64

 128

 20 40 60 80 100 120 140 160

%
 w

o
rs

e
 t

h
a
n
 B

K
S

Models

C-1.41-NLP-BR-SP-500
TiaMo
ROFS
RRA-RET
RRA-RLC
RRA-RLC-A

Fig. C.6: Job-shop overview.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 20 40 60 80 100 120

%
 w

o
rs

e
 t

h
a
n
 B

K
S

Models

C-1.41-NLP-BR-SP-500
ROFS
RRA-RET
RRA-RLC
RRA-RLC-A

Fig. C.7: Task graph overview.

 0

 100

 200

 300

 400

 500

 600

 20 40 60 80 100 120 140 160

M
e
a
n
 T

im
e

Models

C-1.41-NLP-BR-SP-500
TiaMo
ROFS
RRA-RET
RRA-RLC
RRA-RLC-A

Fig. C.8: Job-shop runtime overview.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 20 40 60 80 100 120

M
e
a
n
 T

im
e

Models

C-1.41-NLP-BR-SP-500
ROFS
RRA-RET
RRA-RLC
RRA-RLC-A

Fig. C.9: Task graph runtime overview.

120

7. Experiments

In the case of Cora we use both the complete and optimal search-method
as well as the incomplete Random Optimal First Search (ROFS) approach, which
allows for a very lightweight search in a depth-first manner while choosing
the most optimal action at each step but providing no guarantee wrt. opti-
mality of the returned solution. It is important to note that both Cora (except
for the ROFS version) and TiaMo are complete and able to find an optimal so-
lution if given enough time and memory - and that both methods are relying
on a symbolic representation of the search-space.

Figure C.6 gives an overview of all the methods for Job-shop scheduling
benchmark compared against BKS from [34]. Note that Cora has not man-
aged to solve any instance for either of the benchmarks, primarily limited
by the fact that it is a piece of 32bit software only capable of utilizing 4GB
of memory. Unfortunately Cora does not provide anytime solutions in its
current distribution. Both TiaMo and RRA methods solve less than 20% of
the instances, with TiaMo delivering sub-par solutions as it never completes
the search within the time-limit, and thus provides only any-time solutions
as they are found.

The ROFS algorithm of Cora outperforms both the random search and
TiaMo in terms of solved instances, while having a drawback with the qual-
ity of the produced plans when compared to our MCTS implementation. In
terms of time (Fig. C.8, C.9), the ROFS algorithm is the fastest overall, com-
pleting its search within single-digit seconds. We note that the overall quality
of the schedules found by ROFS is within a surprisingly reasonable distance
from the optimal, indicating that a greedy search strategy is well suited for
the given benchmark. We observe the best performance of the proposed
MCTS configuration using NLP, SP, BR and Cp =

√
2 and see a deviation of

up to 28.88% of the BKS - with a median of deviations of no more than 10.3%.
However, investigating the computation time, we can see that the best found
solution is in the median produced at 289s and peaking at 546s.

The overview for the Task graph scheduling benchmark compared against
BKS from [35] is shown in Figure C.7. Due to its limited support of the PTA
syntax, the TiaMo tool was not applicable. For over 80% of the benchmark
(100/120 models) the solutions found by NLP are (near-)optimal with the
quality of solutions of at most 1% away from BKS. For the rest of the bench-
mark the performance of NLP slightly worsens reaching at most 9.11% devi-
ation from BKS. In general, the trends for different methods are very similar:
RRA methods solve around 33% of models only, while ROFS finds solutions
near instantly, but their quality degrades with increased model complexity.

Satellite models. Additionally, we experiment with two satellite cases -
GomX-3 and Ulloriaq - designed, delivered, and operated by Danish satel-
lite manufacturer GomSpace. The PTA models for these satellites have been
developed in [30] and [31] studies, respectively, and analyzed with Uppaal

121

Paper C.

Table C.1: Results for different PTA models of satellite problems. MCTS policies executed with
Cp =

√
2, BR and SP-500 enhancements enabled. (oom = out of memory)

DSP NLP ETP ROFS Cora

gomx3-1day
Mean
cost

186,007
(±0.00%)

188,408
(±1.95%)

186,007
(±0.00%)

198,292
(±0.00%)

186,007

Time 40.2 49.8 61.5 0.05 5.12

gomx3-2day
Mean
cost

442,190
(±0.04%)

442,218
(±0.01%)

442,080
(±0.06%)

478,002
(±0.17%)

oom

Time 223.3 268.0 230.7 0.05 -

5sat
Mean
cost

5,072,861
(±4.12%)

5,961,014
(±1.72%)

3,548,824
(±0.77%)

3,739,730
(±1.82%)

oom

Time 267.5 366.7 295.8 0.25 -

10sat
Mean
cost

5,632,414
(±0.57%)

6,130,961
(±0.68%)

nf
5,687,131
(±2.47%)

oom

Time 232.4 232.6 600.0 0.56 -

MaxData626
Mean
cost

nf nf nf
7,458,522
(±2.17%)

oom

Time 600.0 600.0 600.0 0.62 -

Cora (including ROFS). We show the results in Table C.1, but exclude UDP
as it produces no results within the time limit. For all models (but one)
MCTS provides the best mean cost across all the methods; however, ROFS
finds solutions up to 4 orders of magnitude faster and with a modest reduc-
tion of quality (up to 10% from the best MCTS method). We believe this is
due to a generally small variance in the quality of solutions in the solution-
space and the fact that ROFS performs only a single traversal of the model,
immediately reporting the result upon reaching the terminal state. For “Max-
Data626” model MCTS methods timeout without a solution. Further experi-
ments with an increased time-limit of 5 hours do not yield additional results
indicating issues with the incompleteness of the methods rather than missing
computation-time. The relative efficiency of the ROFS method demonstrates
a potential for extending the MCTS method in the direction of a symbolic
search, allowing for an efficient and complete MCTS tree-search method, and
overcoming the current limitations of the discretized equivalents studied in
this paper.

8 Conclusion

We have adapted the Monte Carlo Tree Search (MCTS) algorithm for the
setting of problems described as Priced Timed Automata (PTA) – a formalism
that can capture the behavior of a wide range of optimization problems such
as resource-consumption or -allocation problems. PTA is a very versatile
modeling formalism, facilitating more direct modeling of a problem domain.

122

References

We introduced a number of complete and non-complete policies that act as
unfolding mechanism and decide the structure of the tree. Some domain-
independent enhancements to improve the performance and coverage of the
algorithm are suggested.

We have evaluated the performance of our MCTS algorithm adapted to
PTA on three benchmarks of Job-shop, Task graph and satellite mission schedul-
ing problems and compared it against other state-of-the-art methods and
tools. For the first two benchmarks, the results indicate that MCTS is able
to find near-optimal solutions for all investigated problem instances. In gen-
eral, we observed an up to 28.88% and 9.11% deviation (on average) from the
best known solution in a set of Job-shop and Task graph scheduling prob-
lems, respectively. For satellite models, MCTS methods have found the best
cost across all tested methods except for one model where only ROFS was
able to produce results, hinting at issues with the incompleteness of MCTS
methods.

All this suggests that MCTS is a promising alternative that copes well
with the state-space explosion problem where other existing, exhaustive and
complete methods perform poorly or fail. We note that the Random Optimal
First Search strategy of the tool Uppaal Cora performs well, even when
compared to MCTS. The study of more symbolic approaches to MCTS for
PTA is left as future work.

Data availability. A reproducibility artifact, which contains binaries, mod-
els and scripts to reproduce results can be found at:
https://doi.org/10.6084/m9.figshare.19772926

References

[1] S. Edelkamp, “Heuristic Search Planning with BDDs,” in PuK2000, 2000.
[Online]. Available: http://www.puk-workshop.de/puk2000/papers/
edelkamp.pdf

[2] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn,
and F. Vaandrager, “Minimum-Cost Reachability for Priced Time
Automata,” in HSCC 2001, M. D. Di Benedetto and A. Sangiovanni-
Vincentelli, Eds. Springer, 2001, pp. 147–161. [Online]. Available:
https://doi.org/10.1007/3-540-45351-2_15

[3] R. Alur, S. La Torre, and G. J. Pappas, “Optimal Paths in Weighted Timed
Automata,” in HSCC 2001, M. D. Di Benedetto and A. Sangiovanni-
Vincentelli, Eds. Springer, 2001, pp. 49–62.

123

https://doi.org/10.6084/m9.figshare.19772926
http://www.puk-workshop.de/puk2000/papers/edelkamp.pdf
http://www.puk-workshop.de/puk2000/papers/edelkamp.pdf
https://doi.org/10.1007/3-540-45351-2_15

References

[4] R. Alur and D. Dill, “The theory of timed automata,” in Real-Time: Theory
in Practice, J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozen-
berg, Eds. Springer, 1992, pp. 45–73.

[5] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Optimal scheduling
using priced timed automata,” SIGMETRICS Perform. Eval. Rev., vol. 32,
no. 4, p. 34–40, mar 2005.

[6] H. Dirks, “Finding Optimal Plans for Domains with Restricted Contin-
uous Effects with UPPAAL CORA,” ser. ICAPS 2005. American Asso-
ciation for Artificial Intelligence, 2005.

[7] P. Bouyer, M. Colange, and N. Markey, “Symbolic Optimal Reacha-
bility in Weighted Timed Automata,” in CAV 2016, S. Chaudhuri and
A. Farzan, Eds. Springer, 2016, pp. 513–530.

[8] P. Bouyer, U. Fahrenberg, K. G. Larsen, and N. Markey, “Quantitative
analysis of real-time systems using priced timed automata,” Commun.
ACM, vol. 54, no. 9, pp. 78–87, 2011.

[9] W. Ahmad, P. K. F. Hölzenspies, M. Stoelinga, and J. van de Pol, “Green
Computing: Power Optimisation of VFI-Based Real-Time Multiproces-
sor Dataflow Applications,” in DSD 2015. IEEE Computer Society, 2015,
pp. 271–275.

[10] M. R. Jongerden, B. R. Haverkort, H. C. Bohnenkamp, and J. Katoen,
“Maximizing system lifetime by battery scheduling,” in IEEE/IFIP Int.
Conf. DSN 2009. IEEE Computer Society, 2009, pp. 63–72.

[11] H. Hermanns, J. Krcál, and G. Nies, “How Is Your Satellite Doing? Bat-
tery Kinetics with Recharging and Uncertainty,” Leibniz Trans. Embed.
Syst., vol. 4, no. 1, pp. 04:1–04:28, 2017.

[12] A. Korvell and K. Degn, “Designing a Tool-Chain for Generating
Battery-Aware Contact Plans Using UPPAAL.” Aalborg University,
Master Thesis, 2019.

[13] R. Saddem-Yagoubi, O. Naud, K. Godary-Dejean, and D. Crestani,
“Model-Checking precision agriculture logistics: the case of the differ-
ential harvest,” in Discrete Event Systems. Springer, 2020.

[14] A. Vulgarakis and A. Čaušević, “Applying REMES behavioral modeling
to PLC systems,” in 2009 XXII International Symposium on Information,
Communication and Automation Technologies. IEEE, 2009, pp. 1–8.

[15] N. Geuze, “Energy management in smart grids using timed automata,”
Master’s thesis, University of Twente, 2019.

124

References

[16] A. Čaušević, C. Seceleanu, and P. Pettersson, “Checking correctness of
services modeled as priced timed automata,” in International Symposium
On Leveraging Applications of Formal Methods, Verification and Validation.
Springer, 2012, pp. 308–322.

[17] T. Bøgholm, K. G. Larsen, M. Muñiz, B. Thomsen, and L. L. Thomsen,
Analyzing Spreadsheets for Parallel Execution via Model Checking. Cham:
Springer International Publishing, 2019, pp. 27–35. [Online]. Available:
https://doi.org/10.1007/978-3-030-22348-9_3

[18] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
survey of monte carlo tree search methods,” IEEE Transactions on Com-
putational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43, 2012.

[19] A. Banharnsakun, B. Sirinaovakul, and T. Achalakul, “Job Shop Schedul-
ing with the Best-so-far ABC,” Engineering Applications of Artificial Intel-
ligence, vol. 25, no. 3, pp. 583–593, 2012.

[20] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Priced Timed Au-
tomata: Algorithms and Applications,” in Formal Methods for Components
and Objects, F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever,
Eds. Springer, 2005, pp. 162–182.

[21] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, and
J. Romijn, “Efficient Guiding Towards Cost-Optimality in UPPAAL,” in
TACAS 21, T. Margaria and W. Yi, Eds. Springer, 2001, pp. 174–188.

[22] P. Bouyer, T. Brihaye, V. Bruyère, and J. Raskin, “On the optimal reacha-
bility problem of weighted timed automata,” Formal Methods Syst. Des.,
vol. 31, no. 2, pp. 135–175, 2007.

[23] M. Bozga, O. Maler, and S. Tripakis, “Efficient Verification of Timed
Automata Using Dense and Discrete Time Semantics,” in Correct
Hardware Design and Verification Methods, L. Pierre and T. Kropf, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 125–141.
[Online]. Available: https://doi.org/10.1007/3-540-48153-2_11

[24] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
in Machine Learning: ECML 2006, J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 282–293.

[25] Y. Abdeddaïm and O. Maler, “Job-Shop Scheduling Using Timed Au-
tomata?” in CAV 2001, G. Berry, H. Comon, and A. Finkel, Eds.
Springer, 2001, pp. 478–492.

125

https://doi.org/10.1007/978-3-030-22348-9_3
https://doi.org/10.1007/3-540-48153-2_11

References

[26] A. Kiviriga, K. G. Larsen, and U. Nyman, “Randomized Reachability
Analysis in Uppaal: Fast Error Detection in Timed Systems,” in FMICS
2021, A. Lluch Lafuente and A. Mavridou, Eds. Springer, 2021, pp.
149–166.

[27] J. Huang, Z. Liu, B. Lu, and F. Xiao, “Pruning in uct algorithm,” in
2010 International Conference on Technologies and Applications of Artificial
Intelligence, 2010, pp. 177–181.

[28] T. Tobita and H. Kasahara, “A standard task graph set for fair evaluation
of multiprocessor scheduling algorithms,” Journal of Scheduling, vol. 5,
no. 5, pp. 379–394, 2002.

[29] A. Ejsing, M. Jensen, M. Muñiz, J. Nørhave, and L. Rechter, “Near Op-
timal Task Graph Scheduling with Priced Timed Automata and Priced
Timed Markov Decision Processes,” 2020.

[30] M. Bisgaard, D. Gerhardt, H. Hermanns, J. Krčál, G. Nies, and
M. Stenger, “Battery-aware scheduling in low orbit: the GomX–3 case,”
Formal Aspects of Computing, vol. 31, no. 2, pp. 261–285, 2019.

[31] A. Kørvell and K. Degn, “Designing a Tool-Chain For Generating
Battery-Aware Contact Plans Using UPPAAL,” 2019.

[32] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan gener-
ation through heuristic search,” Journal of Artificial Intelligence Research,
vol. 14, pp. 253–302, 2001.

[33] M. Helmert and C. Domshlak, “Landmarks, critical paths and abstrac-
tions: what’s the difference anyway?” in Nineteenth International Confer-
ence on Automated Planning and Scheduling, 2009.

[34] A. Jain and S. Meeran, “Deterministic job-shop scheduling: Past, present
and future,” European Journal of Operational Research, vol. 113, no. 2, pp.
390–434, 1999.

[35] K. Laboratory. Standard task graph set. [Online]. Available: https:
//www.kasahara.cs.waseda.ac.jp/schedule/index.html

126

https://www.kasahara.cs.waseda.ac.jp/schedule/index.html
https://www.kasahara.cs.waseda.ac.jp/schedule/index.html

Paper D

Usage-aware Falsification for Cyber-Physical
Systems

Andrej Kiviriga, Kim Guldstrand Larsen, Dejan Nickovic and
Ulrik Nyman

The paper has been submitted to the
14th ACM/IEEE International Conference on Cyber-Physical Systems, 2023.

The layout has been revised.

1. Introduction

Abstract

Verification of cyber-physical systems (CPS) is a challenging task. A considerable
effort has been invested to develop pragmatic methods, such as falsification testing,
which facilitate generation of inputs that lead to the violation of the CPS require-
ments. The resulting counterexamples are used to locate and explain faults and
debug the system. However, CPS rarely operate in fully unconstrained environ-
ments and not all counterexamples have the same value – a fault resulting from a
common usage of the system has more impact than a fault that is triggered by an
esoteric input sequence. This aspect is neglected by the existing falsification testing
techniques. We propose a new falsification testing methodology that is aware of the
system’s expected usage. Given a user profile model in the form of a stochastic hybrid
automaton, an executable black-box implementation of the CPS and its formalized
requirements, we provide a test generation method that (1) uses efficient randomized
methods to generate multiple violating traces, and (2) estimates the probability of
each counterexample, thus providing their ranking to the engineer.

1 Introduction

Correctness is a crucial requirement during the design of safety-critical cyber-
physical systems (CPS) such as smart homes, autonomous driving and intel-
ligent medical devices. The interplay between computational (digital con-
trollers, embedded software) and physical components (sensors and actu-
ators), the increasing use of machine learning-based data-driven modules
and the sophisticated interactions with unpredictable environments make
the problem of correct and safe CPS design hard and challenging. Despite
tremendous recent progress, formal verification does not scale yet to the size
of realistic CPS applications. As a consequence, today’s state-of-the-practice
relies mainly on the more pragmatic simulation-based testing approaches.

The CPS community has invested in the recent past significant effort to
improve the testing activities. Falsification-based testing (FBT) [1] is a pop-
ular method that renders the test generation process more systematic. FBT
uses formal specifications with quantitative semantics to guide the system-
under-test (SUT) to the violation of its requirements, whenever possible. It
follows that FBT provides effective means to systematically detect a fault in
the system. The resulting witness of the requirement violation is used to lo-
cate and explain the fault and hence to facilitate the system debugging task.

The classical FBT has a limitation – the test generation method focuses on
finding one counterexample among possibly many of them. However, CPS
often operate in partially constrained environments with certain assumptions
on their usage in which not all counterexamples have the same value. For ex-
ample, a fault triggered by a common usage of the system has much more

129

Paper D.

impact then another fault resulting from some rare and esoteric input se-
quence. This is an important aspect for prioritizing debugging tasks under
time and budget constraints and that is completely neglected by the existing
FBT techniques.

We introduce in this paper a new methodology for usage-aware FBT to
remedy the above situation. In our approach, we assume that: (1) a user pro-
file model that describes the system’s intended usage is given in the form of
a stochastic hybrid automaton, (2) the SUT is provided in the form of an ex-
ecutable black-box implementation, and (3) the requirements are formalized
using temporal logic.

We first use a randomized accelerator procedure to generate test inputs
from the user profile model. We then feed the input vector to the SUT and
execute it. We use the temporal logic monitor to detect potential violation of
requirements. Whenever we find a counterexample, we use statistical model
checking (SMC) [2–4], and more specifically importance splitting (IS) [5], to
estimate the likelihood of the counterexample. The estimated probability of
counterexamples enables us to rank them according to their likelihood, thus
facilitating prioritization of the debugging tasks.

We instantiated our usage-aware FBT methodology (described in Sec-
tion 2) with concrete methods and tools and implemented it in a prototype
framework. We adopted UPPAAL SMC [6] to model stochastic hybrid au-
tomata (Section 3), MATLAB Simulink [7] to implement black-box SUTs and
signal temporal logic (STL) [8] to formalize CPS requirements (Section 4).
We developed a modified variant of the randomized reachability analysis
(RRA) [9] procedure as our randomized accelerator for efficiently finding
counterexamples (Section 5) and adapted a version of the IS algorithm to es-
timate counterexample probabilities (Section 6), integrating both methods to
the UPPAAL SMC engine. We used MATLAB Simulink’s simulation envi-
ronment to execute generated input sequences and the RTAMT [10] runtime
verification library to monitor the resulting simulation traces against STL re-
quirements. We used a thermal model of a house as our case study (Section 7)
to evaluate our approach (Section 8).

Related Work

Falsification-based testing

Falsification-based testing (FBT) [1] is a test generation method that uses for-
mal specifications equipped with quantitative semantics to guide the search
for behaviors that violate the formalized requirements. In that work, the au-
thors propose to use deterministic assumptions for restricting the test search
space. The test search space can be additionally restricted using symbolic
reachability methods [11]. The classical FBT approaches also stop the gener-

130

1. Introduction

ation of tests after finding the first violation of a requirement. The adaptive
FBT method [12] remedies this situation by introducing the notion of specifi-
cation coverage and providing means to generate multiple qualitatively dif-
ferent counterexamples. None of these works allow one to compare violation
witnesses according to their likelihood to happen. To contrast, we introduce
probabilistic user profile models of the SUT to enable ranking countexamples.

Probabilistic Model Checking

Counterexamples play an important role in probabilistic model checking and
have received considerable attention in the last two decades, see [13] for a sur-
vey on methods for generating probabilistic counterexamples. We mention
the early work from Han and Katoen [14], who originally propose a method
for finding the strongest evidence, i.e. the most likely counterexample vio-
lating an until-specification as a hop-constrained shortest path problem. The
tool DiPro [15] allows generating probabilistic counterexamples discrete time
Markov chains, continuous time Markov chains and Markov decision pro-
cesses. In the work on probabilistic model checking, the model of the SUT
is available as a white-box, which allows precise computation of counterex-
ample probabilities but limits the scalability of the approach to the systems
of small size and complexity. In our approach, we consider black-box SUTs
of arbitrary size and complexity, and use simulation-based methods to detect
counterexamples and estimate their probabilities.

Statistical and Randomized Testing

Statistical model checking (SMC) is a Monte Carlo simulation method used to
estimate the probability of violating formal requirements. Reliable estimation
of rare events remains difficult and is typically addressed by the importance
splitting (IS) [16, 17]. IS divides the goal with small probability into a se-
quence of intermediate goals that are easier to reach. An alternative way to
address the problem of rare-event simulation is to use randomized reachability
analysis (RRA) [9]. RRA discards the stochastic semantics of the model to
increase the chance of exercising a rare event. While RRA can efficiently find
a counterexample, it cannot be used alone to estimate its probability. On the
other hand, SMC and IS can reason about the probability that a given SUT
violates a property, but are less appropriate to estimate the probability of a
single counterexample. In our work, we use the synergies between SMC, IS
and RRA to achieve efficient falsification while enabling the likelihood esti-
mation of counterexamples.

131

Paper D.

2 Methodology

In this section, we describe our user-aware falsification-based testing method-
ology. The input to our approach are three artefacts: the user profile model,
the black-box implementation of the system-under-test (SUT), and a formalized
requirement. The output of our approach is a list of input sequences (test
cases) that lead to the falsification of the requirement ranked according to
their estimated probability of happening.

User profile

The user profile is a stochastic hybrid automaton that models the expected
use of the SUT. It allows for rich and complex dynamics as well as stochastic
behavior. Straightforward simulations of the user profile can be performed
to generate inputs for the SUT. Generated simulations follow the underlying
stochastic semantics of the model, which allows them to mimic the behavior
of the real user and supports reasoning about the probability of generating a
particular input sequence.

SUT

The SUT is a reactive dynamic system, which consumes an input sequence
to generate another sequence of observable output quantities. We assume an
executable black-box implementation of the SUT, whose behavior can be only
observed at its input/output interface.

Formalized requirement

The formalized requirement is given in the form of a temporal logic specifi-
cation. It defines the expected temporal and timing relations between input
and output quantities and is used as an oracle to discriminate behaviors that
satisfy the requirement from those that violate it.

φ = □[0,20](T ≤ 75)

Fig. D.1: Running example. User profile model (top left), the heater controller (top right), and
the formalized requirement (bottom).

132

2. Methodology

Example 2.1 (Running example)
To illustrate the different steps of the methodology, we use a simplified
heat controller, depicted in Figure D.1.

The simplified heat controller follows a deterministic implementation
(Figure D.1 top right) has a single continuous state variable, the tempera-
ture T and consists of two discrete modes, Off and On. In the Off mode,
the temperature decreases according to the differential equation T′ = − T

10 .
Conversely, the temperature increases in the On mode according to the dif-
ferential equation T′ = 10− T

10 . The temperature range is limited to the
interval between 0 and 100 degrees (not shown in the figure). The change
between the two heater’s modes is triggered by actions on and off pro-
vided by an external environment. We note that while the implementation
is given in the form of a hybrid automaton for illustration purposes, we
assume that it is seen as a black box to the tester, i.e. the tester can only
provide the actions off and on and observe the temperature T. The stochas-
tic user profile (Figure D.1 top left) models the expected generation of the
off and on actions. The clock x measures the time between two consecutive
actions. After an action happens, x is reset to 0 and a time delay between
0 and 5 is sampled according to the uniform distribution. If the time delay
is in the interval [0, 3) no action is enabled and an additional time delay
must be taken. If it is in the interval [3, 4), the action off is taken with
probability 1. If the time delay is in the interval [4, 5), the actions off and
on are triggered, each with probability 0.5. It follows that the action off

is likely to happen three times more often then the action on. Finally, the
formalized requirement φ (Figure D.1 bottom) states that within 20 time
units, the temperature T must continuously remain within 75 degrees.

2.1 Baseline Solution

We first propose a straightforward baseline solution to estimate the probabil-
ity of an error in the system is by using SMC [18, 19]. The core idea of SMC
is to generate simulations of a stochastic model and then statistically analyze
them to estimate the probability of the system to violate requirements with
some degree of confidence. Figure D.2 shows the workflow of the SMC ap-
plication to our case – the input sequences are generated by the user profile
and the outputs from SUT are analyzed by SMC to conclude on probability
estimate of an error.

Discovery of the most stubborn bugs in the CPS often requires generation
of “exotic” input sequences. In non-trivial stochastic models, generating an
“exotic” input can often be considered an extremely rare event, i.e. its proba-
bility being in range [0; 10−100]. Therefore, we anticipate methods like SMC,

133

Paper D.

Fig. D.2: Workflow for falsification of black-box systems using SMC.

which exercises the most likely behavior of the system, to be impractical due
to the time required to generate enough evidence (simulations) to achieve a
reasonable statistical confidence.

In most real applications there is either a limit of resources for system
verification or a requirement on the system being fail-proof up to a certain
degree, as further bugs are more costly to fix than to replace a system. In both
cases, it is crucial to focus resources on eliminating the most probable bugs
first. While SMC estimates the overall existence of the bug, it cannot reason
about a probability of any individual concrete input sequence. Hence, SMC
does not help to conclude if a particular counterexample is of any concern in
practice.

2.2 Efficient Solution

We recall that our proposed methodology not only (1) allows us to identify
violations efficiently but also (2) estimates the probability for each discov-
ered counterexample. It utilizes the Randomized Accelerator (RA) which is a
modified version of the randomized reachability analysis algorithm, initially
proposed by [9] as an efficient error detection method for timed and stop-
watch automata models. Among the modifications, we extend the algorithm
to support the rich dynamics of hybrid automaton models to allow simu-
lation of the user profile. In contrast to SMC, RA discards the underlying
stochastic semantics to favor exploration of otherwise unlikely to reach parts
of the model. As a consequence, RA cannot reason about the probability of
its generated simulations, but excels at finding “exotic” traces fast. In their
study, [9] have shown their randomized reachability analysis to be up to three
orders of magnitude faster than SMC at discovering bugs.

The workflow for a single iteration of our methodology is shown in Fig-
ure D.3. The process starts by applying RA on the user profile to generate
input sequences for SUT. The latter is simulated with the given input and its

134

3. Hybrid Systems

Fig. D.3: Workflow of the usage-aware falsification-based testing methodology.

output is monitored w.r.t. to the property of interest. The process is repeated
until the counterexample input sequence that violates the property is dis-
covered. Moreover, RA exploits the information from previous runs to favor
“more promising” parts of the user profile that are deemed to have affected
the monitored property towards being violated.

The counterexample contains the information about the execution of the
user profile – transitions taken in the hybrid automaton and the outputted
dynamics. To reason about the probability of counterexamples we use the
Importance Splitting (IS) from [17]. IS allows one to estimate probability of
rare events which SMC cannot do reliably or quickly. We use IS to estimate
the probability of following the qualitative trace from the user profile, i.e.
focusing on executing transitions of the user profile model in the sequence
commanded by the trace. Additionally, a run of IS generates a number of
traces with different timing behaviors w.r.t to the stochastic semantics. Since
the timing behavior might have a crucial impact on the property satisfaction,
we check all the traces generated by IS against SUT to estimate the ratio of
traces violating the property.

The counterexample and its estimated probability becomes the result of
a single iteration of our proposed methodology. Each counterexample is
ranked according to its estimated probability to occur in practice. The search
can then continue in a similar fashion to discover more bugs.

3 Hybrid Systems

In this section, we recall the definition of hybrid automata with stochastic
semantics [20] that we use to model the user profiles. Let X be a finite set of

135

Paper D.

continuous variables. A variable valuation over X is a mapping v : X → R.
We write RX for the set of valuations over X. Valuations over X evolve over
time according to a delay function F : R≥0 ×RX → RX , where for a delay
d and valuation v, F(d, v) provides the new valuation after a delay of d. As
is the case for delays in timed automata, delay functions are assumed to
be time additive in the sense that F(d1, F(d2, v)) = F(d1 + d2, v). To allow
for communication between different hybrid automata we assume a set of
actions Σ, which is partitioned into disjoint sets of input and output actions,
i.e. Σ = Σi ⊎ Σo.

Definition 22
A Hybrid Automaton (HA) H is a tuple H = (L, l0, X, Σ, E, F, I), where:

• L is a finite set of locations,

• l0 is an initial location s.t. l0 ∈ L,

• X is a finite set of continuous variables,

• Σ is a finite set of actions partitioned into inputs (Σi) and outputs (Σo)
s.t. Σ = Σi ⊎ Σo,

• E is a finite set of edges of the form (l, g, σ, r, l′) where l, l′ ∈ L, g is a
predicate on RX which acts as a guard that must be satisfied, a ∈ Σ is
an action label and u is a binary relation on RX which acts as an update,

• F(l) is a delay function for each location l ∈ L, and

• I assigns invariant predicates I(l) to any location l ∈ L.

The semantics of a HA H is a timed labeled transition system, whose
states are pairs (l, v) ∈ L × RX with v |= I(l), and whose transitions are

either delay transitions (l, v) d−→ (l, v′) with d ∈ R≥0 and v′ = F(d, v), or
discrete transitions (l, v) a−→ (l′, v′) if there is an edge (l, g, a, u, l′) such that
v |= g and u(v, v′). We write (l, v) ⇝ (l′, v′) if there is a finite sequence of
delay and discrete transitions from (l, v) to (l′, v′). We note that the effect
of the delay function F may be specified by a set of ODEs that need to be
solved and that governs the evolution of the continuous variables in time. The
tool Uppaal SMC [21], which can perform simulations of HA, also supports
built-in functions (such as sin, cos, log, pow and sqrt) that help to enrich the
dynamics. When generating a run, Uppaal SMC does not solve ODEs exactly,
but rather approximates the integration with the Runge-Kutta method.

We denote ω = s0d1a1s1d2a2 . . . to be a timed word where for all i, si ∈ S,

ai ∈ Σ, si
di+1−−→ ai+1−−→ si+1 and di ∈ R≥0. If ω is a finite timed word, we write

|ω| = n to denote the length. We write ω[i] to denote a prefix run of ω up to
i such that w[i] = sd1a1s1 . . . diaisi. Last, we denote by Ω(H) the entire set of
timed words over H.

136

3. Hybrid Systems

Example 3.1 (Running example)
Figure D.4 shows the resulting evolution of the continuous temperature
variable from the SUT from Figure D.1 induced by the example input se-
quence (timed word)

3.7 · off · 4.1 · on · 3.1 · off · 4.5 · off · 4 · off.

The property φ is satisfied as the temperature stays under 75 degrees for
the 20 time units of the simulation.

Fig. D.4: A timed word with on and off actions represented by green and red vertical dashes
lines, respectively. The temperature dynamics of SUT (blue line) and φ threshold of 75 degrees
(red line) is shown.

3.1 Stochastic Semantics of Hybrid Automata

Hybrid Automata may be given a stochastic semantics by refining the non-
deterministic choices of transitions and delays by probabilistic and stochastic
distributions. For each state s = (l, v) of HA H there exists:

• the delay density function µs gives a probability distribution over delays
in R≥0 that can be taken by a component, such that

∫
µs(t)dt = 1,

• the output probability function γs gives a probability of taking an output
o ∈ Σj

o such that ∑o γs(0) = 1, and

• the next-state density function ηa
s gives a probability distribution on the

next state s′ = (l′, v′) ∈ RX given an action a such that
∫

s′ η
a
s (s′) = 1.

For outputs happening deterministically at an exact time point d (or deter-
ministic next states s′), µs(ηa

s) becomes a Dirac delta function δd(δ
′
s)

1.

1which should formally be treated as the limit of a sequence of delay density functions with
decreasing, non-zero support around d.

137

Paper D.

In Uppaal SMC, the delay is always chosen according to uniform dis-
tribution in case of a bounded (by an invariant) delay or according to an
exponential distribution if a delay can be indefinite. The choice of a transi-
tion is uniform, however Uppaal SMC provides a syntax for branching points
that allow specifying discrete probabilities for transitions. The probability
distributions on the next-state can be defined with the help of the random[b]

function that denotes an uniform distribution in continuous range [0, b).
Consider H to be a stochastic HA. For s ∈ S and a1a2 . . . ak ∈ Σ∗ we

denote a timed cylinder π(s, a1a2 . . . ak) to be the set of all timed words from
s with a prefix t1a1t2a2 . . . tkak for some t1, . . . , tn ∈ R≥0. An infinite timed
word ω = s0d1aω

1 s1d2aω
2 . . . dkaω

k sk . . . belongs to the timed cylinder, written
as ω ∈ π(s, a1, a2, . . . , ak), if aω

i = ai for all i up to k and s0 = s.

Example 3.2 (Running example)
Figure D.5 shows two timed words belonging to the same timed cylinder
π(s, off, off, on, off, off), where s = (S, x=0) is the initial state.

Fig. D.5: Two timed words belonging to the same cylinder.

Providing the basic elements of a Sigma-algebra we now recall from [20]
the inductively defined measure for such timed cylinders:

PH(π(s, a1a2 . . . ak)) =∫
t≥0

µs(t) · γst(a1) ·
∫

s′

(
ηa1

st (s′) ·PH(π(s’, a2 . . . ak))ds′
)

dt
(D.1)

The probability of following a timed cylinder π is computed by integrat-
ing over the initial delays t in the outermost level. Next, we take the proba-
bility of outputting ai. The last part integrates over all successors s′ and takes
a product of probabilities for stochastic state changed after taking the delay
t and outputting a1 as well as the probability of following the remainder of
the timed cylinder.

138

4. Formalized Requirements

A general system can represented as a network of HA. Under the assump-
tion of input-enabledness, an arbitrary number of HA can be composed into
a network where the individual components communicate with each other
and all together act as a single system. A race-based stochastic semantics de-
termines which of the components in the network gets to perform an output
such that the winning component is the one with the smallest chosen delay.
Here we skip the definition of networks of HA and their stochastic semantics,
and refer the interested reader to [20] for in-depth details.

4 Formalized Requirements

Let F (ω↓) = y be a function representing a black-box nonlinear hybrid sys-
tem that gives a real-valued output y on the given projection of a timed word
ω ∈ Ω(H) of a stochastic HA H, denoted as ω↓. Note that the projection of
a timed word is obtained with the help of the Runge-Kutta method used to
approximate the integration of the user profile ODEs with a fixed time step
δt defined by the user. Effectively, the projection represents a simulation of
the model H that expresses rich dynamics w.r.t. to the stochastic semantics.

Next define a property φ expressed in a Signal Temporal Logic (STL) lan-
guage [8] which we now recap. An STL formula φ consists of atomic predi-
cates together with Boolean and temporal operators. The temporal operators
include always (□), eventually (♢) and until (U) and are restricted to intervals
of form [a, b], where 0 ≤ a < b and a, b ∈ R≥0. Now let ∼∈ {≤,<,>,≥=, ̸=}
be the set of relational operators. The atomic predicates are defined over a
scalar-valued function f (y(t)) ∼ c evaluated over an input y at time t and
where n ∈N. The grammar of STL language is then given as:

φ := T | f (y(t)) ∼ c | ¬φ | φ1 ∨ φ2 | φ1UI φ2 (D.2)

where I is a non-empty interval defined over extended reals.
The temporal operators can be defined in terms of Boolean and logic op-

erators such that ♢[a,b]φ ≡ TU[a,b]φ and □[a,b]φ = ¬♢[a,b]¬φ. If the interval
is omitted, it is assumed to be [0, ∞). Furthermore, the quantitative seman-
tics is defined for STL by [22] with the help of function ρ(φ, y, t) which gives
robustness, i.e. degree of satisfaction of the formula φ by (y, t). The formula
is satisfied if the robustness is positive and the other way around. Given
a robustness function ρ, when ρ(φ, y) is positive it indicates that y satisfies
φ, written as y |= φ. In this paper, we restrict our attention to the bounded
fragment of STL

Let Error ∈ S be a set of error states of HA H. An infinite timed run
ω = s0

d1−→ a1−→ s1
d2−→ a2−→ . . . is an error run if ∃i. ∃τ ≤ di. sτ

i−1 ∈ Error, where

τ ∈ R≥0 and sτ
i−1 is the state such that si−1

τ−→ sτ
i−1. We say that ω has an

139

Paper D.

error at i’th transition and show it as F (ω[i]↓) ̸|= φ. In this case, clearly any
ω′ such that ω′ = ω[i]ωn is also an error run. We now proceed to explain the
next step – generation of violating traces.

5 Falsification Testing w/ Randomized Accelerator

In this section, we describe our FBT approach for discovery of traces that
violate requirements. In order to efficiently find counterexamples, we use

the modified version of the randomized reachability analysis (RRA) ini-
tially proposed by [9] as a lightweight, quick and efficient error detection
technique for timed systems. The core idea of RRA is to discard the under-
lying stochastic semantics of the model in an attempt to exercise an “exotic”
behavior faster than with Uppaal SMC. The method is based on exploring
the model by means of repeated random walks that operate on concrete states
and delays, and avoid expensive computations of symbolic, zone-based ab-
stractions. Algorithm 4 shown an adapted version of RRA for simulation
purposes. The random walks are issued until a state satisfying the property
ψt is discovered. In the simulation setting, the property ψt is a simulation
termination condition (e.g. time bound, step bound, etc.) and therefore the
algorithm always terminates. In our case ψt is an integer constraint that re-
quires the global (observing) clock to have elapsed until a specified value.

Algorithm 4 Randomized Reachability Simulation

1: procedure RRA Simulate(s0, ψt)
2: while within time budget do
3: s← RandomWalk(s0)
4: if s |= ψt then
5: return ω = s0, d1a1s1, . . . , dnansn

6: procedure RandomWalk(s)
7: while s ̸|= ψt do
8: a← SelectOutput(s)
9: d← SelectDelay(a)

10: s← s′ such that s d−→ a−→ s′

11: return s

Once the simulation is completed, a finite timed word ω[n], that consists
of the starting state and all delays and actions taken along the way, is returned
(line 5).

Different heuristics can be used for SelectOutput and SelectDelay func-
tions in the random walks (line 6). Among a number of heuristics presented
by [9], we use the random enabled transition (RET) heuristic. RET chooses
an eventually enabled transition uniformly at random, i.e. a transition that is

140

5. Falsification Testing w/ Randomized Accelerator

either currently enabled or can become such after a delay. More formally,
consider H to be HA. Let TB : S × Σ → P(R≥0) give the lower and the
upper bound of the transition’s availability range over the actions of a given
HA. Simply put, TB gives both the smallest and the largest delay after which
a certain action can be taken. Formally:

TB(s) = {arg min
d∈R≥0

s d−→ a−→ s′} ∪ {arg max
d∈R≥0

s d−→ a−→ s′} (D.3)

RRA simulation generates timed words w ∈ Σ of HA H s.t.:

w = s0
d1−→ a1−→ s1

d2−→ a2−→ s2
d3−→ a3−→ . . . dn−→ an−→ sn (D.4)

where sn |= ψt, and ai is drawn uniformly at random from the set {a | si−1
d−→ a−→

.d ∈ R≥0} for all i, and d is also drawn uniformly at random from TB(sj, aj+1)
for all j.

Fig. D.6: A violating timed word (counterexample).

Example 5.1 (Running example)
For our running example, Figure D.6 shows a RRA generated timed word
that violates the requirement φ.

In this study we use RRA as our RA (randomized accelerator from Sec-
tion 2) as a mean of accelerating discovery of rare events in the user profile
model. In the remainder of this section, we discuss improvements over the
vanilla version of the RRA algorithm.

5.1 Guiding of RRA

The RA from our methodology is applied for a number of iterations until a
violating trace (counterexample) ω is discovered, i.e. until the robustness of
the formula becomes negative ρ(φ, ω↓) < 0. Clearly, in practice not all of the
RA generated traces will violate the property, but some of them are likely

141

Paper D.

to be close. Since evaluation of the generated input against SUT is expen-
sive, we are interested in minimizing the number of RA iterations. Thus, we
guide our RA towards the areas of the state space of HA which are deemed
to be “promising” according to the previous runs. More specifically, for non-
violating runs we analyze the robustness of the output and search for robust-
ness that lays outside its standard deviation and towards a violation. The
corresponding actions of HA are then identified and prioritized over other
actions in the following RA iteration. To avoid broadcasts that lead to a local
minima, the “promising” actions are used only for a single iteration and are
discarded if the property is not violated. Afterwards, an unguided run of RA
is carried out and new promising transitions are recorded for the next RA
iteration in the similar fashion. Thus, only every even run of RA is guided
by promising actions.

5.2 Adaptive Simulation Duration

Short counterexamples are not only more probable to occur in practice but
also easier to debug. For those reasons, we employ an adaptive simulation
duration (ASD) that may change with each discovered counterexample. First,
a user profile is simulated for a given duration. When a counterexample is
found, we detect the time of first violation. In the next iteration the simula-
tion duration is limited to that time. Intuitively, this is similar to the search
for the shortest trace. However, at some point we may end up reducing the
simulation time to a point where no counterexamples exist. Hence, we in-
crease the current simulation time by 10% after a certain number of iterations
is spent without finding a violation. We define that number of iterations to
be the average number of iterations among so far discovered counterexam-
ples plus a constant to ensure “enough” effort is spent before increasing the
simulation duration.

6 Estimating Counterexample Probability

The probability of a timed cylinder is given by Equation D.1. Unfortunately,
it is a theoretical construct that we cannot compute efficiently in practice.
Alternatively, we can use simulation-based methods, such as SMC, to esti-
mate the probability of following a timed cylinder. However, for rare events,
SMC cannot estimate such probability reliably as simply too many simula-
tions would be required to achieve a reasonable confidence. As a solution to
this problem we use a rare event simulating technique known as importance
splitting (IS).

142

6. Estimating Counterexample Probability

Algorithm 5 Importance Splitting algorithm

1: procedure Importance Split(π(s, a1, a2, . . . , an))
2: Successors0 = {s}
3: for i← 1 . . . n do
4: Successorsi ← ∅
5: for j← 1 . . . m do
6: s ∈ Successorsi−1 ▷ uniformly at random

7: Let s d−→ a−→ s′ ▷ w.r.t. to the stochastic semantics
8: if a = ai then
9: Successorsi ← Successorsi ∪ {s′}

10: pi ← |Successorsi |
m

11: return ∏n
i=1 pi

6.1 Importance Splitting

The idea of IS is to split the final reachability goal δ f into a number of in-
termediate sub-goals δ1, δ2, . . . , δn that eventually lead to the main goal, i.e.
δn = δ f . The sub-goals are called levels that each get closer to the goal which
naturally can be ensured by a score function. The score of each subsequent
goal is required to be larger than that of a previous one. In our case a score
function is binary function that helps to ensure that the timed cylinder is fol-
lowed, i.e. the action transitions are taken strictly in a sequence defined by
π.

The procedure of our IS is shown in Algorithm 5 which is an adapted
version of Algorithm 2 from [17] with the fixed effort scheme that we explain
later. For each level n we perform a fixed number m of simulations. A state is
chosen from the set of previous Successorsi−1(line 6) uniformly at random
and a successor is generated randomly according to the stochastic semantics
(line 7). The generated successor is recorded in the set of Successorsi, but
only if it was obtained by following a corresponding action ai from the timed
cylinder. The probability estimate of reaching the level i from level i − 1 is
then Successorsi

m . Repeating this process for all levels n produces probability
estimate of a timed cylinder of a HA H defined as follows:

PH(π(s, a1a2 . . . an)) ≃
n

∏
i=1

|Successorsi|
m

(D.5)

6.2 Counterexample Probability

With the help of IS, we can now estimate the probability of the timed cylinder
P(π(s, a1, a2, . . . , an)) which was generated by our RA. To ease the notation

143

Paper D.

we sometimes write (πn) instead of π(s, a1, a2, . . . , an). A run of IS also pro-
duces a number of concrete simulations that all follow the timed cylinder
and are generated according to the stochastic semantics of the underlying
HA. During a run of IS, each successor has its predecessor recorded together
with the delay and broadcast action that lead to that successor. The concrete
simulations are obtained by back-tracing from the successors that made it
to the very last level and back to the starting state. We define a finite set of
timed words (traces) w generated by IS from a timed cylinder πn as Γπn ⊆ πn
such that |Γπn | ≤ m, where m is the effort allocated per level of IS fixed effort
scheme.

Fig. D.7: One hundred traces generated by IS. Blue line traces satisfy the property and purple
line ones violate.

Even though all traces in Γπn follow the same timed cylinder, the differ-
ences in the timing behavior (chosen delays) may influence the dynamics of
the user profile to a large degree. Violation (or satisfaction) of the property
monitored for SUT - as well as the level at which a violation appear - is
therefore not guaranteed to be identical for all traces Γπn reported by IS.

We first estimate the probability of violating the STL property with a
timed cylinder πn, i.e. P(ω ∈ πn ∧ F (ω↓) ̸|= φ) . In the following let m
be a number of IS simulation per level and let Successorsi be the successors
of each level i in IS. Considering the IS sampled traces Γπn and their (vary-
ing) violation of the monitored property, we may estimate this probability as
follows:

P(ω ∈ πn ∧ F (ω↓) ̸|= φ) =

P(πn) ·P(ω ∈ πn ∧ F (ω↓) ̸|= φ | πn) ≃
n

∏
i=1

(
|Successorsi|

m

)
·
(

∑
ω∈Γπn

F (ω↓) ̸|= φ

)
· 1
|Γπn |

(D.6)

However, the above equation does not take into account that for a given
trace ω, the property can be violated earlier than at the very last step n, i.e.
F (ω′↓) ̸|= φ, where ω′ ⊂ ω and |ω′| < |ω|. Furthermore, performing IS
on the timed cylinder of length n may lose information about timed sub-
cylinders of shorter length k, |πk| < |πn|. We will write Fk(ω↓) ̸|= φ if k is

144

6. Estimating Counterexample Probability

the minimal index such that F (ω[k]↓) ̸|= φ. Also let Θ be the function that
given a finite set of traces Γ, a property φ and an index i returns only prefix
words ω[i] such that the first violation occurs at step i, formally defined as:

Θ(Γ, φ, i) = {ω[i] | ω ∈ Γ ∧ Fi(ω↓) ̸|= φ)} (D.7)

Now taking the level of occurrence of property violation into account leads
to a higher error probability that may be estimated as follows:

P(ω ∈πk ∧ Fk(ω↓) ̸|= φ ∧ k ≤ n) =
n

∑
k=1

(
P(πk) ·P(ω ∈ πk ∧ Fk(ω↓) ̸|= φ | πk)

)
≃

n

∑
k=1

((k

∏
i=1

|Successorsi|
m

)
·
|Θ(Γπk , φ, k)|
|Successorsk|

) (D.8)

The key idea of this approach is to separate a timed cylinder of length
n into sub-cylinders of length k such that |πk| ≤ |πn|. Summing up the
probabilities of sub-cylinders πk and violation occurring at the very last step
k gives an upper bound of the probability estimate for the timed cylinder to
violate the property. However, this formula requires not only to compute the
set of traces Γπk for each k, but to also check each of the traces ω ∈ Γπk against
the Simulink model. With latter of the steps being the most computationally
demanding in our proposed methodology, we believe that equation D.8 will
be too expensive in practice. Instead, we use another lower bound probability
estimate

n

∑
k=1

((k

∏
i=1

|Successorsi|
m

)
· |Θ(Γπn , k, φ)|
|Successorsk|

)
(D.9)

which requires computing only the traces Γπn for the main cylinder. This
approach gives a smaller, lower bound probability estimate, but it is much
cheaper to compute in practice.

Example 6.1 (Running example)
For our running example, we consider 100 traces generated by IS (Fig-
ure D.7) for a timed cylinder with an action sequence on, on, on, off, on.
Violation of 75 degrees threshold is observed in 9 (out of 100), all at step 4.
The probability estimate of Equation D.9 is then

(23
100 ·

27
100 ·

25
100 ·

77
100

)
· 9

100 ≈
0.001, where the parenthesis give IS probability estimate of the cylinder
with 4 steps.

145

Paper D.

Fig. D.8: Simulink Thermal Model of a House.

7 Case Study

We use a Thermal Model of a House2 as our black-box SUT. The model,
shown in Figure D.8 accounts for the heating system, thermal dynamics of
the house, the outdoor environment and a number of associated properties
such as house geometry, thermal resistance of the materials, heater flow rate
and hot air temperature, etc. The heating of the house is controlled by the
thermostat that turns on/off the heater once the temperature is below/above
specified thresholds. The inside temperature is calculated by the model by
considering the heat flow from the heater and the heat losses to the environ-
ment through the insulation of the house.

User Profile

To simulate the outdoor environment for the thermal house system, we use
the HA weather model which provides “realistic” complex dynamics of the
potential temperature. The model is shown in Figure D.9. The daily and
yearly temperature fluctuations are modelled by sinusoidal waves with vary-
ing phase, amplitude and biases. In our experiments we simulate the weather
model for a period of 1 year while the starting period of the simulation being
January 1st; therefore, the waves are adjusted accordingly and depend on
an elapsing, observing clock x that we use to model the time in hours. In
addition to daily and yearly temperature changes the model supports small
and large “anomalous” temperature fluctuations that are enforced to occur
at least every so often by guards and invariants on edges and locations, re-
spectively. Each fluctuation results in a temperature change of the magnitude
and dynamics determined by ODEs in the locations. A number of large fluc-
tuations can happen sequentially, representing e.g. a heat wave or a sudden
temperature drop. The type of a fluctuation, as well as its duration, which

2https://se.mathworks.com/help/simulink/slref/thermal-model-of-a-house.html

146

https://se.mathworks.com/help/simulink/slref/thermal-model-of-a-house.html

8. Experiments

Fig. D.9: Weather profile hybrid automaton model.

largely affects the dynamics, is decided during the simulation and in accor-
dance with the stochastic semantics described in Section 3. The likelihood
of an additional large fluctuation taking place right after a previous one is
defined by discrete probabilities 8 and 2 on the outgoing transition from the
Large_Fluct location. Even though no restrictions are made on the maximal
number of large fluctuations happening sequentially, the probability of addi-
tional n sequential large fluctuations (after the initial one) is (2

8+2)
n = 0.2n.

Property Monitor

Finally, as a property monitor we use python library RTAMT [10] which
supports both offline and online monitoring of STL properties. The inside
temperature of the house is monitored in an offline setting to measure the
property robustness. We monitor the property □(T ≤ 16→ ♢[0,24](T ≥ 18)),
i.e. it is required that the temperature, if it drops below 16 degrees, always
recovers to at least 18 degrees within 24 hours.

8 Experiments

8.1 Baseline Solution

We use SMC as a baseline and compare it to the performance of our falsifi-
cation methodology. The two approaches are rather different as SMC cannot
reason about probability of each individual violating trace. Rather, SMC
estimates an overall property violation probability which lays within some
approximation interval p± ϵ with a confidence 1− α. The amount of simula-
tions N required to produce an approximation interval given ϵ and α can be
computed using Chernoff–Hoeffding inequality as follows:

N ≥ log(2/α)

2ϵ2 (D.10)

147

Paper D.

To accurately estimate a very improbable error in the system, the probabil-
ity uncertainty ϵ must be sufficiently small. As can be seen in Table D.1,
the growth of the required simulations is logarithmic and exponential in re-
lation to α and ϵ, respectively. However, in practice this approach is too
conservative. As an alternative, Uppaal SMC uses a sequential approach of
Clopper-Pearson that computes the approximation interval with each itera-
tion (for given α) and until the target ϵ is reached. Moreover, the further away
a true probability is from 1

2 , the fewer simulations are needed. Empirical ev-
idence3 suggests that a true probability in range [0, 10−5] in practice requires
roughly around 10% simulations (depending on α) of what inequality D.10
suggests. Nonetheless, for α = 0.01 and ϵ = 5× 10−4 around as many as 106

simulations would be required.

Table D.1: Number of simulations required to produce an approximation interval [p− ϵ, p + ϵ]
with confidence 1− α using Chernoff–Hoeffding inequality.

Confidence
α

Probability uncertainty ϵ

0.05 5× 10−3 5× 10−4 5× 10−5

0.1 600 59,915 5,991,465 599,146,455
0.05 738 73,778 7,377,759 737,775,891
0.01 1,060 105,967 10,596,635 1,059,663,474

In our experiments we only give an estimate of the time required by SMC
to derive approximation intervals for a sufficiently small ϵ and α as each sim-
ulation is costly due to the execution of the Simulink model. To estimate the
time of one iteration of the workflow from Figure D.2 we ran 20,000 SMC
simulations with 220 of them violating the property. With the total time of
17h 36m 20s, a single iteration in average takes 3.169 seconds. Figure D.10
gives black-box SUT dynamics of one such iteration that includes outdoor

Fig. D.10: Simulink Thermal House indoor (red) and outdoor (blue) temperatures simulated for
1 year (8736 hours).

3https://docs.uppaal.org/language-reference/requirements-specification/ci_
estimation/

148

https://docs.uppaal.org/language-reference/requirements-specification/ci_estimation/
https://docs.uppaal.org/language-reference/requirements-specification/ci_estimation/

8. Experiments

ambient temperature (input) and a resulting indoor temperature (output) ob-
tained after execution of SUT. As Uppaal SMC primarily exercises common
behavior of the weather profile, we observe no requirement violation in the
output from SUT.

Table D.2: IS fixed effort scheme sensitivity to the estimated probability variance w.r.t. number of
simulation m per level. Each row represents 100 IS runs and a single exact probability calculation.
Time is given in HH:MM:SS.

IS pr. stdev IS pr. mean Exact pr. IS pr. mean
Exact pr.

Simulations
per level

levels
(# trans.)

Fails
Successes Total time

4.4554e-16 1.9357e-16 1.2628e-16 +53.3% 50 42 21/79 00:03:41
2.6050e-16 1.4082e-16 1.2628e-16 +11.5% 100 42 2/98 00:08:00
7.6806e-17 9.9405e-17 1.2628e-16 -21.3% 200 42 0/100 00:16:21
6.6849e-17 1.2627e-16 1.2628e-16 +0.0% 500 42 0/100 00:41:16
5.3405e-17 1.2639e-16 1.2628e-16 +0.1% 1000 42 0/100 01:23:37

2.1045e-26 8.3141e-27 4.1159e-27 102.0% 50 74 46/54 00:05:04
9.6553e-27 4.2122e-27 4.1159e-27 2.3% 100 74 4/96 00:15:17
3.3171e-27 3.2673e-27 4.1159e-27 -20.6% 200 74 0/100 00:31:18
3.4904e-27 4.1488e-27 4.1159e-27 0.8% 500 74 0/100 01:18:32
2.1917e-27 4.1945e-27 4.1159e-27 1.9% 1000 74 0/100 02:39:26

2.4205e-41 5.4142e-42 4.4194e-42 22.5% 50 118 25/75 00:09:59
4.8414e-42 2.7542e-42 4.4194e-42 -37.7% 100 118 1/99 00:24:42
3.7592e-42 2.9829e-42 4.4194e-42 -32.5% 200 118 0/100 00:49:17
4.0601e-42 4.1128e-42 4.4194e-42 -6.9% 500 118 0/100 02:07:44
2.9377e-42 5.0765e-42 4.4194e-42 14.9% 1000 118 0/100 04:16:32

8.2 IS Simulation Sensitivity

In addition to IS that is used to estimate the probability to follow a timed
cylinder, we implement an exact method for probability computation. This
method supports only a subset of HA models where all clocks are reset in
every transition (this is the case for our weather profile). It enables us to
compare how far the estimated probability is away from the true one.

We perform an experiment to determine to which degree the variance in
the probability estimates produced by IS is affected by the number m of IS
simulations performed per level by IS Algorithm 5. We vary the number of
simulations per level and the total amount of levels, reporting the results in
Table D.2. As anticipated, in cases with a small number of 50 simulation per
level, a considerable amount of IS attempts (up to 50%) have failed to follow
an entire timed cylinder (Fails

Successes column). That is due to the IS algorithm
being unable (“unlucky”) to get through one of the “difficult” levels with
only 50 attempts per level. However, to our surprise we have not been able
to see a clear pattern indicating the amount of IS simulations per level to
significantly affect the variance of the probability estimates. To confirm this,
we performed several additional experiments both with the same parameters

149

Paper D.

Table D.3: Falsification of the case study model following the workflow from Section 2. Given
are 20 counterexamples ranked according to the “Complex” probability from Equation D.9. Time
is given in HH:MM:SS.

Discovery
order

Exact
cylinder pr. IS pr. mean

Trace ratio
(TR)

IS pr. · TR
(Equation D.6)

Complex pr.
(Equation D.9)

#
transitions

of RA
iterations

Execution
time

11 1.7778e-03 2.2464e-03 49/80 1.3759e-03 1.3759e-03 4 5 00:01:53
15 7.9012e-04 7.3568e-04 45/80 4.1382e-04 4.1382e-04 6 24 00:02:12
7 3.5556e-04 3.5211e-04 100/100 3.5211e-04 2.9221e-04 6 1 00:01:06
9 8.8889e-05 1.5640e-04 25/25 1.5640e-04 2.7784e-04 5 4 00:00:32
8 1.4222e-05 2.1236e-05 72/72 2.1236e-05 2.6238e-04 7 8 00:00:30

13 1.9753e-04 3.1786e-04 9/16 1.7879e-04 1.7879e-04 6 27 00:00:52
10 4.4444e-04 2.5920e-04 12/18 1.7280e-04 1.7280e-04 4 2 00:00:26
5 1.4047e-05 1.3293e-05 41/41 1.3293e-05 1.1223e-04 14 20 00:00:41
6 1.5803e-04 8.8559e-05 84/84 8.8559e-05 1.0326e-04 7 1 00:01:15

17 7.0233e-05 1.1707e-04 100/100 1.1707e-04 9.0020e-05 10 6 00:01:16
12 1.9753e-04 1.7952e-04 10/20 8.9760e-05 8.9760e-05 6 53 00:01:20
20 3.5117e-06 8.5251e-06 18/18 8.5251e-06 5.2098e-05 10 79 00:01:23
19 8.7791e-05 4.6627e-05 18/27 3.1085e-05 3.1085e-05 8 46 00:01:21
16 1.4047e-05 1.5274e-05 87/87 1.5274e-05 2.3174e-05 10 4 00:00:32
18 7.8037e-06 3.5226e-06 20/20 3.5226e-06 5.9297e-06 11 1 00:00:29
14 1.9753e-05 9.6188e-06 11/19 5.5687e-06 5.5687e-06 7 70 00:01:40
4 2.1923e-08 2.2023e-08 100/100 2.2023e-08 3.7905e-07 26 3 00:00:21
3 1.9560e-40 1.3114e-41 100/100 1.3114e-41 2.4558e-14 111 1 00:00:20
2 7.2106e-52 1.3739e-53 100/100 1.3739e-53 4.5403e-51 139 1 00:00:30
1 4.0514e-55 1.9894e-55 71/100 1.4125e-55 1.8720e-55 155 1 00:02:13

Total: 4.2413e-03 4.5709e-03 - 3.0438e-03 3.4873e-03 - 357 00:21:01

An estimate of time required by SMC (with α = 0.01, ϵ = 5× 10−3) for 10000 iterations (based on Table D.1). 10000 · 3.169 seconds = 08:48:00

and with different ones, but the observation remained the same. In the light
of this and the fact that the execution time taken is roughly proportional
to the number of IS simulations per level, in further experiments we fix the
number of IS simulation per level to 100.

8.3 Efficient Falsification Evaluation

We evaluate our FBT methodology on the proposed case study and report
the results in Table D.3. Due to ASD, the quality of discovered errors tends
to increase over time as the length (# transitions) of the counterexample de-
creases. The probability estimate of Equation D.9 (E9) tends to be smaller for
longer traces than that of Equation D.6 (E6); however, for short traces E9 and
E6 are equal as the error occurs at the very last transition of the trace. Dis-
covery, evaluation and ranking of 20 bugs with our falsification methodology
is an order of magnitude faster than an estimated performance of SMC to
conclude on the overall likelihood of a bug in SUT.

9 Conclusion and Future Work

We introduced in this paper a new methodology for usage-aware FBT of
CPS. It combines stochastic HA modeling, randomized reachability analysis,
statistical model checking, importance splitting and runtime verification to
efficiently generate input sequences that lead to the violation of the require-
ments, while estimating their probability of happening in the real usage of

150

References

the system. We believe that the proposed methodology can significantly help
the debugging effort by enabling to prioritize bugs with higher impact.

As future work, we plan to 1) develop more sophisticated guiding for our
randomized accelerator, 2) introduce a state coverage metric, and 3) explore
symbolic reachability techniques for HA.

References

[1] T. Nghiem, S. Sankaranarayanan, G. Fainekos, F. Ivancic, A. Gupta, and
G. J. Pappas, “Monte-carlo techniques for falsification of temporal prop-
erties of non-linear hybrid systems,” in Proceedings of the 13th ACM In-
ternational Conference on Hybrid Systems: Computation and Control, HSCC
2010, Stockholm, Sweden, April 12-15, 2010, 2010, pp. 211–220.

[2] H. L. S. Younes and R. G. Simmons, “Probabilistic verification of dis-
crete event systems using acceptance sampling,” in Computer Aided Veri-
fication, 14th International Conference, CAV 2002,Copenhagen, Denmark, July
27-31, 2002, Proceedings, 2002, pp. 223–235.

[3] K. Sen, M. Viswanathan, and G. Agha, “Statistical model checking of
black-box probabilistic systems,” in Computer Aided Verification, 16th In-
ternational Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Pro-
ceedings, 2004, pp. 202–215.

[4] E. M. Clarke and P. Zuliani, “Statistical model checking for cyber-
physical systems,” in Automated Technology for Verification and Analysis,
9th International Symposium, ATVA 2011, Taipei, Taiwan, October 11-14,
2011. Proceedings, 2011, pp. 1–12.

[5] C. Jégourel, A. Legay, and S. Sedwards, “Importance splitting for sta-
tistical model checking rare properties,” in Computer Aided Verification -
25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-
19, 2013. Proceedings, 2013, pp. 576–591.

[6] P. E. Bulychev, A. David, K. G. Larsen, M. Mikucionis, D. B. Poulsen,
A. Legay, and Z. Wang, “UPPAAL-SMC: statistical model checking for
priced timed automata,” in Proceedings 10th Workshop on Quantitative As-
pects of Programming Languages and Systems, QAPL 2012, Tallinn, Estonia,
31 March and 1 April 2012, 2012, pp. 1–16.

[7] D. K. Chaturvedi, Modeling and simulation of systems using MATLAB® and
Simulink®. CRC press, 2017.

[8] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed and

151

References

Fault-Tolerant Systems, Y. Lakhnech and S. Yovine, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2004, pp. 152–166.

[9] A. Kiviriga, K. G. Larsen, and U. Nyman, “Randomized Reachability
Analysis in Uppaal: Fast Error Detection in Timed Systems,” in FMICS
2021, A. Lluch Lafuente and A. Mavridou, Eds. Springer, 2021, pp.
149–166.

[10] D. Ničković and T. Yamaguchi, “Rtamt: Online robustness monitors
from stl,” in Automated Technology for Verification and Analysis, D. V. Hung
and O. Sokolsky, Eds. Cham: Springer International Publishing, 2020,
pp. 564–571.

[11] S. Bogomolov, G. Frehse, A. Gurung, D. Li, G. Martius, and R. Ray, “Fal-
sification of hybrid systems using symbolic reachability and trajectory
splicing,” in Proceedings of the 22nd ACM International Conference on Hy-
brid Systems: Computation and Control, HSCC 2019, Montreal, QC, Canada,
April 16-18, 2019, 2019, pp. 1–10.

[12] E. Bartocci, R. Bloem, B. Maderbacher, N. Manjunath, and D. Nickovic,
“Adaptive testing for specification coverage in CPS models,” in 7th IFAC
Conference on Analysis and Design of Hybrid Systems, ADHS 2021, Brussels,
Belgium, July 7-9, 2021, 2021, pp. 229–234.

[13] E. Ábrahám, B. Becker, C. Dehnert, N. Jansen, J. Katoen, and R. Wim-
mer, “Counterexample generation for discrete-time markov models: An
introductory survey,” in Formal Methods for Executable Software Models
- 14th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2014, Bertinoro, Italy, June 16-
20, 2014, Advanced Lectures, 2014, pp. 65–121.

[14] T. Han and J. Katoen, “Counterexamples in probabilistic model check-
ing,” in Tools and Algorithms for the Construction and Analysis of Systems,
13th International Conference, TACAS 2007, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2007 Braga,
Portugal, March 24 - April 1, 2007, Proceedings, 2007, pp. 72–86.

[15] H. Aljazzar, F. Leitner-Fischer, S. Leue, and D. Simeonov, “Dipro - A tool
for probabilistic counterexample generation,” in Model Checking Software
- 18th International SPIN Workshop, Snowbird, UT, USA, July 14-15, 2011.
Proceedings, 2011, pp. 183–187.

[16] G. Rubino and B. Tuffin, Rare event simulation using Monte Carlo methods.
John Wiley & Sons, 2009.

152

References

[17] K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen, “Importance
splitting in uppaal,” in Leveraging Applications of Formal Methods, Verifica-
tion and Validation. Adaptation and Learning - 11th International Symposium,
ISoLA 2022, Rhodes, Greece, October 22-30, 2022, Proceedings, Part III, ser.
Lecture Notes in Computer Science, T. Margaria and B. Steffen,
Eds., vol. 13703. Springer, 2022, pp. 433–447. [Online]. Available:
https://doi.org/10.1007/978-3-031-19759-8_26

[18] K. Sen, M. Viswanathan, and G. Agha, “Statistical model checking of
black-box probabilistic systems,” in Computer Aided Verification, R. Alur
and D. A. Peled, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 202–215.

[19] H. L. S. Younes, “Verification and planning for stochastic processes with
asynchronous events,” Ph.D. dissertation, 2004.

[20] A. David, D. Du, K. G. Larsen, A. Legay, M. Mikuč ionis, D. B. Poulsen,
and S. Sedwards, “Statistical model checking for stochastic hybrid sys-
tems,” Electronic Proceedings in Theoretical Computer Science, vol. 92, pp.
122–136, aug 2012.

[21] A. David, K. G. Larsen, A. Legay, M. Mikučionis, and D. B.
Poulsen, “Uppaal smc tutorial,” International Journal on Software Tools for
Technology Transfer, vol. 17, no. 4, pp. 397–415, Aug 2015. [Online].
Available: https://doi.org/10.1007/s10009-014-0361-y

[22] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Formal Modeling and Analysis of Timed Systems,
K. Chatterjee and T. A. Henzinger, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 92–106.

153

https://doi.org/10.1007/978-3-031-19759-8_26
https://doi.org/10.1007/s10009-014-0361-y

A
n

d
r

ej K
ivir

ig
A

effic
ien

t M
o

d
el c

h
ec

K
in

g
: th

e Po
w

er
 o

f r
A

n
d

o
M

n
ess

ISSN (online): 2446-1628
ISBN (online): 978-87-7573-740-6

