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A B S T R A C T   

Objective: To develop a machine-learning model that can predict the risk of pancreatic ductal adenocarcinoma 
(PDAC) in people with new-onset diabetes (NOD). 
Methods: From a population-based sample of individuals with NOD aged >50 years, patients with pancreatic 
cancer-related diabetes (PCRD), defined as NOD followed by a PDAC diagnosis within 3 years, were included (n 
= 716). These PCRD patients were randomly matched in a 1:1 ratio with individuals having NOD. Data from 
Danish national health registries were used to develop a random forest model to distinguish PCRD from Type 2 
diabetes. The model was based on age, gender, and parameters derived from feature engineering on trajectories 
of routine biochemical variables. Model performance was evaluated using receiver operating characteristic 
curves (ROC) and relative risk scores. 
Results: The most discriminative model included 20 features and achieved a ROC-AUC of 0.78 (CI:0.75–0.83). 
Compared to the general NOD population, the relative risk for PCRD was 20-fold increase for the 1 % of patients 
predicted by the model to have the highest cancer risk (3-year cancer risk of 12 % and sensitivity of 20 %). Age 
was the most discriminative single feature, followed by the rate of change in haemoglobin A1c and the latest 
plasma triglyceride level. When the prediction model was restricted to patients with PDAC diagnosed six months 
after diabetes diagnosis, the ROC-AUC was 0.74 (CI:0.69–0.79). 
Conclusion: In a population-based setting, a machine-learning model utilising information on age, sex and tra
jectories of routine biochemical variables demonstrated good discriminative ability between PCRD and Type 2 
diabetes.   

1. Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of 
cancer-related death, with a 5-year survival rate of approximately 10 % 
[1]. Most patients are diagnosed at an advanced stage, which limits 
treatment possibilities to palliative care [1]. However, patients with 
resectable PDAC have better treatment options and prognoses, and the 
5-year survival rate increases to 39 % when PDAC is diagnosed at stage 1 

or 2 [2]. 
Population-based screening for PDAC is not feasible due to its low 

incidence [3]. Therefore, attention has been directed towards subgroups 
of individuals with a higher-than-average risk of PDAC who may benefit 
from surveillance [4]. One such subgroup is people over 50 years old 
with new-onset diabetes (NOD), who have a 6–8-fold increased risk of 
PDAC compared to the background population [5]. However, the ab
solute incidence of PDAC in this subgroup is still too low for direct 

Abbreviations: ATC, Anatomical therapeutic chemical; AUC, Area under curve; CI, Confidence interval; ENDPAC, Enriching new onset diabetes for pancreatic 
cancer; HbA1c, Glycated haemoglobin; NOD, New-onset diabetes; NPV, Negative predictive values; PPV, positive predictive value; RaoC, rate of change; RF, random 
forest; ROC, receiver operating characteristic curves; RR, relative risk; PCRD, pancreatic cancer-related diabetes. 
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implementation of surveillance. Therefore, models that identify people 
with high PDAC risk have been developed [4]. The most widely 
employed model is the Enriching New Onset Diabetes for Pancreatic 
Cancer (ENDPAC) model, which uses information on age, changes in 
fasting plasma glucose and body weight during the year preceding NOD 
diagnosis [6,7]. Although this model has acceptable discriminative 
performance, the performance of this and other currently available 
models may be limited by the underlying mathematical algorithms, as 
they are typically developed using classical statistical models focused on 
linear associations between parameters [6]. Such models may not cap
ture the complex patterns and interactions of predictor variables rele
vant for the prediction of complex biological phenomena such as PDAC. 

Machine learning is a branch of artificial intelligence that can learn 
from data without explicit rules or equations. The method can handle 
high-dimensional and heterogeneous data, discover nonlinear and 
interactive effects, and adapt to changing environments. Machine 
learning, therefore, has the potential to improve the performance and 
generalizability of clinical prediction models by exploiting the rich in
formation available in modern health data sources [8,9]. In recent years, 
there has been growing interest in the application of such models for the 
early detection of PDAC [6,10–12]. The models have incorporated a 
range of parameters, including patient-reported symptoms (e.g., weight 
and pain characteristics), biochemical variables, and disease codes. 
However, the reliance on parameters that reflect patients’ subjective 
experiences, such as pain, or healthcare provider behaviour, such as the 
use of diagnostic codes, challenge the broader clinical implementation 
of these models beyond their original developmental settings [6,10,12]. 
A notable example of this was evident in a recent study based on tra
jectories of diagnosis codes where the model required recalibration to 
achieve acceptable performance in an external validation cohort [10]. 
These findings may be explained by the limitations associated with 
subjective parameters and healthcare provider-dependent information, 
which can hinder the generalizability and reliability of models across 
different clinical settings. To address this limitation, one solution may be 
to shift the focus towards entirely objective parameters that are less 
influenced by human behaviour and closely associated with the under
lying biology of PDAC. For example, restricting model parameters to 
plasma haemoglobin A1c (HbA1c), plasma triglyceride levels and other 
biochemical variables could provide reliable indicators of metabolic and 
other disease-related changes associated with the development of PDAC 
[13–15]. 

In this study, we hypothesise that profiles of routine biochemical 
variables and information on age and sex can be used to create a pre
diction model for the early detection of PDAC in individuals with NOD. 
The aims of this study were to (i) develop a machine-learning model 
built on trajectories of biochemical parameters that can determine the 
risk of PDAC in people with NOD and (ii) explore the diagnostic per
formance of this model in two NOD populations with different PDAC 
incidence rates. 

2. Methods 

2.1. Study design and data sources 

This was a retrospective nationwide cohort study in Denmark from 
1998 to 2018 containing 8.1 million Danish citizens. Data from the 
Danish National Patient Registry, Danish National Prescription Registry, 
and Civil Registration System were used [16–18]. The registries were 
linked using unique identification numbers assigned to Danish residents 
[18]. Diagnoses of NOD and PDAC were obtained from the Danish Na
tional Patient Registry, which includes outpatient and inpatient hospital 
contacts [19]. The registry has been based on ICD-10 codes since 1994. 
Medication prescriptions were extracted from the Danish National Pre
scription Registry, which covers all prescription medicines since 1996 
and includes dispensing dates and product information based on ATC 
codes [17]. Laboratory data were extracted from the National LABKA 

database [20], which collects data from Denmark’s largest clinical 
biochemistry and immunology laboratories. The study followed the 
principles of the TRIPOD statement for transparent reporting of pre
diction models [21,22]. 

2.2. Study cohort 

People with diabetes were identified based on either an ICD-10 
diagnosis code of diabetes (E10–14.x, G63.2, H28.0, H36.0, M14.2, 
O24.x or R73.x) or an ATC code of glucose-lowering medication (A10.x.) 
using a previously published algorithm [23,24]. This algorithm iden
tifies people with incident diabetes in both the primary care setting 
(based on the prescription of glucose-lowering therapies) and 
hospital-based settings (based on ICD-10 codes and prescription of 
glucose-lowering therapies). The diabetes onset date was defined as the 
first occurrence of an ICD-10 or an ATC code. 

Patients diagnosed with diabetes before the 1st of January 1998 or 
under age 50 at NOD diagnosis were excluded. Thus, the final study 
cohort comprised of people with NOD diagnosed at age 50 or older 
during the study period. 

2.3. Classification of diabetes subtypes 

Among all people diagnosed with NOD, patients with PDAC were 
identified (ICD-10 codes: C25.x or Z850F). People diagnosed with PDAC 
before or three years after NOD diagnosis were excluded, and the 
remaining group was defined as pancreatic cancer-related diabetes 
(PCRD). The threshold of three years for PCRD diagnosis was chosen 
based on previous pathophysiological investigations showing that gly
caemic changes in the context of PDAC can be detected for up to three 
years before PDAC diagnosis [13–15]. We excluded patients without 
information on HbA1c at the time of NOD diagnosis. In the group of 
people with NOD without PDAC, we classified people as having Type 1 
diabetes if they had received at least one ICD-10 code of Type 1 diabetes 
mellitus (E10.x) and no ATC code of “blood glucose-lowering drugs 
except for insulins” (A10B.x). People with Type 1 diabetes were subse
quently excluded, and the remaining people were pragmatically classi
fied as Type 2 diabetes. Finally, patients with PCRD and information on 
HbA1c at NOD diagnosis were matched 1:1 with a random subsample of 
people with NOD (without subsequent PDAC diagnosis) who also had 
information on HbA1c (i.e., random under-sampling). This final cohort 
was used for model development and validation. 

2.4. Predictor variables 

We obtained predictor variables from an extensive set of routine 
biochemical measurements. These included parameters related to 
glucose and lipid metabolism, liver function tests, nutritional markers, 
and markers of systemic inflammation. A full list of the parameters and 
rationale for their inclusion as predictor variables are provided in sup
plementary Table S1. We included data from up to 3 years prior to NOD 
diagnosis for all biochemical parameters. In addition, information on 
age and sex were included as predictor variables. 

2.5. Feature engineering 

Feature engineering is a process in machine learning where new 
features (i.e., variables, predictors, or inputs) are created from raw data 
by transforming, aggregating, or extracting information from existing 
variables. The goal is to improve the performance of machine learning 
algorithms by creating new features that better represent the underlying 
relationships in the data and increase prediction accuracy. [25] 

To extract information from underlying patterns in the biochemical 
parameters, we calculated a battery of 83 features. For each parameter, 
we calculated the mean, standard deviation, maximum value, minimum 
value, number of observations, last value, rate of change (RaoC) and 
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RaoC-condensed. RaoC was defined by the change from the oldest value 
to the value closest to NOD diagnosis divided by the number of days 
between the measured values. Likewise, the RaoC-condensed was 
calculated using the two values closest to NOD diagnosis. 

2.6. Missing data 

The data analysed in this study originated from clinical practice with 
the implication that most patients did not have all biochemical param
eters measured. The intended usage of the model developed is in a real- 
world clinical situation, which the data reflect. Hence, we did not 
exclude cases based on missing data. Additionally, we did not impute 
missing values, as the measurement (or lack of measurement) of a 
certain biochemical parameter could hold discrimination information 
between the classes. Missing data were handled in the modelling using a 
nonlinear approach and by filling missing values with a ‘dummy’ value. 
This allowed the model to treat missing data as independent 
information. 

2.7. Model building procedures 

Given the binary outcome (PCRD vs Type 2 diabetes) and the need 
for a nonlinear approach, we developed our prediction model using 
random forest (RF) classification. RF is a versatile and robust machine 
learning method [26] that uses a collection of decision trees to make 
predictions. RF has several benefits, including low variance, high ac
curacy, relative robustness to overfitting, ability to handle nonlinear 
relationships, and interpretability using feature importance. All analyses 
were performed using Python (v3) and the Scikit-learn package 
(v0.23.2) for machine learning utilities. The modelling approach is 
illustrated in supplementary figure S1. 

The data were randomly split into 70 % for training and validation 
and 30 % for testing. This method enhances external validity [27]. 

The initial 83 extracted features were reduced to a subset of features 
before model training. Feature selection was conducted using the 
training data and calculation of feature importance. The model was 
trained with a subset of the 20 features with the highest feature 
importance. The reduction procedure was used to simplify the model 
and to eliminate redundant or indiscriminative information from po
tential features, leading to improved accuracy [28]. 

Hyperparameters (i.e., the number of trees, minimum cases per leaf, 
maximum depth of trees, and the number of features to consider per 
split) were determined using 3-fold cross-validation. This procedure was 
implemented to minimise overfitting of the model on the training data 
[29]. The final model was then tested on the test dataset. We did not 
recalibrate the model after the training procedure. 

2.8. Model evaluation metrics 

The area under the receiver operating characteristic curve (ROC- 
AUC) was used to evaluate the discrimination of the model [30]. Con
fidence intervals (CIs) for ROC-AUC were estimated using bootstrap 
replicas (n = 1000). To assess the clinical implications of using the 
model, we calculated the sensitivity, specificity, positive predictive 
value (PPV), and negative predictive values (NPV) for different cut-off 
points and assessed relative risk (RR) curves. To address the variations 
in PDAC incidence among different populations of NOD, we evaluated 
performance metrics (NPV, PPV, and RR) using two distinct populations 
estimates with varying 3-year population-based cumulative incidence 
rates of PDAC among individuals with NOD: Denmark (0.6 %) (current 
study) and the United States (1.0 %) [5]. 

2.9. Model interpretability 

The random forest classifier uses a subset of "strong variables" for 
classification, resulting in better performance on high dimensional data 

[31]. The Gini importance is a measure of feature importance that re
flects the outcome of this implicit feature selection and can be used as a 
general indicator of the individual features’ importance in the classifi
cation. The feature importance score is a by-product of the random 
forest training and provides a relative ranking of the features [28]. To 
interpret the individual features’ impact on the prediction model, we 
used the average feature importance over all trees in the model. 

2.10. Sensitivity analysis 

In a sensitivity analysis, we restricted the PCRD subgroup to patients 
diagnosed with PCAD between 6 months and 3 years after being diag
nosed with NOD. The objective of this analysis was to assess the model’s 
performance by excluding patients who were immediately diagnosed 
with PDAC after being diagnosed with NOD. 

3. Results 

We enrolled 716 patients with PCRD and 716 individuals with 
pragmatic-defined Type 2 diabetes in the cohorts for model develop
ment. A study flowchart illustrating the selection process is presented in 
supplementary figure S2. Demographic and HbA1c at NOD diagnosis for 
the two subgroups are shown in Table 1. The mean age at NOD diagnosis 
was 71.0 years for patients with PCRD vs. 66.7 years for people with 
Type 2 diabetes. Among patients with PCRD, 48.3 % were women vs. 
39.7 % in the Type 2 diabetes group. The HbA1c at baseline was 57 (IQR, 
50;77) mmol/mol in the PCRD group vs. 52 (IQR, 48;63) mmol/mol in 
the Type 2 diabetes group. The median follow-up time from NOD 
diagnosis to PDAC diagnosis in the PCRD subgroup was 0.45 (IQR, 
0.14–1.2) years. The population-based cumulative 3-year incidence of 
PDAC among people older than 50 years at NOD diagnosis was 0.59 % 
(95 % CI; 0.57 to 0.62). 

3.1. Model performance 

The RF model had a ROC-AUC of 0.78 (CI95; 0.75–0.83) on the test 
dataset (Fig. 1). Diagnostic performance characteristics for the model 
calibrated for different sensitivity levels are reported in Table 2. In the 
population-based setting, the NPVs ranged from 99.5 % to 100 % across 
all sensitivity levels. This reflects the relatively low incidence of PDAC 
even among individuals with NOD (3-year cumulative PDAC incidence 
0.6 %). The PPVs were significantly influenced by the selected sensi
tivity levels. For example, a sensitivity level of 20 % resulted in a PPV of 
8.4 % and a NPV of 99.5 %, while a sensitivity of 50 % resulted in a PPV 
of 2.3 % and a NPV of 99.7 %. 

In Fig. 2, the estimated performance of a surveillance program in 
population-based settings using the model is presented, with the RR 
illustrated in relation to the number of patients at-risk in a simulation of 
1 million individuals with NOD. For example, the RR for PDAC was 20- 
fold increased for the 1 % of individuals predicted to have the highest 
cancer risk compared to the general NOD population in Denmark. This 
corresponds to a cumulative 3-year cancer risk of 12 %. For the 10 % of 
individuals predicted to be at highest cancer risk, a 5-fold increase in RR 
was observed compared to the general NOD population. This corre
sponds to a cumulative 3-year cancer risk of 3 %. We also simulated RR 

Table 1 
Baseline characteristics of patients with pancreatic cancer-related diabetes 
(PCRD) and Type 2 diabetes (T2D).   

PCRD T2D 

Number of subjects 716 716 
Age, mean (SD) 71 (9.0) 66.7 (10.1) 
Sex, Female, n (%) 346 (48,3) 284 (39.7) 
Sex, Male, n (%) 370 (51.7) 432 (60.3) 
HbA1c at baseline, mean (IQR) 57 (50;77) 52 (48;63)  
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estimates for a NOD population with a 3-year cumulative risk of PDAC of 
1.0 %, which corresponds to the population-based risk reported in the 
United States (Fig. 2). 

3.2. Feature importance and model explainability 

Feature importance analysis showed that age was the most important 
single feature to discriminate PCRD from Type 2 diabetes, contributing 
to approximately 20 % of the discriminative ability (Fig. 3). Also, the 
rate of change in HbA1c was an important discriminator, contributing 
approximately 11 %. In addition, information derived from tri
glycerides, alanine aminotransferase, and alkaline phosphatase also 
held discriminative information. 

Violin plots illustrating the feature distributions with median and 
interquartile range for selected features are presented in Fig. 4. The rate 
of change in HbA1c was, on average, increased 3-fold in patients with 
PCRD vs. Type 2 diabetes. Patients with PCRD were also characterised 
by lower triglyceride levels but higher alkaline phosphatase levels 
compared to Type 2 diabetes. However, the distributions indicated 
substantial overlap between parameters, which makes single parameters 
unable to differentiate the two groups. 

3.3. Sensitivity analysis 

In the sensitivity analysis excluding patients immediately diagnosed 
with PDAC after NOD diagnosis (<6 months), the ROC-AUC was 0.74 
(95 % CI; 0.69–0.79). 

4. Discussion 

In a population-based cohort of patients with NOD ≥50 years of age, 
we developed and internally validated a novel machine-learning model 
to discriminate PCRD from Type 2 diabetes. The model was based on 
age, sex and trajectories of routine biochemical variables, for which 
information would be available at the time of diabetes diagnosis. The 
final model was shown to have good discrimination between Type 2 
diabetes and PCRD (AUC-ROC 0.78). The most important discriminators 
were older age and rapid increase in HbA1c. In addition, biochemical 
parameters associated with changes in lipid metabolism and bile duct 
obstruction held discriminative information. 

4.1. Model performance 

Our model had a diagnostic performance (AUC-ROC 0.78) compa
rable to that observed in most previous models (AUC-ROC 0.71 to 0.87) 
designed for PDAC risk determination in people with NOD [6]. For 
example, the ENDPAC model, which is based on age and one-year 
changes in body weight and fasting plasma glucose levels prior to 
NOD onset, had an AUC-ROC of 0.87 in the derivation cohort [7]. In two 
subsequent independent validation studies, the AUC-ROCs were 0.75 
and 0.69, respectively [32,33]. Another model derived from a primary 
care health database in the United Kingdom was based on 11 parameters 
and had an AUC-ROC of 0.81 [15]. The specificity of that model was 93 
%, at a sensitivity of 44 %, which is comparable to the performance of 
our model. 

We utilized a machine learning-based modelling approach, which, to 
our knowledge, has only been applied in one prior study concerning the 
determination of PDAC risk in individuals with NOD [11]. In that study, 
the most effective model relied on age, changes in weight, and HbA1c 
(including the rate of change in HbA1c), demonstrating a C-index of 
0.82 in distinguishing PCRD from other diabetes subtypes. Our findings 

Fig. 1. Receiver operating characteristic (ROC) for the Random Forest (RF) 
model applied on the test dataset. 

Table 2 
Diagnostic performance characteristics at different sensitivity levels.   

Model performance    

PDAC risk 0.6 % 
* 

PDAC risk 1.0 
%#  

Sensitivity Specificity PPV NPV PPV NPV 
Sensitivity 10 13.8 100 100 99.5 100 99.1 
Sensitivity 20 21.4 98.6 8.4 99.5 13.3 99.2 
Sensitivity 30 33.1 95.1 3.9 99.6 6.4 99.3 
Sensitivity 40 40.0 92.3 3.0 99.6 4.9 99.3 
Sensitivity 50 52.4 87.3 2.4 99.7 4.0 99.5 
Sensitivity 60 59,3 80.9 1.8 99.7 3.1 99.5 
Sensitivity 70 70.3 77.5 1.8 99.8 3.1 99.6 
Sensitivity 80 80.1 59.1 1.2 99.8 1.9 99.7 
Sensitivity 90 89.6 32.3 0.8 99.8 1.4 99.7 
Sensitivity 100 100 4.9 0.6 100 1.1 100 

The sensitivity calibration is based on the ROC cut-off closest to a given sensi
tivity between 10 and 100 %. Population-based cumulative 3-year incidence 
estimates of PDAC among individuals with NOD are used to calculate PPV and 
NPV:. 

* 3-year cumulative PDAC risk 0.6 % (Danish general population). 
# 3-year cumulative PDAC risk 1.0 % (Unites States general population). 

Fig. 2. Estimated performance of a surveillance program for high-risk NOD 
patients. Estimated relative risk (RR) for the n (horizontal axis) high-risk pa
tients is based on evaluating the accuracy of prediction in NOD patients (>50 
years of age) with 3-year cumulative PDAC incidence of either 0.6 % (Danish 
general population) or 1 % (United States general population). 
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align with this, as age and the rate of change in HbA1c emerged as the 
most significant discriminators. However, the previous study also 
incorporated changes in weight and other symptom features, differing 
from our study’s model, which solely relied on routine biochemical data, 
age, and sex. Standardized serial weight assessments are often not 
available in a clinical setting, and thus, information on weight may be 
flawed by recall bias and influenced by a lack of standardization across 
equipment and settings. This emphasizes the need for a model which do 
not include this parameter in the risk assessment of NOD patients at the 
time of diagnosis. Therefore, we consider our model to be more practical 
and robust for implementation in a clinical setting than previous models, 
which included information on weight changes, but this will need to be 

further investigated. 

4.2. Feature importance and model explainability 

A unique aspect of our study was the implementation of feature 
engineering on routine biochemical variables. This allowed us to 
maximise the information contained in the biochemical variables. In 
keeping with this, six of the 20 most discriminative features were 
derived from HbA1c trajectories underlining the relevance of feature 
engineering in this context. Our observations align with previous studies 
that demonstrated exponentially increasing plasma glucose levels in 
PDAC patients prior to cancer diagnosis [13–15]. The underlying 

Fig. 3. Feature importance scores for the 20 most important features. Feature importance score shows the relative importance of each feature in the Random Forest 
(RF) model. Abbreviations: HbA1c (A1C), triglycerides (Trig), high-density lipoproteins (HDL), haemoglobin (HB), alkaline phosphatase (ALP), alanine transaminase 
(ALT), last measurement (last), minimum (min), maximum (max), average (avg), rate of change (RaoC). 

Fig. 4. Violin plot for selected demographic and biochemical features shown for the PCRD and T2D subgroups.  
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mechanisms responsible for the glycaemic changes are multifactorial 
and extend beyond tumour-induced damage to pancreatic islet cells. For 
instance, pancreatic cancer induces insulin resistance and beta-cell 
dysfunction, which can be reversed upon tumour resection. This sug
gests the involvement of paraneoplastic mediators [34]. 

Another distinctive biochemical difference between PCRD and Type 
2 diabetes was reflected in plasma triglyceride trajectories prior to the 
onset of diabetes, with four out of the 20 most discriminative features 
based on triglyceride information. This observation also aligns with 
previous findings and may be linked to the process of exosome-induced 
browning of subcutaneous adipose tissue during the development and 
progression of PDAC [14,15,35]. Additionally, we observed variations 
between PCRD and Type 2 diabetes in features derived from liver 
function and cholestatic parameters. These may be linked to obstruction 
of the biliary tract or the presence of liver metastases caused by the 
tumour. 

4.3. Strengths and limitations 

A strength of our study is the high degree of model explainability 
linking predictor variables to biologically plausible mechanisms. 
Another strength is the use of feature engineering to extract the most 
possible information from biochemical variables and trajectories of 
biochemical changes, which offers a robust set of model features that 
most likely can be implemented across countries and clinical settings. 

We intentionally focused our model on well-established and 
explainable biochemical parameters for PDAC prediction, including 
HbA1c. This has shown the most discriminative performance in previous 
models using conventional statistical methods [7,15]. Consequently, we 
restricted our PCRD cohort to individuals with information on HbA1c at 
NOD diagnosis. However, this may compromise the generalizability of 
our model. Therefore, the diagnostic performance of models without this 
constraint should be explored in future studies. Indeed, in a pilot study, 
lab test administration per patient (i.e., frequency of lab test adminis
tration) was found to be the most discriminative feature [36]. Another 
important limitation is the lack of an external validation cohort. 

Noteworthy, difference in sex distributions between PCRD and Type 
2 Diabetes were observed in our study. Variations in the prevalence of 
Type 2 Diabetes between genders are well-established, especially in 
some ethnic groups [37]. This difference is also observed in the overall 
population of NOD>50 years of age (n = 343,938) from the Danish 
national health registries [38]. Despite this sex difference, sex was not 
included in the final model, emphasizing that sex only had a moderate 
discriminative performance that was outweighed by age and 
biochemical-derived parameters. 

The estimates of the cumulative 3-year incidence of PDAC among 
people with NOD used to assess the model’s performance in population- 
based settings (i.e., Denmark and the United States) must be taken with 
some caution. Hence, the population-based studies providing these es
timates may be influenced by differences in the definition of diabetes, 
differences in the timing of diagnosis, and ethnic/racial composition of 
the population. However, until more definite studies become available, 
we consider these register-based estimates to represent reasonable ap
proximations [39]. Finally, a limitation of this study is the definition of 
PCRD based on ICD-10 codes from the Danish national health registries, 
without histological and/or clinical case verification. 

5. Conclusions 

We developed and internally validated a novel machine-learning 
model to discriminate PCRD from Type 2 diabetes. The model was 
based on predictors derived from feature engineering on routine 
biochemical parameters. If successfully externally validated, we envi
sion the model can be implemented in various clinical settings to iden
tify people with NOD at high risk of PDAC who are amendable to 
surveillance. 
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