Hydraulic Response of Rubble Mound Breakwaters
scale effects - berm breakwaters
Andersen, Thomas Lykke

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: September 15, 2019
In this appendix is the proposed overtopping formula for berm breakwaters evaluated against some dimensionless parameters, both those included in the formula and other parameters. From the figures the investigated ranges of these parameters could be observed, which are the ranges for having good predictions by the overtopping formula. The following colors are used as a general legend in all figures included in this appendix:

- Present data
- Bolatti Guzzo and Marconi, 1991
- Lissev, 1993
- Viggosson et al., 1993
- Kuhn, 2000
- Porarinsson, 2004
No systematic scatter with dimensionless crest freeboard is observed within the calibrated area being $0.6 < R_\ast < 2$. However, the Lissev, 1993 and Kuhnen, 2000 data shows increasing deviation between measured and calculated overtopping discharge with decreasing R_\ast. The same trend is observed with G_\ast, so it can be concluded that for large wave heights these two data sets shows a different trend than the present data and the data of Porarinsson, 2004. The present data shows no systematic deviations with dimensionless crest width G_\ast. The data of Kuhnen, 2000 is characterized by a very narrow crest with $G_\ast \approx 0.4$ which is outside the calibrated area $1 < G_\ast < 4$. It seems reasonable to conclude that the dimensionless crest freeboard and crest width has been included in a proper way.

The berm width seems to have been included in a proper way as no systematic scatter is with B_\ast is observed within the calibrated area $0 < B_\ast < 8$, cf. Fig. D.3. Even for steep structures with no berm the formula gives good predictions. Also for structures with a very wide berm the predictions are good. The berm elevation seems to have been included in a proper way as no systematic scatter with $h_{b\ast}$ is observed, cf. Fig. D.4.

380
No reshaped geometrical parameters were included in the overtopping formula. To describe the influence of reshaping the f_{H0} parameter introduced in chapter 4 was included. This seems valid as no systematic scatter with Rec/B and
Rec/D_{n,50} is observed at least in the relevant area Rec/B < 1.0, cf. Fig. D.5 and D.6. For very large values of Rec/B, which will say greater than 1.5, there is a tendency of a slightly underestimation of overtopping discharges.

No systematic scatter is observed with \(H_0 T_0 \) and \(s_{0p} \), cf. Fig. D.7 and D.8.

Because overtopping is a very non-linear phenomenon one could expect a large influence of the wave height distribution on overtopping. However, this is as shown in Fig. D.9 not the case. There seems to be some influence, but not a major one, which was the reason for including only \(H_{m0} \) in the formula, as this parameter is very common given. Moreover including \(H_{1/100} \) instead of \(H_{m0} \) resulted in a worse fit. Rayleigh distributed waves yields \(H_{1/100}/H_{1/3} = 1.66 \) corresponding to approximately the highest values observed in the present tests. For \(H_{1/100}/H_{m0} < 1.4 \) there is a tendency to overprediction of overtopping discharges.

The wave groupiness factor was not included in the formula, but has some influence on the average overtopping discharge, as there is a tendency to increasing overtopping with increasing groupiness factor, cf. Fig. D.10. Nothing was done to generate waves with little or high wave groupiness, so the different wave groupiness factors is due to sample variability only. A more systematic study is needed to cover the influence of wave groupiness.
The kurtosis of the surface elevation is another measure for the wave height distribution. There is observed some systematic deviation with the kurtosis, similar to what was found for $H_{1/100}/H_{m0}$.

383
The wave skewness was found to have some influence on the stability of a berm breakwater. Nevertheless, the parameter seems not to have any significant influence on the overtopping discharge, and was therefore not included in the formula.

In the OPTICREST project was found increasing wave run-up heights with increasing spectral width (see Fig. 9.3). In the present test programme was only included tests generated from the JONSWAP spectra with a peak enhancement factor (γ) of 3.3. Therefore, it could be difficult to conclude anything on influence of spectral width on overtopping of berm breakwaters, as the variations in spectral width parameter is mainly due to shoaling and breaking. In the tests of Lissev, 1993 a Pierson-Moskowitz spectra was used which is wider than the spectra tested in the present tests. If the findings in the OPTICREST project also applies to overtopping Lissev, 1993 should have measured more overtopping, but they measured less than predicted by the formula. To give clear recommendations on influence of the spectral width, a systematic study with different spectra is needed.

For very shallow water conditions there is an influence of the water depth, which was not included in the overtopping formula. This is due to wave breaking which influences the wave height distribution. For flatter foreshores the influence of the water depth will start for higher values of h/H_{m0}. The main part of the present tests were performed with non-breaking waves on the foreshore and only one foreshore slope was tested. Thus the validity of the formula needs to be verified.
for cases where heavy wave breaking is not taking place on the foreshore. In cases with heavy wave breaking the formula seems to give conservative results as expected.