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Chapter 1

Introduction

To assist mobility of disable persons, several electrical powered wheelchairs are
available on the market [1]. Many of them allow the use of different control
modules to suit the needs of a high variety of users with different disabilities. An
approach to assist mobility of disabled persons is via autonomous wheelchairs.
Typically, these consists of either a standard power wheelchair where a computer
and a collection of sensors have been added, or a mobile robot base to which
a seat has been attached. Whatever is the case, the main idea is to assure
a collision-free travel, e.g. avoiding obstacles and passing through doorways.
To this end, the user can input the coordinates of the destination using the
alternative control interface, e.g. clicking a point on the map built by the
sensors, while the wheelchair performs localization and path planning tasks to
autonomously transport the user to the desired location.

In this work, a differential drive mobile robot with a laser sensor mounted
on the top and two encoders in each wheel has been built to implement a
high-autonomy level wheelchair type control system. Autonomy is achieved by
implementing modules of sensor fusion, map making, localization, path planing
and control.

Different methods to implement the modules were reviewed and analyzed.
For instance, Bayesian is a method that can be used to fuse and construct a
probabilistic map of the environment into an occupancy grid, based on sensor
data readings [64, 65]. Path planning strategy can be achieved by the solution
of Laplace’s equation to harmonic functions, [12, 13, 14, 15, 16]. Kullback
Leibler Divergence (KLD) sampling, which is a variant of Montecarlo Localiza-
tion (MCL) in the sense that adapts the number of samples overtime, is used for
localization, [33]. Furthermore, for systems with holonomic as well as nonholo-
nomic constraints and not fully state feedback linearizable, input-output state
feedback control can be used, [48, 50, 58].

It is shown in simulation that the differential drive wheelchair prototype per-
forms the map-making, localization, path planning and control to autonomously
move from an actual localization to a desired location chosen by the point se-
lection block, avoiding any obstacles in its way.

This report is organized as follows: part I contains the introduction and the
description of the system. Part II describes the theoretical background used to
implement the modules mentioned previously. And, finally, part III shows the
simulation results of each module as well as the system respectively.
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Chapter 2

System Description

The system in turn is a small prototype of an autonomous wheelchair, which is
presented in figure 2.1 and mainly consists of the following:

• EPIA M10000 Mini ITX Mainboard + 1 GHz CPU.

• Two DC motors.

• Laser.

• Motor interface.

2.1 Mainboard

EPIA M10000 Mini ITX Mainboard + 1 GHz CPU board was chosen mainly
for two reasons: it’s economical and it’s compatibile to linux system. The main
characteristics of the board are presented in table 2.2.

Table 2.1: EPIA M10000 Mini ITX Mainboard
Model name Epia board

Processor 1.0GHz VIA
System Memory 1GB memory size
Onboard I/O Connectors 3 x USB 2.0 ports

2 x IEEE1394 connectors
1 x Serial port
1 x Parallel port

Onboard LAN 1 x 10/100 Mbps Ethernet
Expansion Slot 1 x PCI slot
Chipset VIA CLE266 North Bridge
Dimensions 17×17

The board can be seen in figure 2.2
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The M10000 EPIA

Mini_ITX mainboard 

(17x17 cm)

AWC

M

Motor Interface

M

Sonar Array

Interface

Laser 

Interface

adapter

Wireless

LCD

Stereo Vision

I2C

USB

USB

Hard Drive

firewire

optional

optional

Kernel 2.6.24−rtai−3.6.1

Debian Lenny RS−232, RS485, USB

IDE

RS−232

Figure 2.1: The system mainly consists of the following: a) A mini ITX board,
in which the kernel 2.6.24-rtai-3.6.1 is running. b) A laptop DELL XPS-M1530
where Debian Lenny stable has been installed and the kernel 2.6.26-2-686 is
running The Laptop communicates to the mini board over ssh protocol. c) Two
DC motors and a motor interface over RS-232. d) The vision system and the
sonar array are optional, and are tehrefor not attached to the system.
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Figure 2.2: EPIA M10000 Mini ITX Mainboard

2.2 DC motors

Lynxmotion GHM-13 Spur Gear Head Motor has been chosen because it is a
small and powerful motor and it is perfect for small robotics. With its integrated
reduction box, it is specially designed to operate at low speed. This gear motor
is ideal for robot propulsion, and it is not necessary to build the reduction
system. With a motor in each wheel and a motor controller, the movements of
the robot can be controlled.

The specifications of the motor is depicted in table 2.2, and Figure 2.3 shows
the motor.

Table 2.2: Lynxmotion DC Motor

parameter Motor

Voltage 12vdc
RPM 152
Torque 231.05 oz.in (16.7 kg-cm)
Reduction 50:1
Shaft Diameter 6mm
Motor resistance (R) 40 Ω
Friction coeficient (b) 0.014334
Torque constant (K) 0.75890073

2.3 Laser

URG-04LX-UG01 laser range finder was selected because of its size and price.
It has a sensing range of 5.6 meters. Measurement accuracy is within 3 percent
tolerance of the current reading for most of the sensor’s range. And, the scanning
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Figure 2.3: Lynxmotion 12 VDC Spur Gear Head Motor.

rate is 100 milliseconds across a 240 degree range. These specifications make
the laser ideal for the project in indoor applications.

The specifications is depicted in table 2.3, and the laser together with its
scanning range is depicted in figure 2.4.

Table 2.3: URG-04LX-UG01 laser
parameter Laser

Field of view 240
Scanning range 5.6 m
Data interface RS-232, USB
Supply voltage 5 VDC
Power consumption 500mA at 5V.
Weight 160 g
Dimensions 40×40×70 mm

2.4 Motor’s interface

Two motor’s interfaces have been build to allow communication to the main
board over a serial port. One interface is for reading the velocity from the motors
(Motor Input Interface), and the second one is for sending control commands
to the motors (Motor Output Interface or Motor controller).

2.4.1 Motor’s Input Interface

The block diagram of the motors’s input interface is depicted in figure 2.5 The
OPB703 consists of an infrared emitting diode and a NPN silicon phototransis-
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(a) (b)

Figure 2.4: (a) Hokuyo URG-04LX-UG01 laser range finder. (b) Laser response.

tor mounted side by side on a covering optical axis in a black plastic housing.
This sensor reads the encoder pattern. The output of the OPB703 is ampli-
fied by the operational amplifier LM328, giving a square signal, which period
corresponds to the velocity of the wheel. The 74LS590 is a 8 bit counter; it
counts the pulses, and converts them into a hexadecimal number. The PIC
microcontroller reads the hexadecimal that could correspond to the right or left
motor, based on an instruction from the board over a serial communication. A
3D representation of the input interface circuit board is shown in figure 2.6.

Encoder
wheel 2

Encoder

wheel 1

Counter

COM1

Sensor 1

OPB703

Sensor 2

OPB703

Amplfier

LM358

Amplfier

LM358

Counter

74LS590

74LS590

Multiplexer
74LS157

Multiplexer

74LS157

PIC16f877
Driver/Receiver
   MAX 232

Mini ITX−Board

Input Interface 

Figure 2.5: Motor Input Interface.

2.4.2 Motor Output Interface

The block diagram of the motor’s output interface is depicted in figure 2.7. The
board sends commands or instructions to the motors over a serial communica-
tion. The PIC microcontroller forwards the instructions from the board to the
motors. First, it initializes the IXDP610, which is in charge of generating the
Pulse Width Modulation (PWM) which period corresponds to the voltage will
be applied to the motors. Then, the L293 generates the necessary current to the
motors in order not to burn the PIC and the IXDP610s. A 3D representation
of the input interface circuit board is shown in figure 2.8.
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Figure 2.6: 3D representation of the input interface board.

Driver/Receiver
   MAX 232

PIC16f877

IXDP610

PWM

IXDP610

PWM

Motor

Motor

H−Driver

L293

Output Interface  

Mini ITX−Board
COM2

Figure 2.7: Motor Output Interface or motor controller.
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Figure 2.8: 3D representation of the output interface board.

A schematic diagram of the input and output interfaces can be seen in ap-
pendix C

Figure 2.9 shows the wheelchair prototype that has been built for testing
the high autonomy control level.
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Figure 2.9: Differential mobile robot based wheelchair type.
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Theoretical Background
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Chapter 3

Sensor Fusion and Map

Making

This chapter outlines the map making and sensor fusion problem based on the
Bayesian method. Laser sensor readings are fused using the former method in
order to construct a local as well as a global map of the mobile entity, in this
case a wheelchair. The method uses occupancy grids to build up a 2D map of
the environment. In the following sections the Bayesian inference theorem, the
occupancy grids and how both are applied to generate a map, are explained.

3.1 Bayesian Inference

Bayesian inference is a statistical inference method in which observations (evi-
dences) are used to update or infer (conclude) the probability that a hypothesis
may be true. The name Bayesian inference comes from the use of Bayes’ theorem
in the inference of the process. Bayesian inference is an approach to statistics
in which all forms of uncertainty are expressed in terms of probability. Bayes’
theorem is also known as Bayes’ rule [38, 39, 40, 41, 42].

Theorem 3.1.1 (Bayes’ rule) If the events B1, B2, ..., Bk constitute a partition
in the sample space S, where P (Bj 6= 0) for j = 1, 2, ..., k, then for any event A
in S such that P (A) 6= 0.

P (Bi|A) =
P (Bi ∩ A)

∑k
j=1 P (Bj ∩ A)

=
P (Bi)P (A|Bi)

∑k
j=1 P (Bj)P (A|Bj)

(3.1)

for i = 1, 2, ..., k

Proof 3.1.1 Appendix A

• Bi is one of the i mutually exclusive (disjoint) events to be estimated.

• A is the evidence event.

• P (Bi) is the prior probability of the event Bi. It is ”prior” in the sense
that it does not take into account any information about A.
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• P (Bi|A) is the conditional probability of Bi given A. It is also called
the posterior probability because it is derived from or depends upon the
specified value of A.

• P (A|Bi) is the conditional probability of A given Bi.

• ∑k
i=1 P (Bj ∩A) =

∑k
j=1 P (Bj)P (A|Bj) is the total probability of A, and

acts as a normalising factor.

3.2 Occupancy Grids

Occupancy grids is a grid-based approach, and it was proposed by [43, 44, 45,
46].

Definition 3.2.1 (Occupancy grids)
An occupancy grids Og = {C1, ..., CN} is a tessellation of the robot’s environ-
ment W into N cells Ci defined over a discrete spatial lattice.

The cells Ci are stochastic random variables that can take two values, occu-
pied (o) or empty (e).

The state of the cells are exhaustive and exclusive, meaning that P oi,j+P
e
i,j =

1, where P oi,j is the probability of a particular cell on the grid being occupied
Coi,j , and P ei,j is the probability of a particular cell being empty Cei,j . The
probability values for the parameters (o, e) are assumed to be independent of
each other. Occupancy grids has been applied successfully in robot navigation
tasks. The occupancy grids parameters are most often chosen to be probability
distributions. The Bayesian fusion algorithm can be used with such probability
distributions. A sensor model is needed to represent the uncertainty values of
the parameters.

3.3 Application of Bayes Theory to the Occu-

pancy Grid

3.3.1 Recursive Bayes Update Rule

The attraction of the Bayesian inference approach to map building stems from
the fact that Bayes’ updating rule is recursive. When it is used to support
sensor fusion, Bayes’ rule provides a way of computing a posteriori probability
of a hypothesis being true giving supporting of evidence. [66, 67, 68] have
successfully used Bayes’ rule to update the occupancy grid for multiple sensor
readings (s1, ....., sn).

Equations 3.2 and 3.3 are obtained when Bayes’ rule from theorem 3.1.1 is
transfered to the occupancy grid framework for multiple sensor readings.

P
o|s
i,j =

P
s|o
i,j P

o
i,j

P
s|o
i,j P

o
i,j + (1− P

s|o
i,j )(1 − P oi,j)

(3.2)

P
e|s
i,j =

P
s|e
i,j P

e
i,j

P
s|e
i,j P

e
i,j + (1 − P

s|e
i,j )(1 − P ei,j)

(3.3)
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The following statements are defined.

• The relevant evidence A is given by the sensor reading s.

• The certainty of the true parameter Bi is given by P oi,j and P
e
i,j , meaning

that they are the prior probabilities of the cell Ci,j being occupied or
empty. They are taken from the existing map.

• The conditional probability P (A|Bi) is given by P
s|o
i,j and P

s|e
i,j , which are

the conditional probabilities that a sensor reading will exist given the state
of the cell Ci,j , being occupied or empty. This conditional probability is
given by the probabilistic sensor model.

• The conditional probability P (Bi|A) is given by P
o|s
i,j and P

e|s
i,j , which is

the conditional probability that a cell is occupied based on the past sensor
readings. It is the new estimate.

A new sensor reading s, introduces additional information about the state

of the cell Ci,j . This information is done by the sensor model P
s|o
i,j , and it is

combined with the most recent probability estimate stored in the cell. This

combination is done by the recursive Bayes’ rule (P
o|s
i,j ) based on the current set

of readings to give a new estimate P
o|s
i,j . It is worth noting that when initialising

the map an equal probability to each cell Ci,j must be assigned. In other words,
the initial map cell prior probabilities are P oi,j = P ei,j =

1
2 .

The graphical interpretation of equations 3.2 and 3.3 for a single cell Ci,j
within a sensor model can be depicted as in Figure 3.1. In order to update
the cell Ci,j with equations 3.2 and 3.3, a prior probabilities P osi,j and P esi,j given
by the existing grid are needed. These probabilities are combined with the

probabilities given by the sensor model (P
s|o
i,j and P

s|e
i,j ) by means of Bayes’ rule

of combination to give a new estimate or posteriori probabilities (P
o|s
i,j and P

e|s
i,j ).

The following example shows how a single cell state Ci,j is updated in the
process shown in figure 3.1 through equations 3.2 and 3.3.

Example 3.3.1 The following terms are given from the existing grid in a

particular cell Ci,j , P
o
i,j = 0.52, P ei,j = 0.48; update the P

o|s
i,j , P

e|s
i,j with the

terms given by the sensor model P
s|o
i,j = 0.56, and P

s|e
i,j = 0.44.

P
o|s
i,j =

(0.56)(0.52)

(0.56)(0.52) + (1− 0.56)(1− 0.52)
) =

0.2912

0.5024
∼= 0.58

P
e|s
i,j =

(0.44)(0.48)

(0.44)(0.48) + (1− 0.44)(1− 0.48)
) =

0.2112

0.5024
∼= 0.42

Note that the addition of P
o|s
i,j and P

e|s
i,j equal the value of one.

In this report, a total of 30 measurements along a trajectory have been car-
ried out by a mobile robot. In each measurement the laser scans a total of
361 readings distributed along 180o. Then, each laser reading is interpreted
by a probabilistic sensor model as described previously. Afterwards, the recur-
sive Bayes method 3.2 and 3.3 is applied to the data to fuse and update the
probabilistic grid map.
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New reading
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Figure 3.1: A graphical interpretation of equations 3.2 and 3.3 for a single cell
Ci,j withing the main lobe of the sensor model. An existing grid contains the
old probabilities (prior) of the sensor model P osi,j and P esi,j of a single cell Ci,j
being occupied or empty respectively. A new sensor data interpreted by a sensor

model (P
s|o
i,j , P

s|e
i,j ) is used together with the existing probabilities in the grid to

estimate the new state of the cell (P
o|s
i,j , P

e|s
i,j ).
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Chapter 4

Localization

4.1 Monte Carlo Localization Algorithm

Over the years, particle filters have been applied with great success to a variety
of state estimation problems, [29]. The Monte Carlo Localization (MCL) algo-
rithm is a type of particle filter which is obtained by a proper substitution of the
probabilistic motion and perceptual models into the algorithm of particle filter,
[33]. A proper review of particle filters and MCL algorithm can be viewed in
the following references, [27, 28, 29, 30, 31, 32, 33].

The MCL algorithm can be used to estimate a global localization and track-
ing position of a wheel mobile entity. However, a drawback in MCL is that once
the localization is done it keeps sample sets of a fixed size during time, this fact
can make the algorithm inefficient because of waste of computational resources.
To overcome the MCL algorithm drawback, it is necessary that once the global
localization is achieved by a high number of particles, only a small fraction of
particles be used to keep track of the position.

4.2 Kullback Leibler Divergence-sampling

The Kullback Leibler Divergence (KLD) sampling is a variant of of MCL in the
way that it adapts the numbers of samples over time. This means that if the
state estimate is accurate enough, the number of particles are reduced. On the
other hand, if the state estimate is not good enough, the number of particles
are increased. A mathematical derivation is not proved here. For that, take
a look at [33]. An explanation of the algorithm is stated instead, and some
simulations are shown in chapter 11.

In order to achieve the localization in this study, 18 of 361 laser readings are
chosen in each measurement. They are equally distributed along the half front
plane of the robot, and afterwards taken by the KLD to perform the localization
for each robot pose during the trajectory.
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The method is shown in algorithm 4.1. It takes as inputs the previous sam-
ple set Xt−1, the map, the most recent control odometry data Ut and laser
measurements Zt. It also takes the statistical error bounds ǫ and δ. In contrast,
it ensures the actual sample set Xt and the best state estimate xest.

Lines 1 through 2 initialize Xt, M and Mx. Initially each bin b in the his-
togram H is set to empty, lines 3 through 5. In line 7, a particle is drawn
from the previous particle set. In other words, the particle is drawn in a prob-
abilistic way according to the weights of the particles wit−1. The outcome is
a single particle. This particle is then predicted, weighted and inserted in the
new sample set (lines 8-10). The core of the KLD-sampling is implemented in
lines 11 through 18. Line 11 examines whether the new particle falls into an
empty bin in the histogram. If it does, then the number k of non-empty bins
is incremented and then the bin is set to non-empty bin. So, the number k has
to do with the number of histogram bins filled with at least one particle. Mx

gives the number of particles needed based on the number k and the statistical
error bounds ǫ and δ, these values are available in standard statistical tables.
The algorithm main loop ends up when M exceeds Mx and Mmin. Lines 20
through 23 normalize the weights to ensure a probabilistic distribution. Lines
23 through 24 selects the best state estimate xest.

A reasoning of formula in line 15 is as follows: In the early stages of sampling,
k increases with almost every new sample since every bin in the histogram is
practically empty. This fact makesMx increase. However, over time less and less
bins are empty making the increasing rate of Mx slow down. Since M increases
with every new sample, there will be a point in time where M will exceed Mx

and M and the sampling stops. During tracking the algorithm generates less
samples since the particles are concentrated in a small numbers of different bins,
[33].
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Algorithm 4.1 KDL-Sampling

Require: Xt−1, Ut, Zt, map, ǫ, δ
Ensure: Xt, xest
1: Xt = 0
2: M = 0,Mx = 0, k = 0
3: for all b in H do

4: b =empty
5: end for

6: while M < Mx AND M < Mmin do

7: draw a particle i with a probability w
[i]
t−1

8: X
[M ]
t = sample motion model(Ut, x

i
t−1)

9: w
[M ]
t = measurement model(zt, x

M
t ,map)

10: Xt = Xt + 〈XM
t , wMt 〉

11: if xMt falls into an empty bin b then
12: k = k + 1
13: b =non-empty bin
14: if k > 1 then

15: Mx := k−1
2ǫ

{

1− 2
9(k−1) +

√

2
9(k−1)z1 − δ

}3

16: end if

17: end if

18: M =M + 1
19: end while

20: Wtotal =
∑M
i=1 w

[i]
t

21: for i = 1 to M do

22: w
[i]
t =

w
[i]
t

Wtotal

23: end for

24: index = max(Wtotal)
25: xest = Xt(index)
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Chapter 5

Motion Planning

5.1 Basic Problem and its Simplification

Simplification of the basic motion planning problem is treated in [17] and [25].
The notions are presented in this section. The idea of the basic motion planning
problem is to isolate some central issues before considering some additional dif-
ficulties, i.e. before it can be expanded to more complex and realistic scenarios.
In the basic problem, the robot is the only moving object in the workspace
and the dynamic properties of the robot are ignored. Motion is restricted to
non-contact motion, so mechanical interaction between robot and obstacles can
be ignored. The geometric form of the robot as well as the kinematic restric-
tions are not consider either. These assumptions transform the ”physical motion
planning” problem into a purely geometrical path planning problem [17].

The basic motion planning problem resulting from the mentioned simplifi-
cations can be stated as follows:

• Let A be a single rigid object (the mobile robot), which is often modelled
as a point.

• The environment of the mobile robot is static and known.

• The robot is moving in an Euclidean space R
N , with N = 2 or 3, the

Euclidean space also called workspace W

• Let B1, ....,Bq fix rigid objects in W . The B′
is are called obstacles and

their location in W are accurately known.

• No kinematic constraints limits the motion of A (A is a free flight object).

• A path τ is generated from an initial position and orientation to a goal
position and orientation. The path τ specifies a continuous sequences of
positions and orientations of A in W avoiding contact with the B′

is.

5.2 Configuration Space of the Robot

Let the Mobile Robot A be described by the vector q = [x, y, θ] which is a
compact set (closed and bounded) in W . Let W be in R

2 and the obstacles
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B1, ....,Bq be closed subsets of W . FA and FW are Cartesian frames; FA is
fixed in A, but movable in FW . FW is embedded in W . The obstacles Bi are
fixed with respect to FW . The vector q represents the configuration of A with
respect to FW , where (x, y) represents the position and θ the orientation.

Definition 5.2.1 (configuration space)[17]
A configuration of A is the space C of all possible configurations of A.

Remark 5.2.1 A(q) is a subset of W occupied by A at the configuration q.
All the possible configurations of A forms the configuration space C, e.q. it is a
set of all possible values of q = [x, y, θ].

In other words, the configuration space or C-space of the mobile system, in
this case a wheelchair, is the space of all possible configurations of the system.
Thus, a configuration is simply a point in this abstract configuration space, [21].

5.3 Obstacles in Configuration Space

The obstacles B1, ....,Bq must be considered in the configuration space of the
robot, which means that they must be mapped onto this configuration space.
Feasible paths must take into account the position of the obstacles in the con-
figuration space of the robot. Therefore, a subset C is described which is made
of contact-free configurations. In other words, when the robot is moving in W
and if it finds any obstacle Bi which has been configured on W , the robot A
must avoid collision with them, i.e. the robot cannot move into an obstacle.

Definition 5.3.1 (C-obstacle)[17]
Any obstacle Bi, with i = 1, .., q, in the workspace W maps in the configuration
space C to a region CBi is called C − obstacle, so that

CBi = {q ∈ C \ A(q) ∩ Bi 6= ∅} (5.1)

Equation 5.1 says that the intersection between a particular configuration of
the robot A(q) with an obstacle Bi, with i = 1, .., q, is different than the empty
set, i.e. there is a collision of the robot with the obstacle.

Definition 5.3.2 (C-obstacle-region)[17]
The union of all C−obstacle gives the C−obstacle−region (CBregion), so that

CBregion =

q
⋃

i=1

CBi (5.2)

Definition 5.3.3 (free space)[17]
A free configuration space Cfree is a subset C defined by,

Cfree = C|
k
⋃

i=1

CBi =
{

q ∈ C \ A(q) ∩
(

q
⋃

i=1

Bi
)

= ∅
}

(5.3)

Equation 5.3 says that the intersection between a particular configuration
space of the robot A(q) with CBregion, is equal to the free space, i.e. there is no
collision between the robot and the obstacle.
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5.4 Path Planning

Some work in robotics has focused on the use of harmonic functions for robot
path planning. Harmonic functions are solution to Laplace’s equation, [12, 13,
14, 15, 16]. In other words, path planning is achieve by solving the Laplace’s
equation to harmonic functions.

Definition 5.4.1 (path)[17]
A path τ of the robot A in the configuration space of the robot C, is a succession
of configurations of ~q, they go from ~qinit (initial configuration) to ~qgoal (final
configuration). The path must be continuous without a gap in the workspace.
In other words, a path is a continuous point map τ : [0, 1] → C connecting
~qinit = τ(0) to ~qgoal = τ(1).

Definition 5.4.2 (Laplace’s equation)[13]
A harmonic function φ on a domain Ω ⊂ Rn is a function that satisfies Laplace’s
equation

∆2φ =
n
∑

i=1

∂2φ

∂x2i
= 0 (5.4)

[12] uses the Finite Difference Method (FDM) for the solution of Laplace’s
equation and [15] uses Taylor series to solve 5.8. In both cases the solution
yield to the equation 5.5

φi,j =
1

4
(φi+1,j + φi−1,j + φi,j+1 + φi,j−1) (5.5)

Corollary 5.4.1 [12]
If φ satisfies Laplace’s equation, then at any point in the domain Ω, is the
average of the values at four surrounding points.

For planning purposes, the grid elements that represent boundary conditions
like the obstacles and goal are held fixed. This method is recursive, in the way
that, as soon as a new average interaction is available, it is placed in the former
average interaction place. The interaction process ends up when there is no
change of any cell grid from one interaction to the next. The algorithm does
not suffer from local minima as the potential field algorithm does, [17, 18, 16,
19, 20, 21, 22]. One important feature of harmonic functions is that they can
be used to generate smooth, collision-free paths without the threat of spurious
of local minima, [24]. The process can be seen in figure 5.1. And the algorithm
is shown in 5.1.

5.5 Circular Entity

A mobile entity is considered a circular shape, that limits the configuration
space to R

2, [21]. Motion planning is now equivalent to motion planning for a
point in the configuration space. Figure 5.2 shows how a workspace obstacles is
transformed to a configuration space obstacles.

The morphological operation called dilation [26] can be used to implement
the configuration space.
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Rp =
∑9

i=1 κizi

Figure 5.1: The showed cell in the grid (x, y) is replaced by the new interaction
φi,j . This process is repeated for all cells in the grid.

Algorithm 5.1 Path planning using Laplace’s equation

Require: φ0i,j {The initial map };
Ensure: φn+1

i,j {Harmonic functions};
φi,j ⇐ 1 {Obstacles (i, j) are fixed to 1};
φi,j ⇐ 0 {Goal position (i, j) is fixed to 0};
while φn+1

i,j 6= φni,j do

φn+1
i,j ⇐ 1

4 (φ
n
i+1,j + φni−1,j + φni,j+1 + φni,j−1)

end while

Definition 5.5.1 (dilation)[26]
With A and B be sets in Z2, where Z denotes the set of real integers, the dilation
of A and B denoted A⊕B is defined as:

A⊕B = {z|(B̂)z ∪ A 6= ∅} (5.6)

The dilation depends of the translation and the reflection which are defined
in the following:

Definition 5.5.2 (translation)[26]
The translation of a set B by a point z = (z1, z2), denoted (B)z, is defined as

(B)z = {c|c = a+ z, for a ∈ B} (5.7)

Definition 5.5.3 (reflection)[26]
The reflection of a set B, denoted B̂, is defined as

B̂ = {w|w = −b, for b ∈ B} (5.8)

In other words, the dilation is obtained by the reflection of B about its origin
and then shifted by z, A and B must overlap at least one element. Figure 5.3
shows the dilation of a set B by a structuring element B which is symmetric.
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Figure 5.2: The top left figure shows the work space obstacle and the circular
mobile entity. Left bottom slides the mobile entity around the obstacle and keeps
track of the curve traced out by the reference point. Bottom right shows the
configuration space. Motion planning in the work space has been transformed
to motion planning in the configuration space.

BA

Figure 5.3: Shows the set A and the structuring element B. The structuring
element and its reflection are the same because B is symmetric with respect to
its origin. The dash line is the original set and the solid line is the dilation of
the set A by B.
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Chapter 6

Mathematical Model of a

Wheelchair

This chapter deals with the computation of a kinematic and dynamic model of a
differential wheelchair. The main objective in the development of the kinematic
model is to find a mapping matrix that relates velocities in the mobile entity to
velocities in a cartesian coordinate system.

To this end, a kinetic energy of a wheel with respect to its center of gravity
and also a kinetic energy of the main body of the system are computed separately
and then added to obtain the total kinetic energy of the system.

[53, 54, 55, 56, 57]

6.1 Geometry of the Differential DriveWheelchair

In order to illustrate the methodology, the differential drive wheelchair geometric
model, as shown in figure 6.1, is considered. In this model the following is
defined.

• FA is the fixed robot’s reference frame with coordinates variables (x1, x2).

• FW is the world reference frame with coordinates variables (x, y).

• CM is the center of mass of the frame.

• Pc is the point of the center of mass with coordinates (xc, yc)

• Pl is a virtual reference point with coordinates (xl, yl).

• P is an intersection point between the driving wheel axis and the geometry
axis of symmetry.

• b is the distance between the center of each wheel and the geometry axis
of symmetry.

• a is the length of the platform and in the direction perpendicular to the
driving wheel axis.

• d is the distance from Pc to P in the direction of the axis of symmetry.
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• L is the distance from P to Pl in the direction of the axis of symmetry.

• r is the radius of each wheel.

• wr is the right wheel.

• wl is the left wheel.

• θ is the angle of rotation.

θ

Pl

x

d
P

a

x1

y

Pc

CM

L

x2

b

FA

FW

2r

wr

wl

cw

cw

Figure 6.1: Differential drive wheelchair geometry. A fixed local frame FA is
attached to the mobile robot and moving with respect to a world reference frame
FW . θ is the angle of rotation around the center of mass CM and with respect
to FW . The robot moves along x1 and perpendicular to the driving wheel axis.

6.2 Constraint Matrix

The constraint matrix of a mechanical system can be defined as follows.

Definition 6.2.1 (Constraint Matrix)[50]
Let q be n generalized coordinates subjected to m constraints such are in the
form C(q, q̇), with k holonomic constraint and m−k nonholonomic constraints,
all of which can be written in the form,

A(q)q̇ = 0 (6.1)

where: A(q) is an (m× n) full rank matrix.
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In definition 6.2.1, A(q) is the constraint matrix and some remarks can be
stated.

Remark 6.2.1 • It is a holonomic constraint, if either a constraint equa-
tion is of the form C(q) or it can integrated.

• It is a nonholonomic constraint, if either a constraint equation is of the
form C(q̇), or it can not integrated.

6.3 Constrains

Two types of constrains are imposed to the fixed wheels of the system

6.3.1 Rolling Without Slipping

This constrain assumes that the wheel has a single point contact with the ground
without slipping. This means that the linear velocity of the wheel at the contact
point must be zero, [49]. In other words, the forward velocity of the center of
mass with respect to a fixed world frame, FW , must be equal to the linear
velocity of the wheel. This situation can be depicted in figure 6.2, and can be
expressed mathematically as stated in equation 6.2

ẋccosθ + ẏcsinθ + bθ̇ = rψ̇ (6.2)

θ

θ

ẏcsinθ

η

ẋccosθ

rψ̇

b

ẏc

ẋc

Pc

bθ̇

Figure 6.2: Shows the rolling constraint without slipping
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6.3.2 No lateral Movement

This constrain assumes that the wheel’s orthogonal components are zero, [49].
This situation is depicted in figure 6.3 and represented mathematically in equa-
tion 6.3.

ẏccosθ − ẋcsinθ − dθ̇ = 0 (6.3)

ẋ
c sinθ

ẋc

ẏ
c cosθ

η

dθ̇

θ

θ

Pc

ẏc

d

Figure 6.3: Shows the lateral constraint

6.4 Kinematic Model of a Differential Wheelchair

In this section a formal definition of kinematic is presented. Furthermore, a
kinematic model of a differential wheelchair is shown.

Definition 6.4.1 (Kinematics)[47]
Kinematics is a branch of mechanics that has to do with the study and descrip-
tion of all possible motions of a rigid body

A kinematic model of a mechanical entity that has to do with the description
of change of generalized coordinates q as function of velocities η is formally
defined as follows

Definition 6.4.2 (Kinematic Model)[48]
From the mechanical system given by equation 6.1, Let Si = [s1, · · · , sn−m]T be a
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set of smooth (continuously differentiable) and linearly independent vector fields
in the null space of A(q), (N(A)), such that, A(q)Si(q) = 0, i = 1, · · · , n −
m. Hence, Si(q) = q̇. Now it is possible to define (n − m) velocities η(t) =
[η1, · · · , ηn−m]T such that for all t.

q̇ = S(q)η(t) (6.4)

Equation 6.4 represents the kinematic model of a mechanical system, where
S(q) is a Jacobian mapping matrix from R

(n−m) → R
n. In other words, it

converts velocities from a mobile entity to velocities in a cartesian system.
In order to obtain a kinematic model of a differential drive wheelchair, firstly,

a constraint matrix of the form of equation 6.1 must be obtained based on the
constraints from equations 6.2 and 6.3. Equations 6.5 to 6.7 are the constraints
imposed to the fixed wheels of the system. Equations 6.8 and 6.9 are the con-
straint matrix and the generalized coordinate vector respectively.

ẏccosθ − ẋcsinθ + θ̇d = 0 (6.5)

ẋccosθ + ẏcsinθ + bθ̇ − rψ̇r = 0 (6.6)

ẋccosθ + ẏcsinθ − bθ̇ − rψ̇l = 0 (6.7)

A(q) =





−sinθ cosθ d 0 0
−cosθ −sinθ −b r 0
−cosθ −sinθ b 0 r



 (6.8)

q̇ =
[

ẋc ẏc θ̇ ψ̇r ψ̇l
]T

(6.9)

Secondly, a system model given by 6.4 that corresponds to a differential
wheelchair entity must be derived. To this end, a Jacobian matrix S(q), that
satisfies the relation A(q)S(q) = 0 must be computed and finally a velocity
vector η is stated. The computation ofN(A) turns out in equation 6.10, whereas,
the velocity vector results in η = [η1, η2]

T = [ψ̇1, ψ̇2]
T .

S(q) = [s1(q), s2(q)] =













c(bcosθ + dsinθ) c(bcosθ − dsinθ)
c(bsinθ − dcosθ) c(bsinθ + dcosθ)

c −c
1 0
0 1













(6.10)

6.5 Dynamic Model of a Differential Wheelchair

The Lagrangian formalism to holonomic and nonholonomic systems can be
found in different sources in the literature [51, 47, 52] and stated in equation
6.11.

d

dt

(

∂L(q, q̇)

∂q̇

)

− ∂L(q, q̇)

∂q
=MI(q)q̈ + V (q, q̇)

= B(q)τ −AT (q)λ (6.11)
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Where:

L(q, q̇) = T (q, q̇) −W (q) is the Lagrangian as is a function of the kinetic
energy T (q, q̇) minus the potential energy W (q) of the system.

MI ∈ R
n×n is the inertia matrix of the system.

V (q, q̇) ∈ R
n×n is the centripetal and coriolis matrix.

AT (q) is the Jacobian transport matrix of the constraint matrix.
B(q) ∈ R

n×(n−m) is an input transformation matrix.
τ ∈ R

(n−m) is the input torque vector.
λ ∈ R

m is the vector of constraint forces or the undetermined Lagrangian
multipliers.

n is the number of generalised coordinates.
q are the generalised coordinates.
m the number of constraints.
It is assumed that the differential wheelchair is moving only in a horizontal

plane. Therefore, the potential energy remains constant and can be neglected
from the Lagrangian multiplier. This fact lets L as a function of T (q, q̇), i.e.
L(q, q̇) = T (q, q̇).

In order to solve 6.11, the kinetic energy T (q, q̇) of the system must be
solved. First, a kinetic energy of the wheel with respect to CM is found. Then
the kinetic energy of the main body of the wheelchair is solved and added to
the kinetic energy of the two wheels.

6.5.1 Kinetic Energy of the Wheel

Figure 6.4 shows the schematic representation of a single wheel attached to
the trolley. In this representation it is assumed, that the mass of the wheel is
distributed evenly along the ring with radius r. Moreover, the point of contact
of the wheel with the ground is supposed to be a single point. Hence, in order
to find the kinetic energy of the wheel, a velocity of the point Pw with respect
to a center of mass CM and which is relative to a fixed frame FW is found,
and then multiplied by the angular density ρα. The former can be established
formally in the following theorem.

Theorem 6.5.1 (Wheel’s kinetic energy)[]
Let Pw(xPw

, yPw
, zPw

) be a point on the surface of a wheel, dm[Kg] an infinites-
imal mass of the point Pw, and dψ [rad] and infinitesimal angle and ρα[Kg/rad]
be the angular density, such that:

Tw =
1

2

∫ 2π

0

(ẋ2Pw
+ ẏ2Pw

+ ż2Pw
)ρα dψ (6.12)

The position of the point Pw = [xPw
, yPw

, zPw
]T with respect of the center

of mass CM can be arranged in matrix notation.

Pw =





xc + lcos(α+ θ) + rcosψcosθ
yc + lsin(α+ θ) + rcosψsinθ

rsinψ



 (6.13)

Taking the square derivative of Ṗw
2
and substituting the result in 6.12 and

then computing the integration, the kinetic energy of a wheel with respect to
the center of mass is obtained.
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Tw =
1

2
mwẋc +

1

2
mwẏc −mwlẋcθ̇sin(α+ θ) +mwlẏcθ̇cos(α+ θ)

+
1

2
mwl

2θ̇2 +
1

4
Iw θ̇

2 +
1

2
Iwψ̇

2 (6.14)

Where, Iw is the moment of inertia of the wheel and is defined as Iw = mwr
2.

mw is the mass of the wheel and is defined as mw = 2πρα.

α

x

z

Pc

θ

y

r

ψ

Pw

l

trolley

rc
os
ψ

rcosψcosθ

θ

r
co
s
ψ
s
in
θ

FW

Figure 6.4: A wheel attached to the trolley. The mass mw is assumed to be
distributed evenly with radius r when computing the kinetic energy of the wheel
with respect to the center of mass.

6.5.2 Kinetic Energy of the wheelchair’s Frame

By combining rotational and translational energies, a kinetic energy of the frame
can be obtained. Figure 6.5 shows the wheelchair’s frame rotational and trans-
lational velocities. The frame’s kinetic energy can be stated formally as in the
following definition.

Definition 6.5.1 (Frame’s kinetic energy)[47]
The kinetic energy of a rotating and moving frame is associated with the motion
of its center of mass plus the rotational energy about its center of mass.

TT =
1

2
MT η

2
c +

1

2
ITω

2
c (6.15)

Where:
MT is the mass of the trolley or frame in [Kg].
ηc is the linear velocity of the trolley in [m/s] with respect of its CM .
IT is the moment of inertia of the frame in [Kg ·m2] with respect of its CM
ωc is the angular velocity in [Rad/s] of the frame about its CM

Equation 6.15 represents the kinetic energy of a rotational and moving
wheelchair frame with respect to its center of mass CM .
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Figure 6.5: Wheelchair that rotates and translates about its center of mass.

6.5.3 Total Kinetic Energy of the wheelchair’s Frame

The total kinetic energy of the wheelchair T can be obtained by adding the
kinetic energy of the frame 6.15 plus the kinetic energy of the two wheels 6.14

T = TT +

2
∑

i=1

Twi
(6.16)

Expanding equation 6.16 gives equation 6.21.

T =
1

2
ẋ2c

(

MT + 2m
)

+
1

2
ẏ2c

(

MT + 2m
)

+
1

2
θ̇2
(

IT + 2ml2 + Iw

)

−ẋcθ̇
[

mlsin(α1 + θ) +mlsin(α2 + θ)
]

+ẏcθ̇
[

mlcos(α1 + θ) +mlcos(α2 + θ)
]

+
1

2
Iwψ̇1

2
+

1

2
Iwψ̇2

2
(6.17)

Equation 6.21 is the total kinetic energy of a differential wheelchair with
respect to its CM . This equation can be reduced to a matrix notation as stated
in equation 6.18

T =
1

2
ξ̇TRTMRξ̇ +

1

2
ψ̇T Iwmψ̇ (6.18)

Where:
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ξ̇ =
[

ẋc ẏc θ̇c
]

T (6.19)

R =





cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1





M =











1
2

(

MT + 2m
)

0 −ml∑2
i=1 sin

(

αi + θ
)

0 1
2

(

MT + 2m
)

ml
∑2

i=1 cos
(

αi + θ
)

0 0 1
2

(

IT + 2ml2 + Iw

)











Iwm =

[

Iw 0
0 Iw

]

ψ̇ =
[

ψ̇1 ψ̇2

]T
(6.20)

6.5.4 Dynamic Equations

In order to derive the dynamic equations of motion of the mobile platform, the
total kinetic energy of the system, equation 6.21, is replaced in the left expression
of equation 6.11. The Lagrange equations of motion of the differential wheelchair
with Lagrangian multipliers λ1, λ2 and λ3, are given by equations 7.1 to 6.25.

(

MT + 2mw

)

ẍc − 2mwd
(

θ̇2cosθ − θ̈sinθ
)

− λ1sinθ −
(

λ2 + λ3
)

cosθ = 0

(6.21)
(

MT + 2mw

)

ÿc − 2mwd
(

θ̈cosθ − θ̇2sinθ
)

+ λ1cosθ −
(

λ2 + λ3
)

sinθ = 0

(6.22)
(

IT + 2mwl
2 + Iw

)

θ̈ + 2mwd
(

ÿccosθ − ẍcsinθ
)

+ λ1d+
(

λ2 − λ3
)

b = 0

(6.23)

Iwψ̈r + λ2r = τr

(6.24)

Iwψ̈l + λ3r = τl

(6.25)

Where, τr and τl are the right and left torques acting in the motors, MT

is the mass of the frame of the mobile entity. ψ̈r and ψ̈l are the right and left
angular accelerations of the wheels. These five equations of motion can easily
be put in matrix form as stated in equation 6.11.
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MI(q) =













MT + 2mw 0 −2mwdsinθ 0 0
0 MT + 2mw 2mwdcosθ 0 0

−2mwdsinθ 2mwdcosθ IT + 2mwl
2 + Iw 0 0

0 0 0 Iw 0
0 0 0 0 Iw













q̈ =













ẍc
ÿc
θ̈

ψ̈r
ψ̈l













V (q, q̇) =













−2mwdθ̇
2cosθ

−2mwdθ̇
2sinθ

0
0
0













B(q) =













0 0
0 0
0 0
1 0
0 1













τ =

[

τr
τl

]

AT (q) =













−sinθ −cosθ −cosθ
cosθ −sinθ −sinθ
d −b b
0 r 0
0 0 r













(6.26)

Once the dynamic equations of motion are obtained, it is of interest to obtain
a mapping function f such that f : τ → η̇, which is indeed the dynamic model of
the system. In order to do the former, it is necessary to eliminate the Lagrangian
multipliers. This is achieved by differentiating equation 6.4 with respect to time
t and then multiply the result by the matrix ST and noting that S ∈ N(A), the
term STATλ vanishes in the equation. The term STB is equal to the identity
matrix I. The procedure is shown in 6.27.

MI q̈ + V = Bτ −ATλ (6.27)

q̇ = Sη

q̈ = Sη̇ + Ṡη

MI

(

Sη̇ + Ṡη
)

+ V = Bτ −AT

STMISη̇ + STMIṠη + STV = STBτ − STATλ

STMISη̇ + STMIṠη + STV = τ

f1 = STMIS

f2 = STMI Ṡη + sTV

η̇ = −f−1
1 f2 + f−1

1 τ

(6.28)
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Equation 6.28 is the dynamic equation of the system.

6.5.5 State Representation

Choosing the state space variable x = [qT ηT ]T and from equations 6.4 and 6.28,
the kinematic and dynamic systems can be arranged into a state representation,
as stated in 6.29.

ẋ =

[

Sη
−f−1

1 f2

]

+

[

0
f−1
1

]

τ

(6.29)
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Chapter 7

Control

This chapter deals with the control strategy of a differential drive wheelchair. A
wheelchair is a system that is highly governed by nonlinearities. For this reason,
a nonlinear control strategy has been chosen to tackle the implementation of
the controller. More precisely, a state feedback linearization is of interest to
handle the nonlinearities of the system. However, it has been prooved that if
one or more constraints in a nonlinear system are nonholonomic, the system
is not fully input satiate linearizable. It may be input-output linearizable if a
proper set of output equation are chosen, [48, 50, 58].

First at all, a mathematical formulation about input-output feedback lin-
earization is introduced. Secondly, a study case of a differential wheelchair
mobile entity is formulated.

7.1 Input-Output Feedback Linearization

In input-output feedback linearization, one of the keys is to find out if there
exists a state transformation z = T (x) and x = T−1(z) such that is a diffeomor-
phism, bringing the nonlinear system into a normal form. This form decomposes
the nonlinear system into external and internal parts respectively, making the
system partially nilearizable. The external variables have a property that can be
seen by the output, whereas the internal variables are hidden from the output.
Moreover, there is a control law that will bring the external part of the normal
system into a lineal controllable canonical form. The question now is whether
or not the internal states will be bounded and stable. The problem of insta-
bility can usually be analysed by the use of the zero dynamics of the system,
[59, 60]. The relative degree of the system is a key factor in the application of
state feedback linearization methods, which is in turn a chain of integrators that
explicitly depends of the input. It may tell the number of outputs equations
that must be chosen for a specific system.

In the following, a nonlinear system, a state transformation vector, a non-
linear form system, and a relative degree are presented as compact definition
forms.

Definition 7.1.1 (Nonlinear System)[59]
Let a differential dynamic equation be represented as a single-input-single-output
SISO system.

39



ẋ = f(x) + g(x)u (7.1)

y = h(x)

Where, f(x), g(x) and h(x) are assumed to be sufficiently smooth on the domain
D ⊂ R

n. x ∈ R
n is the state vector, u ∈ R

n is the control input and y ∈ R is
the output. The mappings f : D → R

n and g : D → R
n×p are vector fields on

D. And, assuming the system 7.1 has a relative degree ρ.

Definition 7.1.2 (State Transformation Vector)[59]
Let ρ be the relative degree of the system, n the total number of state transforma-
tion variables, ς represents the internal dynamics of the system and ξ represents
the external variables, such that

z =T (x) =

























φ1(x)
...

φn−ρ(x)
−−−
h(x)
...

Lρ−1
f h(x)

























,





φ(x)
−−−
ϕ(x)



,





ς
−−−
ξ



 (7.2)

(7.3)

To prevent that ς̇ does not depend on the input u, the φ(x) functions are chosen
such that

∂φi
∂x

g(x) = 0 for 1 ≤ i ≤ n− ρ (7.4)

Definition 7.1.3 (Normal Form System)[59]
The relation 7.2 will bring the system 7.1 into a normal form 7.5-7.7,

ς̇ = f0(ς, ξ) (7.5)

ξ̇ = Acξ +Bcγ(x)[u − α(x)] (7.6)

y = Ccξ (7.7)

Where, ς ∈ R
ρ is the vector of internal state variables, ξ ∈ R

n−ρ is the vector of
external state variables, (Ac, Bc, Cc) are matrixes in canonical form representa-
tion. The terms γ(x), α(x) and the function f0(ς, ξ) are defined as follows.

f0(ς, ξ) =
∂φ

∂x
f(x)

∣

∣

∣

x=T−1(z)
(7.8)

γ(x) = LgL
ρ−1
f (7.9)

α(x) = −
Lρfh(x)

LgL
ρ−1
f h(x)

(7.10)
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Definition 7.1.4 (Input-Output Linear State Feedback Control)[59]
The control law that will bring the external part of the normal form into a linear
one is stated as follows

u = α(x) + β(x)ν (7.11)

The equations 7.5-7.7 result in the system

ς̇ = f0(ς, ξ) (7.12)

ξ̇ = Acξ +Bcν (7.13)

y = Ccξ (7.14)

Definition 7.1.5 (Relative degreel)[59]
Let ρ be the number of times the system 7.1 is continuously derivate till the
output y meets the input u, resulting in the following form

y(ρ) = Lρfh(x) + LgL
ρ−1
f h(x)u (7.15)

Thus, a nonlinear system of the form 7.1 has a relative degree ρ, 1 ≤ ρ ≤ if

Lifh(x) = 0, i = 1, 2, . . . , ρ− 2 (7.16)

LgL
i
fh(x) 6= 0, i = ρ− 1 (7.17)

The system 7.15 can be input-output linearisable by the following equation

u =
1

LgL
ρ−1
f h(x)

[

− Lρfh(x) + ν
]

(7.18)

Reducing the system 7.24 into the following linear form

y(ρ) = ν

(7.19)

7.2 Study Case, a Differential Drive Wheelchair

In order to apply the theory stated in section 7.1 to a differential drive wheelchair,
the state representation stated in equation 6.29 must be arranged in a general
nonlinear form system as presented in definition 7.1.1. For that, a nonlinear
feedback τ = f1u + f2 is applied to the state representation 6.29 bringing the
system to the form.

ẋ = f(x) + g(x)u

y = h(x) (7.20)
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f(x) =

[

S(q)η
0

]

, g(x) =

[

0
I

]

(7.21)

The output equations are chosen based on the number of inputs the system
contains. Since there are two inputs to the system u = [u1, u2]

T , two output
equations must be chosen, y = [y1, y2]

T = h(q) = [h1(q), h2(q)]
T . The interest

in the output equations is trajectory tracking control system. Therefor, two
output equations are chosen based on the coordinates of the virtual point Pl
and shown in 7.22.

y =

[

y1
y2

]

= h(q) =

[

h1(q)
h2(q)

]

=

[

xc + (d+ L)cosθ
yc + (d+ L)sinθ

]

(7.22)

In order to obtain the relative degree of the system, the output y is derivated
till it meets the input u.

ẏ = Φ(q)η

ÿ = Φ̇(q)η +Φ(q)u (7.23)

The output y has been derivated twice before it encountered the input u.
Thereforit is verified that the relative degree of the system is ρ = 2.

Φ(q) is the decoupling matrix, and defined as in equation 7.24

Φ(q) = Jh(q)S(q)

With

Jh =
∂h(q)

∂q
∈ R

(n−m)×n as the Jacobian Matrix

In order to achieve input-output linearization, a state variable transforma-
tion vector, which is a diffeomorphism, is defined as follows, [50, 61].

z = T (x)=





















z1
z2

−−−
z3
z4

−−−
z5





















=













h(q)
−−−
Lfh(q)
−−−
h̃(q)













=













h(q)
−−−
Φ(q)η
−−−
h̃(q)













(7.24)

Where h̃(q) ∈ R
m is a vectorial function such that [JTh , J

T
h̃
] is a full rank,

[50, 61]. The system under the new state variable transformation vector T (x)
is characterised by
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ż =





















ż1
ż2

−−−
ż3
ż4

−−−
ż5





















=













∂h
∂q
q̇

−−−
Φ̇(q)η +Φ(q)u

−−−
Jh̃Sη













=





















z3
z4

−−−
Φ̇(q)η + Φ(q)u

−−−
Jh̃Sη

(

JhS
)−1

[

z3
z4

]





















(7.25)

The observable part of the system 7.25, z = [ż1, ż2, ż3, ż4]
T , is arranged in

the form presented in equation 7.26.

ż = Acz +BcΦ(q)
[

u−
(

− Φ−1(q)Φ̇(q)η
)]

(7.26)

With

Ac =









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









, Bc =









0 0
0 0
1 0
0 1









Choosing a state feedback control law of the form showed in equation 7.11,
with α(q) = −Φ−1(q)Φ̇η, β(q) = Φ−1(q) and γ(q) = Φ(q).

u = −Φ−1(q)Φ̇η +Φ−1(q)ν (7.27)

Equation 7.27 brings the system 7.26 into a linear one of the form presented
in equation 7.13.

ż = Acz +Bcν (7.28)

The kinematic and the dynamic models, the nonlinear feedback, the nonlin-
ear state feedback control law and the linear state transformation variables are
summarized from 7.29-7.36, and sketched in figure 7.1.

q̇ = S(q)η (7.29)

η̇ = f−1
1 f2 + f−1

1 τ (7.30)

τ = f1u+ f2 (7.31)

u = Φ̇−1
(

ν − Φη
)

(7.32)

z1 = h1(q) (7.33)

z2 = h2(q) (7.34)

z3 = Φ1(q)η (7.35)

z4 = Φ2(q)η (7.36)
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∫∫

ν u τ η̇ η q̇

Nolinear State

Feedback

Nonlinear Feedback Dynamics KinematicsLinear Feedback

H
(

h(q), Jh(q), q̇
)

η̇ = f−1
1 f2 + f−1

1 τν = K(r − z) u = Φ̇−1
(

ν −Φη
)

τ = f1u+ f2 q̇ = S(q)η

z

q
er

+
−

Figure 7.1: Block diagram of the control system. The lineal feedback block is in charge of placing the poles of the linear system. The
nonlinear feedback linearizes and decouples the input-output map. The nonlinear feedback block allows to cancel the nonlinearities in the
dynamic model. The kinematic block gives the pose of the robot in the configuration space; then the generalized coordinates are mapped,
and feedback is to be compared to the reference input.
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Chapter 8

Motor Control

8.1 DC Motor model

To accurately model a DC motor, an electrical as well as a mechanical part are
taken into consideration, [62].

8.1.1 Electrical Part

Figure 8.1 depicts the electrical part of a DC motor

+

− −

+

Lm

e = Keψ̇mvm

Rm

im

Figure 8.1: Motor electrical circuit

im [A], is the armature current, vm [v], is the voltage applied to the motor,
Rm [Ω], is the electrical resistance, Lm [H ] is the electrical inductance, e [emf ]
electromotive force, Ke electric constant, ψ̇m] is the shaft’s rotational velocity.
The back emf , e, is related to the rotational velocity by the Ke.

Applying Kirchoof voltage law
∑n

k=1 vk = 0 to the electrical circuit in Figure
8.1 brings the electrical equation of the DC motor.

Lm
dim
dt

+Rmim = vm −Keψ̇m (8.1)

8.1.2 Mechanical Part

Figure 8.2 depicts the mechanical part of a DC motor
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ψm

Jm

bψ̇m

T = Ktim

Figure 8.2: Motor mechanical part

T [N · m] is the motor torque, ψ [Rad] is the shaft’s angular position, b

[N · m · s] is the damping ratio of the mechanical system, Jm [kg·m
2

s2
] is the

moment of inertia of the rotor, Kt is the torque constant. The motor torque,
T , is related to the armature current, im, by a constant factor Kt.

Applying Newton’s law to one dimensional rotational system (M = Iα),
brings the mechanical equation of the DC motor. Where; M [N ·m] is the sum
of all the moments about the center of mass, I [Kg ·m2] is the body’s moment of
inertia about its center of mass, α [Rad

s2
] is the angular aceleration of the body,

Jmψ̈m + bψ̇m = Ktim (8.2)

8.1.3 Mathematical Model

Equations 8.1 and 8.2 reprsents the mathematical model of a DC motor

Jmψ̈m + bψ̇m = Ktim (8.3)

Lm
dim
dt

+Rmim = vm −Keψ̇m (8.4)

The system can be arranged in state space representation.

[

ψ̈m
˙im

]

=

[

− b
Jm

kt
Jm

−Ke

Lm
−Rm

Lm

]

[

ψ̇m
im

]

+

[

0
1
Lm

]

vm (8.5)

[

ψ̇
]

=
[

1 0
]

[

ψ̇m
im

]

(8.6)

However, for control purposes, the interest is to have a function of the form

Gol(s) =
ψ̇m(s)
vm(s) , an open loop transfer function in the s plane that relates the

output ψ̇m(s) to the input vm(s).

Gol(s) =
ψ̇m(s)

vm(s)
=

Kt

(Lms+Rm)(Jms+ bm) +KtKe

(8.7)
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In SI units, Kt is equal to Ke.

8.1.4 Control Design

In the control design of D(s), the choice of proper specifications depends on the
application. In this case the reference to the control loop is an angular velocity
ψ̇ depending on a trajectory some nonlinear system has to follow, as depicted
in Figure 8.3.

D(s) G(s)
ψ̇ vm

+

e

−

ψ̇m

Figure 8.3: System control block

The described system G(s) has two poles.
One pole is related to the electrical side and is very fast and mostly deter-

mined by the inductance Lm and the resistance Rm of the motor windings. It
comes by letting ψ̇m = 0 in equations 8.1 and 8.2

Im(s)

Vm(s)
=

1

Lms+Rm
=

1/Rm
τol fast

(8.8)

Where τol fast =
Lm

Rm
is the open loop time electrical constant with the open

loop pole sol fast = − 1
τol fast

= −Rm

Lm

The other pole is much slower and mostly determined by the mechanic part,
and it can be depicted by letting Lm = 0 in equations 8.1 and 8.2

G(s) =
Km

JmRms+
(

bmRm +K2
m

) =
Km/

(

bmRm +K2
m

)

τol slows+ 1
(8.9)

Where τol slow = JmRm

JmRm+K2
m

is the open loop time mechanical constant with

the open loop pole sol slow = − JmRm

JmRm+K2
m
.

One has to be aware that if the motor has some load with inertia this will
change the slowest of the poles because it must exchange Jm with the total
moment of inertia.

The former analysis was to emphasize that there is one pole related to the
electrical side and one pole related to the mechanical side. In the design, the
poles for the system G(s) must be used.

sol slow 1 =
−B +

√
B2 − 4AC

2A
(8.10)

sol fast 2 =
−B −

√
B2 − 4AC

2A
(8.11)
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A = JmLm, B = −JmRm+Lmbm and C = bmRm+K2
m. There is no point

in designing the closed loop to be much faster than the slowest pole, since this
would imply, that the control output would often be saturated. For instance,
one could design a controller to have a closed loop pole 4− 5 times faster than
the mechanical time constant. This will still be much (ten times) slower than
the electrical constant, such that the closed loop could have one slow real and
one fast pole.

For a system with a slow and a fast real poles in closed loop, the rise time
tr will be almost as for a first order system Gol(s) =

1
τs+1 with output function

y(t) = 1− exp(−t
τ
).

If it is desired to have a closed loop with no steady state error, a Proportional
Integral (PI) control can be used, equation 8.12. One can choose for instance
the integral time constant (T i) such that the zero of the controller cancel the
slow pole of the motor and next choose the proportional constant (Kp). And,
by using root locus in Matlab to give the desired dominating closed loop pole.

D(s) =
Kp

(

Tis+ 1
)

Tis
(8.12)

A close loop transfer function is obtained by a proper combination of equa-
tions 8.12 and 8.7.

H(s) = Gcl =
GolD(s)

1 +Gol(s)D(s)
(8.13)

Section 13.2 shows the simulation results of a PI controller that has been
applied to a motor transfer function G(s).
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Chapter 9

Digital Control

The equations of motion that govern dynamic systems as well as compensators
must be digitized or discretized in order to be implemented in a digital computer.
To this end, different tools for the discretization are available. For instance,
Nonlinear dynamic equations can be solved numerically, whereas compensators
can be discretized by means of computer-aided control system design (CACSD),
like Matlab.

9.1 Nonlinear System discretization

The second order Runge-Kutter method RK2 can be used to solve numerically
the dynamic equations of motion that govern a Nonlinear systems.

Theorem 9.1.1 (Runge-Kutter)
Let a differential dynamic equation be represented as ẏ(q) = f(q), then RK2
simulates the accuracy of the second order Taylor series.

yk+1 = yk +Ky2 (9.1)

Ky2 = Tf
(

tk +
T

2
, yk +

Ky1

2

)

(9.2)

Ky1 = Tf
(

tk, yk
)

(9.3)

Where T is the sampling period, tk is the discrete time, f(·) is the derivative.

Proof 9.1.1 [63]

The discretized nonlinear system is depicted in figure 9.1, where the dynam-
ics of the system has been numerically solved by means of RK2.

ηk+1 = ηk +Kη2 (9.4)

Kη2 = Tf
(

tk +
T

2
, ηk +

Kη1

2

)

(9.5)

Kη1 = Tf
(

tk, ηk
)

(9.6)
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qk+1 = qk +Kq2 (9.7)

Kq2 = Tf
(

tk +
T

2
, qk +

Kq1

2

)

(9.8)

Kq1 = Tf
(

tk, qk
)

(9.9)

9.2 DC Motor controller Digitization

Emulation is the discrete equivalent to a continuous closed loop DC motor
transfer function H(s) = Gcl(s). The digitization is achieved by means of
Tustin’s method, which mainly consists in approximate a continuous function
using a trapezoidal integration, [62].

Figure 9.2 shows a basic block diagram for a digital controller with a con-
tinuous real motor transfer function. The A/D block converts the continuous
signal yk from the system, in this case a DC motor. Then, yk is compared
with a reference signal rk to produce an error signal ek that is supplied to the
difference equations, that have been discretized by Tustin’s method. Hence,
a correction signal uk is produced over a D/A block to make the output y(t)
follow a reference input rk.

An important factor in the digitization process is the selection of the sam-
pling rate ωn and the sample period T . ωn is selected to be 20 times the
bandwidth of the system Gol(s), whereas, T is selected by inverting ωn.
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H
(

qk+1, qk

)

νk = Kd(rk − zk) ηk+1 = ηk +Kη2τk = f1kuk + f2kuk = αk + βkνk
+

−

qk+1 = qk +Kq2

qk

qk+1

ηk

ηk+1

τkukνkekrk

zk

Runge-Kutta

Dynamics Kinematics

Runge-Kutta
Nonlinear Feedback

Nolinear State

Feedback

Linear Feedback

Figure 9.1: Discrete nonlinear system block diagram
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∑ Difference

equations

A/D

D/A
Motor

G(s)

Digital Controller

ek
uk u(t) y(t)

yk

rk

Figure 9.2: Digital block diagram controller
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Chapter 10

System

The complete system, composed of the modules described in previous sections,
is depicted in Figure 10.1. The map making block is responsible for generating
a map of the environment based on laser readings. The path planning block
has to generate a smooth path from the start to the goal, which means that the
coordinate must be chosen either by the BCI or tongue interfaces. Once the
path is generated, it is used as a reference that is compared with the output
from the system generating an error that will be used as the input to the control.
The localization block together with the output from the actuators are used to
generate the output signals that have to be compared with the reference input.
The control block, which dynamic equations have been discretized by means
of second order Runge-Kutta method [63], generates the control signals to the
actuators that will follow a specific path.

−

Tongue

η ηm
PathMap System

Control

H
(

q, η
)

interface

Localization

control++

r

making
Actuators

interface
ALS

ee

Planning
−

z

Figure 10.1: Block diagram of the complete system. The path planning is
achieved after a point destination is selected on the map. This action produces
a reference input to the control module. Then the control path tracking strategy
is applied to give the right commands to the actuators.
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Part III

Simulation Results
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Chapter 11

Localization

For the first laser sampling, three iterations of the KLD algorithm were per-
formed, while only one iteration was performed for the remaining laser samplings
as shown in Figure 11.1.

• Figure 11.1(a) shows the result of the algorithm in the firsts laser mea-
surement after one iteration. The red circle is the true pose, the green
cross is the best estimate pose calculated by the algorithm, and the blue
crosses are random particles that remain after the first iteration.

• Figure 11.1(b) shows the result of the algorithm that is still in the first
laser measurement, e.g. the mobile entity has not moved at all. The
algorithm has performed three iterations, where random particles have
been eliminated, and the ones that remain are concentrated around the
best estimate.

• Figures 11.1(c) and (d) show the results of the algorithm for the 10th and
20th laser samplings after one iteration.

It can be seen that the KLD algorithm accurately tracks and localizes the
mobile entity in the configuration space of the map as shown in Figure 11.2.
Table 11.1 shows the true poses and the best estimates in [x, y] that correspond
to the previous measurements.

Table 11.1: Comparison between true pose and best estimate using KLD
(x, y) cm

Position Samplings True pose Best estimate Error (module)

1 (1 iteration) (225, 250) (220, 265) 15.8
1 (3 iterations) (225, 250) (195, 265) 33.5
10 (1 iteration) (585, 540) (590.3, 527.8) 13.2
20 (1 iteration) (540, 910) (553.8, 908.8) 13.6
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(a)

(b)

(c)

(d)

Figure 11.1: (a) shows the result of the algorithm for the first laser sampling
after 1 iteration. (b) result of the algorithm for the first laser sampling after
3 iterations. (c) result of the algorithm for the 10th laser sampling after 1
iterations. (d) result of the algorithm for the 20th iteration after 1 iterations.

Figure 11.2: Comparison between the true poses and best estimates.
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Chapter 12

Motion Planning

This chapter addresses motion planning simulation based on the solution of
Laplace’s equation. The method was explained in section 5.4. Figure 12.1(a)
shows a map of a laboratory based on laser readings. The black area represents
free space (Cfree) while the white area represents occupied space or C-obstacle-
region (CBregion). Figure 12.1(b) shows the configuration space based on the
morphological operation called dilation; the map has been dilated a factor of
20 cm. Dilation was explained in chapter 5.5.
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X [m]

Y
 [m

]

(b)

Figure 12.1: (a) Map created from laser readings. (b) Configuration space
created by dilation.

Figure 12.2(a) depicts a start point represented by a blue circle and a goal
configuration represented by a red square. The planner has to find a smooth
path from start to goal configuration, based on the solution of Laplace’s equa-
tion. The smooth path can be depicted in figure 12.2(b). Figure 12.3 shows a
3D representation of the solution of Laplace’s equation applied to the map from
figure 12.1(b).
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Figure 12.2: (a) The blue circle represents the start point configuration. (b)
The red square represents the the goal configuration. (b) Shows a smooth path
(τ) in the free configuration space (Cfree).

Figure 12.3: A 3D representation of the solution of Laplace’s equation. The
peak represents the goal configuration.
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Chapter 13

Control

13.1 Nonlinear Control

The input-output state feedback nonlinear control path following for a constant
and a cosine reference paths are depicted in figures 13.1(a)(b) and 13.2(c)(d).
They show and exponential and linear path tracking, where y1, y2 represents
the coordinates of the virtual point Pl and xc, yc represents the coordinates of
the center of mass.
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Figure 13.1: (a) Constant path tracking. (b) Cosine path tracking.

13.2 Motor Control

The motor parameters used in the simulation are; Jm = 0.0103, bm = 0.0034,
Km = 0.78, Rm = 2.4242, and Lm = 0.0027. Figure 13.3(a) shows the slow
and fast poles of the system G(s), which values are sol slow 1 = −25.4056 and
sol fast 2 = −872.7764.

Figure 13.3(b) depicts the step response of the open loop system. It can be
seen there is a steady state error.
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Figure 13.2: (c) Exponential tracking. (b) Line tracking.
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Figure 13.3: (a) Open loop poles. (b) Open loop step function.
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Figure 13.4(c) depicts the close loop poles of Gcl(s). The integral constant
TI in equation 8.12 has been chosen to cancel the slow open loop pole in order
for the entire system to behave as a second order one. The slow close loop pole
has been chosen to be around 4 times faster than the slow open loop pole using
the commands in Matlab rlocus and rlocfind. Finally, a step response of the
close loop system can be seen in Figure 13.4(d).
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Figure 13.4: (d) Close loop poles. (d). Close loop step response.

The rise time tr and the settling time ts of the system can be obtained as
follows

tr = 2.2τcl slow (13.1)

ts = 3.9τcl slow (13.2)

Where τcl slow from Figure 13.4(c) has the value of 0.00981 making tr =
0.021 sec and ts = 0.038 sec

13.3 Digital Control

Figure 13.5(a) depicts the simulation results of the nonlinear system trajectory
tracking using RK2. Figure 13.5(b) presents a digital step response that cor-
responds to a close loop system with open loop transfer function Gol(z) and a
Digital compensator D(z)
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Figure 13.5: (a) Discrete nonlinear trajectory tracking. (b) Digital step re-
sponse.
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Chapter 14

System Simulation

The simulation results of the individual blocks of the system have been shown in
the previous chapters. The main objective of this section is to show the control
simulation result of the system, as depicted it in Figure 14.1. The nonlinear
control path following scheme is presented as a dash line, and the reference
input is represented as a solid line.

The Mean Square Error between the reference input and the control tracking
(MSEre) for the simulation performed in Matlab is 6 cm2.
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Figure 14.1: Control simulation. The reference input is represented as a solid
line, and the control trajectory tracking is represented as a dash line.
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Part IV

Summary, Conclusion and

Future Work
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A differential mobile robot based wheelchair has been described and sim-
ulated in this report. To this end, modules for sensor fusion, map making,
destination point selection, localization, path planing and control strategy were
introduced.

The uncertainty inherited in the sensor’s readings were taken into consid-
eration by the use of probabilistic sensor models, and the Bayesian method
was used to update the probabilistic map into an occupancy grid. It has been
shown that the Kullback Leibler Divergence localization algorithm localized,
with great accuracy, the wheelchair in its configuration space. For destina-
tion point selection, BCI is proposed. A nonlinear control strategy for the
autonomous wheelchair was selected based on the high nonlinearities of the sys-
tem, focusing mainly on state feedback input-output linearization. This process
has the property of splitting the system into external and internal parts, mak-
ing the external part suitable for linearization. Boundary internal part stability
conditions were analyzed using the zero dynamics of the system. For trajectory
tracking, two external outputs were selected and a linear feedback loop was de-
signed, in order to achieve achieves good results in the path trajectory tracking.
The dynamics of the system were analyzed based on the Lagrangian formalism
to holonimic-nonholonomic systems.

Simulation results of each individual block as well as the system were pre-
sented to illustrate a high control wheelchair based on a destination point se-
lection.

It can be observed in Figure 11.1(b) that the KLD considerably reduces
the number of particles during the localization tracking after 3 iterations during
the first laser measurement. Table 11.1 can be appreciated that the best pose
estimation for the first laser sampling, that represents the wheelchair in still
position (initialization), has an accuracy error of 15.8 cm and 33.5 cm after 3
iterations. For the 10th and 20th laser samplings, that represent position of the
wheelchair in movement, the accuracy errors are 13.2 cm and 13.6 cm respec-
tively.
Statistical analysis of the trajectory control tracking of the system Figure 14.1
showed mean squared error of 6 cm2, which ensures accurate navigation due to
the 20cm dilation of the occupied spaces.

The simulation results in this paper have shown the feasibility of using the
proposed system, based on a single command from the user, to provide aug-
mentative mobilization to individuals with severe physical impairments, such as
high-level spinal cord injury or advanced states of amyotrophic lateral sclerosis.
Such persons could use e.g. BCI [69], in order to successfully choose destination
points.

Finally, a differential mobile robot wheelchair prototype has been built from
scratch with the purpose of testing the aforementioned algorithms. Then, on
success these algorithms need to be transferred to a real wheelchair.
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Appendix A

Proofs

A.1 Bayes’ rule

Theorem A.1.1 (Total probability theorem)
B1, B2,...,Bk belongs to the sample space S such that P (Bi 6= 0) for i =
1, 2, ..., k, then, for every event A of S,

P (A) =

k
∑

i=1

P (Bj ∩A) =
k
∑

j=1

P (Bj)P (A|Bj) (A.1)

Proof A.1.1 (Total probability theorem)
From figure A.1, definition A.1.1 and corollary A.1.1.

A =(B1 ∩ A) ∪ (B2 ∩ A) ∪ · · · ∪ (Bk ∩A)
P (A) =P (B1 ∩ A) + P (B2 ∩ A) + · · ·+ P (Bk ∩A)

P (A) =

k
∑

j=1

P (Bj ∩A) =
k
∑

j=1

P (Bj)P (A|Bj)

(A.2)

Proof A.1.2 (Bayes’ rule) Equation 3.1.1.

B1

B2 B3

B4

Bn

A

Bk

S

Figure A.1: Partition of the sample space S.
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From the definition of conditional probability A.1.1 and the total theorem A.1.1,

P (Bi|A) =
P (Bi ∩ A)
P (A)

P (Bi|A) =
P (Bi ∩ A)

∑k
j=1 P (Bj)P (A|Bj)

P (Bi|A) =
P (Bi ∩ A)

∑k
j=1 P (Bj ∩ A)

=
P (Bi)P (A|Bi)

∑k
j=1 P (Bj)P (A|Bj)

(A.3)

Definition A.1.1 (Conditional probability)
P (B|A) represents the conditional probability of an event B given an event A
and it is defined as follows

P (B|A) = P (A ∩B)

P (A)
if P (A) > 0 (A.4)

Definition A.1.2 (Independent events)
Two events, A and B, are independent if and only if

P (A ∩B) = P (A)P (B)

P (B ∩ A) = P (B)P (A)

P (B|A) = P (B)

P (A|B) = P (A) (A.5)

Corollary A.1.1 If the events A1, A1, A2, A3, An are mutually exclusive then

P (A1 ∪ A2 ∪ A3 ∪ · · · ∪ An) = P (A1) + P (A2) + P (A3) + · · ·+ P (An) (A.6)

72



Appendix B

RTAI Instalation Guide

This appendix describes RTAI-3.6.1 installation on Debian with Linux kernel
2.6.24. [34, 35, 36, 37]

B.1 Introduction

The instalation is done on EPIA M10000 Mini ITX Mainboard running Debian
with Linux kernel 2.6.26
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Appendix C

Schematic Motor Interfaces

Figures C.1 and C.2 shows the schematic diagras of the input output interfaces
respectively.
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Figure C.1: Schematic of the output inteface.
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Figure C.2: Schematic of the input interface.
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