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Why talk to people when you can talk to robots?
Far-field speaker identification in the wild

Galadrielle Humblot-Renaux, Chen Li, Dimitrios Chrysostomou

Abstract— Equipping robots with the ability to identify who
is talking to them is an important step towards natural and
effective verbal interaction. However, speaker identification for
voice control remains largely unexplored compared to recent
progress in natural language instruction and speech recognition.
This motivates us to tackle text-independent speaker identifica-
tion for human-robot interaction applications in industrial en-
vironments. By representing audio segments as time-frequency
spectrograms, this can be formulated as an image classification
task, allowing us to apply state-of-the-art convolutional neural
network (CNN) architectures. To achieve robust prediction in
unconstrained, challenging acoustic conditions, we take a data-
driven approach and collect a custom dataset with a far-field
microphone array, featuring over 3 hours of ‘“in the wild”
audio recordings from six speakers, which are then encoded
into spectral images for CNN-based classification. We propose
a shallow 3-layer CNN, which we compare with the widely
used ResNet-18 architecture: in addition to benchmarking these
models in terms of accuracy, we visualize the features used
by these two models to discriminate between classes, and
investigate their reliability in unseen acoustic scenes. Although
ResNet-18 reaches the highest raw accuracy, we are able to
achieve remarkable online speaker recognition performance
with a much more lightweight model which learns lower-level
vocal features and produces more reliable confidence scores.
The proposed method is successfully integrated into a robotic
dialogue system and showcased in a mock user localization and
authentication scenario in a realistic industrial environment:
https://youtu.be/IVtZ8LKJZ7A,

I. INTRODUCTION

Auditory perception for intelligent systems has shown
promising applications ranging from alarming event detec-
tion [1], to object recognition [2] and ego-motion estima-
tion [3]. It especially plays a central role in industrial and
social robotics by allowing users to communicate with robots
through speech [4], [5]. Audio processing and modelling
techniques can be used not only to identify what the user is
saying (speech recognition), but also where they are (sound
source localisation), and who they are (speaker recognition).
When tackled as a verification task, speaker recognition only
involves a binary decision for authentication; in contrast,
speaker identification is a multi-class problem which bears
more relevance to human-robot interaction (HRI) as it allows
us to personalize responses based on who is talking [6].
While speech recognition has gained widespread use due to
publicly available APIs and pre-trained models which are
able to generalize to new voices [7], speaker identification
is more challenging to apply beyond offline benchmarks as
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it requires collecting diverse data for each user that we
wish to identify, and thus remains largely unexplored in
a robotic context. We highlight the untapped potential of
speaker identification to enrich HRI, as it can allow a robot
to partake in multi-user scenarios and adapt its responses
based on the identity and competences of each speaker.

As part of our ongoing research on integrating virtual
assistants in industrial robots [8], we consider the use case
of an autonomous industrial mobile manipulator (AIMM)
operating in an industrial setting, equipped with a speaker
and a far-field microphone array for verbal interaction with
multiple users. Such a set-up brings significant challenges for
speech processing, as the robot operates in an unpredictable
acoustic environment containing diverse sound sources, am-
bient noise and reverberation. Besides, the user’s variable
distance can significantly affect audio quality and recognition
performance [8], [9], while noise generated by the robot’s
motion further degrades speech wave-forms [7].

As illustrated in Figure [I] our goal is to incorporate
speaker identification into a real-world dialogue system,
where a robot assisting shop floor workers in their daily
work is able to identify known speakers from their voice
commands, address them by name and turn to their direc-
tion. This requires real-time, robust classification of audio
samples, despite ambient noise, speaker distance and robot
movement. To this end, we propose a simple yet effective
CNN-based approach to recognize six different speakers
and also identify samples containing no speech. Unlike
works which artificially degrade clean samples to evalu-
ate performance at different Signal-to-Noise Ratio (SNR)
levels [10]-[14], we develop and evaluate our method on
a custom dataset captured in diverse, realistic and noisy
indoor environments. Although this approach makes it more
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Fig. 1. Overview of the proposed interactive system. Our main contribu-
tion is the speaker identification method (highlighted in blue), which we
first develop and evaluate separately, and then integrate into a real-world
collaborative robotic application on the Little Helper 8 platform.
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difficult to control and characterize the audio quality, we
posit that it produces models with greater generalization
capability and better indicates true performance during real-
life operation. In addition, while most existing works only
perform offline evaluation in terms of accuracy, we take a
comprehensive evaluation approach, where we investigate
the model’s reliability, visualize learned features with Class
Activation Maps (CAMs), and demonstrate its real-world use
through an interactive system developed on our latest AIMM
iteration, Little Helper 8 [15], [16].

In the remainder of this paper, we first identify recent
related work in Section [[I] and outline our proposed method
for spectrogram generation and CNN-based classification in
Section We then describe the data collection proce-
dure for extensive evaluation of the model and present a
fully-integrated speaker-aware robotic system in Section
Lastly, Section [V] summarizes the main results and findings
and addresses some limitations of the current implementa-
tion, leading to promising directions for future work.

II. RELATED WORK
A. Audio representation for classification

Time-frequency representation of audio signals facilitates
visual interpretation and classification. Rather than represent-
ing the frequency spectrum on a linear scale, a widespread
speech processing technique consists of applying filter banks
along a warped frequency scale in a perceptually meaningful
way, with higher resolution in the low-frequency range
to mimic human audition. Frequency-warped spectrogram
representations have repeatedly been shown to out-perform
frequency cepstral coefficients (e.g. MFCCs) and linear-
scale spectrograms in a wide range of CNN-based audio
classification tasks [1], [17]-[20].

While mel-filtered spectrograms are frequently the fea-
ture representation of choice for speaker recognition [14],
[17], [21], existing work tackling audio classification for
robotics [1], [20] and speaker verification in low SNR
conditions [13] suggests that robust classification can also
be achieved by applying gammatone filters to obtain “gam-
matonegrams”. Thus, we compare both input representations
in our experiments.

B. CNN-based speaker identification

CNNs have shown to be a promising alternative to
traditional methods such as the Gaussian mixture model
(GMM) for learning speaker-specific features [6]. For in-
stance, [21] presents a light-weight CNN architecture for
mel-spectrogram classification, achieving remarkable perfor-
mance on the TIMIT [22] dataset, consisting of extremely
clean audio. The Interspeech speaker recognition challenges
and release of “in the wild” datasets collected from open-
source media such as Speakers in the Wild [23] and Vox-
Celeb [24] has sparked significant progress in deep, robust
text-independent speaker identification. Many state-of-the-art
works [17], [18], [25] on these two benchmarks employ
a ResNet-based [26] architecture, which has been widely
adopted for general image classification. However, the neural

architecture search approach followed in [27] suggests that
the model complexity offered by this widely used back-bone
may not be necessary for speaker identification performance
and that developing task-specific neural architectures yields
significant gains. Recent work investigating neural network
calibration [28] also suggests that the increase in accuracy
brought by modern deep neural networks such as ResNet
may come at the expense of reliable confidence scores,
which is a concern for robotic applications where predictions
are used as a basis for decision-making and control. This
motivates us to investigate the reliability of ResNet for
speaker identification compared to a shallower architecture.

C. Robot audition for user identification

We highlight the lack of existing closed-loop, deep
learning-based, and noise-robust systems: most existing
works tackling speaker recognition for HRI do not consider
adverse factors such as ambient noise and speaker distance,
only use a robotic platform for data collection but not for
closed-loop inference, or employ traditional methods. For
instance, [29] presents a real-time speaker verification system
for HRI based on hand-crafted features and pattern matching
and validates the method on clean samples from a public
voice database. More recently, [30] trains GMMs to classify
five speakers and demonstrates how speaker identification
could be incorporated in a real system for voice control
of a humanoid robot with a microphone array - however,
close-range interaction with pre-defined commands and ideal
acoustic conditions are assumed. While [12] specifically
addresses robustness to noise, background chatter and dis-
tance for in-vehicle speaker identification; it also employs
traditional classification methods and relies on simulated
environmental conditions for evaluation.

Similarly to our approach, [13] records speech from three
speakers with a moving robot, and investigates the effect of
additive noise for CNN-based spectral image classification,
showing that high accuracy can be achieved with a shallow
network despite low SNR and short sample length. How-
ever, [13] tackles speaker verification rather than identifi-
cation and is not evaluated beyond offline performance on
artificially degraded samples which were recorded in a clean
acoustic environment. Furthermore, only a single architecture
and spectral representation are considered.

In contrast, our work demonstrates online inference in a
robotic application under challenging, unconstrained condi-
tions while applying state-of-the-art deep learning methods
rather than hand-crafted features. We compare two spectral
image representations and two CNN architectures (a 3-layer
network against the smallest 18-layer variant of ResNet)
and investigate their performance for real-world speaker
identification in terms of accuracy, reliability and efficiency.

III. METHODS

The main idea of the proposed approach is illustrated in
Figure @ Given a raw audio stream, we first extract three
fixed-length segments, as described in Section In Sec-
tion[[II-B] we explain how each audio segment is transformed



robots are
awesol

voice clip

A
o

e | STFT & filter bank |

Mio M4 N [T
H_J FC soft-max layer
main
speaker

Fig. 2. Overview of our 3-stage speaker identification method, from audio
recording to final prediction, with the corresponding sub-sections indicated
in blue. M1 and M4 correspond to two speakers in our dataset, and NV refers
to the no voice class. The picture in the top right shows the experimental
set-up used for data collection and testing.

into a time-frequency spectral image by generating its filtered
and frequency-warped Short-time Fourier Transform (STFT).
For feature extraction and classification, the resulting images
are fed to a CNN, which we train to recognize a small set
of speakers. As presented in Section [[II-C] its architecture
is based on Global Average Pooling (GAP) and features a
single fully-connected (FC) output layer. This yields three
predictions for each audio clip; the main speaker is extracted
based on class probabilities across three audio segments.

A. Generating samples for classification

As input to our system, we consider a stream of audio
recorded with a ReSpeaker far-field 4-microphone array and
sampled at f; = 16kHz. The device provides built-in
voice activity detection (VAD), which is applied as a pre-
processing step to extract voice clips. The VAD method is
energy-based, thus triggered not only by voice but also other
acoustic events, e.g. mouse scroll and coughing, which is
why we introduce an additional no voice (NV) class in our
dataset (cf. Section [[V-B). Although VAD is not necessary in
our set-up, it avoids having to continuously classify samples
in the absence of acoustic activity. Since a sliding window
approach does not scale well with long utterances in terms of
computational load, we only generate three 1-second samples
per voice clip, regardless of its length: a sample is extracted
at the beginning, middle and end of the voice clip - as
illustrated in Figure 2} The short audio sample length, while
detrimental to speaker recognition performance [25], allows
us to classify audio on-the-fly due to the small input size.

B. Encoding audio into spectral images

Each 1-second audio sample is converted to a spectral
image, which encodes the signal energy for a given time and
frequency as pixel intensity. Similarly to [20] and [18], we
specifically apply and compare two different filter banks in
our experiments, introduced in Section E mel filters (trian-
gular bandpass filters applied on a mel-scale) and gammatone

filters (asymmetrical linear bandpass filters which aim to
approximate the human auditory frequency response, applied
on an Equivalent Rectangular Bandwidth scale).

In both cases, as [21], a power spectrum is first generated
by applying an STFT on the audio sample over a 1024-point
Hann window (giving a frequency resolution of 16 Hz) with a
hop length of 160 (10 ms). A 128-channel filter bank is then
applied on the spectrum, with a min. frequency of 20 Hz
and max. frequency of f;/2. The power spectrum is then
converted to a logarithmic scale. An example of the resulting
spectrum for the two filter banks are shown in Figure [3]

Lastly, an image is obtained by shifting & scaling the
spectrogram matrix to fit in an 8-bit range of 0-255. This
yields images of sizes 128 x 94 for 1-second audio samples.
We also investigated the effect of applying cepstral mean
and variance normalization as recommended by [17], [24],
however, we found that it degrades classification performance
in our set-up, therefore, we omit this step.

Linear-scale spectrogram

Mel-spectrogram

Gammatonegram
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Fig. 3. Color visualization of log-power spectrograms generated for an

input sample, comparing different frequency scaling methods. The linear-
scale spectrogram is the output of the STFT. This sample contains speech
from 0.38 to 1 second

C. Convolutional neural network architecture

In order to learn discriminative features from spectral
images, we propose a shallow CNN, which we call Speak-
erNet and illustrate its architecture in Figure ] The feature
extraction stage takes a single-channel image as input and
follows a generic structure, consisting of three convolutional
layers with ReLU activation. Based on [13], we use a
convolutional kernel size of 5 x 5 with zero-padding to
preserve spatial resolution, and 2 x 2 max-pooling of stride 2
for down-sampling. Batch normalization and drop-out layers
(rate of 0.1) are added for regularization.

128 x 94 32
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—> global average pooling ~—> fully connected + softmax

Fig. 4. The architecture of the proposed SpeakerNet network

Since we are interested in visualizing learned representa-
tions, we employ the method described in [31] to generate
CAMs, which offer qualitative insight into which regions
in the spectrograms are the most relevant to recognize each
class in our dataset. This requires applying GAP after the



feature extraction stage, with a single final FC layer for
classification. As opposed to the spectrogram classification
architectures in [13], [19], [21], for instance, discarding
intermediate fully-connected layers in favor of GAP has the
added benefit of parameter reduction and regularization.

We compare SpeakerNet with a ResNet-18 [26] architec-
ture, which is used without any alteration except for the size
of the fully-connected output layer to match the number of
classes in our dataset. The model is initialized with pre-
trained weights from ImageNet [32]. The architecture already
features GAP and thus can be directly used for generating
CAMs. Since the network was designed for 3-channel image
input, we repeat the same gray-scale spectrogram across
three dimensions.

IV. EXPERIMENTS
A. Scenario description

We showcase the system in a noisy industrial environment,
following two different scenarios. To mimic a user authenti-
cation application, and in a similar spirit to [30], the identity
of the detected speaker is checked before executing any
control commands - if an impostor is recognized, the robot
does not turn and notifies them that they are unauthorized
to give commands. In the first scenario (shown in Figure [2),
we simulate a collaborative manufacturing arrangement: two
speakers are working on an assembly task, with the robot
in their vicinity (~ 1m), however only one of them is
authorized to issue robot instructions. The impostor first tries
to request a tool from the robot and then asks her co-worker
to repeat the voice command. In the second scenario, we test
the model’s ability to recognize a wider variety of voices, and
at a greater distance: the four speakers stand at ~ 2m from
the robot, and in turn, ask it to turn towards them.

B. Data collection

While large-scale speaker recognition benchmarks feature
hundreds of voices recorded with different devices [23],
[24], we aim to capture high intra-speaker variability from
six users with a fixed recording set-up. Rather than setting
up a controlled experiment where each speaker is recorded
separately and given specific instructions (e.g. as in [12],
[22], [30]), we capture raw multi-speaker audio “in the
wild”. The dataset is recorded across ten sessions over the
course of two weeks, with the microphone array placed
in different rooms with various acoustic conditions, i.e. a

silent office, a busy research lab, a noisy industrial shop
floor, a chatty break room and calm corridors capturing a
combination of natural conversations, meetings, and human-
to-robot commands (e.g. "Hey robot, can you give me the
screwdriver?”). No constraints are enforced on the recording
content or quality: collected samples feature real-world noise,
including unintelligible background chatter, laughter, ma-
chinery noise, and keyboard tapping with speakers standing
at various distances (= 20cm to 5m) and directions to
the microphone, talking freely in a variety of tones (e.g.
mumbling, excited, amused, or hesitant). Incorporating such
variation in vocal style, and spacing out recording sessions
over time, has shown to bring added robustness when training
speaker recognition models [33].

In the data collection stage, to match real operation condi-
tions, VAD clips are segmented into 1-second samples, saved
on-the-fly and manually sorted at a later stage by listening
to each sample to determine the identity of the speaker. Seg-
ments containing no discernible speech are assigned to a no
voice (NV) class (this includes background chatter, silence,
and any noise). Segments with more than one speaker in
the foreground are discarded. As a result, we have a 7-class
dataset with an NV class and six voices: Al (androgynous),
F1 (female) and M{1,2,3,4} (male speakers), adding up to a
total of 11202 1-second audio samples (over 3 hours).

Table [[] shows examples of spectral images generated
from challenging samples for each class: the NV class is
the easiest to discern due to the absence of vocal features,
and the female speaker F1 has a high-pitched voice char-
acterized by widely spaced vocal lines in the spectrograms.
However, the five other voices are difficult to distinguish
visually from spectral images, especially given the diversity
in utterance tone, content and recording conditions. Many
samples contain minimal vocal content over time, coupled
with interference from background noise and chatter as well
as sharp, loud sounds.

C. Training procedure

For both architectures, the model is trained over a
maximum of 600 epochs by optimizing -cross-entropy
loss via Stochastic Gradient Descent with Warm Restarts
(SGDR) [34] and momentum of 0.9 to accelerate conver-
gence. For regularization, a weight decay factor of 0.001 is
applied. Input samples are normalized based on the mean and
standard deviation of the training set and fed to the model
in batches of size 64.

Short utterance

Long distance

Tone variation

Loud noises Background chatter No voice class

TABLE 1.

Different types of challenging samples, showing the diversity in our custom dataset. Each sample corresponds to an audio segment of exactly

1 second, which we convert to mel-spectrogram (top) and gammatonegram (bottom) images for training the CNN models.



F1 H A1 H M1 B M2 B M3 B M40 NV

Split Scene Mel. Gam.

ResNet-18 SpeakerNet ResNet-18 SpeakerNet

session 1 I 10% 5 random splits, mixed scenes, all speakers 9545 £ 045 91.22 +2.74 9529 + 0.34 89.72 £ 3.02
session 2 I 1 shop floor, ds & ¢ ion, variable di ambient noise 90.07 79.66 90.35 80.13
session 3 I 2 lab, commands & conversation, variable distances with loud sounds 92.36 87.18 92.8 84.73
session 4 NS 3 lab, commands & conversation, close range with loud sounds 92.00 85.89 93.05 87.58
session 5 [ .| 4 meeting room & shop floor, conversation, variable distances, background chatter 54.16 48.00 53.08 48.56
session 6 I 5 break room, conversation, close range with loud sounds, clean background 74.96 68.50 75.76 63.64
session 7 o 6 break room & shop floor, conversation, variable distances with loud sounds, chatter & noise 86.89 82.40 86.32 83.00
R 7 shop floor, reading text, far, ambient noise 68.34 61.08 74.77 62.94
sess10n 8 — 8 shop floor, conversation, close range with loud sounds, chatter & noise 81.63 83.67 87.76 87.76
session 9 9 meeting room, close range with loud sounds, clean background 97.54 90.98 98.36 91.8
session 10 GGG 10 lab, commands, variable distances, robot movement and other noises 95.87 85.12 95.04 85.12
demo " I — demo  shop floor, cf. Sec!ion $9.74 $2.65 88.25 78.36

Fig. 5.

Proportion of samples per speaker in the full dataset and for individual sessions (left). The table gives the accuracy (percentage) per train/validation

split, with the best input representation for each model is highlighted in bold. Note that due to the unconstrained recording procedure, the description is
not necessarily representative of every sample in a session, but rather aims to capture the general features of the scene.

D. Classification accuracy

To get a baseline for how well the two architectures
can discriminate between the 7 classes in our dataset, we
first perform random cross-validation, such that both the
training and validation set contain samples across all record-
ing sessions. To prevent any overlap between the training
and validation set, segments from the same audio clip are
assigned to the same set. The dataset is split into five
folds with a train/validation split of 90/10% in each fold.
The mean validation accuracy and standard deviation across
the five folds are given in the first row of the table in
Figure [5] In this experiment, ResNet-18 achieves over 95%
accuracy while SpeakerNet approaches 90% for both input
representations. We also find that ResNet-18 is much more
prone to over-fitting than our shallow model, especially for
the mel-spectrogram representation.

In order to assess the models’ ability to generalize to new
recording sessions, we then split the dataset by date, such that
a recording session is left out as the validation set, and other
sessions are used for training. For each split, the validation
accuracy is reported in the rest of the table. ResNet-18
consistently reaches higher accuracy than SpeakerNet except
in session 8, which contains the least amount of samples from
all validation sets. This suggests that given more training
data, SpeakerNet may become more accurate. Both models
struggle the most in sessions 4 and 7, which are particularly
challenging: session 4 contains a large portion of samples
from speaker M2 (green in Figure [5) who was absent in
most other recording sessions, thus leaving minimal training
data for the model, and in session 7 the users read a text in a
monotone voice, which contrasts from the rest of the dataset
which primarily features lively, natural speech.

We observe that the classes which the highest occurrence
in the dataset (A1, M4 and NV) also yield the highest accu-
racy for both models. Thus, aligning with the concerns raised
in [33], we highlight the importance of recording substantial
and diverse voice data for every user in order to achieve
robust speaker identification in new situations. Lastly, we find
that the preferred input representation varies across sessions
and per model: upon inspection of misclassified samples,
it seems that gammatonegrams provide higher robustness
when the speech is masked by loud noises (aligning with the
findings in [13]), while mel-spectrograms are able to yield

higher accuracy when uttering clean commands. Looking at
the accuracy for mel./gam. spectrograms across all cross-
session validation samples, ResNet-18 reaches 78.85/79.37%
as opposed to 72.61/72.50% for SpeakerNet.

E. Feature visualization with CAMs

We generate CAMs for all cross-session validation sam-
ples as described in Section [[II-C] - a few examples for
correct and incorrect predictions by the two models are
shown in Figure As expected, due to its significantly
narrower receptive field, SpeakerNet is activated by much
finer features than ResNet-18. Interestingly, for SpeakerNet,
the most informative regions for speaker identification lie
towards the lower end of the spectrum, around the funda-
mental frequency and first harmonics - with different acti-
vation patterns for gammatonegrams and mel-spectrograms.
SpeakerNet’s confusion when making incorrect predictions
frequently transpires through the CAMs, with high activation
across the whole spectrum.

Correct Incorrect
Input SpeakerNet ResNet-18 Input SpeakerNet  ResNet-18
speaker: F1 redicted: F1 predicted: F1 speaker: M3 predicted: A1 predicted: A1
B -
Mel.
o 0.94 . i 0.47 .
Input SpeakerNet ResNet-18 Input SpeakerNet ~ ResNet-18
speaker: M1 redicted: M3 , predicted: M3 speaker: M1 predicted: M3 redicted: M3
. !
0.97
TABLE II. CAMs generated from predictions on unseen samples, with the

most informative regions in red and least informative regions in blue. The
confidence score is also shown under each prediction.

FE. Neural network reliability

We evaluate the models’ reliability in terms of Expected
Calibration Error (ECE) and Maximum Calibration Error
(MCE), as defined in [28]. This gives a measure of whether
the probability of the predicted class is a reliable indicator of
expected accuracy. Ideally, the more confident a model is in
its prediction, the higher the likelihood that the prediction is
correct, and vice-versa - this allows us to determine whether
a prediction should be trusted or ignored.



As shown in Figure [f] ResNet-18 tends to deliver over-
confident predictions, with the majority of both correct
and incorrect predictions having a confidence > 0.9, while
SpeakerNet produces significantly better calibrated scores.
While the reliability plot is only shown for mel-spectrogams,
we observe similar results for gammatonegrams, with an
ECE/MCE of 14.14/31.40 for ResNet-18 and 6.91/9.10 for
SpeakerNet. In our set-up, reliable confidence scores provide
robustness to misclassification errors since for each voice
clip, we pick the highest-confidence prediction out of 3
samples to identify the speaker.
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Fig. 6. Reliability diagrams for both models, generated from mel-
spectrogram predictions across all the session validation sets in Table [5]
The dotted line indicates the expected accuracy for a perfectly calibrated
model (ECE and MCE of 0). Error metrics are shown on the bottom right.

G. Computational footprint

We benchmark the two models on our hardware set-up,
where inference is performed on a high-end laptop running
Ubuntu 18.04, equipped with an Intel Core i7-6820HQ CPU
@ 2.70GHz and 64GB RAM. As shown in Table due
to the small input size (image resolution of 128 x 94),
both models are suitable for on-board speaker identification.
However, SpeakerNet is able to classify samples at over
double the speed of ResNet-18.

ResNet-18  SpeakerNet
trainable parameters 11,180,103 258,119
speed (ms) 22 9

TABLE III. Comparison of the models’ footprint. The speed is measured
as the average forward pass time for a batch of 3 samples.

H. Integration into a robotic system

We deploy our interactive system on a Little Helper 8
presented in [8], consisting of a Franka Emika Panda collab-
orative arm mounted on a MiR200 platform for autonomous
navigation. We fix the microphone on the robot’s table, and
run the full system on the hardware described in Section
[Gl (with no GPU acceleration), with the laptop’s speaker used
as the robot’s voice. For capturing live audio, we use the
same microphone as in the data collection stage. The device
includes built-in direction of arrival (DoA) estimation, which
provides the person’s approximate position relative to the
robot and rotates it towards the speaker. A Text-to-Speech

(TTS) engine is used to generate robotic responses based on
the speaker’s identity, e.g. “Okay, Chen, I will move towards
your direction”. To avoid the robot’s voice being classified or
the ongoing task being interrupted, we ignore audio activity
when the TTS output is playing, or the robot moves. For
online speaker identification, based on the results reported in
Section we select SpeakerNet as the most light-weight
and reliable model. Mel-spectrogram images are generated
and classified on-the-fly in sets of 3 from VAD audio clips
following the same procedure as in the data collection stage
and illustrated in Figure[2] The final prediction is taken as the
class with the highest confidence, excluding the NV class.

A video of both tests is available at https://youtu.
be/IVtzZ8LKJZT7A, featuring four of the six speakers in
our dataset. Despite the high level of ambient noise from
ventilation and machinery, distance to the robot, and clutter
around the microphone (in the first scenario), each speaker
is correctly identified in both tests; the robot responds imme-
diately and rotates towards each authorized speaker. We also
collected and labelled the samples of this demo session for
offline evaluation - results are shown in the last row of Fig-
ure [5] We found that audio segments containing particularly
brief utterances are frequently misclassified; however, they
are successfully excluded from the final speaker prediction
due to their low confidence score.

V. DI1SCUSSION AND CONCLUSION

We have shown how state-of-the-art CNN architectures
can be applied for online speaker identification in noisy
conditions and used as part of an interactive robotic dia-
logue system. We compare two CNN models and two filter
banks in a particularly challenging set-up, with short input
samples, high SNR variability and diverse vocal content. Our
results demonstrate that SpeakerNet has a significantly lower
computational footprint and learns lower-level features than
ResNet-18, yet generalizes well to new recording sessions in
challenging conditions while producing much more reliable
confidence scores, which is crucial in our set-up where we
use these scores to extract the main speaker from predictions
on a set of short fixed-length audio segments.

Our “in the wild” data collection set-up yields realistic
audio samples which resemble those encountered during
normal operation and allows the tested CNN models to learn
sufficiently general features for recognizing speakers across
new recording sessions in noisy environments. However, the
resulting raw, jumbled data makes it difficult to characterize
the effect of specific recording conditions on model per-
formance and a more systematic evaluation of noise level,
speaker distance and vocal characteristics would provide
further insight. Furthermore, manually sorting hundreds of
1-second clips for training the model is tedious and time-
consuming. Exploring weakly supervised approaches would
be beneficial to reduce the effort of manual labelling.

Additionally, a significant limitation of our implementation
is that it assumes a close-set of possible voices, with each
input sample only featuring the voice of a single person
in the foreground. In practice, recording voice activity in


https://youtu.be/IVtZ8LKJZ7A
https://youtu.be/IVtZ8LKJZ7A

a natural environment often results in segments containing
speech from unknown speakers, or multiple people talking
in close succession or at the same time. Speech separation
and metric learning for open-set speaker identification are
outside of the the scope of this work, but are an important
direction for future work.

Lastly, in a robotic context where different sensors are
often already available, incorporating visual representations
instead of solely relying on audio for user identification
would be highly beneficial. Coupling these two modalities
may also allow us to distinguish between speech which is
directed to the robot, as opposed to other people in the scene.
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