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Abstract

The rendezvous and docking problem between spacecratfiptical orbits is dealt with
in this doctoral thesis. The main contributions are on tifetike dynamics solutions and
the closed loop relative motion control.

The motivation is that such missions on non circular orbé@gennever been per-
formed. As a study case for the development the Europearm#aitx Transfer Vehicle
and the International Space Station is chosen.

First a linear dynamics model describing the relative pmsitlynamics and kine-
matics between two spacecraft on any closed orbit will belb@ed. A compact closed
form solution to this system of differential equations viié developed in the form of a
minimum realization transition matrix. This will form theabis for developing the ex-
pressions for genera@l V. maneuvers and the special properties of radial and taragenti
ones.

The differential equations for the relative position arentbined with the developed
attitude linear models. This will form a complete coupletehr model fo6 degree of
freedom motion between any two arbitrary points on the twacspratft.

Secondly control methods and designed Guidance, Navigatid Control for thé&
degree of freedom systems will be compared and traded o#.pEniodic time varying
properties of the dynamic system are evaluated and doméimslifferent design needs
are established. The time varying parameters as well agtaimtées are treated fully
in the robust control framework. Detailed Linear Fractiohansformation models are
developed analytically for all relevant parameter vaoiasi, which leads to a unified
design and analysis method for this type of systems.

Finally a comprehensive verification and validation of h# designs is performed.
This is achieved using multi variableanalysis in the linear domain. Further verification
is performed by means of nonlinear simulations and stegiséinalysis.
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Synopsis

Denne Ph.D. afhandling behandler Rendezvous og samméngsbproblemerne
mellem rumfartgijer i elliptiske baner. Afhandlingens hdbiglrag bliver lgsninger af
den relative dynamik og kinematik, samt reguleringslggeiraf de relative bevaegelser.

Projektet er motiveret af, at sddanne missioner i elkatisaner ikke tidligere har
veeret opsendt. Det Europeeiske rumfartgj Automated Traksfacle og den Interna-
tionale Rumstation er i afhandlingen valgt som eksempel.

Farst bliver udviklet en model for den relative dynamik ogédnatik mellem to
rumfartgijer i et vilkarlig kredslgh. En kompakt Igsninigdétte differentialligningssys-
tem bliver udviklet i form af en overfgringsmatrice pa nmval realiserbar form. Dette
danner grundlaget for udvikling af generelle udtryk fdt” mangvrer og de specielle
egenskaber for radiale og tangentiale mangvrer.

Differentialligningerne for den relative position blivkombineret med den udledte
linescere model for den relative attitude. Tilsammen givetaenodeller en komplet
koblet model med frinedsgrader for et vilkarligt punkt pa de to rumfartwje

Derneest sammenlignes design metoder og designs for Geidalavigation og
Control systemer med frihedsgrader og en strategi bliver valgt for det viderddbr
Det periodiske tidsvarierende systems egenskaber blv&ueret og omrader med
forskellige kravspecifikationer identificeres. De tidseeende parametre, samt alle
usikkerheder, bliver analyseret ved hjeelp af metoder foaisbregulering. Detaljerede
Linear Fractional Transformation modeller udvikles fdeaklevante parameter varia-
tioner, hvilket farer frem til en samlet design og analyséade for denne type systemer.

Til slut udfares en tilbundsgaende verifikation og validgraf alle udfarte designs.
Til dette anvendes multivariabeld analyse i det lineaere omrade. Dette verificeres
yderligere ved hjeelp af ulineaere simuleringer og stakistiwlyse.

Finn Ankersen, September 12, 2011
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Chapter 1

Introduction and Background

Most missions in space involve only one spacecraft and theyttee most common.
This is nevertheless not sufficient to fulfill the objectivésertain missions. The Ren-
dezVous and Docking or Berthing (RVD) is a key technologyichitis required for most
missions involving more than one spacecraft. Missions efftilowing type will need
this technology:

e In orbit assembly of space structures.

e Transportation of crew to and from space stations.

Retrieval, capture and return to the Earth of a spacecrhfs.¢an e.g. be rejoining
a lander to an orbiting vehicle followed by a return.

Supply to space stations or other spacecratft.
e Formation flying spacecraft constellations, excludingdbeking part.

The first rendezvous and docking between two spacecraftgl@ae on March 16,
1966, when Armstrong and Scott in a Gemini spacecraft pagédrmanual RVD with
the unmanned Agena target vehicle. The first automatic R\WR pdace on October 30,
1967, when the Soviet spacecraft Cosmos 186 and Cosmos t88diaSeveral RVD
operations within and between the American(US) and RuS@viet) space programs
have been there later, some automatic but most under maonitabcby astronauts and
cosmonauts. Most of these operations have been in conneatiothe respective space
programs like:

e Apollo (US, 1968-1972) and Skylab (1973-1974) programs.
e Salyute and Mir (Soviet and Russian) programs (1971-1999).

e Space Shuttle (US) service and retrieval missions to vaisatellites.
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2 Introduction and Background

In western Europe RVD technology has been studied by thefearoSpace Agency
(ESA) since 1984 as technology studies and later in cororeeatith the Columbus Man
Tended Free Flyer (MTFF) and the Hermes space plane. Theefanmtended to dock
with space station Freedom and the latter to visit the MTFBI&Qhi, Fehse, Paris &
Ankersen 1999).

Under the influence of the political situation in Europe tbotthose programs were
canceled in the beginning of the nineties. After the merdgéhe Western and Eastern
space station programs into the International Space 8ta%S), the unmanned Auto-
mated Transfer Vehicle (ATV), became part of the Europeantrdmition. The ATV will
provide resupply and re-boost missions to the ISS. Parteptbgram is provided by
other vehicles from the other international partners fromWS, Russia and Japan.

RVD is a multi disciplinary technology which enables spaeaédo:

e Bring the two spacecraft co-orbiting on the same orbit.

e Perform maneuvers of the chaser spacecraft with respele tiatget spacecraft.
Maneuvers can be of many different types, which will be descrin Chapter 2.

e Perform the actual docking/berthing between the two spafteto form a com-
posite.

e Perform the attitude and orbit control of the composite.

e Facilitate the exchange of material, persons and signaigelea the two space-
craft.

e Perform the separation of the two spacecraft and the fofigweparation maneu-
vers to bring them safely apart, both in the short and long ter

The first and second bullet in the previous list are the majarrmost complex ones in
terms of both development and operations. The second Iilldie dealt with exten-
sively in this work.

1.1 The RendezVous Process

The RVD process consists of a series of orbital maneuversanglolled trajectories,
which will bring the vehicles closer together and eventuaito the close vicinity of
each other. The last part of the approach will have to briregctiaser spacecraft close
to the target spacecraft with increasingly narrow cormsdor both the position, attitude
and their respective time derivatives.

e Inthe case oflockingthe Guidance, Navigation and Control (GNC) system of the
chaser spacecraft shall bring its state inside the envelbfiee requirements for
the docking system to enable the capture.
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1.1 The RendezVous Process 3

¢ In the case oberthingthe GNC system of the chaser spacecraft shall place itself
within a box with nominally zero relative velocity betwedmetchaser and the
target for grappling by a manipulator arm, which will theartsfer the spacecraft
to its position for the docking. See also (Strauch, Gorladnkersen 1996).

The complexity of the RVD process results in a multitude dfedént modes and con-
straints driven by different requirements to fulfill the si@n. A high level overview
will be provided here.

e Launch and Phasing: To arrive at the proximity of the target spacecraft the
chaser spacecraft must be brought onto the orbital plankeofarget with the
same altitude and eccentricity. As the orbital planes dhith time, due to Earth
gravity field irregularities, the difference in plane dsifust be taken into account
for the choice of the chaser orbital plane at launch (Vin880 The height of the
chaser phasing orbit depends on the phasing angle whiclo li@sdaught up and
the time available to do so. Delays due to a launch or a taegeliness will have
an impact on which orbit to launch into.

e Proximity Operations: Post launch changes of the target orbit, e.g. due to a de-
bris avoidance maneuver, will have to be taken into accaurthe determination
of the arrival point for starting the RvVD maneuvers and théoard guidance will
have to be updated.

The illumination conditions during the final part of the RVDanmeuvers have to
be right in order to enable monitoring by the crew eitheratigeor via cameras.

During the RVD maneuvers there are requirements in termppfoach corridors
to be followed and hold points to be waited at for monitorinthis has to be
compatible with passively safe trajectories as far as ptesstven in the case of
lower or higher than nominal maneuver burns (Fehse & Ort&g8)L For the
parts where this is physically not possible, due to the cless and the associated
velocity, an active Collision Avoidance Maneuver (CAM) BHze performed to
bring the chaser to a passively safe location with respeitigdarget.

e Attached Phase: The part where there are no maneuvers but where the space-
craft is latched and locked to the other spacecraft. Duthigghase there is an
exchange of material, liquids, electrical signals etc.sTgart will not be treated
any further in this work.

e Communication Constraints: For the communication between the target and
ground to the chaser there are many constraints which hasflaerice on the
trajectory design. Even by utilizing relay satellites itrist possible to obtain
a full coverage from ground for monitoring and interventiarhich call for an
autonomous on board design. Further the data rate is tjpigaited to a few
kilobits per second, restricting the type of data that catrdmesmitted.

e On Board System Constraints: The attitude of the chaser will be imposed by
sensors, communication constraints, possibly by the tiem of the solar pan-
els, thermal radiators and the target attitude during tta¢ ipproach. The thruster
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layout of the chaser will also pose constraints on the maersuas well as those
coming from the sensory equipment of the spacecraft. Dutiegar away ma-
neuvers the navigation is based on e.g. Global Positionystes (GPS) signals
and during the close maneuvers on optical sensors whichroaidp both relative
position and attitude measurements.

Chapter 2 will provide a more comprehensive descriptioreftypically involved ma-
neuvers.

1.2 A Panoramic Overview of the Field

This thesis will deal with the problem of bringing two spa@dt, each on their quasi
coplanar orbit, together in space by means of either doakitgerthing.

The motivation for the thesis is, that there has not earleambperformed any au-
tonomous missions to a space station like the ISS, with ixdbile structure, as well as
the level of the ATV on board autonomy in elliptical orbitshére is also an increasing
demand for GNC for proximity maneuvers for future missionigvinigher complexity
than today.

1.2.1 Mission Concepts

Mission analysis leads to the main elements described ipt€ha.1 and the require-
ments for the mission. They will not be detailed in this teebut different types of RvD
missions have been addressed, with the planetary and cppectrajectory corrections
planning and contingencies addressed in (McAdams 199 MeCtanding and relative
trajectories for Rosetta is dealt with in (Hechler 1997)s8ion design with concurrent
engineering, minimization of mission life cost and the ssfithe share between space
and ground segments can be found in (Landshof, Harvey & Ndlrs894). Relative dy-
namics, safe trajectories and collision avoidance isstees@ered by (Eckstein 1987)
and general RVD mission planning for trajectories and reiag by (OMV 1985). Mis-
sion planning tools for the Shuttle and Apollo/Soyuz areedbgd in (McGlathery 1973)
and feasibility analysis, launch and operation windows timé line by the Flight De-
sign System (Friedlander & Hare 1987). Autonomous on boasdion planning using
covariance techniques is developed in (Geller 2006) takitggaccount both the GNC
system and the nonlinear dynamics in a linearized manner.

1.2.2 Relative Motion Circular Orbit

The relative dynamics between two spacecraft or bodies bas kesearched by sev-
eral in the past. The first recognized work was by (Hill 187é¥atibing the per-
turbed Moon motion relative to its non perturbed orbit aneérddormulated linearly
in (Hill 1878). Early ideas by (Clohessy & Wiltshire 1959) reepresented at the In-
stitute of the Aerospace Sciences (IAS) meeting and latbtighed in (Clohessy &
Wiltshire 1960). They have become the most well known andl uséative motion
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equations, though by modifying the results in (Hill 1878)dygonstant term, the dif-
ferential equations of (Clohessy & Wiltshire 1960) appeizeatly. Based on these
results (Wheelon 1959) has worked on two pulse traject@iesng at development
of guidance strategies followed by work on optimal transif@e to minimize theAV

by (Eggleston 1960). Fuel optim&l” expressions and guidance algorithms were de-
veloped by (Spradlin 1960) followed by equations of praadticse for finite pulses and a
closed form solution by (Tschauner & Hempel 1964). At the sdime (London 1963)
attempted to arrive at more accurate equations by meansariderder approximations.
Work on new circular orbits has been performed by (Anthonya&aki 1965) with ap-
proximate analytical solutions faxV' terms and eccentric chaser orbits were addressed
by (Berreen & Crisp 1976) with extensions of the domain ofdjapproximation by a
polar coordinate formulation followed by a nonlinear Tayderies formulation in con-
figuration space of elliptic orbits with respect to circudaes by (Gurfil & Kasdin 2004).
Fuel optimal maneuvers and simulation results are in (€a884) with minimum fuel
maneuvers in a quadratic programming formulation in (Neff&wler 1991). A Tay-
lor series derivation with a closed form solution was perfed in (Ankersen 1994)
leading to general analytical expressions for arbitrarigny finite pulse maneuvers as
well as a traveling ellipse formulation of the closed sauotand found in (Fehse 2003).
Multi pulse phasing has been addressed in iterative algostfor fuel saving in (Luo,
Tang, Lei & Li 2007). Beyond the commonly used Clohessy Wites (Schweighart &
Sedwick 2002) has developed linear dynamics and closedi@oliaking into account
the J> term in the equations and (Carter & Humi 2002) by includingdypatic drag in
the solution of the equations. A rather complex set of netasiecond order equations
have been developed in polar coordinates by (Karlgaard &&2003), but with few ap-
plications in practice. The terminal rendezvous problethwiinimum relative distance
as performance index for genetic algorithms is dealt witfLimo, Lei & Tang 2007).

1.2.3 Relative Motion Elliptic Orbit

Works on arbitrary elliptic orbits have been less addregsehde literature than circu-
lar ones and practical usable general closed form soluaoagare. One of the first
to address the elliptic orbits was (Lawden 1954) in conoecith two pulse coplanar
transfers and minimal trajectories with and without the Wwlsalge of time. This pre-
ceded the formulation of the well known circular orbit eqoas. A generalization of
the results of (Clohessy & Wiltshire 1960) to a canonicahfaxith the true anomaly
as independent variable was done by (Tschauner & Hempel)18&8ing to a com-
plex homogeneous solution in restricted cases. In (Tsaal®65) the independent
variable was changed to become the eccentric anomaly anlihipating acceleration
terms a full solution of guidance equations were found legdd a system with peri-
odic coefficients reported in (Tschauner 1967). The Tscaatiempel system has also
been addressed for small orbital elements’ perturbatio(Seéngupta & Vadali 2007) to
solve the equations. (Shulman & Scott 1966) found anallysiclutions using the true
anomaly, but it suffered from strong limitations regardinigial conditions. Quadratic
terms were considered by (Euler & Shulman 1967) and solveal differential correc-
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tion method without reaching a closed form solution. A masolution to the systems
in (Tschauner 1965) were found by (Weiss 1981) using thergdceanomaly lead-
ing to a rather complex solution for practical use. (Car@9d) modified the integral
used by (Lawden 1954) in order to remove singularities indbkition and make it
valid for non circular orbits. In (Lawden 1993) optimal indpiwre transfers were found
based upon his earlier work. Further to the others’ work (HL®93) attempts finding
a solution having a time varying mass of the chaser spadechadifferent approach
than most other solutions is addressed in (Garrison, Ga&leelrad 1995) finding
the differential dynamics by differences of the Kepleridaneents directly leading to
an analytical invertible transition matrix. A closed formlgion using time and true
anomaly is addressed in (Broucke 2002) and a global nomlimegion is researched
using energy matching conditions in (Gurfil 2005). Orbinsgers using the develop-
ment and solutions in Chapter 4 and (Yamanaka & Ankersen)280Reated using
a Linear Quadratic formulation as a Null Controllable withrshing Energy prob-
lem in (Shibata & Ichikawa 2007). Another polynomial apgro&tion is proposed
in (Guibout & Scheeres 2006), but formulated as a 2 point danyvalue problem. Ge-
ometrical methods are used in (Gim & Alfriend 2003) to find thes complicated state
transition matrix including the/, gravitational term and &-orbital element time ex-
plicit formulation in (Lane & Axelrad 2006) applied to Fortian Flying (FF).x control
of such a system performed in (Xu, Fitz-Coy, Lind & Tatsch ZDManifolds for min-
imum, maximum and mean relative motion in orbital elemeninfdas found in (Gurfil
& Kholshevnikov 2006) and RVD coordinates for a planar iietgd 3 body problem is
addressed by (Humi 2005).

1.2.4 GNC Architectures

This section will survey the on board GNC system architectigspite it is sparsely rep-
resented in the literature. In connection with the earlierles and MTFF (Brondino &
Legenne 1991) addresses the on board architecture seea sgstem point of view, as
well as mission and testing aspects. This took place at the siane as the Orbital Ma-
neuvering Vehicle (OMV) , which on board architecture is mdded in (Parry, Golub
& Southwood 1989) as well as Man In the Loop (MIL) issues inpees to the feed-
back loop architecture. An architecture for both RVD andptary landing is proposed
in (Jones 1992) using cruise missile technology. The AT\W@ids architecture can be
found described in (Fabrega, Godet, Pairot & Perarnaud)li@@@ther with analysis
of the drivers for the avionics selection and its monitorfngctions. The only, apart
from Apollo 7 , technology demonstration satellite dedéchto RVD is the Engineer-
ing Test Satellite (ETS)-VII , where the architecture is Ka{vano, Mokuno, Kasai &
Suzuki 2001) and it reports on the in flight performance of ®BSed relative naviga-
tion. The general ETS-VII on board system is addressed bsmnéreka 1997). Within
the ATV Rendezvous Predevelopment (ARP) a RGPS flight exygari was performed
between the Shuttle and the MIR space station describedang®li & Marcille 1998)
and its post flight analysis is addressed in (Moreau & MacllpoOd). Within the
same ARP program, the guidance and control tradeoffs ar&amnrfaud, Tsang &
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Sommer 1997) together with a description of the integratesigh approach leading
to auto coded flight software. The GNC performance of ATV urttieuster failures
is addressed in (Ankersen 1990Further the influence of sensor and actuator failures
on the robustness of the control system is addressed by #éReaghami, Sparks &
Lim 1998) by means of measuring the poles distances to thgiivagy axis. A convex
optimization is applied in (Hechler & Fertig 1987) to corisafe trajectories and relative
motion for arbitrary perturbations and thrust is dealt viittiHa & Mugellesi 1989) for
the case of the Eureca spacecraft retrieval by the Shutttepmlator arm. A guidance
scheme for autonomous RVD using artificial potential fumasiis proposed in (Lopes &
Mclnnes 1995) and later further developed for ARP. A distid#al architecture for min-
imum time and fuel maneuvers with electrical propulsionliipgc orbits is developed
in (Campbell 2003). In summary has been addressed arahitdtsues dealing with
on board implementation of GNC, MIL, guidance and distréoliérchitectures. Parts of
this information has flown into the developmentin Chapter 6.

Mission and Vehicle Management (MVM) and Failure Detectieplation and Re-
covery (FDIR) are investigated in several areas. Developmoia fault tolerant GNC
system is in (Mokuno, Kawano, Horiguchi & Kibe 1995) togethéth safe mission
profile trajectories and a 3 processor fault tolerant coepatdeveloped in (Sund, Tail-
hades & Linden 1991) with FDIR directly on the chip. Fail safamputers are also
addressed by (Vaissiere & Griseri 1990). A more extensivikwa MVM and FDIR is
reported by (Soppa, Sommer, Tobias, Panicucci & Oliviertvial 991) in terms of safe
trajectories, voting concepts, parity mapping, consistemd coherence checks aid
tests. RVD expert systems to improve operations are in (&ooé& Bochsler 1987)
and manual intervention in the navigation loop under fatubased upon camera im-
age information is developed by (Vankov, Alyoshin, Chligeehse & Ankersen 1996).
The identification of the point of no return under thrusteewgailure is addressed
by (Ankersen 1996) and the accuracy for finite pulse transfers in (Ankersenl1)]99
How much on board autonomy is needed for ground control withimmum safe ap-
proach distance and communication delays is dealt with &lléG2007).

1.2.5 GNC Designs

Early guidance and navigation systems were not made fonauty, but to off load
part of the astronauts workload in steering the spacec@ie such approach was the
Minkey program, which would be estimating the position aetbeity in a Kalman fil-
ter in (Copps & Goode 1971), performingl” computations and to be used for Apollo
15, 16, 17 and Skylab. The flight performance of Skylab usiqpplk is reported
in (Belew 1973) having a smooth RVD domain as it was using f@bMoment Gy-
ros (CMG) for the station control. The use of the Apollo radad Inertial Measure-
ment Unit (IMU) in the Shuttle during Station Keeping (SK)thvivertical thrust leading
to limit cycle motion is addressed by (Gustafson & Kriegsm&73). They also de-
vised a square root formulation of its covariance. To thaiom based discrete time
navigation, is reported in (Ho & McClamroch 1993) with simatibn results. A control
design for berthing in a station assembly scenario is in (Huaiak, Lin & Kilby 1993)
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together with results. A Multi Input Multi Output (MIMO) felback design of the
Shuttle manipulator arm is in (Scott, Gilbert & Demeo 1998)viding better damp-
ing using primarily tip mounted accelerometer measuremeht ;i-synthesis MIMO
design for arbitrary non cooperating targets for RVD is d@ped in (Mora, Ankersen
& Serrano 1996). In (Ankersen 1993) Computer Aided EngimgglCAE) methods are
described and advocated for RvVD and general spacecraffrdiesiding to an integrated
design approach from concept and design to real time sdadtingAnkersen 1998). Fur-
ther model reference control is addressed by (Ankersend)9%Mh Extended Kalman
Filter (EKF) for homing position estimation and fly aroundvasll as general control
design is performed in (Philip & Malik 1993). A two Kalman &k design with rela-
tive and inertial data fusion is developed in (Carpenter &ip 1997), which includes
a covariance propagation method. (Kunugi, Koyama, OkaniNa&amura, Mokuno,
Kawano, Horiguchi & Kibe 1994) report on the on board GNC egstevel description.
(Calhoun & Dabney 1995) address the determination of tlaivelposition and attitude
from measurements with a quadratic optimization for quaders. Further data fusion is
performed in (Hablani 2009) with an integrated sensor fgiteprising an imaging sen-
sor, a laser range finder, a GPS/IMU system and a star tragkarGaussian range and
Line Of Sight (LOS) navigation in elliptic orbits is propabi (Karlgaard 2006), using
a mixedly, ls maximum likelihood optimization in Kalman and Huber filtesn ATV
pre development selection of Kalman structure ahdcontrol is reported in (Fabrega,
Frezet & Gonnaud 1997). A classical feedback design in maardinates to boundary
conditions along a docking axis is performed in (KlueverdR%uidance for approach
and fly around in an arbitrary plane with EKF based navigat@udressed by (Hablani,
Tapper & Dana-Bashian 2002). Open loop station keepingrabbased upon a mul-
tiple revolution Lambert solution is reported in (Shen & dtsas 2003). An optimal
two impulse station keeping control on periodic time vagyahynamics is performed
by (Wiesel 2003) and a minimum time and fuel planar guidaneeeunvers for ellip-
tic orbit Formation Flying is performed by (Zanon & Campb2006) as a Hamilton
- Jacobi - Bellman formulation. A control law for stabilizjra class of unstable peri-
odic orbits in the Hill restricted body problem for proximity motion on halo orbits
is reported in (Scheeres, Hsiao & Vinh 2003) followed by atoardesign for relative
dynamics with respect to unstable trajectories in (Hsiac&e®res 2005). (Tong, Shijie
& Songxia 2007) address the relative control problem usimy line of sight and range
measurements and iteratively only LOS to obtain the ranfje. experiences presented
above form partly the basis for the present research andritsefring.

Several relevant papers on general control work and gespaakcraft design have
been used within the RVD field of which some are addressedeirfidifowing. Practi-
cal design of uncertain multi variable feedback is in (Da%I8tein 1981) generalizing
Single Input Single Output (SISO) to MIMO and minimum singwalues of the return
difference matrix is found in (Newsom & Mukhopadhyad 198&)viding expressions
for the singular value gradient. Stability margins for sitaneous changes in phase
and gain can be found in (Mukhopadhyad & Newsom 1984) exigyidlie singular ma-
trix value properties. Negative inverse describing fumttanalysis of modulation for
thruster controlled spacecraft is in (Anthony, Wie & Cari®89) and thruster modu-
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lation techniques and stability analysis are reported hyk@ksen 1989) applied to the
Eureca spacecraft. (Zimpfer, Shieh & Sunkel 1998) repor eontrol method for de-
sign of MIMO systems in the presence of thruster modulatimtuiding delays. LQG
and H, flexible spacecraft design and flight evaluation is in (Kidamaguchi, Chida
& Sekiguchi 1997) and robust control using block shifts tovesets of closed loop
poles in (Seetharama-Bath, Sreenatha & Shrivastava 1$83Qust performance with
time varying uncertainties in a general state space fortionlds dealt with in (Zhou,
Khargonekar, Stoustrup & Niemann 1995) and by means of tatgguadratic Con-
straints (IQC) and exponential stability by (Josson & Rantl996) and (Megretski &
Rantzer 1997). Adaptive output feedback control has beemodstrated in (Singla,
Subbarao & Junkins 2006) to bound output errors driven bipicglon errors, biases
and bounded stochastic disturbances. Nonlinear parameatdertainties for discrete
time systems has been addressed in (Zhao & Stoustrup 199RefoobustH, type of
control. A Linear Fractional Transformation (LFT) apprban robustu-synthesized
flight systems are applied to Unmanned Aerial Vehicles (UiMPaw & Balas 2008).

1.2.6 Simulation and Verification Aspects

The complexity of on board autonomous GNC systems has isedesignificantly over
the years as the operational demands grow. The implememtpects and the methods
for embedded testing of flight systems are addressed by (®oiwbias, Ankersen &
Pauvert 1992) and the aspects regarding automatic codihfligint software standards,
life cycle, tests and verification are addressed by (TdorgilAnkersen, Vardanega &
Carranza 1999) leading to an ESA standard. The Shuttle #igittvare development
process is analyzed by statistical principles and contrth® process in (Florac, Car-
leton & Barnard 2000). A survey of the development of flighdteyns with a view from
the Triad processor im972, which was the first general software system to fly, until
today systems are given in (Malcom & Utterback 1999). Logkiowards near future
missions (Zetocha, Self, Wainwright, Burns & Surka 2000jradsed an agent based
system for multiple satellite missions, like interferoerdormation flying missions and
their real time multiple processor testing. Simulation migdor MIL are addressed
by (Walls, Greene & Teoh 1987) for the OMV crew training puspo

A verification process for RVD is outlined in (Pauvert, Angen & Soppa 1991)
and in further details of simulation using a virtual opeyatsystem for portability of
test platforms is in (Kruse & Ankersen 1992). Moving towardsal time and hard-
ware in the loop is described by (Soppa, Ankersen & Pauve&¥2)19Computer vision
in a mockup is used by (Mukundan & Ramakrishnan 1995) fotuaki quaternion de-
termination. Simulation and verification of a space statod the Shuttle connected
via the manipulator arm is reported in (Montgomery & Wu 198®) the composite
attitude control. The European Proximity Operations Satard (EPOS) , which is a
6 + 3 Degree Of Freedom (DOF) gantry robot with hardware in theexdbloop facil-
ity, is described in (Heimbold & Steward 1988) addressing ithal time verification
aspects. (Cruzen, Lomas & Dabney 2000) address a simildgtien, such facility with
slightly longer range. A further but separate developmé&mat200 m range similar fa-

Finn Ankersen, September 12, 2011



10 Introduction and Background

cility EPOS is addressed in (Pery, Bouchery, Querrec, Maurel & Ruffind42@sed
for ATV testing. A Jaxa shorter range test facility Rendemand Docking Operation
Test System (RDOTS) is described in (Yamamoto, Ishijimaahli Oda, Ueda, Kase &
Murata 2006).

1.3 Main Contributions of the Thesis

The main objectives and contributions of the thesis are mdweas; namely the gen-
eralized relative dynamics between two spacecraft on dloskits and the automatic
control domain finding time invariant GNC solutions for timarying relative dynam-
ics. The focus will be on new findings, which are applicablbdth the elliptical as well
as the circular orbital rendezvous. The contributions vl founded solidly in their
theoretical aspects and at the same time have a bearingd®yweactical applications.
The latter will be achieved by using a specific mission as amgte, where a few facts
will be based on the experience of the author rather thaiaita

A short description of the main contributions is detailetblaeand will be reflected
via conclusions in the corresponding sections and chapters

1. The general nonlinear relative motion dynamics betweatecraft will be de-
rived. The equations of motion will be linearized to forntela set of differential
equations for relative motion in the time domain for genetlptical Keplerian
orbits. These equations will form the basis for the develeptof a general solu-
tion to the problem of linear dynamics for the rendezvoud@m.

2. A general closed form homogeneous and particular selutothe coupled in
plane motion of the spacecraft will be developed as well ashfe out of plane
one. This solution will be generally valid for any closed Kefan orbit and will
in the special case of a circular orbit reduce to the well kma&@lohessy Wilt-
shire equations. The solution will have no singularitiestcary to earlier partial
solutions.

3. From the developed general state transition matrices thidl be developed gen-
eral expressions for impulsive maneuvers. They will bedvedir general maneu-
vers in three dimensional space, focusing on the thrusgbaiong the Velocity-
bar and the Radial-bar.

4. Alinear coupled model for the relative motion between spacecraft for attitude
and position is developed for use in GNC design, as well asargtlinear at-
titude kinematics and dynamic model. This gives the conedletmework of the
plant for which the GNC system is developed.

5. An on board architecture is proposed for the GNC systenitaravionics com-
ponents, which is of general nature for this type of missidingrovides the main
elements needed for such types of missions addressing thessizes of concern,
seen from a system design point of view.
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A general framework is proposed for the GNC design with foaughe closer phases
of the mission, though equally applicable to but less aitfor others. A worst case
approach will be taken with uncertainties and time varyiagameters represented and
analyzed in the robust control framework.

6. The general GNC setup and control structure will be defifdte design plant
parameter variations will be quantified and boundariesbéisteed. Properties
of linear time varying systems will be established for RVDséaleable thruster
management function will be designed. The full guidancegefor rendezvous
will be performed.

7. The absolute attitude control will be designed as a fullypded system with a
LQG controller. All main contributing uncertainties wilelrepresented as Lin-
ear Fractional Transformations and the robust stability performance will be
established, particularly with respect to the eccentricitthe orbit.

8. The control of the translational relative motion 3nDOF will be designed as
a fully coupled’”., controller. The dynamics contain nonlinear time periodic
parameters, which will be viewed as a bounded uncertaindyraadeled as a
LFT. Then a worst case analysis will be performed of the debig means of
pn—analysis to establish the robust stability and performéoica range of orbital
eccentricities.

9. The full6 DOF control will be based upon the earlier developed corepteu-
pled model and worst cagé.., control design. All relevant uncertainties and time
varying plant parameters will be included as before. Theisbperformance and
stability will be evaluated by means of the-value for a range of orbital eccen-
tricities.

1.4 Structure of the Thesis

The thesis is organized as follows:

e Chapter 2 will describe what is involved in a typical RVD mission in LEOhe
missions to the ISS are used as an example where all the mensefuom the
phasing orbit to the real proximity maneuvers are described

e Chapter 3 will provide a definition of all coordinate systems used ie thesis.
The spacecraft data for the chaser and the target will beélel®@nd the models
for the space environment of relevance to the subject matter

e Chapter 4 deals with the detailed development of the general mathieatatod-
els for the relative dynamics between two spacecraft on hitrary Keplerian
elliptic orbit. A closed form solution for the state tranmsit matrix and particular
solution is found. The model is verified and expressionsifgaulsive maneuvers
are developed for the general case and exemplified for \etiGit.
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Chapter 5 provides the general nonlinear and linear dynamics andnities
models for attitude motion. The couplings between attitae relative position
will also be covered in this chapter with a development of ladoupled linear
model.

Chapter 6 suggests an on board architecture for the GNC system anthits i
plementation. This will deal with the avionics equipmentiethis relevant for
proximity maneuvers of the nature covered by this thesis.

Chapter 7 will deal with the general GNC structure. Variations of thesin
models will be established and linear periodic time varysggtems addressed.
The guidance function for all modes will be designed.

Chapter 8 contains the absolute attitude and navigation coupledydedihe ro-
bust control background and formulation is provided hegetber with the model
uncertainty formulations.

Chapter 9 provides the relative position control design for the faagywhases for
both the out of and in plane control. All uncertainty modedsariated to relative
position are developed.

Chapter 10 holds the6 DOF coupled relative attitude and position control for
the closer distances up to the docking point. The overalistiess and system
performance are established.

Chapter 11 deals with the testing and verification of the overall desigth re-
spect to the specifications. A part of this will be based on axtddCarlo sim-
ulation approach covering the full nonlinear uncertairdygmeter space and all
orbits considered.

Chapter 12 provides the conclusion of the thesis as well as it will giveethod-
ology for the design of GNC systems for proximity in a genenanner, which
can be used for future designs. Further research and recodatiens will be
provided.
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Chapter 2

Mission Description

This chapter will address all the different phases and marswof a typical RVD mis-

sion from the launch until the docking to the target spadéciide description will be

in synthesis and illustrative format with the objective t@yide an overview of such
type of missions, which differ from most space missions imynaspects. The ground
segment of the mission will not be covered here but can bedaufiTobias, Ankersen,
Fehse, Pauvert & Pairot 1992).

2.1 Launch and Orbital Injection

The orbital plane of a spacecraft is defined by the angle legtwee vernal equinox and
the ascending node, the Right Ascension of Ascending Nod&fR (Wie 1998) and
the inclination with respect to the equatorial plane. TheARAwill drift due to the devi-
ation of the Earth shape from a sphere and a non spherical synomgravity field. The
rate of this drift is a function of the altitude, which meahatta spacecraft launched into
a lower orbit than a target spacecraft will have a fastettiartaof the orbital plane. For
this reason a chaser spacecraft will be launched into ahwithi a RAAN such that at
the end of the phasing maneuvers, see Section 2.2, thisaiffe will be eliminated by
the natural drift and the chaser will be coplanar with thgeaorbit with no additional
use of fuel.

After the separation from the launcher the chaser spadegithfbe in its initial
orbit and ready to start up all systems on board. Should theespaft erroneously be
delivered by the launcher into a decaying orbit it is very artpnt that all on board
systems are operational so that it can perform a raising avan@t apogee in order not
to reenter.

2.2 Phasing Maneuvers

When two spacecraft are in two different elliptic orbits kvidne common focal point
and co-aligned semi major axis , the angle between the tweespaft measured at the
common focal point is defined as tR&iasing Anglesee also illustration in Figure 2.1.
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Figure 2.1: Definition of the Phase Angle between two spacecraft movindifferent or identical
orbits. The perifocals are coinciding and the two orbitsquasi coplanar. The phase angle will
be constant only for circular orbits of the same radius &lgelliincrease or decrease. For same
elliptical orbits it will vary periodically.

There are a number of strategies, which can be utilized toaethe magnitude of
the phasing angle and bring the two spacecraft closer toethen

e Circular or Elliptic phasing: A difference in orbital angular velocity will then
make the chaser move forward or backward towards the taegerdling on a
larger or smaller orbital angular velocity with respecthe target. This is some-
times referred to as a forward or a backward phasing. Sed-ajsioe 2.2.

e Apogee and Perigee ChangesThese are used in two forms. One where the
apogee is lifted to the level of the target orbit and the pig then later lifted
progressively via intermediate orbits. This approach elushen no autonomous
on board navigation is available and the maneuvers arenpesfbfrom ground.

It requires a propulsion system, which is capable of pradhe large boosts
needed, but on the other hand it provides the possibilityetdopm several fine
tuning maneuvers for a precise adjustment.

The other form involves lifting of both apogee and perigeeintermediate orbits
towards the target orbit. This will slow down the approade rand the correc-
tion points will be chosen such the chaser spacecraft wil@at the aim point
at the desired time. This is typically performed when an ocarb@utonomous
navigation system is available.

The selection of phasing strategy thus depends on the eshilstust capability and
onboard navigation. The two approaches are schematitiaiyrated in Figure 2.3.
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APOGEE

CHASER ORBIT

PERIGEE

Figure 2.2: lllustration of forward and backward phasing, below andveba target orbit, where
the general motion is from right to left. The chaser orbitag@ar rate is larger respectively
smaller below and above the target orbit.

At the end of the phasing maneuvers the target spacecrafbaviat its interface
point to the start of the real proximity maneuvers. They dirpexformed with respect
to the target local orbital frame. The location of this aimma@an in principle be in
all 4 quadrants of the target local orbital frame (behindfrant, below, above) but a
convenient location is behind and below the target. In thaédhe natural drift between
the two spacecraft will bring them closer together but gtiksively safe with respect
to each other. During such a slow drift remaining errors iituale, eccentricity and
inclination can be corrected. This is the chosen strategth®proximity operations of
autonomous systems.

Another approach is to aim, not for a point, but for a so cadletty gate. This means
that the transition from phasing to proximity maneuversstednined by a certain range
in position, velocity and other possible operational caaists. This domain is reached
by successive raises of the apogee and the perigee duripf#iseng. Such a strategy
is mostly used during manual operations and the strateglemmgnted for the Space
Shuttle.

All the maneuvers during phasing are performed in open loojtamight therefore
be necessary to perform several small adjusting maneuvéehe @&nd of the phasing
to get the required accuracy. This is because the typicabweahle accuracy from a
Hohmann transfer maneuver is in the order of some hundreceténsin orbital radius
and a few kilometers in the orbital direction. The most catiparameter is the accuracy
of the orbital radius as it has a directimpact on the passajedtory safety of the chaser
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Figure 2.3: Phasing strategies where time and motion are from rightftédecommon practice
and historical reasons. It shall be recalled that apoge@arigee altitude changes are performed
at perigee and apogee respectively (opposite).

with respect to the target. A typical location at the end efpgthasing is a few kilometers
below the target orbit and some tens of kilometers behind.

2.3 Proximity Maneuvers

The maneuvers between the end of phasing and the conta@dretire chaser and target
spacecraft will be described shortly here in order to giveregrview of the complete
mission. The close proximity maneuvers and the derivatfdhedynamics models will
take place in detail in Chapter 4.

During the phasing maneuvers the navigation is based orluab¥8PS measure-
ments for all orbital changes in Earth orbits. For non Earibsions the absolute nav-
igation cannot use GPS but will have to rely on classical gdoacking or on board
autonomous navigation techniques. The far away navigaibased upon relative GPS
navigation and the close proximity navigation is based dticapsensors, contrary to
the Kurs system used on Mir (Suslennikov 1992).

The curvilinear orbit direction is assumed a straight lind eeferred to as the V-bar;
see also Section 3.1.

2.3.1 Far Proximity

The objectives are dispersion reduction after the phasmbthe initialization of the
first contact to the target in order to be able to perform redatavigation, contrary to
the absolute navigation utilized during the phasing. Thaihg maneuver to bring the
chaser in to the target orbit is typically performed as a Hahmmaneuver (tangential),
which is fuel optimal. There may be other elements involwezhsas radial maneuvers to
change the eccentricity, free drift trajectories and halah{s. Time flexibility is included

Finn Ankersen, September 12, 2011



2.3 Proximity Maneuvers 17

by introducing a hold point on the target orbit, which hasitéd fuel consumption
(ideally none). The final point location of this maneuverdstly driven by operational
and passive safety constraints and partly by required acguwonstraints needed for
subsequent maneuvers. Typically this point is a few kil@rsebehind the target on the
negative V-bar, see Figure 2.4.

2.3.2 Closing

The objective of the closing maneuver is the acquisitionhef tominal conditions of
the docking corridor towards the target. The closing maeeisstypically a two pulse
maneuver, which brings the chaser from one point in the taogst to another one
closer to the target. The maneuver can be performed eitlogrein loop or in closed loop
for better endpoint performance. At the end of the manelnedistance to the target is
aroundb00 m. The end conditions of the closing phase are that the ckpaeecraft will
be inside the position, attitude and rates required to #tarfinal approach maneuver
within the safety corridor boundaries. A typical accurasgdiis about % of the range,
which in this case gives a required navigation accuracy tessethars m (Fehse 2003).
This is the accuracy that the optical sensor used for the éipatoach has to be able
to handle. In most cases the docking axis is along the V-beeraise a fly around
maneuver is needed. There is also a possibility to perforfosaing maneuver directly
to the starting point on the docking axis, which is off the &Ht shall be noted that the
latter is a less passively safe approach.

Trajectory strategies must be performed in such a mannettibarajectories are
robust to the incapacity to execute a thrust maneuver, vehetirtly or in full. For such
reasons, the closing maneuver is performed primarily bymseéradial thrusts, rather
than tangential ones, the latter being cheaper in fuel. @d&ktwo pulse maneuver
ensures that the spacecraft will return towards or to it&irposition in case of a fully
missed second thrust in one orbit; see also (Fehse 2003Hantjg 1997). For eccentric
orbits a collision avoidance must be ensured for severadlsoirborder to provide time
for contingency, as elliptic orbits do not provide the saraéety criteria as circular
orbits do. Straight line approaches from far distances ewshipitive in terms of fuel
consumption.

2.3.3 Final Approach

The objectives of the final approach maneuver are to achlevedntact conditions
for docking or the entry conditions for berthing, in termspafsition, velocity, relative
attitude and relative attitude rates.

In the case of a docking mechanism, there must be a certaihsgpded of the chaser
spacecraft to trigger it. In the case of soft docking, nofgrened in space yet, the
impact speed is very low and the capture latches are actbgtiediividual motors.

The trajectory utilized for this maneuver is a straight leggproach in the target
docking frame, irrespective of the orientation of the dagkaxis. The maneuver is
performed in closed loop with respect to the target in boghpibsition and the attitude.
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Safety cone
TARGET ---7 HOLD POINTS

V-bar RN APPROACM T

X

CLOSING

FLY AROUND

R-bar

Figure 2.4: Different types of proximity maneuvers in the LVLH frame ¢ept departure). Ma-
neuver pulses are typically performed at the hold point& wither free drift, mid course correc-
tion or closed loop control along the trajectory. V-bar isrgf the x-axes in the LVLH frame and
R-bar points to the planetary center.

Relative attitude is only used for the 1&8t — 30 m. For berthing the relative attitude is
not critical, but the relative velocity is normally aboutifés lower than for docking and
must remain there for abo@d s which makes berthing a harder problem than docking
seen from a GNC point of view.

The straight line of the docking axis is not fixed in space duthé attitude motion
of the target docking port, and the navigation is theref@selol on the relative position
and attitude measurements from an optical sensor, the RVS.

For safety and observability reasons one normally definegpanoach cone, which
has its top at the center of the target docking port and is sgtmerabout the docking
axis with a typical half cone angle af) — 15 deg. This facilitates monitoring by both
crew and autonomous system. In case of violations a CAM ifopeed.

Another issue which is important during a final approach éspglume impingement
on the target spacecraft by the chaser. The concerns aesfaentamination and heat
load. The criticality comes from the fact that in order toued the approach velocity,
it is necessary to thrust in the direction of the target sp@dt in addition to attitude
control thrusts which are in all directions, though small@rreduce such an impact, the
chaser performs the major braking thrust at some distancetiie target and maintains
the contact velocity for the last few meters. This nevegbgmeans that the disturbance
will have a larger impact during the last critical meters.
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2.3.4 Fly Around

The objectives of the fly around maneuver are to bring theeshgigacecraft from a
location on the V-bar to a location on the docking axis witthia safety approach cone,
followed by the final approach, previously described. Theaflgund maneuver can
be performed either as a trajectory closed loop controllatienver typically with a
constant radius circumventing the target or as a two pulseemaer with an open or
a closed loop trajectory control. The former has the adygntd larger flexibility in
terms of duration and interruptions but also carries a hidinel consumption with it.
The RVS sensor can only be used when the docking axis is rédache

The aim point at the end of the fly around maneuver is not aestafpilibrium
like the hold points on the V-bar. It is necessary to havevaatiosed loop control to
maintain the position, as the chaser spacecraft is actaally different orbit than the
target. Obviously a minimum amount of time shall be spentithsa location to lower
the fuel consumption. The passive safety is also lower tbahdld points on the V-bar
due to the natural drift of the hold point.

2.3.5 Departure

The objectives of the departure maneuver are to separaatttiobed spacecraft from the
target spacecraft and send it on a non returning trajectdityen the chaser spacecraft
is at a sufficiently safe distance, a large thrust maneuvpeiformed to initiate the
deorbitation and reentry. Depending on the critical distelnetween the two spacecraft
the departure maneuver can be performed as a reverse firrabappor the chaser can
make directly use of the impulse provided by the push off mae@m and depart with
an open loop strategy. Clearly the controlled one is satealso requires all equipment
operational as well as the plume impingement problem eaistsich a close proximity.
Normally a safety departure cone is defined, within whichvélgicle must remain until
a distance of a few hundred meters from the target is obtained

The impulse provided by the mechanism must be large enougihable the depart-
ing spacecraft to reach the safe departure velocity, afthaushall be remarked that at
very close proximity such trajectories are inherently d@sand a collision might occur
should some of the thrusts go wrong.

For a departure along the minus V-bar several radial tharstperformed to remain
inside the departure cone and at a larger distance suppletheyn a tangential thrust,
which is more efficient. The departure from a docking on thbar4s similar, but
tangential thrusts are used. This departure is also saéetodine fact that the departing
spacecraft Center Of Mass (COM) is below the V-bar, and therabmotion will carry
it ahead and below the target.

2.4 Reference Mission Scenario

The past sections have described what is involved in a fudsion for a typical type in
a low Earth orbit. The present thesis will not contain all éements of a full mission,
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Figure 2.5: This figure shows the RVD phases considered in the design.\ifdvk labels are the
nomenclature used for all hold and intermediate way poiifise shaded area is the Keep Out
Zone, which is defined for safety reasons.

but it will be restricted in size and number of phases inctude

As reference mission target spacecratft the Internatiopat& Station will be used,
while the chaser spacecraft is assumed to be a vehicle &kkenmanned European
Automated Transfer Vehicle.

The phases included will consider what is described in 8e&i3.2 for homing and
closing as well as the final approach in Section 2.3.3.

The design will concentrate on addressing all the GNC rélaspects for the final
approach, as illustrated in Figure 2.4, and will addressctiitecal issues for the fly
around, closing and homing. The attitude control will beigiesd for absolute and
relative attitude. The final approach of the reference missiill contain a full detailed
GNC design, whereas the previous phases will rely partlyrexipus results.

To remain within the subject of this thesis the overall ntissinalysis will be taken
from the general ATV one. The launch and phasing parts of tlesiam will not be
considered directly, as the GNC parts needed there will indasi to the ones for the
closer phases. For the homing and closing phases the navig@GPS based. Contact
dynamics, equipment and redundancy mode switching as silichoivbe considered
in the design, as it does not influence the GNC design propembre the mode man-
agement. Failure Detection Isolation and Recovery anddfteare implementation are
subjects of their own.

2.4.1 Reference Mission Description

The reference mission will be described briefly here, it geire limitations of the work,
where the actual numerical requirements will be listed ictida 2.4.2.

The orbit will be a slightly eccentric low Earth orbit with @ntricitye = 0.1 in
order to deal with the general case. A lowest perige&0fkm is assumed.
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Point | [z,y,2]Tm |
s1 [—29000, 0, 5000]"
So [—3500,0,0]"
S3 [-500,0,0]"
34 [—500 cos(15 deg), 0, 500 sin(15 deg)]T

S4 20 m along docking axis from target port

Table 2.1: Location of intermediate points for the reference missiefireéd in Figure 2.5.

To finalize the definition of the reference mission, we willalthe nominal location
of the points shown in Figure 2.5 and listed in Table 2.1 fa&r tINLH frame. The
numbers in Table 2.1 will be used as reference locationshi@rguidance part of the
GNC system.

2.4.2 Requirements Specification

This section will detail the mission level GNC requiremefaisthe reference mission
considered in this work and illustrated in Figure 2.5 andid&bl. The requirements of
the attitude and the position will be stated, based uporilddtanalysis elsewhere. All
requirements for the GNC system performance with respettidanominal reference
points are to be understood 88 % confidence interval valuegg if Gaussian dis-
tributed. To give an example with a nominal reference pdintd90 m on the V-bar and
a GNC performance specification td0 m at3o. It then means that abo@9 % of the
samples shall be in the ran{®0; 1100] m.

The requirements are based on mission analysis, the spéiadesign and the avail-
able performances of the avionics equipment.

Attitude: The attitude requirements are split into the ones duringhEaointing
attitude between the chaser body frame and the LVLH framelaosk, which are valid
for the relative attitude between the chaser and the tamgkinlg ports. The require-
ment is tighter during théV burns than in the drift modes but to keep the number of
requirements low, we select the one for the boosts.

| Mode | Attitude | Attitude rate |

Earth pointing 3 deg 0.2 deg/s
Relative pointing 5 deg 0.15 deg/s

Table 2.2: Attitude requirements for all 3 axes and all encounteredesod

Position: The position requirement for the trajectory part betweenitg takes the
requirement of the preceding point when closed loop trajgatontrol is performed.
In the case with no trajectory control, but an open loop bhabstrequirement shall be
understood for the departing point and the dispersion \@Hidy be larger at the arriving
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point. In both cases the station keeping control of the engipoint will have to bring
the GNC performance to the level of that point. The arriviogqptypically has a tighter
requirement than the departing point for a nominal approach

The initial point of the rendezvous part of the missionjssee Figure 2.5, but we
do not have a requirement for this location as it is in a dniliibat lower altitude and
the chaser is not at rest in. The guaranteed proximity link with the station is at a
radial distance 080 km. Relative GPS based navigation is then available. sih@oint
is specified in terms of navigation knowledge at that loga#ind is given in Table 2.3.

\ | Relative Position| Relative Velocity |

X-axis <30m <0.1m/s
y-axis <30m <0.2m/s
Z-axis <50m <0.2m/s

Table 2.3: Required chaser navigation accuracy at locationNote: this is not the GNC specifi-
cation for the point.

The values for, are the GNC requirement to be fulfilled at that location ast&t
in Table 2.4. The GNC requirements for the locatigrare listed in Table 2.5 and they

| | Position| Velocity |
x-axis | <50m | <0.3m/s
y-axis | <30m | <0.15m/s
z-axis| <50m | <0.3m/s

Table 2.4: GNC position and velocity requirements at locatian

are retained for the location after the fly around maneuvactpire the docking axis at
s3q- The valuesin Table 2.5 are not valid aftgy, during the final approach. The values

\ | Position| Velocity |
x-axis| <20m | <0.1m/s
y-axis | <20m | <0.1m/s
z-axis| <20m | <0.1m/s

Table 2.5: GNC position and velocity requirements at locatigrandss,,.

are now given between the 2 docking ports. The approach ieloetweenss or sz,
ands, is [0.05; 0.35] m/s and the hold point is in Table 2.6.

During the last part of the final approach, where we use tredivel attitude, the
requirements are in Table 2.7. The requirements betweegpdinés, and docking is a
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\ | Position]| Velocity |
x-axis| <1m | <0.02m/s
y-axis| <1m <0.1m/s
z-axis| <1m <0.1m/s

Table 2.6: GNC position and velocity requirements at locatin

| | Position|  Velocity |
X-axis [0.05;0.10] m/s
y-axis | <0.1m < 0.02mls
z-axis | <0.1m <0.02m/s

Table 2.7: GNC position and velocity requirements at docking.

linear interpolation between the two points whose valuesdisted in Tables 2.6 and 2.7
respectively. In practice the latter requirements arenadited a bit prior to docking.
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Chapter 3

Frames, Equipment, Spacecraft
Data and Environment Models

This chapter will contain definitions of all the coordinaystems needed for the general
orbital descriptions as well as for those related to the spadt. This will be followed
by definitions of the avionics equipment and equivalent nwofite some equipment, not
modeled in details, like the GPS system. The spacecrafteptiep in terms of mass,
inertia, flexible modes, sloshing and physical dimensioitiso& provided for the actual
hardware. Finally this chapter will provide the mathernsltimodels needed for the
space environment of the reference mission defined in Chapgtel.

3.1 Coordinate Systems Definition

All coordinate systems needed are defined in this chaptery @fre logically separated
into 3 sections for general mission related frames and thpseific to the target and
chaser spacecraft themselves.

3.1.1 General Coordinate Systems

In the following there will be defined the coordinate framsedifor the orbital parts.
Inertial Frame F;: Has its origin at the center of the Earth, the axes definedés an
illustrated in Figure 3.1:

e X;-axis: from the Earth center along the line of vernal equiimothe equatorial
plane.

e Y;-axis: in the Earth equatorial plané = Z; x X; completing the triad.

e Z,;-axis: to the north along the angular momentum vector of e
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Figure 3.1: Definition of Earth centered frames and the precise defmigan Section 3.1.1.

Intermediate Frame F,: Has its origin at the center of the Earth, the axes defined
as and illustrated in Figure 3.1:

e X,-axis: from the Earth center along the line of ascending nodee equatorial
plane, rotated the angtearoundZ;.

e Yj-axis: in the orbital plan&), = Z, x X;, completing the triad.

e Zy-axis: normal to the plane inclined an anglaround theX, axis and parallel
to the orbital angular momentum.

Orbit Frame F,: Has its origin at the center of the Earth, the axes defined @s an
illustrated in Figure 3.1:

e X, -axis: from the Earth center in the orbital plane to the @lditcation of the
spacecraft and at an angidrom the ascending node.

e Y -axis: in the orbital plan&;; = Z, x X, completing the triad.

e 7/ -axis: identical to theZ, in the frameF, and parallel to the orbital angular
momentum.

Local Orbital Frame F,: Has its origin at the center of mass of the spacecraft and
the axes defined as and illustrated in Figure 3.2. This franadésb often referred to as
the Local Vertical Local Horizontal (LVLH) frame. For thertget spacecraft this frame
will be referred to asF; and for the chaser spacecraft/&s
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Figure 3.2: Definition of the local orbital frame.

e X,-axis: X, = Y, x Z, which is in the direction of the velocity vector of the
spacecraft. In the Rendez\Vous literature it is often reféto as th&/-bar.

e Y,-axis: normal to the orbital plane and in the opposite diogcand parallel to
the orbital angular momentum vector. In the Rendez\Vousalitee it is often
referred to as thel-bar.

e Z,-axis: in the orbital plane from the spacecraft COM towatdsEarth center.
In the RendezVous literature it is often referred to asRHear.

3.1.2 Target Coordinate Systems

The target, which here is modeled on the ISS, will have 4 fradefined, namely the
geometrical reference frame, the body reference framejdbking port frame and the
auxiliary docking port frame.

ISS Geometrical Reference FrameF,,: Has its origin at the geometric center of
the Integrated Truss Segment (ITS) and illustrated in FE@UB.

e X -axis: parallel to the longitudinal axis of the module carstwith positive
direction forward.

e Y, ,-axis: along the ITS axis with positive in the starboard cliien.
o Zy-axis: Zy, = X g x Yy with positive in Nadir direction.

ISS Body Reference FrameF,;: Has its origin at the ISS center of mass and is
illustrated in Figure 3.3. The origin is locatedm} = [—4.94, —0.21,4.40]" m in F,
for the 16A configuration.
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Figure 3.3: International Space Station coordinate frames.

o Xy-axis: aligned withX 4.

o Y-axis: aligned withY,.

o Zy,-axis: aligned withZ .

ISS Docking Reference FrameF,;: Has its origin at the interface plane of the
Russian docking port and is illustrated in Figure 3.3. Thegioris located atryq; =

[—35.84,0,4.14]T m in F,;, when no structural flexibility is considered. The frame is
attached to the docking port structure.

o Xy -axis: aligned withX ,, when no flexible modes are considered.
o Yy-axis: aligned withy,, when no flexible modes are considered.
o Z4-axis: aligned withZ,, when no flexible modes are considered.

ISS Auxiliary Docking Reference Frame F,: It is identical to 7, when no
structural flexibility is considered.

When structural flexibility is considered, this frarmg;, will represent the port mo-
tion due to the ISS rigid attitude motion only. In this siioatit becomes a fictitious
frame not attached to a physical structure.
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Figure 3.4: Chaser coordinate frames for both the rigid spacecraftlaadéxible solar panels.

3.1.3 Chaser Coordinate Systems

The chaser will have 5 different frames defined, namely tloergrical reference frame,
the body reference frame and the docking reference frame.

Chaser Geometrical Reference Framé-,.. Has its origin at the launcher interface
ring level AD at geometric center of the ring and is illustrated in Figuee 3

e X, .-axis: longitudinal towards the docking port and normakie 20 plane.

e Y,.-axis: along the geometrical center line of the solar paimetise A0 plane, as
illustrated in Figure 3.4.

o Zg-axis: Zg. = Xge X Yy inthe AD plane.

Chaser Body Reference FrameF,,.: Has its origin at the chaser center of mass and
is illustrated in Figure 3.4. The origin is locatedrat in F., which varies during the
mission phases.

o X.-axis: aligned withX ..
o Yj.-axis: aligned with.
o Zy.-axis: aligned with7 ..

Chaser Docking Reference FrameF,.: Has its origin at the intersection of the
Xgc-axis and the docking port interface plané s illustrated in Figure 3.4. The origin
is located at ;4. = [8.5,0,0]" min Fy..
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o X,.-axis: aligned withX ..

o Y, -axis: aligned withY..

o Z4.-axis: aligned withZ ..

Chaser Rendezvous Sensor Reference Franié.: The frame is the sensor frame
in which the range and LOS angles are measured. The origiocedd atr,. =
[7.6,1.5,0]" min F.

o X, -axis: aligned withX ..

o Y, -axis: aligned withY,..

o Z,.~axis: aligned withZ,..

Chaser Solar Panel FramesF,: The frame is used to specify the flexible modal
data for the solar panel. Th¢, and Z, axes are in plane of the panel. The origins of
the4 panels frames are located as in Table 3.1 and expressggl irrhe nominal non
rotated panel is shown in Figure 3.4, where the rotation eth@ux-axis isoc = 25 deg
and symmetric for the other panels with respectja

e X,-axis: aligned withX .

e Y, -axis: aligned with the solar panel longitudinal axis pwigtaway from the
spacecraft for each panel aroto X,.

o Zy,-axis: Z, = X, x Y.

| Panel#| x m [y m][z m|

1 18| 19| 06
2 18| 19| -0.6
3 18| -1.9| -0.6
4 18| -19| 0.6

Table 3.1: Location of solar panel attachment pointsAg..

3.2 Spacecraft Data

The specific data for the chaser and target spacecraft wiireégented in this section.
The data concerns the mechanical data needed for the kilesraatl dynamics models
later.
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Figure 3.5: Definition of ISS attitudes (full line) motion for one axis of its rigid body frame, and
velocity (dashed line). It consist of straight lines withrglaola segments as the control is pulsed
with pulse width ofd.

3.2.1 Target Data

The data for the ISS is valid for the configuration 16A, whiglslose to the final version
of the station (ISS 2006). The mass, and the inertid; is specified numerically in
Section C.1.

When docking to the Russian port, the ISS is attitude cdetialsing a two sided
limit cycle controller. The attitude then becomes a sawt@st illustrated in Figure 3.5
with the data in Table 3.2. Theaxes are not necessarily in phase with each other and
the phase angle between the axes is uniformly distributed.

In addition to the rigid body attitude motion described igitie 3.5 and Table 3.2
there is a contribution from the structural flexibility toetimotion of the docking port
and the two are super positioned. Both motions contribugettanslation of the docking
port frameF,; as neithetF; nor F4 are located at the COM. The data for the first
three modes are in Table C.1, which is based upon structuadysis includingl 75 flex
modes performed by Energia.

| Range | Distribution |
AmplitudeA | [0.55;0.7]deg | uniform
Reversal timel [8;40] s uniform

Angular ratev, 0.02 deg/s
Maximum bias | 3.4 — A deg
Period L 4d

Table 3.2: ISS attitude motion data. The distribution is provided fongation initialization
purposes.
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The flexible modes, as in Table C.1, of the ISS for the
attitude of 7, with respect taF ;o shall be used as follows:

e Either the attitude amplitude; is used and the ratg;
is found by differentiation; being the axis

e Or the attitude ratey; is used and the attitude; is
found by integration.

The linear motion of theF,;; frame with respect to theFIgure 36: ”’UStranon
Faro frame expressed ifty, is presented in Table C.1 and’ f the IS.S ﬂex’b.le. modes,
illustrated in Figure 3.6. All flexible modes are super pos‘fzhererr s the.”g'd loca-
tioned sinusoids. The requirements stated in Section 2.%95 ofthe dO_Ckmg portand
regarding docking port performances are valid in g, vy 1s the flexible part.
frame.

With respect to the geometrical frarfg, the COM is located at,; and the center of
the docking port is located a&j,4;. With respect to the COM the docking port is located
atrg, = r, = ryq — 1y forry = 0. The cross sectional profile of the spacecraft is

specified in Section C.1.

3.2.2 Chaser Data

The chaser data provided here will be the mass, inertia aniduhcertainties. The data
for the spacecraft flexible modes and the fuel sloshing weihbovided together with the
respective models in Section 3.4.

The chaser spacecraft has lower and upper values for diffeoamfigurations . The
massm. and the inertia matriX, are specified in Section C.2 with the respective uncer-
tainties. All uncertainties are uniformly distributed aar@ 30 values.

The COM locationry, is for thez: componen{2.4;4.3] m and the lateral location
is [0;0.075] m given as a radius and an angle36 deg. The uncertainty is0.045 m,
uniform at3c. With respect to the COM the docking port is locatedat= ryq. — rc.
The cross sectional profile of the spacecraft along the gdy axes is51, 40 and
40 m? respectively.

3.3 Avionics Equipment

The avionic components of sensors and actuators will be etbfinthis section for the

purpose of GNC design. It will include all needed data andattaristics for the sensors
and actuators as well as for the equivalent models used ewherequipment proper is
not included.

3.3.1 Propulsion

The only propulsion system on the chaser spacecraft is atérrassembly consisting of
28 thrusters, which provides the needed forces and torqueslothtion and orientation
of the thrusters are listed in Table C.6.
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The force vectoiF",, from the propulsion is computed as the sum of the individual
thruster forces, see Equation (3.1)

F,=> Fu, (3.1)
1=1
The torque vectoN,, is computed in Equation (3.2) with respect to the COM,
Ny =) N;=> (rye—rem,) x Fup, (3.2)
i=1 i=1

wherer;, is the COM location and;,, is the location of the!" thruster. The uncertain-
ties for the thrusters can be found in Table C.5.

To ensure that no saturation occurs a spherical envelogepiged, and according
to analysis in (Silva, Martel & Delpy 2005) this leads to a mmaxm force and torque
of 220 N and250 Nm respectively. This will be available at any time in anyedtion
without saturation.

3.3.2 Gyros

The gyro assembly consists of 4 two axes sensitive gyrogpefyTG T100 mounted in
a tetrahedron configuration for redundancy reasons. Tleeglemounted on a stiff com-
mon baseplate to minimize misalignments. The performaalces) the spacecraft axes
are shown in Table C.2. The measured angular rate vectopisgsed in Equation (3.3)
as (lwens & Farrenkopf 1971)

wy(t) =1 +ky)w(t—7)+dg(t —7)+ny(t —7) (3.3)

wherek, is the scale factoty is the true angular rate vectal, is the vector of drift and
n, is the vector of white noise. The sensor has a deldylo$ and a sampling frequency
of 10 Hz.

3.3.3 Star Sensor

The chaser will have 2 star sensors which are mounted orttagoorder to get 3 axes
high resolution coverage, though not always used simuttasig. The output of the
sensors will be in the inertial fram&;. The specification in Table C.3 is for one sensor
unit.

The sensor output can be a quaternion or Euler(3,2,1) anglesmeasured angles
are computed as

O, (1) =0t —7) + 05ty (t —T) + Ostr, (t —T) (3.4)

where@ is the true attitude and the two last terms are bias and neisestrespectively.
The sensor has a delayof 1 s and a sampling frequency dHz.
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| [ POSITION |
Range m LOS deg
R in meters Bias Noise Bias Noise
0—-1 0.01(1 + R) 0.005 + 0.01R 0.5 < 0.2
T—2 0.01(1 + 0.5R)
2—-10 0.01(1.12 + 0.94R) 0.01R
10 — 20 0.3
20 — 100 0.01R | 0.0225R — 0.25
100 — 150 0.11R—9
150 — 500 0.05R
| [ ATTITUDE (deg) |
x-axis(axial) y,z-axes(lateral)
R in meters Bias Noise Bias Noise
0—20 < 0.8 0.1 | 0.55+0.0125R | 0.05+ 0.0475R
20 — 30 —0.6 4+ 0.07TR —0.6 4+ 0.07R

Table 3.3: GNC relevant specifications for the Rendezvous sensor.eNess Gaussian values.
The data in this table has been obtained from measuremerdsreal sensor. Many values in
different ranges are driven by internal modes of the sensor.

3.3.4 Rendezvous Sensor

This is a Charge Coupled Device (CCD) based type of camersosewhich is the
primary sensor for the proximity maneuvers of the RVD phé#deas a circular Field Of
View (FOV) of 5 deg below200 m and8 deg above. The operational range of the sensor
is up to aboub00 m. The sensor delivers the following measurements.

e Range The rangeR is measured between the sensor frafje and a target
pattern, which is mounted on the Russian service moduleeof38. The target
pattern location in the target docking fraf¥g; is r,, = [0, 1.5,0]T m.

e LOS: The LOS azimuths,,s and elevation,.,s angles, which are rotations
around the z-axis and the minus y-axis respectively. Theisia along the bore
sight.

e Relative Attitude: The Euler(3,2,1) angles are between the sensor frame and
the target docking frame. This measurement can also bed®dvh quaternion
notation. The relative attitude is only available for a rasgaller thar30 m.

The noise and bias in Table 3.3 shall be applied to the prinra@gsurements and the
Cartesian measurement in the sensor frameis then found as

c0s(rys) €08(Brvs)
Xrvs = R Cos(am;s) Sin(ﬁrvs) (35)

Sin(pps )

The application of bias and noise is of the same form as egpdds Equation (3.4) for
both position and relative attitude when applicable. Theseehas a delay @f.3 s and
a sampling frequency df Hz.
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| Noise o) | Position| Velocity |

Livin 5m | 0.015m/s
Yuvin 3m | 0.005m/s
ZIVLH 5m | 0.015m/s

Table 3.4: GNC relevant specifications for the RGPS based navigatioiseNs Gaussian.

3.3.5 Relative GPS

The relative GPS based navigation will not be designed iaildend therefore it will be

necessary with an equivalent performance model of the RGRIgation. The output
of the model is obtained by adding Gaussian white noise tértieestate vector, which
is then filtered through a second order filter with statiorgain of one, a bandwidth of
0.0165 rad/s and a damping 6f6 as typical values.

3.4 Disturbance Models

This section will describe the relevant disturbance mofitets the environment respec-
tively from the spacecraftitself. Only the disturbancesohtare of any significant value
have been taken into account.

3.4.1 Gravity Gradient

The gravity field is producing a torque on a body, which is nahie equilibrium attitude
due to the different force acting on different particleshaf body. If the gravity field had
been uniform, contrary to inverse square as in Equation,(ddlgravity gradient torque
would be present (Hughes 1986).

The gravity gradient torqu®, is found from integrating over the body solid to
calculate the torque. If the geometric center of iteratochiosen to be at the COM then
N, can be expressed as

B .
N, = 3r—3r x I (3.6)

wherer is the distance from gravity field center to the COM arid a unit vector from
the COM to the gravity field center. The gravity field is exgexsin Equation (4.1) and
the detailed derivation of Equation (3.6) can be seen in (¢sd.986).

We observe that is always along the local vertical axis of the orbital fraffig so
we have that = k, = [0,0,1]" in F,. We also see that there is no torque produced
around the z-axis as expected.

We needN, in the body frameF,,., wherel is time invariant, and we therefore need
to represenk, in the body frame, which becomes the last column of the imtatiatrix
in Equation (B.4). Finally we will linearize Equation (3.&8)ound the nominal attitude
of o = [0, 0y, 0]" using a general Taylor expansion as in Equation (4.8). Theildd
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calculations finding the partial derivatives can be foun8éction B.5. The linear model
for the gravity gradient in the chaser body frame yield

1218ycy — 123(2?2/
Ny, = 37% (Is3 — In1)sycy + Lisc; — Isis0 j| +
[2185 — IQ3SyCy
M (135 - Igz)ci - [31sycy 121(2632/ - 85)2— 2[238y6y 0 :| [ O ]
3—3 Ilzcy + [325yCy ([33 — [11)Cy —+ Insy — 2([13 + [31)SyCy 0 Qy
(111 — I22)8y0y — 11305 2]218ycy — .[23(65 — 85) 0 023 7)

wheres,, ¢, aresin(6y), cos(6p) respectively.

The linear model in Equation (3.7) can either be used asdtfimt the disturbance
torques or it can be in included in a linear design model ofattiéude dynamics. The
latter should be done if the disturbance torque is largespeet to the nominally needed
torque to fulfill control performance. The former is sufficievhen the disturbance
torque is small and leaves sufficient available torque femttimary tracking task of the
controller, which is the case here.

3.4.2 Differential Air Drag

The residual atmosphere, which exist for most Earth orb#tases a force on the space-
craft when molecules impact the spacecraft surface. We ciatve well known equa-
tion for the drag force as (Larson & Wertz 1991)

1
F, = —ipCd|v|AV (3.8)

wherep is the atmospheric densit§;; is the drag coefficientA is the cross sectional
spacecraft area for each axis along the diagonal of thexaatdyv is the velocity vector
relative to the atmosphere. For typical spacearaft= 2.2.

For relative proximity maneuvers only the relative drag figeal interest and we
can find the differential drag acceleration as the diffeedmetween the chaser and target
drag accelerations found from Equation (3.8) dividing by tbspective masses. As the
drag almost entirely acts along the x-axis we will consitiergcalar formulation only.

Faq

Me

= —%pcdﬁ (ﬁ — ﬁ) (3.9)

me my
The velocities for the two spacecraft can be considerecaimegor this purpose, as well
as the drag coefficients. The differential drag force aatinghe chaser yield

me

Fag = —% pCa? <Ac - Atﬁ> (3.10)

whereA. is the cross section of the chaser ahds the cross section of the target space-
craft, which is the form used here. For completeness it $feaBaid that the equation
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is often expressed as an acceleration using the balliséfficient C'z instead, where
Cp = % in general.

The most uncertain part of Equation (3.10) is the atmospldemsityp, which varies
with the sun rotation, the Earth seasons andlthgear cycle of the sun, the latter be-
ing dominant. Within the time scale of a RVD mission it canréiere be considered
non stochasticp is modeled empirically by one of the two well known modelsC3IA
CHIA (Jacchia 1977) and MSIS (Hedin 1986).

The atmosphere density is modeled by data in JACCHIA anduhersodel Harris-
Priestler is used (Vallado 2004). Above00 km altitude the density is considered to be
zero.

For the relatively symmetric chaser spacecraft in this wdhke air drag induced
torques are small and therefore neglected as well as the@wivagieffect between the
spacecraft.

3.4.3 Chaser Flexible Modes Model

Here will be established a new general form of model for midtflexible appendices of
a rigid body spacecraft. The flexible modes are expressaghimstof eigen frequencies,
damping and the modal coupling factors. These data areaijypiabtained from Finite
Element Models (FEM), like e.g. the NASTRAN program. The mlodata for one
flexible solar panel is provided in Table C.4 and is valid fbrfeur panels used. We
will not deal with the modal analysis here, but some basik@amind information can
be found in e.g. (Wie 1998). The modal analysis is perfornoecffree-free body with
the modal data expressed at the attachment to the rigid psayesraft in framer,,.
The general form of the model is (Fle 1994)

HENE 1)
. . 9 1 1] %
M + 2Cewrns + wipny = ——L . (3.12)
mg w
where
My : mass/inertia matrix of the rigid body inclusive the flexilpanels
%x,w . linear and angular acceleration of the rigid body
F,N : forcesand torques acting on the spacecraft
M . thek!™ flexible state
Ck . thek!” flexible damping factor
Wk . thek!" flexible eigen frequency
myg : modal mass for thé** mode (normalized to 1)
L : modal participation matrix of thg'” flexible mode at the COM

Before setting up the general structure for Equations §3amd (3.12), we will con-
sider an example for one axis with one flexible mode for itaitste purpose. Taking the
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Figure 3.7: lllustration of the principle structure of the flexible madeodeling, here shown for
one mode and one axis. Further modes add along the lower lihesnsists of second order
systems with coupling factors.

Laplace transform of both sides of Equation (3.12) we get

n L 52

z  ms?+20ws + w? (3.13)
Combining Equation (3.13) with Equation (3.11) in the Lay@aomain, we can draw a
principal block diagram in Figure 3.7.

We will now go through the steps of forming the matfixstarting from the modal
data in Table C.4. The indexwill indicate the panel number and we consider we have
m modes ang panels. Recall that the modal data is for one panel givenamptnel
attached framer),.

L. Dm
lk:jp = |: lz;;z :| = [LknL:ELknLyLkmzLk:ikaiyLkiz]T (314)

The panels can rotate around their longitudinal &%ivy an angle3 = [0, 3,0]". The
rotation from the nominal panel frame to the actual fram®jg/3) and we need to
representy;, in the nominal frame

1y Ry,
1 iy = °)Pn M — p -SRI P 3.15
e { Kjpni ] [Rilkm‘ (519

Further we rotate the vectdy;,,, from the nominal panel frame into the spacecraft body
frame. The rotation iR ;. () by an anglex = [a, 0,0]".

lk"blrn RTb lk’ m
Lo = | (00 | = | Dpbehe 3.16
kjbl [ Lijoi ] { Ribclkjpm ( )

We must now include the term from the modal mass, which ikletiated at the attach-
ment point, to the modal inertia accounting for the lever.arm

Lijom Lijoim
Loy = | Weaom | _ | L 3.17
hib [ Liji } [ lejbii + lejbim X 15 } .17
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wherer; is the vector from the COM to the attachment pginFor one flexible mode
k, we will now stack the modal participation vectors as fokkow

L. — Liivm  iovm o lipom (3.18)
Ve ko oo Lo [y,

Finally we can form the matrik: by stacking blocks for each flexible mode

L=[L Ly -+ Ly | (3.19)

6xXmp
Equation (3.19) gives the general modal participation imé&br any number of panels
with any possible orientation in the spacecraft body frame.

The dynamical equations for the flexible modes are exprassst conveniently in
state space form. For one mode and one panel we define theettteask s, = [, 7]"
andx g, = [n,4j]" and from Equation (3.12) we find

. . 1 X
ik = —2CkwrnK — Witk — m—kli [ o ] (3.20)

which will be the output of the state space model. We can write

0

. 1 0
X = AppXpr +Brru = —? 2w }ka + [ _mLkl-ll; ] u (3.21)

whereu = [%,w]" and the output becomes from Equations (3.20) and (3.11)
1
Yk = —lk[Ckak + kau] = —lk [ —w,% —2Ckwk } Xfk — lk[—m—kl-};]u (322)

Finally we will combine the state space system for each pamekach flexible mode
into one complete model following the organization of Eduzg (3.18) and (3.19). We

define the general state vectorsgs= (111,711, » Mp, Tps*** » Nmps Tmp) "
xr = Arx;+ Bjyu (3.23)
Yr= —LCfo - LDfu (3.24)
where

g
I

(3.25)

[
.. A1p 2pX 2p
A
]

o 2pX2p < 2(mpxmp)
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Lii.6

1 Lai.s
L Lp1i.6 1,
B, = : (3.26)

Lii.e

1 Lai.6

L L Lpi1.6 |

2mpx6

C; = (3.27)

[ B ]
Cp

o PX2p 4 mpx2mp
[ Lii.6 ]
Lois

=]

L Lp,1.6 1y
D, = : (3.28)
[ Li1.6 ]

Loi.6

(=]

mm

L Lpie 1, | mpx6

It shall be noted that the minus on the last term in Equatiohl(3is included in the
output of Equation (3.23).

3.4.4 Chaser Fuel Sloshing Model

The perturbation from fuel sloshing is caused by partialledi tanks with some free
motion of the fuel. The best approach to minimize this is bgigieing anti sloshing
baffles in the tanks, though it will not be able to eliminate #ifect totally. Therefore
we need models of the effect, though it is very difficult to rabaiccurately fluid motion
in a zero gravity environment.

Fluid behaves differently as a function of the acceleratiorit, for which reason it
is not simple to find a model which covers a larger range. Wecoasider two models.

Finn Ankersen, September 12, 2011



3.4 Disturbance Models 41

The first being based on a pendulum equivalent model beinguede during the orbital
boost modes and a second being based on a spring, mass anel @guipalent for the
other RvVD modes. We will consider the latter here. Both metiave been verified with
the FLOW3D software.

We will divide the liquid into a sloshing part;; and a solid paring as

my = (1 —X7))mz (3.29)
mo = A(T)mp, (3.30)

wherem, is the total fuel mass in the tankis the filling ratio and
A= 1(das — 1) + 732 — 4a) (3.31)

wherea, = A(0.5) = 0.62 and Equation (3.31) is found empirically from FLOW3D
analysis and valid for spherical tanks with conic bafflesduisere . The perturbation
forceFp from the slosh can be written as a liquid minus a solid part

Fp=F; —Fg (3.32)
which we will separate into parts for,; andm respectively.
Fr=Fp, + FLQ and Fg = Fs, + FSQ (333)

AsF, = Fg, Equation (3.32) yield

Fp=F;, - Fg, (3.34)
and

FL1 - ksxl + Csxl (335)

FSl = M1Ytank (336)

wherex; is the displacement of; in a tank centered coordinate systémis the spring
stiffness,c; is the damping and,,,,;. is the acceleration of the tank.s, is accounted
for by the normal rigid body motion, so we only need to deahviijuation (3.35).

We will now calculate the general acceleratipnacting on the mass:;

Y1 =Y. —wX (WXr])—2wXT —wxXr; (3.37)
where
v, : acceleration ofn; with respect to the spacecraft reference frame
v. . acceleration of the rigid spacecraft
w . angularvelocity of the spacecraft
ri . my location with respect to the COM witly = rygni + X1

wherery,, . is the tank center with respect to the COM
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We can write the spring, mass and damper model for one axis as
miiy = —ksx1 — ey +mim (3.38)

which gives the displacement; of the massn;. Combining Equation (3.38) with
Equation (3.35) to eliminate the displacement, we can whigetransfer function from
the forcing functiony; to the perturbation forcéy, in the scalar case as

F S S
L(s) _ css + k. ] (3.39)
m(s) 824 s ke

This model has a very similar structure as illustrated iruFéd3.7 , except the trans-
fer function is different. The torque produced on the speafeis N, = r; x Fy and
in practice the ternx; can be neglected as small.

We will now express Equation (3.39) in a state space form llo8 axes for one
single tank, where, = [z, &z, 2y, z"y,xz,g'cz]T and for simplicity reasons, we write
the matrices for the x-axis only, as the full model is blockgtinal

xs = Agxs + Bsu (340)
ys = Cox, (341)
whereu = ~, and
1
A, = { _Ok e } (3.42)
B, = { (1) ] (3.43)
Cs, = [ ks cs ] (3.44)

The total perturbation is the sum from each individual tanét ean be constructed in a
similar manner as for the flexible modes in Section 3.4.3nfFaoalysis elsewhere, we
know that the natural frequency rangg/(s01; 0.04] Hz for 7 = 0.5 and the damping
cs € [0.16;0.5] s71. Typical mass to consideria; = 600 kg. The location of the four
tanks are as in Table 3.5 in the geometrical frafe.

[Tank# | xm| ym][ z m|

1 14| 0.85| 0.85
2 14| -0.85| 0.85
3 1.4] -0.85| -0.85
4 14| 0.85| -0.85

Table 3.5: Location of tanks.
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3.5 Conclusion

All the needed coordinate frames have been rigorously difogether with their inter

relationships. The data for both chaser and target spdteasbeen provided. Linear
multivariable models have been developed for gravity graidiorques, differential drag
forces and dynamical state space models for both flexibleesiadd sloshing phenom-
ena.
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Chapter 4

Relative Position Dynamics and
Kinematics

The relative position dynamics between 2 spacecraft mowiragbitrary elliptical or-
bits will be developed in this chapter. Until today all spawissions involving close
proximity maneuvers has been for RVD missions on circulditer This is going to
change for future planned missions of landing, sample ahdrreype and proxim-
ity encounters with small celestial bodies typically inglcal orbits. Other emerging
missions are Formation Flying ones also utilizing elliptiorbits (Inalhan, Tillerson &
How 2002). Earlier work has been performed in this field bbai mostly been concen-
trated on the theoretical aspects leading to restrictadisak which are of less impor-
tance for the practicing designer; see e.g. (Berreen & S9€8)] (Garrison et al. 1995),
(Kechichian 1992), (Lancaster 1970), (Melton 2000), (\&/ei881), (Tschauner &
Hempel 1965) and later (Humi & Carter 2002). The linear soluwill be found with
respect to the target spacecraft for any elliptical orbkie Bpecial case for the circular
orbits will be found in the Clohessy Wiltshire equationsqi@ssy & Wiltshire 1960).

The general solution will finally be tested and verified widspect to a complete
nonlinear numerical solution and error functions devetbfmedetermine error bound-
aries.

4.1 General Differential Equation System

The only assumption for this derivation is that the motionnsler the action of a cen-
tral gravity field and forces from thruster actuation or diibnces. The spacecraft are
considered as point masses for this work.

The position vectors in inertial space are defined as in Eigut for the chasar,
and targetr;. Their relative position is denotedd The equations of motion will be
derived conveniently in the target local orbital frameystrated in Figure 3.2.

In the following scalars will be in normal types and vectonsl anatrices will be in
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Xy

Figure 4.1: Definition of the position vectors to the chaserand target, as well as the relative
vectors in the inertial framerF;.

bold, and it will be clear from the context what is what. Vastare defined as column

vectors.
The general equation for motion under the influence of a aéfirce is as fol-

lows (Newton 1713).

Mmr m
Fy(r)=-G 2= HT (4.1)
and
G universal gravitational constant l\?r]hng
M mass of the Earth kg
m mass of the spacecraft (second mass) kg
r the radius vector = |r| m
o uw=GM Nm?/ kg

Dividing by the mass on both sides of Equation (4.1) to noizeabne obtains for the

general motion as follows
r

f,(r) = “hg (4.2)

Target motion from Equation (4.1):

. m
Fg(rt) = My = —/,LT—;I't
t
. r
fo(re) =¥ = —/ir—g (4.3)
t
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Chaser motion from Equation (4.1) and non gravitationatéor
meite = Fy(r.) + F = —uﬂ;rc +F
TC
and inserting Equation (4.2) yield

. F
fo="f,(r.) +— (4.4)
The relative motioss is defined as follows and the relative accelerations becadraetty
the derivatives in inertial space
ry+s=r. (4-5)

§=7¥.— 1 (4.6)
Inserting Equations (4.3) and (4.4) into Equation (4.6) ob&ins

" F
§=1,(rc) —fy(re) + E 4.7)
We will now linearizef,(r.) around the vector, by means of a Taylor expansion to

first order. of
) =t r) + 200y @8)

r=r¢

The elements of the Jacobian matrix (Wie 1998) in EquatioB) @re derived in details
in Section A.1.1 for the partial derivatives. We define= [r,,r,,7.]" andr = |r| =

(ry +ry +12)%.
We will now rewrite Equation (4.8) and insert Equation (416) and thatr = r;.

£, (re) — £,(r;) = — = Ms

Tt
where )
T TaT Tl
-3 3y anp
t t 2 t
TyT T TyT
M = 30pE 1-33% 3757 (4.9
t t t 2
T2Tx T2y _ary
3 = 3 = 1 3r$

after inserting from Section A.1.1 and Equation (4.7) beesm

F
5= —%Ms +— (4.10)
+ c

The interestis to represent the chaser motion in the rof¢ainget local orbital frame,
see Section 3.1. From a general kinematic equation forlatms and rotating systems,
we can obtain the chaser acceleration in the rotating tdrgete. The translation is
trivial and part of the equations (Symon 1979). Generallg obtains the following,
where the starredk} system is rotating with the angular velocity vecior
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d2 d*2 * d*x* d
We now defines = x ands* = [z,, 2]T in the rotating starred system and inserting
Equation (4.10) yield

d*%s* N d*s*  dw I N F
iz +w X (wxs%)+ 2w x 7 +E>< +§MS:E (4.12)

Expressed in the target frame we getfpandw directly from the frame definition

0 0
ry = 0 { andw=| —w
—r 0

The terms of Equation (4.12) can be found by inseriingndw and carrying out all the
cross products as well as finding the elements of the JacddianEquation (4.9). See
also Section A.1.2.

We will now find a more convenient expression for the teiﬁmn Equation (4.12)
as a function of the orbital angular velocity. To do that wesalve that the angular

momentumL is constant for fixed elliptic orbits and we can express itgnitade as
follows:

mriv=L = riw = % = h (4.13)
Vo= = '

We will now reformulate as follows, for extensive use in thibsequent solutions, using
the result in Equation (4.13):

5 3
N SN SAL IR
3 —,u(h) = U (h) w? = kw? (4.14)

We now insert Equations (4.13) and (4.14) into EquationQ¥tagether with the ele-
ments of Equation (4.12) yielding:

jé—wQ;L'—QwZ—wz—f—kw%x = —F,
me
: 1

j+kody = —F, (4.15)

Me
. 9 L 3 1

Z—wz+ 2wt +wx —2kw2z = —F,
me

It shall be noted that the system of linear time varying défgial equations in Equa-
tion (4.15) is the general system valid for an arbitrarytie¢etrajectory between a chaser
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spacecraft and a target spacecraft, where the latter mowkss the influence of a cen-
tral gravity field only. Hence the validity of Equation (4)lfor the target spacecratft.
The reduction of this system restricted to circular or neautar orbits can be found
in Section 4.3. The system can now be formulated converignttate space form as
follows.

In plane: With state vectok,; = [z, 2,4, 2" andF; = [F,, F,]"

0 0 1 0 0 0
0 0 0 1 0 0
Xpi = | L2 put @ 0 2w || L o |Fi (416)
—0 W +2%kwi 2w 0 0
| %pi = Apixyi + ByiF; (4.17)
Out of plane: With state vectok,, = [y,7]" andF, = [F,]"
. 0 1 0
Xpo = |: —kw% 0 :| Xpo + |: 1 :| FO (418)
‘ ).(;no = Apoxpo + BpoFo (419)

Defining a state vectax, = [r,vy, 2,4,, 2" andF = [F,, F,, F.]", and system ma-
tricesA, andB,, the in and out of plane state space systems can be combienhiat
model, which is detailed in Section A.5.

4.2 General Homogeneous Solution

We will now prepare to find the generic closed form homogesemiution to Equa-
tion (4.15), which will give the transition matrix of the ggm. Equation (4.15) is not
solvable in its present form, so the first step will be to refalate it by performing a
nonlinear transformation of its variables and intermed@mputations can be found
in A.3.1. The idea is to make use of the fact that elliptic&litsrgoverned by the Equa-
tion (4.1) hold many of the properties of conic sections,alse Section A.2.

The strategy is now to replace the independent variaklgh the true anomaly,
see illustration in Figure 2.1. Defining a function

0(0) £ 1 +¢ecos(f) and o(0) €]0;2] (4.20)
we can then rearrange Equation (A.12), the expression feanargl conic section, to
obtain another expression forin Equation (4.15), the objective being to simplify Equa-
tion (4.15).

- r P
"T1tccos(®) o (4.21)
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wheree is the orbit eccentricityp = h%u~! andh is the specific orbital angular mo-

mentum as defined in Equation (4.13). Rearranging Equasid@1) and inserting we
obtain

p_h

Q = - = —

r ur

and inserting Equation (4.13)
h? (h)‘% i o
Q = — — = —Ww?2
po\w p

and from Equation (4.14) we get the inversé:aind combining we obtain fas, where
the argumend is omitted for simplicity.

[N

o=k lw

w = k%p? (4.22)

We will now derive the intermediate differentials needecEiguation (4.15) with
respect t@ and define% = a’ whereq is an arbitrary variable,

da  dadf da ,

and after some manipulations we obtain for the second diméva

Po _ da (@) dodo
a2 de? \ dt do dt?

= Wi +wu'd (4.24)

The derivative of Equation (4.22) becomes
o _
a9
d
= @(kQ(l—i—acos(G))Q)
= —2ck?psin(h) (4.25)

Details of Equations (4.24) and (4.25) are in Section A.3.1.

We now have all the intermediate equations needed Equgda?) to (4.25) to in-
sert into Equation (4.15). We will consider the homogengmars of the equation and
the right hand side becomes zero (the initial value probl&ing particular solution can-
not be general per definition to be of practical interest. Werewrite Equation (4.15)
row by row, see Section A.3.1 for details, commencing with skecond row of Equa-
tion (4.15), which is the simplest, and inserting Equatibi24) fory we obtain

w2y + ww'y + kwiy =0
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We now insert Equations (4.22) and (4.25) and after somégdgemanipulations we
obtain
0y” —2esin(0)y’ +y =0 (4.26)

Inserting Equation (4.24) for andz into the first row of Equation (4.15) we obtain

" 2

w2’ 4wt — wlr — 2wy —ww'z + kwir =0
We can now regroup the terms with respectt@nd inserting Equations (4.22) and (4.25).
After rearranging and simplifying terms we arrive at

oz — 2esin(0)a’ + 2esin(0)z — e cos(f)z — 202" =0 (4.27)

Inserting Equation (4.24) for andz into the third row of Equation (4.15) we obtain

W2 +ww'Z — Wtz + 20 4wz — w2z =0
We can now regroup the terms with respecttand inserting Equations (4.22) and (4.25),
dividing both sides witl{k20?) and then by(k? o), expanding terms and simplifying we
obtain

02" — 2esin()z’ — 2esin(f)z + 202" — (3 +cos(0))z =0 (4.28)

To get a better overview of the system of Equations (4.2627¥and (4.28), we will
write the system together in Equation (4.29).

o = 2esin(f)a’ — 2esin()z + e cos()x + 202’
oy’ = 2esin(0)y —y (4.29)
02" = 2esin()z’ + 2esin(f)z — 202" + (3 + ecos(h))z

We will now define a transformation to be applied to Equat#29) to simplify the
equation system further. Proposed the first time by (Law®&4 L

o x x
BlZ2o|ly | =>0+ecos(9) | ¥ (4.30)
ol z z

To apply the transformation in Equation (4.30) to the systefquation (4.29) we will
compute the derivative terms for tlhecomponent in Equation (4.30), which will then
be used fors and~ as well. From Equation (4.20) it follows that

0o = l+ecos(d)
o = -—esin(f) (4.31)
o/ = —ecos(d)

The general transformation for one component of Equatio80} e.g. « has the first
derivative,
o =o'z + or
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and insertings from Equation (4.30) and solving far we obtain
1 /
== (o/ - Q—a) (4.32)
0 o
see also Equation (A.25). The second derivativa becomes
Oéll — Q”x + Q/x/ + Q/xl + Qxll
and insertings from Equation (4.30) and’ from Equation (4.32) we obtain
/! / /
o’ =a" — 2 0902 (o/ - Q—a) (4.33)
0 0 0

see also Equation (A.26). We will now rewrite Equation (4.B9 writing the coeffi-
cients in terms op and its derivatives from Equation (4.31).

"

ox! = =207 +20z— o'z + 207
oy = =20y —y (4.34)
02" = =202 =20z — 202"+ (2+ 0)2

We will now rewrite Equation (4.34) by using the transforioatEquation (4.30) and by
inserting Equations (4.32) and (4.33). Starting with theosel row of Equation (4.34)
we get

" _

oy’ =20y —y
i / / / /
g€ n¢ (a _ 35> Y (5/ _ g5> _B

0 0 o 0 0 0

and by recognizing tha]-t*g—"” = 1 and by rearranging the terms, we get
B =-p (4.35)
For the first row of Equation (4.34) we obtain
Qx” _ —QQI.T/ + 2912 _ Q”{E + QQZI

and substituting and rearranging terms as before we obtain

11 / / / / / 11 2 /
WAy (O/ ~ 9_a> _ Y (a/ _ ga) 19l 2, 20 (7/ ~ 57>
o o 0 o o o o 0 o
o =29 (4.36)
For the third row of Equation (4.34) we obtain, see also HqudiA.27),
07" = —20'2" — 20’z — 202" + (2 + 0)2
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and substituting and rearranging terms as before we obtain

/! / / / / / 2 /
N Y ( - 9_7) _ Y (7/ _ gy) ,9, 20 (a/ _ ga)+(2+g)z
Y Y Y Y Y Y Y Y Y

7' = §7 —2a (4.37)
0

We will now write Equations (4.35) to (4.37) together havolgfained a simple set of
differential equations as a function of the true anontaly

1" /

o’ = 2y
g = =B (4.38)
"o §’7 . 20/
0

The system in Equation (4.38) is rather simple in its appeagand the out of plane
motion is just a harmonic oscillator as in the circufar= 0) case. Again, we will
begin to find the full solution for the out of plane equatiorhisTwill be performed in
Section 4.2.1 and the two other coupled equations for th&aimeggmotion will be solved
in Section 4.2.2.

4.2.1 General Solution for the Out of Plane Motion

It shall be recalled that the variables of the system in Eqund#.38) are all functions of
#. The solution for the harmonic oscillator becomes indltlomain

B(0) = ¢1sin(0) + c2 cos(0)
and using Equation (4.30) to obtain the solution in the timmdin

b
o(0(t))

We will determine the constants andcy from the initial conditions in thé domain,
Bo andg)y, where the derivative is

y(t) = ( c1sin(0(t)) + c2 cos(@(t))) (4.39)

B'(0) = c1 cos(0) — cosin(0)
and to finde; andc, we will write the 3 equation in matrix notation

| |-laniese |-l al w0 ][5 )]

and asc; andcs holds all the information of the initial conditions, thistise solution,
but we will eliminate the 2 constants.

]-aaw 2]
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and the inverse becomes

C1 —1] Bo
= Ay(6
HECHH
We see from the matriXA that the system is orthonormal and that the inverse matrix
is the transpose of it. Nevertheless we will find the invergeautilizing cofactors to

confirm this statement. The determinantfs det A = — sin® — cos? = —1 and with
the cofactors we get

1 [ —sin(0) —cos(6)
A@O) = 1 { — cos(0) sin(6) ]

[ )]

The solution in théd domain becomes

o | amade0 | B =B | B ] (2.40)

whereB(6, 6,) can easily be expressed as

B cos(0 — 0p) sin(f — 6p)
B(0,60) = { —sin(f — 93) cos(f — 93) ]

We will now find the general matrix formulated transformatioetween th& domain
and the time domain, which we will need heavily in the futusedll utilization of this
work. We will derive it for they out of plane component, but it is general and applicable
to the other two componenisandz. From Equation (4.23) we have that

and from Equation (4.22) we find
w—l — k,—QQ—Q
From the transformation in Equation (4.30) we find the derrecof 3 to
B =oy
B =dy+oy

and by inserting/ andw~! one obtains

. 1.
B = —esiny + 20"

By writing this in matrix form we obtain the relation from tliene domain to the)
domain

R R e B O b B
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The reverse relationship is also needed and it becomes

{ % ] B [ —6951?<9> ki@ ] { 5’@) ]

We find the determinant ok to be

1
det A = ﬁ

and from finding the cofactors and dividing by the determives obtain

{ o ] B { st@(e) k??(e) ] [ 5/((99)) } =A(0) { g,((%)) } (4.42)

Equations (4.40), (4.41) and (4.42) constitute the corepelution to the out of
plane motion with the two way transformation between thestand thed domain. The
true anomalyd is obviously needed, but it is found routinely for elliptichits, and as
such not considered part of this solution.

4.2.2 General Solution for the In Plane Motion

We will now seek the solution for the coupled in plane motiahjch is significantly
more complex than the out of plane solution, which we have ¢stablished. From
the equation system in Equation (4.38) we recall the two @lipquations for the in
plane motion as the first and the third equation. We intedhagdirst equation of Equa-
tion (4.38) once and obtain

o =27+ ke, (4.43)

By inserting Equation (4.43) into the third equation of Eta(4.38) it yields

3
7= 227+ )

and by rearranging in terms of coefficientsygfwe obtain

¥+ (4 - §) v = —2kq, (4.44)
o

As we will see soon, Equation (4.44) is central to the findiighe complete solu-
tion. Equation (4.44) has non constant coefficients and aamn solved by elementary
methods directly (Bronstein 1999). It has no singular powith ¢ as defined in Equa-
tion (4.20), which makes it analytical in the domain of thguanent. The complete
solution of Equation (4.44) consists of the homogeneoudlaagarticular solution, as
v = v + 7p respectively. First we will look at the homogeneous solutid Equa-
tion (4.44).
Th = k’h p1+ k’Yz P2
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wherek,, andk,, are the constants of integration, which we will considegdat this
section. One solution could be of the following form

©1(0) = 0(0) sin(0) (4.45)

That Equation (4.45) is a solution can be verified by difféieimg Equation (4.45) twice
to find ¢! and substitute back into Equation (4.44) for the homogesgaut. It turns
out to fulfill the equation and it is a solution.

For the second solutiop, there has been proposed several solutions in the past.
One solution proposed by (Lawden 1954) is the following gsin integrall (6)

o 1
0) = p1(0)I(0) = p1(6 ——d
020) = 1010 = 010) | i

but this solution is singular fof = +7. The integrall (§) appears consistently in his
work since then (Lawden 1993).

This singularity problem was removed by (Carter 1990), whappsed a new for-
mulation of the integral of the form

B 0 cos(T) .
0= [ G
B cos(0)

but it has the restriction that the resulting transitionmixas not valid fore = 0, hence
not usable for circular orbits. To improve this constramtérms of generality, (Carter
1998) proposed yet another integral of the form

_ sin(0) ¥ sin?(7) .
10 =) 36/9 G

but the solution becomes rather complex, and it distansedf itrom more practical
applications and use.

We will now propose a simpler integral and look for a solutadong the same lines
as referenced above. The motivation is to get rid of the highgy terms of the integral
in the denominator of the past solutions and combine it withrelations of elliptical
orbits.

Lemma 4.1
Let an integral function be defined as follows

o T
CEN-= (@49

which can be reformulated as and shown in the proof Equaiié) to (4.51)

J(0) = k*(t — to)
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Then the solution to the differential Equation (4.44) carfdrenulated as

v(0) =

ke 0(0) sin(0) + k-, (322 0(0) sin(0)J (0) + 0(0) cos(6) — 2¢) — k;;lg(@) cos(0)
(4.47)

wherek,,, k,, andk,, are integration constants.

Proof: Before proceeding with a solutiop,(9), we will try to find a solution of the
new integral in Equation (4.46). From the intermediate walitons Equations (4.20)
to (4.22) and using Equation (4.13) we obtain

2
(73) w=h (4.48)
o

whereh is a constant. We can now express Equation (4.46) in a sinnpégmer by
combining it with Equation (4.48), integrating and remaglithat% =w.

(5) = () &
h=|=) w=(=]) —
0 0 dt

2
hdt = 2o
0
and by definite integration
t 0
dr
h / dt = p? /
to 6o 92(7-)
h
J(0) = F(t —tp) (4.49)

From Equation (4.14) and the general properties of conises; see also Equation (A.12)
or (Symon 1979), we obtain

h2
12

2= —— = hk? (4.50)

Inserting Equation (4.50) into Equation (4.49) we obtain

[ J(0) = K2t — 10) | (4.51)
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The expression in Equation (4.51) is indeed a very simpleesgion only based upon
the transfer time in the orbit and has no complex integralsolue as seen in earlier
solutions.

As Equation (4.44) looks a bit alike the harmonic oscillatee propose a solution
in the direction of

©2(0) = k10(0) sin(0)J(0) + koo(0) cos(8) + ks (4.52)

We must now differentiate Equation (4.52) and insert it itpuation (4.44) to try find-
ing the constants (those in Equation (4.52) are not the narbdrary constants).

We will now rewrite Equation (4.52) in preparation of findiagsolution, and we
divide it through byks, which just gives a scaled solution, but only 2 constantsni. fi
We will still call the functiony, and keep the constants for convenience and clarity. Let
us define the following 2 functions

#(0) = o(0) sin(0)
A(8) = o(9) cos(0)

By rewriting Equation (4.52) and leaving out thergument we get

o2 = k1 + kad+1 (4.53)
<p’2 =ki(¢'J + ¢J') + ka N (4.54)
o = k(9T + 28T + §J") + kN (4.55)

We now insert Equations (4.53) and (4.55) into the originqu&tion (4.44) for the
homogeneous part and obtain

3
<P'2/+(4—E)902=0

3
ki(¢"J+2¢'J + ¢J") + ko' + (4 — E)(hch + koA +1)=0

and after some manipulations

ki((¢" + (4 — §)¢)J +2¢' T + ¢J") + ko(N + (4 — §)A) +(4— §) =0 (4.56)
. 0 . 0 0

We know that in Equation (4.56) = ¢, from Equation (4.45) and that it is a solution
and the first under braced equation equals zer@ not a solution to Equation (4.44)
, but we can find what it gives by backward substitution. Wd firild )" and insert
into the form of the homogeneous part of Equation (4.44) @ tte value of the second
under brace in Equation (4.56), which is detailed in Equef.28).

X' = 0" cos —p' sin —¢’ sin —p cos
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and by inserting as defined in Equation (4.31) we get as fallowiting thed argument
only when double angle
N = —2¢cos(20) — cos

By back substituting we obtain

N+ (4- %)/\ = —2ecos(260) — cos+4pcos —3 cos
= 2
Equation (4.56) is now simplified significantly and becomes
ki1(2¢'J + ¢J") + ko2e + (4 — 2) =0 (4.57)

The next stage is to replace the integral tefhand.J” in Equation (4.57). Differentiat-
ing Equation (4.46) we obtain
J/ —_ 9—2

J" = _2Q—3g/

and
¢ = o' sin+pcos

Inserting into Equation (4.57) using also Equation (4.3&)get
3
E1(2(ocos —esin?) o2 + 2psin? o7 3¢) 4 ko2e + 4 — o= 0

and after rearranging we obtain, with details in Equatior2@)
(2k1 + 4e + 2koe?) cos +2eky +1 =0 (4.58)

To make the left side of Equation (4.58) equal zero, the twstamt terms must both be
zero, which leads to the following fdr, andks.

1

ko = ——

2 2e

and 5
kl = —56

Finally we can write Equation (4.52) as
3 . 1
P2 = —§£gst - 2—Egcos+1
By multiplying through with—2¢ and inserting the argumefitwe get for the second
solution

©a(0) = 3c20(6) sin(0)J (0) + 0(0) cos(0) — 2¢ (4.59)
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We will now have to check that; andy- are linearly independent. We will find the
Wronskian of the solutiong; andy- (Rabenstein 1975). If the Wronskian is different
from zero at just one point in the space, the solutions aemtiy independent. The
Wronskian is defined as the determinant of

W:‘ oL
Y1 P2

From Equation (4.45) one gets
@} = e(cos® —sin?) + cos
From Equation (4.59) one gets
©h = 3e*(0'sin J + pcos.J + gsin.J’) + ¢’ cos —psin

The Wronskian now becomes after insertisigandy’, and reducing all the trigonomet-
ric terms, see also Section A.3.3

W = @19h— e
2 -1 (4.60)

For elliptic orbitse € [0; 1] andW in Equation (4.60) is always different from zero and
1 andy, are linearly independent.

The particular solution will be found by using the methodvafiation of parame-
ters (Kreyszig 1979), which only require that the homogeneolgi®m is known. We
attempt to find the solution of

ao(x)y™ + a1 (2)y™ Y + - an_1 (2)yY + an(2)y = F(z)
which is of the form
yp(x) = Cr(z)ur(x) + Co(x)uz(x) + - -+ + Cp(x)up (z) (4.61)

whereu; - - - u,, are the linear independent solutions to the homogeneowiegand
the coefficients need to be determined. For a second ordensyise conditions to fulfill
are (Rabenstein 1975)

C{Ul-’-CéUQ = 0

/o rr
Ciuy + Couy =

which we recognize as the Wronskian

U1 U Ci _ O
wouy || G )T Y
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We solve for the constants and then find the particular smidiy integration. The'; -
shall not be confused with the » in Section 4.2.1. For the actual system we get

P1 P2 ] _ 0
(pll 50/2 Cé N _Qkal

From using Cramers rule (Ogata 1970) we obtain

0 P2
_Qka 5012
C/ — 1
! w
Y1 0
30/1 _2ka1
Cl =
2 w

wherelV is the Wronskian andl’ = 2 — 1.
e,

C) = e (4.62)
2ke,

Cy = g (4.63)

and according to Equation (4.61), we can now formulate titqodar solution
o= [t [ (4.64)

By inserting Equations (4.62) and (4.63) into Equation44..@ve obtain
2kq,

Yr= 57 <<P1 / P2(T)dT — @2 / wl(T)dT) (4.65)

We will now find the two integrals in Equation (4.65). From EBtjon (4.45) we have

. 1 /
Y1 = ESil = ——00
9
and by inserting

1

/@1(9)d9 = /—29(9)9’(9)619 = —2—692(9) (4.66)

We will now find the integral ofp, and will integrate Equation (4.59) by using partial
integration . We will take the first term separately. All tiéermediate calculations are
to be found in Section A.3.4.

/ 3220(0) sin(6).J (0)d6 = 3¢2 / 0(6) sin(6).J(0)d0 = —3¢ / 0(0)0'(6)(6)d6
(4.67)
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We will now substitutey = %92 andg’ = o’ and rewrite Equation (4.67) as follows
leaving out the argument, see details in Equation (A.31)

—36/Jg’d9 = -3 [Jg—/J’g]

3 5 3
—— — 4.
50 J+ 250 (4.68)

The last terms of Equation (4.59) give with details in Eqoiai{A.32)

/(gcos —2e)df = /((1+€COS) cos —2¢) df
.3 1 .
= sm—EsG + € sincos (4.69)

We now add Equations (4.68) and (4.69) to get the integradliyig, see also Equa-
tion (A.33)

3 3 3 1
/gpgd@ = —5592.] + 569 + sin—560 + 55 sin cos

1
= —ngQJ + 5(1 + o) sin (4.70)

To find the particular solutiory,, we insert Equations (4.45), (4.59), (4.66) and (4.70)
into Equation (4.65) and obtain as follows, which is dethileEquation (A.34)

2k, ) 3 5 1 .
o= 2 {gsm( 5c0 J+2(1—|—g)sm>}
2k,

1
_ 2 B 1,
2] |:(36 osinJ 4 pcos 25—:)( 2:¢ )}

= - kgl 0 COS (4.71)

The complete solution of Equation (4.44) now becomes byragddquations (4.45), (4.59)
and (4.71) giving
V(0) = kyyp1(0) + kyo02(0) + ©p(6) (4.72)

wherek.,, andk,, are the integration constants.

v(0) =

ko, 0(0) sin(0) + k., (322 0(0) sin(0)J (0) + 0(0) cos(8) — 2¢) — %9(6‘) cos(0)
(4.73)

This completes the proof of Lemma 4.1, which is a key elemefinding the overall
solution. |
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We will now rearrange Equation (4.73) as follows for a corigahmatrix notation later

ka, .
~(0) = k+, 0(0) sin(0) + <k‘,y2 — T) 0(0) cos(8) — ky,e(2 — 3e0(0) sin(0)J (6))
(4.74)
We note thatk,, is also an integration constant from Equation (4.43). We molv
find the other component(¢) from Equation (4.43), which can be done by inserting
Equation (4.74) followed by integration.

o =27+ ke,
! . koq .
o =2k, osin+2 | ky, — — ) ecos —2ky,e(2 — 3epsinJ) + kq,

We now expand the last parenthesis and aim to get eliminagsingle ternk,,, , yield-
ing after some manipulations in Equation (A.35)

o' =2k, psin+ (kﬁ,2 - %) (20cos —¢) — 3k.,e(1 — 22psin J) (4.75)

We can now integrate the terms of Equation (4.75) term by &srfollows by leaving
out the constants, where the details are in Section A.3.5

/QsindH = /(1+Ecos)sind9

—%(g—i— 1) cos (4.76)

and
/(2@ cos—¢e)df = /(2(1 + £ cos) cos —e)db
= (o+1)sin (4.77)
and finally using the substitutions between Equation (4aéid) Equation (4.68)

/(1—2sgsinJ)d9 = /d@—?/sgsianG

= 9+2/QQ'Jd6‘
= 0%J (4.78)

We will now back substitute Equations (4.76), (4.77) and &} into Equation (4.75) to
obtain the integrated solution.

a(f) =
=l c0s)(e(0) 1)+ (I = ) sin(0)(o(6) + 1) = 3hraeg?0)700) +
(4.79)
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We will redefine the constants for the sake of simplicity ameit into Equations (4.74)
and (4.79) for(9) and«(6) respectively. Defining coefficients as follows

ki = ko,
ko = k’h
1
ks = ky, — - ko,
k4 = —k728

(4.80)

and insertion gives
a(0) = ky — ko cos(0)(0(0) + 1) + k3 sin(0)(o(0) + 1) + 3ks0*(0)J(0)  (4.81)
¥(0) = ka0(0) sin(0) + ks0(0) cos(8) + ka(2 — 3c0(8) sin(6).J(9)) (4.82)

The velocities of Equations (4.81) and (4.82) can be obtHiyadifferentiating or by
using the original differential equations. Feff) we get directly from Equation (4.75)

o' (0) = 2k20(0) sin(0) + k3(20(0) cos(0) — €) + 3ka(1 — 2e0(0) sin(6)J (0)) (4.83)
For~/(0) it is easier to differentiate Equation (4.82)
Y (0) = kalcos(8) + € cos(20)] — k3[sin(0) + € sin(26)]

—3kye | (cos(0) + e cos(20)).J(0) + sin(6) (4.84)

1
o(0)
We can now write the in plane Equations (4.81), (4.82), (1&88 (4.84) in a matrix
form to obtain the transition matrix.

06(9) kl
0) | _ k
w0 | > kj (4.85)
'(0) ka
and

P —

1 —(e(0) + 1) cos(6) (e(0) + 1) sin(0) 30%(0)J (0)

0 (0) sin(0) 0(0) cos(0) 2 — 3ep(0)sin(6)J(0)

0 20(0)sin(0) 20(0) cos(0) — e 3(1 —2e0(0) sin(0)J (6))

0 cos(0) +ecos(20) —(sin(0) 4+ esin(20)) —3e [(cos(a) + £ cos(20))J(0) + Si@?g)]

We will now find the transition matrix and eliminate the intajon constants, like what
was done for the out of plane motion in Equation (4.40).

ao(0) k1 kq ao(0)
Y0(0) k k2 | _ g1 | 70(0)
ag 0 | = b, kj = k; =®;! az (o) (4.86)
70(0) k4 ka 76(0)
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We now have to obtain the inverse matrix®§. For the initial conditions , where= ¢,
andf = 6, we obtain from Equation (4.46) or Equation (4.51) that

J(0) =0 (4.87)
which simplifies® slightly
1 —(o(0o) +1)cos(fo) (o(fo) +1)sin(6o) 0
= |0 Sotsii el emii—c 3 (459
0 cos(fp) +ecos(20g) —(sin(fg) + sin(260y)) —3¢ Sigrz(ei‘;)

We will find the determinant of Equation (4.88) by using thstfiiow for elimination,
see also Section A.3.7
det®y=¢%—1 (4.89)

We observe that the result in Equation (4.89) gives the saswdtras the Wronskian in
Equation (4.60). Itis clear th&g1 exists for all closed orbits as the determinant never
becomes zero. Elliptic orbits open up to parabolic trajeetoas: — 1.

The inverse matrix ofb, we will find by utilizing cofactors and the transpose of the
adjoint matrix (Ogata 1970). The detailed calculations loarfiound in Section A.3.8,
whereg(6y) = go. The inverse of Equation (4.88) becomes

1—¢? 35“2)—?1 sin(fo) —(00 + 1esin(fg) 2 — goe cos(6o)
;! = 1 0 -3 (% + 1) sin(6o) (0o + 1) sin(6o) oo cos(0o) — 2e
e () —3(g + cos(o)) e+ (00 +1)cos(fo) —o0sin(do)
0 €2 + 300 — 1 —0? €00 sin(6o)
(4.90)

4.2.3 Summary of General Solution

This section contains in summary the resulting equationshfe in plane and out of
plane motions as well as the transformation betwee tired the time domain.

In plane:
- o
0/(9) = ‘1’(9)‘551(90) O?// 93) (4.91)
7' (0) 7' (6o)

where®(0) and@gl(eo) are defined in Equations (4.85) and (4.90) respectively.
Out of plane:

FIRE R

whereA (), Ay ' (0y) andB(6, 6,) are defined in Equation (4.40) .
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To transform from the time domain to tlledomain and reverse can generally be
formulated according to Equation (4.41) and Equation (4.A8re exemplified for the
(8 component.

[ y(t) ] A [ g@ ] (4.93)

and

B 0(0) 0 1 255 0
A=| o) k—@] A= ) ke | @99

where we obtain from Equation (4.20) that

0(0) =1+ ecos(d) (4.95)
and from Equation (4.14)
2 M2
k= 73 h=|rxr| (4.96)
and from Equation (4.51)
J(0) = E*(t —to) (4.97)

This is all what is needed to calculate the complete relatigéon. Larger parts of these
results are also published in (Yamanaka & Ankersen 2002)tlagid correctness and
precision independently evaluated by (Melton 2003). Taljmtethe relative motion in
an elliptic orbit performs the following steps:

1. From the initial time, to the final timet compute the true anomadyt), which is
well known from solving Kepler's equatiort., i ande are known from the target
orbit, which is time invariant.

2. Compute Equations (4.96), (4.97), (4.95) and (4.94) hige the domain trans-
formations.

3. Use Equation (4.93) to obtain the initial state vectorhia& domain. Compute
the out of plane transition matrices from Equation (4.40mPute the in plane
transition matrices from Equations (4.90) and (4.85) respely.

4. Compute Equations (4.91) and (4.92) to get the propag#atel vector. Then use
Equation (4.93) to return to the time domain.
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4.3 Circular Orbhits Restricted Solution

In the following the special case will be derived, and moshownly used so far, valid
for near circular and circular orbits only. This means theg orbital angular rate is
constantw = 0. Inserting into Equation (4.15) one obtains:

1

jé—wa—2wz+kw%x = —F,
me
1

i+ko?y = —F, (4.98)

me
1

é’—w2z+2wa':—2kw%z = —F,
me

By combining the following two expressions (Renner 1983 oan find an expression
for k, whereT is the orbital time.

[r3 2
T=2m /= AnT=Ls50= 8
i w r

and inserting into Equation (4.14)

k=+vVw
which gives
1
P—2wi = —F,
me
1
j+uwly = —F, (4.99)
me
1
5 —3w?z4+2wi = —F,

The formulation in Equation (4.99) was found by (Hill 1878)dathe solution to the

system was obtained by Clohessy and Wiltshire (Clohessy &skiie 1960), but are

commonly referred to as the Clohessy Wiltshire equatiomsalkernative method of

derivation is documented in (Ankersen 189)0From Equation (4.51) we find the inte-
gral function.J to become by inserting

J =E3(t —to) = w(t —to)
In plane: From Equation (4.91) we find the in plane transition matrix.

—2cos(f) 2sin(d) 3
sin(6) cos(f) 2
2sin(0) 2cos(d) 3
cos(6) —sin(f) 0

(4.100)

o O O
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We now find the inverse matrix of Equation (4.100) and indegtinitial conditions

0 0 2
—3sin(fp) 2sin(fy) cos(fy)
—3cos(bp) 2cos(fy) —sin(bp)
2 -1 0

o, = (4.101)

oo o

By multiplying Equations (4.100) and (4.101) we obtain

1 6(w(t—to) —sin(d —6p)) 4sin(d — Oy) — 3w(t —to) 2(1 — cos(f — b))
-1 0 4—3cos( — 6o) 2(cos(0 —6p) — 1) sin(@ — 0o)
O 710 6(1—cos(d—0)) 4cos(f —0p) — 3 25sin (0 — o)
0 3sin(f — o) —2sin(0 — 6o) cos(0 — o)
(4.102)

We recall that Equation (4.102) is in tiledomain. We will formulate it directly in the
time domain by inserting the transformations from Equati@h93) and (4.94).

1 0 _ 1 0
Acircular = |: 0 w—l :| Aci}"cular = |: 0 w :| (4103)

We pre- and post-multiply Equation (4.102) with Equatiori(B) for both in plane axes
and obtain

1 0 0 O 1 0 0 0
euttor | 0000 e 0008
0 0 0 w 0 0 O wt
We now introduce the following relative changes
T=t—tg 0 — 0 =wr (4.104)
and inserting into Equation (4.102) gives
1 6(wr —sin(wr)) 2sin(wr) — 37 %(1 — cos(wT))
Pt = | ) 6ot Cesor) Teolen) 3 Benier) | (4109
0 3wsin(wt) —2sin(wT) cos(wT)

Equation (4.105) is the Clohessy Wiltshire solution to Bli#quation for the in plane
and can be written directly as in Equation (4.106) using tfigal values to obtain the
final state.

x(r

) (0)
0 |- 28
) (0)

I

(4.1086)

]

I

T
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Out of plane: We will now perform the similar reduction for the out of planmmtion,
where we get from Equation (4.40)

(4.107)

AA; = { cos( — 6y)  sin(6 — 6o) ]

—sin(f — 6g) cos(6 — bp)

We will pre- and post-multiply Equation (4.107) with Equati(4.94) to obtain
10 1110
Acw(T) = [ 0w ]AAol { 0 w-! } (4.108)
and inserting Equation (4.104) we finally get

_ cos(wt) L sin(wr)
Acw(r) = [ —wsin(wr)  cos(wT) } (4.109)

The solution of the Clohessy Wiltshire equation for the dytlane can now be written
as in Equation (4.110) using the initial values to obtainfihal state.

[ y(7) ] Y [ Z(O) } (4.110)

The development and formulation presented here, is coeadland published in detail
in the only dedicated book on RVD (Fehse 2003).

4.4 \ferification of General Solution

The general solution summarized in Section 4.2.3 will nowesfied together with
the Clohessy Wiltshire equations and a numerical integmadf the nonlinear Keplerian
equations.

The verification methodology is based upon a comparisonawthmerical obtained
result (Roy 1976), which is considered as teference modellhe reference results are
based on the solution of Kepler’s equations in a sphericalitational field. A target
reference orbit is found providing the positions, velastand the true anomaly. The
initial relative position and velocity between chaser amdjét, specified in the LVLH
rotating frame, is transformed into inertial coordinated added to the target vectors to
obtain the chaser inertial initial position and velocitgesalso Equation (4.5).

From the initial chaser position and velocity, all the oabfiarameters are identified.
Then the chaser orbit is propagated during the same timeasptre target orbit. The
relative motion is then found again according to EquatiaB)(after which the relative
position and velocity is transformed into the target rotgtiramer,.

The accuracy of the reference positions are better tfiari m comparing repeti-
tive orbits. This is considered sufficiently stable orbebpagation and the accuracy is
actually better than what is needed in this context.
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Figure 4.2: Circular orbit,e = 0. The relative motion of the numerical solution, the Clolyess
Wiltshire equations and the elliptic solution. The first 8iglshow the relation positions in the 3
planes of the target LVLH frame. The 4th plot shows the posigrror in percentage of the x-axis
distance. The legend is valid for the 3 first plots. Note thet3 curves are on top of each other.

The relative position and velocity from the Clohessy Wiltstrequations are com-
puted from Equations (4.106) and (4.110). The output of tlih&ssy Wiltshire equa-
tions are directly available in the target rotating fraffigand can be compared to the
numerically obtained results.

The relative position and velocity from the general solngguations are computed
from Equations (4.91) and (4.92). The outputis also diyethilable in the target rotat-
ing frame¥,, but in thef domain. Itis therefore required to perform the transfororet
to and from this domain using the known true anomaly valuesifthe knowledge of
the target orbit propagation.

The error between the numerical ressjlt,,,, and the CW solution and the general
solution, respectively.., ands,.,, is computed directly as the difference of the vectors
after which the modulus is taken. This gives the error in,sme without any direc-
tion. This absolute error is not directly interesting, as #ltceptable errors relate to the
distance between the two spacecraft. For that reason weavitpute the error rela-
tive to the true curvilinear result in the direction of thexis in the LVLH frame. The
expression for this is in Equation (4.111).

_ [num = seul 1, (4.111)

SE’I"TOT
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Figure 4.3: Eccentric orbits = 0.1. The relative motion of the numerical solution, the Clolyess
Wiltshire equations and the elliptic solution. The first 8tglshow the relation positions in the 3
planes of the target LVLH frame. The 4th plot shows the posiérror in percentage of the x-axis
distance. The legend is valid for the 3 first plots. Note thatred curve is on top of the black one.

The same equation is used for the general solution. Theisgxpressed in percentage.
It should be noted that Equation (4.111) is not valid4g¥,,,, = 0.

We will consider 3 different test cases, which have the saitialiconditions, except
for the orbital eccentricity. All initial values are seledtsuch that all are different from
zero in order to have full test coverage of all terms in theatigns. The data is defined
in Table 4.1.

In Figure 4.2 there is the special case for circular orbite.N&ve displayed only the
positions, but the velocities are clearly matching as wElle first plot showing the so
called in plane motion is the most interesting, as it is trenplfor the most common
maneuvers for proximity operations. It should be notedthagxes are plotted reverse,
which is the traditional manner to view this plane. The platatain the results from
the numerical, CW and the general solution, and they aregulan top of each other
indicating an extremely small error. The pl@snd3 show the same, but in the two
other planes with the same good accuracy. In plttere is displayed an error of the
CW or the general solution according to Equation (4.111).s&fthat there is an error
of only 0.02 % at the distance ¢f km. This error comes from the actual linearization as
we compare to the true curvilinear results accounting ferdtbital curvature.

In the circular case it is actually possible to account fig étror in the z-axis direc-
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Figure 4.4: Eccentric orbite = 0.7. The relative motion of the numerical solution, the Clolyess
Wiltshire equations and the elliptic solution. The first 8iglshow the relation positions in the 3
planes of the target LVLH frame. The 4th plot shows the posigrror in percentage of the x-axis
distance. The legend is valid for the 3 first plots. Note thatred curve is on top of the black one.

tion in a very simple manner, recalling that the x-axis isafatangent to the orbit at any
location. We can find an analytical expression for the distdretween the tangent and
the intersection of the orbit and a line from the orbital eeno the spacecraft location
along the tangent. The expression is as follows

Ceomp =T(1 — cos(arctan(LgL:”'))) (4.112)

wherer is the orbital radius and.,,, is the chaser spacecraft location along the x-
axis. The ternt.., is then added to the.,,, to account for the orbital curvature. This
simple nonlinear correction is recommended for distanegsihdl — 2 km.

In Figure 4.3 we see the same kind of plots as just discussdtdore 4.2. We now
deal with an eccentric orbit, which is not accounted for by @W equations, but well
by the general solution. It is clear that the CW trajectoaessoon diverging from the
real result. There is very quickly an error of ab@at%, though in this test case the
shape of the trajectories are similar. The trajectorieb@ffeneral solution behave very
well and are in practice equivalent to the true ones, remgiat errors of about.025 %
at distances of abodtkm.

The last test case, displayed in Figure 4.4, is highly ecteand therefore it is
expected to visualize the nonlinear effects more pronadintteis clear from the plot
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| Case| ¢ | fodeg | Positon m | Velocity m/s |
1 0.0 void | -100| 10| 10| 0.1| 0.05| 0.01

2 0.1 30 -100| 10| 10| 0.1 | 0.05] 0.01
3 0.7 30 -100| 10 10| 0.1 | 0.05| 0.01

Table 4.1: Definition of the initial position and velocities in thE, frame, the eccentricity and
the initial true anomaly for the 3 test cases in Figure 4.2 a20d 4.4 respectively.

that the CW trajectories are meaningless for such typeshitsorThe general solution
shows its full power for such orbits. It remains within thereasmall error as before,
despite the higher complexity of the trajectories betwéerspacecraft. We see that we
have errors of about5 % but at distances of aroun@0 km and it seems to scale fairly
linearly.

In conclusion it has been demonstrated that the new geraudilos derived in this
work functions very well for all types of orbits, with easibyedictable errors and pos-
sesses robustness and generality.

Finally we will address the point when to use one set of dpsori or the other.
In the in plane plot of Figure 4.3 we see that the error betwterCW solution and
the numerical or general solution is rougtlyy %. After running several simulations
it can be shown that this error scales fairly linearly in tloe end of the eccentricity
domain. If we do not want larger deviations than same7 %, it means that the largest
eccentricity where the CW solution should be used withoantgensation is about =
0.04. This matches well with the values, which are known from afienal experience,
in particular from the Russian space program (Duboshin 1963

4.5 Impulsive and Station Keeping Maneuvers for Cir-
cular Orbits

This section will contain the development of the equatiamgpkerforming station keep-
ing at an arbitrary position as well as the expressions #irtipulsive maneuvers. The
latter is split into the general expressions and expresdmmimpulses along the V-bar
and the R-bar respectively.

4.5.1 Station Keeping

The objective of station keeping is to stay in one and the daoation. If the spacecraft
is exactly in the V-bar no forces are needed, but this willanédae the case in practice
where there are always disturbances.

We are interested in the forces needed to be applied in oatetormove. From
Equation (4.99) we can obtain expressions for station kegfarces by setting all the
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derivatives to zero, yielding:

F, = 0
F, = mwy (4.113)
F, = —3mw2z0

where the index means the station keeping location.

45.2 GeneralAV Maneuver

The general expressions f&V for out of and in plane maneuvers will be derived, com-
mencing with the former. For practical purposes transfemenaers of longer duration
than one orbital period have no interest, and the developwiéiioe according to that.

Out of plane: Equation (4.110) expresses the motion for the out of plame I&ft
side is the final positio; and velocityy; and the right hand side the corresponding
initial valuesy, andyy, where the latter is the unknown variable we are seeking. By
calculating the first row of Equation (4.110) we have one #&quawith one unknown.

By solving this and inserting the elements of the mafkixyy (7), we obtain

Yr — cos(wr)yo

sin(wT) (4.114)

Yo =w
It shall be recalled that Equation (4.114) expresses thegshi initial velocity, so the
total initial velocity is this added to whatever velocity ght exist already giving; .
The velocity at the final point we can obtain from the secowd ob Equations (4.110)
and (4.114). Rearranging terms it yields

w w
Yy

s ) o (4.115)

B tan(wr)”’  sin(wr

To stop the motion at the final poig an impulse opposite tg; needs to be applied.

It shall be noted that Equation (4.114) is singular dor = 0, 7, 27, 3=, .... For
T =~ we getthatr = % which is half the orbital time. For this time we must find the
expressions directly for the elements of Equation (4.1W@)ch leads taj; = —yo. As
this is independent of the initial speed, and governed by#teral motion, it is not pos-
sible to perform maneuvers where the transfer time is halbttital time or multiples
there off.

In plane: We follow now the same procedure as for the out of plane masreuv
but using Equation (4.106) instead. From the 2 first rows afdfign (4.106), we can
find the 2 unknowns:y and Z, respectively. After some algebraic manipulations and
expanding all elements of the matdx-y (7) we obtain

_ sin(wt)(xf — xo) — 2(1 — cos(wT))zf + (14(1 — cos(wT)) — 6wT sin(wT))zo
2(1 = cos(w)) — 37 sin(wT)

(4.116)
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Figure 4.5: Impulsive maneuvers. Top left far, = [100,0,100]" m, z; = [2000, 0, —50]" m
and transfer timeg % longer (full line) andi % less (dotted line) than an orbit. The trajectory
is shown for longer time for illustrative purpose. Secondpdris a V-bar transfer withy, =
[—-1000,0,0]" m andz; = [—100,0,0]" m. Third graph is the same as second but for R-bar

pulses.

2(1 — cos(wT))(zf — o) + (4sin(wr) — 3wT)zs + (3w cos(wr) — 4sin(wT)) 20
2(1 = cos(wr)) — 37 sin(wT)

Z20 =
(4.117)
The final velocities are found as for the out of plane but bygigthe last 2 rows of
Equations (4.106), (4.116) and (4.117).

The Equations (4.116) and (4.117) are both singular at theegaoints in time.
Insertingw = 2% the denominator becomes zero, and one singularity is itkshtiFor
times larger than the orbital tinig, there are singularities at multiples Bfas well as
in between but they are not considered, as beyond one orl@tna¥ have to check
for singularities forr €]0;7[. Due to the transcendent nature of the denominator in
Equation (4.116), we cannot find an easy explicit solutiorstdad we can rewrite the
denominator as

g(l — cos(wT)) — 37sin(wr) =0

cos(wr) =1— ng sin(wr) (4.118)

Considering the properties of the equality in Equation18)ifor the area close to zero
and consider the derivatives on both sides, it is clear tieeguality is only fulfilled
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for = 0 andr = T. For all other points the right hand side is larger than tlie le
Hence we have no singularities for the intervak]0; T'[. In Figure 4.5 there is a plot
where the transfer time is close to the singularity pointro&t?’. For the example given
the trajectory moves in the minus z-axis direction leavihg initial point for times
slightly larger thari’, and the opposite for slightly smaller tharvalues. The transition
between the two trajectories goes via infinity as the cyctaitius approaches infinity
as time approaches T.

For the special case of singularity for= T', the expressions can be found directly
from Equation (4.106). The first two rows give the followinguations

xy = x4+ 6wlzg—3Txq (4.119)
Zfp = 2o (4.120)

We see that it is not possible to select freely both the teartshe and the finat ;. This

is because the trajectories are periodic cycloids and amtmfihange in velocity would
be needed. From Equation (4.119) we can now compute the ehiangelocity, by
finding the limit forr — T'. For, in Equation (4.116) we get zero divided by zero and
will need to apply L'Hospitals rule of differentiating theimerator and the denominator
separately, which gives:

_ wcos(wT)(xy—x0) —2wsin(wr)zs+ (14w sin(wT) — 6w(sin(wr) +wT cos(wT))) 20

rhng o= 5 sin(wt) — 3wt cos(wT)
(4.121)
For %y in Equation (4.117) we obtain as follows for= T
T _
lim 2 = W (4.122)

which gives infinite forzg # 2y, but according to Equation (4.120) that is not possible
for - = T and then we get zero in the numerator of Equation (4.122) awedl o
differentiate it to find the limit applying L'Hospitals rule

w(zy — 20) 0

lim zg = =— 4.123
e sin(wr) — 3wt cos(wr) 3T ( )

for zy = z according to Equation (4.120). We can now write the equatfonAV for
T =T, wherei, could also have been found directly from Equation (4.119).
. _ mo +6wlz0 —xy
Ty = 3T (4.124)
20 = 0 (4.125)

Equations (4.124) and (4.125) express that we can only geopulses in the V-bar
direction and we will end up at the same height as where weestar

4.5.3 Tangential and RadialAV Maneuver

The objectives in this section will be to find some speciairieted but very useful ma-
neuvers. This relates to maneuvers witkf along either the V-bar or the R-bar.
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V-bar: The initial and finalz location is on the V-bar, meaning = zy = 0. The
initial state vector is as followgro, 0, i, 0]". The transfer time for such a maneuver
can be found from the second row of Equation (4.106), rewally = 0. The transfer
time becomes one orbital peri@d

This leads us to use the solution provided by Equation (4.a24 inserting that
T = 2% we obtain

, w
To = a(xo —xy) (4.126)

By rearranging Equation (4.126), we can see that the disthrtween the initial and
final point on the V-bar, is a constant times the initial chamgvelocity.

To —Tf = %ﬂi’o (4127)

This difference is illustrated in Figure 4.5, which alsonesents a typical shape of the
trajectory. We see that; = 4, So to stop at the final point the totAlV needed is
AV, = 2&y. The curve in Figure 4.5 is the highest f§rand can be found from the
second row of Equation (4.106) to be

T 4
i — 4.12
+(3) =gl -2p) (4.128)

It shall be stressed that this maneuver is also useful foeed fly around maneuver
or a transfer to another orbital height. This is achieved ity the transfer at half its
duration after half an orbit.

R-bar: The initial and finalz location is on the V-bar, meaning = zy = 0. The
initial state vector is as followls:g, 0, 0, %9]". The transfer time for such a maneuver can
be found from the second row of Equation (4.106), recallipg= 0. The transfer time
becomes half an orbital perio}l.

As no singularities are involved for the R-bar, Equatiod {#)) can be used directly
leading to

o = %(xf ~ x0) (4.129)

By rearranging Equation (4.129) we can see that the distaateen the initial and
final point on the V-bar is a constant times the initial chaimgeelocity.

4
To —Tf = —;2'50 (4130)

This difference is illustrated in Figure 4.5, which alsonegents a typical shape of the
trajectory. We have that; = —Z, so to stop at the final point the totAlV needed is
AV, = 2|%|. The curve in Figure 4.5 is the highest f§rand can be found from the
second row of Equation (4.106) to be

T 1
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The AV expense for moving on the V-bar is not the same for the twoeuaers.
The ratio can be found dividing Equation (4.129) with Eqoat{4.126) yielding

Z _ 3, (4.132)
Zo 2

which shows that it is significantly more expensive in fuelpgrform R-bar maneu-
vers. Despite this fact, some distinctive advantages ntaké&active:

e The same displacement on the V-bar takes half the time.
e There is no propagation along the V-bar as a function of time.

o In case of failure to perform the second pulse: atthe spacecraft will return to
its original position atr.

The last point is particularly attractive seen from an opernal safety point of view.

4.6 Impulsive and Station Keeping Maneuvers for Ellip-
tic Orbits

This section will contain the development of the equatiargperforming station keep-
ing at an arbitrary position as well as the expressions irtipulsive maneuvers. The
latter is split into the general expressions and expresdmmimpulses along the V-bar
and the R-bar respectively.

4.6.1 Station Keeping

The objective of station keeping is to stay in one and the daoation. If the spacecraft
is exactly in the V-bar no forces are needed, but this willende the case in practice as
there are always disturbances.

We are interested in the forces needed to be applied in oatelormove. From
Equation (4.15) we can obtain expressions for station kegfurces by setting all the
derivatives to zero, yielding:

F, m(kw%xo — wzg — w2{L‘0)
F, = mkw%yo (4.133)
F,

m(wzy — w?zy — ka%zo)

where the index means the location of station keeping.
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4.6.2 GeneralAV Maneuver

The general expressions fAV for out of and in plane maneuvers will be derived com-
mencing with the former. For practical purposes transfemenaers of longer duration
than one orbital period have no interest, and the developwitbe accordingly. It shall
be noted that for the general elliptic orbit the expressimiide significantly more com-
plex than seen in Section 4.5.

Out of plane: Equations (4.92) and (4.93) express together the out oephao-
tion in the time domain. In order to illustrate the principlbee two equations will be
combined here in Equation (4.134)

I = A7 (0,)B(0), 00)A(O {@.’0] 4.134
| = Ao | X (4134
wherey is unknown. By multiplying the 3 matrices in Equation (4.)184d expanding
and rearranging all the terms in the first row one obtains #retal expression for the

AV
k*0(6o)
Yo = sin(0; — 0y) [o(05)ys — (cos(0f — bo) + € cos(6))yo] (4.135)
The final speed; can be calculated directly from the second row of Equatioh34),
and nothing is gained by expanding this row into all termdiekly. To stop the motion
aty; one needs

AViop = =5 (4.136)

under the assumption of no initial residual speed.

Equation (4.135) is singular fain(f; — 6y) = 0 leading tof; — 6y = nmw and
n = 0,1,2,---, butn = 0 is of no interest in practice. Inserting directly into Equa-
tion (4.134) for the argument equaltoor 27 the B matrix becomes-I or I, being the
identity matrix. By finding now the complete transition intdion (4.134) it turns out
thaty; becomes only a scaled valuegfand not any longer a function ¢f. Hence it
is not possible to perform a maneuver of this duration, dsdscase for circular orbits.

In plane: The approach for the in plane follows the same principlesathe out of
plane maneuvers, but with a higher complexity in the sohstio

Equation (4.91) provides the transition in thelomain and utilizing the transforms
in Equation (4.94) one obtains the complete transition étime domain as

Ty To
Rf | _ a-—1 —1 ] 20
i | = AT 020N 00)A00) | (4.137)
Zf 2.'0

The first column of the produed(6;)®;, "' (6) is [1,0,0,0]", but when pre- and post-
multiplied by A; the complete transition matrix is a full matrix. We denot®itnd its
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elementst;;. To find the initial velocities we need only to solve for thesfi2 rows of
Equation (4.137), becoming

xo
If dll d12 d13 d14 20
- : 4.138
|: zf :| |: d21 d22 d23 d24 To ( )
20

where the unknowns ar@, and zy. After some algebraic manipulation this gives the 2
general expressions as follows
b = diazy + (doadii — dordia)zo + (daadia — doadia)zo — doaxy (4.139)
d23d14 - d24d13
P dosxy — dizzy + (dizdar — di1daz)xo + (dizdaz — di2daz)zo (4.140)
dazdis — d2ady3
The final velocities are found by inserting directly into B&tjon (4.137). The Equa-
tions (4.139) and (4.140) are functions of timeeccentricitye and the initial true
anomalyd,. The equations have singularities for the denominéted, 4, — doydi3 = 0,
which is a function of the same 3 variables. Due to Keplergatipn it is not pos-
sible to determine analytically possible singularitiested denominator. Nevertheless
it has been investigated numerically over the range of tharbles that there are no
singularities, except for a complete orbit of transfer.

It can be shown analytically that there is a singularityffes 7', which might be a
special case, as for the circular case. In this €438 = 27 + 6y, which means that
we are at the same orbital location. To find the transitionquéion (4.137) we will
calculate the elements for= 7. Recalling that/(6y) = 0 in &, in Equation (4.90)
and that it is the only missing term preventing the centedpecbin Equation (4.137) to
become the identity matrix. By using that knowledge it isaclthat the product of the
two matrices, will only have elements containing th@) term from Equation (4.85)
except for the pre- and post-multiplications. Those elesare derived in detail in Sec-
tion A.4. By inserting Equations (A.52), (A.53), (A.54) a(Al55) into the denominator
of Equation (4.139) and multiplying through with— 2 we get

(3200 sin(00)T) (300 sin(0p)T') — (—3&? sin(0)*T) (—302T) = 0

which is identically zero. It is proven that for any value bktvariables there is a
singularity fort = T.

By inserting all the coefficients into Equation (4.138) itrts out not to be possible to
avoid the same set of singularities. It can therefore beloded that for elliptic orbits,
it is not possible to perform impulsive maneuvers of the tianeof the orbit.

4.6.3 Tangential and RadialAV Maneuver

The objective in this section is to find some special regdcbut very useful maneu-
vers. This relates to maneuvers wilv along either the V-bar or the R-bar.
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Figure 4.6: Impulsive maneuvers, = 0.4. The first graph is fot:o = [100,0,100]" m, z; =
[2000, 0, —50]T m and the transfer time {¥) % of an orbit. The second graph is a V-bar transfer
with ¢y = [—1000,0,0]” m andz; = [~100,0,0]" m. The third graph is the same as second
but for R-bar pulses.

V-bar: The initial and finalz location is on the V-bar, meaning, = z; = 0.
The initial state vector is as follows, 0, 9, 0]". We can now write 2 equations from
Equation (4.138) as

xp = di1wo + dizdo and 0= da1xo + dasio (4.141)

We cannot solve for the two unknowns in Equation (4.141) tthesfer time and,

as they are functions of the Kepler equation. Instead a figchjuess is a solution at
a transfer time of one orbital revolutidh, based upon the nature of orbital mechanics.
The expression for thAV then becomes using the left equation

_ 2y —duxo

4.142
s ( )

Zo
This solution is confirmed by back substitution into Equat{d.138) and is then a so-
lution. An illustration of a maneuver with pulses along thexis of 7, only can be
seen in Figure 4.6. Due to the nature of the motion, thisiotstt maneuver, is valid for
0y = 0, transfer time of one orbit= 7" and transfer anglé = 2.
R-bar: The initial and finalz location is on the V-bar, meaning, = z; = 0.
The initial state vector is as follows, 0,0, %9]". We can now write 2 equations from
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Equation (4.138) as
Ty = di1xo + di420 and 0 = dorxo + das?o (4143)

It is the same problem as before with respect to solve forrtrester time. The expres-
sion for theAV then becomes

5y = 2~ T (4.144)

dig
A transfer time oft = % for Equation (4.144) is valid for the radial maneuver. The
initial true anomalyd, = 0 or = and the transfer angle &= =. An illustration of a
maneuver with pulses along the z-axis&f only can be seen in Figure 4.6. A property
of the radial transfer is that if the second pulse is not etesbithe trajectory returns to
the initial position, and does not propagate along the V-bar
From what has been derived and analyzed it can be statedhthah@neuvers in

the general elliptic case preserve all the convenient ptiggadescribed for the circular
case, though it is more complex to compute the parameters.ratto between radial
and tangential pulses is similar to the circular case, thawgexact expression for it can
be found.

4.7 Particular Solution for Circular Orbits

In the previous sections we have developed all solutiondett#or all practical applica-
tions of initial condition based relative maneuvers. Irstection we will complete the
solutions also to include relevant particular solutionkjol will improve the accuracy
of maneuvers under influence of the particular disturbanogbe sequel we will focus
on present disturbances like relative drag and solar iiadigatessure. This will be gen-
eralized to find solutions for arbitrary constant forcesha tocal orbital frameF, and
in the inertial frameF;.

4.7.1 Constant Force in the Local Orbital FrameF,

We will seek a solution for the differential equation systeniEquation (4.99) for an
arbitrary but constant forc = [F,, F,, F.]". As the system is LTI and all matrices of
the homogeneous solution are known, we will use Laplacestoamations to obtain the
particular solutions.

The general time domain solution to a state space systemeamitien from the
Laplace domain as (Fehse 2003)

x(t) = L7 [®(s)x(05)] + L7 [®(s)Bu(s)] (4.145)

zero input component zero state component

where the zero state component is the particular solutiosee&. A general constant
signal can be formulated as

ft) 2 k-ug(t) and u,(t) = {

1 for t>a

0 for t<a (4.146)
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which provides a constant step at timgeand its Laplace transform is

L[ft)] =F(s) = Se—fos (4.147)
Equations (4.145) and (4.147) will be used for all elemenmtarive the solution.

In Equation (4.145) we have thats) = F(s). We will first compute the out of plane
solution, whereB = |0, %]T and®(s) are obtained by transforming Equation (4.109)
and it is observed that only the right column is used duB tdlr'he argument of Equa-
tion (4.145) now becomes

1 N S
®(s)Bu(s) = — { sifw? } By gtos _ By { sl +w%) ] e tos (4.148)
m

L e Tro?
and the out of plane particular solution yields
L (1—cos - 1 (1 _cos
xPom:zl(@(s)Bu(s)):&{ 7 (1—cos(w(t to>>>]:%[ 2 (1—cos(wr))

m | 3 sin(w(t —to)) sin(wr)
(4.149)

€ |—€

using from Equation (4.104) that=t — t,.
The in plane solution follows the exact same method, wherénbut matrix is

(4.150)

vs}

I
SEIINS S
3o oo

and only the two right most columns of the transition matrixdquation (4.105) are
used. We obtain

4 3 2w
s2+w? 52 s(s24w?)
1 EQW 2 2 ! p 1 F,
(}(S)BU(S) = E S(is+w_) 3 S ét)w g |: FZE :| e_tos (4151)
s24+w? s s24w? Z
—2w s
52+w2 52+w2

We multiply the Laplace terms together in Equation (4.1510) find the inverse Laplace
transform of each element of the matrix and obtain the falgvgolution withr = t—t,

[Flmendr dorme) |
xp, (1) =L (2(s)Bu(s)) = m gzsin(oﬂ)—?ﬂ' %2(1—COS(WT)) {Fz]
& (cos(wr)—1) Lsin(wr)
(4.152)

The effect of accounting for the particular solution isstitated in Figure 4.7 com-
pared with the classical homogeneous one. The result icafepared with a numerical
result of the differential equation system and seen to coenpery well. The error in
Figure 4.7 is computed according to the definition in Equafb111). In summary we
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Figure 4.7: A two pulse maneuver in circular orbit under the influence obastant force in the
F, frame, wherd = [0.02, —0.01,0.3]" N. The initial conditions arg(0) = [~100, 10,10]" m
andx(0) = [0.1,0.05,0.01]" m/s, where the duration is one orbit and= 0. Note that the red
curve is on top of the green curve.

list the two particular solutions for the in and out of plane.

Out of plane:
1 (1 — cos
0.0 = o | T |5 (4.153)
In plane:
24 (1—cos(wr)) — 372 Z(wr — sin(wT))
_ 1| Z(sin(wr) —wr) L (1 — cos(wT)) F,
Xp (1) = m| 2 sin(wr) — 37 ﬁ(l — cos(wT)) [ F, } (4.154)
%(cos(um—) -1 % in(wr)

4.7.2 Constant Force in the Inertial FrameF;

We will now consider the perturbation of solar radiationgsre, which we will ap-
proximate to be constant in the Earth centered inertial &&in This is an insignificant
approximation, as it affects the modulus of the force vebioless thar).02 % per day
and practical relative maneuvers are of shorter duratibe.development will therefore
be generalized for an arbitrary constant force representea 7, frame.
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This constant force needs to be represented in the orlatadf, as in Section 4.7.1.
From Figure 3.1 there afeangles involved. The angteand the inclinatiori both con-
stant for the duration of maneuvers and the arnjle3 = 6 + v whered is the true
anomaly andy is the argument of perigee. The latter is undefined for carcoibits and
we can sety = 0 without loss of generality. We now transform a vectgiin F; into 7,
as

Vo = RosRapRiiv; (4155)
where
1 0 0 cos(aw) sin(a) 0
Ry=| 0 cos(i) sin(i) —sin(a) cos(a) 0 (4.156)
0 —sin(:) cos(i) 0 0 1
and
cos(f) sin(f) O 01 0
Rg = | —sin(8) cos(8) 0 and R, = 0 0 -1 (4.157)
0 0 1 -1 0 0

We definev, = Ry;v; = Ry F;, where the force vectdr; is now just another con-
stant vectow, in the 7, frame. Let us define, = [k, ky, k.]" and combining with
Equation (4.157) we obtain

—sin(B)  cos(f) O
Vo = 0 0 —1 |w (4.158)

—cos(f) —sin(B) 0

It is observed that the out of plane component is minus thdisolin Equation (4.153),
so we can proceed directly to solve the in plane part recpihats = wt.

The same method and matrices apply as used in Section 4céfiteke input vector
is now time varying. The input can be formulated as

wo= [ e et [ Ju s

and taking the Laplace transform and multiplying ontoBienatrix we obtain

0 0
1
Bu(s) =~ | ° 0 [ Ko ]etos (4.160)
m T s2tw? s24+w? kTI
i Tt

From Equation (4.160) we see that only the two right most mooisi of the transition
matrix in Equation (4.105) are used. Multiplying matriceglacombining terms we
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obtain
3w 6w 4s 3 o 2w?
2(2+w?)  (s24w?)?  (24w?)?  s(s2+w?)  s(s2+w?)?
2 £ 3w
1 2 2)2 T (g2 > 2)2 T (s2xw2)2 k
@ —tp¢
®(s)Bu(s)=— | B ) (861:2} ) 452 ¢ 5" " e kT e’
m 5(52+2u12) - (52+g)2)2 (52+w2)2 - sZ24w? - (52+w2)2 Yy
w s 3ws
(s2+w?)? ~ (s2+w?)? T (s7w?)?

(4.161)
The inverse transformations are found from Laplace tabigisthe first term of element
(2,1) has not been found. We will therefore use the following idgrit solve it. Proof
can be found in (Kreyszig 1979).

c {/Otf(T)dT} = éﬁ(f(t)) & L1 {EF(S)} - /Otf(T)dT (4.162)

We obtain
-1 LR R /t(sin(wT) —wrcos(wr))dr  (4.163)
s(s24+w2)2 [ 2w ), -
- 2—14 [2 — 2 cos(wt) — wt sin(wt)]
w

Using the results of Equation (4.163) we can compute thdteestiEquation (4.161)
and summarize as follows for both the in and out of plane, ehet ¢ — ¢.
Out of plane:

1 -
X (1) = [ N (w:‘;s(” ) } k. (4.164)
In plane:
37(cos(wr) +1)— L sin(wr)  Z(cos(wr) — 1)+ Z7sin(wr)
1| 21— cos(wr))— 57sin(wr) 52z (wT cos(wT) —sin(wT)) ks
xpi(7) = m | 3(2(1 = cos(wr))—Tsin(wr)) 37 cos(wr)— 2 sin(wr) ky
i sin(wT)— %7’ cos(wT) — %7’ sin(wr)
(4.165)

In Figure 4.8 we see the comparison between the homogenelui®s and the
complete solution under the influence of a constant dishaban the inertial frame,
which is non constant in the LVLH frame. The result is also paned with a time
varying numerical solution showing identical results.

4.8 Particular Solution for Elliptical Orbits
The elliptical equivalent particular solution of Sectiof? 4vill be developed in this sec-

tion for elliptical orbits. As for the homogeneous solutitire development will be
performed with the true anomatyas the independent variable in thelomain.
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Figure 4.8: A two pulse maneuver in circular orbit under the influence abastant inertial
force in theF; frame, whereF = [0.02,0.01,—0.3]" N. The initial conditions arec(0) =
[~100, 10, 10]" m andx(0) = [0.1,0.05,0.01]" m/s, where the duration is one orbit ane- 0.
Note that the red curve is on top of the green curve.

It is recalled that the fundamental set of differential egpures we need to solve is
the time domain system in Equation (4.15). This was tramséak into the system in
Equation (4.38) for the homogeneous solution taking aggabf the simplification
that the input to Equation (4.15) was set to zero. Now thetifipoctions are needed
and it is necessary to perform the transformations with itifet hand side present. The
algebraic computations from Equation (4.20) to (4.38) wilt be repeated here, but the
resulting equation system yields

F,
’ _ x
= g
F,
Wigs (4.166)
F,
mk4 3

6”+ﬁ

1"

3
V" ==y +2d
0

and itis observed that all the inputs of Equation (4.15) emedformed witthT, where
o is defined in Equation (4.20). Equation (4.166) is the non dgemeous system for
which particular solutions are sought. Notation and deding of Section 4.7 are used.

Finn Ankersen, September 12, 2011



88 Relative Position Dynamics and Kinematics

4.8.1 Constant Force in the Local Orbital FrameF,

As the angular rate for elliptical orbits is nonlinear timarying, we cannot use the
approach of Section 4.7, but we will use the general methagoétion of parameters
as briefly described in Equation (4.61), though we will veiz®the formulation here.

To a general non homogeneous system of the fafm= Ax + B the particular
solutionu,(t) can be written as (Rabenstein 1975)

u,(t) = U(t)c(t) = U(t) /t U(s) 'B(s)ds (4.167)

whereU(t) is the fundamental or transition matrix fat = Ax and consists of the set of
solutionsu; - - - u,, in Equation (4.61). The constants in Equation (4.61) ar¢orexed
and become the integral in Equation (4.167). It can be vdrifieback substitution into
the original equation.

We will commence with the out of plane in Equation (4.166) aisé the transi-
tion matrix from Equation (4.40) such thBt(0) = A(0)A(6p)~* and inserting into
Equation (4.167) we obtain usihg

0
Xp, (0) = A(0)Ao(6o) " , Ao(00)A(s)”'B(s)ds (4.168)

and moving the constant outside we have

2
Xp, (0) = A(0) Ag(60) " Ao(6o) | A(s)""B(s)ds (4.169)
I fo
From Equation (4.169) it is observed that the transitiorrixaf the initial conditions in
general will reduce to identity matrix, so we need only opereith the transition matrix
such thatU = A. In the following the argumerit will mostly be omitted for simplicity
of the notation.
The input matrix for the out of plane becomes from Equatiat§8) in state space

7
form B = {O, %503} and the inverse of the transition matrix in Equation (4.40) i
itself and we obtain

_ _ F, sin(s)  cos(s) 0
1 _ 1 _ _ Yy
U B) = AL B(s) = AIBG) = ok | S [
(4.170)
We can now write the integral of Equation (4.167) as
0 ) F 0 CO(S(S)
U(s)"'B(s)ds = — o=’ ds (4.171)
U B@ds =g | ] (2)>

Iwhen the inverse exists the following hollAB)~* = B—'A !,
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This leads to solving two integrals to find the particulausioln.

_ 0 Sin(e) B 1 1 0 B 1 1 1
%_Aﬁiaﬁﬁﬂﬁiﬂﬁﬁz@thaﬂg—g}Mﬂm

The other integral is nontrivial in its present form for whiceason we will perform
a substitution of variable from the true anomalyo the eccentric anomali as be-
low (Vinti 1998)

cos(E) —¢e . V1 —¢e2sin(E)
5() = —————— 3 = 4.17
cos(6) 1 —ecos(E) and sin(6) 1 —ecos(E) ( 3
and the inverse relations are
€ + cos(0) ) V1 —&2sin(0)
3(B) = ——————— sin(f) = ———~ 4,174
cos(E) 1+ ecos(f) and sin(E) 1+ ecos(f) ( )
We can now write
0 E
cos(0)
1., = ————df = E)dE 4.175
o= [, T e = [, 1) (#7%)
Then inserting:os(#)
cos(E)—e
f(E) _ 1—ecos(E) _

3

(1+e22855)

COS — — £ COS 3 <
l_iEciS(g) u (15_62()]?” = (1—2)73(cos(E) — e)(1 — ccos(E))?  (4.176)

We now need to find# and using the chain rule and Equation (4.173) we get

d(cos(0)) _ d(cos(0)) ﬁ _ —sin(@)ﬁ
dE 9 dE dE
diE ((COS(E) —e)(1 - ECOS(E))*l) =— sin(@)j—g
(=1 — ccos(E)(1 — e cos(E)) ™ + (1 — e cos(E)) ") sin(E)(1 — ¢ cos(E)) " =
-1 —e2sin(E)(1 — ecos(E))_l%

(T 22
1+£cos(E) € :m%

1 —ecos(E)
1—¢2 db
\/%(1 —ccos(E)) ! =
df) = /1 —¢2(1 —ecos(E))'dE (4.177)
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We can now insert Equations (4.176) and (4.177) into thegnalén Equation (4.175) as

I, = /E(l—EQ)B(COS(E)—E)(l—Ecos(E))Q(l—EQ)5(1—€COS(E))1dE (4.178)
Eo

o

E
/ (cos(E) —e)(1 —ecos(E))dE

Ey

I, = (1—¢%~

M

E
= (1-¢%)" / [(1+¢%) cos(E) —ecos(E)* —e]dE  (4.179)

Eo

and after some further manipulations and substitutionshtaio

I, = (1-¢%)7%[(1+ ) (sin(E) — sin(Ey))
—g (sin(E) cos(E) — sin(Ey) cos(Fy) + 3(E — EO))} (4.180)

By inserting the solved integrals in Equations (4.172) ahti§0) into Equation (4.171)
and then into Equation (4.167) the out of plane particulartsm can be written as

1 sin(f)  cos(0) I.,(E)
up, (9) = mk? | cos(@) —sin(0) } { —1I5.(0) }Fy (4.181)

This expression is then added to the homogeneous solutiordfearlier and their sum
transformed back into the time domain provides the comiefigtion.

For the in plane solution we need the transition maix¥rom Equation (4.85).
From Equation (4.169) it is clear we do not neggd from Equation (4.88). We need
to find @ ! and we cannot use the results in Equation (4.90) as it wasieet! after
simplifying conditions were applied.

The determinant ofp is the same as earlier in Equation (4.89) as the additional
terms in the last column o® in Equation (4.85) holding cancel out to zero. A proof
is provided in Section A.3.9.

Due to the structure of thB matrix we only need to find the lower two rows of the
minor, which is needed to find the inverse. Only the termsaiairig J are different
than those found earlier in Section A.3.7 and a careful icispe of Equation (4.85)
reveals that elements of the last column, of the minor, astidal to earlier as no terms
with J. This leads to the need of findirfgnew elements of the minor. The detailed
computations can be found in Section A.3.10.

Using the elements of the minor in Section A.3.10, the caof@cand multiplying
through by(—1) @' yields, wherex replaces arbitrary elements and we leave out the
argument

*x x —(o+1)esin+30%J 2 —cpcos —3cgsinJ
1oL x * (04 1)sin—3ep?J pcos—2¢+ 3e%psinJ (4.182)
T 1—g2 | x x (0+1)cos+e —osin '
o —0? gosin
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The input matrix for the system in Equation (4.166) is of thie in the state space
of Equation (4.16) and becomes including the input

0 0
1 0 0 F,
Tk | &0 {F} (4.183)
0 z
0

and we can now compute the integrand of Equation (4.167)eWier ® as earlier

9+1ssm+ ~J gla e 35;’?*]

1 g+1 bm_ﬁj &_—4-352“;1.] F

U(s)"'B(s) = ———5 % e ¢ Csi

(s) (s) m(l — e2)kA 9+1 COb—‘r 2_;1 { F, }
1 S1n
[Sheen
0 0
(4.184)

By inspection of Equation (4.184) it is observed tRatlistinct integrals need to be
solved to find the particular solution. Two of those are kndwm Equations (4.172)
and (4.180). We will make use of splitting as foIIO\.‘\%fgél = g% + 9—12 The unknown

integrals are
/sm /COb /%7 /l, / /bm (4.185)
0 0

which will be found in the following leaving out the triviahtermediate algebraic ma-
nipulations and some of the obvious arguments.

We need the integral of, which is defined in Equation (4.46) in Lemma 4.1 and
solved for the time domain to a very simple form. A solutionienms of angle is more
convenient here and needed in the many terms, so we solvesititistituting Equa-
tions (4.173) and (4.177) as

0
10 = [ Sl =0-2)

wleo

E
/ (1= cos(E))dE

0*(7) Eo
J(E) = (1-£%)7% [E—esin(B)|p, = (1-¢%) 7% [E—esin(E)— Ey+esin(E)]
J(E) = (1-¢ )_% [E—esin(E)+Cy] and Cy =esin(Ey) — Ey (4.186)

We now proceed to solve the integrals listed in Equationg®)1
Integral/, becomes

% sin(6) 11 1
L0= [ o= 5 ) (4487

Integrall., becomes inserting Equations (4.173) and (4.177)

3

0 . E E
1,(0) = /9 %gg?daz/% f(E)dE:(l—aQ)‘E/ (cos(E) — £)dE

Ey
(1 — %)% [sin(E) — sin(Eo) — £(E — Ep)] (4.188)

(,‘3\1
M
—
&)
-
Il
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Integralls becomes, where the details for the solution can be found iratimn (A.58)

_ ? L _ r _ (1 _ 2—3 r _ 2
Is(0) = /00 Q(6)3d0 = /. f(E)YAE = (1 —¢7) /Eo(l ecos(E))°dE
Is(E) = (1—52)*% {(%52—1-1)(E—Eo)+%62(sin(E) cos(E)—sin(Ey) cos(Fy))
—2¢(sin(E) — sin(Ey)] (4.189)
Integrall; becomes
0 q E s E
L) - /0 o= [ seae= -y [ ar
L(E) = (1-€)73[E - Ey (4.190)

Integrall;, ; becomes, where the inner integral is solved in Equatior8@).1

IO gy [T
W= [ Z54= |, w0 (/ gm?‘”) “

We now insert Equation (4.186) and use the result of EQuéidr90)

nlw

E
Ly(0) = (1—&¥)"2(1—€?)" [E 1-(E —esin(E) 4+ Cy)dE

1 E
L(E) = (1-¢%)72 [iEQ—I—Ecos(E)—i—C’lE}

Eq

L(E) = (1-¢*)72 [%(EQ—E§)+5(COS(E)—cos(Eo))Jrcl(E—Eo)} (4.191)

Integrall,,, becomes, where the details for the solution can be founduimtan (A.59)

B 9 sin(0) B % sin(6) |
1as0) = | S = | 2 (/ gm?dT) “

L., (E) = (1= €%)7% [sin(E)(1 + 5 cos(E)) — B(5 + cos(E))

— sin(Eo)(1 + %cos(Eo)) + Eo(g + cos(Ep)) — C(cos(E) — cos(Eo))} (4.192)

We are now able to write the particular solution from Equaiié.167) in terms of
the solved integrals as follows

3[1]—6(1534-]52) 2[3—8(152+3I52J)

B 1 Tg3 + 10 —3cliy I _5(2-[3 _3€I82J) F;
up,(6) = U(6) mk(1 — g2) Ies+ 1o +el3 —le2 | [ 1
_[1 6[82
(4.193)
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Homogeneous
-600 100 Numerical particular
_400 Analytical particular
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Figure 4.9: A two pulse maneuver in elliptical orbit under the influené@ aonstant force in the
F, frame wherd = [0.05, 0.1,0.02]" N and the initial conditions are(0) = [—100, 10,10]" m

andx(0) = [0.1,0.05,0.01]" m/s. The duration is one orbit and= 0.1 andf, = 20 deg. Note
that the red curve is on top of the green curve.

where Equation (4.193) depends directly on Equations &,1(4.180), (4.187), (4.188),
(4.189), (4.190), (4.191) and (4.192) which need to be teger

In Figure 4.9 we see the comparison between using the horeogsrsolution and
the complete solution under the influence of a constantriahce in the LVLH frame.
The result is also compared to a numerical solution showdegtical results. We ob-
serve that the error in Figure 4.9 is larger than in Figure 4TTis is caused by the
interpolation used between orbital points used for the migakesolution and a slightly

less accurate orbital propagator. In summary the partisalation for the in and out of
plane is

Out of plane:

u,, (0) = ﬁ sin() - cos(0) ] [ Icﬂ(E§ }Fy (4.194)

cos(0) —sin(6) —1I,, (0
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In plane:
3l —e(lsz + Is2)  2I3 —e(lea + 3s,,)
B 1 Iz + T2 —3ehy Iz —e(2I3 — 3els,,) || Fa
uy, (0) = U(H)m Iz + 10 +cl3 Lo || F>
-1 elsa
(4.195)

The particular solution for the elliptical orbit will not deice to the circular solution
fore — 0 asitwas the case for the homogeneous solution. This is déuyshe termzl—e
in e.g. Equation (4.172), which will approash and no form of? or 2 can be obtained
to apply L'Hospitals reduction rules.

4.8.2 Constant Force in the Inertial FrameF;

As for the circular orbit in Section 4.7.2 we consider a cansforce in the inertial
frameF; valid under the assumptions provided in Section 4.7.2.

Contrary to the circular case the argument of perigeees have an importance for
elliptical orbits. We can nevertheless base the developomethe true anomaly alone
without loss of generality ag is merely an offset angle.

The transformation in Equation (4.158) is equally valid éiiptical orbits and we
will use that as a starting point.

As for the circular case the out of plane solution is minus gbkition found in
Equation (4.194) and we can proceed directly with the in@lsmlution.

The input matrix in Equation (4.183) together with the tfansation of Equation (4.158)
yield

0 O
B— 1 0 0 —sin(f)  cos(f) kg
Iy % 0 —cos(f) —sin(h) ky
04
0 0
1 0 0 ke
B = — _sin(@) COS‘(G) |: ]C :| (4196)
mk e PE y
__cos(f) _ sin(f)
o? 03

Compared to earlier we now have couplings in the input mé#xing to higher
complexity of the integrandJ(s)~'B(s) in Equation (4.167) recalling thafl(s) is
the transition matrix , which we compute multiplying Equati(4.182) with Equa-
tion (4.196) leaving out the argumeftfor convenience and expanding the teﬁgal
to simplify
1

U(s)"'B(s) = k(1 = 22) [

ks
By By | [ A ] (4.197)
y
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where
si)ré2 +€1 3SinJ—2CQOS _’_SESiDCOSJ
sm2 sin cos 2 sm cos
— L 4 3esin J + 2e57 — 3e S22
B41 = e sm cos s?n ¢ (4198)
NG
sin _ _sincos
e &
and
_Esingcos +3£J 2Si;§1 +3€Sigr;2,]
. .2
sincos cosJ+ 28@11] _ 382 sin” 7
3 2
By = ¢ COE% cos e (4.199)
=tz Lo +ews
4 03
_cos _ 651112

e

It is observed that Equation (4.197) contaldsdistinct integrals of whicl2 are known
from the LVLH solution in Section 4.8.1. The additional umkyn integrals are

/ sin® / sin / sin cos / sin® / / sin cos / cos? cos
2 ?

00)

/sm /smg;:os J. /COb /sm (4.201)

which will be solved in the following leaving out most inteediate manipulations.
Integrall,,, becomes using the substitutions of Equations (4.173) add 74to obtain
an integrandf(E), which is a function of the eccentric anomaly, where the itkzta
computations can be found in Equation (A.60)

B ¥ sin(6)? B B
I,,,(0) = /90 ROE ———df = . f(E)dE
1

5(1 - 52)7% [E — Ey — (sin(E) cos(E) — sin(Ep) cos(Ey))](4.202)

1

$32

(B) =

Integrall;, becomes

L, (0) = /: Szzé?dez [—éln(l-i—scos)]zo

1
€

I, (0) = [In(1 4 e cos(0p) — In(1 + € cos(6))] (4.203)

Integrall,., becomes, where the detailed computations can be found iatlequA.61)

B % sin(0) cos(6) E
Lses (0) = /90 07 do = . f(E)E

Ley(E) = (1 —&%)72 B(sin(E)2 —sin(Ep)?) + £(cos(E) — cos(Ep)) |(4.204)
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Integrall,,, becomes, where integral tables are used to obtain the@oluti

% sin(0)2
Iszg (9) = /0 %da

L@ = %[22 s et (=S (5))]
L0 = i[5<Sin(9)_Sm(%))_(o_eo)

g2 o Q0
g e (=20 ()
arctan { ——"tan | —
1—¢2 1—¢2 2
— arctan 1-¢ tan (9—0)> H (4.205)
1 —¢e2 2
Integrall,., becomes, where the detailed computations can be found iatlBguA.62)
0 .
sin(#) cos(0)
Ise, () = / ————df
O =), a0y
L) = —= (2 4m) - (£ +1n(e) (4.206)
sco - 52 0 0 00 00 .
Integrall.,, becomes, where the detailed computations can be found iatieguA.63)
0 2 E
cos(6)
L, (0) = / oSO 49— [ y(myae
52 (0) . 20 . (E)
5 1
I.,(B) = (1-¢?)": [(5 + 52> (E — Ey) — 2¢(sin(E) — sin(Ep))
1
+Z (sin(2F) — sin(ZEo))} (4.207)

Integrall., becomes, where the detailed computations can be found iatiBguA.64)

B 9 cos(6)
I, (0) = /00 2(0) do
1

o2 [oan (12 can (2
- 0 m arctan 1—52 an 2

— arctan <i tan (9—0)> H (4.208)
1 —¢e2 2

The above provides the analytical solutions to all the irgklsgin Equation (4.200).
The remaining ones in Equation (4.201) are significantly edifficult and as an il-
lustration the first one from the four in Equation (4.201)IWi¢ considered. We per-
form the change of variable to the eccentric anomaly asezaring Equations (4.173)

(,‘3\1
S
—~
>
SN—
|
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Homogeneous
——— Numerical particular
Analytical particular
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Figure 4.10: A two pulse maneuver in elliptical orbit under the influendeaa@onstant inertial
force in theF; frame whereF = [0.05, —0.1,0.02]" N and the initial conditions arg(0) =
[~100,10,10]" m andx(0) = [0.1,0.05,0.01]" m/s. The duration is one orbit ard= 0.1 and
0o = 20 deg. Note that the red curve is on top of the green curve.

and (4.177) and obtain

B ? sin(6) B 7 sin() 1 B E
oo = [ o= [ G5 ([ o) = [ e

E sin — esin 1
ISlJ(E) = (1 - 52)7% /E (E)(].E— Z::COS((EE;) - )

E = E . 2
/ Esin(E) JE — 5/ sin(E) JE
g, 1 —¢ecos(E) g, 1 —¢ecos(E)
E .
sin(E)
C —————dE
* 1/Eo 1 —ecos(E)

dE

Njw

ISlJ(E) (1 _52)_

(4.209)

It is observed that the first term of Equation (4.209) has aerator with trigono-
metric functions multiplied by their own argument and theegral is only tractable in
the form of hypergeometric polylogarithmic functions (\Wam 1999). Such functions
are complex infinite power series (Gradshteyn & Ryzhik 20x7) prohibit a closed
form analytical solution.

The other integrals in Equation (4.201) contain integréfhe same form, all with
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the same denominator as in Equation (4.209). The distitr@tdtable ones have numer-
atorsN; of the form

Ni = E, N> = Esin(E), N3 = Esin(E) cos(E), Ny = Ecos(E) and N5 = Esin(E)?
(4.210)
whereas the remaining integrals, not expanded here, atalbta.

An attempt to solve Equation (4.201) directly in thelomain has been performed.
This leads to integrals with integrands of the form of Equa{4.208), which turn out
to be intractable (Wolfram 1999). This leaves a mathemifiticatractable problem
to which either analytical approximations need to be dgyedibor numerical solutions
applied. In order to demonstrate that the approach takes Ieads to a correct and
complete solution, the few intractable integrals will barid numerically and applied to
the final solution.

We are now able to write the particular solution from Equadi¢4.197) and (4.167)
in terms of the solved integrals as follows

1 k,
(0 =U0)———F(,F v 4.211
0 (0) = U0 =P O.5) | | (@.211)
and
6(1532 +J+SISC2J)_SISIJ _2I03 6('?’I822J _ISCS)+SICIJ _2153
F(9 E) _ 6(3131.]_'_2[(53_SEISCQJ)_ISSQ_J 6(2133_31(31.]_36]322.])_'_[3(33
7 a _ISCB _EISS 1632 +J+EIC:3
Iy, —elge, —I., —¢ls,,
(4.212)

where Equation (4.212) depends directly on Equations ©,14.180), (4.186),(4.202),
(4.203), (4.204), (4.205), (4.206), (4.207), (4.208) amidtions of Equation (4.201).

In Figure 4.10 we see a comparison using the homogeneougosodund the com-
plete solution under the influence of a constant force in tiegtial frame, which is
typically the solar radiation pressure. The result is alsmpared to a numerical solu-
tion showing identical results. The errors shown are vanjlar to the elliptical LVLH
solution in Figure 4.9. In summary the particular solutionthe in and out of plane is
Out of plane:

1 sin(d)  cos(6) —I..(E)
up, (6) = mk* | cos(d) —sin(6) ] { I,,(9) ] ks (4.213)
In plane: .
u,, (0) = U(G)m

6(1532 +J+ 318021) - 3IS1J - 2103 6('?’I822J - ISC3) + 3‘[01] - 2153
e(31,,, + 2o, — 3¢lye,,) — Loy, —J (21, — 314, —3elsyy,) + Loes | [ Ko
_ISC;g - 5133 1632 +J+ 6103 k?l
Iy, — el —1., —¢€l,,
(4.214)
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4.9 Conclusion

The general nonlinear dynamics relative motion equationgfiy Keplerian orbit are

formulated in a rotating LVLH coordinate frame. These amedirized around the target
passive motion and linear differential equations resultii@ coupled in plane motion
and the out of plane one. This reflects the part formulatedintfd of Section 1.3.

This set of differential equations is solved for the homazmrs solution to form the
general state transition matrix. The key to the non trividigon of the in plane coupled
equations is formulated in Lemma 4.1 followed by the prodiisTsolution is valid for
any closed Keplerian orbit, is free of any singularities aeduces to the well known
Clohessy Wiltshire equations for circular orbits.

Particular solutions are found for arbitrary constant ésrin both the LVLH frame
as in the inertial frame. This provides solutions for refatdrag and solar radiation
pressure disturbances. Contribution 2 from Section 1.8iislhy reflected.

Based upon the general state transition matrix, generakssgjpns for two pulse
impulsive maneuvers are derived for both the elliptical &l as the circular case in
Section 4.6 and 4.5 respectively. They are available fdn Bebar and V-bar maneuvers
and reflect point 3 in Section 1.3.

These solutions have recently been successfully demosstnath in flight experi-
ments by the French National Space Agency (CNES) on the Sivé&kndezVous and
Formation Flying technology demonstration missiknisma
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Chapter 5

Attitude and Coupled Model
Dynamics and Kinematics

This chapter contains the development of the nonlineaud#&imodels for simulation
and their linear counterparts for design purposes mainlgdidition to the pure attitude
models, the coupled attitude and position linear modellvélincluded as well. 1t should
be noted that the notation for small and large signal vaembften will be the same to
keep the number low, but will be clear from the context.

5.1 Nonlinear Dynamics

The torque vectoN can be expressed in a rotating frame as (Symon 1979)
d* (Tw*)
dt

wherel is the inertia matrix and the inertial angular velocity vector. As is also the
angular velocity of the rotating frame* = w. If we also consider the rotating frame

fixed to the body, the inertia matrix is constant and we camesgEquation (5.1) in the
body frame as

N =

+ w x Tw* (5.1)

|16 + w x Iw = N| (5.2)

In the special case of the body axes being along the prineipes of inertia, the
inertia matrixI is diagonal and Equation (5.2) becomes

I”I'w’l' + (Iz - Iy)wzwy = Nr
Iywy + (I — L)w,w, = N, (5.3)
Lo, + (I, — I)wyw, = N,

From Equation (5.3) we see that a body cannot spin with cahstagular velocityw
, except about a principal axis, unless external torquesppied. Ifw = 0 Equa-
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tion (5.2) becomes x Iw = N and the left member is zero onlyliév is parallel tow,
that is, ifw is along a principal axis of the body.

5.2 Linear Dynamics

We now derive a linear model of Equation (5.2) around a géo@erating pointw,; =
[wz, wy, w.]T being the angular rate of the orbital frame. As angular igla@ctors are
cumulative we can write the inertial angular velocity as

W = Whei = Wheo + Woi (54)

We will perform a Taylor series expansion of Equation (5r@uad the operating point, not-
ing that Equation (5.2) is a function of two variables, namelandN. The form of the
Taylor series is as in Equation (4.8). Inserting Equatia)(8to the two variables of
Equation (4.8) we can write it as

0lu Olu
T = No — wo x Twg + = (w—w0)+a—§

9w (N-Np) (5.5

wo,No wo,No

whereNg = 0, w — wg = Wpeo aNdNy — wo x Iwg = Iwy. The second Jaco-
bian obviously becomes the identity matrix and the first Baois derived in detail in
Chapter B.2.

Inserting the operating point,; = [0, —wo,0]" into the general Equation (B.7)
and the result from Equation (B.8) into Equation (5.5) andtiplying through with the
inverse inertia matrix we obtain

131 2132 I33 — I
Wheo = wol ! —1I39 0 I Wheo +I7IN (5.6)
Iog — I11 —219 —I3
‘ wbco - Adwbco + BdN ‘ (57)

If we are close to the principal axes of the body, the inertidrim becomes diagonal,
and Equation (5.6) will then reduce to the following simpleicoupled equation

0 0 wolsa—te —~ 0 0
Wheo = 0 0 0 Weot | 0 72 0 [N (5.8)
wolz=u 0 0 +

I3 I3

5.3 Nonlinear Kinematics based on Euler Angles

For the kinematics we seek the differential equations ofntio¢ion of the body frame
with respect to the reference frame, relating the Euler{3,2ngles with the angular
velocity vectorwy,,.
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Thewy., between the frames is the sum of the individual rotatiors;atferred and
added in the final frame. Using the individual rotation nas from the Euler(3,2,1) ro-
tation in Equation (B.2) we can write,, as a function of the rate of the Euler angles.
The inverse relationship becomes (Wie 1998)

9:05 1 cos(fy) sin(6;)sin(f,)  cos(f,)sin(6,)
0, | = ol 0 cos(0y) cos(6,) —sin(f,)cos(fy) | wieo| (5.9)
0, cos(fy) 0 sin(6,) cos(0;)

5.4 Nonlinear Kinematics based on Quaternions

The kinematic motion can also be described by means of quateror Euler param-
eters as they are also called. The advantage is that themoas@agularities in the
formalism of describing a rotation of one coordinate sysietm another one. We will
use the following definition, which is the most utilized inf&pean space programs.

(5.10)

[SISSSTISS IS SIS
— — — —

wheree = [e1, e2, e3]" is the Euler rotational eigen axis, which is indifferentlie two
coordinate systems arids the angle rotated around the eigenveetofhe eigenvector
e can be found from differencing the symmetric off diagonaheénts of the DCM, see
also (Junkins & Turner 1986).

In Equation (5.11) we find the general relationship betwé&erangular rate vector
and the derivative of the quaternion

0 —w, —wy —w;

) 1| w, 0 Wy —wy

4=3 Wy —Wws 0 w, |4 (5.11)
Wy, Wy —Wg 0

which is the general quaternion differential equation,ase (Junkins & Turner 1986).
For the present application we have that wy,., andq = qpe,. This formulation will
be used for simulation purposes.

In Section B.4 can be found the basic equations for the negdatérnion algebra
and transformations to and from DCM and Euler angles as vee#l ahort derivation
leading to Equation (5.11).

5.5 Linear Kinematics

It will be advantageous to obtain a model, which supportngriane rotational offset,
for which reason it shall be parameterized with an opergioigt on the y-axis different
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from the more common zero. In Equation (5.9) we have the ioptput relation we
need for the kinematicsv,., in Equation (5.9) is already expressed in the body frame,
as it also is in Equation (5.7), with which we later combine it

As Equation (5.9) describes the kinematics between any thitrary frames, we are
not constrained by absolute inertial relationships astierdynamics. This means we
will linearize the kinematics around the orbital frame afobe, but the operating point
is not with respect to inertial space, but the orbital frame.

Using the form of Equation (4.8) we can linearize Equatio®)as

0=0,+ % (0 — 90) + % (w - wo) (5.12)

wo,00 wo,600

and the operating point is thefy, = [0,60,0]" andw, = 0. As the angular rate

multiplies all in Equation (5.9), the first Jacobian will @ys be zero for this operating
point. The second Jacobian in Equation (5.12) becomes émiigd matrix and the first

term in Equation (5.12) is zero. We can now formulate thedingnematics in state

space form as

0 = 00 + Iwyeo (5.13)

(5.14)

‘ 0 = ALO + Brwico

5.6 Linear Attitude Model

Let us define a state vector for the attitude motn= [0, 0., 0., wyco, , Woco, » Wheo, |1
which enables us to combine Equations (5.7) and (5.14) immnaplete linear attitude
model yielding

. | Ap By 0353
AP 519
|%. = Acx. + BN| (5.16)

It shall be observed that the linear model in the operatirigtgse unstable by nature
for non spherical bodies with inertia diagonal elements at@nously increasing or de-
creasing, as the matriX ; typically contributes a real pole in the right half plane.isTh
appears in the region ab—4.

5.7 Coupled Attitude and Position Model

For close proximity maneuvers are not only the relative CQdditon of interest, but
also the position and velocity between two docking portschviare located elsewhere
on the spacecratft.
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Consequently there is an interest and need for a
linear model of the port to port dynamics and kine-
matics, which includes all the possible couplings in
the system. Such a model will be developed in
this section grouping together elementary models and
couplings, keeping in mind that there is only con-
trol authority on the chaser spacecraft in the form of
forces and torques, not on the target.

Figure 5.1: lllustration of the vec- Strictly speaking one should perform a nonlin-
tors involved to determine the com€ar formulation o, referencing inertial, but an in-
to COM location and the port to Significant approximation will be made using the al-
port location in the general Vecto,ready linear and known vecter The port to port
space. distance can be expressed as

Spp =S + Tge — T (5.17)

We will have to linearize,, around the various operating points noting thest already
known from Equation (4.15). Therefore, only the last twarteneed to be linearized and
it shall be noticed that the large signal will be needed touwate a physical meaningful
spp and not only the variations around nominal.

5.7.1 Target Attitude

Seen from a control point of view the target is uncontrokkablt as the attitude motion
of the target influences the docking port motion, the atétoebdes need to be modeled.

The attitude motion of the target is described in Section13a® a saw tooth type
of motion resulting from a two sided thrust reversal type otcoller on the Russian
segments of the ISS. This is nonlinear, but can be well apprabed with a sinus mo-
tion. This can be modeled by a harmonic oscillator for #eaxis, with;, being the
small signal motion off the operating point

Or, + k20, = 0 (5.18)

for which we chose the motion to be a sinusoid, leading to tiigal conditions of
0:,(0) = Acos(p) and by, (0) = —Awsin(y), where A being the amplitudey =
—QWM andts.¢ is the time of the first amplitude of the nonlinear motion in
Sectlon 3 2.1. The period of the motion is known from SecBdh1 Table 3.2 to be
T =3 4 | ¢ and the eigen frequency in Equation (5.18) can be computed as

2 2704
=" =_-""" 5.19
Tt 4A + d’Ut ( )
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Wi Wrq

We

wo

Figure 5.2: All angular rate vectors from inertial frame to chaser dagkport.

In state space form for the 3 axes the model becomesswith [0, w;]"

0O 0 0 10 0
0O 0 0 010

. O 0 0 00 1

=1 2 o 0 00 0[™ (5.20)
0 —k2 0 00 0
0 0 -k 00 0

521

5.7.2 Relative Attitude

The relative attitude between the two spacecraft need toabedoon the angular rate
vectors, as the Euler angles are not cumulative. This istiitled in Figure 5.2, where
we have thatvy + w; + w,, = wo + w. and we get directly

Wrq = We — Wt (522)

wherew,., is the relative angular rates; is known in the orbital frame and needs to be
transformed into the chaser body frame, wherés known and where we will represent
the relative ratev,.,. Equation (5.22) in the chaser body frame becomes

Wrq = We — Rbcowt (523)

Equation (5.9) can be used to express the rate of the reltiler angles a$,, =
f(0,q,w,q) and inserting Equation (5.23) it becomes a function of Aakdesh,, =
(0,4, 0.,w.,w;). All operating points are zero except f@r, = [0, 0,0]" as earlier.
Inserting Equation (5.23) into Equation (5.9) we obtaimgsihe notation that; =
sin(6;), ¢; = cos(6;) andi = z,y, z
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Cy SzSy  CuSy

O =— | 0 cpcy —s5p0y | We
Cy
! 0 Sz Cy
g(grar)
1 Cy SzSy  CaSy C2Cy CySz —Sy
- 0 ceey —5zcy Sp8yCr — CuSz  SaSySs + CaCz  SpCy | we (5.24)
v 0 Sy Cy CoSyCy + S8z CuSySy — SzCp  CyCy
9(0ra) g(6.)

We will now perform a linearization of Equation (5.24) as

; ; 897’(1 897“0,
Bra, - 07‘(1,0 + aera (Bra, - 07’(10) + 600 (0(' - 0(:0)
op op
897-a 897’(1
+ Do (we — wey) + 2w, (wi — wy,) (5.25)
op op

From Equation (5.24) we see th@t,, = 0 and that the two first Jacobians in Equa-
tion (5.25) give the zero matrix, when the operating poimesiaserted. The third Ja-
cobian becomes the identity matrix. The state space fotionléor the angular part is
expressed in Equation (5.26) with the last Jacobian

. cy 0 —sy
0,.,=00,,+Iw.—| 0 1 0 wy (5.26)
sy 0 ¢y
97’(1 - Ara,ora + BT(Lle - Bra,gwt (527)

Equation (5.27) does not hold the full state vector for tHatiee attitude asv,., is not
explicitly known. Instead the full state can be expressethéoutput equation rather
than the state equation definigg, = [0,..,w,.|" and building the matrix as

0
I 0 0 ra
YT(L B O Bra1 _B’I"az wc (528)
W

5.7.3 Target Docking Port Motion

As one step to derive the coupled model, the target dockingieeds to be presented in
the orbital reference framg,. This is the simple transformatiary; = ngrdt which

will be linearized as

L OFar
Tar = Tar, + aTif ) 0, —6,,) (5.29)

to
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and@;, = [0,6p,0]". The Jacobian matrix will be derived in Section B.3 in desait
yields from Equation (B.9)

OT gy SyTdt, CyTdt. — SyTdt, —Tdt,
80 = —Tdt, 0 Cyrdtm + Syrdtz = Bdtl (530)
t
cyrat, —(cyrar, + Syrac.) 0

and the operating point vector is computed as

CyTdt, + SyTdt,
Tat, = Tdt, (5.31)

CyTdt, — SyTdt,

The velocity can be expressed as in Equation (5.1), wher@rieight hand term is
zero as the vector is fixed in the target body frame and onlgitbss product remains.
This needs transformation to the orbital reference franferathe positions and can be
written ast; = R}, (w: X r4), wherew;, = 0. The Taylor expansion becomes

3wt

8;
i (0: — 04,) +

op

(wt — wto) (532)

op

Where%%f = 0 asw; = 0 in the operating point. The Jacobian matrix will be derived

in Section B.3 in detail and yields from Equation (B.11)

81;'(],‘ SyTdt, CyTdt, — SyTdt, —CyTae,
aw” — | Zra 0 Tat, = By, (5.33)
t
cyrat, —(Syrat, +cyrar,)  Syras,

and the operating point vectorfrgt0 =0.

It is not possible to write a state equation as there is no mycginvolved, but only
the kinematics part which is computed based on other statables of the attitude
system. Only the output equation is possible to formulate as

Tat — Tty Ba:, 0 0,
_ : _ 5.34
v { . ] [ o } [ o (5.34)

5.7.4 Chaser Docking Port Motion

Contrary to the target port motion, based upon the kinematiget attitude motion,
the chaser port motion can be fully controlled by forces ardues. It is therefore
intriguing to base the model upon the dynamics equationis, Bquation (4.11) having
torque as input to the model. As the attitude dynamics hatotigeie as input and drives
completely the port motion for rotation, this would leadhe introduction of redundant
modes resulting in a non minimal realization.
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A closer look reveals, that the problem is the same as foraigget and that model
can be reused with different parameters, but otherwisdimin This kinematic model
and the more complex dynamic model give the exact same ré&saln Equation (5.34)
the chaser port model then becomes

o i;dc - f‘alco _ Bdcl 0 0(:
ydc—{ . }—{ . BdQch (5.35)

5.7.5 Coupled Linear State Space Model

All the individual sub models so far are small signal modelkjch are adequate for
synthesis work. Some large signals are needed for anallygiarticular the port to port
values.

This can be achieved in a combined, but yet segregated mioglextending the
input vector to hold also the operating points and can tloeeelbe easily included or
excluded.

The state vector consists of relative COM position, the ehatitude, the target atti-
tude, their rates and the relative attitude and defined-agx,, x,, 0., w., 0, 0., 0..]",
wherex, is in the orbital reference frame and the rest in the body é&&m

The input vector holds the force, torque (in chaser body &aand the operating
point vectors for the chaser and target attitude and chasktamget ports respectively
asu = [F,N,0.,,0;,, Ta:,, i)' . The last four vectors im are constant and the
model provides large output signal values for those stdfdbey are assigned to zero
the model gives all small signal values with respect to therafing point. It shall be
noted, that if the input vector is reduced to hold only foroel éorque and thd and D
matrix dimensions are reduced correspondingly, a true baigihal model is obtained.

Finally the output vector contains relative COM positiolaser and target atti-
tude, the port to port position, relative attitude and tmespective derivatives as =
[Xps Xp, Ocy We, 01, 01, Xpp, Xpp, Oray wra] . The model is verified for two separate atti-
tudes and illustrated in Figure 5.3.

The state space model is of standard form, though to get teeatipg points in-
cluded conveniently th® matrix is used.

x = Ax + Bu

Y — Cx + Du (5.36)

The matrices are defined as follows using the sub matricasedein the preceding
sections in this chapter aml, from Equation (A.57).

A, 066 O6x6 O6x3
O6x6 A, O6x6 O6x3

A = 5.37
066 066 Ay O6x3 ( )

03><6 [03><3 Bra,l] [03><3 _Bra,g] Ara

Finn Ankersen, September 12, 2011



110 Attitude and Coupled Model Dynamics and Kinematics

Xeais
Y-axis

Yeais

Figure 5.3: Example of a linear model for port to port computation for tparts located at
[4,1,1] m and[3, 1, 1] m in the respective body frames with a diagonal inertia rratiith ele-

ments[100, 90, 110] kgn?, for testing the derived model. The torque inputs are aelfiigi give

amplitudes of about deg with operating points df deg and-10 deg on the y-axis.

B, Ogxs Ogxi2
O6x3 Be  Ogx12
O6x3 Ogx3 Ogx12
03x3 Os3x3 O3x12

B= (5.38)

In the definition of theC andD matrices all sub matrices are of dimens®x 3 for
notational clarity reasons.

I 00 O 0 0 0

0I 0 0 0 0 0

00 I 0 0 0 0

000 I 0 0 0

000 O I 0 0
C=loo00 o 0 I 0 (5.39)

I 0 By, O ~Bs, O 0

0 I 0 By, 0 —Bg O

000 O 0 0 I

000 B, 0 -B, O]
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0000 00
0000 00
00IO0 00
0000 00
0001 00

P=10000 00 (5-40)
0000 -II
0000 00
0000 00
(0000 0 0

5.8 Conclusion

The nonlinear attitude dynamics and kinematics are fortadla the LVLH frame and
linearized analytically by means of a Taylor expansionnitbis is derived the relative
attitude motion between the two spacecratft.

There is then developed a complé&t®OF coupled state space model describing
the general port to port motion combining the developme@tudpter 4 and 5 together
with the port locations with respect to the COM. This ansvikesobjective in point 4
in Section 1.3.
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Chapter 6

Control System Architecture

This short chapter will provide a high level overview of thésgion involved avionics
seen from a hardware point of view and how that architectia¢ high functional level.
Then it will be continued for the architecture of the flightites@re, which is a com-
bination of general services, mission management and thé &ftware. Finally the
general architecture of the GNC feedback loop will be ex@difunctionally.

6.1 System Functionality

The objectives are to control the spacecraft by means of aimized, both technically
and financially, organization of hardware and software civlidgether constitute the on
board system.

The GNC software containing all the algorithms and mode rgameent runs on a
central computer, which for high reliability systems, ag. dail operational fail opera-
tional fail safe systems, are duplicate/triplicate andngptan take place.

The propulsion system, in this ca8@ reaction hot gas thrusters, will produce the
required control forces and torques.

The attitude sensors will measure the absolute attitudatiitade rate as well as the
relative attitude between chaser and target. The relatigdéipn between both center of
mass and the direct port to port distance needs to be measured

6.2 Avionics Main Components

This section will provide an overview of the needed aviomigaipment together with a
short description of the items.

e Computer: The chip and peripherals shall preferably be of a failurertot de-
sign for reasons of system reliability. It shall providd fldating point capabilities
preferably in32-bit double precision, which far from all space qualifiediggidn
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Control System Architecture

—— |

Collission
Avoidance
System

On Board
Computer

Propulsion Communication
System System

Bus A
Bus B

Bus C

Sun ‘ GPS ‘ ACC
Gyro
STR ‘ ﬂ Camera ‘
Sensor

Figure 6.1: A structure for the hardware units and avionics equipmentftypical spacecraft
for RVD missions. As Earth bound RVD missions are mostly toneal spacecraft there is triple
redundancy compared to less on ordinary spacecratft.

hardened processors do. Obviously it shall have enough etmgpcapability to
execute the real time GNC and mode management softwarehergeith all the
house keeping, with sufficient margin for the sampling tirseneell as handling
the real time interface to the data bus.

Thrusters: They shall be able to produce the thrust required for the naers
to be performed for the specific mission. This shall be addavith as small rise
time as possible and the MIB must not be too large as this sporls to a delay
seen from the controller view point. The mechanical laydiatide such as to en-
sure coverage of the required envelope for the needed facttoaque. There are
in reality couplings between force and torque generatidrsball be sought mini-
mized mechanically, which is not always possible due tottaéraccommodation
and manufacturing constraints.

GPS: This navigation system can primarily be used in Low EarthitQtktEO),
where all past and present automatic RVD missions are. Isurea the absolute
position and velocity in inertial coordinates from whicletrelative position and
velocity is estimated after receiving GPS data from thedasgpacecraft. It is
therefore only possible for a cooperative target as welag both shall have the
receiver antennae located such thar more common GPS satellites are in the
FOV. The estimator provides the values between COMs. Thei&R& used at
closer proximity than a couple of hundred meters, due thentreased multi path
effect and shadowing from the ISS.

Camera: This sensor takes over when the GPS is not used and when & highe
precision on the measurements is needed. The camera is used the final
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approach to docking as well as departure. It provides thitipesilong all 3 axes
between the camera and a target pattern. The relativedattitecomes available
from a distance of less than ab&itmeters. The rates are not measured directly.

e Gyro: The sensor system provides the angular rate around the teaxhe
gyro mounting frame directly. Typically there ategyros mounted in a tetrahe-
dron configuration, such tha&t axis information can still be provided with one
malfunctioning gyro. The complete assembly provides apuithe angular rate
around the axis of the body frame.

e STR: This sensor provides the inertial attitude of the spaceuril high accu-
racy around alf spacecraft axes. It will autonomously find the inertial otéion
at initialization. Two such units are used for redundancy.

e Sun Sensor:These sensors provide a course measurement of the diréztioa
sun in the spacecraft frame. They need to be mounted on tcemaét such that
the effective FOV istr steradian, as they are not used in the closed loop control
system, but for contingency modes to orient the spacearagnsure electrical
power generation.

e Accelerometers: They provide the acceleration along thepacecraft axes, but
are typically not used in the control loop due to their noighévior. They are
mainly used to measure the main boosts for orbital maneawer$o better deter-
mine the shut off time for the main engines.

An architecture of how the hardware units and equipments@y@nized and com-
municating together is illustrated in Figure 6.1 for a tydispacecraft of the type ad-
dressed here.

6.3 Software Structure

An overview of the high level structure will be given withauty attempt of software de-
sign or addressing detailed software implementation aspécderived functional dia-
gram of generic parts is shown in Figure 6.2. The softwaréristred such that the
high level supervisor is not part of the GNC system flightwafe proper, but is shared
between the GNC and other functionalities of the spaceawvaith need to be managed
in real time like data management and telemetry. This pati@bn board system also
contains the high level FDIR functionality, which is hamdjithe recovery from mal-
functions at other places leading to change in phases ofiiggan like e.g. triggering a
collision avoidance maneuver or retreat to a predefinedpailut other than the nominal
ones.

The other part, which is more directly GNC related, considthe General Mea-
surement System (GMS) for obtaining the measurements frense¢nsors via the on
board data bus and performs plausibility checks and previgem for the control sys-
tem. There is a local Mode Management (MM) which schedulev#mnious controllers
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MVM Data Processin
MM VCM

Failure
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Command
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All /O Data
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Plan
Change | Request —‘

[ change Request [

Mode/phase Selection
State Machine Execution

GNC Service Modules for all Modes
Parameter Setup of Modes
Execution of GNC Functions for all Modes

Depacketization
TM Authentication
Time Tagged TC
TC Routing

FCM

Failure Detection Data Monitoring

Identification
Recovery
Low Level

Corridor Checks

Error ellipse checks

GMS

Get Meausrements

Execute Measurements
Processing

m |

Mode Dependent Processing

Figure 6.2: A general structure for the on board software system for maygpacecraft for RvD
missions. It implements all the main functions except éeltadependent safety functions.

and filters for the different parts of the mission. This isfpened autonomously, but
in coordination with the higher level mode management irstigervisor function. The
low level FDIR deals with the low level management and retpueke.g. switching to
redundant sensors, check of measurement data and stamsipfnent. This is clearly
managed in the manner of informing the higher level fundjevhich need to be updated
for the Vehicle Configuration Management (VCM) which marsife lower modes and
failures. The Flight Control Monitoring (FCM) is an indeplEmt function which over-
sees the performance of the vehicle and uses partly indepéesensors.

The GNC software part proper is clearly separated into thsl @nd C parts with
clear interfaces for all the blocks. Each element contagdichted modules for the
various filters and controllers, where the structure isdglby service routines used in
several modes but initialized with mode dependent paraselbese are then scheduled
in such a manner and order as to form the feedback loops aridetidorward control
from the guidance part.

6.4 Conclusion

The general set of avionics equipment needed for RVD missiprescribed briefly
followed by a proposed architecture for an on board softwgstem implementing the
needed functionalities. This is of general nature and risflec the objective 5 in Sec-
tion 1.3.
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Chapter 7

General GNC Structure and
Guidance Design

This is the main chapter dealing with the design of a GuidaNegigation and Control
system to perform RVD in elliptical orbits.

The principal structure of the control feedback loop for ¥agious modes will be
explained, followed by the different ways of approach betmvehaser and target for the
final approach to docking.

The domain of plant variation and sensitivity will be invgsted first to obtain in-
sight into which parts of an elliptical orbit will be drivinthe design, despite the refer-
ence orbit eccentricity will be fixed at= 0.1.

The theory of periodic time varying systems will be addreg$sethe periodic nature
of the models. A flexible thruster selection method basedaimization for implemen-
tation will be designed.

Then the guidance profiles and feed forward control will beigleed for the separate
attitude and position control. This will be followed by thesiign of the various feedback
loops in the system leading to the design for the final apgré@aciocking. Finally the
stability and performance of the complete system will bdueatad.

7.1 Loop Structure

The general structure of the principal feedback GNC systeed in all modes for both
position and attitude control is illustrated in Figure 7.1.

The guidance block handles the computation of all refersiggeals for all the states
for both trajectory and station keeping points for both plosiand attitude. Itis designed
to be in compliance with the propulsive capabilities of thacecraft. It also provides
the feed forward control for phases where accelerationsegpgred, which will ensure
a more responsive and less oscillatory system charaatsrigts illustrated in Figure 7.1
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feedforward

+ Thruster
Selection

Control Propulsios-{Dynamics$

estimate

Navigation . Sensors

Figure 7.1: Principal GNC organization for both attitude and positiorall modes.

there is a connection from the navigation to the guidancéchwis used to inform the
guidance such that the different modes for different lagatican be initiated.

The navigation block re-
ceives inputs from the mea-

surement system as well as Coplegentol | Uncope ool

the commanded forces and —— o

torques from the thruster se- TGET 1 sensor | sensor
V-bar > —

lection block. The output - )} Fi”i“‘””"““
is the estimated state vec- A
tor for the next sampling

S3

I
Target tracking i Earth pointing
I

time relevant to the respec- potopot | LVLHatiude

tive phases of the RVD mis- RO Closing .

sion. ! ’
The control block has Reta

the task of driving the er-
ror signal to zero as well :
as ensuring a good sys-
tem response and guaranteigure 7.2: This figure illustrates in different segments of the
the stability margins of the Rendezvous approach the different types of control ancbsens
feedback system. used in the feedback loop.

The thruster manage-
ment function has as input
the requested forces and torques from the controller an@stsis to select the opti-
mum set of thrusters to activate for the next sampling timeulidl the demand from
the controller. This has to be done as close as possiblenntitlei propulsive envelope
available. The available propulsive capability is not resegily constant, as failures of a
single thruster or a cluster can occur. In that case theyexkackd not available for the
thruster selection function.

Figure 7.2 shows the approach to the target and the differardipal segments. The
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attitude is plain LVLH oriented up to point; after which the relative attitude between
chaser and target is used. The navigation is based on GP&semdil points; after
which the camera sensor is used. The control between thesjadicis between COM
and COM until pointss and then for the final part it is between docking port to dogkin
port for position aftess and attitude aftes,.

7.2 Control Strategy

The strategy for most of the phases for the RVD is of fairlyigfint forward servo or
regulator types. The last few meters before docking requaittgt of additional attention.

For the control problem of the last phase prior to contactgltoncepts of approach
are illustrated in Figure 7.3.

1 Thefirst conceptis the simplest as the relative positiahadtitude of the docking
ports are not controlled. Only the relative COM position dhe attitude with
respect to LVLH is controlled. The aim point is the nominagtt port center, not
the actual one. The alignment error between the two dockimts fpecomes the
sum of the target attitude error and the lateral contrilbuiom the fact that there
is a distance from the COM to the port.

This option is too inaccurate seen in the light of realisticaption ranges of dock-
ing mechanisms. It is also impractical as there is not sefiitty accurate sensing
capability available for measuring the relative COM pasiti

2 The second concept features a relative lateral positiotr@idetween the actual
target docking port and the chaser COM. This requires at dime of sight
measurement between the two ports. The individual attgwemain individually
controlled with respect to LVLH. The alignment error is nasduced to only the
relative attitude.

This option has been applied in some early scenarios withuadaalative position
control and automatic LVLH attitude control of both spaedcr It still requires
a fairly large angular reception range of the docking meidmas as in the first
option.

3 The third concept is the only one where both the relativétiposand the relative
attitude are simultaneously controlled. This achievesalignment in translation
as well as in rotation. This requires on board estimatiomefrelative orientation
of the docking port. A result of this scheme is that the tratishal and rotational
motions are now coupled and typically calls for a more comfgedback design.

This option is the one applied on almost all docking scesaritanual, automatic
or semi automatic. It requires measurements such that tagvesposition and
attitude can be estimated in the navigation function fo6&lOF. This option is
the one adopted further in this work.
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1ol

target chaser target chaser target chaser
2 3

Figure 7.3: lllustration of 3 different concepts of maneuvers of dogiorts with respect to each
other. The dashed arrows illustrate the direction of motibthe chaser COM. The firstis COM
to COM with no attitude regarded. The second follows thegadpcking axis but not the relative
attitude. The third follows the target docking axis and acts for the relative attitude.

A further aspect to consider in the third concept, is whetherchaser control is
performed around the COM or the docking port, though forcestarques always act
with respect to the COM on a free body. If the bandwidth of tlesifion control is
faster than the attitude, the translation will align thetp@nd the attitude align later.
The opposite is similarly valid, but if the two bandwidthe @imilar the spacecraft will
appear to rotate around the docking port through a couplemmahough this is giving
a slower settling. Other requirements will determine whiglthe better solution in a
particular case.

The overall control strategy is such that for the part betwegto s, the attitude
control is Earth pointing and separate from the relativatoscontrol. This simplify
the overall complexity, where accuracy and couplings ase tiemanding. For the last
part froms, until docking the relative attitude and the relative pasitwill be designed
as one couple6 DOF system as this is the critical part with the highest miecineeded.

7.3 Design Domain

This section will investigate the variations which existlire orbital domain leading to
variations and changing characteristics of models. In titeajustification leading to
the selection of a sampling time will be presented.

7.3.1 Orbital Variations

The variation of the altitude and the orbital angular velpwill be evaluated, as those
parameters appear in all the linear design models. FronioBezi.1 the perigee is at
an altitude oft50 km and the orbital eccentricity is= 0.1.

To get an overview of the domain, we will investigate the tem®maly, its rate
and the velocity fo3 different locations in the orbit. The equations describiimg 3
guantities are derived in Section A.2.1, and the generaltefor the special cases can
be found in Table 7.1.
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0 | r= ke | 0= [l tecos(®)? | v=\/u(-1)
perigee|  Odeg == \/g(l +e)? \/N (2(le - %)
wi| s 5 yr G-

apogee| 180 deg o \/%(1 —¢)? \/M (% - %)

Table 7.1: General expressions for the orbital radius, the true anpragét and the orbital angular
velocity at3 different orbital locations.

The orbital radius is smallest at perigee, where the gridgwital and atmospheric
disturbances are larger than elsewhere in the orbit. Thieabemgular rate is largest at
perigee leading to a faster dynamics environment in thabnegr he orbital velocity is
largest at perigee leading to more drag disturbance thawbése.

From the above observations it is clear that the perige®mnegi a driver for the
design and parameters from there should be used as desigs Vat the whole orbit.

As the true anomaly and its rate has no closed form solutievguld be convenient
to approximate the rate for design purposes. Figure 7 gtilites the true anomaly and
its rate for different eccentricities. For low eccentiigstthe rate can be well approxi-
mated by a cosine function and a constant as shown for theerefe orbit. For higher
eccentricities it could be approximated by extended cgeldiunctions.

Another approach, which is applicable to higher eccetiggiis to use approximate
data for the parameters. Orbital parameters are very weWhkrfrom the ground track-
ing by mission control and can be used on board. If varyingben orbital passes, the
parameters vary very slowly over the lifetime of the missiand approximate interpo-
lated values can be used for the GNC. Such parameters arenkmibhvless thanl %
error in practice.

7.3.2 Variation of Parameters

The orbital variations identified in Section 7.3.1 cause saninimum and maximum
values for the reference orbit. The variations become asliteT7.2 using the formulae
from Table 7.1. The orbit has a period@f66 s duration.

The angular rate and acceleration affect directly the pteodels and will be inves-
tigated in Section 7.3.3, whereas the influence on distuwdmwill be addressed here.

The change in attitude affects directly the gravity gratlierque , see Equation (3.6).
We will evaluate the variation of the torque for an attitudiéhwespect to the LVLH of
15 deg corresponding to a possible TEA mode for the ISS. The maxinaiwes for
the inertia matrix in Equation (C.6) are used. The torquerisctly proportional to the
inertia.
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N

T Aol ]

Figure 7.4: The true anomaly and its rate as a function of the normalizkeizd time. It is shown
for eccentricities from zero 10.5 in steps of).1. On the left half of the graphs the eccentricity is
increasing for the non straight line curves. The dottedeworvthe right graph is an approximation
of the rate which only works well for low eccentricities.

Itis recalled from Equation (3.10), that the differentiedd force is a function of the
velocity to the power of two. It shall be taken into accouratttthe atmospheric density
also changes drastically with altitude and is a rather uageparameter (Larson &
Wertz 1991). The differential drag force is very small, ee¢mperigee and negligible.

The reason being the ballistic coefficients of the two spefeare very similar, see
definition in Section 3.4.2.

7.3.3 Variation of Design Plants

This section will analyze the plant dynamics of all the lineedels developed in Chap-
ter 4 and 5 to get an overview of their domain and properties.

The relative position from Equations (4.17) and (4.19) lissirated in Figure 7.5

[ ] Perigee] Apogee | %
r 6821.0 km 8336.8 km 22 %
0 1.175-10"3rad/s| 7.869-10"*rad/s| -33%
v 8.018 - 10 m/s 6.560-10°m/s | -18%

#=1.29rad 0 =4.98rad
6 | —1.968-10~"rad/s | 1.968- 10~ rad/S | -200 %

Table 7.2: Variations for the reference orbit of the essential parensetThe last two lines give

the two values of the true anomaly where it has its largeslacations. It is found from further
differentiation of the formula in Table 7.1.
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_ Attitude \ Perigee] Apogee| % |
6o =1[0,0,0] deg 7.1095-1073Nm | 3.8939- 102 Nm | -45%
6o =10,15,0]deg | 8.1550 - 1072 Nm | 4.4666 - 102 Nm | -45%

Table 7.3: Variations of the gravity gradient torque on the chaser.

| | Perigee] Apogee |
P) 1.6-10" 2 kg/m® | < 10~'6 kg/m?®
drag 8.7-107*N 3.7-10~%N

Table 7.4: Variations of the differential drag force and the atmosjzhéensity.

in plot 1 and2. For circular orbits there are, as well known from Equatidr99), a
double integrator andlcomplex poles on thgo axis. For elliptical orbits it is somewhat
different, though the out of plane remains with two polestoajto axis. The in plane
changes characteristic over the orbit. At perigee all paleson thejw axis and at
apogee two poles remain oscillatory on theaxis and two become symmetric around
zero with one Right Half Plane (RHP) pole and one Left HalfneldLHP) pole. In
between perigee and apogee, the system hagawimles and two RHP real poles.

The attitude from Equation (5.15) is found in Figure 7.5 int@. It turns out that
the poles are independent from the operating p@irthough it introduces couplings. It
can be seen by finding the determinant analyticallAgfin Equation (5.16). The non
diagonal elements dB, disappear and the elements&f reduce to a zero and a one in
the characteristic equation. The dynamics pagtcontributes with a real RHP pole for
monotonously increasing or decreasing diagonal elemérntednertia matrix, which
is the present situation. For other combinations the potesa@mplex in the LHP.

The port to port dynamics is in Figure 7.5 in plbt In a similar manner as for
the attitude, it turns out that the poles are independerti®fiatrices8B,,, andB,.,,
in Equation (5.27). Consequently all poles are contributedctly by the individual
models. The six fast complex poles on the axis stems from the relatively fast target
attitude motion.

Finally we will establish the boundaries of the orbital alaguate as a function of
the eccentricitye. This will be needed later for the robust control analysishef time
varying plant. In Figure 7.6 is shown the lower and upper hiswf the orbital angular
rate at apogee and perigee respectively. The frequency airtit is also illustrated and
seen to follow the lower bound direction. It is observed fbathe circular case = 0,
the values are all identical.

7.3.4 Sampling Frequency

The implementation will be performed directly in the digeréme domain, rather than
a continuous design, approximating to the discrete times@iae transformation intro-
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Figure 7.5: Root locus of the linear plants in the Laplace plane. Theygareerated for one full
orbit withe = 0.1.

ducing small unnecessary inaccuracies. This means an@pgissampling frequency
needs to be selected in advance and perhaps adjusted cheidgdign.

The Nyquist criterion obviously needs to be fulfilled to aVailiasing, but that is
insufficient to obtain a well performing system. To have tlaasampling frequency of
7 — 10 times the fastest mode that needs to be controlled in thedla®p system is
needed.Astrom 1997).

The modes of the sloshing and the flexible modes shall not biatted, but rather
attenuated and can be omitted for consideration here. T8eattude motion, see
Section 3.2.1, needs to be tracked and will be one driveti@ictosed loop bandwidth
selection. External disturbances are of orbital frequesiaind therefore very slow and
insignificant. Past experiences have shown a need for adclosp bandwidth in the
area 0f0.08 — 0.1 Hz.

Based upon the above described considerations and the elatarg frequency of
some of the main avionics equipment, described in Secti®rma3Isampling frequency of
1 Hz is selected.

7.4 Properties of Linear Time Varying Systems

The linear systems developed in Chapter 5.2 are time vaigitige strict sense . The
stability issues of such systems will be addressed in thlise A general linear time
varying system can be expressed as

x(t) = A(t)x(t) (7.1)
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Figure 7.6: The orbital angular rates at apogee(min) and perigee(maxjllastrated together
with the orbital angular rate.

and the stability behavior of the origin as an equilibriumnpaan be characterized
completely in terms of the state transition matrix of thetsgs The solution to Equa-
tion (7.1) is known from linear systems theory (Lathi 197%pe given by

x(t) = ®(t, to)x(to) (7.2)

where® (¢, 1) is the state transition matrix. The stability of equilibrigpointx = 0
of Equation (7.1) is globally uniformly asymptotically bta if and only if the state
transition satisfies the inequality

[®(t,to)|| < ke 710t > 5 >0 (7.3)

for some positive constantsand~. A detailed proof of Equation (7.3) can be found
in (Khalil 1996).

This is just the general entry point as the following will testricted to periodic
linear time varying systems reflecting the systems for &g periodic orbits.

7.4.1 Continuous Periodic Linear Time Varying Systems

We now consider the class of systems as in Equation (7.1yevhg) = A(t + T) for
someT’ > 0 and allt. The stability theory developed below is part of Floquebtlye

1||A|jis the induced 2-norm defined A2 = vV Amaz ATA, where A ATA is the maximum
eigenvalue ofAT A (Zhou, Doyle & Glover 1995
g Y!
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Equation (7.2) is equally valid for periodic systems. We rfovd the differential
equation for the state transition matrix by differentigtiquation (7.2) and inserting
Equation (7.1) giving

x(t) = @(t,to)x(to) = A()x(t) = A(t)® (¢, t0)x(to)

leading to .
©(t,t0) = A(t)®(t, to) (7.4)
We will now define the following function
B(t+T,ty) = ®(t, tg)M (7.5)

whereM is some constant matrix. It is easy to verify that Equatio®) % valid by
differentiating and inserting Equation (7.4)

D(t+T,tg) = ®(t,t0)M = A(t)®(t, t))M
andM drops off and we have verified by Equation (7.4). From (KHz®96) and (Mohler
1991) we now defin@®1 as
M £ ¢RT (7.6)
which is a constant matrix and named the monodromy matrixeriterature. Recalling
that®(¢,¢) = I we can evaluate Equation (7.5)tgtand without the loss of generality
we considet, = 0 and we get

®(T,0) = BT (7.7)

The solution to Equation (7.1) therefore consists of a pkcally modulated exponential
matrix function.

Stability of the system in Equation (7.1) can now be evaldiateanalogy to Equa-
tion (7.3) using Equation (7.7). Therefore Equation (7s7asymptotically stable if the
eigenvalues oR all have negative real parts. We recognize #& is exactly the map-
ping of the left half plane in the Laplace domain onto the opeit circle by means of
the proper Z-transform. Alternatively we can evalugté' directly giving

det[M\I — BT =0 (7.8)

and asymptotic stability implies
[Ai] <1 (7.9)

where )\; is theit" characteristic multiplier ofA (¢) or the roots ofe®”. This holds
assuming knowledge of either the transition mai>or R. A comprehensive proof of
Equations (7.6) and (7.7) can be found in (Rugh 1996).

To use the theory above, the monodromy malvixor R need to be found. This
turns out to be the main problem, as to fildften is difficult or even impossible (Rugh
1996), except in simple casés.

2lt shall be recalled that®(t,t9) = exp (f:o A(a)da> only is valid for A(t1)A(t2) =
A(t2)A(t1), ¥V t1,t2 > 0and the latter condition is rarely fulfilled.
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Using Picard’s method of successive approximation thes dtainsition matrix is
proposed computed to first order in (Wisniewski 1996) as

t
®(t,tg) =~ P(tg, to) —|—/ A(a)da
to

t
P(t,ty) ~1 +/ A(a)da (7.10)
to
and theA matrix is averaged to become invariant as
1 to+T
A= —/ A(a)da (7.11)
T /i,

This approach still has its shortcomings in terms of acouead for higher order sys-
tems.

Numerical methods can be applied to find the monodromy mafrhe state tran-
sition matrix in Equation (7.2) fot = T can be found by successively building it
from initial state vectors of the formt; = [1000...]T, xo = [0100...]" up to
X, = [0000 ... 01]" for an® order system. It is accurate, but computationally it is
not interesting.

Finally when the periodic time varying elements of the matki(t) are smooth and
bounded functions, the eigenvalues will be likewise. Tfarethe domain and bounds
of the eigenvalues over one period can be computed, andi&ed real negative values
the system is stable. This property of the system will bézag later in the design.

7.4.2 Discrete Periodic Linear Time Varying Systems

The discrete counterpart of the periodic system in Secfiof.1) will be treated here.
We consider systems of the type

x(k+ 1) = F(k)x(k) (7.12)
wherek is a discrete time index. The system is periodic
Fk)=F(k+1T) (7.13)

with 7" being the discrete period of the system. The stability theleveloped below is
part of the discrete Floquet theory.

The discrete form of the zero input solution to the Equatidri?) in terms of a
transition matrix looks exactly as Equation (7.2). Theafi#nce equation for the state
transition matrix is found from Equations (7.2) and (7.12) a

x(k +1) = ®(k + 1, ko)x(ko) = F(k)x(k) = F(k)® (k, ko)x(ko)
Bk + 1, ko) = F(k)®B(k, ko) (7.14)
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We make the same definition in discrete time as done in Equétid). Itis easy to prove
the validity by shifting forward one step Equation (7.5) amskrting Equation (7.14) as

B(k+1+T, ko) =®(k+1,ko)M = F(k)®(k, ko)M (7.15)
From (Rugh 1996) we defirtel as
M 2 RT (7.16)
and with no loss of generality we can ¢gt= 0 and evaluating Equation (7.15) it gives
®(T,0) =RT (7.17)

We see that the system is asymptotically stable if the robR < 1 meaning inside
the unit circle in the discrete domain. A detailed proof isypded in (Rugh 1996) and
outside the scope here.

The problem of finding the matriR in practice remains the same as for the contin-
uous case in Section (7.4.1). The same type of approxinmsa#iod arguments holds for
the discrete case and are not repeated here. One additiffitallty nevertheless is the
problem of finding the discrete time domain state space mafdah arbitrary periodic
time varying system.

7.5 Actuators

Various types of actuators exist for spacecraft maneuwvepsmding on the mission and
if the spacecraft has only to perform attitude maneuvers, the case with most, or if it
also has to perform simultaneous translational maneuvers.

Actuators, like reaction wheels, control momentum gyrasmagnetic torquers, all
produce pure torques. If the same spacecraft has to cottitaba with thrusters, the
layout is often such that almost pure torques can be gemkgtaienot always.

So far, it is only spacecraft performing RVD which needs battitude and posi-
tion control capabilities simultaneously, though upcognformation flying missions
will have the same needs. The space Shuttle e.g. has a vepleothruster layout
and it is used such that certain engines are preassigneeffiairc modes, often in a
non fuel efficient manner. The Soyuz and Progress spaceurdfte contrary have a
thruster layout, which is very much engineered from the misysoint of view and has
very few attitude and position couplings. It is operatedasjre computed lookup table
in connection with nonlinear controllers and is fairly fedficient.

Based on the works and methods in (Voloshinov & Levitin 19889 (Ankersen,
Wu, Aleshin, Vankov & Volochinov 2004), an approach is undesearch, based on
convex closeness of non convex nonlinear continuous aedentproblems, aiming at
a set of feasible pre computed solutions for thruster dele¢Ankersen, Wu, Aleshin,
Vankov & Volochinov 2005). This is targeted to be used effitigon board in real time.

There are often many constraints leading to a non optimasthar layout, seen from
a GNC point of view. It ranges from lack of optimization at &m design level, to
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physical constraints on the spacecraft, manufacturingdtions, plume impingement
constraints etc. The thruster layout used here and listédbite C.6 suffers from several
such constraints. It is therefore necessary to find a way tiomge the selection of the
thruster to use efficiently and in real time.

7.5.1 Thruster Management

In this section we will develop a method for reliable thrustelection, which is robust
and flexible towards failures of some of the thrusters. I witimize the selection
under certain constraints and under simultaneous requesttfitrary (within capability)
force and torque vectors. We will base it on linear prograngisolved by a simplex
algorithm, detailed in Section D.1.

The actual thruster optimization selection problem wilivnloe formulated within
this framework. From Table C.6 we defing being the direction unit vector of the”
thruster,Fy,,, its thrust size and,,,, its location in the geometrical fransg,.. We can
write the force from one thruster as

Fn = anth“ (718)

wherex,, € [0;1] and Fi,,, > 0 andz, is one of the variables in Equation (D.1) for
which we seek a solution. It shall be noticed that the thists considered variable
here though in reality it is fixed, but it is based on the dydbietween duration and
module of the thrust. The!” thrust vector becomes

F, = Fun, = 2, Fi n, (7.19)
Then!" torque vector can be formulated as follows from Equation®)@nd (7.19)
N,, = 2, Fip, (by, X ny,) (7.20)

whereb,, = ry. — 4, IS the lever arm for the!” thruster. The total force and torque
now become the sum over &\l thrusters

N N
F=>F,=> z,Fy,n, (7.21)
n=1 n=1
N N
N=> N,=> 2,Fp, (b, xny,) (7.22)
n=1 n=1

whereF andN are the commanded force and torque, which should be reazelbse
as possible.

The performance index, which will be maximized, will natilyrd&e formulated such
as to minimize the fuel consumption, which is almost alwdesrnhain concern. As the
fuel consumption is practically proportional to the thersbpening duration time, we
can formulate the performance index as

N N N
Ztp, = min Z F,, = min Z TnFyp, = max <— Z anth,,) (7.23)
n=1

n=1 n=1
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where we multiply with minus to maximize in compliance witjuation (D.1), where
aon, = —Fyp,, relates to Equation (7.23). The other constraints can nosubremarized
within the framework as follows:

e In Equation (D.3) we havew; = N leading toN inequalities of the forme,, <1
with all the coefficients equdlandb,, = 1.

e There are no constraints of the form in Equation (D.4ys0= 0.

e The final constraint comes from Equations (7.21) and (7.28¢kvgive6 equal-
ities as in Equation (D.5) withns = 6. The a coefficients in Equation (D.5)
are clearly computed from Equations (7.21) and (7.22). oThght coefficients
in Equation (D.5) become the components of the left vectbEgoiations (7.21)
and (7.22), but one has to ensure that positive, which is not ensured by Equa-
tions (7.21) and (7.22). To ensure this we multiply both sideEquations (7.21)
and (7.22) with the sign functiosyn(-) and it becomes finally

N
sgn(F)F = sgn(F) Z Tn Fip, 0y (7.24)
n=1
N
sgn(N)N = sgn(N) Z Tn Fip, (br X 1y) (7.25)
n=1

When activating the thruster the MIB tin¥8,,; 5 must be taken into account. This
can be done directly on the, variables, where rounding will be used rather than trun-
cation in the implementation.

Th
r _ 1min

Tomin = T p Fthn = xnnlinFthn

TyviB
= —— 7.26
a/ min T ( )

The constraint placed an, becomes as follows and applied after the simplex opti-
mization has been performed

T for x, > x,,,,.
Tn =14 Zn,, for m, . >ux,>05z, . (7.27)
0 for =z, <0.5z,,,,,

An illustration of its function and performance is shown iigle 7.7 where a set
of arbitrary but realistic force and torque signals are shdwgether with the realized
signals and which thrusters were selected at any point i@.tim
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Figure 7.7: The black line is the commanded forces and torques and thénesthe result of
the thruster selection. They are almost completely the sdfreaturation occur then there can
be larger differences between commanded and actuated.a3hpldt shows the engine number
active. It illustrates that the optimization works well &4é difference between the curves.

7.6 Discrete Time Domain Models

The implementation of any spacecraft GNC system is donefiwace running on an
on board computer. It is therefore logical to perform thaglesdirectly in the discrete
domain or Z-plane.

The control output is in principle kept constant betweendam A step invariant
Z-transformation with a Zero Order Hold (ZOH) shall be apgli It is exact to the
continuous system at the sampling times and maps the contmoles\ to the discrete
poles\,; = e*” whereT is the sampling time (Ljung 1981).

A design in Laplace domain and then a discretization usintjrzelr or Euler ap-
proximate transformation, as often seen in practice, isodisaged. It leads to less ro-
bustness and performance of the system. To recover thatabessampling time is
needed, which places unnecessary requirements on the tamapd actuator hardware.
Nevertheless it shall be noted that tHe, norm is preserved by the bilinear transforma-
tion, hence it is applicable for tH& .., controller design (Green & Limebeer 1995).
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7.6.1 Pulse Width Modulation of Actuators

The actuators are thrusters as described in Section 3.8Bithwperates in an on/off
mode. The output from the controller will use a ZOH as exm@dim Section 7.6, which
will have values between zero and some maximum value.

After the thruster selection has taken place the normaliegdired thrust is com-
puted as in Equation (7.18) over one sampling pefiods the possible thrust is larger,
it will have to be applied over a shorter timg, such the following is fulfilled

Fthton =FT (728)

which provides the same impulse to the systemigpd< 7.

The PWM is essentially a discrete time device. Contrary talad”Width Pulse Fre-
guency (PWPF) modulator, which alters the bandwidth andghidie PWM is practi-
cally only introducing more damping to the system. See alde (L998) and (Ankersen
1989).

In order to illustrate the functioning of a PWM, a simple bapresentative state
feedback loop is designed for a mass. This results2fi‘aorder closed loop system.
The selected mass 19 kg to be representative.

In Figure 7.8 is seen the step response for the system withwvahdut PWM. It is
clear that the bandwidth is virtually unchanged, but sligittore damping is introduced.
This means the PWM does not affect stability margins in a tiegymanner. The system
output raises marginally faster as expected because mergyeis inserted into the
system during a shorter time. Therefore we also note a diffietence in the controller
output compared to the system without PWM.

Using the equivalent area in Equation (7.28) the straigiwdod and common im-
plementation is to let the pulses start at the beginninge$tmpling period. (leko, Ochi
& Kanai 1997) consider the optimum time delay of the puls@regsed as the error be-
tween the states of the output without and with PWM. The firgieo of the residual
suggests the pulse to be centered in the sampling periothélieZazzera, Mantegazza
& Nurzia 1998) propose beyond centering to split the pulse several smaller pulses,
evenly distributed over a sampling period. This only givesaginal improvement,
but will require thrusters with much longer lifetime. Suclarginal improvements do
not justify thruster qualified for many more duty cycles. TH&M is recommended to
have a50 — 100 times higher resolution than the sampling time. One cedtpuse is
therefore recommended and will be used further on.

Finally we see that the output of the PWM can contain rathemomapulses leading

to a high frequency content. This is nevertheless compldiledred by the low pass
nature of the system itself and is not present in the output.

From this analysis we conclude that the PWM needs not bedadlin the synthesis,
but it will be used during the overall verification in line Wi{fWie 1998) and (Bernelli-
Zazzeraet al. 1998).
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Figure 7.8: Step response for double integrator full discrete statéb@ek. The full line is for
the response without PWM and the dotted with. The bottonglefibh shows the modulated input
signal to the system, which is centered on the sampling @eftdllustrates that it is possible to
have very small impact from the modulation.

7.7 Guidance

The guidance function is needed for both the position andttitede loops. Its function
is to provide the reference state vectors as well as to camgmud provide any feed
forward control signals.

As illustrated in Figure 7.1 the guidance function has asitiripe estimated state
vector. It is used to determine when to change to another ragpther with stored
information of the mission plan and time line.

The following sections will cover the impulsive and the doobus trajectory maneu-
vers for the position, the required attitude reference &edstation keeping references
for both. The GNC design will be performed having the ISS in.b/hold rather than
TEA as explained before. This case is a worse one with moterences.

7.7.1 Impulsive Maneuvers

We recall the maneuvers to be considered as explained ilb8e&c# and illustrated in
Figure 2.5. The guidance considered here will be a closingemzer to reach point;
on the V-bar. The commonly used type is a tangertipllse maneuver for which all
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equations have already been derived in Section 4.6. Insfeageating all the equations
here, references to earlier ones will be used.

The principle is that the natural trajectory o gulse maneuver is used as the ref-
erence signal for position and velocity. The closed loopler shall then follow the
reference under the disturbance of differential drag. Tméthod keeps a small error
ellipse along and at the end of the trajectory. This is copti@an open loop maneuver
with a possible mid-term correction, which has much largelfuncertainty and no less
fuel consumption.

Trajectory: All equations needed are in Section 4.2.3 for the in planganofThe
out of plane reference is zero. The state transition mattixassociated transformations
are implemented in the guidance and provides position aloditazas a function of time.

A-V: The initial A-V is implemented as a feed forward control and computed as in
Equation (4.142). The final pulse at the end of the maneuvanguted according to
Equation (4.136), but usingj row of Equation (4.137).

An example of the guidance reference trajectory is givernag't? graph in Fig-
ure 4.6.

7.7.2 Station Keeping

This reference signal will keep the spacecraft at a chosgtitm and the position ref-
erence is then the coordinates of that point. The velocfgreace is zero.

The feed forward force for the station keeping is calculadedording to Equa-
tion (4.133). It shall be noticed that feed forward is not stant due to the orbital
eccentricity.

7.7.3 \Velocity Profile

The guidance for the final approach consists of an accedergtrt followed by a con-
stant velocity part. Then a deceleration to reach the finekithg velocity. Past research
has focused on various acceleration profiles to have smeatleity profiles with indif-
ferent results. The profile here will be based on having @mstccelerations leading to
simple and fast profiles.
The sensor is the camera measuring the port to
x: profile port distance. The value in Table 2.1 fgris 500
y: const—=~ m in LVLH leading to a shorter distance between
ports. The lateral referencesy and z are zero. This
Measurements means the camera measures directly the deviation,
Camera see also Figure 7.9. As mentioned earlier the final
approach will be along the V-bar with the ISS in
LVLH hold rather than TEA.
Figure 7.9: Summation of measure-  The phase plane profile for the final approach
ments, directly creating the control eris illustrated in Figure 7.10. The guidance profile
ror port to port. needs to be generated for the separate segments as
illustrated. It is necessary to find the location and the tahée shift points. This is
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Figure 7.10: Principal illustration of a final approach profile in the pégdane. The times are
all with respect to a real time, at the beginning of the maeeuVhe profile is general along any
vector, here needed for the x-axis. The green trajectoreefoaexponential braking.

all done based on the standard kinematic equatiensg + vt + %atQ wheres is the
distance andy initial speed and the applied acceleration. The intermediate calculation
of this well known equation is omitted, but all final results ahown in Table 7.5.

The initial values needed are the start locatigrand switch location to final speed
s4. Also the two constant speeds and s, must be specified as well as a possible SK
durationt; atsy. If $o = 0 then the transfer stops at. It can then also be used for a
general transfer between two locations with constant icrgiispeed.

For the equations in Table 7.5 it is mandatory that the angispeed is first reached
before braking occur of35 — s31 > 0,V$; > 0.

For the case where the constant spg&eid not reached, we have that= t, and that
s31 = s32. Phase Il disappear. The results from these constraintiste@ in Table 7.6.
For the case of,;, = 0 the tables can be found in Section D.2, noting that= s, and
t3 = t4 = t41 .

For safety reasons it is not always desirable to arrivg &bo fast. Instead of a con-
stant deceleration an exponential braking can be applieithas the sloping trajectory
in Figure 7.10. The equation for the trajectory in the phdaaeiss = vs + b, where
V= % andb = $; — vs31e.

As there is no time information in the phase plane, it is |&éssght forward to find

the explicit equations. In general we have- % =dt = % and integrating

/Idtz/s %:/S ds [%M(Vs—i-b)]s :%(ln(ys—i-b)—k:) (7.29)

S31e vs + b S31e

wherek = In(vssie + b) = In($1) by insertingb. Rearranging terms in Equation 7.29
and taking the exponential on both sides the position fondliecomes, wherfg is an
arbitrary initial time
1
s(t) = = (ekew*tcﬂ - b) (7.30)

v
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[ [Time | Location | Position | Speed |
| to S3 s =83+ %at2 s$=at
1l tl:%1 531253+%at§ s=s31+ $1(t —t1) § =381
I Tt =t + =500 Ty, s — 531+ 81(t —11) s = &1
N | 0t = t3 —tp = 225°L T=t—1o

t2=t1+% 5322547é15t7%5t2 82532+51x+%d12 $ =251 +dz
[ ot = —= p——

to = t1e + % In ;;’" 532 = 54 — 820t — 'j,/d/") s % (e¥® —1) + s31¢ | § = $1€Y*
[\ 1531152—571 sS4 s = 84 $=0
V [ty = t3 + te 54 5s=s4+ salt —ts)? s=a(t —ty)
VItg =ta 4+ 2 sa1=s4+ Saltan —ta)? |s=sa1+ St —ta) |$=4

Table 7.5: Lists all equations needed to calculate the profile illustian Figure 7.10. Observe
in Ill that d is a deceleration and < 0. Typicallyd = —a. The green fields all refer to the
exponential braking illustrated in Figure 7.10

Fort = t, we can finde* = 5;, and inserting we obtain

S
s() =2 (e”(t_t“) - 1) ¥ 316 (7.31)
and by differentiation
§(t) = §,ev(t=t) (7.32)

The transfer time for exponential braking we find setting= 0 without loss of gener-
ality ands(t) = s

1 52¢ .

te = —1In (SL) and lim t. =0 (7.33)
14 51 S2e

It is observed from Equation 7.33 that the final speed canexdime zero.

Implementing all the equations and switching thresholdsififable 7.5 and 7.6 one
has a general guidance function for a profile as in Figure.7.10

| [ Time | Location | Position | Speed |
| 6t=t3 —t2 = —52;531 r=t—1t
t1=1/2(s 75'+§) s¢ _eré s =531+ é31x 4 2dx? | §=431 +dx
1=/ 7(s4 —s3+ 53 31 = =5 i = 531 + 531 5 = 831
v tgztl—s% S4 s =84 $=0

Table 7.6: Lists all equations, different from Table 7.5, needed tewale the profile in Fig-
ure 7.10, wher; is not reached. This means phase Il is omitted @ané: ta, ss1 = ss2 and
$31 = aty from I.
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7.7.4 Attitude Slew

Slew maneuvers can be viewed in two categories. The first eimg/la non constrained
maneuver from a present quaternion to a target quaternidiis i$ a minimum time
maneuver performing the rotation around an axis normal ¢oplane spanned by the
vector components of two quaternions. This is typicallydu® observatory type of
spacecraft.

The second one being a constrained maneuver from one Eugflertara target Euler
angle. This is often driven by sensor FOV and physical cairgs on or around the
spacecraft. Such is typical for proximity maneuvers for R\HDr those reasons and
safety issues one typically rotates one axis at the timeerQftere is no need for general
rotations.

In this work there is only a need for slew for a fly around marezwas described in
Section 2.3.4 to reach the docking axis with ISS in TEA mode.

The profile for a slew maneuver, here around the spaceciafisy-is similar to the
one in Figure 7.10, witli, = 0. Therefore one can reuse all equations from Table 7.5
and 7.6 for the slew. We simply replace the position varialita the angular variable
and it is all applicable.

7.8 Conclusion

A control structure and GNC design approach have been deffn&NC design domain
has been defined in terms of variation of parameters andrdptagts. Relevant prop-
erties of linear periodic time varying systems have beeiuatead. A general thruster
management function has been designed. A general guidaoiile pas been designed.
This answers well to objective 6 of Section 1.3.
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Chapter 8

Robust and Attitude Control

The functions for the navigation and control will be dealthwin this chapter, orga-
nized along the functionality of general attitude contrelative position control be-
tween COM and finally the full control between docking ports.

The structure will be such, that theory will be developed ased as the need will
arise. A choice of designs will be selected in a justified neanin order to reflect the
requirements laid down in Section 2.4.2. The theoreticatspaill then later be used
for other functionalities, than for what it was developey,rbference. The order of
development is based upon increased system complexity.

All analysis and synthesis will be performed on linear medéllonlinear models
will be used for verification by simulation.

8.1 Earth Pointing

The general attitude control is needed in all phases of tksiom, except where relative
attitude is required, as explained in Section 2.4 and ii&ietl at high level in Figure 2.5.

The general requirements are not very demanding for thésddmissions compared
to e.g. Earth observation ones. The requirements are figtedl parts in Table 2.2 and
we recall them here asdeg and).2 deg/s for pointing and rate for each axis.

8.2 Plant Description and Variation

The model for the attitude kinematics and dynamics was deeel in Section 5.6 and we
will use the Linear Time Varying (LTV) model given in Equatig5.16). We recall that
the matrixA 4 in Equation (5.15) is a function of the orbital angular ratel ¢herefore,
we have a periodic plant.

We will now characterize the plant inputs and the plant emies. It is clear from
the thruster layout in Table C.5, that tRelimensional force and torque envelope will
form a multifaceted polytope. It is impractical to be useddesign for which reason

Finn Ankersen, September 12, 2011



140 Robust and Attitude Control

[e=0] s | Liae | %A ]
[0,0,0] [0,0,0]
8.2-107° 6.3-107° | —23%
(—4.14,82)107° [ (=3.2£6)107° | =26 %
[e=01] 0 =0deg| 0 =180deg|[ %A ]
Loin [0,0,0] [0,0,0]
8.6-107° 5.8-107° [ =33 %

(—43E£48.6)10 > | (—2.9£j5.8)10° | —33%

Table 8.1: Examples of main variations of plant poles for variationsgrtia and orbitx(Become
real for some inertia)

we will use a spherical shaped envelope all being inside tiyggpe. From analysis
in (Silva et al. 2005), it can be ensured with one failure tiving is always available
simultaneously.

Frae = 150N

N,.. = 190 Nm }ln any direction (8.1)

The pole variations of the rigid plant are already dealt \aitil shown in Figure 7.5
Here we will also consider the flex and slosh modes as well egianvariations and
listed in Table 8.1

The poles coming from the flexible modes and the sloshing are dable 8.2.
The couplings of the slosh is weaker than for the panels ahdrdly noticeable. We
therefore include only the flex modes in the plants for design

The typical frequency response, for one of the main chanisiustrated in Fig-
ure 8.4, where one clearly observes the difference in thectmdributors.

There are no transmission zeros in the plant minimal re#dizaThe strategy further
inthe design is to design controllers for the rigid part withconsidering the flex modes.
The rationale for this decision is that the modes cannot beehg controlled but only
filtered. This might be considered with notch filters if deenmecessary later looking
at stability and performance. More in depth work on contifdlexible modes can be
found in (Bodineau, Boulade, Frapard, Chen, Salehi & Arde2005).

| 4panelsi mode | Lumpedtanks |
| -14-107°£,1.38 [ —=6.7-10~" £ j0.13 |

Table 8.2: Poles for flexible first mode with panels and lumped sloshing tanks.
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8.3 Control Design LQR

The attitude control design is very often performed on a pér basis employing clas-
sical manner, first developed in (Ziegler & Nichols 1942).

As the plant is of multi variable nature we will embark difgadbn a MIMO de-
sign approach. As we do not take the flex modes into accourihéosynthesis there
is no need for loop shaping techniques using notch filtef§ grtechniques. A natural
approach is to use Linear Quadratic (LQ) techniques, whietwell proved and multi
variable. They have been particularly successful, whex@ldint models are well known
as in the case in aerospace applications. Based upon th&mwesiin separation theo-
rem (Kwakernaak & Sivan 1972), we will first consider the lan€Quadratic Regulator
(LQR) part and design the estimation filter after.

We will target the following control requirements of a rigmé ¢, < 100s, an
overshoot ofMp < 30% and a steady state error @f,,,. < 2deg.

The plantis LTV as shown in Section 8.2 and we need to selegparating point to
get a LTI plant. We select the plant valid at the perigee ofattiét, which is where the
fastest dynamics exist. The rational being that a fastetrobecan later follow a slower
dynamics, but not necessarily the opposite. For a stateggant of the form

x(t) = Ax(t) + Bu(t) (8.2)

we will seek an input signal(t) which will bring a non-zero initial state(0) to a zero
state. This we will do by minimizing a quadratic determiimistost function as stated in
theorem 8.1.

Theorem 8.1
The stationary optimal linear controlldr, which minimizes the quadratic cost function.
J= / ()TQx(t) + u(t)"Ru(t))dt (8.3)
under the constraint of input behavior
u(t) = —Lx(t) (8.4)
is given by
L =R !B™X (8.5)

whereX = X' is the positive (semi)definite solution of the AlgebraiccRitEquation
(ARE)
ATX 4+ XA —XBR'B™X+Q=0 (8.6)

andQ = Q' is a positive (semi)definite matrix afti= R is a positive definite matrix.

The proof of Theorem 8.1 can be found in (Ogata 1970) andélpoutlined by insert-
ing Equation (8.4) into Equation (8.3), assigning to a Lyaputype function, replacing
R with a matrix product and finding the minimum. General altjoris for solving AREs
are beyond the scope of this work, but found in (Arnold & La@84).
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The weighting matrices in the performance index in Equaf®8) are selected as

1 1
2 2
T1maz Ul maz

Q= , R= (8.7)
1 1
2 w2

x
Mmax Nmax

where in this case: = 6 andn = 3. By selecting the weights with respect to the square
of the expected maximum values the performance index iatehis normalized to a
value of about. This is a starting point for the iterative process of thetoardesign.

The rigid body plant has been chosen for the synthesis agritranclude the flexible
and sloshing modes during design.The difference is annifgignt very small ripple on
the output withL, € R3*6. This ripple can be removed including all modes leading to a
largerL € R3*!® and keeping in mind that those modes are not measurabledtiqara

After several iterations and simulations the followingues are selected

T1-53 = 1deg Ty =0.05deg/s and w4, = 190 Nm (8.8)

mazx max

This leads to closed loop bandwidths of ab@0tl Hz, which is just below the frequency
of the flexible modes (the sloshing was shown to have litlleié@mce). This gives very
acceptable response times of abb( s to steps.

The design of LQR is recalled to exhibit guaranteed stghiliargins in the feedback
channels for Gain Margin (GM) and Phase Margin (PM) of

GM = and  PM > 60 deg (8.9)

The steady state error should be close or equal to zero. Thésyef the system
is typel (one pure integrator), hence one is having a steady staiearzero without
any integral terms in the controller. The other axes havepeles very close to the
imaginary axis, thus exhibiting integral type of behavibis leads to very small steady
state errors of a few percent. We therefore conclude, tieaétis no need to extend the
design with explicit integrator and their anti windup logi€his is seen clearly in the
plot in Figure 8.2.

The design domain chosen is the continuous one. The jusitiiictor that choice is
that the later robust control analysis has its theory andadola tools primarily in the
continuous domain. This means that the designed consalleed to be transformed
into the discrete domain. With the control bandwidth to skmggfrequency ratio used,
the errors introduced are negligible in the practical immatation. To do this, cost
equivalents has been used as in Theorem 8.2.

Theorem 8.2
The discrete equivalent optimal controllers minimizing tontinuous cost function

J= / Oo(x(t)TQx(t) + u(t)"Ru(t))dt (8.10)
0
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can be found by minimizing the following discrete equivadast function using a step
invariant discretized plant

Jo =S X (k)uT(k)] [ m; m;z } [ EEZ% ] (8.11)
k=0
where

M1 Mz | "TF(r) 0 Q 0 F(r) G(7)
{Mm MQQ}—/O [GT(T) iJloRrR|[ o 17| (12
andF, G are part of the discretized system.

The proof and derivations in more details can be found inr{Kra, Powell & Workman
1998).

The continuous and discrete designs have been implemearegbared and found
to give rather precisely similar closed loop responses.oigepresenting the closed
loop results, we will proceed with the design of a state esfiimin order to filter the
measurement noise from the sensors.

8.4 Control Design LQG

As stated in Section 8.3 one can separate the controller stimdagor design retaining
optimality upon final combination to form the LQG compensato
We will base the filtering on a stationary Kalman filter of tké#dwing stochastic system

x(t) = Ax(t)+Bu(t)+v

y(t) = Cx(t)+Du(t) +e
where the state noiseand output noise are white weak stationary stochastic processes
with the covariance matrices,

(8.13)

E{v{t)v(s)"} :{ f)‘l j;i (8.14)
E{e(t)e(s)T}={ ?2 j;i (8.15)

E{-} being the expectation.

The state noise is not really known, hence it will be treated as a free desayam-
eter in the tuning of the filter.
The output covariance can be defined by the sensor noise ag@ndi matrix.

Rsrr O }
R, = 8.16
2 { 0 Ryyro (8.16)

For the STR we use the largest noise value from Table C&rof 5.28 - 102 deg
for all axes. The gyro is used in fine mode with an angular ratsenfrom Table C.2 of
30 = 6 deg/hour.
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Sensor

Ym

Figure 8.1: lllustration of the LQG interconnections with the load digtancesi, plantG(s),
sensors and reference

Theorem 8.3
The Kalman filter has the structure of an ordinary state eaton

X(t) = AX(t) + Bu(t) + Ky (y,,(t) — CX(t)) (8.17)

The optimal gain matriKy, which minimizes the expectation of the estimation error
E{[x —X]"[x — X]}, is given by

K; = YC'R;* (8.18)
whereY = YT is the positive semidefinite solution of the algebraic Ricequation
YAT + AY - YC'R;'CY + R, =0 (8.19)

Derivations and proofs of Theorem 8.3 can be found e.qg. inglk@mnaak & Sivan 1972).
The structure of the LQG controller is shown in Figure 8.1

With the same reason as for the controller in Section 8.3ifjltee will be designed
in continuous time and the discrete version found by eqeiveg of the optimization as
in Theorem 8.4.

Theorem 8.4
When the sampling timE is small with respect to the plant time constant, the follayvi
relation is valid between the covariance matrices

1 1
R, = —_R R, = =R 2
1= 7R and R T Red (8.20)

indexd being the discrete equivalence.

The proof of Theorem 8.4 is provided in (Franklin et al. 1998)
The filter gainK is found after several iterations and simulations, and haanal-
width an order of magnitude faster than the LQR to ensuregurtvacking response. In
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Figure 8.2: Step response of the LQG with a short pulse of load distubéetweer200 and
300 seconds.

Figure 8.2 we see a step response for the LQG shown in Figlird Be design exhibits
a critically dampened response with very good stationahabier. The steady state er-
ror is negligible small clearly underlining no need for egjtlintegral terms in the loops.
It is also seen that the measurement noise is well filtere@.|@Wer right plot shows a
zoom of the area where the load disturbance is applied.

The closed loop poles are the union of the controller and $tienator poles. By
combining Equations (8.17), (8.4), (8.2) and forming theneation error the closed
loop poles can be determined by

det(AI — (A — BL)) det(\ — (A — K;C)) (8.21)

which also confirms the separation theorem. The closed ladgsfor the LQG are
listed in Table 8.3.

We see they are well placed away from the imaginary axis amdréguency sepa-
ration between the controller and the estimator.

We will now define from Figure 8.1 the sensitivi8/and the complementary sensi-
tivity T functions and we combine estimator and controller into seg@rcompensator

Controller Estimator |
—5.3259- 10T | —8.1071- 102 £ ;j9.9071 - 10~ F
—5.0002-10"2 | —3.2105- 10~ T 4 5j3.0054 - 10—~
—2.6875-10~1 | —1.5123-1072
—5.0009-1072 | —3.2596- 10~ 1

Table 8.3: Closed loop poles for the attitude control loops.
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Figure 8.3: The sensitivity functiorS and the complementary sensitivity functiah for the
attitude LQG design. The resonance peaks are from the féeribldes. They do not appear on
the x-axis due to their edge on orientation.

K in the forward path/‘é\strbm & Wittenmark 1989)

S=(I+GK)! (8.22)
T = (I1+GK) 'GK (8.23)
S+T=1I (8.24)

S gives the closed loop transfer from the disturbadde the outputy (scaled byG if
at input or output), whilél" gives the closed loop from the reference

Itis therefore desirable to ke@small at frequencies where disturbance suppression
is needed, typically at low frequencies. Contrdhshould be unity at low frequencies.
As for physical system&(s)K(s) is proper and in practice strictly proper we have that

lim G(s)K(s) =0 (8.25)
which implies that
lim S(s) =1 (8.26)
and
lim T(s) =0 (8.27)

In Figure 8.3 we see th8 andT functions for the LQG design. They are very
well behaved and th2 functions are rather symmetric about the cross over freguen
with no real overshoot indicating reasonable stabilitypemies. This is consistent with
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Figure 8.4: Attitude open loop transfer frequency response one looeatitme, with rigid,
flexible and sloshing modes. Shows response for the x aneégy-axthe upper row and z-axis
below, with z-axis zoom in graph(2,2).

observed step responses for the system. The flexible modetearly visible, around
the bandwidth and not a concern for reference tracking amdoaferate size.

The LQG has, contrary to the Equation (8.9), not the guaeahgeability margins of
the LQR. This was first demonstrated by (Doyle 1978) by an giamand an adjustment
procedure to recover most of the properties was presen{&biyle & Stein 1979) later
matures into the Loop Transfer Recovery (LTR) procedure villen the next section
analyze the closed loop LQG stability margins with that imdhas well as recalling that
we are applying linear methods on nonlinear models, whictinénfinal stage will be
evaluated by simulation.

8.5 Classical Stability Analysis and Nonlinear Perfor-
mance Simulation

As mentioned earlier the tradition is SISO design for sugdteys and SISO analysis.
Therefore we will first perform a classical analysis of the®@®IIMO design. It will be
performed by opening one loop at the time for the angles of thess. This will ensure
that the couplings to the other loops are accounted for assfapssible. The frequency
response for that is shown in Figure 8.4.

Before proceeding we will calculate the Relative Gain ArfR{%A) of the system,
which will be able to indicate how diagonal (coupled) thetegsis in relative measures.
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GM|db, HZ (atoo) (atoo) (atoo)
PM|deg, HZ 80.2(at0.054) | 76(at0.054) | 77(at0.052)
Delay Margin| 5| 4.1 4.0 4.1

Table 8.4: Summary of the closed loop SISO stability margins for the LdgGign extracted from
the plots in Figure 8.4. Delay Margin (DM) i8M = PM (w.) - we.

It will help determine how representative the margins are.
The RGA of a complex non singulat x m matrix A is a complexn x m matrix
defined by
RGAA) 2 A x (A™HT (8.28)

wherex denotes the element by element multiplication and wasdliced by (Bristol
1966). The many properties of the RGA are well proven andvddrin (Skogestad
& Postlethwaite 1996) and will not be repeated here. For asturare matrixA of
dimensiond x m the pseudo inverse can be used instead, (Chang & Yu 1990). One
property we need is that it indicates the relative size oEleenents with respect to each
other.

For the systent(s) in Figure 8.1 of siz& x 3 andG ¢, being the complex frequency
response, we complete the RGA and take the absolute valeebfstement

0.995 . <1073
0.995

0.995
6-1073

6-1073

We see that the diagonal elements are about a faétblarger than the corresponding
off diagonal. This clearly indicates that the plant is wgatdupled.

The plots in Figure 8.4 are displayed for no rotation of thieuspanels, as in Fig-
ure 3.4 with = 0, and that is why the modes are not visible for the x-axis. ©dingles
have been analyzed with similar results.

For the x and y-axes we see an increasing phase, which iscchysbe LHP ze-
ros appearing when the two other loops are closed via theaitertand estimator and
manifest themselves in the loop transfer.

The concern of the flex modes we can investigate from the zaopiat 2,2 in
Figure 8.4. If the damping of the close modes increases oedses the gain zero db
cross over will change frequency in a jump.This will onlyeadfthe GM and we see that
we actually will get an increase in PM as the gain will crosa ktwer frequency where
the phase is lower. For this design they will therefore nethadestabilizing effect and
we need not be too concerned in the nominal situation. Theab81SO margins for all
axis and loops are summarized in Table 8.4.
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Figure 8.5: The full nonlinear simulation showing the attitude, theesa&nd the input torques.
0(0) = [0.2,-0.2,0.2]" deg andv(0) = 0. The larger torque around the y-axis is caused by the
gravity gradient disturbance torque.

We will now consider the LQG design discretely implementedifull nonlinear
simulation, which includes all details documented in thissis concerning dynamics,
disturbances, noises in avionics equipment. We choosetiarstey attitude keeping
with nonzero initial conditions. The results are displaye#igure 8.5.

We see clearly the nonlinear effects, but all values arewetlinside specifications.
It has been chosen to display the torques per axis, ratheipéraengine, as much more
illustrative and the latter well documented in Figure 7.hePpulsed torque behavior is
caused by the dead band in the PWM. It can be concluded thdegign well fulfills all
performance specifications.

Finally the system is tested for tracking capabilities corinty a set of different
types of reference signals into one continuous refererpa€i8.6. Also here it is seen
that the design performs very satisfactory.

8.6 Floquet Stability Analysis

The asymptotic stability of the periodic LTV system will besassed using the theory
derived in Section 7.4.1. For simplicity the analysis wi# Blustrated for the LQR
design, though the computations are for the complete LQG.

We will consider the closed loop system of the form of Equa(it.1) and we obtain
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Figure 8.6: Nonlinear simulation result following a more complex refiece signal for the attitude
and rates. The reference is a ramp, a constant, a parabolerauifferent sinusoidal signals.

combining Equations (8.2) and (8.4)
x(t) = (A(t) — BL)x(t) (8.30)

where the only time varying periodic part is one quarteA¢f), see also Equations (5.15)
and (5.7).

To find the monodromy matri®d in Equation (7.6) we use Picard’s approximation
from Equations (7.10) and (7.11). It turns out, that for tiyjze of very slow dynamics,
the approximations are inadequate and lead of eigenvaloeate®ons. The method is
discarded and we turn to numerical computations to find theadmmy matrix, as
described in Section 7.4.1.

Successive simulations are performed to find each final waJ(E) for each ini-
tial state elemengk;(ty). The reference state for the closed loop is zero, hence a pure
initial value problem. The monodroniyI or state transition matri® (7", 0) is formed
successively by the,(T") column vectors.

The result become®(T',0) = 0 (apart from numerical noise) leading to eigenval-
ues at the origin. Thus the periodic closed loop system impsgtically stable from
Equation (7.3). It is expected th@(7",0) = 0 as we have a closed loop system with a
settling time of about00 s and the period oA (¢) is about8000 s. Therefore any initial
nonzero value will be driven to the origin long time beforeeqeriod is reached.

These results confirm the expected behavior, when the closgddynamic is so
much faster than the periodicity. The reliable computatibthe monodromy matrix
in the Floquet theory is not practical as well as it only pd®s information about the
asymptotic stability. Stability margin indicators can leveloped by shifting the imagi-
nary axis, but this is an iterative process and not so aitesict practice.
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————————————————————

Class of models

Controller

Figure 8.7: lllustration of the concept of combination of a nominal miodéth some sort of
uncertainty modeling resulting in a class of models degwgibetter the real physical behavior.

The Floquet method will therefore not be utilized furthertlvis project, but the
periodic variations will be treated instead as uncertamin the framework of worst
case analysis.

8.7 Principal Uncertainty Description

During control design we make use of linear mathematicaletmavhich are to repre-
sent the real physical world. Such models are approximssach that:

e Nominal models are not considering any possible uncerégint

e Worst case models are typically a combination of nominal e®dnd some form
of modeling of known uncertainties. There can still be unknaincertainties
unaccounted for.

The grouping of models can also be illustrated graphicallyigure 8.7. The use of the
way of modeling in Figure 8.7 can be done in different ways.

e The nominal model can be used for both synthesis and analysisis a classical
approach.

e The nominal model is used for synthesis and the uncertaiatie accounted for
in analysis.

e The full uncertainty model is used for both synthesis andyais which is the
most complex and numerically demanding situation.

The approach selected here is the second one; which leakds teéd for deriving the
non nominal models for the analysis part.
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Nominal Plant

Figure 8.8: Uncertainty regions in the Nyquist plot at given frequesaie, w2 andws. The green
polyhedron are the real uncertainties approximated byitbarascribed circles.

As the robust control framework is frequency domain bagad Heneficial to illus-
trate how uncertainties can be interpreted and approxiriatéhe frequency domain.
Let us consider an uncertain pladt, (s) with some form of uncertainty description in
the Nyquist plot in Figure 8.8.

The full line in Figure 8.8 is the curve for the nominal plantdahe2 dashed lines
give bounds for the class of uncertain models outlined irufgg8.7. The irregular
shaped regions are the parametric uncertainties of thelnasadeng certain parameters
in a specified region. The disc shaped regions are used tesaprthe uncertainties, but
are more conservative as non existing plants are allowedy Tan e.g. be modeled as
multiplicative uncertainties of the form

Gy(s) =G(s)(L+wr(s)Ar(s)), |Ar(jw)] <1, Yw (8.31)

where the radius of the disc in Figure 8.8 becon@gjw)w;(jw)|. See e.g. (Doyle &
Stein 1981).

One can vieww(s) as a weight introduced to normalize the perturbation to bg le
thanl in magnitude at each frequency. In most caseés) is a rational transfer function
and we will always choose weights to be stable minimum phagkdr on.

Care should be taken, that the uncertainty is not largertb@fo meaningw;(s)| >
1, in which case the disc at that particular frequency inciutthe origin. We loose the
phase information and plant zeros cross from the left toitie half plane. There exists
then a|A;(jw;)| < 1 such thalG,(jw;) = 0 in Equation (8.31), which means possible
plant zeros ab;. This means the input has no effect on the output at that &ecyy so
no control.

When dealing with systems having several multi variableeutainties which in-
fluence several input and output channels the completersylséeomes increasingly
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Figure 8.9: How to pull out the uncertainties and form the gen&&al 2 port form, where the
individual A are collected into one.

difficult to analyze. It is convenient to reformulate the Iplem in the generat x 2
representation illustrated in Figure 8.9. There the ppiecof how to isolate each\;
is shown and how to structure it into a larger block diagafsamatrix external to the
original inner structure. This is a description of struetiuncertainty, contrary to un-
structured uncertainty whee& is a full complex matrix.

The resultingN A can conveniently be manipulated by means of Linear Fraakion
Transformations. This will be explained in detail in Sent&8 and LFTs are detailed in
Section D.3.

8.8 Uncertainty Description in General Form

This section will cover derivation of all relevant uncentigi descriptions and bring them
into the general form of Figure 8.9.

The viewpoint adopted to deal with the periodic LTV systesrtpi consider the time
varying parameters as ordinary uncertainties. We will @srghe bounds on variations
and neglect any knowledge of how they vary over time. Thisnewel contribution to
the field treated here and a core part of this project in the @BIE of it. Therefore
special attention is paid to its detailed treatment togetlith the robustness analysis of
the feedback loops and more detailed justification is predid Section 8.13.

The reason for formulating the problem in the general fornoimake it modular
and to fit with the framework of the robust control field. Thidabeing treated in detail
in Section 8.13.

The main objective of this section is to define the unceriénand pull them out
into one commorA block. The ones considered are

e Uncertainties in the LTV model in Equation (5.15) for theriiee matrix and the
orbital angular rate.
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Figure 8.10: LFT representation of a matrix parametric uncertainty.

e The damping of the flexible modes in Equation (3.21).
e Uncertainty in the torque level caused by thruster unagstaind COM location.
e Delay uncertainty caused primarily by the sensors.

All of these are bounded variations of real parameters abwardocations in the in-
dividual models. This leads to more complicated unceryaimbdeling than a lumped
complex one but also more representative towards the redd wo

As we will be dealing with real parameter variations mostlygtate space formula-
tions a general partition of the matrices will be convenigntnatrix A can be written
as

N
A=Ag+> 6A; ec™", |6l <1 (8.32)

i=1
Then the expressiom,, = Au, can be formulated as a LFT in Figure 8.10. The
partitioning can be performed in at leasidifferent manners giving different size of
possible repeated uncertainty This is illustrated in Figure 8.11, from which we see
that the dimension of the repeatédis either the input or output dimensions n for
the first two ways. The right diagram in Figure 8.11 represendecomposition using
the Singular Value Decomposition (SVD), where a matrix canbitten as (Green &
Limebeer 1995)

Lemma 8.1
A complexn x n matrix A can be factorized into a Singular Value Decomposition

A =UxVH (8.33)

where then x m matrix U and then x n matrixV are unitary® and them x n matrix
3 contains the diagonal matriX, of real, non negative singular values arranged in

1A complex matrixU is unitary if UM = U—! (Skogestad & Postlethwaite 1996).
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Figure 8.11: Different ways to partition thé matrix leading to different dimensions of the delta.

descending order as in

z:[zoo} for m>n (8.34)
or
Y=[3, 0] for m<n (8.35)
where
Yo = diag{o1,02, - ,0r}, k= min(m,n) (8.36)
and
— A A
0=01>09> - >0L=0 (8.37)
and
oi(A) = /A (AMA) = /(A (8.38)

where)\; is the eigenvalue

We now use Lemma 8.1 to find the minimum formulation in FigurEl8 The rank
r; = rankA) is defined as the minimum number of non zero singular valuésjim-
tion (8.36) (Zhou, Doyle & Glover 1995). We can write fAr; in Equation (8.32)

r; = rank(A;) < min(m,n) (8.39)
and we will now strip the non needed columndirandV in Equation (8.33) such that

Ui = U(:, 1: T‘Z‘), Ei = 2(1 : 7”@‘,]. : T‘Z‘), Vl = V(:, 1: T'i) (840)
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and define
L,=U; and S;,=X%, V! (8.41)

such that
A, =L;6;1.S;, 6] <1 (8.42)

Extracting thej; in Equation (8.42) and structuring as in Figure 8.10, thern®l 4 is
of the form

0 --- S,
My = | : (8.43)
S~
L1 . LN AO
and formulated as an upper LFT the expression in Figure &t0rhes
v = F,(Ma, A) -u, (8.44)

This is a general form for parametric uncertainty which guéee the minimum size of
A. (Manceaux-Cumer & Chretien 2001) This is important to béitds conservative

as possible and improves the well-posedness with respdbetalgorithms used for
computing the robustness measures. This can all be sumedaiz emma 8.2.

Lemma 8.2
Let a perturbed state space system be described as

X(t) = (A+ > 5A)X() + (B+ Y 6:B)u(t) (8.45)

y(t) = (C+ Y _6:C)x(t) + (D +>_ &iD;)u(t) (8.46)

Then the minimum number of repetitialsn the A matrix is equal to the rank of
A; B;
C; D;

8.9 Attitude Model Uncertainty Description

The uncertain parameters in Equation (5.15) are the didgdements of the inertia
matrix and the orbital angular rate. We reformulBtgas

(B[R] e

C
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Figure 8.12: lllustration of the LFT implementation of the input matis..

The inertia matrixd,. can be written as

51 kl
Ic = I(:o + 52 k2
i 03 ks
[ 51 kl
= ICO + I 0o ko (848)
03 ks
——
L Ap S
whered; k; = [-15,;15,] ¢ = 1..3 and the numerical values are in Section C.2. The last

term in Equation (8.48) has rank 3 and no repeated uncertainily. can be written as
an upper LFTL. = F,,(M, Ag) where

M — { g ISCO } (8.49)
according to Equations (8.43) and (8.48). From Sectiond23wve obtain
I'=F,M, Ap)~" =F,(My;,Ap) (8.50)
and . .
My; = { Mu :fgﬁi M Mﬁgfl;? ] (8.51)

Graphically Equation (8.47) is then implemented as illaigtd in Figure 8.12.
We will now partition theA matrix of the dynamical modelA . of Equation (5.16)
can be formulated as

Ac=Ag+A, A Alz{g )‘)(}:H]X[o 1] (852

Finn Ankersen, September 12, 2011



158 Robust and Attitude Control

andX will be formulated in the form of a LFT. From Equation (5.6) get that
X = wol;'M (8.53)
and from Equation (B.8)

I3, 2130 I3z — Ia
M = s 0 I (8.54)
Ios — 111 —2Io —I3

There arel independent uncertainties namely and the diagonal df..

LFT 1. wg can be written as
wo = Wo + 6ky A I8 <1, VSER (8.55)

wherew, € [w;;w,] andw; andw,, are the lower and the upper bounds respectively.
Then

1 1
o= 5w +w) and k= (wy —w) (8.56)
which expanded to all axis becomes
wol = el + 61 -k, = F,(M,,, Ay) (8.57)

and the upper LFT is shown in Figure 8.13. It shall be notetldeapitew is a scalar,
due to the fact it is multiplied by a matrix and influencing&aWlector elements, it leads
to 3 repeated uncertainties.

LFT 2: This is already calculated and the result is in EquationQ8.5

LFT 3: Using Equation (8.32) we can formulate Equation (8.54) as

3
M = M0+ZM7: = Mo+ 61 M1 (k1) +I2Moaga (ko) +035Mss(ks) = Fo,(Mar, Apr)

i=1

(8.58)

0
4
d
0| kI
I | @l

Figure 8.13: The LFT for uncertainty ot.
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Figure 8.14: The LFT for uncertainty of th&1 matrix in Equation (8.58).

wherek; is defined and used in Equation (8.48) already. The nomin#lixnas the
uncertainty is symmetric, B1, = M(I.). The3 factorizations become

0 0 0 0
51M11(/€1) =0 0 0 0 = 0 01 [ —k1 0 O }, rank=1 (859)
—k1 0 O 1 —S/_/
L,

ko 0
0 1
5 01[ks 0 0 B
(1) 8 {O 52}{0 0 —k2:|’ rank= 2 (8.60)
~——_———
N——— S»
L2
0 0 ks 1
53M33(k3)=53 0 0 O = 0 53[0 0 ks }, rank=1 (861)
0 0 0 0 —
\ , Ss3
L3

and combining Equations (8.58) to (8.61) the LFJ(M;, A ) is illustrated in Fig-
ure 8.14.

The3 LFTs for the A . matrix will be concatenated into one using Equation (D.2%) a
X in Equation (8.53) becomes

X = Fu(MXa AA) = Fu(Mwa Aw)Fu(MUla AB)FM(M]Wa AM) (862)
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where
AA = dzag([5 00 51151M§2152M§2M§3153M]) (863)

wo

where the second index refers to theorigin. Thed; will be combined with the one
from theB. LFT. Itis recalled that there are ordyindependend;. For y—analysis all
the A; uncertainties need be collected into afa€following the canonical formulation
in (Balas, Packard, Safonov & Chiang 2004) and (Balas, Qoglever, Packard &
Smith 1998). This formulation requires that repeaigdre grouped together such that
A becomes block diagonal. In this case we find the sénie both A 4 andA 5 and
they need be merged such that the repeatete grouped together. The uncertainties
are then combined as

A = diag([§ 6 5 61,01,,0, 162,02, 02,,05 53,03,,651]) (8.64)

wo
and thes; are the repeatedi from the A z matrix common with the same ones from
the A 4 matrix. This is obviously not convenient, as the LFT inputgut structure is

not preserved. Therefore a general scheme for combinirgyael/FTs with repeated
uncertainties will be developed.

We can now formulate thA structure as

ua | | Aa ya | _ ¢ | ya
EIRTN ARy

where theA is of the structure in Equation (8.64). The general strecofiS;; exem-
plified by the need of Equation (8.64) yields

I

(8.66)

I,

.......... 0, : ... I,

Where in this caser = n = 1, all matrices are square aidy = SZ.Tf. The complete
structure for the uncertain dynamics is illustrated in F&8.15.
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Figure 8.15: The complete parametric uncertain state space systemAThe\ g are pulled out
using the factorization in Equations (8.65) and (8.66) aithinterfering with this structure (not
illustrated).

- O

8.10 Flexible Modes Uncertainty Description

The uncertainty of the four flexible panels described in i8ac8.4.3, will be lumped
into one model with equivalent stronger coupling. We define system matrix

G(s) = { ‘é; g; ] (8.67)

and the uncertainty model will be a stand alone state spastersy The critical un-
certainty for such systems is the dampih@nd much less the eigen frequency. The
panel rotation anglg has been analyzed and found to influence results neglidtone.
phasis will be on the former in order to focus on the essentidle can formulate the
uncertainty range as

¢ €G] =1[1;5]-107° (8.68)

where(; and(, are the lower and upper bounds respectively and
_ 1 1
¢= E(Cl + QL) and kf = E(Cu - Q) (8-69)
such that we reformulate Equation (8.68) as
(=C(+6 kA8 <1, VSeR (8.70)

In Equation (8.67) the two uncertain matrices AreandC, and we reformulate Equa-
tion (3.21) as

As, () =Ap(C)+6- Ap (ky) (8.71)
where
0 1 0 0
Afo = [ —w? —2&4} :| and .Af1 = [ 0 —ka‘f :| (8.72)
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Gy (s)
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Figure 8.16: The flexible modes LFT model of lumped solar panels into ondehdts connection
to the dynamics is in principle as in Figure 3.7.

FactorizingA 4, in line with Equation (8.42) we get oreand trivial L andS matrices
as the rank= 1. In the exact same manner we can formul@tesuch

Csp=[wy 20wl | and Cp =[0 2wkl ] (8.73)

wherel; = [I; I3 I3]T from Equation (3.22)Cy, also has rank= 1. We can now finalize
the model as an LFT illustrated in Figure 8.16.

8.11 Input Gain Uncertainty Description
The input uncertainty is a non nominal change in the torqumeerd are3 main contrib-
utors to that:

e The thrust variation and bias of the individual enginesstedi in Table C.5. Both
are abouB %.

e The uncertainty in the thrust vector direction, see Tabe Cess thar deg half
cone angle.

e The uncertainty of the COM location is abau45 m as listed in Section 3.2.2.
This is2.25 % on the shortest lever arm of abQutn.

It is considered that the bias can be calibrated away, sddhiges aboub.25 %
torque uncertainty. The uncertainties on thaxes are considered independent. Based
on the previous development we can write this LFT directliFigure 8.17, wheré,; <
[0;0.06]. This uncertainty is a direct change in the loop gain ancetioee prominent.

8.12 Time Delay Uncertainty Description

Both sensors and actuators contribute with delays of vgrsize, the former the largest.
We will consider delays of up tb s as specified for the sensors in Section C. As a sensor
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Figure 8.17: LFT model of the torque input uncertainty. Inter axis indegent.

delay is not a random parameter, but linked to the internataton of the equipment, it
is typically the same for all outputs of the unit. We therefoonsider to have the same
delay on all channels. The delays will be considered allgmeat the plant input as
invariant for linear systems.

A delayr expressed in the Laplace domain can be approximatedfoaader Padé
form as (Skogestad & Postlethwaite 1996)

Nl—%s_—rs+2_ 4
Nl—l—%s_ Ts+2  T1s+2

—TS

€

1 (8.74)
Equation (8.74) can be transformed into a multi variableestpace description as

co il s e

and it shall be observed that this form, needed for the LRfoduces a singularity for
7 = 0 which is not present in the transfer function form. The deime is

T=T4+0-ka N 0| <1, VoER (8.76)
where . )
T= §(Tmaa: + Tmin) and kd = §(Tmaw - Tmin) (877)
andr,,i, > 0.

We first consider the LFT for the matrik., observing that the uncertain parameter
is in the denominator and thus nonlinear. Therefore let

1 1
ATl = —57 1= —51(% +0kg) = Fu(My, A) (8.78)
where )
o] —ika
My = { T I } (8.79)
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Figure 8.18: lllustration of the uncertain time delay model with the twBLs.

Using the properties of inverse LFTs in Equation (D.18) tleofving holds

AT - EI,(MA) AT)71 - EI,(MIA7 AT) (880)

where according to Equation (D.19)

(8.81)

(8.82)

The complete multi variable time delay model is illustraiedigure 8.18.

8.13 Robust Stability

In the previous sections we have developed a way of how t@sept an uncertain set of
plants in terms of th& A structure in Figure 8.9. The next step forward is to invedég
if we have stability for all plants in the set.

Robust Stability (RS) analysis:to ensure that with a given controlli&, we de-
termine whether the system remains stable for all plantsdrdéefined uncertainty
set.

Further to the uncertainty regions illustrated in Figui& 8:e will, in terms of SISO,
illustrate the principal of RS in Figure 8.19, based upomtludiplicative uncertainty in
Equation (8.31). For RS to be fulfilled the uncertainty @schmust not include the 1
point, which can also be written &&;GK| < |1 + GK].
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GK(jw)

Figure 8.19: lllustration of Robust Stability and Robust PerformanceddISO case. See the
text for detailed definitions.

The general control configuration is shown in Figure 8.20hBla & Kammash
1993), where thé&N A structure on the right hand side is formed by closing the fowe
LFT such as

N = Fj(P,K) = Py; + P;oK(I — Py K) 1Py (8.83)

Closing the upper LFT for th& A structure gives
Fy,(N,A) = Nay + Noy A(I- N3 A) !Ny (8.84)

for which system we want to ensure RS. The requirementsdbilgy are summarized
as follows

NS: N is internally stable with all poles in the LHP.
RS: F,(N,A) is stablevVA, || Al < 1and NS.

We suppose that the system in Equation (8.84) is nominallglst with A = 0,
which means thaN is stable (not onlyN»5). Following that we see directly from Equa-
tion (8.84) that the feedback terfh—N; A)~! is the only possible source of instability.
The stability of Equation (8.84) is therefore equivalenttte stabil-
ity of the ML A structure, wherM = N;;. It can also be seen in [ A ]

ya

Figure 8.21. Stability can be based upon the Generalizediisydla
theorem, see (Skogestad & Postlethwaite 1996), such thhbawe
RS if and only if

det(I— MA(jw)) #0 , Yw , VA (8.85) Figure 8.21: MA
structure for robust
stability analysis.

M

but this criteria is unstructured and therefore consergati

As we are only dealing with structured uncertainty, as dgved
in the past sections, we will utilize the structured singwalue 1, which is defined
as (Zhou, Doyle & Glover 1995).
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Figure 8.20: General control configuration (left) and tBeA structure (right) for robustness
analysis.

Definition 8.1

Structured Singular Value: LetM be a complex matrix and lex = diag{A,} be a set
of complex matrices withg(A) < 1 and with a given block diagonal structure, where
some blocks may be real and some may be repeated. The realegative function
(M) is defined by

1

A
H(M) = min{(A)| for structuredA,det(I — MA) = 0} (8.86)

If no such structured\ exists thenu(M) = 0.

Thenyu can be implemented as the reciprocal of the smattest a structuredA
which makes the system singular. One problem witis that it cannot be calculated
directly as it has local extrema (Skogestad & PostlethwEd®@6). Instead upper and
lower bounds fop: can be computed (Packard & Doyle 1993) such that

p(M) < p(M) < (M) (8.87)

wherep is the spectral radit’s The lower bound is reached fex being scalar diagonal
and the upper bound for a full matrix. Proofs of this can be found in (Zhou, Doyle &
Glover 1995). The bounds in Equation (8.87) are not sufftdieretermine. as they
can be arbitrarily large apart.

This problem can be solved by scaling, as stability does epedd on that. We
introduce block diagonal scaling as

D = diag{d;1;} (8.88)

°The spectral radiup(A) is the magnitude of the largest eigenvalue of a mathix p(A) =
max; |A; (A)]
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Figure 8.22: Block diagonal scaling, wherAD = DA.

whered; is a scalar anf; is the identity matrix of the same dimension as the corredpon
ing perturbation blocl\ ;. Thisis illustrated in Figure 8.22, where it is clear thathiiog
has actually changed. A3 commutes withA we have thahD = DA, which means
that A = DAD~!. We can therefore repladel with DMD~! in all the computa-
tions for the RS. This means that thescaling does not affegt(M) = p(DMD™1),
but it does affecpp(M) anda(M) (Zhou, Doyle & Glover 1995). This fact is used
in the solvers to get the bounds as close as possibleabeach frequency. The ac-
tual algorithm to compute the upper and lower bounds is éx@thain (Skogestad &
Postlethwaite 1996).

We will finally express the condition to be used for estaldfigha criteria for robust
stability with structured uncertainty in Theorem 8.5

Theorem 8.5

RS for block diagonal real or complex perturbations: Assume that the nominal system
M and the perturbationg\ are stable. Then th®1 A system in Figure 8.21 is stable for
all perturbations witho (A) < 1, Vw if and only if

u(M(jw)) <1, Vw (8.89)

The proof of Theorem 8.5 is presented in (Skogestad & Pbstkite 1996). Ifu in
Equation (8.89) should be larger thamt some frequencies by a factor/gf,, it means
that the perturbations must be scaled by a factqgiofor the system to remain stable.
It remains to bridge the gap between a constaras presented so far and the uncer-
tain LTV plant we have at hand, whefeis a time varying uncertainty. This problem has
been addressed in (Zhou, Khargonekar, Stoustrup & Niem@@h)Tor state space sys-
tems with time varying uncertain parameters. They dematesirthat the problem can
be cast as a convex optimization problem providing a lessewative solution for ro-
bustness than the small gain approach for a certain clagstiss. The generalization
to any LFT formulated uncertain system remained open. Alampiroblem has been
considered by (Shamma 1994) with time varying structurezkrtainty and he showed
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that robust stability only holds, if there exist scalingd¥ID !, which lead to a small
gain condition. This has been furthered by (Poolla & Tikki®3pconsidering robust
performance. They show the existence of frequency depésdeales being necessary
and sufficient for robust performance against arbitratdyy varying structured linear
perturbations of norm less than one.

The present situation is shown in Figure 7.6 to have slowtying parameters with
the largest frequency of abouts - 10~% Hz. Closed loop bandwidths are expected
faster thanl0~2 Hz. In addition it is noticed that at the highest frequenhgre is no
time varying uncertainty and in addition as the distance/ben the bounds increase the
frequency decrease favorably. This leaves almost two sraemagnitude difference
at worst and it is considered justifiable to consider the tirag/ing uncertainty as a
standard bounded uncertainty as stated in Section 8.8.

We have now established the background needed to evall@®Shof the LQG
controller designed in Section 8.4 under the presence dfallincertainties developed
in Sections 8.9 to 8.12. We have to bring all the elements tinéogeneral form in
Figure 8.20. This is being done by interconnecting the efgmeumerically as it is not
feasible to collect it all together analytically into one deb. For the RS analysis we let
the exogenous input be the reference signaffrom Figure 8.1. The exogenous output
z is the system outpuyt in Figure 8.1.

To form the controlleK in Figure 8.20 we consider it to include the controller gain
matrix, the estimator and the summation point. Then we cdinaéhe input toK as
v =[r, y]T, andu remains unchanged.

The overall planiP in Figure 8.20 is formed by extracting in an orderly mannér al
the A blocks following the principle illustrated in Figure 8.9hé&n the individual plants
are interconnected using the progragsi ¢ described in (Balas et al. 1998). Then the
lower LFT in Equation (8.83) is computed to form the sysfishin Figure 8.20.

Due to the tools interface in (Balas et al. 1998), the repksugividual uncertain-
ties need to be defined consecutively as explained in Equéi®4). This is easier
for the other uncertainties as they appear naturally aéteh @ther. Combining all the
uncertainties we obtain the followingy-block of dimensior24.

A:diag([Adyn(l?)), Aflem(z); Ainput(g); AT(G)]) (890)

where theA (-) specifies the dimension of the diagonal real uncertainty.

The fact that all uncertainties are of parametric real tgpeausing problems for the
solutions to find the lower bound in Equation (8.87) in linghaDefinition 8.1, where
A is assumed some complex parts. To circumvent that problemaedl somplex part
will be added to theA-block so it is not pure real. This is done in the way of modifyi
the M A structure to the one illustrated in Figure 8.23.

This means that we add a bit of conservatism into the systeneasld uncertainty
not physically present. The added complex part needed ist&®% to get reliable
lower bounds. One can debate if it is sufficient to add only glexon one channel. In
this case it has proved to give the best results to add the cammglexity to all channels.

It is recalled that the core part of the research is to ingagtithe use of LTI control
for time varying elliptical orbital environment. For thaason the prime uncertainty is
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(@) (b)

Figure 8.23: lllustration of artificially added complex uncertainty cponenin® and the modified
interconnections in graph (b).The graph (a) illustratesthie complex plane, a pure complex
uncertainty as the circle in line with Figure 8.8, and a raadartainty with a small complex
component. The pure real uncertainty is the horizontalilirtée oval area in graph (a).

the variation of the orbital environment simultaneouslytvthe other known ones. The
objectives are for eccentricities of= 0.1 and the RS found is shown in Figure 8.24.

In Figure 8.24 we see the upper and lower bounds fer(.1 are very close, which
is particularly important for the frequency range of maximu. It is clear that the driver
for the RS is the damping of the flexible modes and less for Rih@asn in Section 8.14.
The gradient of thei-plot has been investigated to find it changes sign of itsvdgvie,
which indicates that we are capturing the peak value. Il §lzatecalled that no notch
filters have been used in the LQG design to actually reducpehg, but that would be
feasible should it be deemed necessary. Just in order txpipre the boundaries of
the design a very high eccentricity orbit has been analyZéds leads only to slightly
elevated. value at lower frequencies with ample margin. It shall bel $aat the same
controller is used for both analyses.

In conclusion it can be said that a successful and very rbbsttble design has
been achieved. This clearly demonstrates that for suchgdem requirements, it is fea-
sible to employ LTI designs to this type of Nonlinear Time Wag (NTV) system with
success. This is worth to keep in mind before embarking tiren LTV designs like
e.g. Linear Parameter Varying (LPV) control only becausg &n elliptical slowly time
varying orbit, as it brings with itincreased design comfileand today open verification
issues.

8.14 Robust Performance

We have discussed the presentation of uncertainty setsaedamalyzed the RS. The
next step is to check that we also have Robust Performance féRRIl plants in the
set.
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Figure 8.24: Robust Stability structured singular value plots for abéccentricite = 0.1 and
the large value = 0.9. For the latter the lower bound is omitted only not to clutter graph.

When RS is satisfied, we will determine how large the tranffection from the
exogenous inpute to the outputz can be for all plants in the uncertainty set.

In terms of theN A structure in Figure 8.20 the requirements for RP can be fermu
lated as follows (Skogestad & Postlethwaite 1996)

NP: ||N22]|s < 1 and NS
RP: ||F||e < 1,VA, ||A]lcc < 1and NS

whereF = F, (N, A). lllustrated by a SISO situation we return to the Nyquistdien
in Figure 8.19. We have RP when the two circles do not intérddw circle centered in
(—1,0) can be viewed as an extended critical point.

To test for RP as stated above tHe, norm of the transfer functioR = F,(N, A)
must remain less thanfor all allowed perturbations. This can be viewed as theequi
alent to theM A structure in Figure 8.20, but now having closed the upper &&dh it
becomes aiir A, structure, where\ , is a fictitious full complex uncertainty represent-
ing the’H, performance specification. It is a full complex block as ¢isrno structure
closing the loop on the exogenous signals. This can be statkd following theorem.

Theorem 8.6
Robust Performance: Formulate the system into tidA -structure in Figure 8.20 and
assume we have nominal stability such tN&s internally stable. Then

#(N(jw)) <1, Vw (8.91)

wherey is computed with respect to the structure
A
2] @52
andA,, is a full complex perturbation with the same dimensionk &s
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The proof of Theorem 8.6 starts with the definition of RP, ngrtieat | F||. < 1.
We recall from Equation (8.85) that it is RS whéM||.. < 1 for A being a full
unstructured matrix. From this we get that RP||#f||, < 1 is equivalent to RS for
theF A, structure. Replacing with F, (N, A) we obtain the block diagonal matrix in
Equation (8.92). |

We now have established the framework and criteria needaditaate RP of MIMO
systems. It shall be recalled that all criteria used are atized to one. Contrary to the
RS problem, it is important that all the exogenous inputsautguts are scaled correctly
and normalized to one.

Signals which have the same units and are comparable wi# Ha same scale
factors, like e.g. reference, output and control error &igin As an example for the
reference we define

r=D.r (8.93)

whereD., is a diagonal scaling matrix and the primed varigblé < 1 is normalized.
The scaling is based upon the expected maximum signal vajue.g,... Therefore it
becomes for the attitude

De = diag([rma,m; Tmax, Tma,m]) (894)

and we definer,,,, = 20deg. This is the maximum expected attitude in the linear
domain. We also need to scale the disturbance idpatthe same manner, where we
obtain the maximum disturbance torque from Table 7.4 giving, = 8.2- 1072 Nm
and

d=D,d’ (8.95)

We will insert these scalings into Figure 8.1, which is thepeated in Figure 8.25 in-
cluding the weighting functions, whe€ , is the weight representing the characteristics
of the disturbance.

To define the performance weights we face the problem of lating time domain
requirements into the equivalent and meaningful frequeloecgain ones. For real engi-
neering type of problems requirements are more often initfie domain than not.

The mapping is performed based on the following second asygsiem for SISO
loop transfer as an example

w2

L=——+— 8.96
s(s+ 2¢w) ( )
with the following classical parameters
0.6 4+ 2.16 4 —ml
P +7<, to~ —, Mp=eVi-¢ (8.97)
Wn (w

wheret, is the rise timel0 — 90 %, ¢, the setting time2 % and M p the percentage
overshoot 00 - Mp (Zhou & Doyle 1998).We also define

Ms = ||S||sc and Mr = ||T|« (8.98)
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Figure 8.25: The normalized system from Figure 8.1 including the pertomoe weighting func-
tionsW, andW..

and the relationship betwe@érs, M andMp is tabulated in (Skogestad & Postlethwaite
1996), but could also be easily computed formulating thetions directly. A typical
choice for performance B = W.S, the weighted sensitivity function, wheMW . is
the performance weight aritlis the set of perturbed sensitivity functions. We have that

[W.S| < 1= S| < |W.! (8.99)
and we select a general weight of the form

1
s tw
we =" (8.100)

and the weighting matri®¥ . in Figure 8.25 as a diagonal matrix of sizecontaining
We, - - We, - EQuations (8.99) and (8.100) are illustrated in Figuré&8.2

The weightW, in Figure 8.25 is naturally placed such that=r —y = r —
Tr = (I — T)r = Sr and the transfer fronr to e,, becomese,, = W_.Sr. We
demonstrate the equivalence of placing the weight rigletr @t at the input. This gives
e, =r,—-y=r,—1Tr, = (I-T)r, = Sr, and ax,, = W.r we gete,, = W_.Sr
which is identical.
For the weight specification we consider the following valas acceptable

rmaz = 20deg
Omaz(error) = 2deg
Mp < 30% (8.101)
ts ~ 100s
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Figure 8.26: The left graph shows the weighit. and the right one illustrates the bounding of the
sensitivity to obtain RP.

For the low frequency part we need a suppression frem20 deg~ e = 2 deg and to
fulfill Sw. we need to amplify se,, = » = 20 deg leading to

_ 20 _

we(0) 5

10 (8.102)
from Equation (8.100) andl = 0.1. For the high frequency part we use the peak
overshoot criteria. From Equation (8.101) we gép = 1.3 which from (Skogestad
& Postlethwaite 1996) leads td/s = 1.8 so we setM = 2 in Equation (8.100).
The filter frequency we find from the closed loop step respamgégure 8.5. From
Equation (8.97) we get = &~ = 155 ~ 0.04s~! or 6.4 mHz.

0.5s+0.04
W = ————————

8.103
s 4+ 0.004 ( )

‘W. will then be of dimensior containing Equation (8.103) on the diagonal.

When looking at robustness it is very important only to cdasithe driving perfor-
mance variables, which in this case is the attit@d©nly parts of the state vector shall
therefore be used inin Figure 8.20 and connectedwovia A, which is a full complex
matrix. This ensures that we are not introducing non-exgstiross couplings between
the exogenous signals which would be meaningless.

When computing the value for the RP analysiA , provides sufficient complexity
for good convergence of both upper and lower bound and thra &xt in Figure 8.23
can be omitted.

Figure 8.27 displays the RP plots for the main eccentricity e= 0.1 and a large
increase to check possible limitations. As for the/R3ot the flexible modes are clearly
visible, but are not causing any problems. The largegilue is within the closed loop
bandwidth and provides sufficient performance margin iddée they value is not very
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Figure 8.27: Robust Performance structured singular value plots foitalréccentricitye = 0.1
and the large value = 0.9.

small but with ample margin it indicates a design which isigghe system capabilities
to be responsive and well performing and simultaneouslipikeesome margin. For the
high eccentricity we see a reduced margin, but it remaindadably below1.

In conclusion it can be said that a successful and robustfpeing LTI design has
been designed to remain both RS and RP over a very large LT\Aghom

Finally the worst caseA has been unwrapped in the analysis. The information
is then being used as a part of the Monte Carlo (MC) validatiampaign, which is
performed in Chapter 11. This ensures a logical link betwibenworst case analysis
performed here and the classical MC.

8.15 Conclusion

A fully coupled LQG attitude control design has been perfedmAll relevant paramet-
ric uncertainties have been analytically derived and fdated as LFTs. In particular
the periodic time varying plant is analytically formulatesla bounded uncertainty elim-
inating the LTV and periodic nature.

Based upon this development the robust stability and thestgierformance of the
MIMO design have been analyzed by means ofithelue. The design is demonstrated
robust to orbital eccentricities larger théud and the LTI controller successfully obtains
robustness of the time varying plant. This answers well jedlve 7 of Section 1.3.
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Chapter 9

Relative Position Control

Having finalized the LVLH attitude control in Chapter 8, wemnproceed with the syn-
thesis and analysis of the final approach position contiog ffajectory profile for the
different phases of the mission is recalled from Figure 2@ Rigure 2.5. The final
approach is from poin¢s to s4 and further on until docking. The hand over from GPS
to RVS sensors takes placesgt as well as a change from COM to COM control to port
to port control.

The research here will focus on the latter part after chamgeto the final approach
as this is the more critical and demanding part.

The position control i DOF and the attitude control of the chaser remains with
respect to the LVLH frame. This is the second situation ifated in Figure 7.3. The
lateral control objective along the y and z-axis is to keepdénter of the docking ports
aligned, but at this large distance it is not desirable tokitthe target port oscillatory
motion. Instead we will design a controller which will trattke mean motion of the
target docking port and thereby conserve fuel without asg lof performance. This
means controlling the relative differences to zero alorggyttand z-axes. The control
objective along the x-axis of the LVLH frame is to follow thaigance profile developed
in Section 7.7 and detailed in Figure 7.10 and tables 7.5 a®dRurther to this servo
type problem the control system shall also handle disturdagjection, which is mostly
the presence of differential drag, which is described iniSe@.4.2.

9.1 Control Requirement Detailing

The location ofs; ands, is recalled from Table 2.1 to bg = [-500, 0, 0] m COM
to COM ands, = [—20,0,0]" m port to port respectively. It shall be recalled thats
along the target docking port x-axis in tt&;, frame.

From Table 2.5 it is evident that at the chaser docking port shall stay inside a cube
of 20 m with corresponding rates smaller tham m/s. This box is parallel to LVLH and
will move around as the target docking port is moving withpesst to LVLH due to the
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ISS attitude motion.

At s, there are two sets of requirements namely the arrival andrtlee ones as
listed in Tables 2.6 and 2.7 respectively. This locationssdufor changing control
structure from8 DOF to6 DOF and some transients are anticipated before reaching the
departure requirements. The arrival boxlisn and rates less than1 m/s for y and
z-axes and.02 m/s for the x-axis. The departure requirements are not egigk for3
DOF controller. The approach velocity shall be in the ranig 05; 0.35] m/s.

From Figure 2.5 we see that the approach corridor in the AEimtiodthe KOZ is
conical, but there are no formal requirements betwgeamds, except the definition of
the KOZ.

For practical reasons we will consider the requiremenglilyeconnected between
s3 ands, and we will try to aim directly fors, departure requirements, as defined in
Table 2.7, with the DOF controller.

9.2 Target and Sensor Characteristic

The target docking port motion is described in detail in ®ec8.2.1 and from that we
will derive the needs for propulsion and control bandwidtlorder to be able to track
the motion.

The worst case of fastest reverse tithe: 8 s and largest amplitude? deg is used
as a basis. From the data in Section 3.1.Zfpandr,4; we can compute the lever arm
as the first component of;; to be abous81 m. From the angular rate in Table 3.2 we
can find the largest acceleration needed ta e % = 2.7-1072 m/€’. For the
largest chaser mass from Equation (C.5) we then need a foetdaastr;,,;,, = 55 N.
This is well covered by th¥,,,,.. specified in Equation (8.1) df50 N.

A good estimate of the minimum bandwidth required can beinbtbby considering
the acceleration of a sinusoidal,? = a givingw = 0.014 Hz.

The only sensor used is the RVS which measures only distamtarayles. There are
no measurements of rates or accelerations or other sewsomsasure such. The RVS
is described in Section 3.3.4 and Table 3.3 which revealsrgtax internal functioning
with many modes. We will not use all those details for comératynthesis, but extract
the essential worst case characteristics.

We will use the range valuds directly for the x-axis direction and the lateral values
we approximate withR sin(LO.S). The simplified data is presented in Table 9.1

\ | xaxis | yz-axis ]
Bias[ m| [0.01; 5] [0;2.6]
Noise3o[ m| | [0.005;25] | [0;1.75]

Table 9.1: Simplified sensor data extracted from Table 3.3. The lowerwper values corre-
spond to a range ¢6; 500] m.
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The datain Table 9.1 is considered to vary linearly betwbhermwo boundary values,
though it is not exactly so.

This can also be expressed such that the rangé Pasioise of the range and the
lateral noise i8.75 %. This formulation will be convenient in the following caat
design.

If we compare the requirementssat but use the docking requirements departing
as is often done, the sensor bias does not fit depagiimgtially. The bias is).2 m and
the requirementis half of that. One could estimate the bitsanfilter like H (s) = =
and subtract it from the measurements. The problem withejyaitoach is the filter time
constant, as in (Ignagni 1990), needs to be comparable twabe time fromss to s4.
The filter then needs to be initialized fairly close to thd kedues, which might then be
used directly.

The latter approach will be used and the sensor calibratdueg for the bias will
be subtracted before used for control.

9.3 Plant Description and Variation

The model for the relative dynamics was developed in Sedti@rand we will use the
LTV models in Equations (4.16) and (4.18) for the controflesigns.

We see that the spacecraft mass does not affect the planiigyebut only the
orbital parameter variations.
Out of plane: The pole variations for the rigid plant are all on tle axis and are
symmetric over half an orbit. The variation is listed in TeBl2.

[e=01] f=0deg| 6=180deg| %A |
| [0+£1.12-107° [ 0£829-10"" | —26 % |

Table 9.2: Pole variation for the out of plane plant for the true anondady [0; 180] deg.

In plane: The pole variation is more complex than for the out of pland snbetter
illustrated by the graphs in Figure 9.1.

The root locus in Figure 9.1 is for half an orbit only. The lsder the complete
orbit is symmetric around thgo axis. This is caused by the fact that the derivative of
the orbital ratev in Equation (4.16) changes sign on each side of the semi raajsr
The locus for the full orbit is available in Figure 7.5.

We observe in Figure 9.1 thatpoles remain with an imaginary component in the
LHP. The2 other poles move in the RHP, then become real and one of tHewate to
the LHP. This transition from RHP to LHP happens when the &miemaly is of such
value that the spacecraft in the orbit intersects the mirisrat the elliptical orbit. This
is exactly one quarter and three quarters around the ortasuared from perigee and
where one can say the orbit is the widest.

Figure 9.1 illustrates the locus fddifferent orbital eccentricitiesand one observes
that they are not all that different, mostly a faster dynanficc highers around perigee.
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Figure 9.1: Pole variation for the in plane plant for the true anom@lg [0; 180] deg and for
3 different eccentricities € [0.01,0.1,0.7]. The point marked as A are where two complex
conjugate poles become real and point B is the smallest valitbe other complex poles.

In Figure 9.1 the point A indicates where one set of compldrgpbecomes real. The
point B indicates the smallest real value for the other spbtds. Both these phenomena
happen exactly at the points of maximum acceleration ofriednomaly.

Fore = 0.1, the eccentricity for this research work, the poles are dednby
[—4.3;5.5] - 10~* for the real parts and-1.2 - 103 for the imaginary parts.

The poles originating from the flexible modes and sloshirmgearlisted in Table 8.2,
though the couplings to the rigid dynamics are differennttieey were for the attitude
dynamics. Those modes will not be considered for the comtesign, though loop
shaping might be applied if deemed necessary by stabildyp@nformance analysis.

9.4 PositionH,., Control Design

For the complete range of the relative position control wk pérform the synthesis
by means ofH., control. This is a worst case design method and suits weltHer
critical uncertainties and variations present in the systé-urther this is a novel ap-
proach applied to all the phases of the relative motion in diwvariable manner, where
a single axis design for final mode is presented in (Bourd@ipy) Ganet, Quinquis &
Ankersen 2003).

For completeness and insight the theory and assumptiortbddt ., design will
be explained followed by general scaling of the plants. Timensimpler out of plane
control will be performed followed by the coupled in planentol.

The control problem can be formulated a8 a 2 system illustrated in Figure 9.2
The system in Figure 9.2 is formulated by

HECIMEES 1] M
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W———> > Z

Figure 9.2: General control configuration with exogenous signals.

u=K(s)v (9.2)

and the planP(s) becomes in state space form

A|B, B,
P=| C | D;; Dy (9.3)
Cy | D21 Do

The closed loop transfer function becomes

z=FP,K)w (9.4)

where the lower LFT is defined in Equation (D.9). Thg, control design involves
the minimization of theH ., norm of Equation (9.4). A certain set of assumptions are
typically needed in order to solve the problem (Skogestado&tlethwaite 1996) as
follows

Al:

A2:

A3:

A4:

Ab:

(A, By, C,) is controllable and observable.

(A, B,) is controllable if and only iff* exists such thaf + B,F is stable and
u=Fx.

(A, C,) is observable if and only iA 4+ LC, is stable and. exists.

D, andD»; have full rank.
|: A — ij BQ

C, Do
on thejw axis.

} has full column rank/w. Ensure no pole/zero cancellation

A —jwl By
[ C, Dy } has full row rankvw.
Di; =Dy =0 D;; = 0 makesP strictly proper.
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Insight into the generéal ., algorithm from (Doyle, Glover, Khargonekar & Francis
1989) is provided in Theorem 9.1

Theorem 9.1
(i) X~ > 0is a solution to the Riccati equation

AT™X o + XooA + CJC + Xoo (772B1B] — B3BJ)Xoo =0 (9.5)

such that
Re M[A+ (v72B1B] —ByBl)X..)] <0, V; and (9.6)

(i) Yo > 0is a solution to the Riccati equation

AYo + Yoo AT+ BBl + Y (v2CTC, — CICy) Yo = 0 (9.7)
such that
Re M[A+ Yo (y7%ClC, — CICy)] <0, ¥ and (9.8)
(i) p(XsYso) < 72 andpis the spectral radius. All controllers are /= F; (K., Q)
where
Aoo | _Zool—oo ZooBQ
Ke(s) = | Foo 0 I (9.9)
—Cs | 0
and

Foo = —BIXoo, Loo = —YaoCl, Zoo = (I =7 2Y0uXoo) ! (9.10)
Aso =A+772B1B] X0 + BoF oo + ZooL oo Co (9.11)
andQ(s) is stable proper function sudhQ| |- < 7. For Q(s) = 0 we get

K(s) = Keyy (8) = —ZooLoo (s = Ax) 7' F o (9.12)

This is the central controller with the same number of stateshe plantP(s).
Equation (9.12) can be separated into a state estimatorefdm

X = A% 4 B1 7 2BTX o X +Bol 4 Zoo L oo (CoX — ) (9.13)
—
Wworst
and
U= F,X (9.14)
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The proof of Theorem 9.1 is presented in (Zhou, Doyle & Gld/@®5). We see in
Theorem 9.1 that there is a separation similar to the LQGIbhnibetween observer and
controller. The termiywerst Can be interpreted as a worst case estimate of the exogenous
disturbances. The typical implementation of the algorithrifheorem 9.1 is described
in (Glover & Doyle 1988) for the iterations to achieve a mimim value ofy.

Before performing a design it is important to scale the pEsmicomparisons are
based on normalized norms. Let's consider a p@rguch that the output ig = Gu
unscaled. We now define the scaled variables as

u
u = and y' = Y

um ax y77L(I..’L‘

(9.15)

where the denominator is the maximum expected signal. Wenoanwrite the input
output relations as

Y Ymaz = Gpazt’ (9.16)
1
y = Guey 0 (9.17)
ymaa:
G/

For design we need the control eregrwhich has the same units as the plant output so
we scale it as e
e = (9.18)

ymaa:

and whenu’ = Ke’ we get for the real controller that

1

Y77L(L.’L‘

u= UK e (9.19)

For the MIMO case we define the maximum values as

U, = diag(wy,,,, - Un,.. ) Yoo = diag(Y1,00 *** Yrimas) (9.20)

and the general MIMO scaling is illustrated in Figure 9.3tfog scaled design and the
real controller implementation.

9.5 OQut of Plane Position Control

The simpler out of plane control will be dealt with first antltake control setup will be
performed in that context and reused later.

From the assumptions A3 and A4 one observes thetithealgorithm cannot handle
pure imaginary poles, which is in the out of plane dynamickisTs nevertheless not
a problem as the design plaRtin Equation (9.3) is augmented by the weights and no
precautions need be taken.

The requirement for the control will be derived from the ¢afale force in Equa-
tion (8.1) and the maximum cruise speed0d$ m/s specified in Section 2.4.2. The
maximum chaser mass from Equation (C.5) is used~ 2 - 10* kg. Considering the
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G/
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(a) Synthesis(scaled)
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IR

(b) Implementation(unscaled)

Figure 9.3: On the left the scaled plant for controller analysis andIsgsis is illustrated, and on
the right the unscaled implementation of the controllerfenreal plant.

maximum acceleration in the guidance a distance ef %”Fz% = 8.2 m is reached.
We consider this as the amplitude of a sinusdisin(wt) and its derivative gives the
speed from which we find the frequency@as- Aw givingw ~ 0.01 Hz. This is about
the same range as to track the target motion in Table 3.2. @feftire select a closed
loop bandwidth of

wer = 0.01 Hz (9.21)

with some margin. We will aim at a steady state control eredol 1 %.

The controller shown in Figure 9.2 will now be found by minainig the transfer
function in Equation (9.4). This will be done by shaping trensfer function by means
of weighting functions on the exogenous inputs and outptitss is often referred to
as the mixed sensitivity problem (Stoustrup & Niemann 198vyvhich the sensitivity
functionS is shaped along with one or more other closed loop transfetions such as
the complementary sensitivity functidh andKS.

In the present case we have more a regulation and less anggatablem. AsS is
the transfer function from disturbances to the output itidleasmall at low frequencies.
KS limits the size and bandwidth of the controller, as it is ttamsfer from disturbance
to the control signals as well as it is important to the rolstesbility. The shaping of the
T transfer function influences the tracking capabilities trenoise attenuation as well
as it influences on the robust stability. The mixed sensjtisétup used is illustrated in
Figure 9.4. The generalized plaRtin Figure 9.4 becomes

-W,G'W, W, W, -W,W, | -W,G’

| WLe'w, 0 0 W,G/
P= . 0 0 W (9.22)
—G'W, W, W, | &

whereG’ is the scaled version of the plant in Equation (4.1M);, W2, W3 are the
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‘P
W1 Wo(s) ~ Wi (s) 24
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( ) WQ(S) Z
_W3: W, (s)
Wi (s) 23
‘ e ' N |
o -FO_' G (S) y/ T LAY v
K(s)

Figure 9.4: S/KS/T mixed sensitivity configuration used for tfhé,, design.

weights on the outputs f@&, T andKS respectively.W, is the weighted disturbance
on the control signalw.. is the weight on the reference signal 8Wd, is the weight on

the measurement noise and a practical approach to theatiselés addressed in (Hu,
Unbehauen & Bohn 1996)W, andW,, are selected as constant values as there is no
knowledge of the frequency characteristic. It is chosermape the sensitivity function

S by means of onlyW; as the complexity increases by also tuning on the reference
weight W,., which is therefore kept at a constant value of one. The addetblexity

in Figure 9.4 on the input side by havidgnputs is driven by the desire to be able to
specify separately the weights. The classical formulationld be the right column in
Equation 9.23.

After some manipulations; (P, K) in Equation (9.4) becomes

—W;SG'W, W;SW, -W;SW,,
FP,K) = W,SG'Wy WyTW,. -W,TW,, =M (9.23)
-W3KSG'W;, W3;KSW, -—-W;KSW,,

and to findK we need to minimize
I[1F1(P, K)o < (9.24)

It is observed that the left column is scaled by the distuckaor noise on the control
signal and it is zero if noise free. The right column is thendtrd mixed sensitivity
often found in the literature and it is scaled by the measerégmoise andV,, = I if
no noise is present.

In order to help define the weights it is interesting to eviduhe low (LF) and high
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frequency (HF) boundaries of Equation (9.23)

~W, KW, W,(G'K)"'W, W, (G'K)"'W,

Mpr = W2K71W0 WyW,. WyW,, (925)
—Ws3W, W.G'W, W.G'W,,
-W;G'W, WiW. WiWwW,
Mpyr = W:G'Wy W,o,G'KW, W,G'KW, (9.26)

W3;KG'W;,  W3KW, WKW,

Itis a well known fact that thé{., design framework can suffer from pole/zero cancel-
lations and that RHP open loop poles can reappear in thecclose mirrored around
the jw axis (Tsai, Geddes & Postlethwaite 189@nd (Tsai, Geddes & Postlethwaite
1992). This is addressed for a scalar case in (Tsai, Posté@th& Geddes 1990) and
a multi variable case in (Tsai, Geddes & Postlethwaite bP9This phenomenon has
been experienced faV, = 0, but forW # 0 the closed loop poles can be well placed
avoiding robustness problems for parametric uncertair{ttao 1997). It is therefore
important to proceed the design with well described distnde on the control signals.
The next step in the design process is to .
define the weighting functions, but first we - /

shall identify some fundamental constraints ..
on their selection. The constraiit+ T =1 ,‘ /
is recalled and this leads to the fact that thi,e]” /
weights W; and W5 in particular must be { °
smaller thanl in the cross over region and .
therefore be well separated in cross over fre-
qguency. Thisis illustrated in Figure 9.5, where ) - —w
the weight onT crosses at a larger frequency
than the weight or$.

For the weight definition we consider it,:igure 9.5: lllustration of theW, andW
desirable to aim at a closed loop characteriszyss over frequencies and magnitudes to il-

: i )
tics of 2" order type. We therefore conside,gyate 4 frequency range both being below
a system of unity feedback with a loop trans;,o

fer as in Equation (8.96), which exactly gives

a closed loo@™? order system. From Figure 9.4 we see that the transfer fremefier-
ence toz; is 21 = ST in the scalar case and ignoring measurement noise. The tveigh
is of the same form as used earlier in Equation (8.100) anstitited in Figure 8.26.

Tmaz = 06M
emaz = 0.6mM
Mp < 30% (9.27)
t. ~ 50s

Assuming al0 % control error we geit; (0) = 0%1 = 10 and from Equation (8.100)
A = 0.1, but to improve the integral action of the controllécan be reduced if needed.
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Similar as in Section 8.14 we find from the peak critevia= 2. The filter cross over
frequencyw; is found from the rise time,. and the natural frequency

_7“{@) +m (9.28)

arctan(

1
I

andw; = “\’/—5 (Ogata 1970), givings; = 2.4 - 1072, At the distances we operate
from the target, we do not want to track the docking port mutiout only its mean
motion. To obtain that we select one decade lower than computed above, namely at
wp =2.4-1073,
The weight for the complementary sensitivilyis basically found from a peak cri-
teria keeping|T||- < 2 and of the following form
s+ WQA

Wy = ——"— 9.29
2 ﬁs—i—wg ( )

Thatleads tod = 0.5 and we selecd/ > 10 and the frequency to he, = 20w;, which
gives good results.

The weightiWs which affects the control signal is of the same form as in Equa
tion (9.29). At low frequencies we will bound the controlsé to a bit less than the
maximum from Equation (8.1) sueh= 100 ~ z3 = 1 andA = 100. At high frequen-
cies we need penalize the control so as not to track the nogsselectV = 0.01 and
w3 = 20wq.

From Table C.5 we seleét; = 0.03 as representing the thruster noise and for the
measurement noise from Section 912, = 0.08. With the low bandwidth used it has
shown to be of no benefit to model it as a filter, while a constegight suffice and
makes the controller of lower order. It has been an itergingeess to find the good
weights for theH ., design and they are summarized in Table 9.3.

| A M v ]

W, = 0.03

wy =222 [ o1 | 2 | o0.0024

Wy =522 105 | 10 | 0.048
?erw

W3 =252 | 100 | 0.01 | 0.048

W, = 0.03

W, = 1.0

Table 9.3: Summary of all weights used fét.. design.

Itis now possible to solve Equation (9.24) using optimizagoftware implementing
the algorithm in Theorem 9.1. This is the suboptirial, controller achieving

Vrmin = 0.84 (9.30)
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Figure 9.6: Plots of theS andT functions for the out of plane controller design. The ineco$
the weightdV, andW, multiplied by~.i» are also shown.

The interpretation ofy is such that nominally we hayéW, S|| < 1, but suboptimally
the inequality becomegWS|| < v which means we need to ke¢{S|| < |||l
rather than just the inverse weight. This meansyfot 1 disturbances are suppressed
more than designed for by the weights andor 1 less suppression takes place.

The results obtained for the tuning of the controller areldiged in Figure 9.6,
where we see tha is enveloped by the inverse weight and tisaand T are well
separated in the cross over region. The steep dip ahlow frequencies has its origin
in the plant imaginary poles. In Figure 9.7 we see that theetitae is aboui 10 s and
an overshoot of som&2 % is observed. The control error at steady state is lessltBan
which is fully acceptable. We obtain very good stability gias with a gain and phase

1.4

Unit step

i i i i i i i i i
o 200 400 600 800 1000 1200 1400 1600 1800 2000
Time [s]

Figure 9.7: Unit step response.
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ode Diagram

B
Gm = 15.4 dB (at 0.00819 Hz) . Pm = 55.7 deg (at 0.00186 Hz)
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Figure 9.8: Bode plot of the loop transfer function exhibiting very gaodrgins in the presence
of sloshing and flexible modes.

margin of
GM = 15.4db (at0.008 Hz) and PM = 56 deg (at0.002 Hz) (9.31)

which can be seen on the Bode plot in Figure 9.8. The phaseandumps have the
origin in the plant poles. It shall be pointed out that allkgsi in the open loop are
completely absent in the closed loop response (not disg)aye

The designed controlld is of order5 with a pole at—840 being significantly faster
than the rest. For both implementation and simulation nesagas desirable to eliminate
it by means of model reduction techniques.

There are basically two methods used in practice, namehc#tion and singular
perturbation, the latter also known as residualization. Sélect the residualization as
it preserves the steady state gain of the system which isriapoin this case. The
basic approach is to set the desired state derivative egualrd, solve for it and back
substitute to eliminate the state. We will not go into deptheton the subject of model
reduction techniques but refer to (Skogestad & Postleti@el®96) and (Zhou, Doyle &
Glover 1995) amongst some in the literature. Usually théesywvill have to be put into
a Jordan form and the state order rearranged. This has bdemped and the resulting
4th order reduced controller characteristic is shown in Figuéewhere the non reduced
would look identical within the shown frequency range.

The controller needs to be discretized for the real implaateon and we chose a
bilinear transformation as thE ., norm is then preserved (Green & Limebeer 1995).
The sampling timél’;, = 1 s as earlier. The discretized controller is plotted togethe
with the continuous one in Figure 9.9 and it is seen that tieemnly a small visible
difference at the highest frequency. It is therefore judggede well representing the
originally designed ., controller.
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Figure 9.9: Reduced order controller Bode plot as well as discretizddaed controller sampled
atl Hz.

9.6 In Plane Position Control

TheH, design for the in plane relative motion i2aaxes coupled design. It will fol-
low the same approach as in Section 9.5 and the mixed setysitsed is illustrated in
Figure 9.4. The plant pole variation as a function of thetalgosition is recalled from
Figure 9.1. Also for this design the perigee plant is setbatedesign plant as it has the
fastest dynamics. We select it slightly after perigee tauemsie have RHP poles for the
design case.

Before proceeding with the design the plant will be analymgdomputing the RGA
as defined in Equation (8.28). We find the frequency resp@hseof the2 x 2 plant
and observe that the RGA varies significantly over frequency

At low frequency the RGA has diagonal valueslof and the off diagona).1 and
at high frequency the off diagonal becomeés*. At a frequency around the orbital one
all RGA elements are the same. This indicates that the pidmilbiés strong cross axial
couplings at the orbital frequency. This has been verifiedenyoving the2w terms in
the A,; matrix in Equation (4.17) after which the RGA is dominantlggbnal over all
frequencies.

The same coupled behavior can be observed by computing tithtiom * number
which reache30? around the orbital frequency.

Despite the couplings in the plant we will proceed with thetcol design without
assigning any specific weights for that. The weighting fiomg needed for the setup in
Figure 9.4 will be defined as two dimensional diagonal transfatrices. The individual
weights will be similar to those used for the out of plane desh Section 9.5 but with
different parameters. The same criteria are used as deddntEquation (9.27). The

1The condition numbety = g is the ratio between the maximum and the minimum singularesbf a
matrix. B
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| | A [ A [ Mo [ Mo | w |
W, . = [0.03,0.03]

W, = ke 0] 01| 2] 200024
W,, = 4 06 06] 10| 10| 0.048

-

W, = 100 | 100 | 0.01 | 0.01 | 0.048
W, = [0.05,0.08]

W, = [1.0,1.0]

Table 9.4: Summary of all weights used for the x,z adés, design.

frequency separation f&V; andW in the cross over region is illustrated in Figure 9.5.
Following the design iterations aiming to fulfill the regements the design results
in the weights listed in Table 9.4
Itis now possible to solve Equation (9.23) using optimizagoftware implementing
the algorithm in Theorem 9.1. This suboptintél, controller gives

Ymin = 0.93 (9.32)

The results obtained for the tuning of the controller areldiged in Figure 9.10,
where we see tha is enveloped by the inverse weights and tBaand T are well
separated in the cross over region.

The individual axes are plotted in Figure 9.10 and it is obsérthat the low fre-
guency levels oS for each axis are different. This is the best compromise aggears
not possible to lower both further at the same time. The iingifactor appears to be

10"

10t -

107

ST

10

10 "L \ 4

10° E

Figure 9.10: Plots ofS andT functions for the in plane controller. The inverse of the ghes
‘W, andW, multiplied by~ are also shown.
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ode Diagram

B
Gm = 13.1 dB (at 0.00746 Hz) , Pm = 55.1 deg (at 0.00196 Hz)

Magnitude (dB)

Phase (deg)

Figure 9.11: Bode plot for the x-axis open loop in the presence of sloshimgflexible modes.

‘W3 on the actuation. If that constant is relaxed both becomélanes well asy, i,
but at the price of a fast noise sensitive system, which iesindble.

The step response for the x and z-axis is very similar to treeiliustrated in Fig-
ure 9.7. The x-axis has an overshoo28f% and the z-axis has % and also here it
has not been possible to reach the same values.

The classical stability margins are evaluated in one opep kt the time as was
performed for the attitude LQG controller in Section 8.5. dM#ain the following results

GM, = 13.1db(at0.008 Hz) and PM, = 55deg (at0.002 Hz)

GM,. = 14.8db (at0.008 Hz) and PM, = 55deg (at0.002 Hz) (9.33)

which are illustrated in Figures 9.11 and 9.12 respectiuetjuding the flexible and

Bode Diagram
Gm = 14.8 dB (at 0.00841 Hz) , Pm = 55.2 deg (at 0.00208 Hz)

s0

-50

Magnitude (dB)

—100

—150

—200
Z50

—135 —

—180 —

Phase (deg)

—225 —

—270 &
10°° 10°® 10 10°° 10 10t 10 10"
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Figure 9.12: Bode plot for the z-axis open loop in the presence of slosaimdflexible modes.
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Figure 9.13: lllustration of the feed forward compensation scheme aaenections. The param-
etersv andw are the time varying cross coupling terms in Equation (4.16)

sloshing modes.

The controller has been reduced in order to rem@weery fast modes. It has a
similar shape as the out of plane controller in Figure 9.9thAedliscretization has been
performed similarly.

Due to the cross couplings present in the plant especiatiyrat the orbital fre-
guency, it is important to implement a decoupling to avoidssreffects between the
axes. From Equation (4.16) we see that we need to compersstatidoays

Feprp = —m2uw(t)zy +w(t)zg) (9.34)
F.., = mQuw(t)t,+w(t)z,) (9.35)
whereF;, ., andF’, ., are the feed forward signals. The last term contaitifig appears

small, but it is very important to compensate it for largestainces in either x or z
direction. For a distance in x direction ef500 m the contribution from the two terms
is the same order of magnitude. If not accounted for it cjearroduces undesired
oscillations on the other axis.

Itis chosen to compensate using the guidance signals thdreestimating the states
and compensate from them. The advantage is that it is destbdigm the feedback
loops and will not affect the robust stability and perforroanFor a well tuned controller
the control error will be small and the approach of guidaresdforward gives good
results. The connection structure is illustrated in Figl@d 3 and 7.1.

The termF,.. in Figure 9.13 is the computed force needed to provide théagae
profile acceleration. For constant accelerafigp. is a pulse and for exponential braking
a certain profile. The computations are found in Table 7.5ikustrated in Figure 7.10
in Section 7.7.

We will now consider théH., position control design discretely implemented in a
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Figure 9.14: Phase plane plot for; to s4 approach following the constant and exponential brak-
ing profiles.

full nonlinear simulation, which implements all detailsadonented in this thesis. It
will simulate the complete GNC fromgs to s, with an approach velocity di.2 m/s.
The guidance profile selected is the constant acceleratidic@nstant braking as more
demanding for the GNC. For comparison also exponentiaibgdias been tried and the
result is illustrated in Figure 9.14. Both perform very wetld are comfortably inside
specifications.

It is recalled that the target docking port can oscillate @ue ISS attitude motion
described in Figure 3.5. This will cause a motionrgf in the LVLH frame. At the
larger distances the controller tries to track the meanonaif r,, as it is meaningless
to follow tightly the docking port, although this is what issasured. The control is port
to port.

In Figure 9.15 is shown the results of a full nonlinear siriokaproviding relative
port to port positions, velocities and the forces on the ehapacecraft. The plots pro-
vide the port to port relative valuasg,, which is the control error and the COM motion
of the chaser. The oscillations are due to the motion of ttgetalocking port.

For the x-axis we observe the offset between the COM and poatibns and that
the motion moves smooth from500 m to —20 m. The approach speed reaches well
the0.2 m/s and starts aftéi0 s at thess point. The acceleration and braking pulses are
clearly visible on the force plot.

For the y and z-axes we see clearly on the motion of the COMtkieatontroller
is not tracking all the target oscillations. As the chasétuate motions is very small,
see Figure 8.5, the,, motion is mostly due to the target motion. For the force on the
z-axis we clearly see the feed forward compensation duestapproach velocity along
the x-axis.

In Figure 9.16 we see the lateral positions for the targetcader ports in absolute
terms in the LVLH frame. The oscillation on the z-axis is caiby the cross coupling
due to the acceleration pulse. The two right most plots sheuateral relative motion in
the y-z plane which gives a good idea of the motion obsenad fine of the ports. The
box shaped lateral velocities §f, is caused by the constant parts of the velocity shown
in Figure 3.5. We see that the design performs well insideifpations. The same plots
are shown including target flexible motion in Section D.4wgimg little impact.
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Figure 9.15: The full nonlinear simulation showing the port to psgt, motion, the chaser COM
motion, the associated velocities and the foregs(0) = [—500, 0,0]" m ands,,(0) = 0 m/s

9.7 Out of Plane Model Uncertainty

The uncertain parameters in the out of plane model in Equ#é#id.8) are the mass..
and the orbital angular rate. The former we will treat later, when in and out of plane
models are combined.

The variation ofw is shown in Table 7.2
and we notice from Equation (4.18) that it ap~?
pears in the model as?. We see from the !
development in Section D.3.4 that it is pos- 1
sible to represent any matriX € C"™*" to | }
the powerN such thalXVVN € 7 is an ex- ; ;
act LFT. This is not the case fa¥ € R and w !
therefore we need to approximaré. For ‘ 1 1
e = 0.1 itis not so far from a straight line, but wi wo o Wu w
for larger eccentricities it clearly has a convex
curvature, with more curvature for lower Figure 9.17: Taylor, chord and area match-

As illustrated in Figure 9.17 there are varing approximations for the orbital rate: .
ious ways to approximate the function of the
orbital rate. We consider a chord, a shifted chord with atlsgsared error and Taylor
approximations up to ordex

The performance of the approximations is evaluated by caeimgthe true and ap-
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S, Y—Z plane [m]

o
Y [m]

—o0.01

—0. —0.02
[S) 2000 4000 o 2000 4000 —=6.02 o 0.02
Time [s] Time [s] ¥ [m/s]

Figure 9.16: The full nonlinear simulation showing the true LVLH lateprt motions as well
as the relative motion in the cross section y-z plane. Thergpart of the curve is for relative
distance smaller thatpo m.

proximated eigenvalues of Equation (4.18). Then the esdpbind using the same
principle as in Equation (4.111). This gives the radius ircpatage of an error disc
centered at the true eigenvalues. We consider the eigenagjoroximation rather than
only the matrix parameters alone as it is the important ataristics for stability and
performance. The result of the various methods investibiatésted in Table 9.5. It is
seen that only the second and third order Taylor expansiaves Very small errors. As
the eccentricity increases the error grows closetés fore = 0.7 beyond which a third
order approximation is recommended. We select a second dagéor as it has small
errors as well as it fits well with the natural presence of sdaarder parameters of the
in plane dynamics.

Type Errorin %
Chord 0;0.8]

Area matching | [—0.7;0.2]
Taylor 1% order | [—1;0]
Taylor2"? order | [-0.04;0.02]
Taylor3"< order | [-0.003; 0]

Table 9.5: Out of plane eigenvalue errors as a function of approximabitthew% parameter in
the transition matrix in Equation (4.18). The eccentridsty = 0.1.

We findwg = %(Wmaa: + Wmin) and let us define(w) ~ w?. Then we can find the
274 order Taylor approximation as

2(w) = §w7%w2 + Ciw— lw% = aw’® + bw + ¢ (9.36)
— g™ 40T g '
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which will be used further in the robustness analysis.
TheA,,, matrix of Equation (4.19) can now be partitioned as follomeeirting Equa-
tion (9.36)

0 1

A, = { Ckz(@) 0 ] =Ay)+ A, (9.37)

where

0 1 0 0 0
Ao = [ —ke O} and A = { —k(aw? + bw) O}_ { 1 ]X[ 1 0]
(9.38)
and
X = —kaw? — kbw = —kaw_w —kbw (9.39)
1

The LFT formulation ot is recalled from Equation (8.55) as= @ + dk,. In Equa-
tion (9.39) we observgLFTs consisting of a product dfand2 followed by the addition
of 3.

The LFT forw in Equation (9.39) is the scalar version of what is shown ig- Fi
ure 8.13 and is denoted &%, (M5, 6). The first one is a constant timé%, (M, 6) and
is F,1(My,0) where

M, — { 0| —kak, ]

T o (9.40)

F.3(Ms,0) is found similar as in Equation (9.40). We can now write E@uraf9.39)
as
X = El, (M; 513) = ELQ (M27 5)E1,1 (Mla 6) + EL3 (M37 5) (941)

Using Lemma D.4 for concatenating LFM is found to be

0 0 0|—Fkak,
ky 0 0| —kakyo

M=10" 0 0| bk, (9.42)
o 1 1] —kaw®—kbo

The final uncertainty model for the out of plane dynamics)wiag theB,,, matrix, is
illustrated in Figure 9.18.

9.8 In Plane Position Model Uncertainty

The uncertain parameter of the in plane model in Equatidtbjdare the mass:. and
the orbital angular rate.

We see that the orbital angular acceleration is present &chw writew = f(w),
wheref(w) is some function. This means that its uncertainty shouly wéth the same
repeated as for the rate in order to be as little conservative as plessthome points
should be observed far
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=N
| ._[ 0 1 ]<_‘
T +
u_»[ ? 11 Cpo Y,

me | + s J
Ay

Figure 9.18: Uncertainty model for the out of plane dynamics. It shall bted that the mass..
uncertainty will be handled when combined with the in plareei.

| —|
= O

e From Table 7.2, wheré = w andd = &, we see that its value is about 3 to 4
orders of magnitude smaller than the orbital rate at anytpoitime.

e Despite its sign change over the orbit, its influence on tgereialues of the dy-
namics is rather small.

e f(w) has no analytical closed form and its characteristics chaingstically as a
function of the eccentricity as well as it is mathematicalbyt a function (2 values
of w for the samev).

The phase plane trajectoriesdfvary from a point at zeros(= 0) over ellipses{ in
midrange) to an onion shaped trajectotyhfgher). We can represent it as an ellipse

such
w? o w? . / w?

The square root could then be approximated by a Taylor segesher with a resolution
of the sign ambiguity. The added complexity should be carsid with respect to its
very small influence.

Based upon these considerations it is decided to take a wasst approach and
consider theb uncertainty independent af.

The A,; matrix of Equation (4.17) can now be approximated as for tite@bplane

using Equation (9.36) for the? terms and become

0 0 1 0
A~ 0 0 0 1
P 02 — kaw? — kbw — ke w 0 2w
—w w? + 2kaw? + 2kbw + 2kc —2w 0

(9.44)

~Ag+ A (w?) + A (w) + Az(W) (9.45)
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We will first deal with a general formulation of the terms caintngw?. For a scalar
case of the LFT in Figure 8.13 farwe can multiply two of those using Equation (D.21)
to obtain the LFT ofv? asw? = F,(M, A) where

0 ¢

and A — [ 00 } (9.46)

It is useful to formulate a general solution to matrices @& torm at hand, which is
found in Theorem 9.2

Theorem 9.2
For a matrixA € C™*" with all nonzero elements of the forfy; = a;;2° + b;; and
r =T+ 5’€p with HéH g 1; r = %(x’mar + x’mzn) and kp - %(xrrmm - Irmﬁn) the

general LFT can be expressed as
A=A (2?) + Ay = Fu(R,6l2,) (9.47)

where
R = Ir(Mll) | |T(M12)S
L1, (Mgp) | Ao +LI.(2%)S

In Equation (9.47)Aq holds all constanb;; terms andA; all terms ofaijx? M;; are
the partitioned elements of the fundamental LFT in EQuai®46) andr = rank(A;).
The termd. andS come from the SVD &; as

A; = LI, (%S (9.49)

(9.48)

wherel..(-) is block diagonal of the argument of dimensior r in block terms.

Proof: We splitA = Ay + A; whereA, contains all constant terntg; and A; all
terms of the formzisz. We can now place? outside the matrix and write

2

a1 x ce a1
A= =1 - 2?2 = L(2%1,)S (9.50)
aiij (2%
Using Equations (8.32), (8.42) and (8.43) we can write
A =F,(P,z’1,) and P = 0/ S (9.51)
- u ,.’L' T - L AO .

The upper block of the LFT in Equation (9.51) we can convethjexpress as another

LFT
0

T

> ' 2 (9.52)

2 i=1

i
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wherel, has rank= r and each matrix in the sum has rankThei!" matrix can then
be decomposed as

0 0

22 — 1| 220 - 1 - 0], =Lu®S, (9.53)

1Ixr

We now use Equation (9.46) to represehtas a LFT and Equation (9.53) becomes

L;2?S; = L;(My + My A(I - M A) *Mi,)S; (9.54)
= L;MgS; + LMy A(I—M;; A)~ M;,S;
—— = ~~ ~——
N22'i N21i Nlli N12i
- Et(Ni) A)
Completing the sum in Equation (9.52) we get
21, =) Fu(Ni, A) = F,(Q, 6T,,) (9.55)
=1
where
Ny, Nio,
Q= ' : (9.56)
Niy, Nia,
Noi, -+ Nop, | D Noo,

for coupling LFTs in parallel and pulling out all upper blackWe now exprese) in
terms of the primary parameters from Equation (9.46) andguisie structural informa-
tion of Equations (9.52) and (9.53) it gives the following @k diagonal matrices

Qi1 = M1, dim = 2r x 2r (9.57)
My, :
Q2 = , dim=2r xr (9.58)
L M127._
"My, -
Qo1 = , dim=r x 2r (9.59)
L Mo, |
Qa2 = Mool dm=rxr (9.60)
Combining Equation (9.55) with Equation (9.51) we get theagalized star product
A = F,(P,2°L,) = Fu(P, Fu(Q,0Ly)) = Fu(S(Q, P), d1,) (9.61)
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which is easily seen from Figure D.3. We finally need to cormgl{Q, P) from Equa-
tion (D.29) observing from Equation (9.51) tHat; = 0

Fi(Q,P11) = Qu (9.62)
Fu(P,Qa2) = Py + P21Q2oP12 = Ag + L(2°L,)S (9.63)
Q12P12 = (M121,)S (9.64)
P21Qa1 = L(K 1)) (9.65)
From Equation (9.62) to Equation (9.65) we see fRat S(Q, P) which completes
the proof. m

We can now use Theorem 9.2 to find the first two terms of Equ#8iatb) and from
Equation (9.44)

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
A= g 0 0 0| A AT g g 0 0 0
0 2kec 0 O 0 (1+2ka)w® 0 0
(9.66)
From SVD in Lemma 8.1 oA ; we get
0 0
0 0 1—ka 0 0 0
L= 1 0 and S_[ 0 142a 0 O}’ rank=2 (9.67)
0 1

and using Theorem 9.2 and Equations (9.48) and (9.46) we démthe LFT forA, +
A; in Equation (9.45) a$’, (M1, A;) where

My M, g 0
My, M, )

M, = — andA; =
L{Mm A0+LV wQJs

0
(9.68)
For A, in Equation (9.45) it can be decomposed using Lemma 8.2 andtteas (8.42)
and (8.43) as

l

0 0 0 0
0 0 0 0
A=Yy +06Y, and Y, = kb 0 0 2% (969)
0 2kbwo  —2w O
and
0 0
o o|[s 0  2kbk, —2k, 0 B
et [ 5H—kbkp 0 o0 ok, | rank=2
1 0
N , So
Lo
(9.70)
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We then obtain

Ay = F, (Mo, Ay) (9.71)
where
| 0| S, |9
M, = |: L, | Y, :| and Ay = |: 5 ] (9.72)

For the last termA 3 in Equation (9.45) a worst case will be applied, as explained
earlier, andv is considered independent fram We have

but aS(A'}min, = _wnmm we QEt
UT} =0 and kw = wnL(L.’E (974)
We then get directly
0 0
0 0 o ~k; 0 00 -
A; = 0 —1 [ 5 ] { 0 —k, 0 0] rank= 2 (9.75)
1 0
S3
L3
obtaining
Aj = F, (M3, A3) (9.76)
where
- 0 Sg . 50;,
My= [ 215 ] ang A= ] ©.77)

The final uncertainty model for the in plane dynamics, exitigadhe B,,; matrix, is
illustrated in Figure 9.19.

9.9 Chaser Mass Uncertainty Description

The input matrices for the out of and in plane models in Figu#el8 and 9.19 we
combine into one as

(][ ) e

Me

The uncertainty on the mass. is
Me = Me + Omkm A |0 <1, Vo, €R (9.79)

wherem,. andk,, are completed in a similar manner as in Equation (8.69). \liéestne
worst case, which is when the chaser is the lightest, fromakou (C.5) withm,,,,, =
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Figure 9.19: Uncertainty model for the in plane dynamics. It shall be dateat the massn.
uncertainty will be handled when combined with the out ofielanodel.

14000 kg andm,.,,,. = 15000 kg. This gives a variation of about3.5 % and larger
than specified in Section C.2.

The formulation in Equation (9.78) is equivalent to the oneEiquations (8.47)
and (8.48)1,,, then becomes

67” km
InL = InLo + [ 1 } 5m km y rank= 3 (980)
L
A, S
and
0o S
M,, = [ L L, } (9.81)
We can now write
1;11 = Fu(Mm,Am)_l :Fu(MUmaAm) (982)

where My, is equivalent to Equation (8.51) for the inverse of a LFT afingel in
Section D.3.3.21,,, is the diagonal ofn. from Equation (9.79).

9.10 Sloshing Model Uncertainty Description

The sloshing model used for the worst case analysis will Ithep tanks intol tank with
the equivalent mass. It is retained for all axes and the dagripithe major uncertainty
in the model. The uncertainty of the dampinge [0.16;0.5] defined in Section 3.4.4 is

Cs =Cs + 06N ||0s]] <1, Vo €R (9.83)
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wherec, andk, are computed in a similar manner as in Equation (8.69). Thertainty
is presentin both the transition and output matrices and fEquations (3.40) and (3.42)
we can perform the partitioning as follows for one axis

0 1 0 0
ASL:A—OL+A1L:|:_£ _E_b:|+55|:0 _L:| (984)
and
C.,=Co,+Ci, =[ ks & |+0,[0 K| (9.85)

As in Equations (3.40) and (3.42) it is block diagonal and &upn (9.84) for all axes
becomes

Ay, A,
A, =Ag+A; = Ay, + Ay
Ag

(9.86)

2

. Ay,

As earlier we perform a SVD @A ; in Equation (9.86)

0 0 O
8 (1) 8 Os 00 0 1 00 .
A = 10 0 Os 01 00 0O (—m—>,rank:3
1
00 0 Os 0 00 0 01
0 0 1 Ay, S
N————
L
(9.87)
and
A, =F,(Ma,,A4,) (9.88)
where
0 S
MAS—[L Ao} (9.89)

The output matrixC, in Equation (3.42) takes the same form as in Equation (9.86) a
it is not written out here. The SVD d&f; becomes

1 Os 0 1
C, = 1 Os 0 1 k, rank=3
1 Os 0 1
L Ac, S
(9.90)
and
C, = Fu(Mc,,Ac,) (9.91)

whereM¢, is having the same partitioning as in Equation (9.89) reptathe elements.
The complete uncertainty model is illustrated in Figured9.2
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4. B —¥(+: ‘_‘ Mg, Y,

Figure 9.20: Sloshing uncertainty model.

@ [

9.11 Combined Relative Position Model Uncertainty

The uncertainty models for the out of plane dynamics in $acé.7 an in plane in
Section 9.8 will now be combined into one model.

The LFTs in Figure 9.18 and 9.19 are combined into one leattirgy size of the
A = diag([61g, 6,12]) with 11 elements in the diagonal.

The uncertainty of the mass.. of the input matrix of Equations (4.16) and (4.18)
is performed in Section 9.9. This is simply concatenateth¢oabove LFT and it has a
A, of dimensiors.

The thruster uncertainty will be lumped into an uncertastitgctly on the input of
the plant on th& axes. The structure is equivalent to the one developed iticBet:11,
which will be used directly. The structure of the LFT is thengaas illustrated in Fig-
ure 8.17. From Table C.5 we hav8athrust uncertainty 03.1 %. Lumping it together
and accounting for orientation uncertainty, we will apphyumcertainty ob % indepen-
dent on all axes giving &4, of dimensiors.

The delay in the feedback loop is reused directly from theettggpment in Sec-
tion 8.12 adding a repeated uncertainty blaxk of dimensiong.

The uncertainty model of the flexible modes used is identéhe one developed
in Section 8.10 and can be used directly, only keeping in rifiatla different part of the
modal coupling matrix in Equation (3.18) is used for the $fational motion than for
the rotational motion. This adds& ¢ of dimensiore.

The uncertainty model for the fuel sloshing is developeddnt®n 9.10 and is con-
nected to the rest like the flexible model, as they have thesaputs and their outputs
are summed. See also principal illustration in Figure 3.hisTontributes aA; of
dimensiorg.

In total this leads to an uncertainty dimensiorofof which all are real parametric
and many repeated.
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Position RS

—— n: upper (=0.7)

—— 1 : upper (=0.1)
—— 1 lower (e=0.1)

0.3 —

.
107" 10°

Figure 9.21: Robust Stability structured singular value plots for abéccentricite = 0.1 and
the large value = 0.7. For the latter the lower bound is omitted for increased abdity but
follows closely the upper bound. The first large peak is duth¢osloshing uncertainty and the
smaller peak the flexible modes. The bounds are close tagetbe for the largest value at the
peak.

9.12 Robust Stability

The theory for RS is explained in detail in Section 8.13 andllisised as it is for the
present problem.

As evident from the past sections there are only real par&ngtcertainties, which
means we need to add some complex uncertainty in order @bhelfind the lower
bound of the structured singular valpe The procedure and structure are the same as
illustrated in Figure 8.23. In order to reliably find the lawmund and to have it close
to the upper bound, we need to add abidut- 20 % complex uncertainty.

It is recalled that the prime research is for the use of LTItaalers for the time
varying elliptical orbital environment. The objectivegdor eccentricities of = 0.1
and the RS found is shown in Figure 9.21.

In Figure 9.21 we see that the upper and lower bounds fer(.1 are very close,
which is particular important for the frequency of maximumis is clear, that the driver
for the RS is the damping of the sloshing, which is more dominlan the flexible
modes. This is contrary to the RS for the attitude, where witedithe sloshing, as it
appeared to be insignificant. It has been ensured by gradiergtigations that the peak
has been captured.

To explore the boundaries of the design a high eccentridity e- 0.7 has been
investigated. This leads to a slightly elevajedalue but with ample margin. It shall
be observed that the higher eccentricity is lower than ferdttitude. This is due to
keep consistency with the approximation used forau%euncertainty, which was rec-
ommended as a Taylor series of third orderdfor 0.7 and second order has been used.

In conclusion it can be seen that a very robust controlleigdesas been achieved,
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—— n: upper (e=0.1)
—— u: lower (e=0.1)
—— u:upper (e=0.7)
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Figure 9.22: Robust Performance structured singular value plots fatalréccentricitye = 0.1
and the large value = 0.7.

which is covering a wide range of uncertainties with a vemnfrtable margin.

9.13 Robust Performance

The theory of RP is explained in detail in Section 8.14 andsisdudirectly for the
positionH, controller performance evaluation.

As for the attitude control the overall feedback system sdedie normalized by
scaling of the input and output. How this is done as well assiwip for the RP
evaluation is identical to earlier and is illustrated in Uig 8.25 and Equations (8.93)
and (8.95).

For the scaling of the input output we use the maximum valomfEquation (9.27)
for the calculation of th@® . matrix in Equation (8.94). For the scaling of the disturbanc
we use the maximum value for the differential drag listedabl€ 7.4.

As the H, control design is a worst case one, we shall use the sameparice
weight forW. in Figure 8.25 as we specified for the design in Figure 9.4 eted in
Table 9.3. This means th&/. = W for the RP analysis.

When looking at the robustness it is important to only coasitie driving perfor-
mance variables, which are the relative positidy), in Equation (8.92) is a full complex
matrix connecting the relevant partafo w in Figure 8.20 for the RP analysis.

Figure 9.22 displays the RP for the main eccentricity andrgelaccentricity to
analyze wider performance. As for the RS the sloshing idblésin Figure 9.22, but
the flexible modes hardly. The larggsvalue is within the closed loop bandwidth and
provides sufficient performance margin. With a maximurof about0.8 it indicates
a design with some performance margin, but still resporencewell performing. For
e = 0.7 a slightly reduced margin is observed, but it remains cotafidy below1.
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In conclusion a successful and robustly performing &, design has been per-
formed and exhibits good RS and RP behavior over a large LTadio.

The worst case\ has been unwrapped from the analysis and used as input for the
MC validation to be performed in Section 11.3.

9.14 Conclusion

A 3 DOF relative position control has been developed for thekishgcport to port con-
trol. It is based on th&{., worst case approach and has resulted in a well performing
closed loop design exhibiting excellent RS and RP properfighe worst casé\ has
been successfully used in the time simulations in Chapter 11

Further uncertainty LFT models have been developed foretaive position dy-
namics from Chapter 4. As an outcome of that, Theorem 9.2 das developed with
associated proof providing a general LFT formulation of arimavith an arbitrary num-
ber of uncertain square terms. Finally LFTs for the inversessrinput matrix and the
fuel sloshing are developed.

This development and results correspond to the objectiesliet 8 in Section 1.3.
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Chapter 10

Coupled Relative Attitude and
Position Control

After the finalized LVLH attitude and control in Chapter 8 ahe relative port to port
position control in Chapter 9, we proceed with the final paneve both are coupled.
The final approach is recalled from Figure 2.5 and goes froimt3g until contact.

The switching from the previous controller type and stroetio the present one is
not considered as a research topic in this context. It isidersd that wait in the hold
point s, until specifications are achieved in order to proceed.

The control is6 DOF and both position and attitude is with respect to theetarg
docking port. This is the third situation illustrated in Gig 7.3. The lateral control
objective along the y and z-axis is to keep the centers of dlokidg ports aligned. This
means controlling the relative difference to zero alongythend z-axis. The control
objective along the x-axis of the target port frathg is to follow the guidance profile
developed in Section 7.7 and Tables 7.5 and 7.6. The rekitivede shall be controlled
to zero around alt axes.

10.1 Control Requirements Detailing

The location ofs, is recalled from Table 2.1 to bg = [—20,0,0]" port to port. From
Table 2.2 the attitude shall be less thadeg on all axes and the relative position re-
quirements are in Table 2.7. It means that the relative iposiin the lateral y and z-axis
shall be betweer-0.1 m. As the port is circular, we will consider this bound as the
maximum radius in the y-z plane. The approach velocity wecteb0.05 m/s, as we
are then exposed to disturbances and time varying parasrfetdonger time and range
creating a worst case situation.
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POS [m] ATT [deg]
x-axis | y,z-axis | x-axis | y,z-axis
Bias [0.01;0.2] | [0:0.1] | 0.8 | [0.55;0.8]
Noise3o | [0.005;0.2] | [0;0.07] | 0.1 | [0.05;1.0]

Table 10.1: Simplified sensor data extracted from Table 3.3. The lowdrupper values corre-
spond to a range ¢®; 20] m.

10.2 Target and Sensor Characteristic

The target docking port motion is described in detail in ®&c8.2.1 and the bandwidth
derivation is performed in Section 9.2. The specific valwestie6 DOF will be identi-
fied here by extracting the characteristic values from Tat8e

This can also be expressed such that the rangé.hés noise of the range and the
lateral noise i9).35%. The attitude noise is constai® of the requirement around the
x-axis and aboui% as a function of the range around the y and z-axis.

10.3 Plant Description and Variation

The plant variations are all described in Section 8.2 forattéude and in Section 9.3
for the relative position.

The fully coupleds DOF model is derived in Chapter 5 and the coupled linear state
space model in Section 5.7.5. We will use the model in EqudBd36) for the synthesis
and analysis. '

For the sake of clarity we recall the state vector taxbe[x,, X, 0., we, 01, 01,0,4]"
and the output vector to be= [x,,%,, 0., w., 0, 0;, Xpp Xpps Ora, wra] . The under

N—————

braced elements gf is what need to be controlled.

We recall that the model includes the target motion as a haicroscillator, which
is not reachable from the control inputs. We therefore neeslaluate the model and
adapt such that it is both controllable and observable. Wiweth are fulfilled we also
have a minimal realization. The input signal is as before

u=[ FN 0,60, Fate Faco) (10.1)
——
small signal

which is for the large signal model. The small signal modplitin Equation (10.1) are
F andN.

Controllability: As the target states are not controllable, we will removenthe
[6:, ét]T from the state space model. This is nevertheless not fullirmpthe prob-
lem as@; is used to compute the relative attitudg,. Computing the controllability
matrixC (Glad. & Ljung 1981)

C£[BABA’B---A""'B] (10.2)
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for the pair(A, B) it should have full row rank, wheren is the number of states. As
expected it is rank deficient with, which is exactly they states 0#,.,. To fulfill con-
dition Al in Section 9.4 for thé{., algorithm, we need to reduce the model further by
removingé,., from the state vector. This means the state vector isxew(x,,%,, 6.,
w.]T and the input vecton = [F, N]T. The matrices in Equations (5.37) and (5.38) are
reduced correspondingly.

This has two consequences. One is that the target motiomaxk to be modeled
as a disturbance to the plant with a weight describing itsattaristic behavior. The
other is that the variable to contrél., is no longer in the model. This does not pose
a problem as the synthesis can equivalently be performetthéochaser attitud@., as
known from Section 5.7.2, as the target cannot be influenteedrefored,., is anyhow
controlled by controlling physicallg.. only.

Observability: From Equation (5.39) of th€ matrix, we see all states are observ-
able, which can also be found analytically from the full colurankn of

C
CA
04 _ (10.3)

CA”71

the pair(A, C). (Glad. & Ljung 1981)

The output vector we then define gs= [x,p, Xpp, 0, we]T. It means we will
control 8. to another reference thah, but that is equivalent as long as we include the
characteristics 0f,. This will ensure equivalence, when we replace vith in the
actual implementation.

The matrices for the reduced order design model modifyingsiqns (5.37) to (5.40)
become

I 0 By, 0
A, o0 " [B, 0 o1 0 By, -
A‘{o Ac]’B_[O Bc]’c_ oo 1 o [P0
00 0 I
(10.4)

Finally we will investigate the RGA to evaluate the coupbrig thel2 x 6 plant.
There are weak couplings between attitude and relativeiposi There are stronger
interactions between the axes of the position and the dgtitsi mostly diagonal. As
earlier the plant exhibits strong axial couplings at theitatbrequency as detailed in
Section 9.6.

In Equation (10.4) we see that the only linear cross couplarg from the kinematics
in the C matrix. This can conveniently be decoupled for the corgradlynthesis. It is
observed that the couplings are

e From the attitude to the position due to the port lever arms

e There are no couplings from the position to the attitude
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We will find a matrixV; such that we get only the original diagonal of @ematrix.
We write theC matrix of Equation (10.4) as a partitioned matrix as follows

I 0 By, 0
|0 I 0 Bg | [T By
C=10 0 1 0 _[0 I } (10.5)
0 0 0 I
and
V,C=1 (10.6)
V,=C"! (10.7)

By the inversion theorem of a partitioned matrix (Bernst2d05) and inserting the
partitionedC matrix we obtain

I 0 -Bg, O
I =By | |01 0 —-B..,

Vd_[o I }_ 00 I 0 (108)
00 0 I

The new plant is now completely decoupled and the contoftarposition and attitude
can be designed independently. For the implementatioreafdhtrollers one only needs
to pre multiply the controller input bV;l.

10.4 Out of Plane Position Control and Controller Type
Selection

The objective of the design here is to obtain a well trackingtmller from s, until
docking. This is contrary to the slow average motion tragkdesign in Chapter 9 and
might require a different problem formulation, which wik laddressed here.

A signal based ., controller design will be addressed, which is very genemdlia
appropriate for multi variable problems in which severgkechives must be taken into
account simultaneously. The focus of attention is on theimiation of the size of
the defined error signals contrary to the earlier design evtiee focus was on shaping
certain transfer functions over frequency (Skogestad &tlethsvaite 2005). Before
embarking on this approach, we will first see how well we penfby redesigning the
earlier controllers.

For performing the designs and tradeoffs the out of plané¢robwill be used, as it
can be seen as representative for the other ones to a largeedeg

10.4.1 Mixed sensitivity

The formulation of the control problem is the same as illatsd in Figure 9.4 but with
different weights. The weigh¥V . is selected as a low pass filter in order to lower{he
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| | A [ M ] v ]
Wo = 0.03
LS w
Wy =20 1001 | 2 | 0.63
Wy =522 1 05 [ 10 | 12,6
A -
Wi =222 | 100 | 0.01 | 12.6
W, = 0.1
W, = == 1.89

Table 10.2: Summary of all weights used for the mixed sensititity, design.

value. This is now needed as all the other weights have higiloss over frequencies.
The following values in Table 10.2 are obtained after sommtions
The shape of all functions are not much different from thos8ection 9.5, except
shifted in frequency, and will not be repeated here. Forghisoptimal controller we
obtain
Ymin = 0.99 (20.9)

and stability margins of
GM =25db(at0.79 Hz) and PM = 59deg (at0.13 Hz) (10.10)

The performance is well fulfilled at both tke point and at docking. This is illustrated in
Figure 10.6. It was experienced non trivial to obtain a goaldihce between the weights
to fulfill the requirements. Ak, where measurement noise dominates the control signal
is relatively large.

10.4.2 Signal Based

In the signal based approach weighting functions are agpppdi¢he signals of concernin
the design process. We will formulate the problem as a madetence one, where the
controller shall try to make the closed loop behave as aeater modeW, ...

The objective oW, s is to represent a transfer function, which will be able takra
the worst case target port motion. This is of the trianguttepe shown in Figure 3.5
and the worst case is for the shortest reversal ti,e 8 s and amplituded = 0.7 deg
as listed in Table 3.2. We need to follow the ramp part of tgaai as well as the critical
part and not to have too large overshoot at the peaks. We defeference model as

w? S+ w1y

10.11
s2+2(ws+w?  wy ( )

Wref =
The2™? order part in Equation (10.11) follows well the slope, buéshoots too much
at the corners. The first step is to lower the damping+e0.5 in order to keep the phase

close to zero for higher frequency and reduce the lag. Théukeep the phase at zero
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Wref(s) W(s) 7L

1< 4
=

SLEEN W, (s)H u?t
W, (s) —22

Figure 10.1: Signal based model reference configuration fortthe design of the two degree of
freedom controller.

we add a lead component in Equation (10.11). This enables ksep the phase very
flat before it drops and provides sufficient tracking. Theapaaters of Equation (10.11)
are

w=w; =0.05Hz and { = 0.5 (10.12)

Having identifiedW .. we now proceed to formulate the design structure, which is
illustrated in Figure 10.1. The generalized pl&in Figure 10.1 becomes as follows
with K pulled out in a lower LFT

-W.G'W, -W.W, WW, W, | -W.G
0 0 0 W,
P= o o W o (10.13)
—G'W, -W,, W, W, el

and the closed loop transfer function is computed as in Eoué®.4).

Itis chosen to consider a two degree of freedom controltesh@wn in Figure 10.1.
This is driven by the more demanding docking conditions &adl fieed forward control
generally contributes well to the control performance. réfare the controller is of the
form (Limebeer, Kasenally & Perkins 1993)

K = [K; K] (10.14)

whereK; is the feed forward part anH- is the stabilizing feedback controller. The
drawbacks are increased controller complexity and thatafrget attitude needs to be
measurable. The latter is assumed to be available, thou¢®it is not for non tech-
nical reasons, and we will later consider the Fault Tole@uonitrol (FTC) of the design
should it drop out.
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+|d
otk S R

(a) 1 degree of freedom controller

(b) 2 degree of freedom controller

Figure 10.2: Principal structure of the standard 1 degree of freedomrabet and the used 2
degree of freedom controller.

Before we proceed, some differences between the two ctertrachitectures in
Figure 10.2 need to be highlighted. The propertieSaind T in Equations (8.22)
to (8.24) are clear from Figure 10.2 and valid for one degféeeedom controllers

y=(I+GK)'!GKr+ (I+GK)'d (10.15)

T S

For the two degree of freedom controller we can formulatefainetionally equivalent
transfer functions from Figure 10.2 as

y=(I+GK:) 'G(K; +K2)r+(I+GKy)'d (10.16)

T2 S2

and the index is used to distinguish from the classical ones. Itis obgkthatS, = S
in Equation (10.16), but th&Fy # T. The sum becomes

Sy +To =1+ (I+GKy) 'GK; =1+8S,GK; (10.17)

and it is highlighted that the property of Equation (8.24¢slaot hold for two degree of
freedom controllers.

We can now compute the closed loop transfer function fromakiqas (9.4) and
(10.13), which after some algebraic manipulations becomes

W.G'(K2S; —I)W,  —W.S;W,, W, (W,.+S; — G'K{)W,
_WuKQSQG/WO _WuKQSQWn Wu (Kl + K282W7’€f)w7’
(10.18)

F(P,K)=
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Figure 10.3: Plots of theS, andT2 functions for the out of plane controller for the model
reference design in Equation (10.13).

The selection of the weights is driven by the requirements,atso to achieve a
balance between feed forward and stabilization. If allotiecalgorithm in Theorem 9.1
will try to perform a plant inversion, which is obviously ndésirable (and not possible
if RHP zeros are contained in the plant). This is achieveth Wi, and W,,. The
requirements for the design can mostly be formulated as

Tm ax

67”(1..’1)
Mp
tr

& A

0.4m
5%
30 — 40 %
4—-5s

(10.19)

The form of the weights are similar to those used earlier diett design iterations the
weights become as in Table 10.3
The weightW, on the control signal is kept at the same value as earl&f,

[ A [ M ] w
Wo = 0.03
Wo =05
w, =222 [ 1 | 100 | 0.63
w, =2 [ 001 | 2 o031
W, = 22 | 100 | 0.01 | 6.28

Table 10.3: Summary of all weights used for the two degree of freedém design. W,y is
defined in Equations (10.11) and (10.12).
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Figure 10.4: Reduced ordeK, controller Bode plot as well as the discretized reducedrotiet
sampled at Hz.

represents both measurement noise and load disturbanbe ontput and is used as a
free design parameter. F& . we selectv around the frequency of the parabolic part of
the target motion in Figure 3.5, which is approxmatg{}%— The low frequency value
corresponds to abouts error. ForW ,, we penalize the control at higher frequencies as
well as we need a cross over frequency separation to thewtights to obtain a lower
~. One needs to limit the control signal in order to handle #nget port vibrations from
the ISS flexibility as described in Section 3.2.1. This is ensizing in the worst case
than measurement noise to ensure the relative velocityfiadion is fulfilled.

With W,. one can adjust the amount of the feed forward by its gainrfistout that
the gain adjustment is advantageously done by loweringahdwidth agy can then be
lowered simultaneously. Using the weights in Table 10.3swoiding Equation (9.4) the
suboptimalH, controller achieves

Ymin = 0.65 (1020)

In Figure 10.3 théS, andT; functions, as well as their sum, are illustrated. The cross
over frequency is slightly higher than specified &dexhibits well a low value at low
frequencies as desired.

The step response of the closed loop has a rise time of almu settling time of
30 s and &3 % first peak overshoot. The last is driven by the lower dampin®/,.. s
to avoid lag.

The open loop Bode plot is rather similar in shape to Figug ®ough shifted in
frequency and shows good stability margins

GM = 12.7db (at0.17 Hz) and PM = 51.1 deg (at0.05 Hz) (10.21)

The shape of the feedback part of the contrdieris illustrated in Figure 10.4 with a
shape not too different from earlier ones, but significalatiger gain. The feed forward
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Out of Plane Closed Loop
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Figure 10.5: Closed loop characteristic for the two degree of freedontrofier K = [K;1 Ko].

controllerK; has a low frequency gain of aboli® and it increases steeply towards
the closed loop bandwidth with a phase advance in the samenre¢n Figure 10.5
the closed loop response is illustrated, which shows a gyaailincrease at the desired
frequency to track the peaks of the reference signal. Fuighenoted that a very flat
invariant phase has been achieved ensuring little lag treguh very good tracking
performance.

10.4.3 One degree of freedom model reference

Further to the two previous designs a combination of the ta@leen tested. Itis a re-
duced mixed sensitivity type usingy .., feedback from the error, but without weight-
ing the complementary sensitivity function. The desigmugetnd the selected weights
are reported in Section D.5. Its performance is shown in fieidD.6. The stability
margins are lower than the others and yield

GM =11db(at0.21 Hz) and PM = 43 deg (at0.09 Hz) (10.22)

and
Ymin = 0.77 (10.23)

10.4.4 Design Trade Off

Three different designs have been performed and a tradelbferperformed to select
one for the complete coupled design.

We will consider the worst case target port motion with antheit measurement
noise to compare the controllers directly. This is evaldate, and at docking, with the
plots for the former illustrated in Figure D.7 in Section DFHhe results at docking are
shown in Figure 10.6.
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Docking Port Tracking at Docking(no noise) Docking Port Tracking at Docking(noise)
Tae true

Design 1
Mixed Sens.
K, Kl
[0 K1

V.V
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Y{m

180 200 220 240 100 150 200 250 300
Time [s] Time [s]

Figure 10.6: Tracking of worst case target port motion, shortest revéme and as defined in
Figure 3.5, for the three controllers. Desigris the one degree of freedom model reference
controller. The error plot compares the various errors wigherror ofW .. ¢, which is considered
the best possible. The requirement is marked in red hoiitamntd the state of the art as dashed.

In Figure 10.6 it is observed that all controllers fulfill thequirements also for the
velocity though not illustrated.

Itis clear that the two degree of freedom controller tratiesreference significantly
better than the other two. We also investigate the case tfifailne transmission of the
target attitude motion used for the feed forward. This isdhse, where we consider
K; = 0 and itis observed to become only slightly worse than therstreamaining well
inside specifications. It is therefore considered faukriaht to such errors.

On the error plot in Figure 10.6 the error signals of the défe controllers are
compared as well as the error between the target motion andvth.;. The latter
is considered the best we can obtain. It is also clear thatwthedegree of freedom
controller out performs the others. The same relations alid at s, as illustrated in
Figure D.7.

As we seek a LTI controller to cover the whole range with vagymeasurement

o Force [ —20m [ Om |
Mixed sensitivity 135 52
One DOF model referend&s] 114 36
Two DOF model referenciK; K] 42 38
Two DOF model referenci® K| 36 29

Table 10.4: Standard deviation of the control signal for the differemicollers at the two loca-
tionsss and docking. They track the worst case target port motiodeéiged in Figure 3.5, with
the shortest reverse time as in Figure 10.6.
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| | A | A [ M| Mo | wo wi] ¢

Wo, = [0.03,0.03]

W,.. = [05,05]

W, = ke 1 1] 100] 100] 01] 01
W, . = 1—};’ 001|001 | 2| 2005 20
W,, =222 2 100 | 100 | 0.01 | 0.01 1| 1
Wres, . = wrstosra? “o° 0.05 | 0.05 | 0.5

Table 10.5: Summary of all weights used for the x,z aXés, two degree of freedom controller
design.

noise, one needs to assess the demand from the propulsidabln10.4 the spread of
the control signals is listed for the two extreme points.dties linearly between them.
They are all feasible though the first two track more noise tha rest.

From these investigations, it is clear that the two degrefeegfdom controller has
the best performance with the least control effort and gaablilgy margins. It will be
chosen for further implementation despite the slightlyéased complexity.

10.5 In Plane Position Control

For the in plane coupled control there will be used the sarpe tyf two degree of
freedom controller as in Section 10.4. Scaling is as eadidieeach axis for both feed
forward and feedback part.

The first logical step is to use directly the out of plane w&dghom Table 10.3 for
both the x and z-axis. It provides the same stability margimey value, but the control
signal required on the x-axis is too large in demand of aroldidN. This is driven by
the larger sensor noise along that axis. It is thereforessaeg to re tune the controller,
which we can do without performance loss as the x-axis tgrgettmotion is benign.

The obvious choice would be to either permit a larger erraiWi, or changéw, to
constrain the control signal. It turns out that it is diffictd re tune without affecting the
z-axis controller, which we desire to keep. It appears thahging bothw, andW,,
by the same ratios for the x-axis, the design on the z-axisirgrunaffected. This is
what has been performed and after some iterations the veaigfible 10.5 have been
selected.

All the plots from the out of plane design in Figures 10.3 tcbldre rather represen-
tative for the in plane design and will not be repeated hete dnly difference is that
the closed loop transfer fro the x-axis has little gain iaseat the bandwidth frequency
and the phase decreases at a lower frequency, see Figurdhé.lwop by loop stability

Finn Ankersen, September 12, 2011



10.6 Relative Attitude Control 219

h T iy

10 10°*

o * 10° 10 10°* 10" 10°
Hz Hz

Figure 10.7: Robust stability and performance for the relative position orbital eccentricities
e =0.1ande = 0.7.

margins obtained are

GM, = 11.8db (at0.08 Hz) and PM, = 42.4deg (at0.03 Hz)

GM, =12.7db(at0.17Hz) and PM, = 51.1deg (at0.05 Hz) (10.24)
and the suboptimal{, optimization yields
Ymin = 0.65 (10.25)

As usual a model order reduction is performed to eliminagevétry fast and unnec-
essary poles in the controller. The controller is impleradrih a discretized state space
form and combined with the out of plane one.

At this stage we will find the RS and RP for the relative positttecoupled from
the relative attitude. It serves as an intermediate che¢keotlesign. The RS and RP
are found satisfactory and shown in Figure 10.7. The samertainties are used as
in Sections 9.12 and 9.13. For the RP the maximum referenselésted as,,q.. =
0.4 m and maximum,,,.. (error) = 0.1 m. For the performance weighting function
in Equation (8.100) we seleat = 0.005Hz, M = 4 and A = 0.25. We see from
Figure 10.7 that both RS and RP have well below1 for all uncertainties, as well as
NP is fulfilled.

10.6 Relative Attitude Control

For the design of the relative attitude control it is recdhifeom Section 10.3 that the
design can be done fully decoupled from the relative pasitile only need to take into
account the decoupling matri,; in Equation (10.8) when implementing the controller.
The relative attitude requirementis listed in Table 2.3 theg on all axes. Knowing
that the target has a maximum amplitude0df deg one could fulfill the requirement
by a slow non tracking controller. We will nevertheless wytriack the relative attitude
between the chaser and the target, as well as we can in ordbtdaim a design useful
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[ A M ] v |

Wo = 0.03

T
Wi=22 1 02 | 2 | 0.063
Wo= 522 [ 05 | 10 | 1.26

MM -
Wy =22 | 100 | 0.01 | 1.26
W, =3 [ 143 ] 5 | 0063
W, = 1.0

Table 10.6: Summary of all weights used for the mixed sensititity., relative attitude design.

for other missions than the one used here. We will only usedlagive attitude angular
measurements from the RVS, which is not measuring any rd&gsusing the chaser
gyro measurements less latency in the feedback loop canthmet as well as a faster
tracking, but seen from the present requirements this cexitplis not needed.

The natural choice for the controller type would be a simdategree of freedom
controller as chosen for the relative position in Sectiom10This is encouraged by
the availability of the target attitude motion. The RVS gddws the relative attitude
measurements. The noise level is specified in Table 3L3l&y at3o for the two lateral
axes and).1 deg for the axial axis a0 m relative port to port distance. This noise
level is too large to obtain good target tracking, retain oowetroller for the entire final
approach and keep the command signal within the availalde¢o

From the above reasons there is no need to retain a more cooggigoller and it
is decided to continue with &, mixed sensitivityl degree of freedom controller. The
problem formulation used is the same as for the relativetiposin Figure 9.4.

We select a cross over frequency®f1 Hz, which provides a good compromise
between tracking error, noise and stability margins.

The weights are similar to those selected in Section 9.5tHeweight representing
the noiséW,, we haver% noise at low frequencies and assume increasing to 286fe
at higher frequencies. After some iterations on design andlations the final weights
are listed in Table 10.6.

The shape of the functiorgsandT is not too different from those in Section 9.5 and
are not repeated here. We obtain from the optimization

Ymin = 0.93 (10.26)
and the classical one loop open at the time stability matggg®me

GM, = 12.4db (at0.063 Hz) and PM, = 60 deg (at0.017 Hz)
GM, = 14.7 db (at0.059 Hz) and PM, = 65 deg (at0.014 Hz) (10.27)
GM, = 14.7db (at0.059 Hz) and PM, = 65deg (at0.014 Hz)

In Figure 10.8 is shown the open loop worst case frequenppres for the x-axis.
This axis has the lowest inertia and therefore the largésttefirom the flexible modes
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Figure 10.8: The upper row illustrates the open loop frequency respamsé x-axis with slosh
and flexible modes. The solar panels are oriented for thetwarse angle. The lower left plot
illustrates better the flexible modes in a Nichols plot. Towedr right plot shows the frequency
response for the sensitivity and complementary sensitiuitctions for the x-axis.

clearly visible on the right hand zoomed figure. The flex modemnet have a desta-
bilizing effect as the phase crosse380 deg well before the mode. It is nevertheless
desirable not to increase the gain too much in order to keegtande of classically
—6 db. If a larger loop gain should be required more loop shapiogld be needed or
the flex modes should be included in the synthesis. In theeptekesign this has been
avoided as we can obtain sufficient performance and margith®wt it and keep the
order ofK lower. The Nichols plot in Figure 10.8 illustrates bettee flex mode and
the sufficient distance from the critical point. If the sofemels are rotated 130 deg
the illustrated effect will be dominant on the z-axis, thblgss as the inertia is larger.

The lower right plot in Figure 10.8 shows tBeandT functions for the design. The
illustration is for the x-axis, but all axes are fairly sianil

The designed closed loops have a bandwidth of abduts Hz, which is close to
the design goal. The rise time for a step respon$g & the response has no oscillations
and a slight% overshoot.

Finally the RS and RP have been evaluated at this decoupleddied found satis-
factory and shown in Figure 10.9. The same uncertaintiessed as in Sections 8.13
and 8.14. For the RP the maximum reference is selecteg as= 5 deg and maximum
Omaz(error) = 1 deg. For the performance weighting function in Equatiod@8) we
selectw = 0.01 Hz, M = 3 andA = 0.2. We see from Figure 10.9 that both RS and
RP have a: well below1 for all uncertainties, as well as NP is fulfilled.
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Figure 10.9: Robust stability and performance for the relative attittat¢he orbital eccentricities
e =0.1ande =0.7.

10.7 Coupled 6 Degree of Freedor#., Control

In this section we will combine the earlier designs into onerall coupledé DOF
feedback system. As we decoupled the synthesis part thedhein Section 10.3, we
can combine the controllers for the relative port to porttoarand the relative attitude
control directly. The decoupling matriX; in Equation (10.8) is taken into account in
the nonlinear model of the measurement system.

The complete discretized controller is implemented in thierfon linear simulator
as used for all previous final results. It will simulate themmete GNC froms, un-
til docking with an approach velocity @f.05 m/s. The guidance profile selected is a
constant acceleration followed by the constant approaldting

It is recalled that the target docking port oscillates in asvoase triangular type of
motion due to the ISS attitude motion described in Figure 3.5

Figure 10.10 shows the results of the complete final desigm fa full nonlinear
simulation providing relative port to port position, veitbes and the forces on the chaser
spacecraft.

For the x-axis we observe that there is a station keepirg fir 100 s, after which
the final approach begins. The velocity moves from zero to)the m/s as expected.
For the y and z-axes one sees that the relative position isatled very well inside
the specification 0.1 m. The same is the case for the lateral relative velocities |
observed that the COM is moving around in order to track thgetgport motion. It is
recalled that the requirements are for #)g and not the COM motion. The demand for
actuation force is inside the envelope and we observe less floe actuation along the
axial than the lateral motion.

In Figure 10.11 we see illustrated thelocking ports lateral positions and velocities
in the LVLH frame. They are very close to each other indiggtimat the controller is
tracking the target very well. If we compare with Figure 9.4 see that the box shape
of the velocities in the y-z plane is no longer present, as ove tnack the target and not
its mean value, as for the farther distances.
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Figure 10.10: The full nonlinear simulation showing the port to pst, motion, the chaser
COM motion, the associated velocities and control force&e hitial condition issp,(0) =
[~20,0,0]" m ands,,(0) = 0 m/s The port to port is well controlled and the COM motion
moves more to achieve that. The approach velocit§.0F m is kept and the lateral velocities

controlled to zero.

The cases where the worst case target docking port flexibemare taken into
account as specified in Table C.1 are illustrated in Secti@n D

The Figure D.8 corresponds to Figure 10.10. From Figure Di8 seen that the
target port vibrations cause a moderate increase in thalsigmplitude, but it has only
very minor impact with no requirement violation. The Figl’e® corresponds to Fig-
ure 10.11 and also shows no real practical deterioratidmegberformance of the control
loops. Itis recalled the simulation is for the worst caseatilons of the target port.

In Figure 10.12 is illustrated the results for the relatitétwede, where we observe
the performance to be better th@dd deg. This is well below the requirement®oéleg. It
is recalled that this result is obtained without using thgwar rate information between
the two spacecraft. The angular rate is more thames better than required and the ap-
plied torque is rather low. It is observed that very littlentol action is required around
the x-axis, which is due to the fact that there is no kinenmadigpling to the position for
the used operating point, see Equation (5.39), and no gignifiever arm on the ISS
for the docking port. The plots in Figure 10.12 are also frdgresentative for the target
port flexible motion as no visible impact. Should faster agtter tracking be needed it
is recommended to include the added complexity of angutanmeasurements.

It can be concluded from the Figures 10.10 to 10.12 that tleeathé DOF GNC
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Figure 10.11: The full nonlinear simulation showing the true LVLH latefrt motions as well
as the relative motion in the cross section y-z plane. Thergpart of the curve is during the
station keeping ats. It is recalled that the requirements are for the port to pwtion.

design is performing well and significantly better than reegt Further results are
provided in the connection of the MC analysis in Section 11.4

10.8 Robust Stability

The background for the RS analysis is the same as in the mes#ction, explained in
detail in Section 8.13, and not repeated here. All the LFTeuiainties models are the
same as have been developed and used in the previous analysis

Now it all has to be combined into @ DOF coupled system for analysis, where
the coupled dynamics is expressed in Equation (10.4). THefoFmulations will be
combined such that all the repeatedill be combined together in order to reduce the
conservatism. Attention needs to be paid to the unceréairitir forces and torques.
The 5 % uncertainty applied earlier is now split evenly as the ptatsuncertainty is
on the thrusters, which produce both forces and torquestheodelay uncertainty, we
will replace the LFT with the maximum delay, which in praetis the worst case for
stabilization. This is considered a reasonable approactdier to reduce the size of the
A matrix to43 for the real parameter uncertainties.

As evident from the past sections there are only real par&ngtcertainties, which
means we need to add some complex uncertainty in order @bhelfind the lower
bound of the structured singular valpe The procedure and structure are the same as
illustrated in Figure 8.23. In order to reliably find the lawmund and to have it close
to the upper bound, we need to add ab&iu®o complex uncertainty. This is significant
but it is a known difficulty with a large number of real paranetincertainties.

It is recalled that the prime research is for the use of LTltealers for the time
varying elliptical orbital environment. The objectivegdor eccentricities of = 0.1
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Figure 10.12: The full nonlinear simulation showing the relative attiédl.,, between the two
ports, the relative angular velocities and the controluesy All values are very well inside the
requirements 0% deg.

and the RS found is shown in Figure 10.13.

In Figure 10.13 we see that the upper and lower bounds#$ef.1 are fairly close in
the areas where it is important, namely at the two peak vakmsthe other frequencies
it is clear that the lower bound suffers from the large sizehaef A block with real
parametric uncertainties, which is a well known problenis $ieen that both the sloshing
and flexible mode peaks are well beldvand we have RS with some margin.

The boundary witlz = 0.7 has also been investigated here. As seen in Figure 10.13
there is only a marginal increase in thevalue for this controller design. The fact that
the peaks are larger than seen earlier is driven by the ércithy both position and
attitude controllers simultaneously.

In conclusion it can be seen that a very robust controlleigddsas been achieved,
which is covering a wide range of uncertainties with a vemnémrtable margin.

10.9 Robust Performance

The background for the RP analysis is the same as earlieretadad] in Section 8.14.
The 6 DOF RP setup is the same as illustrated in Figure 8.25. Thy difference
is that the matrice®., D,;, W, and W, are now block diagonal. All couplings are
accommodated in the controller and plant.
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6 Degree of Freedom RS 6 Degree of Freedom RP

i =1

o
1o 10" 10° 10* 10 % 10°
Hz Hz

Figure 10.13: Robust stability and performance for thddOF design with coupled relative po-
sition and relative attitude. The left plot shows the RS, nehtbe lower frequency peak is caused
by the sloshing modes and the higher frequency one by théléemiodes. The right plot shows
the RP, where it is seen that the peak is at the sloshing fregend well below one. The orbital
eccentricities are = 0.1 ande = 0.7.

The scaling of signals and the performance weighting fonstused are the same as
used for the RP relative attitude and position individuafgr the relative attitude they
are documented in Section 10.6 and for the relative positiGection 10.5.

When we look at the robustness it is important to considey trd driving perfor-
mance variables. For tieDOF that is the relative position and attitude port to port.
A, in Equation (8.92) is a full complex matrix connecting thievant part ofz to w in
Figure 8.20 for the RP analysis. With all the disturbanfigss a12 x 6 matrix and a
6 x 6 without. The influence of the disturbances is barely visfblewhich reason the
latter A, is chosen.

In Figure 10.13 we observe that,,,. = 0.86 at frequencies around the sloshing
modes. This means, we have RP with good margin at the slosisogance frequency.
The design can tolerate abolit6 % uncertainty at that frequency. Considering the
results in Figures 10.10 and 10.12, we see that the maximgymalssize, as used for RP
analysis, is never reached, which leads to additional RRjimalt is confirmed by the
MC analysis in Section 11.4, where the parameters from yopng theA (1., ) have
been included and no performance problems have been odserve

In conclusion a successful and robustly performing’HEL design has been achieved,
which exhibits good RS and RP over a large LTV domain.

10.10 Conclusion

A 6 DOF relative position and attitude control has been deeldpr the docking port
to port control. It is based on tH&., worst case approach with2adegree of freedom
controller for the relative position and a standard mixetsge/ity design for the relative
attitude.
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A formal decoupling has been achieved for the synthesis;iwikithen reintroduced
into the fully coupled analysis setup. This has resulted ime#l performing6 DOF
closed loop design with excellent RS and RP properties ®atiplication domain con-
sidered.

With the present LTI type of design it is possible to achieverdaries of).01 —
0.02 m docking accuracy with the worst case target port motiomé8s extreme target
motion, e.g. CMG controlled or having a short lever arm, seifiticneter accuracy can
easily be achieved. The design is very robust to orbitalrciogty, see Figure 11.9. As
sloshing and flexible modes have been treated as unmodetadnys in the design pro-
cess, this can be included as modeled to achieve higherperifce where needed. The
type of design developed here would be applicable for mo$2 R\ssions irrespective
of orbit, as well as formation flying missions.

This development and results correspond to the objectivesliet 9 in Section 1.3.
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Chapter 11

Verification and Evaluation

In the interest of forming a complementary to the worst casdysis as well as per-
forming a commonly used practical verification a series ofkéoCarlo analysis will
be performed in the sequel.

11.1 Sample Size Computation

All stochastic processes involved are assumed to be Gaudisizibuted, which will be
verified graphically on the produced results.

We will only provide the main formulas to compute the appnoaie number of sam-
ples, which will be needed in order to reach a certain spelifielth of the confidence
intervals of the meap and the variance. For the MC the largest number will be used.
We will concentrate on the variance as experience has stasvaliays requiring more
runs than for the mean.

The computations are based on an approach of confidenceahter the variance
with unknown mean and results from (Ankersen 2002).

5\ 5a )\
M(n) = <1+£> and N(n) = (1—3—2) (11.1)

wheres? is the variance estimate afigl 6, being the interval width fo95 % confidence.
Most often it is chosen symmetric such thgt= §,. This is under the assumption that
the stochastic variables have a Gaussian distributions iBhimostly fulfilled though
some are less, as can be seen in the following results, dbe tistillatory nature of the
target motion. This have little practical importance thioug

The functionsM (n) and N(n) in Equation (11.1) are plotted against the sam-
ple size (Ankersen 2002). The procedure is therefore to coenfpquation (11.1) and
read off the number of runs needed to gain the confidence.
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Figure 11.1: lllustration of the initial orbitak = 0.1 locations for thés00 simulations.

11.2 Attitude Control

A conservative approach is taken, where the requiremeatspit symmetrically such
thatd = 1.5deg andd = +0.1 deg/s. We assume that the estimated mean is zero,
w=0.

We select @5 % confidence interval to be(.1 deg and).01 deg/s. We can now
evaluate the two functions farandé.

For6:
0.1\2 0.1\2
M(n)=(14-=) =114 and N(n)=(1--—=) =0.87 (11.2)
1.5 1.5
leading ton = 480.
Foro:
0.01\72 0.01\?
M(n) = (1 + —) =121 and N(n)= <1 — —) —0.81 (11.3)
0.1 0.1
| Results | Mean | o |
0. (deg) —8.6-1073 | 84-1073
0,(deg) —1.0-1072 ] 5.7-1073
0. (deg) 3.3-1073 | 4.1-1073

wy(deg /s) | —4.2-107° [ 1.3-1073
wy(deg /s) 3.4-107% ] 6.2-107%
w,(deg /) 1.3-107° | 4.0-107%

Table 11.1: Statistical results d500 simulations for each state variable.
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Figure 11.2: Histograms illustrating the density functions of the valés in the attitude MC
simulations. The larger variance on the y-axis is caused layger gravity gradient disturbance
torque.

leading ton < 200. We select to perforri00 runs.

We see from Figure 11.1 that the orbit is fairly evenly codeog 500 simulations.
The statistical results are listed in Table 11.1 and can belgaid to be very well inside

Y—Z x=—500 [m] Y—Z x=—493 [m]
0.6 0.6
0.4 0.4 -+
0.2 0.2
o o
—0.2 —0.2
—o0.4 —0.4
—0.6 —0.6
TR —o0.2 o 0.2 0.4 TR —o0.2 o 0.2 0.4
Y Y
Y—Z x=—26 [m] Y—Z x=—20 [m]
0.6 0.6
0.4 0.4
0.2 0.2
o o
—o0.2 —0.2
—0.4 —0.4
—0.6 —0.6
e —0.2 0.2 0.4 %2 —0.2 0.2 0.4

<0
<0

Figure 11.3: Trajectory passage through the cross section y-z plane pl8dmtss; just before
the pulse, ats, just after the pulse, ats just before the pulse and at theend of SK
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Figure 11.4: Histograms illustrating the density functions of the vaks in the position MC
simulations ats

the specifications.

In Figure 11.2 is shown the estimated density functions hedlensity histograms
for the full state vector elements.

The attitude on the x and z-axis are a little skewed compardukty-axis, which is
more normal distributed.

The attitude rate shows the same pattern. The apparent siribdtions for x and
z-axis are due to the behavior visible in Figure 8.5 also,rertee rates distribute around
2 different means. This is predominantly caused by the dead bathe PWM in the
propulsion. The larger gravity gradient disturbance tergn the y-axis causes less
operation close to the dead band, hence a single normabdisbn.

Overall it can be concluded that the assumptions of norynalé well respected and
valid conclusion can be drawn from the set.

11.3 Position Controlss to sy

The requirements change as a function of the distance solee fge more stringent
one of the arrival at, which is+1.0 m. The departure is less, so we choose in between
a band of+0.5 m. The sample size computation is according to Section 1THis
means that the estimated standard deviati@sis- 0.5.

We select &5 % confidence interval to be0.05 m. This leads taV/(n) = 1.2
and N (n) = 0.8 inserting into Equation (11.1) and gives= 310, which means we
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Figure 11.5: Histograms illustrating the density functions of the vaks in the position MC
simulations ak4

selectn = 400. As for the attitude the calculations for the rate lead todemans so not
detailed any further.
The computations will be based upon data as follows

e SKatsz during600 s

e A sample right afteks; in Figure 7.10
e A sample right beforess in Figure 7.10
e SKats, during600 s

All computations are performed with respect to the mearetargptionr,., see also
Figure 3.6. From Figure 5.1 we can writg +s,, = r, + X givingx = rg; + Sp, — I'r,
which is what we use here.

The random distribution is very similar to the one shown igufe 11.1. In Fig-
ure 11.3 we see the penetration of the trajectory at the foeations in the y-z plane.
They are slightly more spread at the far distances, but ajl well inside the specifica-
tions.

In Figure 11.4 we see the histograms and their estimatedaidalistributions which
fit very well for the positions and the x-axis velocity. Thdaaties for y and z have
a tendency to grow on the sides. This is caused by the constdiné target velocity
profile which also caused the box like appearance in Figure. 9.

Finn Ankersen, September 12, 2011



234

Verification and Evaluation

S3 831
Mean o Mean | o
x(m) —500.1 | 9.7-107 " —494.0 1.3
y(m) —13-107%2 | 1.1-1077 1.6-1072 | 1.1-107°
z('m) 36-10% | 1.8-1071 6.2-107% | 25-10°"
#(mfs) | —1.6-107* | 2.1-10°2 1.8-10°1 [ 1.5-10°2
g(m/9) | —2.2-107° [ 3.8-10°° | =3.2-10°* [ 3.9-10°°
2(mls) 9.7-107° | 45-107° 1.9-107° [ 471077
532 S4
Mean | o Mean | o
x(m) —262 | 7.1-10°7 —20.0 | 1.7-1071
y(m) -34-10°196-107% | —2.3-107° | 9.4-10 2
z('m) —24-1002]13-100" | -68-107* | 1.4-10 ¢
#(mls) 20-1071 | 6.0-10* 1.1-107* | 1.7-107°
y(m/s) | —2.1-107° [ 3.8-10° | —1.7-107° | 3.8-10°
2(mfs) | —2.0-107° | 44-1077 57-107° | 421077

Table 11.2: Statistical results of00 simulations for each state variable at thivcations.

In Figure 11.5 we still see the nature of a normal distributid he side lobes are
more pronounced as the oscillatory signals dominate motieeasensor noise is much
less at this short distance.

All results nevertheless show excellent performance witterg small spread and
good performance all around the elliptical orbit. The meams standard deviations are
summarized in Table 11.2 and they fit well expectations.

—o.0z

—o.0a -\

—o.06

—o.o8

6
b

—o.os

Y-z x=0 [m/s]

Figure 11.6: The docking performance in the y-z plane for an axial distaotx = 0 m. It
shows the relative positions and velocities, which haveireqnents of£0.1 m and+0.02 m/s

respectively.
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Figure 11.7: Histograms illustrating the density functions at dockingthie y-z plane and the
velocities. The lower two plots show the radial densitiesrfrthe center of the docking port,
which are Rayleigh distributions.

11.4 6 Degree of Freedom Controé, to Docking

The requirements from, until docking are considered to vary in a linear manner be-
tween the two points as described in Section 2.4.2 and TalBemnd 2.7. The number of
simulations will, as earlier, be based upon Section 11.tladequirements at docking.

We select &5% confidence intervall to be0.005 m for the3o requirement 06.1 m.
This leads toM (n) = 1.1 and N(n) = 0.9 inserting into Equation (11.1) and gives
n = 1100. For the relative attitude with = 0.2 deg and &8¢ requirement ob deg, we
getM(n) = 1.08 and N (n) = 0.92 leading ton = 1200. The rates are all leading to
less runs, so we will seleet = 1200 for the MC analysis to follow. The computations
will be based upon data as follow

e Station keeping at, during100 s
e Approach to docking with a velocity @f.05 m/s

e Orbital eccentricitye = 0.1 and sampled as illustrated in Figure 11.1 f@00
samples

In Figure 11.6 we see illustrated the docking performancéfe1200 simulations.
It exhibits very good performance beldw)2 m, which is somé times better than the
requirement. The velocities are well below the requiremmetit a margin of a factor of
3—4.
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Figure 11.8: Histograms illustrating the relative attitude and relatangular rate densities at
docking.

In Figure 11.7 is illustrated the histograms of the data guFé 11.6. The tendency
of the2 maxima for the positions is driven by the triangular motias,defined in Fig-
ure 3.5, of the target docking port. This naturally gives enemmples at the amplitudes.
The velocities are more clean normal distributed. The lower plots in Figure 11.7
provide the radial distance and velocity from the port celite. They mostly have a

Rigid Port Flexible Port
Mean | o Mean | o
y(m) —1.0-10%]73.-100° ] —1.3-107° | 1.3-107 7
z('m) 1.1-107° | 48-107° 80-107% | 1.2-1072
y(mls) —2.7-10° | 11-107° 1.9-107* [ 9.9-10°3
2('mis) —25-10° | 1.1-107% | —44-107* | 9.8-1077
0, (deg -73-100%]129-100" | —=74-107% | 29-107"
0, (deg —25-10% [ 24-100" | —29-10% | 24-107"
0.( deg 22-107° | 251071 2.7-107° | 251071
w, (deg/9 23-10° | 1.4-1072 22-107° | 1.4-1072
wy (deg/9 1.2-107% [ 1.3-10°7 1.2-107% [ 1.3-10° 2
w: ( deg/ 21-107° | 1.3-1072 21-107° | 1.3-1072

Table 11.3: Statistical results of200 simulations for each relevant state variable at docking.
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Figure 11.9: The docking performance in the y-z plane. It shows the re&agtiositions and
velocities, which have requirementso6.1 m and+-0.02 m/s respectively, and the radial distance
from the docking port axis. Orbital eccentricity=sis< 0.7. The lower right plot shows th)000
samples on the plane of the orbits.

Rayleigh® density function.

In Figure 11.8 is shown the densities for the relative atgtand the angular veloc-
ities. They are well behaved and inside the requirementsilyrder of magnitude. We
see also here that the side lobes are more pronounced fartteergasons as earlier.

All the results show excellent performance with very smaitesad and good perfor-
mance all around the elliptical orbit. The mean and standavihtions are summarized
in Table 11.3. We observe that the presence of target poratidms only slightly de-
grade the results.

11.5 6 Degree of Freedom Contrad, to Docking for Large
Eccentricities

This section presents the results from a set of simulationsring the range from a
circular orbit to highly eccentric ones with an eccentyicip toe = 0.7. This is coherent

1if a random variableX = /Y2 + Z2 andY and Z are normally distributed and independent with
similar variance, thetX has a Rayleigh density (Papoulis 1984).
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with the extreme case investigated in the previous robsstaealysis for the RS and RP.
The results are shown in Figure 11.9. In order to reasonabhpte the space at the far
out points20000 simulations have been performed.

11.6 Conclusion

The number of simulations needed to rea®h@ confidence interval has been found for
the different simulations. Full high fidelity non linear sifations have been performed
successfully for the LVLH based attitude, the far and theselRVD phases. All have
performed well and show a performance well inside the spatifin. The worst case
parameters identified in the analysis have been included in the simulations and they
have not shown any problems in the non linear simulations.
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Chapter 12

Conclusion

This chapter provides the main conclusion of the reseandbipmeed in the thesis as well
as it identifies directions of future research for contimraand completion of areas not
covered in this work.

12.1 Conclusion

A general6 degree of freedom GNC system for relative motion betweenespaft on
general elliptic orbits has been developed in this thedi® fbcus is on the rendezvous
and docking problem to the International Space Station ing&bon a non circular orbit,
but not restricted to that. The rendezvous problem has bgaaired and broken down
into the individual maneuvers followed by the requirememtd data used in this work.

Models for external disturbances have been developed &vitgrgradient and dif-
ferential air drag for elliptic orbits. Models for interndisturbances for flexible modes
formulated in a scalable form and liquid sloshing have besrebkbped in detail. Finally
accurate models for all used sensors and actuators havelbeeloped.

The general dynamics between spacecraft on ellipticatolnlaive been derived in the
equivalent form of the Hill equations, the latter restrétte circular orbits. The system
dynamics of coupled periodic time varying differential atjans has been successfully
solved in a closed form solution, which providAd” computations for maneuver and
trajectory propagation in an unrestricted framework. Thiegeneralization in the form
of a state transition matrix, equivalent to the well knowrcalar Clohessy Wiltshire
equations, and valid for any closed Keplerian orbit. Theisoh has been derived such
that for orbital eccentricity = 0, it reduces to the well known solution for the circular
case, leaving unrestricted validity. A set of equations lbeesn developed for general
AV maneuvers as well as the special cases for radial and taalgaaheuvers with their
special properties. Particular solutions have been foanddnstant forces in both local
and inertial frames useful for drag and solar radiation saress compensation during
maneuvers.
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These solutions have been successfully implemented andrdgrated in flight
on the Swedish RendezVous and Formation Flying technolegyohstration mission
Prisma They are operational on the mission, which is the best gahle validation
possible.

In preparation of the control designs an analyti¢degree of freedom coupled rel-
ative attitude and position model has been developed. Thdehwas derived both as
a large and small signal one. This makes the same modelisteuatailable for con-
trol design as well as for large signal simulations. The nhézlgeneral in the sense
of describing the relative dynamics and kinematics linebdtween any two arbitrarily
located points on the spacecratft.

The avionics equipment for rendezvous missions is desteahe a scaleable overall
GNC architecture has been proposed. For on board impletientd the GNC system
a functional software structure has been provided, inolyithe functional interactions
between the higher levels of mode management, measureyséats failure detection
and the control system.

Linear periodic time varying systems have been analyzethfrelative dynamics.
The periodic variations are efficiently analyzed represgnhem as uncertainties in a
robust control analyses framework. This has been perfosuedessfully by means of
LFT models.

Detailed analytical LFT models have been derived for aktvaht uncertainties in
the flexible appendices, fuel sloshing, input gain, delaysss, inertia and the periodic
variation of the orbital rate in the relative dynamics. Thtdr gives as a side result a
generic LFT formulation of matrices with arbitrary elemeof linear quadratic nature.

Algorithms for the guidance for all maneuvers applicablétth position and at-
titude have been derived. The algorithms feature constaexmonential acceleration
profiles, constant speed and hold points as well as combisadif those.

The control designs are based on worst ddsg multi variable robust control. Ro-
bustness is measured by means of the structured singulevator distances far from
the target the closed loop control tracks only the targekihgcport mean motion in
order to save fuel. For short distances up to docking, whécfuires more precision,
the docking port is tracked with respect to both relativeitpms and relative attitude.
The mode switching is considered in a classical manner itk to settle transients.
All controllers have been designed for orbital locatioresel to the perigee, where the
disturbances are larger and the relative dynamics thestagteorder to perform well on
the entire orbit with one controller. This ensures robussredsewhere.

In the far distance parts the attitude control has been dedigith respect to the lo-
cal vertical local horizontal frame and designed by LQG aeeinig a robust performance
better thar).05 deg for all axes and eccentricities. The relative port td@ pwan motion
position control has been performed a%{g, mixed sensitivity design and achieves a
robust performance better thars m at500 m distance and.3 m at20 m for all axes
and eccentricities.

For the final approach, the relative attitude and positiantrod, a6 degree of free-
dom design has been performed as a two degree of freéfdlgrmodel reference con-
troller. This provides a dynamic feed forward control witgrsficant performance im-
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provement for target port tracking. The design has beengorde be robustly fault
tolerant to possible lack of the feed forward control. Thieieeed docking performance
is better thar)).02 m and0.5 deg for all eccentricities.

It has been demonstrated that it is possible by choice ofstotontrol design to
obtain a highly performing GNC LTI system for a LTV relativgrcamics for all ec-
centricities. The designs all have RS and RP witralues well belowl over the whole
frequency spectrum. This is an important conclusion agitiples a framework for sim-
pler systems, than time varying controllers, for proximmtgneuvers in elliptical orbits.
The results obtained in this thesis will also be applicalblé beneficial for planetary
exploration sample return missions as well as to formatiindlmissions.

From the performed research it is recommended to utilizeasrfor relative mea-
surements which can provide also the relative velocitigswasuld further enhance the
performance.

12.2 Future Research

During the course of this project several areas have beetifige, which will require
further research as it could not be accommodated withinreresources and the scope
of this project.

Regarding control it would be interesting to establish therwlaries of position ac-
curacy that can be achieved with the present approach, aaloliss when need be for
the time varying nature to be included in the synthesis. hteommended to quan-
tify the performance increase, which can be achieved imotudncertainties during the
synthesis. It can be interesting to investigate, if the@ig performance increase using
Linear Parameter Varying control or Model Predictive Cohtonsidering the increased
complexity. The former would feature a controller with bded time varying matrices
ensuring similar performance around the orbit as it wouldumetion of the parameter
variations. The latter would feature an optimization basenitroller with a receding
horizon capturing the parameter variations. In additiozai perform constraint based
optimization accounting for e.g. actuator saturation.

Regarding the relative dynamics it is recommended to devekpressions foAl
maneuvers accounting for the particular solution contidvuand functional approxi-
mations of the intractable integrals identified. A partamudolution for a constant force
in a frame attached to the tangential velocity vector wowddbneficial for drag com-
pensation. Expressions with no singularities 40+~ 0 would enhance one particular
solution for both circular and elliptical orbits.

These are issues that will further the contributions of piégect to space application
GNC systems for relative control as well as enhance the dpeélsolutions for relative
dynamics between spacecratft.
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Appendix A

Detailed Derivation of Relative
Motion Dynamics

This chapter will contain all the details and intermediatkglations in order to derive
the general equations of the relative motion, which are oe¢red in Chapter 4.

A.1 General Differential Equation System

This section deals with the details in connection with dagvthe linear equations of
relative motion.
A.1.1 Jacobian Matrix Elements

The elements of the Jacobian matrix in Equation (4.8) wiltbaved here. As vectors
are defined as column vectors the Jacobian matrix becomesl(@¥i):

991 .. 9q1
8301 8303
dg(x) | . .
dx : . :
993 ... O9g3
Ox1 Ox3

We will initially find the diagonal elements of the Jacobiavhere we define =
[ra, 7y, 72T @andr = |r| = (2 + 72 +2)2. For elementi, j), wherei = j, and using
Equation (4.2):

Ofq(r; - 3 2
T
= —p[r =]
2
H i
_ —T—g{l—ST—Q] (A1)

Finn Ankersen, September 12, 2011



244 Detailed Derivation of Relative Motion Dynamics

For elements, j) wherei # j and it shall be noticed that is not a function of-;:

9 fg(ri) _s
grj = —p|=gOE g ) T2y
= — K [_37‘_57‘irjj|
o HoTiT
= 355 (A.2)

We will now rewrite Equation (4.8) and insert Equations J4(8.1) and (A.2) and that
r =1Ty.
£y (re) = £(re) = 55 Ms
t
where part of the Jacobia¥l is

2
r r? i
2
TyT T, Tyl
M= | 305 1-33 375 (A-3)
TeTy TzTy _ 3T
3 = 3 ;= 1 3rf

A.1.2 Rotating Frame Elements

Now we will compute the individual terms of Equation (4.18)hich is repeated in
Equation (A.4) for clarity.
d*3s* d*s*  dw

W—i—wx(wxs)—i—wa 7 +EXS +§MS=E (A.4)

Expressed in the target frame we getfpandw

0 0
ry = 0| andw = | —w
—r 0

The terms of Equation (A.4) become

—wz
wXxs" = 0
wx
—w?z
w X (wxs") = 0
—w?z
wz
d*s*
w X = 0
dt .
Wi
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A.2 Conic Sections 245

A.2 Conic Sections

For the sake of completeness, we will derive and solve thargaordinate equations
for the motion under a central gravitational field for a plamation. This solution will
be needed to find the general solution of Equation (4.15)ruitrary elliptic orbits.

We will present the 2 differential equations directly preeel in polar coordinates
(Symon 1979), where the first line in Equation (A.5) is for temtral force acting along
the radius vector, defined with Equation (4.1), and the sgdioe in Equation (A.5) is
in the direction of the increasing anglewhere no force is acting.

mit —mr> = F,
420 = 0 (A.5)

and the second line of Equation (A.5) reformulates to

(309) -

The differential is a constant, which is known from Equat{dri3)

r20 =h
. h
0= 2 (A.6)

We will now change the independent variable to becéraad inserting Equation (A.6)

dr drd@_h_Qﬁ

@ " A1
and
d*r o d*r df sdrdr
_— e e __ 2 Y
2 e i
d2r dr\?
_ 722, 4T 50 5O
= h*r 102 2h*r (d@) (A.8)

Inserting Equations (A.7) and (A.8) into Equation (A.5) ébiger with Equation (A.6)
we get

Finn Ankersen, September 12, 2011



246 Detailed Derivation of Relative Motion Dynamics

i —rh% = —,ur_2

d6?

and multiplying through withh —2r* we obtain

o 2
h2r*4ﬂ — K20 <%) —rh2rt = —ur*2

d*r 1 ? 2 2
2 2r~ (@) —r=—ph~*r (A.9)

1
u

To simplify further we will change variable o, wherer =

dr 9
@ = —U
dr  drdu _odu
2
do  dudo de
d?r du\? d*u
Z o3 2 22
“ <d9> TR
Inserting into Equation (A.9) we now obtain

2 2 2
2u~3 (Z—Z) — u72271; —2u (—uQZ—Z> —u "l = —ph T2

rearranging terms and multiplying through with,? we get

d*u _

This is the well known oscillator and the solution to Equat{é.10) becomes

u(f) = Acos(0 — 0p)+ ph™?
—_——— ——

homogeneous particular

and back substituting(6) = r~1(0) gives

1
uh=2 4+ Acos(0 — 6)
h2M71
= A.11
1+ Ah?2p~—1tcos(6 — 6p) ( )

r(d) =

0y is arbitrary as it only determines the orientation and netshape of the orbit, so
0p=0
_ p
r(®) = 1+ e cos() (A12)
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where

p = hQ/.L_l
e = ARt

See also (Ankersen 1999).

A.2.1 Conic Sections Elliptical Case

A few needed properties specific for elliptical orbits wid derived. For elliptical orbits
we also have thai = a(1 — £2) (Symon 1979), where is the major axis.

The true anomaly angular rate in Equation (A.6) can, by imsgiEquation (A.12)
andh, be expressed as a function of the true anomaly as

0(0) = \/pEgu + e cos(h))? (A.13)

and by direct differentiation of Equation (A.13) the trueoaraly angular accelera-
tion yields
6(0) = —2e 12 sin(0) (1 + € cos(6))? (A.14)
p

The speed at any point in the orbit can be found from the faadtttie energy in the
system is constant. The specific energy per mass e+ + exin iS the sum of the
potential and kinetic energies. The potential energyis = — % and the kinetic energy
iS epin = 307

v? W

= — — = A.l
¢ 2 r (A-15)

The total specific energy can be found from data at e.g. thiggmrwhere the true
anomaly is zeroy = 1 andh = /zip = vr. Inserting into Equation (A.15)

oo P+ e)? p(l+e)

2p? P

and after some manipulations
7]

2

Inserting Equation (A.16) into Equation (A.15) and solvifog v, it gives the general
expression for the elliptical orbital speed

(A.16)

v_okE__ B
2 r 2a
2 1

V=W (— — —) (A.17)
rooa
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Forr = a Equation (A.17) gives the circular orbital speed anddor oo it gives the
speed for a parabola and the escape velocity.

Finally the orbital period will be determined. The area ofdlipse isS = mab,
whereb = av/1 — £2 is the minor axis. The area swept for a small angtéSs= %erH

and per time it becomes
ds 1 ,d0 h
— === == A.18
at 2t 2 (A.18)
which is constant in Equation (A.6). Integrating over a fediriod 7" the area isS =
%T = mwab. Inserting the expressions for the constants and rearmgntie periodl’

becomes
b 2 /1_ 2 3
T=22% —o7 2 E _on /L (A.19)
"

h 277«//1@(1 —€2)

A.3 General Solution

The intermediate calculations leading to the final solusicmto be found in this chapter.

A.3.1 Differential Equations Domain Change

Equation (4.24) is found as follows

d2a d2a (dO\°> dad6
a2 W(%) 49 dt?
wQ@_F%d_w
do? " do dt
,d*a dw da
Yz Y0 de

w?a” + ww'ad’ (A.20)

The derivative of Equation (4.22) becomes

dw
w =Y
= dilg (k*(1 + e cos(6))?)
= 2k*(1+4ecos(f))(—esin(h))
= —2ek?psin(6) (A.21)

Finding Equation (4.26) from the second row of Equation$jvie obtain as follow
Y+ kw%y =0
2,1

w2y + ww'y + kwiy =0
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3

(K?0*)%y" — 2ek?0sin(0) (K 0%)y' + k(K*0*)2y = 0
and after some algebraic manipulations one obtains
oy" —2esin(f)y’ +y =0 (A.22)
Finding Equation (4.27) from the first row of Equation (4.4 get

.. . 3
F—wlr—2wi—wz+kw2z=0

2// 2

+ww's — Wiz — 2022 — ww'z + kwiz =0
w2z +ww'(a' - 2) + (k‘aﬁ — W)z — 2% =0
(K*0%)%a" — 2ek?0sin(0)(k*0%) (2 — 2) + [k(k*0®)ko — (K*0%)Jx — 2(k*0%)*2" = 0
and after some rearrangement of terms one obtains
oz — 2esin(f)a’ + 2esin(0)z — e cos(f)z — 202" =0 (A.23)
Finding Equation (4.28) from the third row of Equation (4) W& get

5 — w2z + 2wi 4 wx — 2kw?z =0
w22+ ww's — we + 2020+ ww'r — 2kwiz =0
(k?0%)%2" — 2ek?0sin(0) (k?0°) (2" + ) + (k*0%)? (22" — 2) — 2k(k*¢?) (ko)z =
and dividing on both sides witfk?o?) and then by(k?0) we obtain
07" —2esin(0) (2’ + ) + 022 —2) —22=0
Expanding the parenthesis and substitutingsfon thez term gives

07" — 2esin(0)z’ — 2esin(f)x + 202" — (3 +ecos(f))z =0 (A.24)

The general transformation for one component of EquatidBOi e.g. o has the first
derivative as
/ / !
o =0x+ o
/
/

o =Za+ or
0

1 /
x = 2 (o/ - %a) (A.25)

as in Equation (4.32) and the second derivative becomes
I/ZQI/$+Q/$/+Q/Z‘/+Q$/I
Q!E” —ad = QN{E o QQ/{E/
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o’ =a — 2 \_90% (0/ - Q—a) (A.26)
0
For the third row of Equation (4.34) we obtain as in Equatib37)

07" = —20'2" — 20’z — 202" + (2 + 0)2

0
/ / / 2 /
P (7’— 57> L <o/— ga) +(2+0)21
o 0 0 0 o o
1 / /
fy”:Q—7—2ga—2a'+2ga+(2+g)z
0 o o o
/!
2
7//:_20/4_9 +o+ ~
1" 3 !
Y= -y -2« (A.27)
o

A.3.2 Elements of Homogeneous In Plane Solution
We will now find the result of the under brace in Equation (4.56
N = o cos —psin
X' = 0" cos —p' sin — ¢’ sin —p cos
and inserting as defined in Equation (4.31) we get, writirg@tfargument only when

double angle

N = —¢cos? +2¢ sin® — cos —e cos®

N = —2¢ecos(20) — cos

Back substituting we obtain

N 4 (4= 3)A

[

—2¢e cos(26) — cos +40 cos —3 cos

—2¢ cos(26) — cos +4 cos +4¢ cos? —3 cos
2¢(2 cos® — cos? + sin?)

= 2

(A.28)

We will here calculate Equation (4.58) by inserting into Btion (4.57) using also Equa-
tion (4.31)

f 3
k1(2(0cos —esin?)p™2 + 20sin® o 3%e) + ko2 +4— = =0
0
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2

3
E1(207 " cos —2ep™ 2 sin? +-2c0 % sin?) + ko2 +4 — = =0

o
2k cos +2ckop+40—3=0
2kq cos +2eky + 2koe? cos +4 + decos —3 =0
(2K + 4e + 2k2e?) cos +2ekz +1 =0 (A.29)

A.3.3 Wronskian

The Wronskian in Equation (4.60) becomes
W = @19y — ol
= osin{3e%(¢'sinJ + pcosJ + gsinJ’) + ¢’ cos —psin}
— (o' sin +pcos)(3e%psin J + o cos —2¢)

= 3e%p?sin? J' + 20 sin +2¢ep cos —p? (sin? 4 cos?)
3e% sin? —2¢? sin” +2¢ cos +-2¢% cos? —1 — &2
= &2sin® +e%cos? —1
= 21 (A.30)

cos? —2¢ cos

A.3.4 Particular Solution Integrals

The solution to Equation (4.68) becomes
—SE/Jg'dG = —3¢ Jg—/.]'g}
= 3e :J 1/d0

[ 1
= -3¢ |Jg— 59]

1, 1
= =3¢z — =0
3e _29 J 5 }
B 3 3
= 5c0 J+ 259 (A.31)
The solution to Equation (4.69) becomes

/(gcos—Qe)dQ = /((1+Ecos)cos—2s)d9

/ (cos +e cos? —26) df

. 0  sin(20)
sin +& (5 + 1 ) — 20

1
sin — 350 + € sin cos (A.32)
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We now add Equations (A.31) and (A.32) to get the integrdtiie

3 3 3 1
/gpgdG = —5592.] + 569 + sin—560 + 55 sin cos

1
—gegQJ + sin(1 + 3¢ cos)

3 1
—EegQJ + 5(2 + £ cos) sin

1
= —2592,] + 5(1 + o) sin (A.33)

To find the particular solutiory,, we insert Equations (4.45), (4.59), (4.66) and (4.70)
into Equation (4.65) and obtain

-2
e,
ez -1

2ke ) 3 1 .
0p = —_11 {gsm (—§EQ2J+ 5(1 +0) sm)]

1
[(3€2QSiDJ + pcos —2¢) <—2—5g2>}

2
= 3 a_l : [g sin((o + 1) sin —320%J) + (3c%psin J + o cos —25)%]

k 1.
= QL {92 sin® +psin® 4+=0° cos —292]
ez —1 €

28

1
= lg {Qsin2—|—sin2+—92 cos —29]
— €

o2
ko,

1
= — _p|psin® +sin® +=p(1 + € cos) cos —2p
g2 -1 €

ke . 1
oy = 52—_119 {_Q_’_Slnz_i_g(l—f—gcos)cos}

k 1
= 2(“ 0 {—1 —ecos+1+ —cos]
es—1 €

ke, 1— &2

= cos
217

= — k::l 0 cos (A.34)

A.3.5 Integration of o’
Computation of Equation (4.75)

ka .
o =2k, osin+ <k72 — Tl) 20c08 +ko, — 4ky,e + 6k7252gs1nJ
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ka ka .
o =2k, osin+ <k72 - 51 ) 20 cos +T15 — kyye — 3k, + 6kypc?psin J

ko :
o =2k, osin+ <k72 . Tl) (20cos —¢) — 3ky,e(1 — 2epsin J) (A.35)
Equation (4.76) becomes

/gsind@ = /(1+6cos)sind9

= /(sin +& cossin)df

/sindQ—i—s/sincosdG

— cos —6/—sincos do

1 2
= — COS —85 COSs

1
= —5(2 cos +¢ cos?)

5o+ 1)cos (A.36)

Equation (4.77) becomes

/(29 cos—¢g)df = /(2(1 + £ cos) cos —¢)do
= /(2 cos +2¢ cos® —¢)dh
= /(2 cos 42¢ cos? —e(cos® + sin?))df

= /(2 cos 4-¢ cos® —e sin?)df

1

: 1 1.
1 sin(260) — 59 + 1 sin(26)

1
= 2sin+e¢ {59 +

1
= 2sin+§6 sin(260)
= 2sin-+esincos
= (14 o)sin (A.37)
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Equation (4.78) becomes
/(1 — 2epsin J)df = /d9 - 2/sgsian9
=0+2 / 00’ Jdb

=9+2/Jg’d9

—0+2 {Jg—/J’gda}
1

=9+2{Jg—§/da]

=0+2Jg—0
= 0%J (A.38)

A.3.6 Differentiation of ~
For~/(0) it is easier to differentiate Equation (4.82) to obtain Bipra(4.84)

Y (0) = koo sin+ocos) + k3(o' cos —psin) — 3kse(o' sinJ + gcos J + gsin J’)
7'(0) = ky[—esin® +(1 + € cos) cos] + kz[—e sincos —(1 + € cos) sin]
—3kye [(0' sin+ocos)J + osin J'|
Y(0) = kalcos(0) + € cos(20)] — k3[sin(6) + £ sin(20)]
1
—3kae | (cos(0) + € cos(20))J(0) + R0 sin(0) (A.39)

A.3.7 Transition Matrix ®, Determinant

We will now find the determinant of Equation (4.88) using thstfcolumn for elimina-
tion and leave out the argument for convenience

det®y = psin(2pcos —¢) (—35%) + 3p cos(cos +¢ cos(26)) — 4osin(sin +esin(26))
o

—2(20 cos —¢)(cos +¢ cos(20)) + (sin +esin(26))3psin —&—35%29 sin g cos

= —pcos® —psin® —pe cos cos(20) — pe sin sin(20)

+2¢ cos +2¢” cos(20) + 3¢ sin”

3 .2 .2

= —p— pecos” +pecossin® —2pe cossin

+2¢ cos +2¢2 cos® —2¢% sin? +3¢2 sin?
= —0— pecos +2¢cos +&°(2cos® +sin’)
= —1—ecos—ccos—&2 cos® +2¢ cos +2¢% cos? +¢% sin?
= -1 (A.40)
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A.3.8 Transition Matrix ®, Inverse

We will now find the cofactors for all6 elements ofb in order to determine the inverse

matrix. We find the minors ofp, and later transpose the adjoint matrix and divide
by det ® to obtaintI>g1 (Ogata 1970). Here we will not write all the intermediate
calculation for the minors\/;;, as they are fairly trivial trigonometric manipulations,

but the first line followed by the result.

M11252—1

Moy = —(0+ 1) cos(2¢cos —¢) <—3€?) + 3(o + 1) sin(cos +¢ cos(20))

+ 3(sin+esin(26))(—(o + 1) cos) + 35%29 sin(p + 1) sin

o+1

My = 3¢ sin

Ms; = —(p+ 1) cospcos <—36g) +2(0 + 1) sin(cos +¢ cos(26))
0

+ (sin+esin(26))2(—(o + 1) cos) + BE?QSin(g + 1) sin
M3z = (0 + 1)esin
My = —3(p+ 1) cos pcos +4(p + 1) sin g sin

+2(20cos—¢€)(0+ 1) cos—3(o+ 1) sin gsin

My = 2 — e cos

Moy = _35%(%) cos —¢) + 3(sin +esin(20))

62
Mgg = 3sin <— + 1)
0

Mss = —3¢ 22 o cos +2(sin ¢ sin(26))
o

M3z = (0 +1)sin

Mys = 3pcos —2(2p cos —¢)
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Mys = 2 — pcos

M13:0

Moz = —35?2@ sin —3(cos +¢ cos(26))

Moz = —3(e + cos)

Mss = —SEgQ sin —2(cos +¢ cos(26))
0

Mss = —((p+ 1) cos+e)

My3 = 3psin —4psin

My3 = —osin
M14 =0
My = —2psin(sin +e sin(26)) — (cos +¢ cos(26)) (20 cos —¢)

M24 1—3@—82

M3y = —psin(sin +esin(260)) — o cos(cos +€ cos(26))
M3y = —0*

My = psin(2pcos —¢) — 2psin p cos
Myy = —€epsin
We now know that the elements of the inverse become
. = A
7 det A

We will insert all the minors, transpose and find the adjoimtn®. For convenience
the resulting inverse matrix will be multiplied through tvit—1) in both numerator and
denominator and(6y) = oo.

Ay = (1) My

1—¢? 35%3‘1 sin(fo) —(00 + 1)esin(fo) 2 — poe cos(bo)
at__ 1 |0 -3 (5 n 1) sin(fo) (00 + 1) sin(6o) 00 cos(Bo) — 2¢
ot =
e —3(e + cos(6o)) €+ (0o + 1) cos(6o) —oosin(bo)
0 e 4300 — 1 —03 €00 sin(fo)
(A.41)
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A.3.9 Transition Matrix ® Determinant

We will now find the determinant of Equation (4.85) using thstfcolumn for elimina-
tion and leave out the argument for convenience. The seanncha is used for finding
the sub determinants.

20cos —¢ 3(1 — 2epsin J)

det® = psin —(sin+esin(26)) —3¢ {(cos+scos(20))J+ %}

0 CoS 2 —3eosinJ

~2esin —(sin +¢esin(20)) —3¢ {(cos +ecos(20))J + %]

(A.42)

+(cos +¢ cos(20)) ‘ Qo8 2 —3eosinJ '

20cos—e  3(1 —2epsinJ)

All terms without.J gives the earlier resui? — 1 from Equation (4.89), so we will now
continue only with the terms containing We will omit most of the trivial expansions
and trigonometric manipulations.

osin [Be?(cos+e cos(26))J —6ep cos(cos+e cos(20)).J —6eo sin? J —6¢2psin sin(26).J]
—2psin [—3=p cos(cos +e cos(20)).J — 3epsin® J — 3% psinsin(20).]]
+(cos +¢ cos(20))(—3e%psin J) =

J [3629 sin cos +3e%p sin cos(26) — 32 psin cos —3e®psin cos(20)] =J-0=0
(A.43)
Hence there is no contribution to the determinant from.therms in®.

A.3.10 Transition Matrix ® Inverse for Particular Solution

We will now find the minors for alb elements of® in order to determine the inverse
matrix needed for the particular in plane solution. Agaimhinor is the result obtained
in Section A.3.8 plus the terms holdinfy which we will take advantage of to simplify
computations. Here we will not write all the intermediatéca&ation for the minors
M;;, as they are fairly trivial trigonometric manipulationsitithe first line followed by
the result.

—(g+1)cos (0+1)sin 30°J
My, = det osin 0 cos 2 — 3epsinJ
cos+ecos(20) —(sin+esin(20)) —3e [(cos +ecos(20))J + %]

Now collecting only the terms withl we get

M31(J) = —(0+1) cos [—3e 0 cos(cos +e cos(26)) ] —3ep sin? J —3¢2psin sin(26)J|
—osin [—3e(o + 1) sin(cos +¢€ cos(20))J + 3¢% sin J + 3e0? sin(26) J |
+(cos +e cos(20)) [—3eo(o + 1) sin® J — 30° cos J|

Mgl(J) = —3Q2J
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Using the earlier result the complete minor yield

M3, = (0 + 1)esin —302J (A.44)
—(o+1)cos (o0+1)sin 30°J
My = det osin 0 COS 2 — 3eposinJ

20sin = 2pcos—e  3(1 — 2epsinJ)
Now collecting only the terms withl we get

My (J) = 3e%0(o+1)cossinJ + 6e0?(p + 1)sin® J — 3e0%sin J
+60* cossin J — 6e0?(0 + 1) sin® J — 60* cossin J
My (J) = —3epsinJ

Using the earlier result the complete minor yield

My =2 —ep(cos+3sinJ) (A.45)

Below arbitrary elements will be marked withxaas they have no contribution due to
the structure.

1 * .
M3o = det 0 0 COoS 2 — 3epsinJ
0 —(sin+esin(20)) —3e [(cos ++e cos(26))J + =t

Now collecting only the terms withl we get

Msy(J) = —3epcos(cos+ecos(20))J — 3epsin® J — 3e2psinsin(20).]
Mgo(J) = —3e0®J
Using the earlier result the complete minor yield
M3 = (0 + 1) sin —3¢0?J (A.46)
1 * *
Myo =det | O 0 CoS 2 —3eosinJ

0 20cos—e 3(1—2¢epsinl)
Now collecting only the terms withl we get

Myo(J) = —6e0®cossinJ — 3e2gsinJ + 60 cossin J
Myo(J) = —3e%psinJ

Using the earlier result the complete minor yield

My = 2e — pcos —3e%psin J (A.47)

1 * .
M3z = det 0 osin 2 — 3epsinJ
0 cos+ecos(20) —3e [(cos -+ cos(20))J + 2
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Now collecting only the terms withl we get

Mss(J) = —3epsin(cos ¢ cos(20)).J + 3epsin(cos +-¢ cos(26))J
Using the earlier result the complete minor yield
M3z = —((0+ 1) cos+e) (A.48)
1 * *

Mys =det | 0 psin 2 — 3epsinJ
0 2psin 3(1—2epsinJ)
Now collecting only the terms witll we get

Mys(J) = —6eg?sin®.J + 6ep?sin® J
Mys(J) = 0
Using the earlier result the complete minor yield
M3 = —psin (A.49)

The last two minors are unchanged from earlier, but we vgtltlhem here for the sake
of completeness.
M3y = —¢0° (A.50)

Myy = —epsin (A.51)

A.4 Coefficients for Transfer of Duration One Orbit

The denominator coefficients of Equation (4.138) fo= T, 6 = 6y, 0 = oo and
J = k2T are found.

d P13

13 = kQ—Q%(
di3 = [—(00 + 1)esin(0p) — (00 + 1)(00 + 1) cos(fp) sin(0o )+

(00 + 1)(g + (00 + 1) cos(6p)) sin(bp) — 3Q§Q§J]W

2
dyy = — ST (A.52)
1—¢2
I
dis = kQ—Q(Q)(‘I"I'o )14
drg = [2 — goe cos(8p) — (o + 1) cos(bp) (00 cos(8p) — 2¢)—

. . 3 . 1
00 31n(90)(go + 1) sm(90) + 3@85 SID(GQ)J] m
_ 3poesin(6p)T

d14 1_ 82

(A.53)

Finn Ankersen, September 12, 2011



260 Detailed Derivation of Relative Motion Dynamics
1 -1
dog = kQ—Qg(‘i"I’o )a3
das = [(00 + 1)eosin(fo)* + 0oz + (00 + 1) cos(6o)) cos(fo)—
1
_ i 2
(2 35@0 bln(@())‘])g()] k2Q%(1 B 62)
dos = 7359(1 Sm(gO)T (A.54)
— &
doy = L(«M»*)
24 = o2 0 )24
das = [00sin(0y) (00 cos(fp) — 2¢) — 02 cos(B) sin(fp)+
. . 1
2e00sin(fp) — 3&% 05 sin(0p)*J] PR =)
: 2
dyy — _ 2e8in(00))°T 511“(902)) r (A.55)
— &
A.5 Combined State Space Model

The Equations (4.16) and (4.18) will here be combined inte system by defining a
state vectok, = [z,v, 2, 4,9, 2]T andF = [F,, F,, F.]".

A.6

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
W=kt 0 o 0 0 2w || L 0o o|F
0 —kw? 0 0 0 0 0 = 0
—& 0  w?+2kw? —20 0 0 0 0 =
(A.56)
%, = Ayx, + B,F| (A.57)

Integral Details of Section 4.8.1

This section contains the detailed solutions to selectejials including the interme-
diate calculations.
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Integral/; from Equation (4.189) becomes

o 1 E N ,
() = /0 Wd@: F(E)E = (1 — £2) 2/EO(1—ECOS(E)) dE
E
I5(E) = g/ (1+£2cos(E)? — 2ecos(E))dE
Eo ;
I3(E) = [E+52 —FE+ —m(zE)) —2gsin(E)]
Eg
Is(E) = 7% [ ;6 +1)(E - Ey) + ;s (sin(E) cos(E) — sin(Ey) cos(Ep))
—2¢(sin(E) — sin(Ey)] (A.58)

Integrall,, , from Equation (4.192) becomes

B % sin(0) B % sin(6) 1
L0 = [ Saprow= [ S </e @<r>2‘“> “

E
I,,(E) = (1—-¢)7'1 — 62)—%/ sin(E)(E — esin(E) + C1)dE

Eq

5

E
I, (E) = (1—52)—5/]5 (Esin(E) — esin(E)? + Cy sin(E))dE

5 1.1 g
I, (E) = (1—52)_5{sin(E) — Ecos(E) — €(§E ~1 sin(2E)) — Cy cos(E) .

I,,,(E) = (1—52)—%[sin(E)(1+% cos(E))—E(%

+E0(§ +cos(Eo))— C1 (cos(E) —cos(Eo))} (A.59)

+cos(E)) —sin(Eo) (145 cos(Fo))

A.7 Integral Details of Section 4.8.2

This section contains the detailed solutions to selecttdjrals including the interme-
diate calculations.
Integrall,,, from Equation (4.202) becomes using the substitutions aBgns (4.173)
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and (4.177)
0 in(0)2 E
I, (0) = /0 bg (gg = [ fEar
V1=eZsin(E) 2
I, (E) = /E M(l — 52)%(1 —ccos(E)) " HdE
oo ()
2y—2 e 2 ov_3 |1 1 . E
L) = = [ - -2 2[§E—Zsm(2E)]EO
I, (E) = %(1 — 273 [E — Ey — (sin(E) cos(E) — sin(Ey) cos(Ey))] (A.60)

Integrall,., from Equation (4.204) becomes

Lses (0) = /ewdaz Ef(E)dE
0o Eo

0(0)?
E
I, (E) = (1 —62)*2/13 sin(E)(cos(E) — ¢)dE
©
I, (E) = (1— 52)_2/]2 (sin(E) cos(E) — esin(E))dE
10 5
Ley(E) = (1 —&%)72 {5 sin(E)? + ECOS(E):| ;

I, (B) = (1 —¢%)72 {%(sin(E)2 —sin(Ep)?) + e(cos(E) — cos(Ep)) [(A.61)

Integrall,., from Equation (4.206) becomes adding and subtraciin@)

L) =[O0y L[ o) ()

0(0)? € Jo, o(0)?

B 1 [ sin(@) — sin(@) — esin(6) cos(f)
Iscz(g) - _E~/00 Q(G)Q do

B 1 % sin(@) — sin(8)(1 + € cos(h))
I, (0) = e /00 (14 ecos(6))? a0

B 1 esin(6) esin(0)
Lea(6) = g2 /90 {(1 +ecos(d)? 1 —l—scos(@)} a0
L) = —- ! In(1 o
se(0) = = {m +In(1 + € cos( ))]90
Lal®) =~ [3+1u(e)— (o +1u(en) ) (A62)
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Integrall.,, from Equation (4.207) becomes

B ¥ cos(6)? B E
L) = [ = [ s
E
L,(E) = / (cos(E) — £)2(1 — & cos(E))~2(1 — £2)~?
Eo
(1 —ccos(E))3(1 —¢ )%(1 —ecos(E))HdE
E
I, (E) = (1-¢% %/ (cos(E )2dE
B
I,(E) = (1-¢* _%/ cos(E)? + % — 2 cos(E))dE
Eo
E
I, (E) = (1—¢?)°% {2E+ —sin(2F) + e?E — 2¢sin(E)
Ey
L, (E) = (1—¢?)3 K; ) (E — Ey) — 2(sin(E) — sin(Ey))
(bln(QE) — bln(QEQ))] (A.63)

Integrall., from Equation (4.208) becomes

B 7 cos(0) 1 9 ¢ cos(h) 1 O ccos(h)
R e A ) A e

1 [%1+ecos(d) —1 1 1
I(. = — _— = — 1 _—_—
1 (0) € /90 1+ € cos(f) 40 € /90 < 1+ €COS(9)> d0
1 2 1—¢ \\1’
Ic1 (0) = g |:9 - ﬁarctan <\/T—€2 tan (§)>:|90
1 2 1—e¢ 0
Icl (9) = - |:9 90 ﬁ {arctan <17_62 tan (5))

— arctan (% tan <%>) H (A.64)
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Appendix B

Detailed Derivation of Attitude
Kinematics, Dynamics and
Environment

This chapter will contain all the details and intermediadkalations in order to derive
the general equations of the attitude motion, which are oe¢ied in Chapter 5.

B.1 Direction Cosine Matrix

This section will summarize the DCM for an Euler(3,2,1) tma, as the individual
matrices will be needed, recalling that 1 is x-axis, 2 is jsaand 3 is z-axis. The
rotation from a frame: to a frameb, such that

vy = RpaVa (Bl)

wherev, is a vector projected on the axes of thdrame andv, is the same vector
projected on the axes of theframe. The DCM is derived by a rotation around the
third axis ofa followed by rotations around the second and first axes of ésalting
intermediate frames. We can therefore write 3hiedividual matrices as follows.

Rya(0) = R1(01)R2(62)R3(63) (B.2)
Ry (0) =
1 0 0 cos(f2) 0 —sin(6) cos(f3) sin(fs) 0O
0 cos(01) sin(61) 0 1 0 —sin(f3) cos(f3) O
0 —sin(61) cos(61) ] [ sin(62) 0 cos(62) ] [ 0 0 1
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266 Detailed Derivation of Attitude Kinematics, Dynamics ad Environment

We will use thats; = sin(6;) andc¢; = cos(6;) wherei = 1,2, 3.

C3C2 €253 —S52
Rba(O) = 8182C3 — €183 818283 +cC1C3  S1Co (B4)
C182C3 + 8183 (18283 — S1C3  C1C2

where@ = [01,0,,05]" is the rotation angle about the respective axis. The inverse
rotation is found from the transpose of the orthonortnalatrix R;, such thaR,;, =
R},

B.2 Attitude Dynamics Linearization

Here we will find the first Jacobian matrix of Equation (5.5high is a linearization of
Equation (5.2) in which only the cross product is a functibw@nd all other terms give
zero in the differentiation. Let us defipdw) as

plw) =w x Iw (B.5)
and the Jacobian from Equation (5.5) becomes

81_&1 B 8_N B O(w x Iw)
dw  Ow ow
_ Op(w)

Ow

which expanding the last term gives

wy (Iz1wy + Isowy + I3sw,) — wy(Ioiwy + Ioowy + Tozw.)
p(w) = | w:(Inwy + Lowy + Ni3ws) — we([31wa + 32wy + I33w;) (B.6)
wa (Io1wy + Inswy + Iozw,) — wy(l11we + Towy + T13w;)

1A matrix A is called orthogonal ifA AT is a diagonal matrix, and is called orthonormalAifAT is an
identity matrix. For an orthonormal matri4, we haveA—! = AT,
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B.2 Attitude Dynamics Linearization 267

We will now differentiate Equation (B.6)

Opz
B, I31wy — Iw,
Opz
GPz I31wy + 2130wy + I33w, — Ipow,
Ow, ’
= Is1wy + 239wy + (L33 — I22)w.
Opx
8Zz = I33wy — I21wy — 2wy — 2123w,
= (I33 — Iz2)wy — Io1wy — 213w,
0,
By Inw, — 2131w, — I3owy — I33w;
Owy
= ([11 — Is3)w> — Isowy — 2I31w,
dp,
Py Ipw, — I3ow,
Owy
0,
Py _ Twy + Towy + 213w, — I33w,
Ow,,
= (I11 — Is3)wg + L1owy + 2113w,
Op-
8—530 = 2Is1wy + Inowy + Iozw, — I11wy
= (I2o — I1)wy + logw. + 2151w,
Op.
A Iow, — I11w, — 2112wy, — T13w,
Ow,
= (fo2 — I11)wy — I13w, — 2110wy
Ip-
— Iysw, — Iy
9. 23W 13Wy

Collecting terms we can now write the Jacobian matrix as
olw
ow
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I31wy —I21w, Isywe+2I30wy+(I33 —I22)w. —Iziwe+ (I3 —I22)wy —2I23w,
—|—2I31we —I32wy+ (111 — I33)w= —I32wy + 112w, (I11 —I33)we +Towy + 213w,
2I01we+(Too — It )wy+Tozw.  (To2 —I11)we —2@2wy — 13w Togwy — T1zwy
(B.7)
Inserting the vector for the operating poing; = [0, —wj, 0]" we obtain the following
. I 21 I33 — I
8]:(4) 31 32 33 22
% = Wo —132 0 112 (88)
Iso — 11 —2I12 —I13

B.3 Target Port Linearization

We will derive the Jacobian of Equation (5.29), using that sin(6;), ¢; = cos(6;) and
i = x,y, z and the DCM from Equation (B.4). It is observed that all telcosataining
s, Or s, become zero and will not be written down. For simplicity wadeer;; = g.

0gz
0. = (CosyCz + 8252)Tar, + (CaSz — 825yC2)Tar, = SyTa,
xT
09z
0. = —SyCzTdt, + SzCyCzTdt, + CaCyCzTdr, = CyTdr, — SyTdt,
Y
09z
90, SGldt. — (828y8s + CaC2)Tat, + (82C2 — Co8yS2)Tat. = —Tat,
z
9g
y
= (CuSySz — 82C2)Tdt, — (S28ySz + C2C2)Tat, = —Tat,
00,
gy ~0
oo = —SyS:Tdt, + SzCySzTdt, T CxCySzTdr, =
00,
agy:ccr + (S28yCs — CaS2)Tar, + (CxSyCs + S282)Tar, = CyTar, + Syr
90 yCzTdt, zSyCz xoz)ldt, zSyCz x9z)Tdt, yldty, yldt,
z
Jdg. B
= CeCyTdt, — SzCyTdt, = CyTdt,
00,
99
= —CyTdt, — SxSyTdt, — CaSyTdt, = —CyTdt, — SyTdt.
a0,
9. 0
a0,
and the Jacobian becomes in matrix form
af‘dt Syrdty CyTdt, — SyTdt, _Tdty
20, — —Tdt., 0 CyTdt, + Syrar, | = Bar, (B.9)
¢
cyrat, —(cyra, + Syrar.) 0

For the velocity linearization we need to find the Jacobiatheflast term in Equa-

tion (5.32) and for convenience we defifg = g(6:,w:). We will compute the cross
product and the DCM as

Wty Tdt, — Wt Tdt, :|
= (B.10)

.
g(01,wit) =R' | wi, T, — Wi, Tar,
Wty Tdt, — Wty Tdt,
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CaCy(WiyTar, —We,Tdey, )+ (5e8yCz —Ca82) (Wi, T, —WiyTde, )+ (Cadycz +8282) Wiy Tdr, — Wiy, Tdt,, )
CySz(Wiy T, —We, Taty )+ (Se8ysz+CaC2) (Wi, Tat, —wiyTdt, )+ (Casysz —S2¢2) (Wi, Tdt, — Wty Tdty)
=8y (Wty Tdt, —We, Tty )+ 8aCy (Wi, Tat, — Wty Tdt, )+ CaCy(Wiy Tat, —Wey, Tdt, )

The partial derivatives become

09a SyT
= dt,
Owy vty

09
Owy

09a CyT,
= - dt,
Oow., vo ity

= CyTdt, — SyTdt,

o =
89@;
Ow,
o =
99
0wy,
99
Ow,
99
Ow,

=Cy rdty

= —SyTdt, — CyTdt,

= Syrdty

and the Jacobian becomes in matrix form

af‘dt Syrdty CyTat, — SyTdt, —Cyrdty
8w = —’I"dtz 0 ’I"dtm = Bdt2 (Bll)
t
cyrat, —(Syrat. +cyrar,)  SyTar,

B.4 Quaternions

This section will provide the basic equations and relatiftmrsquaternion operations
and how they can be derived from the fundamental definitioitse definition of the
guaternion can be found in Equation (5.10). All DCM and quates here describe the
rotation from a frame A to a frame B, where B is rotated witlpexg to A.

B.4.1 Euler(3,2,1) to Quaternion

The direct transformation from Euler angles into a quater@ian be found by finding
the quaternions for the intermediate Euler rotations. )24l rotation the first rotation
is around the z-axis, and in that case the eigen axis for tladioa is directly the z-axis
and that intermediate quaternion will lee= [cos(%),0,0,sin(%)]". Subsequently
we find the intermediate ones for the other two rotations. id the final quaternion
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they are multiplied together by means of the quaternioniplidation defined in Sec-
tion B.4.4.

0 = cos(2) cos(%) cos( %) + sin( %) sin( %) sin( %)
0 = sin( %) cos(22) cos(%) — cos( %) sin( %) sin( %)
= cos( 2 sin(22) cos(%) + sin( %) cos( %) sin( %)
s = cos(2) cos( 2 sin(%Z) —sin( 2y s Wy eos( %) B12)

B.4.2 Quaternionto DCM

The DCM can be expressed by means of the Euler eigen axis ancbthtion an-
gle, (Junkins & Turner 1986). From that and the half anglaiities and the constraint
that the quaternion length is one, we can derived the equédithe DCM (Junkins &
Turner 1986).

1-2(¢3+¢3) 2(q1g2 + qoa3) 2(q1q3 — qoq2)
R=| 2(qq2—qogs) 1—-2(¢i+a3) 2(q203+ qoq) (B.13)
2(q1qs + q092)  2(q2q3 — qoq1) 1 —2(q} +q3)

B.4.3 Quaternion to Euler(3,2,1)

The Euler angles can be found directly from the elementssob@M in Equation (B.13)
by the well knows relations

0, = arctan(g—ig) = arctan(%%)
0, = arcsin(—Ry3) = arcsin(—2(q1g3 — q0q2)) (B.14)
92; = al"ctan( g—ﬁ) = arctan( %M)

B.4.4 Quaternion Multiplication

We can define a sequence of rotations by multiplication ofrilividual quaternions as
e.g. a rotation from a frame to a framec via an intermediate fram@., = qcQve =

q”q’. By means of the quaternion product (Junkins & Turner 1985fan writeq,., as

@ -4 —-¢ -4 e
1 1 1 1 !
_ q1 [’ls) q3 —ds q1 B.15
dea @ ¢ 9@ qf a5 (8.15)
a9 4 q@ @
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B.4.5 Quaternion Conjugate

The conjugate of a quaternion means the rotation in the digpdisection, which can
either be obtained by the opposite sign of the angle or trengigtor is opposite. From
the definition it follows directly as

qo

= U (B.16)
—q2
—q3

B.4.6 Vector Transformation

We can use the frame work of the quaternion to perform a veosformation from
one frame to another as described in Equation (B.1) using.DC

We want to performv, = Ry,v, Which we can do as, = qu,v,q;,, where
v/, = [0,v[]T and it shall be noted that, is not a quaternion, but only written in that
notation. We first computb = qa = qu,v/, as

bp = —qiai — qa2 — q3a3
b1 = qoai+ qzaz — q2a3

B.17
by = —gza1+qoax +qraz ( )
bs = qea1 — qraz + qoas

and finally we computegq;, for the vector part only

vy, = biq} + bogqi + bsqs — bags
vy, = bagy —b3q] +bogs + b1g3 (B.18)
Vb, = baqy + baqi — b1g5 + bogs

B.4.7 Quaternion Rate

We will now go through the principles leading to the quatemdifferential equation
for the kinematics, transforming a vectarto a vectorb asb = Ra anda = R'b.
Differentiatinga, which is time invariant gived = 0 = R™b + R"b and we can write
b asb = w x b. As we look from the rotating frame changes sign and definig as

a skew symmetric matrix the cross product can be formulatedraatrix multiplication
as(R" —RQ)b = 0. Recalling thaf2" = — and after some manipulations we arrive
at the kinematic differential equation for a DCM

R=-QR (B.19)

From Equation (B.19) we can write the individual differehg&quations for the elements
of thew vector as a function of the DCM elements and their derivatitaserting the
elements of the DCM in terms of quaternion elements from EqugB.13) and using
the differential of the relation? + ¢7 + ¢3 + ¢ = 1 and combining rows we can write
the result as shown in Equation (5.11).
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B.5 Gravity Gradient Linearization

We will linearize Equation (3.5) around the nominal attiéwusf 8o = [0, 6, 0]". Repre-
sented in the body frame we can write the gravity gradiemjiteras follows

—sin(d,) —sin(d,)
N, = 37% sin(6;) cos(d,) | x I | sin(6,)cos(6,) (B.20)
cos(6;) cos(6y) cos(6;) cos(6,)

Using the notation of trigonometric functionsas= sin(6;), ¢; = cos(6;), t; = tan(6;)
andi = z,y, z, we can write Equation (B.20) as follows after some manitihas

2 2 .2 2.2 2
Iyicgeysy — Ipacysycyy — Iascycy — Isicasycy + I328305 + Iszcasac

Yy
N, = 37% —l1cacysy + Ilgcwsmcz + Ilgcmcfl — I318§ + I328.8yCy + I33C5Cy 8y
2.2 2 2
I180cy8y — Ilgsmcy — Ilgswcmcy + Iglsy — Ixa5,cy8y — Iazcrpcysy

(B.21)
The constant term in the Taylor series becomes

M Iglsycy — I23612
Ng(O) = 37“_3 (133 — Iu)sycy + Ilgcy — 13183 (522)
12183 — IQgSyCy

We will now find the Jacobian matrix for the operating pdgt

ON,
89T = IglcySySq; - 122032;(0?12: - S%) + 21230?2101‘5'%
xT
— Iz1cp8ycy + 213203527% + 13303(03: —57)
= (33 — Iz2)c; — Inisycy
ON.
8936 = Dica(c) — s5) 4 2Iaace S0y sy — 2Ia3chcy s,
y
_ 131837(03 - 512/) — 2Izas5eysy — 2033Cz500y8y
= Iy (032/ — 832/) - 21233ycy
ON, —0
00,
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N,
a0,

oN,
20,

ON,
00.

ON.
20,

ON.
29,

ON.

00,

2,2 2 2
L1 sgcysy + Ilgcy(cx —s5) — 2I13¢:8:C;

+ I32¢5yCy — 1335,CySy

2
Ilgcy + I305,¢y

2 2 2
—Iice(c, — 8;,) — 2L12c2820y8yy — 2113505y

— 2I315y¢y + Iggsm(cfl - 312;) + Iggcm(cz — 532/)

(133 — 111)03 =+ 1115221 — 2([13 + Igl)sycy
0

2 2(.2 2
Illcwcysy - 2I125xczrcy - IlBCy(Cm - sx)

— Inacpcysy + I235,Cy5y

(Ill — Igg)sycy — 1136221

2 2 2
Insm(cy — sy) + 211985cySy + 21135,C5yCy

2 2 2 2
+2I15ycy — Inas.(c,; — s,) — lazcz(c, — s)

2 2
2[218ycy — Igg(cy — Sy)

0

The final linear equation is written in Equation (3.7).
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Appendix C

Spacecraft Data

This chapter will contain all the specific data for the chaset target spacecraft, as well
as the data for avionics.

C.1 Target Data

The data for the ISS is valid for the configuratibéA. The mass is
m; = 451310 kg (C.2)

and the inertia
127902 3047 7802

I, = 3047 98997 1343 | 10° kg m? (C.2)
7802 1343 192066

The numerical data for the ISS flexible modes for the attitmd¢ion of the docking
port is listed in Table C.1.
With respect to the geometrical frantg, the COM is located at

ry = [—4.94,-0.21,4.40]" m (C.3)
and the center of the docking port is located at
ryar = [—35.84,0,4.14]" m (C.4)

The cross sectional profile of the spacecraft along the hgdy axes i967, 776
and3510 m? respectively.

C.2 Chaser Data

The data for the ATV spacecratft is as follows, where the mass i

me € [14000; 20200] kg (C.5)
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‘ | 1%'mode | 2"%mode | 3"%mode |
Frequency Hz| [0.12;0.18] | [0.48;0.72] | [1.0;1.5]
Angular
a, deg 0.023 0.02 0.004
oy deg 0.023 0.02 0.004
o, deg 0.02 0.02 0.0027
@, degls 0.022 0.075 0.03
&, deg/s 0.022 0.075 0.03
&, degl/s 0.02 0.075 0.02
Linear
xm 0 0 0
ym 1.0-1072 | 3.8-1073 | 7.0-107*
zm 1.0- 1072 3.8.-1073 | 7.0.-107%

Table C.1: ISS flexible modes for the motion df;, with respect taF .o as Euler(3,2,1) angles
and the linear motion. Frequencies are uniformly distebuncluding phase angles between the
axes. The angular and linear data are uncorrelated.

with uncertainty of:320 kg. The inertia matrix is

[41000; 62000] 1600 1600
I = 1600  [82000; 143000] 1000 | kgm®*  (C.6)
1600 1000 [82000; 143000]

= +2500kgn” andI.,, = I... = £1300kgnr. All
uncertainties are uniformly distributed and 8revalues.

With respect to the geometrical franfg,. the COM location is defined in Sec-
tion 3.2.2 and the center of the docking port is located at

with uncertainties of,

[

rydc = [8.5,0,0]" m (C.7)

The cross sectional profile of the spacecraft along the kgl axes i$1, 40 and
40 m? respectively.

| Specification | Fine Mode | Coarse Mode]
Max. rate 2 deg/s 30 deg/s
Max. drift after ground calibration 10 deg/h 10 deg/h
Global drift after in flight calibration3o) | 0.3 deg overl hour | 1 deg ovel0.5 hour
Scale factor 1073 1073
Angular rate noise3o) 6 deg/h atl0 Hz 0.03 deg/s

Table C.2: GNC relevant specifications for the gyro assembly unit DTG INoise is Gaussian.
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| Specification | Data |

Max. angular rate fine: 2 deg/s
coarse’ deg/s

Stars 3—-10
Bias (30) lateral:5.56 - 103, axial: 1.11 - 10~2 deg
Low freq. error Bo) lateral:4.17 - 103, axial: 1.61 - 10~2 deg
Noise Equivalent Angle3o) lateral:1.00 - 10~2, axial: 5.28 - 102 deg
When2 deg/s< rate < 5 deg/s §o) | lateral:2.78 - 10~2, axial: 8.47 - 10~2 deg
Sampling 5 Hz
Time tag <400 s
Delay 1 s nominal
Dazzling recovery 10s

Table C.3: GNC relevant specifications for one unit of SED-16 star sergoise is Gaussian.

C.3 Gyro Data

The gyro performances along the spacecraft axes are shotabie C.2.

C.4 Star Sensor Data

The numerical data for one star sensor unit is specified iteTals.

C.5 Chaser Flexible Modes Data

The flexible modes are expressed in terms of eigen frequerdaenping and the modal
coupling factors. The modal data for one flexible solar paerovided in Table C.4
and is valid for all four panels used.

C.6 Propulsion Data

The only propulsion system on the chaser spacecraft is atdrrassembly consisting
of 28 thrusters, which provides the needed forces and torquesuiitertainties for the
thrusters can be found in Table C.5. The location and oriiemtaf the thrusters is listed
in Table C.6.
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Spacecraft Data

Mode# | 1] 2 | 3] 4] 5 ] 6]
Description out in out in out in
fr Hz 0219 | 0.280 | 1.288 | 1.706 | 3.421 | 14.77
Ce 0.001 — 0.005
Limz kgm | —4.472 0] 2.59% 0] —1.507 0
Lijzmy kgm 0 0 0 0 0 0
L. Kgm 0| 4.438 0 [ 2.427 0 [ 2.040
Ly, kgn 0| 29.24 0| 5.933 0 | 2.668
Ly kgm? 0 | 0.0519 0 0 0 0
Ly kgn? 29.22 0] —6.132 0| 2431 0

Table C.4: Modal data and participation factors for one flexible solangl presented in frame

Fp and for being either in or out of the y-z plane. The data isoVdr all four panels.

| \ Data | Distribution ]
Nominal thrust 217N
MIB 0.025s
Rise/fall time 00 %) 20 ms
Bias on thrust [—3 %; 2 %] 30 Uniform
Noise on thrust +3.1% 30 Gaussian
Repeatability +2.5% 30 Uniform
Thrust orientation < 1 deg half cone| 30 Uniform

Table C.5: Thruster specifications.
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| | | Location m | Thrust direction |
# | Type X y z X y z
1 | acceleration| 0.235 1.563 1.563 0.9659 | —0.1830 | —0.1830
2 | roll 0.610 1.298 1.843 0.0 0.0 —1.0
3 | brake 0.813 1.431 1.673 | —0.5906 | —0.2760 | —0.7583
4 | brake 0.856 1.601 1.577 | —0.5906 | —0.2760 | —0.7583
5 | roll 0.505 1.815 1.298 0.5 | —0.8660 0.0
6 | acceleration| 0.235 | —1.563 1.563 0.9659 0.1830 | —0.1860
7 | roll 0.505 | —1.815 1.298 0.5 0.8660 0.0
8 | brake 0.856 | —1.601 1.577 | —0.5906 0.2760 | —0.7583
9 | brake 0.813 | —1.431 1.673 | —0.5906 0.2760 | —0.7583
10 | roll 0.610 | —1.298 1.843 0.0 0.0 —1.0
11 | acceleration| 0.235 | —1.563 —1.563 0.9659 0.1830 0.1830
12 | roll 0.610 | —1.298 —1.843 0.0 0.0 1.0
13 | brake 0.813 | —1.431 —1.673 | —0.5906 0.2760 0.7583
14 | brake 0.856 | —1.601 —1.577 | —0.5906 0.2760 0.7583
15 | roll 0.505 | —1.815 —1.298 0.5 0.8660 0.0
16 | acceleration| 0.235 1.563 —1.563 0.9659 | —0.1830 0.1830
17 | roll 0.505 1.815 —1.298 0.5 | —0.8660 0.0
18 | brake 0.856 1.601 —1.577 | —0.5906 | —0.2760 0.7583
19 | brake 0.813 1.431 —1.673 | —0.5906 | —0.2760 0.7583
20 | roll 0.610 1.298 —1.843 0.0 0.0 1.0
21 | rotation-z | 7.025 2.185 0.522 0.0 | —0.9726 | —0.2325
22 | rotation-z | 7.025 2.130 0.715 0.0 | —0.9480 | —0.3183
23 | rotation+y | 7.025 0.1 2.2445 0.0 | —0.0446 | —0.9990
24 | rotation+y | 7.025 -0.1 2.2445 0.0 0.0446 | —0.9990
25 | rotation+z | 7.025 | —2.130 0.715 0.0 0.9480 | —0.3183
26 | rotation+z | 7.025 | —2.185 0.522 0.0 0.9726 | —0.2325
27 | rotation-y | 7.025 —0.1 | —2.2445 0.0 0.0446 0.9990
28 | rotation -y 7.025 0.1 | —2.2445 0.0 | —0.0446 0.9990

Table C.6: GNC relevant specifications for the propulsion system. Tast direction is the
direction of the produced force vector. All data is with respto the geometrical franig,..
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Appendix D

GNC Detalls

This chapter will contain all the specific non central mathéoal details needed for the
GNC.

D.1 Simplex Optimization

The detailed functionalities of linear programming andhagex algorithm will be based
directly on the material from (Press, Flannery, Teukolskye&terling 1986), but the ba-
sic structure is recalled here in order to be able to forreudaid solve the present prob-
lem in a new manner. The general problem isfoindependent variables,, ..., zy

to maximize the functior and

z = a1 + apaT2 + - + aNTN (D.1)
subject to the main constraints
$120,$220,"',$N20 (D2)

and simultaneous subjectdd = m; +ms + mg additional constraintsn; of the form
with b; > 0

a1 + appra + - +ainey < b; (D.3)
andi = 1,---,mq. Nowms constraints of the form
aj171 + ajors + - +ajyrn > bj >0 (D.4)
andj =mq +1,--- ,m1 + mo. Finally mgz constraints of the form
ap1T1 + agoxo + -+ apyry = b >0 (D.5)
andk = my +mo + 1,--- ;m1 + mo + mg. The various coefficients can have either

sign or be zero.

The fact that thé’s are all nonnegative is by convention as one can alwaysphult
through with—1. The number of constraint® as such can be smaller, equal or larger
than the unknowng/.
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| | Time | Location | Position | Speed |

|V||t3:t2+§2;—5]‘|84 |S:S4+$2(t—t3)|$:$2|

Table D.1: Lists all equations needed to calculate the profile illusttan Figure 7.10.

| [ Time | Location | Position | Speed |
1 5t:t37t2=% rx=1t—1t1
— /(g — 55 4 2 o — satsa | 53 = s 5 Lgz2 | &= & d
t1=1/5(5a—s3+53) | s31 =232+ 22 | s=s31 +10+ 5da” | $ =331 +da
VI t3=t1+@ S4 S=84+52(t7t3) § = $9

Table D.2: Lists all equations, different from Table 7.5, needed ta@wiatte the profile in Fig-
ure 7.10, whers; is not reached. This means phase Il is omitted @ané- t2, ss1 = ss2 and
$31 = aty from I. Observe in Il thatl is a deceleration andl < 0. Typicallyd = —a.

D.2 Guidance

This section provides the guidance profile, when there iskhat$oints,. Parts IV and
V disappear. Only the parts different from those in tabl&sand 7.6 are presented here
in Tables D.1 and D.2 respectively. Observe that= s, andts = t4 = t4;.

D.3 Linear Fractional Transformations

This section will derive and present the LFTs which are usethé project. A more
comprehensive treatment and properties can be found irnubayle & Glover 1995).

Let us first just consider the transfer mathkin Figure D.1, where the input and
output can be scalars or vectors.

v = Mr
and written as a 2-port system we get
vy M1 Mo ry
= D.6

D.3.1 Lower LFT

We want to find the relation from; to v; closing the lower loop vi&. We can write
the following set of equations

vi = Myr; +MpKvs

D.7
vy = Moir; + M2 Kvy (0.7)
and after some algebraic manipulation we obtain

vi = {My; + MppK(T — MgpK) 1My, bry (D.8)
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1 L vi, A
M
ra V2
r Vi
M
K B — ——
r2 V2
(a) Lower LFT (b) Upper LFT

Figure D.1: The LFT for a lower respectively an upper interconnection.

We now define the lower LFT as

Fi(M,K) £ My; + MK (I - Mg K) ™' My, (D.9)

D.3.2 Upper LFT

The upper LFT can be derived in a similar manner as the lowe@sn

Ve = Malavi Mo (.10
and after some algebraic manipulation we obtain
vy = {Ma + Mo A(I— M1 A) "Mz}, (D.11)
We now define the upper LFT as
Fu(M,A) 2 My + My AT — M A) "My (D.12)

D.3.3 Inverse of LFT

For deriving the inverse of the LFT, both upper and lower, vk meed the matrix
inversion lemma, stated in Lemma D.1.

Lemma D.1
The inverse of the following matrix expression can be foateual as

(Ap +AAA) T = AT — ATTA(ALAT T A + AT TTALAT (D.13)
where the proof is given in (Bernstein 2005).
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Considering the following partitioned matrix

Hyy Hip
H= D.14
{ Hy; Hoo } ( )

for which the inverse LFT will be developed in the followingcsions.

D.3.3.1 Inverse of Lower LFT

The lower inverse LFT is formulated in Lemma D.2.

Lemma D.2
LetH be a partitioned matrix as in Equation (D.14), then the ie&becomes

F(H,K)~! = F(Hy, K) (D.15)
where ) .
H7, —H'H
Hy, = o 11 12 ] D.16
i { HoiH' Hao — HotH'Hoo ( )

Proof: We take the inverse of Equation (D.9) and formulate it in teafEquation (D.13),
recognizing the associated elements.

Hy, +H-K(I-HpK) 'Hy | ' =
U 12 ( 22) \/2}]

A A, As Ay

H ' - H'H K (Hy H ' H K + (T - HypK)) 'Hy HY! =

H' -H[H K- (Hy — HyH'H»)K) ' Hy H (D.17)
N~ —— N—_——
11 12 22 21

On the right side of Equation (D.17) we recognize the formhe& LFT as in Equa-
tion (D.9) using the indices to map it to Equation (D.16), gthcompletes the proof.
|

D.3.3.2 Inverse of Upper LFT

The upper inverse LFT is formulated in Lemma D.3.

Lemma D.3
LetH be a partitioned matrix as in Equation (D.14), then the irmeesbecomes

EL(HaA)_l = EL(H11,1'7A) (D18)
where

_ Hip — HigHo Hoy  HigHos

H.,; = _ _ D.19
_H221H21 H221 ( )
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W Z W Zo | )

Pt M L 2 G 2 I Wo Q 2o
u_ X Y u_ LY

! Q

@) (b)

Figure D.2: The (a) part of the figure illustrated the concatenation of itk Ts with the combined
LFT shown in (b).

Proof: We take the inverse of Equation (D.12) and formulate it irmierof Equa-
tion (D.13), recognizing the associated elements.

Ho +HoyA(I-H;;A) ' Hyp| 7' =
o+ Ha A1~ HuA)” Hig)
Ay A As Ay

H,; — Hyy Hoy A(H,Hy Hoy A + (I - H A)) ' H o H,, =

H,, —Hy, Hoy A(I - (Hy; — HppHy Hoy )A) ™ HppHy (D.20)
N —— N—_——
22 21 11 12

On the right side of Equation (D.20) we recognize the formha LFT as in Equa-
tion (D.12) using the indices to map it to Equation (D.19),ethcompletes the proof.
[ |

D.3.4 Concatenation of upper LFTs

The concatenation of two LFTs as illustrated in Figure D.@xgressed in Lemma D.4.
Lemma D.4

LetM and G be partitioned matrices as in Equation (D.6). Then the céecated LFT
is

Fu(Q,A) = Fu(G,62)F,(M, 01) (D.21)
where
M1 0 Mo
Q= | GizM21 Gi1 | GiaMo (D.22)

G22M21  Ga1 | GoaMay
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and

5 0
A= { 01 5 } (D.23)

Proof: Using Equation (D.6) we can write the equations¥drandG respectively as

|:Z1:|:|:M11 M12]{W1] and [Zz]:{Gu G12]{W2]
x Mz Moso u y Go1 Gao ble

(D.24)
Eliminating the connecting variabte and after some algebraic manipulations one ob-

tains Equation (D.22) with the input output relationshipstrated in Figure D.2. B
The concatenation of three LFTs is expressed in Lemma D.5.

Lemma D.5
LetM, G andH be partitioned matrices as in Equation (D.6). Then the ctewcated
LFTis

Fu.(Q,A) = Fy,(H,83)Fu(G,02) Fu(M, 61) (D.25)
where
M 0 0 Mis
Gi12Moy G 0 G12Maa
= D.26
Q H12GoaMa1 Hi12Gar Hip | Hi2GeaMoo ( )
H2GooMa1  H22Go1r Hap | H2aGoaMo
and
60 0 O
A=|0 6 0 (D.27)
0 0 3

Proof: The proof is similar to the one for Lemma D.4 applied in two $ecutive steps.
|

D.3.5 Star Product of LFTs

A generalization of the upper and lower LFT is presented enRedheffer star prod-
uct (Redheffer 1959) and used on LFTs in (Redheffer 1960k ifiterconnections are
defined in Figure D.3.

Lemma D.6
LetQ, M andR be partitioned matrices as in Equation (D.6), then the iotemection
structure illustrated in Figure D.3 can be computed as

Vs | _ | Riu Riz | [ 13
[ Vo ] B [ Ra1 Roo ] [ ry ] (D.28)
where
= = ‘Fl(QaMll) Q (l — MllQ )71M12
R=sQM= [ Mo (I = QpuM11)7'Qy v E,,(M,QQ;Q) } (D.29)
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rs Q ]
rq Va
ry: 1V
M|
1 1
o : RE V9

Figure D.3: Star product 0of) andM, whereR = S(Q, M).

It shall be noted thatS(Q, M) depends on the partitioning of the matric®sand M.
S(Q, M) is associative and iQ andM are dissipativet matrices therS(Q, M) is also
dissipative. (Redheffer 1959)

Proof: Using the structure of Equation (D.6) and we have from Figu&thatr, = v,
andr; = v4 we can write

v = Mairi + Maors = Mo (Qairs + Qaora) + Moors (D.30)
and
ry = Myiry + Miors
ry = Mi1(Qairs + Qoory) + Miars
ry = (I—M;1Q2) ' (M11Qairs + Mjors) (D.31)

using the equality constraints of the interconnectionsabinserting Equation (D.31)
into Equation (D.30) multiplying out and collecting terms wan write

va = (Ma1Qo1 + M2 Qao(I — M11Q22) "M11Qa1)rs +
(M21Qaz2(I — M11Qa2) "Mz + Mao)rs (D.32)

The last term in Equation (D.32) we recognize as the upper E{IM, Q22). The first
term we will rewrite as

Mo (I + Qa2(I — M1;Qa2) *M11)Qo; (D.33)

The outer parenthesis of Equation (D.33) can be recognizétearight hand side of the
matrix inversion lemma in Equation (D.13) with a little retirg. The numbers at the
following under braces refer to the index numbers of Equne(i.13).

I +Qo( I —Mj; Qo) 'My; =
~— N
1 3 4 2

1A matrix A is dissipative ifA + A* is negative definite. (Bernstein 2005)

Finn Ankersen, September 12, 2011



288 GNC Details

X [m] Y [m] Z[m]
[0} 0.4 1
0.2 0.5
-200
o 0]
—400
—— COM true -0.2 -0.5
[ Spp true
—-600 -0.4 -1
[0} 2000 4000 0 2000 4000 (0] 2000 4000
Vx [m/s] Vy [m/s] Vz [m/s]
0.3 0.04 0.05
0.2 0.02
0.1 (0] (o}
(0] -0.02
-0.1 -0.04 —-0.05
[0} 2000 4000 2000 4000 (0] 2000 4000
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100 4 20
50 2
10
[o] (]
(0]
-50 -2
-100 -4 -10
o] 2000 4000 (o] 2000 4000 o] 2000 4000
Time [s] Time [s] Time [s]

Figure D.4: The full nonlinear simulation showing the port to psg, motion, the chaser COM
motion, the associated velocities and the fored8) = [—500,0, 0] m andx(0) = 0 m/s

T T Qo (M I ' Qo + I H (M )T =

(I — QM) ? (D.34)

Inserting Equation (D.34) back into Equation (D.33) then&ipn (D.32) can be written
as

va = Ma1 (I — Q22Mi11) ' Qairs + Fu (M, Qaz)r2 (D.35)

This completes the proof of the lower row of Equation (D.Z)e upper row is verified
by the same approach. [ |

D.4 Simulation with Target Flexible Port Motion s3 to
S4

The Figures 9.15 and 9.16 are repeated in this section inésgn.4 and D.5 to show
the difference when the flexible modes of the target dockorg gre used.

It is concluded that in terms of GNC performance there aresabdifferences. The
velocities are clearly noisier as the RVS measures all thievilarations.
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z m1 S, Y—Z plane [m]

4000 ~o 2000 4000 —0.5 o 0.5
Y [m]

v, [m/s] S,,—dot Y—Z plane [m/s]
0.03 0.04 0.05

0.02

0.01

—0.01
—0.02
—o0.02

—0.04 —0.05
2000 4000 o 2000 4000 —0.05 o 0.05

Time [s] Time [s] ¥ [m/s]

—0.03
o

Figure D.5: The full nonlinear simulation showing the true LVLH latefart motions as well
as the relative motion in the cross section y-z plane. Thergpart of the curve is for relative

distance smaller thatD0 m.

D.5 Selection of Controller Type for the Final Approach

This section documents the design of the one degree of fnre@dadel reference con-

troller in Figure D.6. The weights used for this design arésésd in Table D.3.

In Figure D.7 is illustrated the tracking performance of teser port motion at

worst case at the location.

D.6 Simulation with Target Flexible Port Motion s4 to

Docking

The Figures D.8 and D.9 are repeated in this section to shewlifference when the

flexible modes of the target docking port are present for thestacase.

Wo = 0.03
W, =05

W, = e 0.05| 2 |[0.31

W, = 100 | 0.01 | 9.42

Woep = srprr 22 0.31 | 0.63

Table D.3: Summary of all weights used for the one degree of freedom hreflerenceH .

design.
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Wref(s) W(s) 7L

}<
=

W, (s) —22

Figure D.6: Signal based model reference configuration forlthg design of a one degree of
freedom controller.

It is concluded that in terms of GNC performance there aresabpractical differ-
ences. The velocities are clearly noisier as the RVS messlr¢he port vibrations.

Docking Port Tracking at s,(no noise) Docking Port Tracking at s,(noise)
g true o.6

——— Design 1
0.5 Mixed Sens.
1

—o0.05 |/ “\J

180 200 220 240 100 150 200 250 300
Time [s] Time [s]

Figure D.7: Tracking of worst case target port motion for the three aglgrs. Desigril is the
one degree of freedom model reference controller. The pfovicompare the various errors with
the error ofW .. s, which is considered the best possible.
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Figure D.8: The full nonlinear simulation showing the port to peyt, motion, the chaser
COM motion, the associated velocities and control force&e hitial condition issp,(0) =
[~20,0,0]" m ands,,(0) = 0 m/s

v [mi1 Z m] S, Y=Z plane [m]
1 0.2 o0.15
—— dttrue
o.8 —— dc true
o : o.1
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o
0.2 _o.a
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Figure D.9: The full nonlinear simulation showing the true LVLH lategairt motions as well as
the relative motion in the cross section y-z plane. The gpeghof the curve is during the station
keeping ak..
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Symbols and Variables

The symbols used are listed where they are used the first timmbare the same symbol
is used later with a different meaning.

Chapter 1:

None

Chapter 2:

3 orbit eccentricity

1 station keeping point

89 station keeping point

83 station keeping point

$3a station keeping point

84 station keeping point

Chapter 3:

A spacecraft cross sectional area

Ay flexible state space model matrix
A, sloshing state space model matrix
o ISS flexible modes Euler angles for docking port
Qs Rendezvous sensor elevation angle
o sloshing constant

B, flexible state space model matrix
B, sloshing state space model matrix
I} ISS rigid attitude angle for one axis
Brus Rendezvous sensor azimuth angle
Cg ballistic coefficient

Cy drag coefficient

Cy flexible state space model matrix
C; sloshing state space model matrix
Cs sloshing damping constant

d target attitude reversal time
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WSQQE

F
Fbc
Fot

ch
ch
Faq
Fy
Fat
Fato

Yindex
I

I
I
kg
ks
Lindew

lindew

flexible state space model matrix

gyro drift

flexible modes state

force vector

intermediate frame

chaser body frame

ISS body frame

air drag force

chaser drag force

chaser docking frame

differential drag force on chaser spacecraft
target drag force

ISS docking frame

ISS auxiliary docking frame

chaser geometrical frame

ISS geometrical frame

inertial frame

sloshing perturbation force, liquid part
sloshing perturbation force

force vector of the propulsion

local orbital frame (LVLH)

Rendezvous sensor measurement frame on the chaser sftacecra
sloshing perturbation force, solid part
thruster force vector

eigen frequency of flexible mode

sloshing related accelerations

general inertia matrix

chaser inertia matrix

ISS inertia matrix

gyro scale factor

sloshing spring constant

flexible modes modal participation factors matrix
flexible modes modal participation factors vector
empirical function for sloshing

mass/inertia matrix for flexible modes model
chaser mass

modal mass

fuel mass

target mass

solid sloshing fuel mass
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my liquid sloshing fuel mass

1 Earth gravitational constant
Ny gravity gradient torque vector
N, torque vector of the propulsion

ng gyro noise vector

w spacecraft angular rate

wy gyro measured angular rates
R Rendezvous sensor range

R, rotation matrix from nominal panel frame to panel frame
R, rotation matrix from body frame to panel frame

r orbit radius

r unit vector along orbit radius
Tpe location of 7. given in F .
Tyt location of F, given inFy,

Tdc chaser docking port with respect to COM
Tt target docking port with respect to COM
ry target docking port flexible displacement
rqyic  location of Fy. given inF,,

r,q¢  location of Fy giveninFy,

r, target docking port rigid displacement
Tre location of F,.. given inF.

- location of the target pattern given iy,
T'in location of a thruster given iff,.

ry lever arm of sloshing mass;

P atmospheric density

T tank filling ratio

T STR delay

0 true attitude vectofd,, 6,,0.]"

0.  star tracker measured attitude
6., startracker attitude bias
0., startracker attitude noise

u input vector to flexible modes model

v velocity vector relative to atmosphere

Vi target attitude rate boundary

X,x  refersto first axis of a frame

Xy state vector for flexible modes

Xqs ~ Rendezvous sensor Cartesian position vector
X state vector for sloshing

X1 state vector one sloshing mass

Y,y  refersto second axis of a frame
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Y
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Cr

Chapter 4:
A(0)
ACW (7')
A,
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Q
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>TSS
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N
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output vector for flexible modes
refers to third axis of a frame
damping of flexible modé

out of plane transition matrix

out of plane state transition matrix for circular orbits

state coefficient matrix

in plane coefficient matrix

out of plane coefficient matrix

transformed state vector variables/efy, 2]

out of plane state transition matrix

state input matrix

in plane coefficient matrix

out of plane coefficient matrix

integration constant of ()

compensation between linear and curvilinear coordinagtegys
i*" integration constant

matrix to derive equations for the genefsV maneuvers
elements of matrixD

orbit eccentricity

eccentric anomaly

force vector

gravity field force vector

in plane force vector

out of plane force vector

normalized gravity field force vector

integral matrix for elliptical out of plane solution

universal gravitational constant

normalized angular momentum

earlier integral for obtaining second homogeneous in pmhation
integrals of the particular solutions

new integral for obtaining second homogeneous in plangisalu
constant for elliptical orbits

it" integration constant

angular momentum vector

transformation matrix from time domain €odomain out of plane
transformation matrix from time domain @odomain for in plane
intermediate variables

Jacobian matrix

Finn Ankersen, September 12, 2011



313

Chapter 5:
A,
Ag

mass of the Earth

mass

chaser mass

target mass

Earth gravitational constant

angular velocity vector

modulus ofw

p = h?u~! conic section

in plane state transition matrix

in plane state transition matrix for circular orbits
intermediate variables

it" differential equation solution for the in plane solutions
general position vector

chaser inertial position vector

target inertial position vector

function for conic section denominator

relative inertial position vector

orbital period

time

relative time interval

true anomaly

fundamental matrix of homogeneous solution
Wronskian

state vector

position state vector of linear dynamics state space system
in plane position state vector of linear dynamics system
in plane particular solution

out of plane position state vector of linear dynamics system
out of plane particular solution

attitude system matrix
dynamics system matrix
kinematics system matrix
relative attitude system matrix
target attitude system matrix
auxiliary variable

attitude input matrix
dynamics input matrix
kinematics input matrix
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Xt
Yra

Chapter 6:
None

Chapter 7:
A

a
a
a

relative attitude input matrix

relative attitude input matrix

Euler eigen axis

inertia matrix

target attitude frequency

external torque vector

angular velocity skew matrix

angular velocity

angular velocity body frame to inertial frame
angular velocity body frame to orbit frame
chaser attitude angular rate

angular velocity orbit frame to inertial frame
relative attitude rate

target attitude angular rate

angular velocity of operating point
quaternion

rotation matrix

chaser docking port with respect to COM
target docking port with respect to COM
target docking port with respect to COM small signal
port to port distance

phase angle for the ISS attitude motion
time of 1°* amplitude in 1SS attitude
chaser small signal attitude

relative attitude

target small signal attitude

auxiliary variable

auxiliary variable

attitude state vector

target attitude state vector

relative attitude output vector

a system matrix
acceleration

semi major axis
guidance acceleration
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53
S31
532
S4
S41

Tyis
to

t1

to

t3

ty

ty1

t07l

parameter in ellipse formulation
simplex coefficients

arbitrary variable

relative attitude input matrix

relative attitude input matrix

parameter in ellipse formulation
simplex coefficients

guidance deceleration, typically= —a
orbit eccentricity

discrete time state space matrix

thrust size

arbitrary constant

arbitrary constant

it" root

monodromy matrix

total simplex constraintd8/ = my + mso + ms
Earth gravitational constant

guidance exponential braking slope
torque vector from propulsion

the direction unit vector of the'” thruster
p = h%u~" conic section

state transition matrix

orbital radius

constant matrix

atmospheric density

station keeping point

point from acceleration to const. speed
point from const. speed to acceleration
station keeping point

point from acceleration to const. speed
sampling time or period time

Minimum Impulse Bit on time

start of guidance velocity profile
guidance velocity switching time
guidance velocity switching time
guidance velocity switching time
guidance velocity switching time
guidance velocity switching time
guidance SK duration at,

thruster on time
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true anomaly

attitude offset angles

orbital speed

state vector

simplex variable fon!” thruster
performance index

a system matrix

attitude system matrix

a system matrix

solar panel rotation angle

a system matrix

a system matrix

scaling matrix for RS and RP

uncertainty block diagonal matrix in LFT

uncertainty parameter in LFT
uncertainty parameter far
output equation noise
maximum value of control error
orbit eccentricity

discrete time state space matrix
maximum omni directional force
discrete time state space matrix
transfer function matrix

identity matrix and inertia matrix
performance index function
general controller

Kalman filter gain matrix

scaling constant in LFT flexible model

scaling constantin LFT models
scale factor fot uncertainty
feedback gain matrix

factorizing variable for LFT

it" root

arbitrary transfer function matrix
maximum overshoot

matrix index variable

structured singular value
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N o
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plant transfer matrix in robustness formulation
maximum omni directional torque
matrix index variable
observability matrix

orbital angular acceleration
orbital rate lower bound
orbital rate upper bound
state transition matrix
weighting matrix

weighting matrix

sensitivity function
factorizing variable for LFT
singular value matrix in SVD
maximum singular value
minimum singular value
complementary sensitivity function
rise time

settling time

true anomaly

unitary matrix in SVD

input vector

unitary matrix in SVD

state equation noise
uncertainty weighting matrix
exogenous inputs

solution of ARE

state vector

estimated state vector
solution of ARE

exogenous outputs
damping of flexible modé
damping lower bound
damping upper bound

a variable normalized wrt. its maximum value
a system matrix

acceleration

dynamics system matrix

kinematics system matrix
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in plane coefficient matrix

out of plane coefficient matrix

a system matrix

kinematics input matrix

in plane coefficient matrix

out of plane coefficient matrix

a system matrix

a system matrix

scaling matrix for RS and RP

target attitude reversal time

uncertainty block diagonal matrix in LFT
uncertainty parameter fon,.

uncertainty parameter fon,.

uncertainty parameter far

uncertainty parameter in LFT sloshing model
control error

maximum value of control error

orbit eccentricity

force vector from propulsion or system matrix
guidance acceleration force

maximum omni directional force

central controller ir{ ., algorithm
condition number

transfer function frequency response matrix
arbitrary constant

identity matrix and inertia matrix

general controller

scaling constant in LFT models

scaling constant in LFT afa,

scale factor for uncertainty

arbitrary constant

scaling constant in LFT of sloshing model
feedback gain matrix

arbitrary transfer function matrix
maximum overshoot

closed loop cross over frequency

orbital angular acceleration

orbital rate lower bound

orbital rate upper bound

arbitrary transfer function matrix
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plant transfer matrix in robustness formulation
arbitrary transfer function matrix
arbitrary transfer function matrix

target body frame location i,

target docking port with respect 18,
target docking port with respect to COM
spectral radius

maximum value of reference

sensitivity function

station keeping point

station keeping point

complementary sensitivity function

rise time

true anomaly

input vector

robust controller input

weighting functions for mixed sensitivity
exogenous inputs

Riccati equation solution it algorithm
arbitrary transfer function matrix

Riccati equation solution ifi{, algorithm
exogenous outputs

a variable normalized wrt. its maximum value
a system matrix

a system matrix

a system matrix

uncertainty block diagonal matrix in LFT
maximum value of control error

orbit eccentricity

transfer function matrix

arbitrary constant

general controller

feedforward controller for two degree of freedom contnolle

feedback controller for two degree of freedom controller

maximum overshoot

arbitrary transfer function matrix

plant transfer matrix in robustness formulation
maximum value of reference
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Chapter 11:
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g
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Q9 w3

Appendix A:

Appendix B:

a
b

sensitivity function

sensitivity function for two degree of freedom controller
port to port distance

port to port velocity

complementary sensitivity function

equivalent tdT' for two degree of freedom controller
rise time

chaser small signal attitude

relative attitude

uncertainty weighting matrix

weighting functions for mixed sensitivity

state vector

decoupling matrix

interval width for95% confidence

orbit eccentricity

tabular values to determine sample size
number of Monte Carlo runs

variance estimate

standard deviation

attitude

See chapter 4
state coefficient matrix
semi major axis
state input matrix
semi minor axis
total energy
potential energy
kinetic energy
force vector

area of ellipse
orbital period
orbital speed

position state vector of linear dynamics state space system

auxiliary variable
auxiliary variable
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auxiliary variable

auxiliary variable

quaternion

conjugate quaternion

quaternion from frame to frameb
quaternion from frame to framec
quaternion from frame to framec
auxiliary variable

auxiliary variable

DCM rotation matrix

DCM from framea to frameb
intermediate rotation matrix
intermediate rotation matrix
intermediate rotation matrix

target docking port with respect to COM
target docking port with respect to COM small signal
arbitrary vector

vector in quaternion notation, auxiliary
arbitrary vector

ISS flexible modes Euler angles for docking port
ISS inertia matrix

target mass

location of 7 given inFg

location of Fy; given inFy,

arbitrary matrix

Simplex intermediate variables
arbitrary matrix

partitioned arbitrary matrix
arbitrary matrix

partitioned arbitrary matrix
Simplex constraints

arbitrary matrix

arbitrary matrix

input for LFT computations
intermediate points and times for guidance
output for LFT computations
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x;  Simplex constraints
z  Simplex function to maximize
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Accelerometers, 115 COM location, 276
Agena, 1 docking port location, 276
Algebraic Riccati Equation, 141 inertia, 32, 276

Kalman filter, 144 inertia value, 276

linear quadratic regulator, 141 mass, 32, 275
Altitude, 20 mass value, 275
Angular momentum (elliptic orbits), 48  Circular orbitAV
Apogee lift, 14 comparison of V-bar to R-bar, 78
Apollo, 1, 6 expression at singularity, 76
Approach corridor, 3 in plane, 74
ARE, seeAlgebraic Riccati Equation in plane singularities, 75
Argument of perigee, 85, 94 out of plane, 74
Ascending node drift, 13 out of plane singularity, 74
Attitude control, 20 R-bar impulses, 77

nonlinear simulation results, 149 V-bar impulses, 77

relative, 219 Clohessy Wiltshire

stability margins, 148 linear solution, 68, 69
Attitude dynamics differential equations, 67

linear, 102 verification results, 70

operating point, 102 Closing maneuver, 17
Attitude kinematics Cofactors, 54

nonlinear, 102 Collision avoidance, 3
Attitude linear model, 104, 140 Communication, 3

pole variations, 140 Complementary sensitivity function, 145,

uncertainty model, 156 182, 189
Attitude slew guidance, 137 Condition number, 188
Automated Transfer Vehicle, 6 Confidence interval, 21, 229
Avionics architecture, 113 Conic sections, 245

Control6 Degree of Freedom, 207
Berthing, 3, 18 bandwidth, 208
Bilinear transformation, 131, 187 input vector, 209
output vector, 209

Camera sensor, 115 requirements interpretation, 207
Central force, 46 state vector, 208, 209
Chaser data target and sensor data, 208
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Controllability, 208 numerical values, 122
Controller _
attitude, 145 Eccentric anomaly, 89, 96
decoupling matrix, 209 Eccentricity, 247
in plane, 190 Elliptic orbit AV
one degree of freedom model refer-  inplane,80
ence, 289 in plane singularities, 80
out of plane, 186 out of plane, 79 _
two degree of freedom, 212 out of plane singularity, 79
Coordinate systems R-bar impulses, 82
chaser body reference frame, 29 V-bar impulses, 81
chaser docking reference frame, 24:N€r9yY
30 kinetic, 247

chaser geometrical reference frame, 29 Potential, 247
chaser solar panel frames, 30 Escape velocity, 248
inertial frame, 25 ETS-VII, 6
intermediate frame, 26 Euler angles, 103, 265

ISS auxiliary docking reference frame-Uler transformation, 131
o8 Eureca, 7

ISS body reference frame, 27 European Proximity Operations Simulator,

ISS docking reference frame, 28 9
ISS geometrical reference frame, 27, it tolerant control. 212

Iocql orbital frame, 26 Feed forward control, 191, 215
orbitframe, 26 Final approach guidance, 134

Cosmos, 1 . i Final approach maneuver, 17
Coupled attitude and position, 104 Flexible appendices

Coupled port to port dynamic model, 109 4y namic equations in state space form,
Cramers rule, 61 39

finite element model, 37

Debris, 3 N _ general form of model, 37
Decoupling of position and attitude, 210 modal participation matrix, 39
Delay margin, 148 model data, 277

Delay uncertainty model, 163
Departure, 19

Departure maneuver, 19
Direction cosine matrix, 265

pole location, 140

single axis example, 37

uncertainty model, 161
Flight computer, 113

Dissipative matrix, 287 Flight system, 113
Docking, 2 _ Floquet theory, 125, 127, 149
Docking mechanism, 17 Fly around maneuver, 19
Docking port motion model, 107 Focal point, 13
Drag force Fuel sloshingseeSloshing
differential, 36
general, 36 Gaussian, 21
HarrisPriestler, 37 Gemini, 1
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General Solution
verification results, 70
GPS, 4, 16, 114
Grappling, 3
Gravity field, 45
Gravity gradient torque
linear, 35, 272
nonlinear, 35
numerical values, 121
Guidance, 133
attitude slew, 137
exponential braking, 135
exponential braking duration, 136
final approach, 134

In plane uncertainty model, 195
Jacobian, 47, 102, 243

Kalman filter, 8, 143, 144
discrete equivalent, 144
optimal gain matrix, 144
Keplerian orbit, 69
Kinematic differential equation, 271

L'Hospital, 76

Laplace domain, 126

Laplace transformation, 83

Launch, 13

LFT, seelLinear Fractional Transformation

final approach phase plane profile, 134paar Fractional Transformation, 153, 154,

192
impulsive maneuvers, 133
station keeping, 134
with no station keeping at;, 282
Gyro, 115
data, 277
model, 33

H-bar, 27

Harmonic oscillator, 53, 105

Hermes Space plane, 6

Hill's equation, 67

‘Hso Optimal control, 178
~-iteration, 180
assumptions, 179
central controller, 180
estimator, 180
mixed sensitivity, 183, 210, 220
multi variable, 188
pole/zero cancellations, 184
problem formulation, 179
signal based, 212

Hohmann, 15, 16

Homing maneuver, 16

Huber filter, 8

Hypergeometric function, 97

lllumination, 3
Impulsive maneuvers, 73, 133

282
concatenation of LFTs, 285
inverse LFT, 283
lower inverse LFT, 284
lower LFT, 282
matrix with elements ofi;;z% + b;;
form, 197
star product, 286
upper inverse LFT, 284
upper LFT, 283
Linear independence, 60
Linear programming, 281
Linear Quadratic Gaussian, 143, 147, 149,
168
covariance matrix, 143
stochastic processes, 143
Linear Quadratic Regulator, 141
discrete equivalent, 142
guaranteed stability margins, 142
weighting matrices, 142
Linear Time Varying System
asymptotic stability, 125
general, 124
periodic, 125
LQG, seelLinear Quadratic Gaussian
LQR, seeLinear Quadratic Regulator

Man Tended Free Flyer, 6
Matrix
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orthogonal, 266
orthonormal, 266
MC, seeMonte Carlo simulations

Minimum impulse bitimplementation, 130

Minkey program, 7

Mir, 1, 6

Mission management, 113

Mixed Sensitivity, 182

Mode management, 115

Model reduction, 187

Model reference control, 211

Monodromy matrix, 126—-128, 150

Monte Carlo simulations, 229
sample size computation, 229, 233

Multiplicative uncertainty, 152

Nonlinear control, 128

Observability, 209

Open loop poles, 123

Optical sensor, 18

Optimal control, 141
performance index, 141

Orbital
accuracy, 69
angular rate variation, 121
curvilinear correction term, 72
error definition, 70
numerical propagation, 69

parameters general expressions, 121

period, 248
reference data, 69
test cases, 71
variation data, 122
velocity, 247
Orbital Maneuvering Vehicle, 6
Orthogonal, 266
Orthonormal, 54, 266
Out of plane uncertainty model, 193

Padé delay approximation, 163

Partial integration, 61

Particular input force transformation, 87
Particular solution, 82

circular orbit constant force in LVLH,
82
circular orbit inertial constant force,
84
elliptical orbit constant force in LVLH,
88
elliptical orbit inertial constant force,
94
Perigee lift, 14
Periodic Linear Time Varying System
continuous, 125
discrete, 127
Phase angle, 14
Phasing, 13
aim point, 15
apogee-perigee, 14
entry gate, 15
forward-backward, 14
Picard’s method of approximation, 127, 150
Plant Variation
6 degree of freedom, 208
in plane, 177
out of plane, 177
Plume impingement, 18
Polar coordinates, 245
Polylogarithmic function, 97
Port to port motion, 105
Position Control, 175
3 degree of freedom, 175
6 degree of freedom, 207
bandwidth, 176
requirements interpretation, 176
target and sensor data, 176
Principal axis, 101
Progress, 128
Propulsion
forces and torques, 33
thruster data, 277
Propulsion boundaries, 33
Proximity link, 22
Proximity maneuvers, 16
Pulse Width Modulation (PWM), 132
Pulse Width Pulse Frequency (PWPF), 132
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Quaternion
conjugate, 271
definition, 103
eigen axis, 103
from Euler angles, 269
kinematic differential equation, 103
multiplication, 270
norm, 271
to direction cosine matrix, 270
to Euler angles, 270
vector transformation, 271

R-bar, 27
RAAN, 13
Radial thrust, 17
Raising maneuver, 13
Reference mission, 20
Reference Mission Definition, 20
Relative accelerations, 47
Relative attitude, 17, 18, 106, 219
Relative Dynamics
# domain transformation, 65
Clohessy Wiltshire, 67
generic closed form, 49
in plane solution, 55, 66
in plane uncertainty model, 196
integral part solution, 56
linear, 67
nonlinear, 49
out of plane solution, 54, 66
out of plane uncertainty model, 193
transition matrix, 64
Relative Gain Array, 147, 188, 209

Rendezvous and Docking Operation Test

System, 10
RendezVous camera, 115
RendezVous Mission, 13
Requirements, 21
absolute attitude control, 141
relative position control, 181
Residualization, 187
RGA, seeRelative Gain Array
Robust control, 152, 164, 168, 204, 224
2 x 2 representation, 153

MA structure, 165
NA structure, 153, 165
D scaling matrices, 167
minimum repeated uncertainty, 156
parametric uncertainty, 154
robust performance, 169, 205, 225
robust stability, 164, 204, 224
state space real parametric uncertainty,
156
structured singular value, 166
time varying structured uncertainty, 167
weights, 152, 171, 205, 225
Robust control scaling of input-output, 171,
205, 226
Robust performance, 169, 205, 219, 221,
225
Robust stability, 164, 204, 219, 221, 224
Root locus, 177
Rotating coordinate system, 48
RP,seeRobust performance
RS, seeRobust stability
RVD, 1

Safe trajectories, 17
Salyute, 1
Sampling frequency, 124
Scaling of signals and plant, 181
Semi major axis, 13, 247
Semi minor axis, 248
Sensitivity function, 145, 182, 189
Separation theorem, 141, 143, 145
Shuttle, 7
Simplex
algorithm, 281
performance index, 129, 281
Singular Value Decomposition, 154
Singularities, 55
Skylab, 1
Sloshing
uncertainty model, 201
FLOW3D, 41
fuel, 40
pendulum model, 41
spring, mass, damper model, 41
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state space model, 42
Soft docking, 17
Software architecture, 115
Soyuz, 4, 128
Spectral radius, 166
Star sensor

data, 277

model, 33
Star tracker, 115
Station Keeping

circular orbits, 73

elliptic orbits, 78
Station keeping, 22
Structure singular value, 166
Sun sensor, 115
SVD, seeSingular Value Decomposition

Tangential thrust, 17, 19
Target attitude motion model, 105
Target data
COM location, 32, 275
docking port location, 32, 275
flexible attitude, 31, 288, 289
inertia, 31, 275
inertia value, 275
mass, 31, 275
mass value, 275
rigid attitude, 31
Taylor expansion, 47, 102
Tetrahedron gyro configuration, 115
Thruster selection, 129
Thrusters, 114
Trade off of controller types, 217
Transition matrix, 49
Transmission rate, 3
True anomaly
acceleration, 247
angle, 49, 53, 55, 66, 70, 87, 121
rate, 247

Unitary matrix, 154

V-bar, 27
Variation of parameters method, 60, 88
Vernal equinox, 13, 25

Weighting function
in plane, 189, 218
one degree of freedom control, 289
out of plane, 184, 185, 211, 214
relative attitude, 220
two degree of freedom control, 214
Work Scope, 20
Worst case uncertainty, 151
Wronskian, 60, 61, 65

Z-transformation, 126
Zero Order Hold, 131
Zero state component, 82
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