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Efficient UAV Autonomous Navigation with CNNs
Kamil Wojciech Mikolaj, Martin Lauersen, Tomer Tchelet, Daniel Ortiz Arroyoa,1, and

Petar Durdevica,1

Abstract—This paper presents a novel approach to the navi-
gation of Unmanned Aerial Vehicles (UAV) for the autonomous
inspection of wind turbines. Firstly, a Single Shot Detector
(SSD) network is trained to detect wind turbines and their
subcomponents. Then, an optimized template matching algorithm
is used to estimate the distance between the UAV and the wind
turbine, using as the template, the SSD bounding box prediction
on the left image of a stereo camera. Lastly, an Extended Kalman
Filter (EKF) estimates the position of the wind turbine’s hub. The
EKF is designed to compensate for CNN’s latency while sending
setpoints to the controller of the UAV.

Index Terms—Visual Servoing Convolutional Neural Network
Estimation Kalman filter

I. INTRODUCTION

Wind turbine (WT) power generation with offshore wind
energy is expected to show a 13% growth per year until 2040
[1]. As the total number of installed turbines continues to
grow, the total maintenance costs will increase. It is estimated
that WT inspection represents roughly 10% of their total
maintenance costs [2]. Recently the use of manually piloted
Unmanned Aerial Vehicles (UAVs) has become increasingly
popular due to their low risk, but by fully automating the
inspection task, the associated costs could be reduced. The
autonomous inspection of WT can be split into three main
tasks: navigation, inspection, and fault detection.

To navigate in 3D spaces approaches such as [3] use hybrid
techniques using a map of the environment. Other approaches
such as [4] focused on semi-autonomous drone inspection and
damage detection in images, assuming that the drone was
positioned in front of a WT’s blade.

The authors in [5] used classical computer vision algo-
rithms, such as edge detection and Hough transforms to
localize a WT with a monocular camera. The distance estima-
tion utilized a modified implementation of ORB-SLAM2 [6]
that requires a very specific initialization procedure, limiting
its use outside of a controlled environment. Similarly, [7]
uses classical computer vision techniques to extract the main
features of a WT. Distance estimation calculation assumed that
the dimensions of the WT parts are known in advance. A
Kalman filter was used to track the wind turbine hub location.

A more recent work [8] uses YOLOv2 [9], a convolutional
neural network (CNN), to localize a WT on a pair of stereo
images. Using the coordinates of the predicted pairs estimates,
the distance from the UAV to a WT was calculated using stereo
disparity.
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CNNs have been shown to improve accuracy in object de-
tection but they require vast amounts of labeled training data.
In [10] it is shown that synthetically generated images can
be used to train a neural network. Other studies such as [11],
[12], use similar methods to generate datasets containing depth
maps. These depth maps could then be used to train neural
networks designed for depth estimation. However, rather than
estimating the distance to a single object, these maps estimate
the distance to all points in the scene, making them ill-suited
for our application domain.

In this paper, we present an efficient system for the au-
tonomous navigation of UAVs with applications in WT in-
spections. Our system employs CNNs together with a template
matching scheme used for long-range distance estimation.
The CNN was trained to detect WTs and their parts (blades,
hub, tower, and nacelle) using an extended training dataset
generated synthetically and labeled automatically.

We show that by using template matching and performing
interpolation in the region of best match, the accuracy of the
distance estimation at the maximum range can be increased
with negligible computational overhead. We found experi-
mentally the variances in the neural network bounding box
prediction and our distance estimation method. An Extended
Kalman Filter (EKF) fuses this information together with
measurements from Inertial Measurement Unit (IMU) and
Global Positioning System (GPS) to estimate the position of
a detected WT target object in 3D space, while compensating
for the time delay associated with CNN inference. These
estimations are then used to control the navigation of an
autonomous UAV toward a WT, with an unknown position.
Our system was built and validated in a realistic simulation
environment.

This paper is organized as follows, in Section II we briefly
introduce the simulation environment we constructed for test-
ing. Section III describes the CNN used, our image synthesis
method, and training details. Section IV presents the template
matching scheme, provides details on the EKF, and discusses
how we characterized the CNN and distance estimator output
for use in the EKF. Results are presented in Section V. Lastly,
we present our conclusions in Section VI.

II. SIMULATION PLATFORM

The Gazebo simulator was used to evaluate the methods pro-
posed in this paper on the Robot Operating System (ROS).The
simulation environment consists of a single WT and a UAV.
To increase resemblance to the real world, ground texture, and
moving skies were added to the simulation. The UAV was



TABLE I: Unmanned Aerial Vehicle (UAV) parameters used
in the simulation

Parameter Value Unit
Weight 1.5 kg
Inertia xx, yy 0.013 kgm2

Inertia zz 0.018 kgm2

Max torque τx,τy 1 Nm
Max torque τz 1 Nm
Max lift 40 N

equipped with simulated stereo cameras, IMU and GPS. The
final test environment can be seen in Figure 1.

Fig. 1: A screenshot from the simulation environment where
the quadcopter model is in the center with the WT model at
a distance of 500 meters

To make the simulation as close to reality as possible, a
digital 3D model of a real UAV quadcopter was designed
as our development platform.The UAV model was simulated
using the physical parameters given in Table I. The quadcopter
has an IMU, GPS, and two identical cameras. Both GPS
and IMU were simulated as ideal sensors with no noise,
and 100 Hz sample rates to simplify the implementation of
the low-level controllers and to easily obtain ground-truth
measurements. However, random Gaussian noise was added to
the IMU and GPS measurements before being passed to the
Kalman Filter node. Additionally, rather than simulating
the four individual rotors, the Attitude Controller
node accepts ϕsp, θsp, ψsp angular velocities and zsp altitude
setpoints and applies the required τx, τy , τz Thrust forces
directly to the quadcopter body using parallel PID controllers.
Similarly, the Position Controller node uses parallel
PID controllers to generate ϕsp, θsp, and ψsp setpoints using
the requested global xsp, ysp positions. Lastly, the Setpoint
Generator node takes the position of the WT and calculates
the offset location suitable to initiate the inspection step.

III. DEEP NEURAL NETWORK

The camera in the UAV was attached to the object detection
(OD) CNN [13]. A variant of Single Shot Detector (SSD)
network [14], the SSD300, was used as it offers a good
compromise between inference time and accuracy. One of the
problems of CNNs for OD is the need for a training labeled

(a) (b)

Fig. 2: Examples of synthetically generated dataset images
with multiple IDs. IDs: Green = Blades, Yellow = Tower,
Blue = Hub, Purple = Nacelle. (a) The image’s corresponding
segmentation map. (b) The generated training image with
bounding boxes; a red box depicts the wind turbine class.

dataset with bounding boxes. However, manually labeling
thousands of images is a very time-consuming process. To
solve this problem an automatic labeling system was created
to generate the dataset synthetically. The Unity game devel-
opment platform and its machine learning image synthesis
package was used for this purpose. This package utilizes the
Depth Buffer in addition to several other Unity’s built-in tools
to generate segmentation maps of the image produced by the
camera. The different segmentation maps extract features such
as classes of objects, depth, and optical flow. In the context
of this work, only the ID classification map, which exports
a mask image with a unique color for each object ID in
the frame, was used. These mask images, as seen in Figure
2, are not suitable for training an SSD model. To generate
ground truth for bounding boxes, each image was traversed
from top to bottom and right to left to find the first and last
pixel belonging to each class. This operation yields a set of
bounding boxes coordinates that were then saved in PASCAL
VOC [15] format, which is suitable for training an OD neural
network.

The scene in Unity was set up with the 3D model of a WT
and a camera rotating around it with random distances, heights,
and view angles. Additionally, to improve the generalization,
4 different WT models and 90 environments were alternated
between frames. Further, an ID was specified for each sub-
component of the WT (Tower, Nacelle, Hub, and Blades), so
the network could be able to detect smaller features when the
WT extends beyond the picture frame.

The developed platform allows simple control of the resolu-
tion of the pictures and the size of the dataset. The final dataset
was composed of 11, 000 images and their labels, 10, 000 for
training, and 1, 000 for validation. The resolution of the images
was chosen to be 300 × 300 as expected by the input layer
of the SSD300 network. An example of a couple of synthetic
images is shown in Figure 2.

In addition to the synthetic dataset, we used random data
augmentation consisting of cropping, changing contrast, hue,
saturation, swapping color channels, image expansion, and



TABLE II: Specifications of Raspberry Pi Camera Module V2
[17] as used for pinhole camera model

Specification Nomenclature Value

Video resolution wpx × hpx 1920 × 1080
Field of view (rad) αh × αv 62.2 pi

180
× 48.8 pi

180
Focal length (mm) f 3.04
Pixel size (µm) Px × Py 1.12 × 1.12
Baseline (m) b 0.3

horizontal flip. To train the CNN, we used the Adam optimizer
[16] with dynamic learning rate scheduling as it provided
faster convergence and a lower validation loss.

IV. DISTANCE ESTIMATION AND NAVIGATION

Once the CNN was trained and tested, the bounding box
location information of the detected WT was utilized for
navigation. To navigate to the WT, its position in relation
to UAV’s current position is calculated. This is done by
using disparity on a stereo-image pair and applying template
matching. The detected bounding box information together
with depth estimation is used in conjunction with sensor data
from IMU and GPS in an Extended Kalman filter (EKF) that
estimates the position of the WT. This information is sent
to the UAV’s controller, which then navigates autonomously
toward the estimated position.

A. Distance Estimation

Depth in 2D images can be calculated by finding the
disparity between matching pixels across two corresponding
images in stereo vision. For instance, the pixel disparity
between the centers of the bounding boxes produced by two
CNNs in both left and right images can be used to calculate the
depth using the camera’s parameters as was done in [8]. In our
case, we used the pinhole camera model, with the specification
set to be identical to the Raspberry Pi V2 camera [17]. The
parameters shown in Table II were used. To convert disparity
measurements into distance estimation, Equation 1 is applied.

d =
b · wpx · cot(αh

2 )

2Dpx
=

477.42306

Dpx
(1)

Where d is the distance estimate and b the baseline in
meters, wpx the horizontal image resolution in pixels, αh the
horizontal field of view in radians, and Dpx the disparity in
pixels.

Disparity calculations need to produce multiple inferences
which may introduce a significant delay in the system. To solve
this issue, the bounding box data produced by a single CNN
from a single camera’s image is used as a template, then the
object inside the template is localized on the other camera’s
image, using the template matching algorithm.

B. Template Matching

Template matching finds correlating objects in images. The
method uses a template an object represented as a vector, that
is slid across an image. Matching scores at each position are

calculated as their similarity or distance in the vector space
[18].

Our template matching method uses the bounding box
prediction generated on the left image by the CNN. The
template is scaled to full resolution and slid on the right
image until it finds the best matching area. To optimize the
matching operation, the template and the searched image are
converted to grayscale. Further, as the cameras are placed
in the same coordinate system with only a horizontal offset
and are pointing in the same direction, template searches
are simplified since rotated, scaled, and vertical searches are
unnecessary. Furthermore, as a template from the left camera
is matched to the image from the right camera, the search
is limited to being performed only in one direction. Through
experimentation, it was found that the CNN can only generate
reliable detections down to a distance of 30m. This is caused
by several factors, one of which is that the simulated exper-
imental platform (discussed in Section II) does not include
textures on the models, rendering the WT undetectable. This
limitation provides an upper bound for the search, restricting
it to only 15 pixels, which can be obtained from Equation 1.

Lastly, the normalized correlation coefficient was used as
the template matching method [19]. This method was chosen
as it offers invariance to changes in global illumination and the
normalized match scores ensure that the output is kept within
an expected range (-1 to 1) between iterations.

Since the distance estimation is based on the disparity
calculation it produces integer values. This generates a large
error at large distances, which can be seen in Figure 3b. To
solve this problem, we performed an interpolation to find sub-
pixel disparity by fitting a second-order polynomial to the
point with the best matching score and its two surrounding
points, as shown in Figure 3a. This resulted in a much-
improved distance estimation as can be seen in Figure 3b.

C. State Estimator

An EKF was used for this task with the state vector shown
in Equation 2.

xk = [xT x ẋ ẍ yT y ẏ ÿ zT z ż z̈]
T (2)

Where k denotes the discrete update steps and subscript T
denotes the global position of the wind turbine. As angular
data was not used in this project, the body and global frames
are considered parallel at all times. Hence, the x-axis points
forward, y-axis points left, and z-axis is pointing up in both
frames.

The system matrix is identical on each axis, therefore a
single axis system matrix Fx has the form:

Fx =


1 0 −∆tk −∆t2k

2

0 1 ∆tk
∆t2k
2

0 0 1 ∆tk
0 0 0 1

 (3)
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Fig. 3: (a) An example of the interpolated sub-pixel disparity.
(b) Comparison between the distances estimated by template
matching (yellow), distances estimated with the interpolation
(orange), and the ground truth (blue)

Such that:

Fk =

Fx

Fy

Fz

 (4)

Where ∆tk is the update time of the filter.
Because the posterior distribution calculation is delayed

as a result of the inference time of the neural network, an
intermediate prediction step in the filter was added. To estimate
the states at the time of capture, the system matrix Fi is
used. Afterward, another system matrix Fr is used to make
a prediction for the states at the time of the next update. This
is shown in Equation 5.

xc = Fixk−1

x̄k = Frxc = FiFrxk−1

P̄k = FkPk−1F
T
k +Qk

(5)

Where xc denotes the estimated states at the current state
of the system, xk−1 the posterior, Fi the system matrix

with ∆ti = Inference T ime and Fr the system matrix
with ∆tr = ∆tk − ∆ti (i.e. equals the remaining time) and
Qk denotes the process covariance. As ∆ti + ∆tr = ∆tk,
it can be shown mathematically that FiFr = Fk, proving
the intermediate step does not affect the stability and the
performance of the filter.

The system model is shown in Equation 6.

uT

vT
d
x
y
z
ẍ
ÿ
z̈


= h(x) =



f(yT−y)
sx Px (xT−x)

f(zT−z)
sy Py (xT−x)

xT − x
x
y
z
ẍ
ÿ
z̈


(6)

Where uT and vT denote the center coordinates of the
bounding box, d the distance estimation. Because the images
are scaled before they are passed through the neural network,
the pixel size used in the EKF has to be scaled as well. The
variables sx =

wpx

300 , sy =
hpx

300 denote that scaling factor.
No modification was needed for the update step, therefore the
standard EKF formulation is used as shown in Equation 7.

yk = zk − h(x̄k)

Kk = P̄kH
T
k (HkP̄kH

T
k +Rk)

−1

Hk =
δh

δx

∣∣∣∣
x̄k

xk = x̄k +Kkyk

Pk = (I −KkHk)P̄k

(7)

Where zk and Rk denote the measurement vector and its
covariance matrix, yk the residual, Kk the Kalman gain, h(x̄k)
and Hk the measurement function and its Jacobian, and I is an
identity matrix. While zk, the measurement vector, takes the
distance estimation and the center coordinates of the bounding
box, their respective variances need to be found. The following
methods were used to find the characteristic variances for
[uT vT d]T .

• Variances in Bounding Box Center We trained the
CNN to find the distribution of the error between ut

and vt, the centers of the boxes detected by the neural
network, and the centers of the ground truth boxes. Two
experiments were conducted, one using the normalized
confidences of each predicted box as the Probability Mass
Function (PMF) of the center coordinates, to obtain an
expected value for the center and one using the center
of the box provided by the non-maximal suppression, a
postprocessing step in SSD. As can be seen in Figure 4,
both distributions are very similar, but distribution in 4a
has a lower variance, which could be explained by the
fact that the confidence of the detections concerns the
classification and has no direct relation to the position of
the box.
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Fig. 4: Distribution of errors of the center of detected bounding
boxes over 10,000 pictures. (a) Centers of the box from non-
maximal suppression: σ2x = 3.997 and σ2y = 15.108. (b)
Expected value for center coordinates using the normalized
confidence of bounding boxes as Probability Mass Function
(PMF): σ2x = 4.144 and σ2y = 23.755

Fig. 5: Error in the estimation of distance as a function of the
distance. Errors are less predictable at distances above 477
meters, which correspond to distances with disparity below
one pixel.

• Variance in Distance Estimation The variance of the
distance estimation was found by performing multiple
experiments. The effect of displacement along the y- and
z-axis on the distance estimation, was found to be negligi-
ble. This means that measurement d is independent of ut

and vt. As opposed to that, the deviation of the estimation
was found to depend on the distance. As can be seen in
Figure 5, the error grows with the distance, meaning the
variance in the estimation is not consistent. Therefore the
standard deviation was approximated as a function of the
distance estimation by fitting an exponential function to
the variance of the distance estimations in increments of
50m as can be seen in Figure 6. The distance estimation
statistics of ut and vt are listed in Table III.

V. RESULTS

To test the complete system, the quadcopter was initially
placed at the (x = 0, y = 0, z = 10) point and the WT
model at (X = 500, y = 100, z = 0) meters. The initial
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Fig. 6: Variance of distance estimation in 50m increments and
fitting exponential function 0.2501e0.011146 d .

TABLE III: Variances of neural network signals. uT and vT
denote the x and y pixel coordinates identical to estimation

Signal (z) Variance (σ2)

uT 3.036 px
vT 8.116 px
d 0.2501e0.011146 d m

location was chosen to guarantee that the Wind Turbine (WT)
falls within the camera’s field of view, and that the distance
is sufficiently large, ensuring that the initial disparity is less
than one pixel.Once the state estimator was turned on, it
started sending setpoints to the controller and the quadcopter
autonomously navigated to a point 50 meters away from the
WT at the height of the hub. This test was repeated 30 times,
in order to ensure consistency in the results. The average
RMS errors across these 30 runs can be seen in Table IV.
Furthermore, the test was repeated with larger distances and
showed successful results up to 650 meters, as long as the WT
was visible in the frame from the initial point.

Additionally, tests were performed with the WT rotated and
it was found that at certain angles the CNN is unable to detect
it. At these angles the WT appears almost as a simple tower.
The results of this test are shown in Fig 7. However, we noted
that the performance varied between different WT models,
both in distance and angle.

VI. CONCLUSION

The results described in Section V show that our method al-
lowed the autonomous UAV to localize and navigate efficiently
toward a WT in 3D space from any position, providing that
the turbine is within the field of view of the camera and at a
proper range. The use and modification of the EKF improved
the predictions of the WT location and provided setpoints for
a controller to autonomously navigate toward the target.

Several aspects of the system should be further investigated.
In the current implementation, the final position of the UAV
relative to the turbine depends on UAV’s starting position. To



TABLE IV: Average Root Mean Square error across all 30
runs, with and without compensation. It can be seen that across
the whole range of 500 meters, the compensation improves the
accuracy of the position estimation on average by 6% on the
x-axis, 10% on the y-axis and 30% on the z-axis.

Full run Within 450m Within 100m

Compensated
x 10.8971 10.5201 5.7264
y 9.3046 7.9134 0.5684
z 14.6080 5.7807 3.3483

Uncompensated
x 11.635 11.8105 6.4039
y 10.3554 9.5624 0.5869
z 20.722 5.9762 3.2582

Fig. 7: Angle ranges of successful detection around the WT
marked in green, no detections are marked in red.

navigate to a more specific point (e.g. directly in front of the
turbine hub), information about the orientation of the wind
turbine will be required.

Furthermore, our neural network model, while demonstrat-
ing potential in detecting WT, encounters difficulties when
dealing with side views. This is not a concern if such a
view occurs briefly during flight thanks to EKF tracking.
However, if a WT is oriented this way with respect to the
UAV starting location, the autonomous navigation cannot start.
This shortcoming likely originates from the absence of detailed
textures in our synthetic training dataset. To address this,
future work should focus on improving the synthetic dataset
by incorporating more realistic textures, aiming to enhance the
model’s performance from various perspectives.”

Following this, another promising area for future work
involves exploring generative models. These models could
help create a synthetic, labeled training dataset by learning
to replicate real-world textures and features, which can then
be used to generate new, more authentic looking images.
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