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Abstract

The control of a battery thermal management system (BTMS) is essential for the thermal safety, energy efficiency,
and durability of electric vehicles (EVs) in hot weather. To address the battery cooling optimization problem, this
paper utilizes dynamic programming (DP) to develop an online rule-based control strategy. Firstly, an electrical-
thermal-aging model of the LiFePO4 battery pack is established. A control-oriented onboard BTMS model is
proposed and verified under different speed profiles and temperatures. Then in the DP framework, a cost function
consisting of battery aging cost and cooling-induced electricity cost is minimized to obtain the optimal compressor
power. By exacting three rules ”fast cooling, slow cooling, and temperature-maintaining” from the DP result, a
near-optimal rule-based cooling strategy, which uses as much regenerative energy as possible to cool the battery
pack, is proposed for online execution. Simulation results show that the proposed online strategy can dramatically
improve the driving economy and reduce battery degradation under diverse operation conditions, achieving less
than a 2.18% difference in battery loss compared to the offline DP. Recommendations regarding battery cooling
under different real-world cases are finally provided.

Keywords: Battery thermal management system; Battery degradation; Electric vehicles; Eco-cooling; Dynamic
programming; Economy analysis.

1. Introduction

Benefiting from zero-emission and low operation cost features, electric vehicles (EVs) powered by Li-ion batteries
have an increasing penetration rate in the automotive market. However, battery overheating or even thermal
runaway [1] still hinders consumer acceptance of EVs, especially in those areas with hot weather [2]. In this
context, battery cooling is of vital importance to ensure thermal safety and further improve the driving economy
[3]. Battery temperature is actively controlled by the battery thermal management system (BTMS) [4], which
requires careful structure designs [5, 6] to improve cooling efficiency and also, well-designed battery cooling control
strategies to realize real-time, efficient, and energy-saving cooling performance [7]. The BTMS should be able to
regulate the battery temperature and maintain it within a safe range to extend the battery life and improve vehicle
performance.

Generally, BTMS can be categorized as active, passive, and hybrid systems [8]. Active BTMSs require an
additional energy source (a fan, blower, or pump) to exchange the heat between the battery pack and the thermal
conductive media, e.g., air flow or liquid flow. When compared to passive and hybrid BTMSs, active BTMSs
well balance the complexity of the cooling structure and cooling performance and are therefore widely applied in
commercial EVs [9]. Finite element analysis and computational fluid dynamics are commonly used for precise
modeling [10, 11] and structure optimization [12, 13] of active BTMSs. These efforts have contributed significantly
to the improvement of heat exchange efficiency and the design of practical BTMSs. With a well-designed active
BTMS, meticulous control is critical for BTMS operation where two main issues need to be addressed: (1) A
control-oriented model with adequate accuracy and acceptable complexity is required since BTMS control involves
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complex refrigerant phase change and coupled electrical-thermal processes [14]; and (2) Considering the coupled
electrical-thermal-aging characteristics of batteries [15], operation optimization for battery cooling is needed to
simultaneously reduce battery aging [16] and cooling energy consumption from battery pack itself [17, 18].

Extensive studies about control-oriented BTMS modeling have been conducted in recent years. Amini et.al [19]
considered a simple constant ratio between the battery cooling rate and BTMS power, and they further developed
a polynomial fitting model with acceptable accuracy, where the temperature dynamics of battery, cabin, and
evaporator are involved [20]. Similar work can also be found in [21]. To build more accurate models, Park et.al
[22] further established a detailed control-oriented BTMS model considering different mass flow rates of the R134a
refrigerant and pressure ratios. Kuang et.al [23] considered a high-fidelity heat transfer process and built models
for the compressor, condenser, evaporator, chiller, and expansion valve.

Regarding the battery cooling strategy, there have been numerous studies that can be classified into offline
optimization methods [21, 23–25] and online optimization methods, based on, for example, look-up tables [24],
fuzzy PID [25], and model predictive control (MPC) [19–22, 26, 27].

In terms of offline cooling strategies, a hierarchical and iterative dynamic programming (HIDP) scheme [21] was
proposed to provide the optimal battery temperature trajectory so that an MPC can track and minimize cooling
power. Similarly, Zhao et.al [25] proposed a fuzzy PID to track the optimal temperature trajectories from dynamic
programming (DP), where the optimal battery target temperature is calculated considering weather conditions, pas-
senger characteristics, and battery conditions. Kuang et. al [23] proposed a genetic algorithm method to explicitly
minimize the battery capacity loss (i.e., battery degradation) and cooling power, where different weight coefficients
were discussed carefully. Bauer et.al [24] developed an offline Pontryagin’s maximum principle (PMP)-based battery
cooling strategy to minimize the consumed battery energy and battery temperature tracking error (then a look-up
table based on the PMP is designed for online execution). The above offline battery cooling optimization methods
all require EVs’ entire traction power/speed profile as a priori and suffer from heavy computation burdens, which
are difficult to use in practice.

To realize online cooling optimization, MPC can be a promising online optimization method leveraging future
information [28] and has been widely investigated. A hierarchical MPC framework is proposed for cabin/battery
thermal management optimization in EV [19] and hybrid electric vehicles (HEVs) [20]. Park et.al [22, 26] developed
a stochastic MPC to handle uncertainties of future information by designing a stochastic model of future heat
generation. In these studies, the cooling power and battery temperature tracking error are optimized. Xie et.al [27]
proposed a battery cooling MPC method to optimize the battery temperature tracking error, coolant flow rate, and
the change rate of coolant flow.

Despite the above-related studies, there are still several issues to be resolved. To the best of our knowledge, (1)
A control-oriented BTMS model that is effective under different working conditions, e.g., EV velocity, environment
temperature, and BTMS parameters, is still missing in the available literature; (2) An online battery cooling
optimization method that minimizes the battery capacity degradation has not been reported yet; (3) From the
perspective of battery degradation and driving economy, how to cool the battery under different conditions is still
an open problem.

To address the challenges, this paper presents a comprehensive investigation of EV battery cooling optimization
based on dynamic programming. Firstly, a control-oriented BTMS model is established and verified under different
working conditions. Then an offline DP-based battery cooling strategy is proposed to minimize the costs of battery
capacity degradation and battery cooling. By analyzing the DP results under various driving conditions (urban,
suburban, and highway), three rules are extracted to construct a near-optimal rule-based cooling strategy for online
implementation. Finally, a quantitative analysis and comparison with existing studies are conducted to indicate the
superiority and optimality of the proposed online strategy, together with a comprehensive analysis of the driving
economy under versatile conditions. An intuitive comparison between the existing literature [19–27] and this paper
is presented in Table 1. Compared with existing studies, the contributions of this paper can be summarized below.

1. A control-oriented BTMS model, which has high accuracy under wide ranges of EV velocity (0∼120km/h),
environmental temperature (26∼40◦C), and mass flow rate of the coolant (0.14∼0.22kg/s), is established through
orthogonal experiments and data fitting.

2. The proposed online cooling strategy, which can minimize battery capacity loss and cooling energy by
leveraging regenerative power, is verified to achieve near-optimal performance with ease of implementation in EV
applications when compared to DP results.
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Table 1: Comparison of the reviewed battery cooling studies

Literature
Cooling BTMS modeling Model validation Environmental Cooling strategy

Optimization objective
type (cooling rate/power relation) under different temperature (◦C) (online/offline)

Ref. [19] Liquid+Air Constant ratio - 30 Hierarchical MPC (online)
Tbat error
cooling power

Ref. [20] Air
Mechanism modeling
Polynomial fitting

EV speed/fan speed 301 Hierarchical MPC (online)
Tbat error
cooling power
SoCbat error

2

Ref. [21] Air
Mechanism modeling
Polynomial fitting

EV speed
cooling power

30
HIDP (offline)
MPC (online)

Tbat error
cooling power

Ref. [22] Liquid
Mechanism modeling
Interpolation fitting

coolant mass flow rate
compressor speed/torque
pressure ratio

301 stochastic MPC (online)
Tbat error
cooling power

Ref. [23] Liquid Mechanism modeling

pressure ratio
condenser wind speed
refrigerant mass flow rate
coolant volume flow rate
compressor speed

30 genetic algorithm (offline)
battery degradation
cooling power

Ref. [24]3 - Constant ratio - -30, 601
PMP (offline)
lookup table (online)

Tbat error
cooling/heating power

Ref. [25] Liquid Mechanism modeling EV speed 331
DP (offline)
fuzzy PID (online)

Tbat error
cooling power

Ref. [26] Liquid
Mechanism modeling
Interpolation fitting

coolant mass flow rate
compressor speed/torque
pressure ratio

28∼341
stochastic DP (offline)
stochastic MPC (online)

Tbat error
cooling power

Ref. [27] Liquid Mechanism modeling coolant mass flow rate 15∼30 MPC (online)
Tbat error
coolant flow rate
coolant flow change rate

This work Liquid
Mechanism modeling
Interpolation fitting

EV speed
coolant mass flow rate
environmental temperature

26∼40
DP (offline)
rule (online)

battery degradation
cooling power

1 The environmental temperature is not explicitly mentioned, the initial battery temperature is listed.
2 Ref. [20] studied both thermal management and power allocation of HEVs, thus the battery SoC is planned.
3 Ref. [24] studied both battery heating and cooling.

3. A comprehensive and quantitative driving economy analysis is presented to explore the performance of the
proposed cooling strategy under versatile operating conditions, i.e., driving conditions, environmental temperatures,
and BTMS parameters. Recommendations for battery cooling are then provided.

The remainder of this paper is organized as follows. In Section 2, detailed modeling of the battery pack and
BTMS is introduced. Offline DP optimization for battery cooling together with the results are illustrated in Section
3. Analysis of the DP results and the rule-based cooling strategy are proposed in Section 4. Section 5 presents the
detailed results and analysis. Conclusions are drawn in Section 6.

2. System Modeling

As shown in Fig. 1, the studied system includes a battery pack as the energy storage system, and the auxiliary
load corresponding to the BTMS, which consists of two thermal loops, i.e., the battery cooling loop and the
refrigeration loop. The battery cooling power Pcooling comes from the electricity consumption of the compressor,
the pump, and the fan.

2.1. EV model

The power balance between the battery pack, the BTMS, and the traction system is given as

(Pd + Pcooling)/ηdcac = Pbat (1)

where Pd is the traction/braking power, Pcooling is the total power of the compressor, the pump, and the fan, ηdcac is
the inverter efficiency, and Pbat is the power of the battery pack. Detailed modeling and parameters of the DC/AC
inverter, motor, powertrain, and vehicle dynamics can be found in our previous work [29].
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Figure 1: Battery energy storage system, battery thermal management system, and traction load of the electric vehicle.

2.2. Battery electrical model

The Rint model is considered for modeling the dynamics of the battery pack. The voltage, power, and state-of-
charge (SoC) dynamics are given below:

Vbat = Vbat,oc − IbatRbat (2)

Pbat = Vbat,ocIbat − I2batRbat (3)

SoCbat,k+1 = SoCbat,k − Ibat,kTs

3600Qbat
, (4)

where Vbat,oc and Vbat represent the open-circuit voltage and terminal voltage, Ibat denotes the battery current, Rbat

is the internal resistance, Vbat,oc is a function of battery SoC, given in [30], Rbat is a function of charging/discharging,
SoC, and temperature, provided in [31], and Qbat is the capacity of the battery pack. Ts is the sampling time.
Other basic parameters of the LiFePO4 battery cell considered in this work are given in Table 2. In the studied
EV, 250-60Ah cells form a 120Ah-412V battery pack [32] (125 in series, 2 in parallel).

Table 2: Parameters of the Li-ion battery

Parameter Battery (cell)

Capacity 60Ah
Nominal voltage 3.3V
Stored energy 192Wh
Mass 2.5kg
SoC range [5%,100%]

2.3. Battery aging model

A dynamic capacity degradation model for LiFePO4 batteries [16] is utilized to quantify the battery degradation.
Through experimental testing and parameter calibration from 5◦C to 45◦C [33], the discrete form of this model is
provided as
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∆Qloss,k = 9.78× 10−4 |Ibat,k|Ts

3600
e
(
−15162+1516Crate,k

0.849RTbat,k
)
Q−0.1779

loss,k−1 (5)

where ∆Qloss,k is the instantaneous capacity loss (%), R is the gas constant 8.314J/(mol·K), Tbat,k is the battery
absolute temperature (K), Crate,k is the current rate (i.e., |Ibat|/Qbat), and Ts denotes the sampling time. Therefore,
the incremental capacity reduction ∆Qloss,k is a non-linear function of Ibat,k and Tbat,k, and it will be directly
incorporated in the cost function in this paper.

2.4. Battery thermal model

Heat generation of the battery pack mainly consists of resistance joule heat and reversible entropy heat [34],
which are the first term and the second term in Eq. (6).

Q̇gen = I2batRbat + IbatTbat
dVbat

dTbat
(6)

where dVbat

dTbat
is derived through the entropy potential calibration of the LiFePO4 cell, the detailed results can be

found in [31] (positive current denotes discharging). For simplicity, all battery cells are assumed to have the same
electrical and thermal parameters, i.e., no temperature variation is considered among cells. Moreover, this study
does not distinguish the core temperature and surface temperature of the battery cell, the core temperature can
be estimated using the surface temperature as described in [35]. Hence, the battery temperature dynamics can be
derived, as shown below [34].

dTbat

dt
=

Q̇gen − Q̇cool

NcellCcell
(7)

where Ncell = 250 is the total number of battery cells in the pack, Ccell is the thermal capacity of the battery cell,
i.e., 2299J/◦C, and Q̇cool is the battery cooling rate, determined by the BTMS.

The electrical-thermal-aging coupling relationship of the Li-ion battery is shown in Fig. 2. The battery current
Ibat is the input of these coupled models, then battery states such as SoC, terminal voltage, heat generation,
temperature, and capacity loss are calculated. Battery temperature Tbat will be fed back to update the electrical
and aging models iteratively and is determined by the environment temperature, heat generation, and cooling rate.

–+ –+ –+

+ –

Electrical model

Ibat

Vbat,oc Rbat

Vbat

Capacity

Cycle

100%

80%

Aging model

Thermal model

,

,

,4

,

15162 1516

0.849 0.1779

, 1

9.78 10
3600

rate k

bat k

bat k s

loss k

C

RT

loss k

I T
Q

e Q

−

 − +
 
  − 

−

 =  

Tbat

Qloss

gen
Q

gen
Q

cool
Q

SoCbat

Figure 2: Coupling relationship between battery electrical, thermal, and aging models.

2.5. Battery thermal management system model

Fig. 3 shows the framework and schematic of the studied BTMS, where the colored lines highlight the two
thermal loops. The solid line represents the refrigeration loop, and the double solid line represents the battery
cooling loop. For the refrigeration loop, driven by the compressor, the refrigerant undergoes several procedures
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through the compressor, condenser, expansion valve, and Chiller. It turns into high-pressure superheated vapor
from low-pressure superheated vapor through compression, then dissipates heat to ambient air through the condenser
with a new state of high-pressure cooled liquid. After the expansion valve, the refrigerant turns into low-pressure
mixed liquid and vapor, while the temperature drops due to liquid vaporization. Finally, the mixed refrigerant
liquid and vapor absorb heat through the chiller.

Figure 3: Battery thermal management system. Red, orange, green, and blue represent the temperatures from high to low.

The above processes form a compressed refrigeration cycle of the air-conditioning system [36, 37]. For the
battery cooling loop, driven by the pump, the coolant flows into the battery pack to absorb heat generated by the
battery pack. Then the heat exchange process between the coolant and refrigerant will occur while the coolant
flows into the Chiller. To sum up, the studied BTMS model contains three sub-models: a sub-model describes
the relationship between cooling power and consumed energy of BTMS (sub-model I), a sub-model describing the
heat exchange between the battery pack and coolant (sub-model II), and a sub-model describing the heat exchange
between the coolant and refrigerant in Chiller (sub-model III).

For sub-model I, the total electricity consumption comes from three parts, i.e., pump, fan, and compressor.
Considering that the power levels of the pump (less than 50W) and the fan (about 100∼200W) are much lower
than the compressor (500∼4500W), we simplify the power calculation by treating the power of the pump and
fan as constants to reduce complexity. Therefore, only Pcomp is considered as the control variable in the studied
BTMS. Specifically, the main control strategy for the fan and pump is rule-based, where their real-time power varies
according to a preset strategy. According to simulation results in [38], an average power consumption of 200W for
the fan and pump is considered. This assumption simplifies the modeling while still capturing the general power
characteristics of the fan and pump under typical conditions. For more details about the control strategy of the
pump and fan, please refer to [38]. With these considerations, we can express the total power of the BTMS as
follows

Pcooling = Pcomp + 200. (8)

As mentioned above, the compression refrigeration process is a highly nonlinear process, which requires quantities
of complicated equations to describe. To reduce calculation burden and model complexity, a model describing
the relationship between cooling rate and power consumed by the AC system is fitted by orthogonal simulation
experiment data. Data was generated by a vehicle AC system model built into KULI software [36–39], this model
was well validated by experimental vehicle data. The model is given as

Q̇cool = λ1Pcomp + λ2P
2
comp + λ3Tclnt,out + λ4Tairṁair

+λ5Tclnt,outṁclnt + λ6

(9)

ṁair = 0.07065 + 0.00606v (10)

where Q̇cool represents the supplied cooling rate (power) to the battery pack from the BTMS, Pcomp is the compressor
electrical power, Tclnt,out is the outlet temperature of the coolant, Tair is the environment temperature, ṁair denotes
the total air mass flow through the condenser, ṁclnt is the mass flow rate of coolant, v is the EV velocity (km/h),
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and λi are different coefficients determined by Tair and ṁclnt. Eq.(10) describes the relationship between the air
mass flow rate and the EV velocity. In addition, all coefficients λi are functions of Tair and ṁclnt, as shown in Fig.
4. With these fitted coefficients, more than 80% and 97% of the model/experiment data have an error of less than
5% and 10%, respectively, see Fig. 5. More details of the BTMS orthogonal experiment and λi values are given in
the Appendix.
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Figure 4: Model fitted coefficients of the BTMS model λi.
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Figure 5: Percentage of data with model error less than 5% and 10%.

The working ranges of the key variables are determined by application scenarios and operation range of each
component [36, 38, 40], see Table 3. Pcomp is the control variable with operation range [500, 4500W]. When Pcomp is
too low, i.e., less than 500W, the compressor has a low rotation speed (less than 500rpm), thereby failing to repress
refrigerant and negatively impacting the compressor. As a result, we assume Q̇cool = 0 when Pcomp < 500W.

Table 3: Application scope of BTMS orthogonal experiment

Input variables Value Unit

Outlet temperature of coolant Tclnt,out 25∼39 ◦C
Volumetric flow rate of coolant q̇clnt 8∼12 L/min
Ambient air temperature Tair 26∼39.5 ◦C
EV velocity v 0∼120 km/h
Compressor power Pcomp 500∼4500 W

The following Eqs. (11) and (12) describe the heat exchange process of sub-models II and III of BTMS [22].

Tclnt,out = (Tclnt,in − Tbat)e
−hbatAbat
ṁclntcclnt + Tbat (11)

Tclnt,in = Tclnt,out −
Q̇cool

ṁclntcclnt
(12)
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where Tclnt,in is the temperature of the coolant inlet, hbat represents the heat transfer coefficient between the battery
and the coolant, Abat is the heat transfer area between the battery and the coolant, cclnt denotes the specific heat
capacity of the coolant. All the constant parameters of sub-models II and III are listed in Table 4, note that more
Tair, ṁclnt, and Abat parameters are tested in Section 5.

Table 4: Parameter settings of the BTMS

Description and symbol Value Unit

Specific heat capacity of coolant cclnt 3330 [22] J/kg/◦C
Heat transfer coefficient between battery/coolant 300 [22] W/m2/◦C
Mass flow rate of the coolant ṁclnt 0.18 kg/s
Heat transfer area between battery/coolant Abat 3.1 m2

Environment temperature Tair 33 ◦C
Initial temperatures of the coolant inlet Tclnt,in 33 ◦C
Initial temperatures of the coolant outlet Tclnt,out 33 ◦C

3. Offline optimization of battery thermal management

This section illustrates the offline optimization of battery cooling using DP under typical driving conditions,
and the DP results may provide some insightful guidance to design online battery cooling strategies.

3.1. Dynamic programming development

First, we set a target battery temperature of 25◦C in the cooling process under hot weather conditions, as
generally, there is no need to cool the battery down to a lower temperature for most battery chemistries [8, 41],
considering the tradeoff between energy consumption and battery degradation rate [25]. In the DP process, the
primary state is the battery temperature Tbat, which is discretized into 111 states (with the temperature resolution
of about 0.1◦C) in the range of [Tbat,min, Tbat,max], where Tbat,min = 24◦C, Tbat,max = Tair + 2◦C. Temperature
margins of 1∼2◦C are set to ensure all temperatures around 25◦C and Tair can be considered, i.e., the optimal
control variable is available for the query if the battery temperature is slightly below 25◦C or above Tair in the
forward execution. The control variable is the compressor power Pcomp, which is also divided into 111 discrete
states. The backward search procedure of DP on the time domain is shown in Fig. 6, when all discrete states and
actions are traversed, an offline table of the Value function is established for the forward execution [42].

Tbat,max

(111)

Time [s]

State variable

Tbat [
oC]

k = 1 k = 2 k = n k = kendk = kend -1

Conrtol variable 

Pcomp [W]

Tbat,min

(1)

Tbat,ini

(x)

......

......

......

......

Pcomp,max

(111)

Pcomp,min

(1)

...... ......

DP search 

path

Control 

results

State 

results

Figure 6: Principle of DP search procedure.

Battery cooling may result in reduced battery degradation but bring an increasing energy consumption. Thus
the total cost including the battery capacity loss (aging) and the accumulated energy consumption for cooling under
the entire driving cycle needs to be minimized by the DP, as shown below.
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Minimize
[ kend∑
k=1

(
QbatVbatpricebat

1000
× ∆Qloss,kTs

0.2
+ priceelePcooling,kTs)

]
, (13)

where the first item is the battery capacity degradation cost, and the second item is the electricity cost associated
with cooling the battery. Furthermore, pricebat is the current battery price, i.e., 150USD/kWh [43], and the constant
0.2 denotes the maximum allowable battery capacity loss of 20% in EVs (the initial capacity of the battery pack
is normalized to 1 [31]), ∆Qloss,k is given in Eq. (5), priceele is the electricity price, i.e., 0.1USD/kWh, Pcooling,k

is mainly determined by Pcomp,k, and Ts is set to 1s. This cost function is calculated considering 5 initial capacity
losses 0.01% (a very small number that is close to 0 to avoid numerical issues and utilize the model successfully),
5%, 10%, 15%, and 20% to assess the average cost over the entire battery life [29]. The constraints involved in the
DP optimization are given below: 

0 ≤ Pcomp ≤ 4500W

Tbat,target = 25◦C

Ibat,min ≤ Ibat ≤ Ibat,max

SoCbat,min ≤ SoCbat ≤ SoCbat,max

(14)

for the second constraint, when the battery temperature is lower than or equal to 25◦C, the searching range of
Pcomp will be modified to [0, 0].

3.2. Analysis of dynamic programming results

This study investigates three representative driving cycles, i.e., NYCC, SC03, and US06, representing typical
urban, suburban, and highway conditions, respectively. As shown in Fig. 7 (a), the three driving cycles have the
same time duration of 600s, with average velocities of 11.40km/h, 34.58km/h, and 77.36km/h and average distances
of 1.90km, 5.76km, and 12.89km, respectively. Fig. 7 (b) shows the driving power demand Pd calculated based on
the EV dynamic model.
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Figure 7: Three representative driving cycles: NYCC for urban, SC03 for suburban, and US06 for highway. (a) velocity, and (b) power
demand.

The initial battery SoC is 95%, thus the DP is performed on the repeated driving cycles to consume the battery
until its SoC is below 10%. Due to the different distances, NYCC is repeated 165 times, while SC03 and US06 are
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repeated 55 and 18 times, respectively, leading to the total distances of 314km, 317km, and 232km for those three
driving cycles.

Taking SC03 as an example (the detailed DP results of NYCC and US06 are not given in this section due to
the limitation of the article length), the results of compressor power, battery heat generation/cooling rate, and
battery/coolant temperatures are illustrated in Fig. 8. The whole battery cooling process can be divided into three
stages: the fast cooling stage from 0s to 585s, the slow cooling stage from 586s to 2578s, and the temperature-
maintaining stage from 2579s to the end.
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Figure 8: Offline DP results of compressor power, battery heating/cooling rate, and temperature under 55 SC03 driving cycles (33000s).

Specifically, in the fast cooling stage, the compressor is always working with Pcomp between 500W and 4500W. At
the end of fast cooling, the battery temperature is about 28◦C. In this stage, the average coolant inlet temperature
is 10◦C lower than the battery temperature, and the average coolant outlet temperature is 2.25◦C lower than the
battery temperature. In the slow cooling stage, the compressor will not continuously work, while the compressor
power can still reach the maximum value of 4500W. At about 2578s, the battery temperature drops to about 25◦C.
In the slow cooling and temperature-maintaining stages, the temperatures of coolant at the inlet and outlet can
be equal to battery temperature sometimes, since the compressor only works intermittently. When the compressor
doesn’t work, the temperatures of coolant at the inlet and outlet will gradually increase through heat exchange
with the battery. For the fast cooling stage, the temperatures of coolant at the inlet and outlet are always lower
than the battery with continuous compressor operation. When it goes into the temperature-maintaining stage, the
compressor power is between 0 and a low value to maintain the battery temperature around 25◦C. Note that the
compressor power during [10000, 15000s] is higher since the reversible entropy heat term is positive and higher
when discharging (battery SoC is around 0.6 [31]). When battery SoC is less than 0.1, the reversible entropy heat
is negative when discharging and can be higher than the resistance joule heat, for example, the compressor rarely
works after 30000s.

4. Online battery cooling strategy

In this section, an online rule-based battery cooling strategy is proposed according to the DP results to achieve
near-optimal performance with a low computational cost for practical implementations. To explore how DP balances
the energy consumption and battery degradation in the cooling process, we carefully analyze the DP results,
especially the underlying insights, i.e., the relationship between the traction power Pd and the compressor power
Pcomp under different stages. Specifically, as shown in Fig. 9 (a), in the fast cooling stage, the compressor is
always cooling effectively (> 500W). When the EV is in traction mode (Pd > 0), the compressor power is mainly
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Figure 9: Optimal rules from the relationship between the compressor power Pcomp and traction power Pd in DP results under SC03.
(a) is the fast cooling stage, (b) is the slow cooling stage, and (c) is the temperature-maintaining stage.

constant at about 532W. When the EV is in regenerative braking mode (Pd < 0), the compressor power equals the
regenerative power, and the part that exceeds 4500W is limited and used for charging the battery. As a result, the
battery degradation can be remarkably reduced, as charging, especially at a high rate, will degrade the battery fast.

As shown in Fig. 9 (b), in the slow cooling stage, when the EV is in regenerative braking mode (Pd < 0), the
cooling rule remains the same as in the fast cooling stage. However, when the EV is in traction mode (Pd > 0),
the compressor does not work with Pcomp concentrating around 0 W, meaning that all compressor power comes
from the regenerative braking power. Note that even though there are a few points around 500W due to DP
grid interpolation in the forward execution, most of them are below 500W and therefore negligible. As shown in
Fig. 9 (c), in the temperature-maintaining stage, the compressor does not work (Pcomp = 0) when the EV is in
traction mode (Pd > 0). In regenerative braking mode, the compressor can hardly work at its maximum power
of 4500W, and the points above 500W do not show a clear pattern. Despite this, the battery temperature will be
maintained at around 25◦C, fluctuating in a small range of about 0.1◦C. Note that it is hard to execute different
cooling rules between Pcomp and Tbat in practice within 0.1◦C. Therefore, all these valid points will be ignored for
easy implementation, i.e., Pcomp = 0. When the battery temperature rises, the BTMS can switch back to the slow
cooling stage and cool the battery. Finally, three cooling rules can be extracted for the three cooling stages, and
switching conditions based on the battery temperature are added according to the DP results, as illustrated in
Fig. 10. Note that DP also behaves similarly under NYCC and US06, all key parameters of the rule-based battery
cooling strategy under NYCC, SC03, and US06 are listed in Table 5.

For the three different driving cycles, only Tsw1 is different, as high velocity will induce more heat generation in
batteries, thereby requiring a longer fast cooling stage and a lower Tsw1. All Tsw1 and Tsw2 values are integers for
ease of implementation, i.e., fractional digits are ignored. Here we can investigate why the battery cooling process is
separated into fast and slow cooling stages by DP. The reason is that Tsw1 is a temperature threshold related to the
driving conditions, i.e., when Tbat > Tsw1, the low cooling power Plow can bring about a battery degradation cost

11



Start

End

Tbat≥ Tsw1?Tbat≥ Tsw1?
Y

N

Pcomp= PlowPcomp= Plow Pcomp= |Pd|Pcomp= |Pd|

Fast cooling 

stage
Pd≥ 0?Pd≥ 0?

Driving end?Driving end?

N

Y

Y N Tbat≥ Tsw2?Tbat≥ Tsw2?

N

Pcomp= 0Pcomp= 0 Pcomp= |Pd|Pcomp= |Pd|

Slow cooling 

stage
Pd≥ 0?Pd≥ 0?

Y N

Pcomp= 0Pcomp= 0

Y

Temperature-maintaining 

stage

Figure 10: Flow chart of the online near-optimal rule-based battery cooling strategy.

Table 5: Parameters of the proposed rule-based battery cooling strategy.

Parameter Tsw1 (◦C) Tsw2 (◦C) Plow (W)

NYCC 31 25 532
SC03 28 25 532
US06 26 25 532

reduction that is higher than electricity cost incurred by cooling, while when Tbat < Tsw1, the battery degradation
cost reduction is less than the cooling electricity cost, as indicated in the optimal Pcomp lookup table of DP. In
Table 5, NYCC necessitates the highest Tsw1, while US06 requires the lowest, for the reason that higher vehicle
speeds result in higher average traction power Pd. As a result, the proportion of additional cooling power Plow to
traction power Pd decreases, and the proportion of additional battery degradation from Plow to the total power
decreases as well. Therefore, a lower temperature threshold Tsw1 is desired. In Fig. 7 (b), the average traction
power Pd of NYCC, SC03, and US06 is 1.30, 4.43, and 14.56kW, respectively.

5. Results and Discussions

In this section, the proposed online cooling strategy is first compared with the offline DP, existing MPC, and
BTMS off (no-cooling) cases. Then, a study of how driving distance impacts the driving economy and battery
degradation is conducted to investigate the superiority of the proposed cooling strategy under different driving
scenarios. Finally, a sensitivity analysis of three parameters (environment temperature Tair, mass flow rate of the
coolant ṁclnt, and heat transfer area between the battery and coolant Abat) is conducted to verify the robustness
of the cooling strategy, and recommendations of battery cooling under different conditions are provided.
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5.1. Comparative results of battery cooling process

The proposed rule-based cooling strategy is compared with the offline DP and online MPC to validate its
performance. For existing online optimization MPCmethods [19–22, 26, 27], the battery degradation is not explicitly
minimized, we design the following cost function for the MPC, which is consistent with the above literature, as
given by

minJ =

k+Np−1∑
t=k

[α(Tbat − Tbat,target)
2 + priceelePcooling,kTs],

k = 0, 1, 2, ...

(15)

where Np is the prediction horizon of the MPC, α is the weighting factor of the temperature tracking term, and
the second term of the cost function is the battery cooling cost which is the same as DP. The prediction horizon is
10, and a perfect prediction of EV velocity/traction load power (no prediction error) is considered. Note that such
prediction is almost impossible in real-world implementations; thus, the MPC performance will deteriorate [28].

The battery capacity loss, battery SoC, and battery temperature results under NYCC, SC03, and US06 are
presented in Fig. 11, as marked with different colors. The proposed rule-based cooling strategy consists of three
stages: fast cooling, slow cooling, and temperature maintenance, for each driving cycle. As shown in Fig. 11 (a)
and (b), the performance of the rule-based strategy is similar to that of DP, as demonstrated by the similarity in
battery capacity loss and SoC values. In contrast, MPC has the highest battery capacity loss and lowest battery
SoC under different driving cycles, despite consuming more cooling energy. As indicated in Fig. 11 (c), the final
battery temperatures can be well maintained around 25◦C by all three cooling methods. However, the enlarged
figure shows that the cooling process of the proposed rule-based strategy is also similar to that of DP (almost
overlap), while MPC cools the batter very fast (Pcomp is around 3200W and Tbat reaches 25

◦C before 1300s for all
three driving cycles) and then stops cooling until the battery temperature rises, causing a jagged temperature curve
of MPC in the temperature-maintaining stage.

Table 6: Numerical comparison results of the proposed online strategy, DP method, MPC, and BTMS Off case.

Driving cycle Method
Battery capacity Final battery Final battery Fast cooling Slow cooling

loss (%) SoC temperature (◦C) period (s) period (s)

DP 0.0367 0.0458 24.9249 [0, 216] [217, 4867]
NYCC Rule 0.0375 0.0868 25.0381 [0, 224] [225, 3561]
(urban) MPC 0.0384 0.0541 24.7665 [0, 1295] -

BTMS Off 0.0476 0.1092 37.3083 - -

DP 0.0322 0.0589 24.9831 [0, 585] [586, 2578]
SC03 Rule 0.0324 0.0666 25.0301 [0, 599] [600, 2464]

(suburban) MPC 0.0333 0.0565 24.8184 [0, 959] -
BTMS Off 0.0411 0.0884 37.5637 - -

DP 0.0380 0.0302 25.0077 [0, 927] [928, 1770]
US06 Rule 0.0380 0.0254 25.0975 [0, 925] [926, 1712]

(highway) MPC 0.0392 0.0196 24.9323 [0, 850] -
BTMS Off 0.0487 0.0536 39.4827 - -

A numerical comparison between the proposed rule-based strategy, DP method, MPC, and no-cooling (as a
benchmark) cases is provided, as summarized in Table 6. For battery capacity loss, the proposed rule-based
strategy achieves near-optimal performance with only a 2.18% increase in battery capacity loss compared to DP.
Note that the rule-based strategy has the same final battery capacity loss as DP under US06, i.e., 0.0380, while
it uses more battery energy. When compared with MPC, the proposed strategy reduces battery degradation by
2.34∼3.06% and saves 0.58∼3.27% consumed SoC. When compared with the no-cooling case, the proposed strategy
reduces battery degradation by 21.22%, 21.17%, and 21.97% under NYCC, SC03, and US06, respectively, while
the battery SoC only reduces by 2.24, 2.18, and 2.82, respectively (the consumed SoC is 2.66%/2.53%/3.15% more
than the no-cooling case under NYCC/SC03/US06). Since the increased energy consumption is minor, the driving
range of EVs is barely reduced.
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Figure 11: Comparison results of DP, MPC, and the proposed strategy in terms of (a) battery capacity loss, (b) battery SoC, and (c)
battery temperature under different driving conditions.

5.2. Comparative results of driving economy and battery life

The impact of BTMS on the driving economy under different driving distances is further quantified in this
section. Fig. 12 presents the detailed driving economy results of DP, rule-based strategy, MPC, and the no-cooling
case with different driving cycle numbers. Although the reductions of total cost and battery degradation cost are not
very significant when the driving cycle number is 1 (i.e., short trips), DP and rule-based strategy still provide a lower
total cost because of the reduced battery degradation, meaning that it is worth cooling the battery even for short
trips. Since the battery cooling cost reduces over time, battery cooling becomes increasingly necessary over a longer
trip, when compared to the no-cooling strategy, as the accumulated reduction of battery degradation is significant.
In addition, as shown in Fig. 12, the proposed rule-based strategy achieves similar results when compared to DP
regarding the battery capacity loss cost, battery cooling cost, and total cost. The results are almost overlapped,
indicating that the rule-based strategy can mimic DP very well under different types of driving cycles. It can be
found that regardless of the adopted cooling strategy, cooling down the battery can reduce both the battery capacity
loss cost and the total cost when compared to the no-cooling case. However, the MPC suffers from significantly
higher driving costs at the beginning (i.e., the first 6/3/1 driving cycles under NYCC/SC03/US06), which means the
MPC is not cost-effective for short-term driving. Note that in real-world applications, the prediction uncertainties
can further deteriorate the MPC performance.

The battery life extension results under different cooling strategies, driving conditions, and distances are pre-
sented in Fig. 13. The proposed rule-based strategy is quite close to DP since both can extend the battery life
from the beginning. As the battery temperature stabilizes, an approximately 20% battery life extension can be
achieved. In contrast, due to the lack of long-term prediction information and the limitation of local optimization,
the MPC cooling method will shorten the battery life for short-term driving. This highlights the superiority of the
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Figure 13: Battery life extension (compared with BTMS off) of DP, rule-based strategy, and MPC cases with different driving cycle
numbers under different driving conditions (NYCC, SC03, and US06).

proposed method, which leverages the regenerative power to cool the battery, thereby prolonging battery life even
in the battery cooling process.

An interesting phenomenon in Fig. 13 is that for DP and rule-based strategies, as the driving cycle number
increases, the battery life extension increases first and then decreases under NYCC (i.e., urban driving condition),
while for SC03 (i.e., suburban driving condition), such a phenomenon is much less obvious, and the battery life
extension result is monotonic for US06 (i.e., highway driving condition). Specifically, at the beginning of urban
driving conditions, the battery life extension mainly comes from the reduction of accumulated charging current,
rather than the temperature reduction, as most regenerative braking energy is utilized to cool the battery. When the
BTMS enters the temperature-maintaining stage, the charging process is more frequent during regenerative braking
since the compressor power is around 0. As a result, although the battery temperature is reduced to 25◦C, the
battery degradation cost starts to increase. In contrast, under highway conditions, the battery life extension mainly
comes from the temperature reduction, not the reduced battery charging current, as there are no aggressive and
frequent braking actions. Thus, after the BTMS enters the temperature-maintaining stage (driving cycle number
of 3 for DP and rule-based strategy, see the 1771s and 1712s in Table 6), the battery capacity loss cost can still
decrease. The suburban driving condition stays somewhere between the above two driving conditions; therefore, the
non-monotonic phenomena in the battery life extension still exist but is less pronounced. Note that the conclusions
are based on the assumption that no temperature distribution and no core-surface temperature difference for the
battery pack. In practice, the core temperature of the battery can be significantly higher than the surface [44] and
has slower dynamics. Thus under higher core temperature, the battery pack has faster capacity degradation with
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the same current, which means the effect of battery current on aging has been underestimated. During the real
battery cooling process (till 25◦C), reducing the battery charging (braking) current may have a greater impact than
the temperature reduction on suppressing battery aging.

5.3. Parameter sensitivity analysis

In addition to the tested parameters of the battery cooling (i.e., Tair = 33◦C, ṁclnt=0.18kg/s, and Abat=3.1m2),
it is necessary to study other parameter values to assess the robustness of the proposed cooling strategy, as various
cooling systems can be adopted in EVs. Given that the control-oriented model of the BTMS (Eq. (9)) is valid
within the Tair range of 26∼40◦C and the ṁclnt range of 0.144∼0.216kg/s, we compare the following 6 parameter
combinations in DP optimization, as listed in Table 7. Compared with Case 1, Cases 2, 3, and 4 are conducted to
investigate different temperature conditions, and Cases 5 and 6 are set to examine the results of different BTMS
designs, e.g., with a worse or better cooling capability.

Table 7: Six parameter combinations of Tair, Abat, and ṁclnt

Case Tair (◦C) ṁclnt (kg/s) Abat (m
2) Note

Case 1 33 0.180 3.1 benchmark
Case 2 28 0.180 3.1 lower environment temperature
Case 3 38 0.180 3.1 higher environment temperature
Case 4 40 0.180 3.1 higher environment temperature
Case 5 33 0.144 2.1 worse BTMS cooling capability
Case 6 33 0.216 4.1 better BTMS cooling capability

In Fig. 14, the battery temperature variation and battery capacity loss results of one driving cycle (600s) under
the 6 parameter combinations are presented. Taking the NYCC (Fig. 14 (a, b)) as an example, it can be found that
the battery capacity loss is mainly determined by Tair (average battery temperature), rather than Abat and ṁclnt.
Compared with Case 1/5/6, Case 3/4 has higher final battery temperatures (about 1.15∼3.12◦C) and therefore
higher final battery capacity losses (about 15.79∼24.61%), which also verifies the necessity of battery cooling in
hot weather. BTMS parameters (Abat and ṁclnt) have a more limited impact on battery cooling, e.g., the battery
temperature and capacity loss results of Cases 1, 5, and 6 are close, even though the cooling process of Case 5 is
slower and the one of Case 6 is faster.
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Figure 14: Cooling process of one driving cycle under different Tair, ṁclnt, and Abat parameter combinations. (a, c, e) for battery
temperature under NYCC, SC03, and US06. (b, d, f) for battery capacity loss under NYCC, SC03, and US06.
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Results of SC03 and US06 are also similar: the battery capacity loss is mainly determined by Tair (average
battery temperature), rather than Abat and ṁclnt. However, the difference lies in the fact that for SC03 and US06,
the final battery temperature difference between Cases 1, 5, and 6 is larger than that of NYCC. This is because the
fast cooling stage of SC03 and US06 is much longer than NYCC (see Table 5), revealing that the BTMS parameters
have a greater impact on the fast cooling stage (more heat exchange). To further investigate the effect of cooling
parameters (Tair/ṁclnt/Abat) on driving economy and battery degradation, the total cost reduction and battery
degradation reduction compared with the no-cooling case are listed in Table 8. For different driving conditions,
the short-trip and long-trip values denote the results of one driving cycle (600s) and the maximum driving cycle
(165/55/18 for NYCC/SC03/US06), respectively.

Table 8: Total cost reduction and battery degradation reduction compared with the no-cooling case under different parameter combi-
nations (Tair/ṁclnt/Abat) and different driving cycles (NYCC/SC03/US06).

Index Case
NYCC SC03 US06

short-trip long-trip short-trip long-trip short-trip long-trip

Case 1 0.39 1.21 0.16 1.01 0.39 1.66
Case 2 0.53 0.66 0.29 0.56 0.31 1.01

Total cost reduction Case 3 -0.06 1.81 0.27 1.51 0.55 2.36
(USD/100km) Case 4 0.01 2.05 0.33 1.70 0.62 2.65

Case 5 0.23 1.21 0.10 1.01 0.30 1.65
Case 6 0.48 1.21 0.26 1.01 0.47 1.67

Case 1 14.95 22.90 8.54 21.76 6.71 21.89
Case 2 17.15 14.47 10.24 13.65 5.97 14.86

Battery degradation Case 3 9.73 30.41 9.65 29.10 7.78 28.21
reduction (%) Case 4 10.30 32.92 10.21 31.55 8.33 30.37

Case 5 12.91 22.96 7.39 21.80 5.46 21.89
Case 6 16.21 22.85 10.15 21.75 7.69 21.90

The effect of ṁclnt and Abat can be found in Cases 1, 5, and 6 (Tair = 33◦C). For different driving cycles, even
though the total cost reduction and battery degradation reduction of Case 5 is lower than Case 1, and the total
cost reduction and battery degradation reduction of Case 6 is higher than Case 1 under short-trip, the results will
gradually converge as driving distance increases (long-trip). This also indicates that ṁclnt and Abat have limited
impact on driving economy and battery degradation. Since for long-trip driving (enough time to cool Tbat to 25◦C),
Tbat can be well maintained with different ṁclnt/Abat parameters.

In contrast, the environment temperature Tair has a more significant effect on the driving economy and battery
degradation. By comparing Cases 1, 2, 3, and 4, it can be found that higher temperatures lead to greater reductions
in both total cost and battery degradation during long trips. However, for short trips in urban areas (600s, about
2km), battery cooling can increase the total cost in Case 3 or has no cost contribution in Case 4, even though
the battery degradation is still reduced. This is because (1) the fast cooling process will take a longer time since
the environmental temperature is high, and thus the cooling cost is higher than the reduced battery degradation
cost, and (2) the cooling cost in short-term urban driving conditions is higher than that in suburban and highway
conditions due to larger proportion of fast cooling power to total load power and the lower BTMS efficiency (see
Eq. (10)). Note that when the driving cycle number is 2 (NYCC, 1200s, about 4km), there are only limited cost
reductions of 0.63USD/100km and 0.69USD/100km for Cases 3 and 4. Due to this very limited cost reduction
under short-trip urban driving, battery cooling is unnecessary. However, for long trips in hot weather, such as those
experienced by Taxis [45], battery cooling is essential.

From the analysis above, it can be found that there is no significant difference in the driving economy and
battery degradation under different cooling systems. Recommendations regarding battery cooling are then given as
follows: (1) The driving economy is mainly influenced by the driving distance and environment temperature, and
battery cooling is more necessary under long-trip driving and high environment temperature; (2) Battery cooling
will provide more total cost reduction under higher temperature environment; and (3) Battery cooling is essential
for long-trip driving regardless of the driving conditions.

17



6. Conclusion

This paper investigates the battery cooling optimization of passenger EVs in hot weather. An electrical-thermal-
aging model for commercial LiFePO4 batteries is adopted, and a control-oriented dynamic model of an onboard
BTMS is established to characterize the relationship between the compressor power and the battery cooling rate
under various operation conditions. Then the DP algorithm is introduced to simultaneously minimize the battery
degradation cost and the battery cooling cost. By analyzing the DP results, an online near-optimal battery cooling
strategy is proposed, which contains a fast cooling stage, a slow cooling stage, and a temperature-maintaining stage.

Simulation results under 33◦C condition show that the proposed rule-based strategy can achieve very close
performance when compared to DP, e.g., the battery degradation difference between the two strategies under
urban/suburban/highway driving cycle is only 2.18%/0.62%/0% with 4.53%/0.86%/-0.52% less battery energy
consumed. Compared with the existing MPC method, the proposed rule-based strategy can reduce battery degra-
dation by 2.34∼3.06% and saves 0.58∼3.27% consumed battery energy. While compared with the no-cooling case,
the proposed rule-based strategy reduces battery degradation by about 21% with only 2.66∼3.15% more battery
energy consumed under different driving cycles.

Detailed comparison with existing MPC and no-cooling cases, parameter sensitivity analysis of environment
temperature/BTMS design/driving distance, and cooling economy analysis are conducted under urban, suburban,
and highway driving conditions. Results show that (1) The proposed rule-based cooling strategy can significantly
reduce battery degradation without obviously reducing driving range; (2) Different BTMS parameters can influence
the cooling speed but will not have a significant impact on driving economy; (3) Battery cooling provides better
economy when the environment temperature increases and the trip becomes longer; (4) The proposed battery
cooling method is cost-effective for all driving conditions only except for high-temperature short-term urban drivings.
The key finding of this study is that using as much regenerative energy as possible to cool the battery pack can
dramatically improve the driving economy and reduce battery degradation.
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Appendix: BTMS orthogonal experiment and model parameters

To develop a BTMS model from the orthogonal experiment, this paper selects an onboard air-conditioning system
officially supplied by Magna, and this model is built into KULI software which is well validated by experiments
[38, 39]. In this model, R-134a is adopted as the refrigerant for the air-conditioning loop, and 50% ethylene glycol-
water mixture is selected as the coolant for cooling the battery pack. According to existing studies [36, 37], the
inlet temperature of the condenser, the air mass flow rate of the condenser, the outlet temperature of the battery
coolant, the mass flow rate of coolant, and the rotation speed of the compressor are chosen as the main parameters
to design the orthogonal experiment. To simplify the complex model, the following assumptions are adopted.

1. The cooling fan for enhancing heat exchange is set to supply a constant air mass flow.

2. All cooling capacity is used for the battery pack, i.e., the impact of the EV cabin is not taken into account.

Therefore, experiment variables include the outlet temperature of coolant Tclnt,out, volumetric flow rate of
coolant q̇clnt, ambient air temperature Tair, vehicle speed v (affects inlet air mass flow rate of condenser, the total
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Figure A: Simulation results: relationship between cooling rate Q̇cool and compressor power Pcomp.

air mass flow ṁair consists of air supplied by the EV velocity and fan), and electrical power of the compressor
Pcomp. The target variable is set as battery cooling rate Q̇cool. See Table 3.

The relationship between the cooling rate and compressor power in the experiment is shown in Fig. A. Note
that it is almost impossible to fit a high-precision and accurate correlation formula with all data directly. Therefore,
we divide data into regions and then fit them sequentially, where Tair and q̇clnt are selected as division basis. The
BTMS model (Eq. (9)) comprehensively considered compressor electrical power, ambient temperature, the outlet
temperature of the coolant, air mass flow rate, and mass flow rate of the coolant. Detailed data of the six coefficients,
i.e., Fig. 4, is attached.
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