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Diagnosis Prediction over Patient Data using Hierarchical
Medical Taxonomies⋆

Emil Riis Hansen1, Tomer Sagi1 and Katja Hose1

1Department of Computer Science, Aalborg University, Aalborg, Denmark

Abstract
A variety of hierarchical domain taxonomies exist in the medical domain for describing medical concepts such as laboratory
tests, medications, and procedures. The structural information contained within domain taxonomies contains rich semantic
information pertaining to the described concepts and their relationships to each other. As AI models are successfully applied
in many medical areas, it is only natural to explore integrating AI models with medical domain taxonomies. However, only a
few, nascent attempts have been made. In this work, we investigate how the structure of hierarchical medical taxonomies
can be used to improve the performance of a diagnosis prediction task. Specifically, we suggest a method titled TreeEmb
to pre-initialize the node embeddings of a patient graph derived from electronic health records using information from the
taxonomy. We expect this method to improve the performance of graph convolution network models over the enriched
patient graph. We evaluate our method over a patient graph created from the MIMIC-IV electronic health record dataset
enriched by initializing node embeddings using hierarchical medical taxonomies. We use type-specific domain knowledge
from hierarchical medical taxonomies such as the ICD-9 procedures, ATC medication, and LOINC laboratory test taxonomies.
Experimental results from a multi-label diagnosis prediction task over this graph demonstrate the efficacy of our approach.

Keywords
Hierarchical Domain Knowledge, Embedding Initialization, Multi-Label Classification, Graph Convolution Networks, Patient
Diagnosis Prediction, Inductive Artificial Intelligence

1. Introduction
The medical domain has accumulated an abundance of
domain knowledge structured as hierarchical taxonomies.
Integrating semantically rich domain knowledge such as
hierarchical taxonomies into Artificial Intelligence (AI)
technologies could improve their predictive capabilities
in numerous medical applications such as patient diag-
nosis prediction and protein function prediction using
end-to-end supervised learning [1].

Patients’ Electronic Health Records (EHR) can be read-
ily modeled as multi-relational graphs connect patients
with their associated medical histories, such as prescrip-
tions, laboratory tests, and procedures, as illustrated
in Figure 1. We, henceforth, name such graphs EHR
graphs. The AI technology of Graph Convolution Net-
works (GCNs) has recently become the de facto standard
for solving many medical problems over EHR graphs due
to their seamless ability to learn latent node embeddings
for subsequent down-stream tasks, such as node classifi-
cation, link prediction, and whole graph classification in
an end-to-end manner [2].
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Figure 1: EHR graph representation relating patients to labo-
ratory tests, procedure codes, and medication intake. Dashed
lines represent related information such as patient demograph-
ics and hierarchical medical structures such as LOINC, ICD-9
Procedures, and ATC as described in Section 3.2.

Much work has recently been put into the model-
centric development of novel GCN architectures, such
as RelationalGCN [3] utilizing the multi-relational na-
ture of graphs and GraphSAGE [4] with a scalable node
sampling approach. However, although rich semantic
information often exists alongside medical graphs, such
as textual descriptions, hierarchical taxonomies, and un-
certainty information [5], only a few works investigate
incorporating such information in a data-centric way for
improving classification and regression tasks [6].

As the structure of hierarchical medical domain tax-
onomies contains human-curated knowledge pertaining
to the properties and similarity between taxonomic con-
cepts, we surmise that such structural knowledge can
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benefit downstream tasks if integrated into AI models.
Hence, in this paper, we investigate a method termed
TreeEmb for encoding the structure of hierarchical medi-
cal domain taxonomies to pre-initialize node embeddings
in EHR graphs for improved classification performance
in a patient diagnosis code prediction task.

This paper is structured as follows; in Section 2, we
present related work using domain hierarchies in the
initialization of node embeddings and the task of patient
diagnosis prediction using graph convolution networks.
Section 3 presents the proposed method and theoreti-
cal concepts. In Section 4, we present the data used for
experimentation, followed by Section 5, where the ex-
perimental setup and results are analyzed and explained.
Lastly, in Section 6, we conclude and introduce future
work.

2. Related Work
Embedding Initialization. Research into integrating
domain information, such as textual descriptions, im-
ages, type-hierarchies, and uncertainty information into
graph convolution models has lately shown promise [5].
Pre-initializing node embeddings is a central method for
integrating auxiliary information with graph convolution
networks. Hamilton et al. [4] use text attributes, node
profile information, and node degrees to pre-initialize em-
beddings of three datasets. Zhao et al. [7] use TF/IDF and
binary word presence vectors to pre-initialize node em-
beddings for citation graphs. Other works pre-initialize
node embeddings by extracting graphlet features directly
from the structure of the input graph [8]. Ali et al. [9]
construct manual features such as age and follower count
for each social network user. While individual or com-
binations of manually constructed features have shown
promising results for the pre-initialization of node embed-
dings, none of these works have so far investigated inte-
grating hierarchical domain taxonomies to pre-initialize
node embeddings.

Patient Diagnosis Prediction. Diagnosis prediction
is the vital medical application of finding patient co-
morbidities using the patient’s medical history [10]. Hier-
archical domain knowledge has recently been introduced
into various AI models for diagnosis prediction. In [11],
hierarchical medical taxonomies are used to embed med-
ical concepts to leverage the general problem of data
insufficiency and model interpretability by learning hi-
erarchical medical concept embeddings, pre-initialized
on co-occurrence information by a weighted sum of con-
cept paths. Instead, in this work, we propose using the
concept taxonomies for pre-initializing node embeddings
of a medical patient graph for subsequent GCN-based
diagnosis prediction. The approach by Sun et al. [12]

utilizes GCNs on two bipartite graphs, e.g., symptom-
relationship and patient-diagnosis, to learn an optimized
space wherein patients will have a small distance to as-
signed diagnosis concepts. However, instead of dividing
domain knowledge and patient information into separate
bipartite graphs, we investigate the effect of integrating
hierarchical auxiliary domain knowledge with a patient
graph consisting of multiple patients and their related
medical concepts, not limited to symptoms. The work
closest to ours is that of [13], in which a knowledge graph
is built using auxiliary domain knowledge from the MED-
LINE medical corpus for multi-label prediction of patient
diseases. Patients are associated with diagnosis codes
related to laboratory tests, habits, and profiles in their
work. However, different from our work, their method of
diagnosis prediction is not related to graph convolutions,
and patients are not associated with each other.

3. Initializing Graph Embeddings
In this section, we formalize our method TreeEmb of using
hierarchical medical taxonomies to pre-initialize node
embeddings for the medical application of multi-label
diagnosis prediction. The overall approach is illustrated
in Figure 2, with section references for further details.

An EHR graph is first created from an EHR dataset as
detailed in Section 3.1. Concept embeddings are then cre-
ated from the hierarchical medical taxonomies’ structure
to derive meaningful latent descriptions of medical con-
cepts and used to pre-initialize node embeddings in the
EHR graph as described in Section 3.2. Finally, multiple
layers of graph convolutions, as described in Section 3.3,
are trained for multi-label patient diagnosis prediction.
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Figure 2: Illustration of the overall approach. Blue boxes
reference sections with further details on the specific step.
Arrows represent the directional flow of data. Orange boxes
represent our primary contribution of pre-initializing graph
node embeddings using concept features extracted from hier-
archical medical domain taxonomies. Orange arrows describe
the parts of the approach that are learned using backpropaga-
tion.



3.1. Multi-label Diagnosis Prediction over
EHR Data

This section introduces how a multi-relational patient-
centric graph can be constructed from an EHR dataset and
the challenge of multi-label patient diagnosis prediction.

EHR data relate patients to medical concepts such as
medications, laboratory tests, and procedures. Given a
set of patients 𝑆 and a set of medical concepts 𝐶 , where
𝐶𝑡 ⊂ 𝐶 is the subset of distinct medical concepts types,
then an EHR dataset can formally be defined as the set 𝐻
of tuples (𝑠, 𝑐) relating a patient 𝑠 ∈ 𝑆 with an associated
medical concept 𝑐 ∈ 𝐶 .

Given the example EHR dataset 𝐻 and a set of patients
𝑆 as illustrated in Figure 3a), we create an EHR graph as
follows.

The set of graph nodes 𝑉 is created as the union be-
tween the set of unique patients and the set of unique
medical concepts from 𝐶 as illustrated in Figure 3b), and
the graph edges are created as the set 𝐸 of relations and
reversed relations between concepts and patients from
𝐻 . Furthermore, every edge in 𝐸 is given an edge type
as specified by the medical concept type involved in the
relation. As an example, the edge (𝑠1, 𝑐

𝑚
1 ) could have

an edge type of 𝑝𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑 as illustrated in Figure 3c),
as the patient 𝑠1 has been prescribed the medication 𝑐𝑚1 .
The final patient graph created from 𝐻 and 𝑆 is illus-
trated in Figure 3c). For brevity, reverse relations are not
depicted in the graph. Over this graph, we define the
mapping function 𝑡𝑣 : 𝑉 → 𝑇 for getting the type of a
node, the function 𝑡𝑒 : 𝐸 → 𝑅 for getting the type 𝑟 of
an edge, and the function 𝑓𝑣 : 𝑉 → 𝐹 for getting the
embedding 𝑓 𝑡

𝑖 of a node 𝑣𝑖 of type 𝑡 = 𝑡𝑣(𝑣𝑖).
Given an EHR dataset and a set of diagnosis concepts

𝐷, the challenge of patient diagnosis prediction is to find
the subset 𝐷′ ⊂ 𝐷 pertaining to a patient 𝑠 ∈ 𝑆 s.t.
𝐷′ matches the actual set of diagnosis concepts related
to the patient. We model this challenge as a multi-label
classification problem.

3.2. Pre-initialization Using Domain
Hierarchies

Node features can be either pre-initialized using entity-
specific information or random-initialized and learned as
part of the model training process. Pre-initialization of
node embeddings can be done by extracting type-specific
entity information from the nodes or by extracting fea-
tures from the graph structure. Examples of the former
are pre-trained convolution neural networks for imaging
information and natural language processing models for
text data. An example of the use of graph structure is by
counting sub-structures such as graphlets [14]. However,
an overlooked source of rich semantic information can
be found in type-specific domain hierarchies prevalent

Figure 3: Illustration of the EHR graph creation process. a)
set of patients 𝑆 and an EHR datset 𝐻 . b) the graph nodes 𝑉
and graph edges 𝐸. c) the final graph represented by nodes
and typed directed edges. For brevity, reverse relations are
not depicted in the graph.

in many domains. Domain hierarchies are curated hier-
archies of related concepts. Inherently, their structure
contains knowledge regarding the relationship between
concepts, and each hierarchical layer contains informa-
tion about the properties of its concepts. Hence, we argue
that the position of a concept within hierarchies contains
rich semantic information.

In the medical domain, structured medical concepts
such as medications, diagnoses, laboratory tests, and
procedures are coded in hierarchical taxonomies. Medi-
cation can be coded using the world health organization’s
anatomical therapeutic classification system (ATC) [15]
and classifies medication based on its active ingredients
and organ or system. Hence, the location of medications
within the hierarchy contains semantic information rele-
vant to the task of diagnosis prediction. As an example,
for the medication with code 𝐴10𝐵𝐴02, e.g., metformin,
the first level of the ATC hierarchy specifies that the
medication targets the alimentary tract and metabolism
system. Level two specifies the therapeutic subgroup,
e.g., the drug is used in diabetes. Level three defines the
pharmacological subgroup, e.g., the drug lowers blood
glucose. The fourth level indicates the chemical subgroup
of the drug, in this case, biguanides, and the last level
specifies the chemical substance, e.g., metformin. Given
that a patient has received metformin, the patient likely
suffered from type 2 diabetes. Explicitly integrating such
hierarchical information into concept embeddings should
enable the AI model to learn from the proximity of similar
concepts.

Surgical procedures performed on patients can be
coded using the ICD-9 Procedures (PROC) taxonomy [16]



Figure 4: Example steps of our graph convolution. a) A 2-layer
2-node fanout sampling strategy finds the neighborhood 𝐾1

of patient 𝑠1. Each of the sampled nodes {𝑐𝑝1, 𝑐𝑚1 } uses the
same sampling strategy on their immediate neighborhood 𝐾2

to further sample nodes {𝑠2, 𝑠3, 𝑠6, 𝑠7}. b) The sampled sub-
graph with node features 𝑢1 to 𝑢7 as extracted through the
node feature mapping 𝑓𝑣 . c) Our combined graph convolution
aggregate and update step. A relation-specific transformation
matrix 𝑊 𝑖 is applied to the element-wise mean ⊙ of similar
typed entities as done in [4]. Finally, a non-linear activation
function 𝜎 is applied to individual convolutions. If differ-
ent typed features are to be combined as in the combination
of {𝑢1, 𝑢

′
2, 𝑢

′
3} the element-wise mean combines individual

transformations.

grouping related procedures based on their site of op-
eration. Given that a patient has received the surgical
procedure with code 07.2, e.g., partial adrenalectomy,
the patient likely suffered from a disease related to the
endocrine glands.

Laboratory tests can be coded using the LOINC con-
cept codes [17] over which a hierarchical taxonomy ex-
ists, grouping related laboratory tests by their class, com-
ponent, and system, providing valuable information on
the purpose of laboratory tests.

Using the aforementioned hierarchical medical tax-
onomies, and the example of the medical concept with
code 𝐵02𝐴𝐴02, e.g., Tranexamic acid from the ATC
hierarchy, we propose the TreeEmb method for pre-
initializing node embeddings using type-specific hierar-
chical domain knowledge. Starting from 0, a unique index
is assigned to each node in the tree as illustrated in Figure
5b). Subsequently, a depth-first search is performed from
the root of the hierarchical domain taxonomy to each leaf
node for collecting the indexes along the shortest path
to each leaf. Suppose the concept 𝐵02𝐴𝐴02 is given the
initial index 3, then the indexes between 𝐵02𝐴𝐴02 and
the root node is [0, 1, 3] as illustrated in Figure 5c). Even-
tually, leaf nodes are assigned an embedding as the one-
hot encoded version of their shortest path indexes. As
the concept 𝐵02𝐴𝐴02 has accumulated indexes [0, 1, 3]
and as the example tree has 11 nodes, 𝐵02𝐴𝐴02 is as-
signed an embedding vector of dimensionality 11 with
1 in the positions 0, 1, and 3 and 0 in every other posi-
tion as illustrated in Figure 5d). The computed features

of tree leaf concepts can then be used to pre-initialize
node embeddings. Furthermore, using this embedding
technique ensures that concepts closely related in the
tree will have similar embeddings compared to concepts
far away. Hence, we conjecture that GCNs will be more
easily able to learn that groups of closely related concepts
are used in treating the same disease, thus decreasing the
epistemic uncertainty by adding domain knowledge.

0

1 2

3 4 5 6 7 8

9 10

0

1 2

3 4 5 6 7 8
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10
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Figure 5: TreeEmb method for constructing concept embed-
dings from hierarchical taxonomies. a A tree-structured hier-
archical taxonomy. b) breath first search indexes every node
from 0. c) Depth-first search from the root to each leaf col-
lects shortest path indexes. d One-hot encoding generates
embeddings for leaf node concepts.

3.3. Graph Convolution Networks
Graph convolutions can learn from the structure of
graphs by propagating node features between neighbor-
ing nodes using learnable aggregation and update func-
tions as illustrated in Figure 4. Aggregation functions
combine neighborhood information by imposing trans-
formation matrices on the output of the neighborhood
aggregation. Update functions, then learn how to in-
tegrate information from the current node embedding
and the features of the neighborhood aggregation func-
tion. We employ a multi-relational variant of the Graph-
SAGE [4] algorithm for learning latent node embeddings
for graphs with multiple relation types between concept
nodes by exploiting not only the structure but also the
multi-relational nature of EHR graphs.

4. Data
We perform experiments on the MIMIC-IV [18] EHR
dataset from PhysioNet [19] consisting of 382, 278 in-
tensive care unit patients from the Beth Israel Deaconess
Medical Center from the period 2008 to 2019. MIMIC-IV



encompasses laboratory results, vital signs, diagnoses as-
certained, administered medications, and demographics.
The data is structured as a relational database.

To disambiguate medical concepts, we transform the
dataset into the observational medical outcomes part-
nership (OMOP) common data model (CDM) [20] using
an extract-transform-load (ETL) conversion flow.1 The
CDM format disambiguates and standardizes medical
concepts and thus provides a means of interoperability
for subsequent AI models to operate on disparate medi-
cal datasets converted into the CDM. In the CDM format
laboratory tests are coded using the LOINC taxonomy,
procedures are coded using the ICD-9 procedures taxon-
omy, and laboratory tests are coded using the RxNorm
taxonomy [21]. Since RxNorm is a flat taxonomy, we map
each medication concept through its active ingredients
to the hierarchical ATC medication taxonomy.

Table 1
Number of distinct concepts for EHR data types.

Data Type Distinct Concepts
Medication 1, 749
Diagnosis 537
Laboratory Test 1, 328
Procedure 1, 228

For patient multi-label diagnosis prediction, we build
the EHR graph based on patient diagnostic EHR con-
cept types used in related work in EHR-based diagnosis
prediction [22, 23, 10] and end up with demographic in-
formation, prescriptions, procedures, laboratory tests,
and the task labels as patient diagnosis codes.

Patient diagnosis codes are coded using the 9th version
of the International Classification of Diseases (ICD-9) and
consist of approximately 13, 000 diagnosis codes [24].
We omit codes related to the ICD-9 E and V hierarchies
as these are related to external causes of injury and are
generally not discernible by EHR data. We further omit
hierarchies of codes as summarized in Table 2. Omitting
these hierarchies, we are left with 8, 681 disease codes.
Since it is usually not possible to generalize from a low
number of cases, we omit codes for which less than 500
patient cases exist. We are ultimately left with 128, 605
patients diagnosed with a total of 1, 054, 670 diagnoses
from 537 distinct diagnosis codes. The full list of 537
diagnosis codes are available online2. Table 1 summarizes
the number of distinct concepts for each medical EHR
concept type.

1https://github.com/OHDSI/MIMIC
2https://github.com/dkw-aau/graph_embedding_initialization

Table 2
Summarizing disease codes omitted from further analysis.

Codes Count Description
290− 319 375 Mental Disorders
630− 679 530 Comp. of Pregnancy
780− 799 330 Injuries and Poison
800− 999 1, 617 Ill-Defined Conditions
𝐸 and 𝑉 1, 467 Ext. Causes of Injury

5. Experiments and Results
To investigate the effect of pre-initializing node embed-
dings using domain hierarchies, we conduct several em-
pirical experiments as summarized in Table 3 using the
model pipeline as illustrated in Figure 2. Each exper-
iment is trained on the problem of multi-label patient
diagnosis prediction using a multi-relational version of
the GraphSAGE algorithm as described in Section 3 with
the input EHR dataset described in Section 4. In the Rand
experimental setting, initial graph node embeddings are
random-initialized using Xavier initialization [25] and
made trainable as part of the supervised model training
phase [26]. Hence, Rand serves as a transductive base-
line experiment. Transductive methods generally per-
form better on subsequent downstream prediction tasks,
however, with the cost of not being able to extrapolate
to unseen examples [4].

Table 3
Overview of experimental settings.

Experiment Learning Embedding Data
FeatInit Inductive Hierarchical Taxonomies
Rand Transductive Xavier Initialization
Graphlet Inductive Graph Structure

In the Graphlet experimental setting, features are pre-
initialized using state-of-the-art graphlet and edge count
features [14] as in [8]. Graphlet serves as an inductive
baseline experiment, as trained models can extrapolate
to unseen examples.

The FeatInit experimental setting investigates the ef-
fect of pre-initializing node concept embeddings using
the latent information contained within hierarchical med-
ical taxonomies using the TreeEmb method as described
in Section 3. In FeatInit, node embeddings should al-
ready contain domain information relevant to the task
of diagnosis prediction; hence embeddings are kept con-
stant during training. Furthermore, in the FeatInit ex-
perimental setting, patient features are pre-initialized
using categorical values for sex, race, and ethnicity and
a continuous variable for the patient’s age. Moreover, as
FeatInit does not train node embeddings, trained models
can extrapolate to unseen examples.

https://github.com/OHDSI/MIMIC
https://github.com/dkw-aau/graph_embedding_initialization


Table 4
Parameter settings for hyperparameter optimization using
tree-based Parzen estimation. 𝑈 means uniform distribution.

Parameter Values
Model Depth {2, 3}
Learning Rate {1e-3, 5e-3, 1e-2}
Dropout 𝑈(0.0..0.5)
Hidden Dim {32, 64, 128, 256}

5.1. Experimental Details
For each experiment, we perform 100 iterations of tree-
based Parzen estimation (TPE) [27] for hyperparameter
optimization over the set of parameters as summarized
in Table 4. Each iteration is trained using the Adam [28]
variation of stochastic gradient descent with binary cross-
entropy as the loss function. Each experimental setting
is investigated on the prediction of five sets of diagnosis
codes as in [29, 30], with each set relating to a level of
aggregation on the hierarchical ICD-9 diagnosis taxon-
omy. In the first setting, named L5, the task is to predict
the raw comorbidities of patients from the entirety of
the 537 diagnosis codes as described in Section 4. The
remaining settings investigate diagnosis code prediction
on aggregated levels of the ICD-9 diagnosis taxonomy
named L4 through L1 with 427 disparate diagnosis codes
for L4 to 13 disparate diagnosis codes for L1. Aggregat-
ing diagnosis codes enables us to investigate the effect
of pre-initializing graph concept embeddings from hier-
archical medical taxonomies extracted through TreeEmb
on classification problems of varying complexities.

As graph convolutions require the same dimensional-
ity for each node type, we do an initial transformation on
node input features using type-specific non-linear trans-
formations into the feature dimensionality required by
the graph convolution layers. Thus, the transformation
is learned end-to-end with the task of diagnosis predic-
tion. Additionally, we transform the output node embed-
dings as computed by the final convolution layer using
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Figure 6: Experimental results of diagnosis code prediction
on five sets of diagnosis codes for the experimental settings
Rand, Graphlet, and FeatInit.

Figure 7: Monotonicity of LOINC concept embedding space.

a non-linear transformation into the dimensionality of
the number of diagnosis codes in a specific level of ICD-9
aggregation, such that we end up with one output node
for each predictable diagnosis code. We split patients
into training validation and test sets with sizes 80/10/10
and used early stopping based on validation loss.

To evaluate and compare across experimental settings,
we use the standard harmonic mean F1 value between
the micro-averaged precision and recall as it is com-
monly used in the evaluation of multi-label classification
tasks [13]. Furthermore, to investigate the robustness of
pre-initializing features using TreeEmb embeddings, we
evaluate the median over all 100 model iterations for each
experiment. All experimental code and data are available
online3.

5.2. Results and Analysis
Figure 6 presents the results for each experimental setting
over all iterations of the TPE. Experimental results in
terms of the F1 value for the median and best-performing
models are summarized in Table 5.

As illustrated in Figure 6, using TreeEmb embeddings
for pre-initializing node features resulted in improved F1
scores compared to learning node embeddings as part of
the training and pre-initialization using graphlet features.
Furthermore, using unpaired t-test between Rand and
FeatInit and between Graphlet and FeatInit results for
any level of diagnosis code aggregation results in the two-
tailed P value 𝑝 < .001, which by conventional criteria
indicates a statistically significant difference between the
two groups.

As summarized in Table 5, for each setting, the best
performing FeatInit model outperforms the best per-
forming Rand and Graphlet models by 1.42− 6.14 and
6.80− 12.30 percentage points in terms of F1 score re-
spectively. These results indicate that the initialization
of node features using the hierarchical knowledge con-
tained within domain taxonomies could provide valuable

3https://github.com/dkw-aau/graph_embedding_initialization

https://github.com/dkw-aau/graph_embedding_initialization


Table 5
Experimental results in terms of harmonic mean F1 scores for the experimental settings Graphlet, Rand, and FeatInit on five
diagnosis code prediction problems with varying number of classes. Imp. presents the relative improvement in terms of F1
value for initializing concept embeddings using the TreeEmb embeddings.

Median Best
Setting Graphlet Rand FeatInit Imp. Graphlet Rand FeatInit Imp.
L5 - 537 codes 26.54 30.30 32.84 2.54 27.21 30.98 34.56 3.58
L4 - 427 codes 25.27 32.58 35.60 3.02 26.01 32.87 37.56 4.69
L3 - 229 codes 34.00 40.01 45.40 5.39 34.81 40.97 47.11 6.14
L2 - 61 codes 47.18 55.25 59.30 4.05 48.21 56.41 59.69 3.28
L1 - 13 codes 66.72 72.69 74.58 1.89 68.25 73.63 75.05 1.42

knowledge for solving domain-specific problems such as
the medical problem of patient diagnosis prediction.

The embeddings produced by TreeEmb should reflect
the structure of the hierarchical taxonomy. Assuming
that semantically similar concepts are close in the tree
and disparate concepts far from each other, the distance
between constructed embeddings should increase as the
path length between nodes in the tree increases. To in-
vestigate this aspect of the TreeEmb embeddings, we com-
pared the Euclidean distance between pairs of concept
embeddings with the length of the shortest path on the
tree between the pairs. As illustrated in Figure 7, the
Euclidean distance between node embeddings is a mono-
tonic increasing function given the length of the shortest
path between nodes. This means that similar concepts
will have similar embeddings while dissimilar concepts
will have disparate embeddings.

6. Conclusion
In this work, we proposed that hierarchical medical tax-
onomies contain valuable knowledge that can be utilized
by the pre-initialization of graph node embeddings. We
then presented a method termed TreeEmb to do so. We
evaluated the proposed method on the medical prob-
lem of multi-label diagnosis prediction by constructing
TreeEmb embeddings for the pre-initialization of concept
nodes in an EHR graph for the three medical hierarchical
taxonomies ATC, LOINC, and ICD-9 Procedures. Experi-
mental results from the prediction task on five different
sets of diagnosis codes of varying difficulty demonstrate
the superiority of TreeEmb embeddings over a transduc-
tive baseline of learned concept embeddings and an in-
ductive baseline of pre-computed graphlet features. All
experimental code and data are available online3.

For future work, we aim to investigate the proposed
method in domains beyond the medical. Furthermore,
since not all levels of hierarchical domain taxonomies
may be equally important for the given prediction task,
we aim to investigate trainable attention mechanisms for
constructing concept embeddings from only the most
relevant hierarchical knowledge. We also aim to explore

other graph convolution models, including attention tech-
niques.
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