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Energy Efficient State Estimation with Wireless
Sensors through the use of Predictive Power

Control and Coding
Daniel E. Quevedo*, Member, IEEE, Anders Ahlén, Senior Member, IEEE,

and Jan Østergaard, Member, IEEE

Abstract— We study state estimation via wireless sensors over
fading channels. Packet loss probabilities depend upon time-
varying channel gains, packet lengths and transmission power
levels of the sensors. Measurements are coded into packets
by using either independent coding or distributed zero-error
coding. At the gateway, a time-varying Kalman filter uses the
received packets to provide the state estimates. To trade sensor
energy expenditure for state estimation accuracy, we develop
a predictive control algorithm which, in an on-line fashion,
determines the transmission power levels and codebooks to be
used by the sensors. To further conserve sensor energy, the
controller is located at the gateway and sends coarsely quantized
power increment commands, only whenever deemed necessary.
Simulations based on real channel measurements illustrate that
the proposed method gives excellent results.

Index Terms— Wireless Sensors, State Estimation, Power Con-
trol, Scheduling, Packet Loss, Source Coding.

I. INTRODUCTION

The interest in estimation and control over lossy communi-
cation links has increased tremendously in recent years; see,
e.g., [1]–[3]. In particular, with the rapid evolution of wireless
sensor networks, see e.g., [4]–[6], the use of wireless sensors
(and actuators) has become an interesting alternative. The driv-
ing force behind this evolution from wired to wireless is the
low deployment cost: There is no need for extensive wiring,
either in new installations or for upgrading old systems. In
addition, wireless sensors and actuators can be placed where
wires cannot go, or where power sockets are not available.

A drawback of using wireless communication channels lies
in that they are subject to fading and interference, which
frequently lead to packet errors. Depending on the application,
the wireless channel can be constant or time varying. The
time variability may be caused by moving objects, vehicles,
people, and so forth. Also, the receiver or the transmitter can
be mounted on a moving object, which may be the case in
process industry. Therefore, in addition to the propagation path
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loss, the channel may be subject to either slow or fast fading,
or both.

Beside the fading channel, another important issue, which
arises in the absence of power sockets, is the need for energy
conservation. Even though power scavenging is presently a hot
topic in wireless sensor research, saving energy is of utmost
importance to avoid unnecessary maintenance, such as the
replacement of batteries; see, e.g., [7]–[10].

Interestingly, the time-variability of the fading channel can
be compensated for by adjusting the power levels and also
the lengths of the transmitted packets. Indeed, the packet loss
probabilities depend, in a nonlinear fashion, upon the time-
varying channel gains, the packet lengths and the power levels
used by the sensors. To keep packet error rates low, high
transmission power and short packet lengths need to be used.
Unfortunately, using high transmission power is not an option
with wireless sensors, since sensors are unavoidably limited in
power, computational capacity and memory [7]. Also, sending
short packets will lead to large quantization effects, if coding
is not done with care.

In this paper, we will present a power and coding control
algorithm for state estimation with wireless sensors. In our
architecture, several sensors take noisy and possibly different
output measurements of an autoregressive moving average
(ARMA) stochastic process. These measurements are coded
and transmitted over a fading channel (generating random
packet loss) to a single gateway. Received packets are then
used to remotely estimate the system state sequence by means
of a time-varying Kalman filter.

To keep the sensors simple and energy efficient, sensor
nodes do not communicate with each other. Thus, joint coding
of the measurements taken by different sensors is not possible.
Instead, coding needs to be carried out either independently
or with separate encoding followed by joint decoding at the
gateway. This distributed source coding problem is a widely
studied concept in information theory; see, e.g., [11]–[13]. One
such technique is named zero-error coding [14], which is what
we will use in this work.

Within the setting described above, our main contribution
lies in developing a centralized dynamic controller, which is
located at the gateway and jointly decides upon the trans-
mission power levels and coding method to be used by each
sensor. The controller uses elements of nonlinear (stochastic)
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predictive control [15], [16].1 It trades sensor energy use for
estimation accuracy. The latter is quantified by the expected
valued of the Kalman filter covariance matrix. To further
conserve energy, a pre-designed set of codebooks is stored at
the sensors and the proposed controller sends only codebook
indices and coarsely quantized power increments to the sensor
nodes, whenever deemed necessary. Consequently, the system
to be controlled is not only nonlinear and stochastic (due to
the occurrence of random packet errors), but also subject to
finite-set constraints on decision variables, i.e., the power level
increments and codebook indices. Key to keeping the compu-
tational burden of calculating the optimal codebook indices
and power commands limited is the fact that the occurrence
of packet errors constitutes a binary random variable. Thus,
expected values can be exactly evaluated via finite sums over
the possible transmission outcome scenarios, i.e., no integrals
need to be evaluated or approximated. The present paper
extends our recent works [21], [22] by incorporating coding
of the sensor measurements into the formulation.

An outline of the remainder of this work is as follows: In
Section II, we state the wireless state estimation problem in
precise terms. Sections III–V revise elements of source coding,
wireless transmission and state estimation which are relevant
for power and coder design. The proposed control algorithm
is then presented in Section VI. Computational aspects are
discussed in Section VII, where also a suboptimal algorithm
is presented. Simulation results are included in Section VIII.
Section IX draws conclusions. Additional information on
coder design is given in the appendix.

II. PROBLEM STATEMENT

Consider a stationary ARMA process described in state-
space form via:

x(k + 1) = Ax(k) + w(k), k ∈ N0 , {0, 1, . . . }, (1)

where A ∈ Rnx×nx , nx ∈ N , {1, 2, . . . } is the system
matrix and x = {x(k)}k∈N0 is the state sequence. The initial
system state is zero-mean, but otherwise arbitrary distributed
with covariance P0 ∈ Rnx×nx . The driving noise process w =
{w(k)}k∈N0 is also arbitrary distributed; each w(k) is zero-
mean with covariance matrix Q.

To remotely estimate the state sequence x, a set of M ∈ N
wireless sensors are used. Each sensor m provides a scalar
noisy measurement signal, say ym = {ym(k)}k∈N0 , where

ym(k) = Cmx(k) + vm(k), m ∈ {1, 2, . . . ,M}. (2)

In (2), vm = {vm(k)}k∈N0 is an arbitrarily distributed zero-
mean noise process, where each vm(k) has covariance Rm.

The values ym(k) are coded and then transmitted through
wireless links to the gateway. The received signals are then
used to remotely estimate the state of the system (1). Fig. 1
depicts the overall configuration of the system under study.

The distinguishing aspect of the problem at hand lies in
that the use of a wireless channel introduces random packet

1Related techniques have also been used in the context of AD conversion
[17], digital channel equalization [18], discrete coefficient filter design [19],
and quantization in filter banks [20].
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Fig. 1. State Estimation with M = 2 wireless sensors.

loss. Loss probabilities depend upon the propagation medium,
but are also affected by packet lengths and power levels used
by the transmitter. In fact, for given channel gains, lower loss
probabilities can be achieved by using shorter packet lengths
and higher transmission power. Hence, the design of the state
estimation scheme in Fig. 1 involves trading sensor battery use
for state estimation quality. There also exists a trade-off when
designing the coding method for the sensor measurements,
since reducing the bit rate (and, thus, the number of bits
contained in one packet) reduces the total transmission energy,
as well as the probability of packet error. However, low bit
rates, unfortunately, also leads to large quantization effects in
the transmitted signals.

In Section VI, we will propose a centralized control algo-
rithm, which can be implemented at the gateway and aims
to achieve an optimal trade-off between sensor energy use
and state estimation accuracy. For that purpose, the controller
determines, in an on-line fashion, the power levels, bit rates,
and coding schemes to be used by the M sensors. Before
presenting our algorithm, we will first describe the components
of the scheme in Fig. 1, namely the coding schemes used by
the sensors, the wireless channels, and the state estimator used
at the gateway.

III. CODING THE SENSOR MEASUREMENTS

Each sensor node is equipped with an encoder, denoted
Em, which maps each measurement value ym(k) ∈ R to a
sequence of bits sm(k). For that purpose, Em consists of two
components: a scalar uniform quantizer, denoted Qm, and an
entropy coder, ECm; see [23] for an introduction to source
coding. At the gateway, the received symbols are then passed
through a joint entropy decoder and a reconstruction function
which outputs the values ŷm(k), see Fig. 2. The entropy coders
can either perform independent coding or distributed zero-error
coding (ZEC) at a given set of pre-defined expected bit rates.
The gateway determines, at each time-instant, which type of
coding is to be used by the sensors (and at which bit rate) and
communicates this decision to the M coders.

A. The Quantizers Qm

Uniform scalar quantization can be implemented by simply
setting the quantizer output im(k) as

im(k) =
⌊

ym(k)
∆m(k)

⌉
,

where b·e denotes rounding to the nearest integer and where
∆m(k) is the stepsize at time k. The associated reconstructed
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Fig. 2. Distributed Coding with M = 2 sensors. Measurements y1(k) and
y2(k) are quantized, entropy coded and transmitted over a fading channel. At
the receiver, Error detection (ED) and reconstruction is performed yielding
ŷ1(k) and ŷ2(k).

signal is then obtained by applying the inverse scaling, i.e.,
ŷm(k) = im(k)∆m(k). The stepsizes ∆m(k) are related to
expected bit rates bm(k) according to [13], [23]:

bm(k) ≈ H(im(k)) ≈ h(ym(k))− log2(∆m(k)), (3)

where H(im(k)) denotes the discrete entropy of im(k), and
h(ym(k)) is the differential entropy of ym(k).

There exists a trade-off between bit rates of a quantizer, and
the distortion introduced, namely:

Dm(k) , E‖ym(k)− ŷm(k)‖2

≈ (∆m(k))2

12
=
( 1

12

)
22(h(ym(k))−bm(k)),

(4)

where we have used (3). Thus, larger bit rates give smaller
quantization errors. However, larger bit rates also give rise to
larger packets to be transmitted and, thus, come at the expense
of more energy use and channel utilization. Consequently, bit
rates have to be assigned carefully. This forms one of the main
themes of the present work.

Example 1 (The Gaussian case): If ym in (2) is a station-
ary Gaussian process, then, under high-resolution assumptions,
its differential entropy is given by:

h(ym) =
1
2

log2(2πeσ2
ym

). (5)

The approximation in (4) then gives that the expected dis-
tortion of an entropy-constrained scalar uniform quantizer
satisfies:

Dm(k) ≈ πe

6
σ2

ym
2−2bm(k), (6)

where the variance of ym and the covariance of x are:

σ2
ym

= CmPxCT
m + Rm and Px = APxAT + Q. (7)

B. Entropy Coding

Each entropy coder ECm, see Fig. 2, consist of a finite
collection of, say Jm, codebooks. These depend on the bit
rate bm and the type of coding used. Entropy coding can
be performed by a simple table-lookup since the quantization
operation directly gives the index of the codeword in the table.

1) Independent Coding: The simplest way of performing
entropy coding on im is to use independent coding for each
of the M quantizers. Since this requires a codebook for the en-
tropy coder for every possible choice of scaling factor ∆m(k),
it is necessary (due to memory considerations) to discretise the
alphabet of ∆m(k). This is equivalent to discretising the set of
possible bm(k) values, see (3). Discretisation can be performed
offline, and in advance, through computer simulations.

2) Distributed Source Coding: In distributed source coding
schemes, the designer has the freedom to choose the hierarchy
between individual coders. We will adopt an asymmetric ZEC
strategy [14]. We, thus, first quantize the measurements inde-
pendently using the scalar quantizers described in Section III-
A and then use dependent entropy coders, i.e., coders which
depend upon the statistics of other plant outputs. (They do not
depend upon the actual realizations.)

Example 2 (Asymmetric ZEC): One of the coders, say EC1,
is the dominant coder. It performs independent coding as
described above. Hereafter, another coder, say EC2, performs
independent scalar quantization followed by entropy coding,
where now the entropy coding is done with respect to the
entropy code of EC1. This will generally give a smaller bit
rate, than if independent coding is used.

If the gateway receives both s1(k) and s2(k), then, with
ZEC, it is possible to reconstruct ŷ1(k) and ŷ2(k). If only
s1(k) is received, then the gateway can still obtain ŷ1(k), but,
of course, not ŷ2(k). However, if only s2(k) is received, then
the gateway cannot reconstruct neither ŷ1(k) nor ŷ2(k). Con-
sequently, if channel 1 and 2 are both reliable or if, at least, the
dominant channel is, then it will often be beneficial to employ
ZEC. On the other hand, if all channels are poor, then often
independent coding will give better performance. Independent
coding does not exploit the redundancy between the sensors
in the encoded data, which gives enhanced robustness in the
case of transmission errors. This will become apparent in the
simulation results presented in Section VIII. �

It is important to note that quantization is performed exactly
in the same manner for ZEC and for independent coding. Thus,
the distortion due to quantization (whenever measurements are
reconstructed) remains the same and is given by (6). The gain
by using ZEC is a reduction in the number of bits required
for representing the set of encoded measurements, {sm}, i.e.,
on the effective bit rates (or packet-lengths) as seen by the
communication channel.

In the sequel, b̃m(k) > 0 denotes the bit rates obtained
after entropy coding. With independent coding, we have
b̃m(k) = bm(k), see (6) and (3).2 On the other hand, ZEC
often gives b̃m(k) < bm(k), see simulation results included in
Section VIII. Some additional background on ZEC is given in
the Appendix.

Remark 1 (Exploiting Temporal Correlation): Given (1),
one could reduce bit rates further by taking into account the
temporal correlation in each signal ym. This can be done, for
example, by encoding innovations, requiring more complexity
at the sensors. Furthermore, due to possible packet dropouts,

2We assume that the expected packet length is equal to b̃m(k), i.e., we do
not explicitly take into account any channel coding.
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care must be taken to guarantee that the encoder and decoder
are synchronized. In the present work, we restrict our attention
to simple and robust encoding schemes where the current
measurements are encoded independently of past values. �

IV. TRANSMISSION EFFECTS AND ENERGY EXPENDITURE

Since the M links between sensors and gateway are wire-
less, see Fig. 1, transmission errors are likely to occur. In this
section, we will give details on how packet loss probabilities
depend upon the time-varying channel gains, packet lengths
{b̃m}, and power levels used by the sensors.3

We will model transmission effects by introducing the M
arrival processes γm = {γm(k)}k∈N0 :

γm(k) =

{
1 if sm(k) arrives error-free at time k,
0 otherwise.

(8)

The associated success probabilities depend on the propagation
environment, on b̃m(k), and on the transmission power used by
the sensor radio power amplifiers, which we denote as um(k).
To be more specific, for i.i.d. bit-errors the conditional success
probabilities satisfy:

P
{
γm(k) = 1

∣∣um(k), gm(k), b̃m(k)
}

= λm(k), (9)

where:

λm(k) =
(
1− βm

(
um(k)gm(k)

))b̃m(k)

, m ∈ {1, . . . ,M},
(10)

where gm(k) denotes the channel power gain, i.e., the
square of the magnitude of the complex channel4, and
βm(·) : [0,∞) → [0, 1] denotes the bit-error rate (BER). The
latter is a monotonically decreasing function, which depends
on the modulation scheme employed. For simplicity, we shall
in the sequel refer to gm(k) as the channel gain.

Example 3 (Transmission Model): If Binary Phase Shift
Keying is used over an additive white Gaussian noise channel
with constant signal-to-noise ratio SNR, then

β = fQ

(√
2SNR

)
, (11)

where fQ(z) , (1/
√

2π)
∫∞

z
exp (−η2/2)dη, see [24].

Although the above model is only valid in the time-invariant
i.i.d. case, we shall adopt it also for time-varying channels,
power levels and bit rates. For that purpose, we introduce the
instantaneous signal-to-noise ratio for each channel m via5

SNRm(k) =
gm(k)um(k)

rkBT
, m ∈ {1, . . . ,M},

where kB is the Boltzmann constant, T is the temperature
and r is the channel bit rate. We furthermore adopt a block
fading model, where the channel is constant over the duration

3In the present work, we will assume that sensor data is not affected by
Multiple Access Interference (MAI). Extensions of our framework to include
MAI does not present conceptual difficulties.

4Note that gm(k) is here defined to include also path-loss, power amplifier
efficiency, antenna gain and noise figure.

5SNRm(k) denotes the signal-to-noise ratio at the receiver, after the
matched filter.

of one packet, but may be subject to fading between packets.
Expression (10) then gives:

λm(k) =

(
1− fQ

(√
2gm(k)um(k)

rkBT

))̃bm(k)

. (12)

We will use this model in Section VIII. �
It follows from (10), see also (12), that one can improve

transmission reliability and, thus, state estimation accuracy
for a given propagation environment by transmitting shorter
packets and/or by simply increasing the power used by the
transmitter. Unfortunately, as we have seen in Section III,
smaller values of packet lengths b̃m(k) will lead to larger
quantization distortion. Furthermore, when using wireless sen-
sors, it is of fundamental importance to save energy, since
sensor nodes are expected to be operational for several years
without maintenance. This motivates us to use the available
energy resources with care.

Before proceeding, we note that one can quantify the energy
used by each sensor m ∈ {1, . . . ,M} at a given (discrete) time
instant, k, via Em(b̃m(k)um(k)), where

Em(b̃m(k)um(k)) ,

 b̃m(k)um(k)
r

+ EP if um(k) > 0,

0 if um(k) = 0.
(13)

Here, EP denotes the processing cost, i.e., the energy needed
for wake-up, circuitry and sensing.

Due to physical limitations of the radio power amplifiers,
power levels are constrained according to:

0 ≤ um(k) ≤ umax
m , ∀k ∈ N0, ∀m ∈ {1, 2, . . . ,M},

(14)
for given values {umax

m }. Thus, the maximum transmission
energies per measurement value are given by:

(Emax
TX )m , (bm/r)umax

m , m ∈ {1, 2, . . . ,M}. (15)

V. STATE ESTIMATION WITH INTERMITTENT SENSOR
LINKS

In the present work, we will assume that the data trans-
mitted incorporates error detection coding [24]. Hence, the
gateway knows, whether packets received from the sensors
contain errors or not. Faulty packets will be discarded when
reconstructing the measurement values and when estimating
the system state, cf. [25]. Thus, for state estimation purposes,
the system amounts to sampling (1)-(2) only at the successful
reconstruction instants of each sensor measurement.

To formulate the state estimator, we introduce the M binary
stochastic reconstruction processes

θm = {θm(k)}k∈N0 , m ∈ {1, 2, . . . ,M},

where:

θm(k) =

{
1 if ŷm(k) can be reconstructed at time k,
0 otherwise.

(16)
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Clearly, if at time k, independent coding is used, then the
reconstruction success of ŷm(k) depends on the transmission
outcome of link m, i.e., we have:

θm(k) =

{
γm(k) if um(k) > 0,
0 if um(k) = 0,

∀m ∈ {1, 2, . . . ,M}.

On the other hand, if, at time k, ZEC with dominant coder6

ECm? is used (see Section III-B.2), then successful recon-
struction of ŷm(k) also requires that ŷm?(k) be successfully
reconstructed. Thus, with ZEC, the reconstruction processes
θm(k) are given by:

θm(k) =

{
γm(k)γm?(k) if um(k)um?(k) > 0,
0 if um(k)um?(k) = 0,

(17)

for all m ∈ {1, 2, . . . ,M}.
A key point is that the realizations in

θk , {θm(k − `)}`≥0, m∈{1,...,M} (18)

are available at the gateway at time k. Thus, the time-varying
Kalman filter (KF) for the system (1) with output matrix

C(k) ,

 θ1(k)C1

...
θM (k)CM

 (19)

can be used at the gateway. It gives the best linear state
estimates. These are given by:

x̂(k + 1) = Ax̂(k) + K(k + 1)
(
ŷ(k + 1)− C(k + 1)Ax̂(k)

)
,

(20)
where:

ŷ(k + 1) ,
[
ŷ1(k + 1) ŷ2(k + 1) . . . ŷM (k + 1)

]T
K(k) , P (k)C(k)T

(
C(k)P (k)C(k)T + R(k)

)−1

P (k + 1) , AP (k)AT + Q−AK(k)C(k)P (k)AT

R(k) , diag
(
R1 + D1(k), . . . , RM + DM (k)

)
,

(21)

and where {Dm(k)} are the distortions introduced by quanti-
zation and, thus, depend upon the bit rate chosen, see (6). The
recursion in (21) is initialized with P (0) = P0 and x̂(0) = 0.

It is worth emphasizing that C(k), K(k) and P (k) are
stochastic. Furthermore, the recursion (21) will, in general,
not converge to a steady-state value for P (k), even if the
reconstruction processes {θm(k)} were i.i.d. Bernoulli [26].
However, unlike in the unstable case considered in [26] we
here assume that the system (1) is stable. Thus, P (k) will
remain bounded, see also simulations included in Section VIII.

Example 4 (Scalar system with two sensors): Suppose that
A ∈ R and that there are two sensors measuring the system
state x(k) with C1 = C2 = 1. Expression (21) gives that, if
θ1(k) = θ2(k) = 0, then K(k) = 0 so that x̂(k) = Ax̂(k−1).
On the other hand, if θ1(k) = 1 and θ2(k) = 0, then

K(k) =
[

P (k)
P (k) + R1 + D1(k)

0
]

x̂(k) = Ax̂(k − 1) +
P (k)

(
ŷ1(k)−Ax̂(k − 1)

)
P (k) + R1 + D1(k)

.

6Here, the subscript m? is used to indicate that the current signal refers to
the dominant coder and associated signals.

If θ1(k) = θ2(k) = 1, then the filter gain becomes:

K(k) = αP (k)
[
R2 + D2(k) R1 + D1(k)

]
,

with

α−1 , (P (k) + R1 + D1(k))(P (k) + R2 + D2(k))− P (k)2.

Note that in all situations, the Kalman filter uses all success-
fully reconstructed measurements. In fact, whenever there is
information correctly received from the sensors, it is included
in the Kalman filter yielding a nonzero filter gain. �

Remark 2 (The Gaussian Case): If the initial state x(0),
the driving noise w, the measurement noises vm and the
quantization noises would all be Gaussian and independent,
then the above KF would also provide the conditional mean
and covariance

x̂(k) , E
{

x(k)
∣∣ ŷk, θk

}
P̄ (k) , E

{(
x̂(k)− x(k)

)(
x̂(k)− x(k)

)T ∣∣ ŷk, θk
}

,

where the expectation E is taken with respect to the distribu-
tions of w, v1, . . . , vM , x(0), where the sequence ŷk contains
all reconstructed measurements of the M sensors up to time
k, and where:

P̄ (k) = P (k)−K(k)C(k)P (k). (22)

Properties of this, and related, state estimators have been
studied within the context of state estimation over lossy links
with constant dropout probabilities; see, e.g., [26]–[29]. It is
worth emphasizing that in the case under study in the present
work, transmission probabilities are time varying. Thus, the
tools developed in [26]–[29] cannot be applied directly. �

VI. PREDICTIVE CONTROL OF SENSOR POWER AND
CODING

In the previous sections we have shown that the design
of sensor powers and bit rates involves a trade-off between
distortion introduced by coding, transmission error proba-
bilities (and, thus, state estimation accuracy), and energy
consumption. In what follows, we will present a predictive
control strategy which takes into account energy consumption
and estimation quality over a future prediction horizon. To
keep processing at the sensors to a minimum, the control
algorithm is located at the gateway. It provides the power levels
and the codebook indices to be used by the M sensors.

A. Constraints

In order to save energy required to process the received
signal at the sensors, we would like to keep the signaling from
the gateway to the sensors as low as possible. In particular,
the control signal will contain the codebook indices, say

j(k) ,
[
j1(k) j2(k) . . . jM (k)

]T ∈ J (23)

and information on the power levels. Here, we will use coding
ideas frequently used in power control architectures for cellular
networks; see, e.g., [30]. The controller, thus, sends coarsely
quantized power increments, say δum(k), rather than actual
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power values, um(k), to each sensor m ∈ {1, 2, . . . ,M}. All
signals {δum} are constrained according to:

δum(k) ∈ Um, ∀k ∈ N0, ∀m ∈ {1, 2, . . . ,M}, (24)

where {Um} are given finite sets, each having a small number
of elements; see also [31].7

Upon reception of the pair (δum(k), jm(k)), each sensor m
chooses the codebook jm(k) and reconstructs the power level
to be used by its radio power amplifier by setting

um(k) = um(k − 1) + δum(k). (25)

Note that in addition to the constraints on actual power
levels, see (14), the quantization constraint on the transmitted
power control values, see (24), imposes

δu(k) ∈ U , U1 × U2 × · · · × UM , ∀k ∈ N0, (26)

where

δu(k) ,
[
δu1(k) . . . δuM (k)

]T
, ∀k ∈ N0. (27)

B. Cost Function

We will quantify estimation accuracy via the trace of the
matrix P̄ (k) defined in (22), which, in the Gaussian case,
would correspond to the posterior covariance, see Remark 2.

At each time instant k ∈ N0, the predictive controller calcu-
lates the value of P̄ (k), which results from iterating (20)–(21)
for the (known) past realizations of reconstruction outcomes
θk, see (18), and uses channel gain predictions over a finite
horizon of fixed length N . These will be denoted via:

Ĝ(k) = {ĝm(k + 1|k), . . . , ĝm(k + N |k)}m∈{1,2,...,M} (28)

and are assumed to be error-free. With this information, the
controller minimizes the finite-set constrained cost function

V (δU, J) , E
{
V1(Θ(k), J)

∣∣P (k), Ĝ(k), δU, J
}
+ρV2(δU, J),

(29)
where8

V1(Θ(k), J) ,
k+N∑

`=k+1

trace
(
P̄ ′(`)

)
,

V2(δU, J) ,
k+N∑

`=k+1

M∑
m=1

Em(b̃′m(`)u′m(`)),

(30)

quantify the expected estimation quality and the associated
energy expenditure. Thus, ρ ≥ 0 is a design parameter
which allows one to trade estimation accuracy for energy
consumption.

The stochastic aspect of the power and bit rate control
problem, namely the possibility of transmission errors, is
captured in (29) by taking conditional expectation with respect

7In some wireless sensor technologies, transmission power can be selected
only from a finite number of power levels. In these cases, the quantization
constraint (24) is a system requirement, see also [32].

8In the sequel, primed variables refer to predicted values of the correspond-
ing physical variables.

to the probability mass distribution of the discrete random
variable Θ(k), defined via:

Θ(k) ,


θ′1(k + 1) θ′1(k + 2) . . . θ′1(k + N)
θ′2(k + 1) θ′2(k + 2) . . . θ′2(k + N)

...
...

. . .
...

θ′M (k + 1) θ′M (k + 2) . . . θ′M (k + N)

.

(31)
In this matrix, the entries {θ′m(k + `)} are predictions of the
reconstruction outcomes of the values {ŷm(k + `)}, see (16).
Thus, the probability mass distribution of Θ(k) depends upon
the tentative power levels {u′m(k + `)}, the tentative future
codebook indices {j′m(k + `)}, and the channel gain predic-
tions {ĝm(k + `|k)}, see (10) and (28).

For a given realization of Θ(k), trace
(
P̄ ′(`)

)
is obtained

from (22) after iterating (20)–(21) with initial value P (k+1);
Em(b̃′m(`)u′m(`)) is the energy function (13) evaluated for the
tentative values u′m(`) and b̃′m(`), the latter being the expected
bit rate of the j′m(`)-th codebook, where

j′(`) ,
[
j′1(`) j′2(`) . . . j′M (`)

]T
. (32)

The decision variables, i.e., the tentative future codebook
indices {j′m(k+`)} and power value increments {δu′m(k+`)},
are collected in (see (23) and (27)):

δU =


δu′(k + 1)
δu′(k + 2)

...
δu′(k + N)

 , J =


j′(k + 1)
j′(k + 2)

...
j′(k + N)

. (33)

Following (25), δU yields the tentative future power levels
{u′m(`)} in (30) via

u′m(`) = u′m(`−1)+δu′m(`), ` ∈ {k+1, k+2, . . . , k+N},

starting from the current levels, i.e., where u′m(k) = um(k).

C. Moving Horizon Optimization
As described in Section VI-B, at each time instant k ∈

N0, and given channel gain predictions in (28), the control
algorithm finds the optimizing sequences

(δU opt, Jopt) , arg min V (δU, J), (34)

subject to the constraints:

δU ∈ UN , J ∈ JN

0 ≤ u′m(`) ≤ umax
m , ∀` ∈ {k + 1, . . . , k + N}, ∀m,

where

UN , U× U× · · · × U, JN , J × J × · · · × J .

In this work, we will adopt the moving horizon principle,
see, e.g., [15], [20]. Thus, at each time k, only the indices
and power updates corresponding to the time instant k + 1
are transmitted to the M wireless sensors. That is, only the
following values are used:9

δu(k + 1)opt ,
[
IM 0M . . . 0M

]
δU opt

j(k + 1)opt ,
[
IM 0M . . . 0M

]
Jopt.

9IM denotes the M × M identity matrix and 0M the all zeros M × M
matrix.
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At the next time instant, namely k + 1, the optimization
procedure is repeated, giving rise to power control increments
δu(k +2)opt and codebook indices j(k +2)opt. This procedure
is repeated ad infinitum.

The prediction horizon N allows the designer to trade-
off performance versus on-line computational effort. Larger
horizons give, in general, better performance since more
information is taken into account in the decision process.10

Computational issues are discussed in Section VII.
The proposed algorithm jointly decides upon the power

levels and codebooks of all M sensors by using future channel
gain predictions. The resulting control law respects finite set
and magnitude constraints for the power level signaling, see
Section VI-A. We emphasize that, for general time-varying
channels, the power levels and codebooks thus obtained are not
constant, but are assigned dynamically through minimization
of the criterion in (29) and, therefore, optimize the resulting
performance.

Remark 3 (Channel Gain Predictors): To calculate future
success probabilities, one requires channel gain predictions,
see (28). For that purpose one can use techniques described,
e.g., in [33], [34]. Note that, even if received packets are
discarded for signal reconstruction, they may still be used for
channel gain estimation and prediction. �

VII. COMPUTATIONAL ASPECTS AND SUBOPTIMAL
ALGORITHM

The controller presented in the previous section uses a brute-
force approach to determine the optimal power increments
and codebooks. In fact, all combinations of possible bit-rates
(with and without zero-error-coding) and power levels of all
sensors are examined. Based upon the cost function V (δU, J),
which takes into account state estimation accuracy and energy
expenditure, the jointly optimal combination is chosen.

Whilst minimization of V (δU, J) in (34) is carried out at the
gateway, where computational issues play less of a role than at
the sensors, in some situations, a brute-force search might be
impractical due to a large number of possible combinations.
In what follows, we will briefly outline some computational
aspects and also present a computationally convenient strategy
for approximately solving the optimization problem (34).

A. Computational Issues

Despite the fact that we are dealing with a stochastic
nonlinear and partially discrete optimization problem, which
has no closed-form solution, solving (34) in real-time is
surprisingly simple, due to the binary nature of the matrix
of predicted future reconstruction outcomes Θ(k), see (31).
To be more precise, Θ(k) takes only values in a finite set, say
{Θi}i∈{0,1,...,2MN−1}. For a given codebook sequence J ∈
JN , and current value P (k), each realization Θi corresponds
to a particular value V1(Θi, J), see (30). Consequently, by
using the law of total expectation, (29) reduces to evaluating

10The effect of N has been studied in other contexts; see, e.g., [17]–[20].

a finite sum, i.e., we have:

E
{
V1(Θ(k), J)

∣∣P (k), Ĝ(k), δU, J
}

=
2MN−1∑

i=0

Pi E
{
V1(Θ(k), J)

∣∣(P (k), Ĝ(k), δU, J),Θ(k) = Θi

}
=

2MN−1∑
i=0

Pi V1(Θi, J),

where Pi , P
{
Θ(k) = Θi | Ĝ(k), δU, J

}
depends upon

future channel gain predictions, power levels and bit rates to
be used by the sensors. These probabilities can be calculated
by simply forming the product of the individual terms λm(`),
see (10). Since the optimization (34) requires evaluating
V (δU, J) for at most11 |U|N |J |N possibilities of the pair
(δU, J), the number of calculations to be carried out at each
time instant is, at most, proportional to (2M |U||J |)N . Note
that, if Θ(k) would be a continuous random variable, then the
optimization procedure would be more involved, cf. [35].

B. Suboptimal Algorithm

As seen above, the proposed power and bit rate control
algorithm, involves an exhaustive enumeration of a finite
set of code books, power value increments and transmission
scenarios. Thus, in practice, the algorithm may become too
complex to implement. To simplify calculations, one could
use approximations based upon convex relaxations, e.g., as
described in [36]. Alternatively, the moving horizon optimiza-
tion idea underlying the controller of Section VI motivates us
to formulate a suboptimal algorithm as presented next.

The on-line computational load can be significantly reduced
by limiting the search set for power increments to a subset
Ũ(k) ⊂ UN and by restricting the code book to be con-
stant over the prediction horizon. This leads to suboptimal
sequences, say δU sub-opt(k) and J sub-opt(k), see (34). A useful
choice for Ũ(k), which has been successfully employed in
the context of audio quantization [37], can be made by re-
using the sequence obtained at the previous step. To be more
specific, suppose that, at time k− 1, the suboptimal sequence
of increments δU sub-opt(k − 1) has been found and form the
shifted sequence:

δU ](k) =



0M IM 0M . . . . . . . . 0M

... 0M IM 0M

...
... 0M

. . . . . .
...

...
. . . . . . 0M

0M . . . . . . . . . . . . . . 0M IM


δU sub-opt(k−1).

To compute the power increment sequence at time k, we
will make use of the previous predicted values contained in
δU ](k). More precisely, the reduced search set at time k is
formed via the Cartesian product Ũ(k) = U](k) × U, where
U is as in (26) and where U](k) contains only δU ](k) and
its immediate neighbors. The cardinality of Ũ(k) is, at most,
equal to 3M(N−1)|U|. Clearly, in applications where |U| >

11|U| denotes the cardinality of the set U; |J | that of J .
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3M , the cardinality of Ũ(k) is smaller than the cardinality of
UN . The number of calculations of this suboptimal algorithm
is, at most, proportional to 3M(N−1)|U||J |2MN .

Example 5 (Reduced search set): Consider a setting with
M = 2 sensors, a constraint sets U1 = U2 = {−4,−3, . . . , 4}
and a horizon N = 4. The optimization in (34) requires
the controller to evaluate

(
|U1| · |U2|

)N = 814 = 43046721
possible power level increments δU .

To illustrate how much can be gained by using the sub-
optimal algorithm described above, suppose that, at time k−1,
the suboptimal sequence of increments

δU sub-opt(k − 1) =
[
2 3 4 2 1 3 −1 4

]T
has been found. We then have

δU ](k) =
[
4 2 1 3 −1 4

]T
and

Ũ(k) =
{
{3, 4} × {1, 2, 3}

}
×
{
{0, 1, 2} × {2, 3, 4}

}
×
{
{−2,−1, 0} × {3, 4}

}
×
{

U1 × U2

}
,

which contains only 6× 9× 6× 81 = 26244 elements. �

VIII. SIMULATION STUDY

In this section, we will apply the predictive power and
coding control algorithm proposed in Section VI to a model
(1). The initial state is taken from a Gaussian distribution
with covariance matrix P0 = 0.3I2. The driving noise is also
Gaussian, with variance Q = 1/2I2. The system matrix is
chosen as:

A =
[
1.6718 −0.9048

1 0

]
.

A. Experimental Setup

We simulate a system consisting of M = 2 sensors with
output matrices C1 = [1 0], C2 = [0 1], and Gaussian
measurement noises with variances R1 = R2 = 1/100. The
constraints on the power values are umax

1 = umax
2 = 0.4mW.

Bit rates are restricted to a maximum of b̃max
1 = b̃max

2 = 7bits.
Channel data were acquired in an office space area at the

Signals and Systems Group of Uppsala University, Sweden.
The transmitter was placed in an office and the receiver
was located 8 m away in the corridor outside the office.
The transmitter position was fixed, whereas the receiver was
mounted on a rail allowed to move over a distance of 1.25 m,
perpendicular to the corridor. Measurements were collected at
the 2.4 GHz ISM band. The top diagram of Fig. 4 illustrates
the channel gains of two realizations, one with horizontal
and one with vertical polarization.12 The channel gains are

12The channels were found to be well described by time-varying gains.
Here we have assumed a radio power amplifier efficiency of 1/3, a path loss
of 90 dB, and a receiver noise amplification (noise figure) of 10 dB, yielding
an average gain for g1(k) and g2(k) of −105 dB. At maximum power, this
corresponds to an SNR of 17 dB. It is worth emphasizing that, since we have
real channel data, we do not require to ascribe probability distributions to
the fading. However, information about the underlying fading statistics, can
be incorporated into the formulation, e.g., by averaging (11) over the fading
distribution.

displayed as a function of relative position, and, therefore,
correspond to what a receiver would perceive if it moved
through space. The gains shown in Fig. 4 also give an
indication of what fading to expect, if objects are moving
between fixed sensor and gateway locations. We note that the
channels vary considerably, with some dips dropping more
than 20 dB. Without appropriate dynamic power control, such
large variations would require excessive energy consumption
to avoid frequent transmission errors.

B. Controller Design

To implement the control algorithm proposed in Section VI
we first construct the zero-error coder (along the lines de-
scribed in the appendix) to obtain Table II. The controller
parameters are chosen as N = 1 and ρ = 106 and we adopt
the simple expression (12) for the probability of successful
packet arrival.13 Power increments are restricted to belong to
the finite sets U1 = U2 = {0,±10µW}. To emulate a realistic
scenario, we will assume that the gateway is using only noisy
one-step-ahead channel predictions.14

C. Results

Fig. 3 illustrates the state estimation performance when
g1(k) enters a deep fade located at k = 3950. See the top
diagram of Fig. 4. From he top diagram of Fig. 3 we note that
x1(k) and x̂1 essentially coincide everywhere except for the
area around the fading dip. Because of the poor channel gain in
g2(k), the predictive controller increases the control action and
decreases the bit rate. Since the control signal saturates, packet
errors will occur and affect the estimation accuracy. This is
further illustrated in the bottom diagram of Fig. 3, where
estimated and measured estimation errors ‖x(k) − x̂‖2 are
compared. Evidently, the measured estimation error increases
due to the packet errors, c.f., the bottom diagram of Fig. 4.
The estimated state estimation error also increases, but not to
the same extent. This is due to the smoothing effect built into
trace

(
P̄ (k)

)
.

Fig. 4 illustrates that the control algorithm tries to find the
best compromise between the two sensor links by manipu-
lating power levels, bit rates and by using ZEC whenever
appropriate. Because of the constraints in the power levels
and bit rates, the controller cannot fully compensate for the
large variability of the channel gains. This is apparent by
inspecting the performance around time k = 900. Here, the
predictive controller increases the power u2 to compensate for
the dropping channel gain g2. Since u2 saturates, the increased
cost due to maximum power use is balanced by decreasing
the bit rate b̃2 (less bits per measurement value require less
energy). As is evident from the low probability of successful
packet arrival, λ2, the controller does not fully counteract
the fast drop in g2. Since g1(900) � g2(900), the controller
decides that Sensor 1 should spend only little power and also

13We choose rkBT = 2.3 · 10−10µW , which corresponds to a channel
bit rate r = 40 kbits/s at room temperature.

14Here a normalized prediction error MSE of 0.01 is used. This corresponds
to a prediction horizon of approximately 1/4 of a wavelength of the carrier
frequency [33], [34].
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Fig. 3. State Estimation with power and bit rate constraints: Upper plot
[1 0]x(k) (dashed line) and [1 0]x̂(k) (solid line); lower plot: ‖x(k) −
x̂(k)‖2 (dashed line) and trace

`
P̄ (k)

´
(solid line).

selects Sensor 1 to be dominant in the ZEC scheme. A similar
behavior can be observed for g1 at k = 1250, and for g2 at
k = 4000 and k = 4700, respectively.

It is interesting to note that independent coding, which is
indicated by dots on top of both bit rate graphs b̃1 and b̃2 of
Fig. 4 simultaneously, is rarely used. Thus there is significant
redundancy to be exploited among the two channels.15 At time
k = 2700, both channels have high gains and the power levels
can be kept low while maintaining λ1 and λ2 close to one.
Instead, energy is spent on decreasing the quantization error
by using the maximum allowable bit rate.

To give further insight, the performance of the variable bit
rate control algorithm presented in Section VI is compared to
predictive controllers which use only independent coding at
a fixed bit rate16 and also to schemes which use fixed power
levels at all times. The fixed level controllers are designed to
use the same amount of average energy V2 as does the variable
bit rate predictive control algorithm proposed in this work.

We shall evaluate the performance of the different con-
trollers according to the achieved cost:

V = V1 + V2, (35)

where:

V1 ,
1

5000

5000∑
k=1

‖x(k)− x̂(k)‖2

quantifies the estimation accuracy, whereas

V2 , ρ

(
1

5000

5000∑
k=1

M∑
m=1

Em(b̃m(k)um(k))

)
refers to the energy use. The results are summarised in Table I.
We observe that both the fixed bit rate predictive controllers
and the fixed level controllers obtain their lowest total cost V ,

15Indeed, this is to be expected since x1(k) depends on x2(k).
16These predictive controllers essentially amount to the algorithms intro-

duced in our recent work [21].
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Fig. 4. System performance with power and bit rate constraints.

TABLE I
PERFORMANCE COMPARISON BETWEEN PROPOSED VARIABLE BIT RATE

PREDICTIVE CONTROLLER, FIXED RATE PREDICTIVE CONTROLLERS, AND

FIXED LEVEL CONTROLLERS. FIXED LEVEL CONTROLLERS ARE KEPT AT

THE SAME AVERAGE ENERGY AS THE VARIABLE LEVEL PREDICTIVE

CONTROLLER.

Predictive Controllers Fixed level Controllers

Bit rate V1 V2 nJ V V1 V2 nJ V

variable 0.0291 60.3265 0.0894 - - -
7 bits 0.0339 64.5253 0.0984 0.0686 60.3265 0.1289

6.5 bits 0.0350 62.4227 0.0974 0.0679 60.3265 0.1282
6 bits 0.0370 60.3442 0.0973 0.0649 60.3265 0.1252
5 bits 0.0548 56.2098 0.1110 0.0778 60.3265 0.1382
4 bits 0.1257 52.1200 0.1778 0.1455 60.3265 0.2058

see (35), for a fixed rate of six bits. For this bit rate, the fixed
rate predictive controller, and the fixed level controllers are
9% and 40% worse, respectively, as compared to the variable
bit rate predictive controller proposed in the present work.
Considering V1 only, for this case, these simpler schemes give,
27% and 123% worse performance, respectively.17

IX. CONCLUSIONS

An energy efficient bit rate and power control scheme for
state estimation via wireless sensors operating over fading
channels was presented. The time variability of the fading
channels frequently leads to transmission errors with sub-
sequent random packet drops. State estimation in the face

17The optimum bit rate and power levels, used here for comparison, are
in general unknown a priori. Thus, in a real application, significantly worse
performance for the fixed bit rate predictive controller and the fixed level
controller can be expected.
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of intermittent observations was then performed by a time-
varying Kalman filter.

In our scheme, the transmission power of the radio power
amplifier and the bit rate for each of the wireless sensors are
controlled by the gateway. For that purpose, we proposed a
control algorithm which utilizes predictions of radio channel
gains and incorporates signal coding. Thus, our proposal
amounts to channel aware source coding. A distinctive char-
acteristic of the approach taken is that the controller directly
aims at optimizing the tradeoff between estimation quality and
energy use. Performance was illustrated on measured channel
data acquired from an office space area. The optimal scheme
was shown to perform significantly better when compared to
predictive controllers which use only independent coding at
fixed bit rates, and to fixed power level controllers.

Further work may include studying closed loop stability
aspects and also the examination of more general wireless
sensor network topologies.

APPENDIX
BACKGROUND ON ZERO-ERROR CODING

One of the key results in distributed source coding is that
there is essentially no loss in coding rate-distortion perfor-
mance by doing separate encoding, rather than joint encoding
of correlated variables, when the decoding is done jointly [11],
[12]. However, existing practical distributed coding schemes,
which come close to the optimal joint performance bounds,
require forming long sequences of the variables, thus, incurring
large decoding delays. Fortunately, there exist practical low
delay distributed coding schemes, which at the expense of
a somewhat larger rate, work for arbitrary block lengths,
including blocks having only one value. This is the case in
ZEC schemes, which are adopted in the present work. We next
recall some results on bit rate reducing properties of ZEC.

A. Bit rates

If coder ECm? is dominant, then the expected bit rate (as
seen by the channel) is given by b̃m?(k) = H(im?(k)). On
the other hand, b̃n(k), n 6= m? is lower bounded by the
conditional entropy

b̃n(k) ≥ H(in(k) | im?(k)), (36)

where equality can be achieved at the expense of large delays
at the decoder.

Since, for independent entropy coding, we have (see (3))

bn(k) ≈ H(in(k)) ≥ H(in(k) | im?(k)),

it follows that we can expect a bit rate reduction which is, at
most,

H(in(k))−H(in(k) | im?(k)) ≥ 0

bits per sample. Thus, if the measurements are uncorrelated
(and thereby independent since they are Gaussian), then we
have H(in(k) | im?(k)) = H(in(k)) and no rate reduction is
possible. At the other extreme, if im?(k) is deterministically
related to in(k), then H(in(k) | im?(k)) = 0, which gives
maximum bit rate reduction.

Note that, in the present case, the amount of correlation
between the measurements depends upon the underlying sys-
tem (1) as well as the covariances Q and Rm. Furthermore,
the rate reduction achieved in practice, depends not only on
the inherent correlation between the measurements, but also
on the actual implementation of the zero-error code.

B. Design Example

Zero-error coders can be designed by adopting graph the-
oretic ideas [14]. To present this approach, let Yi denote the
discrete alphabet of ŷi(k) and, for simplicity, let us consider
the case of only two sensors, i.e., i ∈ {1, 2}, where the second
sensor is the dominant one. Let the pair of random variables
(ŷ1, ŷ2) be distributed over the product set Y1×Y2 according
to the joint probability distribution P(ŷ1, ŷ2). Let S be the
support set of (ŷ1, ŷ2), i.e.,

S , {(ŷ1, ŷ2) ∈ Y1 × Y2 : P(ŷ1, ŷ2) > 0}. (37)

Given the above, we say that distinct ŷ1, ŷ
′
1 ∈ Y1 are

confusable if there is a ŷ2 ∈ Y2 such that (ŷ1, ŷ2) ∈ S and
(ŷ′1, ŷ2) ∈ S. Viewed from this perspective, a zero-error code
is a deterministic map φ such that if ŷ1 and ŷ′1 are confusable
then φ(ŷ1) 6= φ(ŷ′1); see, e.g., [38].

Let G be the characteristic graph of the source pair (ŷ1, ŷ2).
For the case of ŷ2 being the dominant signal, the vertex set of
G is Y1. Two distinct vertices ŷ1 and ŷ′1 are connected if they
are confusable. Zero-error coder design amounts to choosing
a graph colouring on G, which is a function that partitions Y1

into colour classes so that every element of Y1 has a colour and
no pair of confusable elements has the same colour. It follows
that, if ŷ1 ∈ Y1 has colour c, ŷ2 ∈ Y2 and (ŷ1, ŷ2) ∈ S,
then (ŷ′1, ŷ2) /∈ S for all ŷ′1 ∈ Y1, ŷ

′
1 6= ŷ1. In other words,

if ŷ2 is known at the gateway, then we only have to convey
information about the colour of ŷ1 in order for the decoder to
be able to faithfully reconstruct ŷ1.

To design the zero-error coder used in Section VIII, we first
calculate the differential entropies h(y1) = 4.27 and h(y2) =
4.29. The resulting zero-error code depends upon which of
the two variables we choose to be the dominating one. It also
depends upon the bit rates of the two scalar quantizers. For
this example, we choose y2 to be the dominating one and bit
rates b1 = 2 and b2 = 3 bits/dim. With this choice, it follows
that the step sizes are ∆1 = 4.82 and ∆2 = 2.44, respectively.

We now independently scalar quantize y1 and y2 to obtain
ŷ1 and ŷ2. Even though the processes have unbounded support,
in practice they will always have bounded support. In our case,
it turns out that ŷ1 is discretised to a finite alphabet Y1 having
11 distinct elements whereas the alphabet Y2 of ŷ2 has 19
distinct elements. (Recall that a zero-error code is defined on
all pairs of elements of Y1 × Y2 where P (ŷ1, ŷ2) > 0.) The
cardinality of the zero-error code in this example is therefore
11·19 = 209. However, several of the pairs (ŷ1, ŷ2) ∈ Y1×Y2

are very unlikely. Thus, we can significantly reduce the number
of pairs (and thereby the bit rate) by excluding unlikely pairs.
In this simulation, we choose to keep only pairs where

[ŷ1, ŷ2]
[
cov(y1, y2)

]−1[ŷ1, ŷ2]T ≤ kε (38)
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where we set kε = 10. It can be shown that the probability of
being inside this reduced set is given by 1 − exp(−kε/2) ≈
0.993, see [39].

In Fig. 5 we have shaded the region (solid rectangles) of the
joint probability mass function of ŷ1 and ŷ2 containing the 29
out of the 209 pairs that satisfy (38). Since only 7 rows and
11 columns contain solid rectangles, it follows that 7 distinct
values of ŷ1 and 11 distinct values of ŷ2 need to be used.
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Fig. 5. The discrete alphabet Y1 of ŷ1 contains 11 elements (rows) and the
reduced set Y ′

1 (solid region) contains only 7 elements (rows). Similarly, Y2

contains 19 elements (columns) and Y ′
2 has 11 elements (columns).

Let Y ′1 and Y ′2 denote the reduced alphabets containing
only the elements which are in pairs that occur inside the
solid region of Fig. 5. We now obtain the characteristic graph
G with vertex set Y ′1. Recall that vertices in this graph are
connected, if they are confusable. Thus, the elements ŷ1 and
ŷ′1 both in Y ′1 are connected, if they occur in pairs (ŷ1, ŷ2) and
(ŷ′1, ŷ2) where ŷ2 ∈ Y ′2, i.e., if they share a node of Y ′2. For
example, referring to Fig. 5, the vertex set of Y ′1 consists of the
seven rows, here denoted a to g. To obtain the characteristic
graph G we need seven nodes, which we label from 1 to
7, respectively. This is illustrated in Fig. 6(a), where Row a
corresponds to Node 1, Row b to Node 2, and so forth. Row a
is connected to Row b, since they share columns. Thus, a line
is drawn between Node 1 and Node 2 in Fig. 6(a). Similarly,
since Row b is connected to both Row c, and Row d, via
overlapping columns, we draw lines from Node 2 to nodes 3
and 4, respectively. By repeating this procedure until we reach
Row g, the graph in Fig. 6(a) is readily obtained.
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(b) Graph colouring

Fig. 6. Design of zero-error coding.

If two nodes in the characteristic graph are not connected,
it means that the two nodes are paired with different values of
ŷ2. This is an important observation. Clearly, given a specific
ŷ2, we know the set of ŷ1’s that are paired with this element
and therefore we also know those that are not paired with
the given element. Thus, nodes that are not connected in the
characteristic graph, may be combined into a super-node. For
example, in Fig. 6(a) we may combine nodes 1, 4, and 7 into
a single super-node. Similarly, nodes 2 and 5 can be combined
into a super-node and nodes 3 and 6 may be combined into a
super-node. This is illustrated in Fig. 6(b).

The problem described above is usually referred to as graph
colouring [14]. In graph colouring, we aim at using the least
number of colours so that all nodes in the graph are coloured,
but two nodes that are connected do not get the same colour.
Graph colouring is an NP hard problem, but there exists several
heuristic methods that, for our purpose, yields near optimal
performance. It should be clear that a graph colouring on the
characteristic graph of Y ′1 effectively reduces the number of
distinct elements of Y ′1 that need to be transmitted to the
decoder. In fact, the number of elements to be transmitted
is equal to the number of colours in the graph. This is so,
since, at the decoder, having received a colour as well as any
ŷ2 ∈ Y ′2, one can uniquely determine the correct ŷ1 among
the set of ŷ1’s having the same colour. In the particular case
depicted in Fig. 6(b), only three colours are required.

So far we have been able to reduce the bit rate by only
keeping the most likely outcomes (ŷ1, ŷ2) from the quantizers
and then using graph colouring. The bit rate can be reduced
further by employing two independent Huffman entropy codes;
one for the set of colours and one for the elements of Y ′2.
These codes are designed off-line for every pair of bit rates
(b1, b2) ∈ {2, . . . , 7} × {2, . . . , 7} as well as when y1 is
dominating instead of y2. The resulting numerically measured
average bit rates give rise to Table II.

In the case of more than two sensors, one can either pair
sensors and use the above approach independently for each
pair, or also let several sensors be dependent upon a single
sensor. To the best of the authors’ knowledge, how to design
efficient zero-error codes, in general cases, for more than two
sensors remains an open problem.
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Federico Santa Marı́a, Valparaı́so, Chile in 2000.
In 2005, he received the Ph.D. degree from The
University of Newcastle, Australia, where he is
currently a research academic. He has been a visiting
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