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a b s t r a c t

This paper presents a natural language-enabled virtual assistant (VA), named Max, developed to
support flexible and scalable human–robot interactions (HRI) with industrial robots. Regardless of
the numerous natural language interfaces already proposed for intuitive HRI on the industrial shop
floor, most of those interfaces remain tightly bound with a specific robotic system. Besides, the
lack of a natural and efficient human–robot communication protocol hinders the user experience.
Therefore three key elements characterize the proposed framework. First, a Client–Server style
architecture is introduced so Max can provide a centralized solution for managing and controlling
various types of robots deployed on the shop floor. Second, inspired by human–human communication,
two conversation strategies, lexical-semantic and general diversion strategies, are used to guide
Max’s response generation. These conversation strategies were embedded to improve the operator’s
engagement with the manufacturing tasks. Third, we fine-tuned the state-of-the-art (SOTA) pre-trained
model, Bidirectional Encoder Representations from Transformers (BERT), to support a highly accurate
prediction of requested intents from the operator and robot services. Multiple experiments were
conducted using the latest iteration of our autonomous industrial mobile manipulator, ‘‘Little Helper
(LH)’’, to validate Max’s performance in a real manufacturing environment.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC license

(http://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

Human–robot interaction (HRI) has been the focus of ground-
breaking research for decades (Jost et al., 2020; Raj et al., 2022).
Coupled with the rapid development of Artificial Intelligence (AI),
various advanced technologies such as real-time object detec-
tion (Buhl et al., 2019; Cheng et al., 2022), deep reinforcement
learning (Arana-Arexolaleiba et al., 2019), and natural language
processing (NLP), are introduced to enhance HRI for industrial
robots (Lithoxoidou et al., 2020). However, as one of the lat-
est articles of WEIRD magazine mentioned, ‘‘As Robots Fill the
Workplace, They Must Learn to Get Along’’ (Knight, 2021). The
presence of advanced technologies alone, do not suffice for natu-
ral communication and interaction with multiple types of robots
that are designed for different purposes and used by various
operators (Villani et al., 2018). For example, the Mobile Industrial
Robot (MiR) focuses on internal logistics technologies such as
navigation and obstacle avoidance. However, it only communi-
cates with the user based on light signals. At the same time,

✩ Editor: W. Eric Wong.
∗ Corresponding author.

E-mail addresses: cl@mp.aau.dk (C. Li), dimi@mp.aau.dk
(D. Chrysostomou), hongji.yang@leicester.ac.uk (H. Yang).

many industrial robot manipulators are branded as collaborative,
often due to marketing reasons and primarily based on their
control and safety strategies. However, while they revolutionized
the industry enabling human–robot collaboration (HRC) outside
of safety fences, they barely incorporate ways to engage users
into a natural language dialogue to enhance the communication
and interaction with them (Hjorth and Chrysostomou, 2022).
Therefore, it is necessary to introduce a flexible and scalable NLP-
enabled interface for HRI and HRC, which works with various
industrial robots on the shop floor based on a well-designed ar-
chitecture that provides a centralized way for robot management
and maintenance.

There are many mature language-enabled VAs, e.g., Alexa,1
Google Assistant2 and Siri3 available commercially and used by
millions of users worldwide. Their key feature is their impressive
capacity for handling robust NLP and continuous natural dia-
logues. Nevertheless, most of those products are designed in the
context of entertainment and remain unsuitable for direct use in
robotics, especially in an industrial context.

1 https://www.amazon.com/b?ie=UTF8&node=17934671011
2 https://developers.google.com/assistant
3 https://developer.apple.com/siri/
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On the other hand, many research efforts utilize verbal cues to
enhance HRI in industrial environments (Mavridis, 2015). Specif-
ically, Li et al. developed a language-enabled virtual assistant,
Bot-X, to control a production line composed of eight Festo CP
modules and a KUKA robot for product assembly task (Li and
Yang, 2021). Maksymova et al. proved that numerous models
could be used for voice control of an industrial robot such as
logical, semantic networks, and Petri Nets in the context of collab-
orative assembly (Maksymova et al., 2017). Additionally, Bingol
and Aydogmus evaluated the capabilities of deep neural networks
for the classification of a set of commands in a natural speech
recognition system for the interactive control of an industrial ma-
nipulator in various industrial tasks (Bingol and Aydogmus, 2020).
González-Docasal et al. progressed even further and integrated a
semantic interpreter able to extract semantic information from
transcribed spoken content to enable an industrial robot to un-
derstand the intention of the operator and execute a collaborative
task (González-Docasal et al., 2020).

Naturally, since industrial robots mainly assist the users with
manufacturing tasks (Kumar et al., 2021), task completion ex-
perience is usually set as the primary evaluation goal of robots’
performance in most of the aforementioned scenarios (González-
Docasal et al., 2020). However, an operator remains the most
flexible entity on the shop floor which needs to handle a versatile
range of tasks and tools with robots’ cooperation where task-
completion is not the only requirement, e.g., collaborative prod-
ucts assembly, and resource management and logistics assisted
by mobile robots (Aceto et al., 2019).

This work is motivated by multiple studies from social, service,
and lately, industrial robotics, which have proven that creat-
ing a pleasant and symbiotic human–robot collaboration often
improves the user’s engagement and leads to increased produc-
tivity (Pérez et al., 2020). Key elements of such successful HRI
usually are the strong sense of commitment from the opera-
tor (Székely et al., 2019) and the enhanced user experience (Prati
et al., 2021).

Based on our previous prototype (Li et al., 2021), we developed
an intelligent VA to enable these elements in industrial use cases.
We call it Max, and it utilizes a Client–Server (CS) style archi-
tecture and RESTful APIs to provide a scalable and flexible NLP
solution for intuitive HRI. It supports various industrial robots
on the shop floor by maintaining industrial robot services on
the server-side alone while the robot control agent lies on the
Max client. Furthermore, powered by the state-of-the-art (SOTA)
model and inspired by human–human communication, Max can
understand the operator’s intent, track the dialogue history and
enhance the user experience by generating humanized responses.

We summarize our contributions as follows:

• From architecture perspective, we propose the design of
a natural language-enabled VA, fine-tuned for the needs of
industrial tasks. It is equipped with a scalable and flexi-
ble Client–Server architecture with RESTful APIs enabling
a modular, plug-and-play ability for various robot services.
Therefore, the VA is not tightly bound with a specific robotic
system when integrating with various shop floor industrial
robots.

• From the interaction perspective, this is the first study that
integrates the human-to-human conversation strategy into
HRI for industrial robots to bootstrap the shop floor work-
ers’ engagement. Furthermore, we fine-tuned, pre-trained
Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018) model on our dialogue dataset in
the industrial robots domain with a high inference accuracy.

• From the performance perspective, six performance met-
rics, with the target of measuring the accuracy of language

understanding, the success rate of task completion, and
parallel request handling ability, are used to evaluate the
proposed VA. The result shows its robustness in three di-
verse industrial scenarios with realistic noise levels, usually
present in a factory.

In Section 2 of this paper, we describe the proposed intelli-
gent VA presenting its design specifications, system architecture,
and core components. We present the experiments and evaluate
Max’s performance in Section 3, and we finalize the paper with
reflections and concluding remarks in Section 4.

2. System description

The main objective of Max is to enable industrial users to
easily maintain and control their industrial robots and enhance
the user experience in a natural and user-friendly way. However,
such flexibility introduces certain challenges:

• Driven by the fast-changing market demands, manufactur-
ers need to adjust the shop floor quickly, e.g., relocate robots
to another production line, install a new robot. Therefore,
the design of a VA should be able to adapt to the dynam-
ically changing working environment and support a rapid
expansion of the shop floor.

• To optimize HRI, it is essential to add specific features,
e.g., natural responses to dialogue and intent prediction,
that will add extra value to the VA and enhance the over-
all performance. These enhancements of user experience
are currently lacking in HRI with industrial robots and are
introduced with the proposed framework.

2.1. Design principles

To address the challenges mentioned above, we built Max
based on two design principles.

• Achieve a flexible and scalable HRI. We wanted Max’s ar-
chitecture to be simple and easily maintainable. To achieve
flexible and scalable HRI, Max should enable a scalable shop
floor environment and well-defined interfaces to support
the communication for Human-to-Max and Max-to-robots.

• Support natural and humanized communication. We wanted
Max to support natural and humanized communication to
enable natural communication and allow novice operators
to interact with it easily. Max should be able to improve
user engagement through a natural dialogue environment.
Besides, it should invite the operator to a manufacturing
task and initiate an activity related to the context of the
conversation. Moreover, Max needs to be situation-aware
and switch or end the conversation topic if the current task
cannot be executed.

2.2. Architecture overview

Following the CS style architecture, two services, language
service and an industrial robot service, are hosted on the Max
server-side (see Fig. 1). Max client is mainly composed of a voice
interface and robot control agent. RESTful HTTP requests support
the communication between the Max server and client. Max
client provides a voice interface (i.e., microphone and speaker)
to interact with the human operator and leverages the different
protocols (e.g., OPC UA, TCP/IP) to communicate with the shop
floor robots.

Max is designed and developed as a CS-based web application
using Python Flask Framework (Grinberg, 2018). NGINX (Reese,
2008) is serving as a web server due to its high performance,
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Fig. 1. The proposed architecture of the natural language-enabled VA.

Fig. 2. Deployment of Max server on AAU Cloud.

stability, and low resource consumption. To handle concurrent
HTTPS connections and recover from crashes, Gunicorn (Ches-
neau et al., 2020) is chosen as a web server gateway inter-
face (WSGI) application server (see Fig. 2). Max server is de-
ployed both on Aalborg University (AAU) Cloud, a cluster of 32
servers, and a local Ubuntu 18.04 webserver in AAU learning
factory (Nardello et al., 2017). All servers have the same con-
figuration with Intel(R) Xeon(R) Silver 4110 CPU @ 2.10 GHz
(32 cores) and 128 GB of memory. In general, Max clients send
requests to the local web server directly. If the number of re-
quests reaches the upper limit, the server will forward the further
requests to the AAU Cloud to balance the workload and avoid
the traffic congestion problem. The Max client is deployed on a
Raspberry Pi 4 since the client’s main responsibility is to provide
voice support and invoke the robot control scripts.

2.3. Language service

Designing a VA tailored to industrial requirements is a chal-
lenging task. The VA should comprehend natural language con-
versations, perceive the working environment and task-related
context, and actively interact with operators to provide advice
and suggestions to assist the manufacturing task.

Fig. 3. An overview of pre-trained and fine-tuned BERT model. User utterance
is split into multiple tokens and masked (15% of words) and fed to the BERT
model. The outputs are the predicted user’s intent with slots.

2.3.1. Human intent recognition
The input of the language service is a transcript transformed

from operators’ utterances sent by the Max client. In general,
to understand the operator’s intent (e.g., asking a mobile robot
to perform a transportation task), the keywords extraction ap-
proach is widely used for mapping operator’s utterance to ontol-
ogy action instances (Mavridis and Roy, 2006). However, such an
approach requires a predefined list of keywords for every robot
action. Moreover, operators need to remember all keywords and
say the right one to trigger an action. While such an approach is
simple, it is also less flexible, especially for the workers with no
or limited knowledge of the available robot operation skills.

In our work, we built an intent identifier by fine-tuning the
base BERT (Devlin et al., 2018) model (a neural network archi-
tecture with 12 layers, 768 hidden units, 12 attention heads,
and 110M parameters.) with one additional feed-forward neural
network (FFNN) layer and Softmax as the activation function
to normalize the output of the model (see Fig. 3). A series of
sequential operations, Masking (15% of the words), Tokenization,
and Embeddings are applied to the user’s utterance to generate
the input representation. A special symbol, [CLS], is added as
the first token to indicate the beginning of the user’s utterance.
The embedded utterances are passed through 12 Transformer
encoders. The last FFNN receives the results of the BERT model
as input and outputs a possible user’s intent and slots. The first
hidden state of [CLS], h0, and the rest of the hidden states, (h1,
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Fig. 4. An example utterance with annotations of slots in IOB tags, and the
intent is Package Delivery. DELIVERY_PERSON denotes the recipient, DELIV-
ERY_OBJECT stands for an object that needs to be delivered, DELIVERY_POSITION
means destination of the delivery task.

Fig. 5. A JSON file is defined to specify the required slots for each intent. The
value of slot can be ‘Yes’ (means the slot value cannot be empty) or ‘Optional’
(means this slot can be an option but not necessary).

h2, . . . , hn), of other tokens are feed into softmax layer to predict
the intent, X intent , (see (1)) and classify over the slot filling labels,
X slot , (see (2)).

X intent
= Softmax(W intenth0 + binetnt ) (1)

X slot
= Softmax(W slothi + bslot ), 1 ≤ i ≤ N (2)

where N represents the total tokens of the user utterance and hi

stands for the hidden state of the word X i. We trained the fine-
tuned BERT model with 0.977 and 0.968 on intent accuracy and
slot F1 score, respectively.

The pre-trained BERT model provides contextualized sentence
representation and is able to learn the meaning of the words
in the given context. Therefore, operators may send the same
command to a robot in various ways. For example, to mark a
position on a digital map, an operator may say: ‘‘please mark this
position on the map’’ or ‘‘I need you to remember this location,
Max.’’. Therefore, our model encodes the operator’s utterance
(i.e., intents, slots annotated with Inside–outside–beginning (IOB)
tags and slots values), and predicts the requested intent (i.e., in-
tent requested by the operator for a task) and requested slots
(i.e., parameters requested by the operator in the utterance), as
shown in Fig. 4.

2.3.2. Dialogue manager
The predicted human intent and slot values are sent as input

to the dialogue manager. It helps to maintain the dialogue his-
tory through the dialogue state tracking component and choose
the corresponding actions or responses by the dialogue policy
component.

Dialogue state tracking In general, a manufacturing task can
take several steps to complete. Therefore, a VA should be able to
maintain entire states of the task-related dialogue history. For ex-
ample, requesting a mobile robot to create a 2D digital map of the
shop floor may need two steps, i.e., confirming the location and
scheduling the task. Such request, (location=warehouse, schedule=
(2 pm, 28 Jan 2021)) may take a 2-turn dialogue with the operator
and interact with a database to obtain the required information to
fulfil the tasks. Due to the major manufacturing task is composed
of straightforward and atomic manipulations, our dialogue state
tracking component sequentially takes the output (i.e., intent and
slot values) of the BERT model after each sentence. The states will

be updated based on the current user’s utterance if the slot values
are changed.

Dialogue policy It takes the all user’s utterance, User0, . . . ,
Useri, including intent (intentj) and the slots (slotsj) of dialogue
state tracking results, and the previous system actions (SysAct0,
. . . , SysActi−1) as input to compute the next corresponding sys-
tem action (SysActi).

As already mentioned, a manufacturing task can only be per-
formed when a robot obtains all the necessary information. In this
work, a pre-defined dialogue policy file (DPF) in JSON format (see
Fig. 5) is hosted on the Max server to specify all the required
slots of each intent (i.e., task). Dialogue policy needs to verify
the dialogue states according to the requested slots in DPF. The
dialogue will continue until Max receives all the required slots.
The algorithm 1 shows the system action computation process of
dialogue policy. The output of the dialogue policy are computed
SysAct , i.e., requested_slots, and response references, res_referencei,
associated with the corresponding response template (see the
following section.).

Algorithm 1 Dialogue Policy for system action computation
1: Input: the dialogue history, User0, SysAct0,...,User i, and DPF
2: Output: the SysAct i and res_ponsei
3: extract the current user intent, intenti, and previous intent,

intenti−1, from User i and User i−1 respectively
4: if intenti ̸= intenti−1 then
5: Assign null to the SysAct i and inconsistent_intent to

res_referencei
6: return
7: else
8: for Every dialogue D ∈ (User0, ...,User i−1) do
9: save the obtained slots of each turn to obt_slots

10: end for
11: end if
12: extract the slots, slotsi, from current user utterance, User i
13: for Every slot ∈ slotsi do
14: if slot ∈ obt_slots then
15: update the obt_slots with the new value of the slot
16: else
17: save the slot to obt_slots
18: end if
19: end for
20: extract all the required slots (req_slots) from DPF regarding

the requested intenti from User i
21: for Every slot ∈ req_slots do
22: if slot /∈ obt_slots then
23: Assign requested_slot to the SysAct i and res_referencei
24: return
25: end if
26: end for

2.3.3. Natural language generation
The natural language generation component of Max helps to

produce the system’s utterance to the user. Max’s response gen-
eration follows the frame-based dialogue architecture (Bobrow
et al., 1977); that is, Max uses the pre-defined questions/answer
templates associated with the slot of each frame as a response.
The slots retrieved from the user’s utterance will be filled into
the templates (van Deemter et al., 2005). Fig. 6 shows one of
the system response templates regarding the user’s request of
Fig. 4. The placeholders (e.g., [DELIVERY_OBJECT]) of the response
template are replaced by the predicted slots (e.g., phone box)
when it generates the final response.

One way to enhance the user experience is to improve user
engagement by including features that the operators need from
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Fig. 6. An example of a system response template for Fig. 4 with annotations
of slots in IOB tags.

Fig. 7. Exemplary schema of industrial robot services.

a VA integrated with an industrial robot (Lindblom et al., 2020).
In our case, we focus on the communication between the op-
erator and Max. Inspired by other work in human-to-human
communication (Warren, 2006; Littlejohn and Foss, 2010) and
dialogue systems (Banchs and Li, 2012; Yu et al., 2016) two
dialogue strategies, namely lexical-semantic strategy, and general
diversion strategy, are introduced so Max can improve the user
engagement by providing a dynamic and humanized conversation
environment while maintaining a high task-completion rate.

Lexical semantic strategy. Research in human–human con-
versation experience describes that people rarely repeat the same
response even when asked the same question. For example, peo-
ple may respond: ‘‘I am good, thanks’’. or ‘‘Fine, thank you’’. when
someone greets them. This is defined as Do not repeat in the
lexical-semantic strategy (Yu et al., 2016). We applied this strat-
egy to Max to provide diverse responses for creating a humanized
dialogue environment and increase the user favorability.

General diversion strategy. High engagement is also ob-
served from active participation in human–human collaboration,
e.g., questing each other, taking the initiative in a task, giving each
other suggestions. To enable such abilities in Max, two general
diversion strategies, namely initial activities and switch a topic,
are introduced (Yu et al., 2016). Initial activities strategy enables
Max to initiate a request to the operator to start working with
manufacturing tasks at the appropriate time. For example, Max
may say: ‘‘Three delivery tasks are scheduled today. Would you
like me to do them now?’’. Max can also provide suggestions to
the operators if the requested task cannot continue, based on
the switch a topic strategy. For example, Max may say: ‘‘Sorry,
I cannot identify this location on the map. Do you want to mark
it in the system?’’.

Therefore, Max performs tasks as required by operators and
is also able to support active dialogues for an improved user
experience.

2.4. Industrial robot service

To verify whether Max supports the requested robot and skill
(extracted from the dialogue state tracking results), an industrial
robot service is provided by Max server. The CS-style architec-
ture benefits from centralized management, which helps create a
more flexible and scalable robot working environment. Two main
functions are defined in industrial robot service, robot services

classification and robot skills management. Max’s server main-
tains a separate category for robot services on the server-side to
interact with various industrial robots on the shop floor using
the robot services classification function. It specifies the type of
robots supported by Max.

In general, production line reconfiguration or the introduction
of new production processes may often happen in industrial
environments. Such changes may require the integration of new
robots or the update of the existing robotic systems. Max’s server
CS style architecture provides robot skills management function-
ality to maintain the robot control scripts in a centralized way.
Therefore, a developer needs to maintain those scripts (e.g., creat-
ing a new control script for a new robot) only on the server-side.
A JSON style schema is leveraged to maintain the industrial robot
services, as depicted in Fig. 7.

2.5. Voice interface

A significant difference between text-based and voice-based
VA is the operators’ medium to transfer their commands. A key-
board for the former case and verbal commands for the latter.
However, an average professional typist usually types at speeds
of 50 to 80 words per minute, while speech can reach 150–
160 per minute (Williams, 1998; Ayres, 2005). Furthermore, it
is impractical for shop floor workers to use the keyboard and
monitor to interact with a VA during HRI, especially if the task
requires a bimanual operation (Sheikholeslami et al., 2017).

Therefore, a voice-enabled interface for Max’s client is de-
signed to enable more efficient communication with low hard-
ware requirements. Software-wise, many mature Speech-to-Text,
and Text-to-Speech services are available on the market, e.g.,
Google Speech-to-Text API,4 IBM Watson API,5 and Amazon Polly
Text-to-Speech.6 They can recognize the human voice, translate
it into text and synthesize natural sounding human speech while
providing light APIs and libraries to invoke services. Hardware-
wise, Max’s client voice interface requires a pair of headphones
with a built-in microphone and Bluetooth wireless connection.
Such voice interface frees the hands of the operator while pro-
vides a natural communication for HRI in the shop floor.

In our work, we chose the Google Speech-to-Text and Ama-
zon Polly Text-to-Speech services to enable Max’s client voice
interface. The operator’s utterance transcripts are organized into a
RESTful style HTTP request and sent to Max’s server. The response
message is then extracted from the server’s reply (a JSON string),
and a natural-sounding voice is generated.

2.6. Robot control agent

A vital aspect of the application is to use Max’s client to control
the shop floor’s robots. A robot control agent is set to manipulate
the robots according to the operator’s verbal commands. Two
sub-components, a robot service execution (RSE) component, and
a robot service management (RSM) component, are implemented
to achieve that goal.

According to the design principle, Max is designed to be robot-
agnostic and aims to support various kinds of industrial robots
such as mobile robots and industrial manipulators. RSE scripts
specify robot control functionalities (e.g., mark position) and
communication protocols (e.g., TCP/IP, OPC-UA) for each robot
type. As Fig. 8 shows, RSM will invoke the corresponding RSE to
control a robot after receiving the response. Furthermore, RSM
maintains a local registry of all the local RSEs. It will require a
new or updated RSE script if the local RSEs are not compatible
with the target robot.

4 GoogleSpeech-to-Text.
5 IBMWatson.
6 AmazonPollyText-to-Speech.
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Table 1
The measurement result of ambient noise in AAU learning factory.
Peaks: MAX Peaks: MIN Average Level (LAeq)

80.5 dB(A) 44.6 dB(A) 69.0 dB(A)

Fig. 8. An example of a HTTP GET request from Max’s client (asking LH to mark
a position on the digital map), and a JSON reply from Max’s server (including
identified intent, slot, message, dialogue state).

3. Pilot study

In order to explore the capabilities of our proposed language-
enabled VA, we design three scenarios. Here our focus is to
evaluate the performance of the VA when it comes to assisting the
operators’ daily work, specifically internal logistics in our study.

In general, internal logistics focus on internal supply processes,
transportation of materials and tools, and cargo distribution. Such
tasks may require a mobile robot to deliver the goods to a location
within the organization. A fleet manager or web application for
robot control typically comes as a package with the chosen mo-
bile robot to assist in scheduling and tracking the tasks. However,
it could have a steep learning curve for inexperienced or new
operators.

To this end, we tested the VA on two practical industrial cases,
including environment exploration and package delivery. Further-
more, another three cases are tested with the focus on human-
ized response by applying embedded conversation strategy. These
scenarios explore and test Max’s capabilities to handle typical,
everyday tasks from an industrial shop floor while satisfying the
design considerations state in Section 2.1.

Based on the needs of the manufacturing environment, real-
time assistance of manufacturing tasks requires that the VA can
understand the operator’s utterance with high accuracy. There-
fore, the VA needs to consider the context of the dialogue and
pay attention to the meaning of the words in the given context.
Consequently, we fine-tuned the SOTA pre-trained BERT model
and trained it on our dialogue dataset to predict the opera-
tor’s intent and slots. Though the model theoretically achieves
high performance on prediction on a pure text-based dataset,
the prediction results based on the voice command in the real
manufacturing environment may be lower due to the ambient
noise (e.g., machine operating sounds, ventilation noises, human
chatter). We tested Max in the aforementioned scenarios at our
learning factory (Nardello et al., 2017), a smart production fa-
cility equipped with cyber–physical modules and autonomous
robots, where the expected production-related activities happen
daily. The ambient noise levels are measured by Smarter Noise7

when experiments were conducted. The minimum, maximum
and average ambient noise levels are shown in Table 1.

7 http://smarternoise.com/en

Fig. 9. The autonomous industrial mobile manipulator, Little Helper (LH), where
our proposed virtual assistant is integrated.

3.1. Experimental setup

To demonstrate the effectiveness of our approach, we chose
one of our autonomous industrial mobile manipulators, namely
LH8 (Schou et al., 2018). In this iteration, LH combines a MiR 200
(on the bottom) with a Franka Emika Robot (on the top), as shown
in Fig. 9. The 2D map of the AAU learning factory is generated by
LH as shown in Fig. 10.

The VA is expected to obtain the core information (e.g., a
package delivery task may require the destination of the delivery
and a recipient) through a dialogue with the operator. In such a
case, a standard wireless headset is the only extra device we need
to communicate between the operator and VA. The operator’s
verbal command is transmitted through the headset to the VA
to control the robot’s action.

An team of six composed of computer scientists, a robotics
engineer, a mechanical engineer, a lab engineer and robotics
student designed, implemented and tested the experiments. The
conversation dataset collected for LH crosses 9 intents, BAT-
TERYCHECK, ASKHELP, STATESTOP, STATERUN, DELIVERY, GREETING,
MISSIONCHECK, POSITIONCHECK, POSITIONUPDATE according to
the type of tasks. The selected tasks and respective intents are
presented in Table 2. Each task was reproduced 30 times to
verify Max’s accuracy and validate its overall performance. The
evaluation involves two main levels, language level, devoted to
evaluating how well Max can recognize the operator’s intent and
slot value during the dialogue (Schatzmann et al., 2007), and task
level, including task success rate and dialogue time costs (Deriu
et al., 2021; Ni et al., 2021). Furthermore, simultaneous task
handling ability is also considered to evaluate the scalability of
the proposed architecture.

The following are six metrics used to evaluate the performance
of Max in these scenarios.

• Intent Error Rate (IER): the model cannot correctly pre-
dict the requested intent of operator, for example, the re-
quested intent is POSITIONCHECK, but the predicted intent
from model might be POSITIONUPDATE. IER is obtained by
calculating the proportion of it occurring in all experiments.

6
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Fig. 10. AAU learning factory and the corresponding 2D map generated by LH. Three locations: Little Helper, workshop and warehouse, are marked on the map.

Table 2
Selected tasks and intents for the three scenarios.
Task ID Task description Intent

1 Update the location POSITIONUPDATE
2 Check the location POSITIONCHECK
3 Deliver a package DELIVERY
4 Initial activities GREETING
5 Switch a topic ASKHELP
6 Do not repeat MISSIONCHECK

• Slot Error Rate (SER): including incorrect slot value (the
model selects an incorrect value for the slot) and slot de-
tection failed (the model cannot recognize the slot). Similar
to IER, the number of occurrences of failing to recognize slot
values is used to calculate the SER.

• Task-Success Rate (TSR): measuring how well Max can
retrieve all the required information to complete a task
without encountering any intent or slot error problem.

• Average Communication Time (ACT): the task completion
time is decided by both the robot operation time and the
communication time through Max. Since the robot oper-
ation time is typically fixed for the same manufacturing
task, we use average communication time to evaluate Max’s
performance. The average communication time is equal to
the mean time from the beginning of the conversation to
its end for 30 experiments of each task. In general, high
intent/slot error rate requires more communication time.

• Parallel Requests Handling (PRH): CS style architecture
brings flexibility and scalability to the Max, but it also suffers
from traffic congestion. Max’s client may face a considerable
delay due to Max’s server lacking the ability to handle mas-
sive simultaneous requests. Thus, parallel request handling
is selected to measure Max’s parallel processing capacity.

• Average Service Updating Time (ASUT): measures the av-
erage time cost for updating the local robot control scripts.
ASUT is equal to the meantime from sending a synchro-
nization request to completing an update of the local robot
control scripts.

The intent and slot error rates of each Task are reported in Table 4.
The overview of the required communication time of the 30
experiments performed for each Task is illustrated in Fig. 11.

3.2. Environment exploration

Exploring the working environment is essential for industrial
companies to plan the internal logistics, locate machines/equip-
ment on the shop floor, and calculate the robot’s operational
capacity.

In this scenario, the operator navigates LH inside the AAU
learning factory to explore the working environment and col-
lect information about the positions of shelves and available
equipment. Updating and checking the position of the robot on
the digital map are identified as two major tasks (see Tasks 1
and 2 in Table 2). The corresponding intents to be tested are
POSITIONUPDATE and POSITIONCHECK.

Task 1: The operator requests Max to add two positions, ware-
house and workshop to the map (see Fig. 10). Max needs 2 turns to
obtain the requested intents and slot values as shown in Table 3.
After receiving the JSON response from Max’s Server, RSM calls
LH’s RSE to send two HTTP POST requests to add the positions
warehouse and workshop on the map.

Task 2: Max is asked to report LH’s location. Max will use
its current location to verify the requested slot if the operator
provides it in the dialogue. If not, Max will report its location
directly in one dialogue turn. Table 3 shows an example of con-
versations used in Task 2. After receiving the JSON response from
Max Server, RSM calls LH’s RSE to send an HTTP GET request to
retrieve the location.

Max failed to recognize the operator’s intent and slot values
in eight experiments and five experiments, respectively, for task
one. For task two, the corresponding occurrences numbers are six
and two separately. Max completed the above two tasks with a
rate (TSR) of 0.60 and 0.76, respectively, while requiring 24.70 s
and 15.28 s on average to perform the communication. Table 4
reports the corresponding IER, SER, TSR and ACT.

3.3. Package delivery

Internal transportation plays an important role in handling
various materials in internal factory logistics. Relocation of goods
takes place daily in a warehouse. Therefore, we select package
delivery as our second scenario.

In Task 3, LH needs to deliver a box from one place to another
according to the operator’s verbal instruction.8 The box pickup
placeworkshop and destinationwarehouse are marked on the map
generated already in Task 1. The intent DELIVERY is tested here,
and slot values recipient, to be delivered object, object size, object
colour and destination. Table 3 shows a sample dialogue used
during the experiments.

Similar to Tasks 1 and 2, the dialogue finished when Max
predicted all the required information (e.g., service name, slot
values) for performing the delivery task. RSM then extracts pa-
rameters from the JSON response and invokes RSE for LH to send
an HTTP POST request (i.e., calling mission_queue API) to LH’s
internal webserver.

8 https://www.youtube.com/watch?v=XTk7bNCRm94

7

https://www.youtube.com/watch?v=XTk7bNCRm94


C. Li, D. Chrysostomou and H. Yang The Journal of Systems & Software 205 (2023) 111818

Fig. 11. An overview of the total communication time for all performed experiments.

Table 3
Example dialogues used for Tasks 1, 2 and 3 including dialogue turns, example dialogues and respective slot values.
Task ID Turn Dialogue Slot value

1 1 Operator: Can you add this location to the system? location_name:’None’
Max: Sure, but I need a name for that.

2 Operator: warehouse location_name:’warehouse’
Max: Sure, I will do that.

2 1 Operator: Max, is this workshop? location_name:’workshop’
Max: No, here is the warehouse

2 Operator: I see. Thanks! location_name:’workshop’
Max: Happy to help!

3 1 Operator: Max, would you please deliver this small black box
to the warehouse and give it to Kate? delivery_object:’box’,
Max: Sorry, I did not hear clearly. Who should I give it to? delivery_object_size:’small’,

delivery_object_color:’black’,
delivery_position:’warehouse’,
delivery_person:’None’

2 Operator: Please give it to Kate. delivery_object:’box’
Max: Got it! I will add it on my schedule delivery_object_size:’small’,

delivery_object_color:’black’,
delivery_position:’warehouse’,
delivery_person:’Kate’

Table 4
Intent error rate, slot error rate, task-success rate and average communication
time (in seconds) for each task.
Task ID IER SER TSR ACT

1 0.26 0.16 0.60 24.70
2 0.2 0.06 0.76 15.28
3 0.1 0.43 0.50 31.08
4 0.2 None 0.80 27.07
5 0.3 None 0.70 25.04
6 0.17 None 0.83 11.12

Max failed to recognize the operator’s intent three times and
the slot value 13 times. Due to the complexity of the task and the
ambient noise, Max achieved a completion rate of only 0.50 and
required the highest communication time of 31.08 s on average
(see Table 4).

3.4. Embedded conversation strategy

In this scenario, we evaluate Max’s performance focusing on
conversation strategies (Tasks 4, 5, and 6).9 These tasks test

9 https://www.youtube.com/watch?v=lYnh2cOeeE0

specifically whether the embedded human–human conversation
strategies can bootstrap the user experience by improving the
user’s engagement.

In Task 4, Max can initialize activities (e.g., report the currently
scheduled tasks) when it detects the operators’ greetings. For
Task 5, Max provides task-related options to the operator when
it cannot perform the requested tasks. Task 6 tests if Max can
provide different responses for the same request. Table 5 shows
the dialogues used for these three tasks.

In these experiments, Max’s client remains in standby mode
until it receives confirmation from the operator. The intent error
rate varies depending on the complexity of the dialogue, and the
task completion rate is 0.80, 0.70, and 0.83 per task. Similarly,
the average communication time varies noticeably from 27.07 to
25.04 and 11.12 s, respectively (see Table 4).

3.5. Parallel request handling

Additionally, to evaluate the overall parallel processing capac-
ity, we run stress tests on Max’s local server and the AAU Cloud
using Siege,10 an HTTP load testing and benchmarking utility.

10 Siegelink.
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Table 5
Example dialogues used for Tasks 4, 5 and 6.
Task ID Dialogue

4 Operator: Max, what’s up?
Max: I am good, thanks. By the way, three delivery tasks are
on my list. Would you like me to do it now?

5 Operator: Hey Max, can you give me a hand?
Max: Well, my battery level is less than 20%. I can only help
you to do some position updating tasks. What do you say?

6 Operator: Max, are you working on something?
Max: Well, I am totally free now
Operator: Max, are you busy?
Max: Em, nothing on my schedule now

Table 6
The stress test results of Max server including local server and AAU Cloud.
Server type Transactions Elapsed time Transaction rate Concurrency Throughput

Local Server 2000 10.09 s 198.22 trans/s 2.01 0.16 MB/s
AAU Cloud 100,000 7.04 s 14204.55 trans/s 289.79 11.65 MB/s

The tests focus on the total elapsed time for the given number
of transactions, the transaction rate, the actual maximum con-
current number of the connections, and the throughput. Table 6
shows the test results of the local server and the AAU Cloud.

3.6. Service updating time

Finally, to evaluate the ASUT, another 30 experiments were
conducted. The tests focus on calling the functions which are not
defined in the local robot control script. For the 30 experiments,
the minimum, maximum, and average service updating times
were 5.6, 6.3, and 5.7 s respectively, measured on the local server.

4. Discussion & conclusions

The proposed natural language-enabled VA, Max, benefits
from the CS-style architecture, RESTful style APIs, and centralized
management, enabling high efficiency in multiple HRI scenarios
in industrial robots. With the addition of the industrial robot
service, the robot control agent can also interact efficiently with
various industrial robots. Though our model can reach a high
inference accuracy, the response latency is observed. The inac-
curate interpretation of the operators’ command may lead to
serious safety issues, especially when robots share the same
workspace. Therefore, emergency control (e.g., stop movement)
is also needed in the real industrial environment.

We observe that the AAU Cloud maintains a high concurrent
processing capability comparing to the local server. Therefore,
industrial parties who wish to incorporate Max’s abilities into
their industrial shop floor should consider the need to dedicate
significant processing power for handling many parallel requests.

Moreover, a well-designed security strategy is needed for
communication between the Max client and server. In these
small-scale experiments, communication is based on unencrypted
HTTP protocols. Naturally, the situation in a real manufacturing
scenario will be different and potentially affect Max’s perfor-
mance.

Additionally, we can observe that Max’s performance is highly
relevant to the intent/slot error rate and ambient noise levels.
The high intent/slot error rate directly influences the overall task
completion time by increasing the communication time. Although
our model achieves a high intent/slot accuracy theoretically, the
experiments conducted in the AAU learning factory, under ambi-
ent noise levels of 69 dB(A) on average, demonstrated a relatively
high intent/slot error rate. As an indication, experiments for Task
3 in an office environment, with an average ambient noise level
of 35.8 dB(A), had only 0.03 intent/slot error rates.

Furthermore, other factors, e.g., the operator’s accent and
voice volume, also influence the intent/slot error rate. Future
work will focus on ways to suppress the ambient noise and
enhance speech so as the VA and, consequently the robot, can ef-
fectively communicate with the workers with fewer interruptions
and errors.

The encouraging results based on the two embedded conver-
sation strategies prove the Max can support an active interaction
during various manufacturing tasks. It provides task-related sug-
gestions, successfully attracts the operator’s attention, and forms
a diverse and thoughtful dialogue to improve user engagement in
HRI for industrial robots. An extensive user study was postponed
due to COVID-19 restrictions; however, it remains a central part
of our future work to collect feedback on the naturalness and
coherence of Max’s generated dialogue and responses.
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