
Aalborg Universitet

A First Experimental Study of Fixed-Point Approximate Arithmetic in Recursive Lattice
Filters

Koch, Peter; Le Moullec, Yannick

Published in:
2023 IEEE Nordic Circuits and Systems Conference, NorCAS 2023 - Proceedings

DOI (link to publication from Publisher):
10.1109/NorCAS58970.2023.10305450

Creative Commons License
CC BY 4.0

Publication date:
2023

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Koch, P., & Le Moullec, Y. (2023). A First Experimental Study of Fixed-Point Approximate Arithmetic in
Recursive Lattice Filters. In J. Nurmi, P. Ellervee, P. Koch, F. Moradi, & M. Shen (Eds.), 2023 IEEE Nordic
Circuits and Systems Conference, NorCAS 2023 - Proceedings Article 10305450 IEEE (Institute of Electrical
and Electronics Engineers). https://doi.org/10.1109/NorCAS58970.2023.10305450

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1109/NorCAS58970.2023.10305450
https://vbn.aau.dk/en/publications/697ba0fe-69fe-4de9-9255-e8f231e77dd3
https://doi.org/10.1109/NorCAS58970.2023.10305450

Downloaded from vbn.aau.dk on: July 04, 2025

A First Experimental Study of Fixed-Point
Approximate Arithmetic in Recursive Lattice Filters

Peter Koch
Department of Electronic Systems

Aalborg University
Aalborg, Denmark

Email: pk@es.aau.dk

Yannick Le Moullec
Thomas Johann Seebeck Department of Electronics

Tallinn University of Technology
Tallinn, Estonia

Email: yannick.lemoullec@taltech.ee

Abstract—In some situations, the numerical properties of
Direct Form I (DF-I) and Direct Form II (DF-II) Infinite Impulse
Response (IIR) filter structures may degrade, e.g., when the
filter approaches its stability limit. Other filter structures may be
numerically more robust under such conditions. For example, an
N th order Lattice filter composed of N structurally identical cas-
caded feed-forward sections can be extended and made recursive,
i.e., Lattice IIR filter, thereby implementing zeros as well as poles.
Such filters, however, have a significantly higher computational
complexity compared to their DF-I and DF-II counterparts,
increasing the execution time and the energy consumed per
sample period. Approximate Computing (AxC) applied in Lattice
IIR filters has not been researched in the scientific literature
to date, and therefore we suggest substituting the exact fixed-
point multiplications and additions with AxC arithmetic building
blocks to potentially reduce the resource overhead. In this first
study, we analyze the numerical consequences of using such
arithmetic units in the 2nd order recursive Lattice structure and
compare its performance against the ordinary DF-II structure.
Our findings clearly indicate that under certain conditions AxC
arithmetic is a useful approach in recursive Lattice filters.

Index Terms—Approximate Multiplication and Addition, IIR
Tapped Lattice and DF-II Filter Structures, Numerical Analysis.

I. INTRODUCTION

Digital filters are used intensively in almost any signal
processing application related to wireless communication,
speech processing, hearing aids, and many more. For such
applications, the ever-increasing requirement for easy, reliable,
and long-term portability away from power sockets and heavy
power banks challenges the system designer with non-trivial
requirements for low power consumption while the physical
area and the execution time are metrics which at the same time
should also comply with though specifications. These metrics
counteract each other, and thus significantly increase the
overall complexity of the design- and exploration trajectory.
Finding a reasonable trade-off between such design parameters
therefore typically requires a compromise, [1]. In applications
which involve human interaction, the system designer may
benefit from the fact that the computational accuracy can
be somewhat relaxed due to the limited human ability to
conduct exact perception, e.g., in a time-varying scenario such
as audio and video streaming, it is not possible for humans
to capture tiny details, errors, and misalignment, [2]. Taking

advantage of this fact motivates the idea of using arithmetic
building blocks made from down-scaled circuitry schemes,
which compromises the arithmetic accuracy, but at the same
time, and as an intended consequence, also reduces the overall
power-, area-, and time consumption. Such circuits belong to
the class of AxC arithmetic units, [3].

A. Related work

In recent years, many AxC circuits have been proposed,
mainly for addition and multiplication, but circuits for other
arithmetic operations also exist, see the survey in [4]. Several
studies have demonstrated the applicability of AxC circuits
in signal processing algorithms having feed-forward branches
only, e.g., Finite Impulse Response filters, the Fast Fourier
Transform, and the Discrete Cosine Transform, [5], [6], [7].
For such linear time-invariant algorithms, the inaccuracy, i.e.,
the numerical noise induced by the AxC circuits, is transferred
via certain gain factors directly to the system output. For
algorithms characterized by one or more feedback loops, i.e.,
recursive algorithms, the situation is markedly more tortuous
with the risk of enforcing instability, potentially prohibiting
the use of AxC circuits in such systems.

This is clearly consolidated by the fact that very few avail-
able works report on AxC arithmetic being used in recursive
DSP algorithms, the exception being [8] which discusses the
design and implementation of a 6th order digital A-weighting
filter consisting of a cascade of 1st order IIR DF-I sections.
The work illustrates that AxC multiplication dictates how
the filter sections should be sequentially ordered inside the
cascade, and further that the filter amplitude response becomes
a function of the degree of approximation introduced in the
multipliers. However, this exploratory design reports only on
1st order DF-I structures which is a severe limitation due to
the generally accepted design approach where 2nd order filter
sections are used for implementing higher-order filters. This is-
sue is addressed in [9] where the authors experiment with AxC
multiplication in different types of bi-quad filter structures. For
varying pole location and different filter topologies (DF-I, DF-
II, and the Direct Canonical Form), they investigate how the
degree of inaccuracy in AxC multiplication impact the overall
numerical performance of such structures and show that, for a
high degree of approximation and for critical pole locations,

979-8-3503-3757-0/23/$31.00 ©2023 IEEE

the DF-II has, with some exceptions, the best performance,
i.e., the least numerical deviation on the output as compared
to an equivalent floating-point implementation.

B. Contribution

Both of the above works, however, consider AxC in terms
of multiplication only, and similarly, they are limited to the
traditional Direct Form filter structures. In order to extend
these previous works and broaden the scope of AxC as applied
to recursive filter structures, we investigate the impact1 of AxC
multiplication as well as AxC addition on the performance of
i) the DF-II structure, and ii) a recursive Lattice structure
known as the IIR Tapped Lattice Structure (ITLS). This
recursive structure is, similarly to the traditional feed-forward
Lattice structure, known for its superior performance when
executed in a fixed-point environment, [10]. To our knowledge,
no studies have previously investigated a combined effort to
use AxC multiplication and AxC addition in recursive filters,
neither the Direct Form filter, nor the Lattice filter.

II. THE IIR TAPPED LATTICE STRUCTURE

Digital filters are defined by their transfer function

H(z) =

∑M
i=0 biz

−i

1−
∑N

j=1 ajz
−j

=
B(z)

A(z)
(1)

which prior to fixed-point implementation is normally rewrit-
ten into either a cascaded or a parallel form of 2nd order
sections using factorization or partial fraction expansion, re-
spectively. Many DSP designers prefer the cascaded form,
which for N = M leads to

H(z) =

N/2∏
p=1

H2,p(z) =

N/2∏
p=1

B2,p(z)

A2,p(z)
=

N/2∏
p=1

∑2
i=0 bi,pz

−i

1−
∑2

j=1 aj,pz
−j

(2)
In this work we investigate exclusively the fundamental

2nd order section. For recursive filters, it is well-known that
the pole locations have a notable impact on the numerical
properties of a fixed-point implementation. The zero locations,
on the contrary, do not affect these properties to the same
extent, [11]. Therefore, we experiment with a fixed location
of the zero-pair, and a variable location of the pole-pair,
both pairs being complex conjugated in the z-plane. For the
2nd order transfer function H2(z), we therefore choose the
polynomials B2(z) and A2(z) such that

H2(z) =
1− 1√

2
z−1 + z−2

1 + 2r · cos(θℓ)z−1 − r2z−2
(3)

where the zeros are located on the unit circle at ωzero =
±1.209391... radians, and the poles are located at z = r·e±jθℓ .
We opt for r ∈ {0.8, 0.99} and θℓ =

ℓπ
16 , ℓ = 1..15.

1Our work is relevant to a wide range of signal processing applications as
mentioned above. Therefore, in this first study we are mainly interested in
investigating the numerical implications of using AxC, thus leaving results
on specific hardware-related metrics for future research.

In the time-domain, Equ. (3) is expressed by the linear time-
invariant difference equation

y[n] =

2∑
j=1

aj · y[n− j] +

2∑
i=0

bi · x[n− i] (4)

which can be real-time executed using various implementation
structures. We experiment with the ordinary DF-II structure
and the more sophisticated ITLS structure, Fig. 1. The ITLS
consists of a recursive part characterized by the k-coefficients
(known as the reflection coefficients), and a non-recursive part,
i.e., the tapped section, defined by the α-coefficients.

𝑧𝑧−1
𝑥𝑥[𝑛𝑛]

𝑧𝑧−1

𝑦𝑦[𝑛𝑛]+

++

+
𝑏𝑏0

𝑏𝑏1

𝑏𝑏2

𝑎𝑎1

𝑎𝑎2
(a)

(b)

𝑧𝑧−1

𝑥𝑥[𝑛𝑛]

𝑧𝑧−1

𝑦𝑦[𝑛𝑛]+

+

+ +
−𝑘𝑘1−𝑘𝑘2

+

+

𝛼𝛼3

𝑘𝑘1𝑘𝑘2

𝛼𝛼2 𝛼𝛼1

Fig. 1. The two 2nd order filter structures: (a) DF-II, and (b) ITLS. These
filters have identical floating-point I/O-relation H2(z). For a minimum-phase
A2(z) polynomial, the condition |ki| < 1 enables improved numerical
robustness of the ITLS structure as compared to the DF-II structure.

It is beyond the scope of this paper to discuss in detail the
procedure for converting the (a, b) coefficients into the (k, α)
coefficients. In short, however, the Gray-Markel Method, [12],
is a two-step approach which first converts H2(z) into an
intermediate all-pass system realizing an ordinary all-pole
Lattice structure (the k’s), and next derive a set of weight
factors (the α’s) used to scale a set of independent variables
in this structure (the tapped signals) which, when added yield
the numerator B2(z), i.e., the zeros of H2(z).

From Fig. 1, the computational complexity difference be-
tween the two structures is clearly seen to be in favor of DF-II.
Further, it is apparent that for product summation conducted in
fixed-point single-precision, the number of quantization errors
(rounding or truncation) is higher for ITLS (the red dots).
Similarly, for product summation calculated using double-
precision, the DF-II also has fewer quantization errors (the
green dots). Therefore, no matter the arithmetic approach
used for product summation, the ITLS potentially introduces
more quantization noise, thus being expected to have a lower
output SNR as compared to DF-II. Consequently, from both
the complexity- and the SNR-perspective, the DF-II might be
considered the obvious choice for fixed-point implementation.
We will demonstrate, however, that in the presence of AxC
arithmetic, this is not necessarily an absolute conclusion.

III. APPROXIMATE MULTIPLICATION

We are interested in a 2’s complement multiplier with vari-
able word length dm, and we have opted for a multiplication
scheme based on the Radix-4 Booth algorithm, [13]. For a
dm-bit multiplicand X and a dm-bit multiplier Y , a 2dm-bit
product P = X ·Y is calculated. All three numbers, X , Y , and
P are expressed in 2’s complement number representation. We
assign the MSB the index number 0, thus writing Y as

Y = −y0 +

dm−1∑
j=1

yj · 2−j (5)

For a dynamic range equal to [−1; 1[, the fixed point is
located after the sign bit y0, and thus P can be expressed as

P = −y0 ·X +

dm−1∑
j=1

(yj ·X) · 2−j (6)

which next can be rewritten to

P =
1

2
·
⌈ dm

2 ⌉−1∑
j=0

X · zj · 4−j (7)

zj = yj + yj+1 − 2 · yj−1; zj ∈ {0,±1,±2} (8)

Equ. (7) and (8) are the fundamental operations of the multi-
plication where the ⌈dm

2 ⌉ Partial Products (PP) are sequentially
shifted two bit positions against each other, i.e., Radix-4, and
the final product is derived after a 1-bit right-shift of the sum.

Based on Equ. (7) and (8), the multiplier applied in this
work is denoted the ”Broken Booth Multiplier” (BBM), [14].
It represents an excellent compromise between execution
time and power consumption, against Mean Relative Error
Distance, a metric often used for evaluating the performance
of AxC circuits, [4].

In [14], two variants of the BBM are discussed; Type 0 and
Type 1. In our work, we employ Type 0, which is a multiplier
that calculates all PPs exact before conducting sign-extension
and addition (using 2’s complement representation), Fig. 2.
This scheme is applied no matter the sign of the individual PPs,
which is different in the Type 1 approach where some of the
negative PPs are alternatively represented as 1’s complement
numbers, thus saving the addition of an LSB.

Fig. 2. The BBM Type 0 illustrated for word length 12x12 bit. The VBL-line
defines a boundary where all bits to the right are nullified, thus eliminating
addition of these bits, but leading to an approximate product, [14].

Note from Fig. 2 that the PPs, according to Equ. (7), are
subsequently left-shifted two bit positions according to their
individual numerical weighting. Furthermore, the PP word

S0:k-1 Sk Sk+1 Sd-1Sd-mSd-m-1Sk+2

A0:k-1 B0:k-1 Ak Bk Ak+1 Bk+1 Ad-m-1 Bd-m-1Ak+2 Bk+2

Fig. 3. A da-bit (for simplicity denoted as d) ERPCAA consists of an accurate
k-bit MSB part, and an inaccurate da − k bit LSB part. The latter is divided
into an m bit unused section at its LSB-end (all bits are constant ”0” or ”1”),
and a da − k −m bit approximate MSB section. A speculative carry is fed
from the inaccurate into the accurate part. Bit indexing from 0 to da−1 which
is opposite to the original work having index n− 1 to 0. Based on [15].

length equals dm+1 bit which is a consequence of the potential
multiplication with ±2, according to Equ. (8). Also illustrated
in Fig. 2 is a dotted vertical line denoted the Vertical Breaking
Level (VBL). This line indicates the boundary between the
exact and the approximate part of the multiplier, the exact
part being to the left of the line. The bits situated on the
right side, however, are all forced identically equal to zero
which rules out the necessity for conducting addition. Due
to the nature of the 2’s complement number representation,
for VBL > 0 the BBM Type 0 generates an Error Distance
which is Gaussian distributed and negatively biased, the mean
and standard deviation being functions of dm and VBL, [9].

The experiments conducted in this work rely on a simulation
model of a dm × dm bit Type 0 BBM. In addition to dm
being an adjustable parameter, the VBL value can be specified
in the interval [0; 2dm − 1]. The two operands X and Y
are both considered being numerically less than 1, and are
fed into the multiplier as floating point numbers, initially
being converted into dm-bit 2’s complement representations.
As indicated in Equ. (7), a total of ⌈dm

2 ⌉ 2’s complement
PPs are next derived. Starting with the least significant PP,
the bits are then nullified from the LSB and up to the given
VBL value. These modified PPs are now converted back into
floating point numbers and numerically adjusted according to
their weight factors. Finally, these weighted PPs are added,
and the sum is right-shifted one bit position, providing the
product P as a floating point number in the interval [−1; 1[,
and with a 2dm-bit 2’s complement accuracy.

IV. APPROXIMATE ADDITION

We use a recently published AxC adder denoted the Er-
ror Reduced Carry Prediction Approximate Adder (ERC-
PAA), [15], shown in Fig. 3. According to the authors, it has
better or comparable performance when measured against a
variety of other AxC adders considering the following three
metrics: i) carry prediction error rate, ii) mean relative error
distance, and iii) normalized mean error distance as compared
to power, energy, and area-delay product.

In brief, the ERCPAA works as follows. An inaccurate part
contains three functions denoted i) Approximate Full Adder

(blue), ii) Carry Prediction Logic (green), and iii) Constant
Truncation With Error Reduction Logic (red). The Approx-
imate Full Adder elements replace traditional accurate Full
Adders (FA) which conduct the following 3-input operations

sum = (a⊕ b)⊕ cin (9)

carry = (a · b) + cin · (a⊕ b) (10)

In the ERPCAA, the a⊕b operation in the sum calculation,
Equ. (9), is simplified to a Boolean a + b function, the
exception being the most significant bit which is implemented
as an exclusive OR of the two input operand bit to maintain
the accuracy at the MSB-end of the inaccurate part.

The carry calculation, i.e., carry generate and propagate,
Equ. (10), has been reduced to a single generate, i.e., a Boolean
a·b operation. This eliminates the longitudinal carry chain of a
traditional Ripple Carry Adder (RCA). However, the ERPCAA
supports a simple, yet effective carry scheme which spans two
consecutive bits, i.e., the carry bit generated at position j is
logically added to the sum bit generated at position j − 1. A
carry generated in the MSB-end of the inaccurate part is fed
into the accurate part as an ordinary carryin signal. This carry
is based on i) the carries from the two most significant bits,
and ii) the MSB sum. Using these three bits (whereas using
only a carry generated from the MSB), reduces the error in
the carry prediction at the input to the accurate part, but still
provides a reduced gate count as compared to a full-size RCA.

The ERPCAA also introduces a mechanism to control all
the sum bit from index k + 1 down to da − 1. The control
signal, calculated as sumk · carryk+1 from the Approximate
FAs, is equal to ”1” when one or both of these bit equals ”0”.
In the interval from (k+1) down to (da−m−1), the control
signal, when equal to ”1”, is used to pass the OR-combined
sum- and carry-bit from the Approximate FAs directly to the
sum output bit, si. Similarly, if the control signal equals ”0”
it forces all sum bits in this specific interval equal to ”0” to
compensate numerically for the sk bit which in this particular
situation equals a faulty ”1”. From bit position da−m down to
da−1, the control signal is fed directly to the sum output bit,
si, thus generating an m-bit constant output. This eliminates
the need for Approximate FAs in the LSB-end of the adder’s
inaccurate part.

In our simulation model, da, and the AxC parameters k and
m can be tuned individually. The augend A and the addend B,
as well as the resulting sum S, are all floating-point numbers
which are converted to/from 2’s complement representation.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The evaluation of the two filter structures is based on a
series of four experiments which expose their time domain
behaviour in terms of impulse responses (i.e., all frequencies
are evaluated). The filters are excited with the signal s · δ[n],
where n ∈ [0;N − 1], and s is a scalar which introduces a
safe compromise between utilization of the 2’s complement
dynamic range [−1; 1[and the elimination of numerical over-
flow in the variables where overflow is not allowed (i.e., at all

green variables in Fig. 1). We measure the AxC-based impulse
response from each structure, hAxC,DF [n] and hAxC,ITLS [n],
using a dm-bit BBM and a da-bit ERCPAA, and next subtract
each of these sequences from the exact response hexact[n]
derived from a 64-bit floating-point implementation of the
filter. These resulting sequences are then squared and summed
to obtain the residual variance

σ2
x = 10 · log

N−1∑
n=0

(hexact[n]− hAxC,x[n])
2 (11)

where x = [DF, ITLS], and where N = 1000 is empirically
found adequate for the impulse responses to reach their steady
state. This metric indicates (in dB) the deviation between the
exact filter and the inexact counterparts for varying r, θℓ, and
the BBM and ERCPAA AxC-parameters.

Fig. 4. The residual variance in dB for circuits without approximation. In this,
and all following plots, the upper row represents single-precision addition, i.e.,
dm = 16 and da = 16, while the lower row is double-precision, dm = 16
and da = 32. The two columns represent r = 0.8 and r = 0.99, respectively.
The abscissa is the pole-frequency θℓ in radians. The blue curve shows DF-
II, and the red one illustrates ITLS.

The huge number of possible combinations caused by the
many adjustable parameters makes it impossible to explore
the complete solution space. Therefore, for both structures
we investigate four major scenarios; r = 0.8 and r = 0.99
combined with 16-bit multiplication followed by i) single-
and ii) double-precision addition, i.e., 16- and 32-bit addition,
respectively.

Our first experiment uses no approximation, i.e., VBL = 0,
and k = da, Fig. 4. Note the expected form of all graphs;
when the pole-frequency approaches the zero-frequency, the
pole-dependent amplification is (partly) eliminated, increasing
the numerical tolerance of both structures, leading to the dip
in the vicinity of the zero (i.e., ω ≈ ωzero). For r = 0.99
the shape of the dip is more marked which is also expected
due to the more sudden cancellation of the pole-effect when
ω sweeps by ωzero. It is noted that for r = 0.99, σ2

x is
generally larger than for r = 0.8. This is also expected since

the filter’s Q-factor increases for r → 1, thus reducing the
numerical robustness, [10]. For frequencies in a distance of
more than π/3 rad from ωzero, we observe for r = 0.99
that σ2

ITLS > σ2
DF , both for single- and double-precision.

This is also expected and is explained by the higher number
of quantization errors in the ITLS as compared to the DF-II.
This effect is not seen for r = 0.8 where σ2

ITLS ≈ σ2
DF for all

frequencies (except for ω ≈ ωzero, r = 0.8, single-precision,
where ITLS is significantly better), which we explain by the
increased numerical tolerance for the low-Q filters.

Fig. 5. σ2
x illustrated for exact addition and multiplication with VBL = 10.

In our second experiment, we use an AxC multiplier and an
exact adder. We opt for VBL = 10, i.e., the 10 least significant
bits of the 32-bit products are nullified prior to product sum-
mation, Fig. 5. The overall shape of the performance curves
are generally maintained, but there are at least two important
observations. First and foremost we note that for r = 0.99 in
both single- and double-precision, the better performance of
DF-II for the ”no AxC” case has been reduced, in particular
for single-precision. In large this is due to a deteriorated DF-II
performance, which indicates that for high-Q filters, the ITLS
is more resistant towards the inaccuracy introduced by the
AxC multiplier. We explain this by the ±ki multiplications in
the ITLS, which generate products with numerical offsets of
different sign, potentially being out-balanced in the following
product summation. Secondly, for r = 0.8, single-precision, at
ω ≈ ωzero both structures show σ2

x ≈ −60dB. It is the ITLS
performance which has degraded as compared to the ”no AxC”
scenario, thus indicating that closely spaced poles and zeros
eliminates somewhat the above mentioned ±ki multiplication
effect of the ITLS. We consider this being caused by the
reduced numerical values of the internal variables in the non-
recursive part of the filter for ω ≈ ωzero. This observation
is similarly strengthen in the results for r = 0.8, double-
precision, and ω ≈ ωzero where ITLS, as compared to the
”no AxC” case, has its performance degraded from ≈ −80dB

to ≈ −75dB, while DF-II maintains a better than −80dB
performance for identical parameters.

Fig. 6. σ2
x for exact multiplier, and adder with k = dadd/2, m = dadd/4.

Our third experiment involves an exact multiplier, i.e.,
VBL = 0, and an AxC adder. We opt for a word-length of
the accurate part equal to half the total word-length of the
sum, i.e., k = dadd/2, and we choose half of the inaccurate
part to have a constant value, i.e., m = dadd/4, Fig. 6. Some
noteworthy findings emerge from this setup. Most remarkable
is the fact that the ITLS, except for the high-Q double-
precision scenario, is now mostly better than or comparable to
the DF-II, despite the 50% higher adder count, and thus AxC-
related noise, in the ITLS. Apart from some few variations in
the superior ITLS-performance, the overall indication is that
the ITLS is able to withstand better the substantial inaccuracy
being introduced by the AxC additions. Again, we expect this
being partly due to the ±ki multiplications in the feedback
loop of the ITLS, which recursively balances out (some of) the
introduced ERPCAA errors. It should be noted, however, that
there is a marked performance difference between the single-
and the double-precision scenarios. For double-precision and
r = 0.8 we found a significantly better performance for
both structures, seen as −45dB for single-precision versus
−80dB for double-precision in best case. This observation
indicates that reducing the accuracy of the least significant
half of the sum when performing AxC addition is relatively
harmless for double-precision, whereas more precaution is
needed when working with single-precision. For high-Q filters,
the situation is even more pronounced. For DF-II, the result is
−20dB versus −62dB at best for single- and double-precision,
respectively. For ITLS, the corresponding numbers are −32dB
and −60dB, clearly indicating that the ITLS is the preferred
structure for single-precision high-Q filters.

Our fourth and final experiment involves simultaneous ap-
plication of approximation in the multiplier, i.e., VBL = 10,
and in the adder, i.e., k = dadd/2 and m = dadd/4,

Fig. 7. σ2
x for full AxC; VBL = 10, and k = dadd/2, m = dadd/4.

Fig. 7. The immediate observation is the relatively limited
deviation/degradation of performance for all four scenarios as
compared to the setup with only AxC addition, Fig. 6. Except
from some few cases, the eight curves essentially have the
same progress. To a large extent, they also have the same
performance measure, the exception being i) DF-II for r = 8
and single-precision, ii) DF-II for r = 8 and double-precision,
and iii) ITLS for r = 8 and double-precision, which all show
a slight deterioration for low frequencies as compared to the
third experiment. This consistent pattern very clearly indicates
that in a combined AxC multiplier/adder configuration, the
AxC adder is by far the most critical component (for the
parameter settings chosen in this study). Additionally, for this
combined experiment, we conclude that choosing the ITLS
over the DF-II seems to be an advantageous solution in terms
of improved numerical performance in an AxC scenario, the
exception being for high-Q filters implemented in double-
precision. For this particular combination, it appears that the
DF-II almost always performs better.

VI. CONCLUSION

We have investigated AxC multiplication and AxC addition
applied to two types of implementation structures for recursive
2nd order digital filters, the DF-II and the ITLS. Based on the
Radix-4 BBM Type 0 multiplier and the ERPCAA adder, both
being reported among the circuits providing the best trade-off
between accuracy and resource reduction, we have conducted
an experimental campaign involving adjustable parameters as-
sociated to the circuits and the filters. In essence, our findings
are that i) approximate multiplication and addition can be
used (individually or combined) in the two selected structures
without compromising the stability of the filters, ii) for AxC
multiplication, exact addition, and high-Q filters, the ITLS
is more resistant towards reduced product accuracy, despite
closely spaced poles and zeros tend to eliminate this effect, iii)

for exact multiplier and AxC adder, the ITLS is mostly better
than or comparable to the DF-II, meaning that the ITLS can
withstand better the inaccuracy introduced by AxC additions,
the ITLS being the preferred structure for single-precision
high-Q filters, iv) some exceptions (slight deterioration for low
frequencies) highlight that in a combined AxC multiplier/AxC
adder configuration, addition is the most critical component,
and v) in such a combination, the ITLS seems to be more
advantageous in terms of numerical performance as compared
to the DF-II, except for high-Q filters implemented in double-
precision, for which the DF-II almost always performs better.

The number of parameters and their many possible settings
lead to a solution space for the investigated problem which is
sized way beyond what is possible to explore manually. Many
more and insightful experiments could therefore be conducted
by developing an automated solution space exploration frame-
work, potentially unveiling sets of parameter combinations
which represent local optimal solutions. Besides, since we
have clearly demonstrated the viable possibility for such a
match, our future investigations will focus on the amount of
resource reduction which can be achieved as compared to
using traditional multiplier and adder circuits.

REFERENCES

[1] Y. Sun, G. Wang, B. Yin, J. R. Cavallaro, and T. Ly, High-level Design
Tools for Complex DSP Applications, Chapter 8 in ”DSP for Embedded
and Real-Time Systems”. Elsevier Inc., 2012.

[2] M. Bertamini and M. Kubovy, Human Perception. Routledge, ISBN
9781138355972, 2022.

[3] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys, vol. 48, no. 4, pp. 62:1–62:23, 2016.

[4] H. Jiang, F. J. H. Santiago, H. Mo, L. Liu, and J. Han, “Approximate
arithmetic circuits: A survey, characterization, and recent applications,”
Proceedings of the IEEE, vol. 108, no. 12, pp. 2108–2135, 2020.

[5] M. Pashaeifar and M. Kamal, “A theorerical framework for quality
estimation and optimization of dsp applications using low-power approx-
imate adders,” IEEE Trans. on Circuits and Systems-I: Regular Papers,
vol. 66, no. 1, 2019.

[6] ——, “Approximate adder sysnthesis for area- and energy-efficient
fir filters in cmos vlsi,” IEEE 13th Int. New Circuits and Systems
Conference, 2015.

[7] W. Hui, G. Chang, V. Gormathi, R. Valarmathi, V. S. Balaji, and
V. Elamara, “Revisiting fpga implementation of digital filters and ex-
ploring approximate computing on biomedical signals,” Jour. of Medical
Imaging and Health Informatics, vol. 10, no. 9, pp. 2020–2004, 2020.

[8] R. Pilipovic, V. Risojevic, and P. Bulic, “On the design of an energy effi-
cient digital iir a-weighting using approximate multiplication,” Sensors,
vol. 21, no. 732, 2021.

[9] P. Koch, J. Østergaard, and O. Andersen, “On numerical robustness
of bi-quad structures using fixed-point approximate multiplication,”
Proc. of the 25th Int. Symposium on Wireless Personal Multimedia
Communication, pp. 226–231, 2022.

[10] S. K. Mitra, Digital Signal Processing, A Computer-Based Approach.
McGraw-Hill Int. Edition, ISBN 0-07-118175-X, 2001.

[11] D. Schlichthärle, Digital Filters, Basics and Design, 2nd Ed. Springer,
ISBN 978-3-642-14324-3, 2011.

[12] J. D. Markel and J. A. H. Gray, Linear Prediction of Speech. Springer-
Verlag, Berlin Heidelberg New York, ISBN-13: 978-3-642-66288-1,
1976.

[13] B. Parhami, Computer Arithmetic, Algorithms and Hardware Designs.
Oxford University Press, 2000.

[14] F. Farshchi, M. S. Abrishami, and S. M. Fakhrarie, “New approximate
multiplier for low power digital signal processing,” Proc. 17th Int. Symp.
on Computer Architecture and Digital Systems, pp. 25–30, 2013.

[15] J. Lee, H. Seo, H. Seok, and Y. Kim, “A novel approximate adder
design using error reduced carry prediction and constant truncation,”
IEEE Access, vol. 9, pp. 939–953, Sep. 2021.

