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Abstract

In recent years, deep learning (DL) has grown as a powerful technology
for solving complex problems in diverse domains. Thus, by leveraging the
power of trainable non-linear transformations to learn intricate patterns di-
rectly from raw data in an automated way, deep learning has revolutionized
how we analyze and extract new knowledge from extensive data collections.

In the meantime, the healthcare sector is entering a new digital era char-
acterized by the growing accumulation and storage of patient biomedical
information. Thus, deep learning technologies for the healthcare domain
hold the prospects to complement the work of medical professionals by pro-
viding timely and accurate decision support for improved diagnostic accu-
racy in decision-making, reducing the time to diagnosis, and providing more
personalized patient care. However, applying deep learning technologies to
real-world domains is often complex. It is incredibly complex for the medi-
cal domain, where patient medical information is described by heterogeneous
electronic health record (EHR) data comprising disparate modalities such as
clinical images, textual descriptions, patient prescription history, laboratory
tests, and many more.

Hence, in this thesis, I investigate how deep learning technologies can
be used to automate how we learn from patient EHR data. First, I investi-
gate how hierarchical medical domain taxonomies can be used to model loss
functions based on patient prescription medication in a diagnosis prediction
setting. Not only do I find that deep learning can be a helpful tool in pre-
dicting patients’ comorbidity history based mainly on the EHR modality of
patient prescription history, but also that a hierarchical loss function based on
the structure of the hierarchical medical ICD taxonomy can positively benefit
the task. Furthermore, I investigate the transferability and generalizability of
the approach as mentioned above by applying the learned model to a large
Danish EHR dataset. While the model does indeed show traits of generaliz-
ability, the EHR data from the two datasets vary in a way that challenges the
direct transferring of learned models using our approach.

Subsequently, I explore the summarization of medical domain taxonomies
and their application for pre-initializing node embeddings in patient graphs
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connecting patients with their clinical observations. I employed graph con-
volution neural networks to learn to predict the patient’s diagnosis codes.
Results indicate that medical domain taxonomies contain rich information
that can be statically extracted and used in graph-based deep learning mod-
els on EHR data. Furthermore, I investigate a novel way of structuring patient
hospitalization data as sequences of medical events and utilize transformer
networks for predicting the length of patient hospitalizations. Results from
a hospitalization length of stay prediction problem indicate that the transfor-
mation of EHR data to sequences for integrating the temporal dependencies
of the data can be beneficial for solving downstream tasks.

Lastly, I investigate how medical EHR data can be combined using multi-
modal representation learning techniques to solve medical analytics prob-
lems by reviewing more than 1000 papers in the field. I find a rising trend
in deep learning techniques applied to combinations of medical modalities.
Furthermore, I structure medical modalities and multi-modal representation
learning techniques into hierarchies based on their characteristics. I also built
an explorable online analysis for researchers to dive deeper into modality
combinations and their usage in medical applications based on EHR data.

Overall, while the usage of DL for EHR data is challenging, each paper
in this thesis extends our knowledge by investigating novel ideas that enable
us to utilize the inherent properties of EHR data in new ways. Specifically,
no single data representation is always the best when working with EHR
data, and the transformation of tabular data into other formats can sometimes
benefit downstream tasks. Furthermore, extending DL technologies by an
auxiliary component of medical domain knowledge can often be beneficial,
such as hierarchical medical taxonomies.



Resumé

Gennem de seneste år har deep learning udviklet sig til en kraftfuld tek-
nologi til løsningen af komplekse problemer. Ved at udnytte potentialet af
trænbare transformationer til automatisk at lære komplekse mønstre fra sto-
re datamængder, har deep learning revolutioneret hvordan vi analyserer og
udvinder ny viden fra data.

I mellemtiden er sundhedssektoren gået ind i en ny digital æra kendeteg-
net ved en voksende indsamling og lagring af patienters sundhedsdata. Af
netop denne grund har deep learning et stort potentiale ved at kunne supple-
re klinikere i deres arbejde med rettidig og præcis beslutningsstøtte til; for-
bedret diagnostik, reduceret diagnosetid, og personaliseret patientpleje. Det
er dog ofte komplekst at skulle anvende deep learning på virkelige data. Det
er især komplekst indenfor sundhedssektoren, hvor patienters sundhedsda-
ta er kendetegnet ved heterogene data, der omfatter forskellige modaliteter
som; medicinske billeder, kliniske noter, recept historik, laboratorietests og
mange flere.

Jeg undersøger derfor i denne afhandling, hvordan deep learning tekno-
logier kan bruges til at automatisere, hvordan vi lærer fra patientdata. Først
undersøger jeg, hvordan hierarkiske medicinske domæne-taksonomier kan
bruges til at modellere tabsfunktioner. Jeg finder at deep learning kan være
et nyttigt værktøj til at modellere forudsigelsen af patienters sygdomshisto-
rik, hovedsageligt baseret på patientens recept-historik. Herudover finder jeg
at en hierarkisk tabsfunktion baseret på strukturen af den medicinske ICD-
taksonomi kan have en positiv effekt på modellens ydeevne. Desuden un-
dersøger jeg overførbarheden og generaliserbarheden af den nævnte tilgang
ved at anvende den lærte model på et stort, dansk datasæt. Selvom modellen
viser træk af generaliserbarhed, udgør forskellene mellem de to datasæt en
udfordring for modellens direkte overførbarhed.

Dernæst udforsker jeg indlejringen af medicinske domæne-taksonomier
og deres anvendelse til at initialisere node indlejringer i patientgrafer,
der forbinder patienter med deres kliniske observationer. Jeg bruger graf-
konvolutionelle neurale netværk til at forudsige patientens diagnosekoder.
Resultaterne indikerer, at medicinske domæne-taksonomier indeholder rig
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information, der kan ekstraheres statisk og bruges i graf-baserede deep lear-
ning systemer. Desuden undersøger jeg en ny måde at strukturere patient
indlæggelsesdata som sekvenser af medicinske begivenheder og anvender
transformer netværk til at forudsige længden af patientindlæggelser. Resul-
taterne af et eksperiment, udført på et stort, dansk datasæt, indikerer, at
transformationen af tabulær patientdata til sekvenser, for at integrere dataens
tidsafhængigheder, kan være gavnlig for løsningen af medicinske problemer.

Endelig undersøger jeg, hvordan forskellige typer af sundhedsdata kan
kombineres ved hjælp af multimodale repræsentationslæringsteknikker til at
løse medicinske analytiske problemer. Ved at gennemgå mere end 1000 vi-
denskabelige artikler, finder jeg en stigende tendens i anvendelsen af deep
learning til at kombinere medicinske modaliteter. Desuden strukturerer jeg
medicinske modaliteter og multimodale repræsentationslæringsteknikker i
hierarkier baseret på deres egenskaber. Til slut bygger jeg et online analyse-
værktøj til forskere for at dykke dybere ned i modalitetskombinationer og
deres anvendelse i medicinske applikationer.

Hver af mine artikler i denne afhandling udvider vores viden indenfor
feltet ved at undersøge nye ideer, der forbedre brugen af deep learning på
sundhedsdata. Specifikt er ingen enkelt datarepræsentation altid den bed-
ste, når man arbejder med sundhedsdata, og transformationen af tabeldata
til andre formater kan undertiden gavne vores evne til at lære fra dataen.
Desuden kan integrationen af domæneviden, såsom hierarkiske medicinske
taksonomier, ofte være gavnligt i brugen af deep learning på sundhedsdata.
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Thesis Summary
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Chapter 1

Introduction

This thesis details our investigations into deep learning (DL) as a tool for
automating the process of extracting insights from electronic patient health
record data. The thesis is written as a collection of scientific papers. Section
1 examines the motivational aspects of the thesis and consolidates the contri-
butions of each paper. Subsequently, Section 2 outlines the structure of the
thesis.

1 Background and Motivation

In recent years, deep learning (DL) has emerged as a powerful tool for solving
complex problems in diverse domains, revolutionizing how humans analyze
and extract insights from vast volumes of data. Its unparalleled capacity to
automate complex tasks has surpassed human capabilities in many aspects.
At the core of DL lies the perceptron, a mathematical abstraction over the bi-
ological concept of neurons, which serves as the fundamental building block
for Neural Networks (NNs). Figure 1.1 illustrates the concept of a percep-
tron, and Figure 1.2 illustrates the structure of a feedforward neural network
consisting of multiple layers of perceptrons.

Deep learning leverages NNs, comprised of multiple layers of neurons, to
effectively capture and learn intricate patterns from data through trainable
non-linear transformations. By making small incremental adjustments to the
weights and biases of the neurons, deep learning algorithms can automati-
cally learn latent vector-based representations from raw data. This technol-
ogy has facilitated significant advancements in difficult tasks such as natural
language processing and computer vision [42, 50].

In the meantime, the healthcare sector is entering a new digital era where
patient biomedical data is continuously being collected and stored from
healthcare facilities, leading to ever growing collections of healthcare data. A
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Fig. 1.1: Illustration of the perceptron, the building block of deep learning technologies. Given
the real-valued input vector x, a linear transformation w is applied to x resulting in a single
real-valued number z. Subsequently, an activation function σ, such as the Rectified Linear Unit
or the Sigmoid function, applies non-linearity to the function [44].

patient’s healthcare data, henceforth termed electronic health records (EHR),
describes individual patients’ medical history and consists of multi-modal
information such as patient comorbidities, prescription medications, labo-
ratory tests, genome data, and clinical imaging modalities as illustrated in
Figure 1.3.

Given the short time allocated for medical doctors to review and analyse
the vast volumes of multi-modal and high-dimensional EHR data on their
patients precludes them from obtaining a unified view of their patients.

Hence, DL technologies utilizing end-to-end learning for automated pat-
tern recognition and knowledge discovery have recently gained traction as
a way to draw new insights from EHR data with the prospect of improv-
ing our ability to diagnose and treat patients [31] accurately. The following
are examples of different NN architectures and their applications for solv-
ing medical analytic tasks. Recurrent Neural Networks (RNNs) are a class
of NNs that excel in learning from temporal data such as text, genomes,
or speech. They can consider information from prior inputs in their cur-
rent computations, thus allowing them to learn from temporal dependencies.
RNNs have been researched for diagnosis prediction based on clinical notes
to improve the efficiency and accuracy of medical diagnosis coding [24, 46].
Convolution Neural Networks (CNNs) are a class of NNs designed to learn
from data structured in grids such as images, thus making them practical
for tasks such as image and video processing. They use the mathematical
operation of convolutions to apply a learned filter to local features from the
input while applying pooling computations to summarize local features into
a low-dimensional latent representation. These operations make them robust
to translational variations of objects within the input. CNNs have been used
in the early-stage detection of Alzheimer’s disease [13] and for automatic
classification of COVID-19 infections [32]. Mapping the human brain using
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Fig. 1.2: Illustration of a neural network structure for learning from tabular data. Each blue
dot represents a neuron. The output of each perceptron in layer 1 is used as the input for each
neuron in layer 2.

graph structures of nodes representing the human brain regions and edges
the morphological, functional, or structural relations between nodes. Graph
Convolution Neural Network (GCNs) is a neural network that works directly
with data structured as graphs consisting of nodes and relations. GCNs use
permutation invariant convolution operations tailored to graph-structured
data, allowing them to capture the dependencies between nodes and edges.
Hence, GCNs are very useful for tasks like social network analysis, interpre-
tation of biological systems, and recommendation. In a biomedical context,
GCNs have been used in applications such as the prediction of brain disor-
der [4].

As DL technologies thrive on interpreting and summarizing vast volumes
of data to discover novel patterns and associations that might be difficult to
determine manually, DL technologies have the potential to complement and
enhance the work of medical professionals by providing timely and accurate
decision support that incorporates the entirety of a patient’s medical history.
This can lead to benefits such as improved diagnostic accuracy in decision-
making, reducing the time to diagnosis, and providing more personalized
patient care [53].

However, applying DL techniques to EHR data presents complex chal-
lenges, such as missing data, data heterogeneity, and the integration of med-
ical domain knowledge. Our work includes five papers, each building on top
of the other while investigating different challenges in using DL technologies
for EHR data. Paper A [41] and Paper B [22] explore how we can repre-
sent hierarchical relations directly within a loss function. Subsequently, Pa-
per C [19] examine a methodology for embodying such hierarchical relations
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Fig. 1.3: Illustration of patient EHR data. EHR data consist of every medical observation col-
lected on a patient throughout the various encounters the patient has had with the healthcare
sector. The data consists of multiple modalities such as textual clinical notes, medical imaging,
genomics data, laboratory tests, medication administrations, and comorbidities.

during the initialization phase of EHR graph representations. Paper D [18]
explore the intricacies of modeling EHR data in a sequential format. Lastly,
Paper E [20] investigate multi-modal EHR representations. The following
paragraphs briefly introduce each of the papers and their relations to each
other.

Domain Knowledge and Deep Learning Paper A [41] investigates how
medical domain knowledge in the form of hierarchical medical taxonomies
can be integrated into DL technologies to improve the performance of a
DL-based diagnosis code prediction system. The medical domain contains
an abundance of domain-specific information, including hierarchical medi-
cal taxonomies such as the International Statistical Classification of Diseases
and Related Health Problems (ICD) [7] for structuring and relating diag-
nosis codes. Exploring new approaches to incorporate hierarchical medi-
cal taxonomies and other domain-specific information into DL models holds
promise for improving their accuracy and robustness. By leveraging addi-
tional knowledge, DL models can better capture the complex interactions
and dependencies within medical data, leading to more accurate predictions.
Figure 1.4 illustrates the hierarchical structure of the ICD taxonomy. Pa-
per A [41] investigates a novel hierarchical loss function for differentiating
between small and large model errors using the ICD taxonomy in a diagno-
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sis prediction problem. Based on the idea of multi-output hierarchical multi-
label classification (HMCN) networks by Wehrmann et al. [48], we propose
a novel hierarchical multi-label classification (HMC) loss function simplify-
ing the complexity of the HMCN network structure. Specifically, we preserve
the network structure of fully connected layers of neurons but extend the loss
function with a hierarchical property punishing very wrong predictions more
than slightly wrong predictions. Experimental results of training a model to-
wards the task of predicting a patient’s diagnosis codes using the patient’s
medication list as input to the model showed the feasibility of our approach.

ICD

Neoplasms Nervous
System

Respiratory
System

Malignant Beneign Inflammatory Degenerative Influenza Infections

Cardia

L1

L2

L5 Lip Meningitis Alzheimer Pneumonia Bronchitis

Fig. 1.4: Illustration of a subset of the ICD hierarchical taxonomy of structuring diagnosis codes.
For brevity only levels 1, 2, and 3 are shown.

Extending the work from Paper A, in Paper B [22], we investigate the
model’s ability to generalize to new datasets to transfer knowledge from one
dataset to another. Model generalizability and transferability are essential
considerations when applying deep learning to EHR data. Models devel-
oped on a dataset gathered at one healthcare facility may not readily gen-
eralize to other populations or healthcare institutions. The performance of
deep learning models must be rigorously evaluated across diverse datasets
and real-world scenarios to ensure their robustness for practical usage. While
our initial investigations from Paper A on a diagnosis prediction problem
yielded exciting results over the publicly available MIMIC-III [26] dataset,
further studies were needed to investigate the transferability and generaliz-
ability of the HMC loss function. Hence, in Paper B [22], we used a large
Danish dataset of more than two million Danish patient records as a sec-
ond dataset. The Danish dataset, in combination with the MIMIC-III dataset,
paved the way for investigating the transferability and generalizability of our
approach from Paper A. The transferability of the approach was investigated
by training a deep-learning model on the MIMIC-III dataset while testing the
model on the Danish dataset. The generalizability was investigated by train-
ing separate models for the datasets while comparing their performances.
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The experimental results showed promising results for the generalizability of
our approach. However, our approach did not yield good results in terms of
transferability.

Graph-based EHR Representations Based on our work from Paper A and
Paper B, we found that tabular data has some limitations that must be over-
come to fully utilize the latent knowledge contained within EHR data. For
example, simple DL models for tabular data do not handle missing data, and
structural data dependencies, such as known relationships between medica-
tion and diagnosis codes, are not natively integrated. Hence, in Paper C [19],
we investigate how tabular EHR data can be transformed into graph-based
representations to overcome the problem of missing data while integrating
the relational dependencies of the data. In the medical domain, data is not
missing at random; ergo, there is a specific reason for an observation be-
ing missing [28]. While imputation techniques are commonly used to fill
missing values in tabular data, we must be cautious in assuming a patient’s
health status, especially if the imputed value is important for the predictive
model. However, some data representations, such as graphs, naturally over-
come the missing data problem while enabling the integration of multiple
medical modalities. Hence, we investigate how tabular EHR data can be
formatted as a graph structure based on our experience with DL-based diag-
nosis prediction systems in paper C [19]. Graph structures naturally capture
the relational aspects of EHR data by structuring a graph as nodes represent-
ing patients and clinical observations and edges representing the relationship
between a patient and a clinical concept. Using the MIMIC-III dataset, we cre-
ated an EHR graph consisting of patients related to their clinical observations.
We investigated how GCNs can be trained to predict patient diagnosis codes
based on the events pertaining to a patient’s hospitalization. We devised
a novel inductive method of pre-initializing node embeddings to increase
the system’s performance by extracting the structural knowledge contained
within medical domain taxonomies. Experimental results indicate that inte-
grating domain knowledge as a pre-initialization step for graph structures
could greatly benefit their performance in downstream tasks performed over
the EHR graph, such as diagnosis prediction.

Sequence-based EHR Representations While Paper C introduced the
graph-based EHR structure as a way to overcome the problem of missing
data and integration of relational data, it does not naturally capture the tem-
poral dependencies of EHR data. Hence, in Paper D [18], we investigate the
transformation of EHR data into sequences of medical events pertaining to
the patient.

By utilizing standardized domain vocabularies such as ICD, the Anatom-
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ical Therapeutic Chemical Classification (ATC) [39], and the Nomencla-
ture of Properties and Units (NPU) [37], we create a regulated vocabulary
for describing patient sequences of medical events. Moreover, by using
demographic-specific threshold values, we devise a method of incorporat-
ing measurement values as part of the event vocabulary while keeping the
size of the vocabulary finite. We use a dataset of more than 47 thousand
patient sequences of emergency hospitalizations from a Danish hospital to
investigate sequence-based EHR representations for predicting the patients’
hospitalization time, henceforth termed the patient length of stay (LOS) [45].
By creating a transformer encoder specialized in handling EHR sequences,
we examined LOS prediction from the perspective of a sequence-based DL
system. The results of our experiments suggest that the performance of DL
systems can benefit from transforming tabular data into sequence represen-
tations to learn from the temporal aspects of the data.

Multi-modal Representation Learning Based on our experiences in work-
ing with EHR data in Papers A through D, we found that tabular data is
easy to analyze and manage, graph representations conveniently integrate
the structural dependencies of the data, and sequence representations incor-
porate the temporal dependencies of the data. Notwithstanding, none of
these representations can easily learn from raw EHR modalities such as im-
ages, clinical notes, and omics data. Hence, in Paper E [20], we investigate
the landscape of EHR modalities and their combination using multi-modal
representation learning (MRL) [3] techniques to fully capture the patient’s
health status in a coherent way.

The world is inherently multi-modal, meaning it can only be fully un-
derstood through combining multiple senses, such as sight, sound, feeling,
and taste. Likewise, patient modalities, such as clinical text, clinical imaging,
and tabular observations, provide specific and complementary information
on a patient’s health status. Hence, the combination of medical modalities
can increase the performance of DL models. While the tabular, graph, and
sequence-based data representations can integrate some of these modalities,
they struggle to integrate raw EHR modalities such as clinical notes, images,
and timeseries data. Hence, in Paper E [20], we investigate multi-modal
Representation Learning (MRL) for medical modalities, which is the area
concerned with learning from multiple modalities in an automated manner.
We establish a novel hierarchical taxonomy for classifying medical modalities
based on their characteristics and a taxonomy for classifying MRL techniques
based on their type of data combination. Subsequently, we surveyed more
than 1,000 scientific papers to provide a comprehensive overview of MRL
applications for medical analytics. Furthermore, we created an exploratory
online analysis for researchers to investigate the survey for themselves and
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get inspiration for further development of MRL techniques and their imme-
diate usage for specific medical applications.

2 Thesis Structure

The thesis is structured as follows. Part I motivates the thesis, consolidates
the conducted research, and summarizes the included papers. Part II repro-
duces the five papers constituting this thesis, only modified by their layout
to fit the thesis format. The papers can be read in any order.

Figure 1.5 illustrates the five papers in the thesis, their relations to each
other, and the challenges each paper sets out to examine. Paper A and Pa-
per B, as summarized in Chapter 2, present our efforts on the integration
of the ICD hierarchical domain taxonomy in DL as a novel loss function to
improve the performance of a diagnosis prediction system based on patient
prescription medications. Paper C, as summarized in Chapter 3, investigates
how tabular EHR data can be converted to a graph representation that in-
tegrates the relational aspects of the data, while overcoming the problem
of missing data. We investigate EHR graph representations on a diagnosis
prediction problem using the DL technology of graph convolution neural
networks. Paper D, as summarized in Chapter 4, investigates how the tem-
poral dependencies of EHR data can be integrated into a DL-based system by
converting tabular EHR data into sequence-based representations. We inves-
tigate sequence-based EHR representations on a LOS prediction problem us-
ing the DL technology of transformer encoders. In Paper E, as summarized in
Chapter 5, we propose a novel hierarchical taxonomy of medical modalities
and a taxonomy of multi-modal representation learning techniques. Using
these taxonomies, we survey over 1000 papers combining multiple medical
modalities using multi-modal representation learning techniques for medical
analytics.
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Challenges Papers

• Standardize medical concepts.
• Integrate medical domain 

taxonomies with DL.
• Investigate transferability and 

generalizability of DL approach.

Paper A

Paper B

Paper C

Paper D

Paper E

• Integrate relational dependencies 
of EHR data with DL. 

• Investigate the usage of DL in the 
amalgamation of disparate medical 
modalities.

• Integrate temporal dependencies 
of EHR data with DL. 

Fig. 1.5: Overview of the five papers and their relations to each other.
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Chapter 2

Domain Knowledge and
Deep Learning

This chapter describes how we train a deep learning model towards the task
of diagnosis prediction based on patients prescription medication history.
Furthermore, we design a novel hierarchical loss function that, based on the
structure of the ICD diagnosis codes taxonomy, takes into account the ex-
tend of model errors. The content in this chapter provides an overview of
Paper A [41] and Paper B [22] and partly reuse their content.

1 Problem Motivation and Statement

Diagnosis code assignment is a complex problem, as shown in various stud-
ies [9, 10]. Due to the problem’s difficulty, it could be advantageous to in-
vestigate automatic diagnosis code assignment as a decision-support tool for
clinicians in diagnosing patients. A diagnosis prediction tool could be used
as a decision support tool for clinicians in diagnosis coding and retrospective
cleaning and validating erroneous register data.

While some work exists on automatic systems for diagnosis code predic-
tion based on laboratory test results [38] and clinical discharge notes and
reports [33, 47], these systems are only applicable in the presence of these
data. Moreover, text-based techniques work best when applied to English
text and can not be directly transferred to new languages.

While medical record digitization has allowed physicians access to more
complete and detailed medical history than ever before, its use has also ren-
dered it overwhelming to be thoroughly reviewed in the short time that a
physician can devote to each patient. The problem compounds for older pa-
tients with long medical histories and multiple comorbidities [36] and with
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the unconscious patient who cannot verbally summarize their preexisting
conditions. Thus, first-responders and emergency-room caregivers must rely
on information from the patient’s friends, relatives, or clues in the patient’s
home such as a medication list. This medication list is often pointed to as
a valuable source of information that can shed light on the patient’s current
medical conditions. Hence, developing a model for summarizing a patient’s
medical history based on their medication list would be valuable.

Using the publicly available MIMIC-III [26] from PhysioNet [15] dataset
consisting of EHR Intensive Care Unit (ICU) data for 50k American hospi-
talizations, including vital signs, lab results, medical notes, diagnoses ascer-
tained, and drugs administered during the hospitalization, we aim to develop
a model for automatically finding patient co-morbidities based on the admin-
istered drugs. In Paper A we develop a novel loss function utilizing the struc-
ture of the ICD taxonomy for differentiating between large and small model
errors, as a way of integrating domain knowledge into DL technologies. The
experiments were conducted over the MIMIC-III dataset. Subsequently, to
further investigate the feasibility of our approach, in Paper B we use a large
Danish dataset termed the National Danish Patient Register (NDPR), con-
sisting of more than 2 million nationwide hospitalizations, to investigate the
transferability and generalizability of our method.

The remainder of this chapter summarize the contributions of Paper A
and Paper B:

• First, as described in Paper B, we homogenize the MIMIC-III and NDPR
diagnosis code and prescription code concepts to promote model inter-
operability.

• Second, as described in Paper A, using the hierarchical ICD domain tax-
onomy of diagnosis codes, we design a novel hierarchical loss function
for learning from the extent of model errors to promote fine-grained
model learning.

• Third, as presented in Paper B, we present the results of our work,
including the generalizability and transferability of our approach.

2 Data Homogenization and Heterogeneity

The discrepancy in medical concepts used in different datasets necessitates
their homogenization before we can build a single predictive model to in-
gest both datasets. Hence, as we want to investigate the transferability and
generalizability of our hierarchically aware loss function, we need to homog-
enize the MIMIC-III and NDPR datasets. MIMIC-III diagnosis code concepts
are coded using a clinically modified (CM) version of ICD-9 (ICD-9-CM).
ICD-9 is the 9th version of the International Classification of Diseases (ICD)

14



2. Data Homogenization and Heterogeneity

and Related Health Problems and consists of approximately 13, 000 disease
codes [7]. On the contrary, NDPR diagnosis code concepts are coded using
the Danish Health Authority Classification System (SKS) version of ICD-10,
which extends the ICD-10 taxonomy with additional branches of diseases, re-
moves some codes not used in Denmark, and contains approximately 55, 000
codes. ICD-9 has been used for disease classification of MIMIC-III through-
out the years 2002-2012 patients. There is no international consensus on when
to switch to newer versions of ICD, and due to the various country-specific
modifications, local disease registers have been coded using different ver-
sions and modifications of ICD. Furthermore, due to the shift in granularity
between earlier versions, it is impossible to fully map concepts between ICD
versions earlier than ten. Forward and backward compatibility has been ac-
counted for from the 10th version.

As the changes between ICD versions are too large, creating a bijective
mapping between ICD-9-CM and ICD-10-SKS codes is impossible. However,
utilizing many-to-many general equivalence mappings (GAMs)1, we man-
aged to map 320 unique ICD-9-CM codes to 567 unique ICD-9-SKS codes in
a many to many mapping. Furthermore, we created a set of 148 diagnoses
that could be mapped one-to-one between ICD-9-CM and ICD-10-SKS codes.
The mapping functions are illustrated in Figure 2.1b)
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Fig. 2.1: Illustration of mapping functions for homogenization of medical concepts. a) illustrates
the many-to-many function f for mapping between medication concepts from RxNorm and ATC.
b) illustrates the mapping functions k and r for mapping between diagnosis concepts between
ICD-9-CM and ICD-10-SKS. k is a many-to-many function mapping 567 ICD-9-CM concepts to
320 ICD − 10 − SKS diagnosis concepts, and r is a bijection function between ICD-9-CM and
ICD-10-SKS, mapping 147 diagnosis concepts [22].

Furthermore, to disambiguate and standardize medication concepts used
within the MIMIC-III dataset, we use a mapping of the MIMIC-III medica-
tion terms to standardized RxNorm [30] medication vocabulary using the the

1https://www.cms.gov/Medicare/Coding/ICD10/2018-ICD-10-CM-and-GEMs
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Observational Medical Outputs Partnerships (OMOP) Common Data Model
(CDM) concepts [23] leaving us with 1, 602 RxNorm medication codes. How-
ever, the LDPR dataset codes medication concepts using the Anatomical
Therapeutic Chemical Classification (ATC) [39]. Hence, we mapped from
RxNorm codes to ATC codes using the OMOP concept hierarchy, resulting
in a many-to-many mapping as illustrated in Figure 2.1a). We have made all
mappings available in an online appendix [21].

3 Hierarchical Multi-label Classification

Domain taxonomies such as ICD, ATC, and RxNorm are prevalent in the
medical domain. They are used for various reasons, such as standardized
coding, interoperability between healthcare systems, and efficient retrieval of
medical information. Some domain taxonomies, such as ICD, are built as
a hierarchical group structure based on their similar types of diseases and
conditions, with the discernible diagnosis codes located as leaf nodes in the
hierarchy. Exploring approaches to incorporate such domain knowledge into
DL models holds promise for improving their accuracy and robustness.

Based on the global approach to multi-label classification, we investigate
two loss functions for diagnosis prediction. One is suitable for multi-label
classification (ml) where the extent of model errors are treated the same, and
one integrates the hierarchical ICD taxonomy to differentiate between large
and small model errors (hml). ml is the standard multi-label soft margin loss
for multi-label classification as described in Equation 2.1 [52], where x is the
model predictions and y is the labels.

loss(x, y) =− 1
C ∑

i
y[i] · log((1 + exp(−x[i]))−1)

+ (1 − y[i]) · log
(

exp(−x[i])
(1 + exp(−x[i]))

) (2.1)

Based on the multi-output hierarchical multi-label classification networks
by Wehrmann et al. [48], we devise the hml loss function suitable for hierarchi-
cal multi-label classification tasks for differentiating between small and large
model errors. Specifically, by preserving the network structure of fully con-
nected neural networks, we devise an algorithm termed roll up, for rolling
up diagnosis predictions and diagnosis labels using the ICD hierarchy. We
use these in our hierarchical loss function to differentiate between small and
large model errors.

The roll up algorithm will roll up predictions and labels using the struc-
ture of the hierarchical ICD taxonomy. Even though a prediction might be
wrong on the most specific level of aggregation, it might be right at the level
above. By calculating the average over predictions of child nodes for each
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parent in the next level of aggregation, we effectively get a prediction score
for each diagnosis in the next level of aggregation. Subsequently, we get the
labels for the next level of aggregation by calculating the max over labels of
child nodes for each parent in the next level of aggregation. This procedure
can be repeated until we reach the root level of the hierarchy. The roll up
algorithm is illustrated in Figure 2.2.

Lhml = LL + LG (2.2)

We model hml to minimize a function comprised of two components as
described in Equation 2.2. The local loss LL is calculated using Equation 2.1
and acts as the flat loss not considering the extent of errors. LG is the global
loss. It is calculated using the roll up algorithm as illustrated in Figure 2.2 by
rolling up the model predictions and labels one level at a time until the root
level of the hierarchical ICD taxonomy. The loss from using Equation 2.1 on
the new predictions for each level of hierarchical aggregation is added to the
local loss.

Roll Up Roll Up
L0 .....
L1 .....
L2 .....
L3 .....
L4 .....

A-L4 B-L3 C-L2
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Fig. 2.2: Illustration of the roll up algorithm. In each iteration of the algorithm, the predictions
for each node in the new level are set to the average of the model predictions over the set of
child nodes. Comorbidities registered for the patient are marked with red circles, while diseases
not recorded in the patient are identified with green circles [22].

4 Evaluation and Discussion

To investigate the feasibility, transferability and generalizability of our hml
loss function, we created two experiments as illustrated in Figure 2.3. The
first experiment investigates the generalizability and performance of our hml
loss function by testing our approach on the MIMIC-III and LDPR datasets.
Subsequently, we investigated the transferability of our approach by training
a model on the MIMIC-III dataset while testing the trained model on the
Danish NDPR dataset.

Generalizability. To homogenize the MIMIC-III and NDPR datasets, we
used the inverse many-to-many functions k and inverse bijective function r
to transform ICD-10-SKS codes from NDPR into ICD-9-CM codes, resulting
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Fig. 2.3: Experiments for investigating the transferability and generalizability of our approach.
Green, orange, and blue boxes represent training, validation, and test data respectively. Grey
boxes represent the loss function used for training the model.

in two sets of labels for each dataset consisting of 320 and 147 diagnosis
codes. Furthermore, we investigated the performance of each dataset on the
top 50 and top 10 assigned diagnosis codes.

The results of the generalizability experiment indicated that incorporating
domain knowledge in the form of hierarchical taxonomies for differentiating
between small and large model errors into a loss function was beneficial for
training a DL based system towards the task of diagnosis prediction. The
experimental further indicate that, despite the MIMIC-III and NDPR datasets
being heterogeneous using different ICD and medication vocabularies, both
datasets have similar predictive capabilities. These findings suggest that
our method is dataset agnostic. Moreover, despite the conversions between
vocabulary concepts being imperfect and including many-to-many relation-
ships, we did not find the conversion to negatively impact the performance
of the models.

Transferability. Transferability signifies the capacity of a model to function
in an environment different from the one in which it was initially trained.
We assess this characteristic of our proposed method by training a model on
the MIMIC-III dataset while testing it on the NDPR dataset. As for the gen-
eralizability experiments, we preprocess NDPR using the inverse mapping
functions of k and r to homogenize the datasets. As in the generalizability
experiment, we conducted experiments over the two sets of 320 and 147 diag-
nosis codes and the top 50 and top 10 assigned diagnosis codes. Furthermore,
all experimental settings were investigated for the hml and ml loss functions.
The model is trained and evaluated on a split of 80/20 MIMIC-III data for all
transferability experiments, while the testing is conducted on the complete
DNPR dataset.

The results of the transferability experiment, suggest that the heterogene-
ity between the datasets negatively impacts the predictive performance of
our proposed method. An F1 score of 6.28% was achieved by training an
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hml model on 320 diagnosis codes from the MIMIC-III dataset while testing
it on the NDPR dataset. Moreover, the model could not generate any cor-
rect predictions for 229 out of 320 disease codes, yielding an F1 score of zero.
This finding implies that the differences between patient data across different
countries may be too significant to allow for a model with substantial trans-
ferability abilities. The differences in data collection objectives, methods, and
diverse vocabulary standards for prescription and disease code hierarchies
may contribute to the variance between MIMIC-III and DNPR.

However, the model transferability improves significantly when focusing
on subsets of ICD-9 codes. Transferability results from the top 10 assigned
diagnosis codes achieved an F1 score of 28.25. Interestingly, 4 out of the 10
ICD-9 codes produced an F1 score below 5.00, indicating that our proposed
method could display high transferability for specific disease codes.

5 Conclusion

In Paper A and Paper B, we investigated a novel loss function that can differ-
entiate between small and large model errors by exploiting the label relation-
ships found in hierarchical taxonomies. Using the hierarchical ICD taxonomy
of diagnosis codes, we investigated the capabilities of our loss function per-
formance on a DL-based diagnosis prediction problem. Experiments on the
American MIMIC-III dataset and the Danish NDPR datasets demonstrated
our method’s superiority over using a flat loss function. However, our ex-
periments showed limited transferability performance, indicating that a new
model should be trained for each clinical setting we wish to use this technol-
ogy.

In Paper A and Paper B, we investigated diagnosis prediction from the
perspective of a patient’s list of prescription medications. While diagnosis
prediction based solely on a patient’s prescription medication has a wide
range of applications, it would be interesting to integrate more modalities
into a coherent model. Hence, in the next chapter, we introduce a graph-
based method of predicting a patient’s disease history to integrate more pa-
tient modalities and better capture the relational dependencies in the data.
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Chapter 3

Graph-based EHR
Representations

This chapter describes how EHR data can be modelled as graphs for subse-
quent patient-wise representation learning using graph convolution neural
networks. Furthermore, we design and evaluate a novel node initialization
method that extracts static domain knowledge from hierarchical taxonomies
for inductive graph-based representation learning. The content in this chap-
ter provides an overview of Paper C [19] and partly reuses its content.

1 Problem Motivation and Statement

In recent years, the world has seen a rapid rise in the collection of patient EHR
data, including structured and unstructured healthcare observations. While
this information presents exciting opportunities to drive progress in health-
care, the complexity and heterogeneity of the data present significant chal-
lenges for traditional machine learning techniques leveraging tabular struc-
tured data. These challenges necessitate the exploration of alternative data
representations and modeling methods.

While tabular data representations are easy to manage and digest by tra-
ditional machine learning techniques, they do not fully capture the intricate
relationships between patient observations. Further challenges like missing
data are a big problem for tabular healthcare data. However, graph represen-
tations excel in incorporating the relational dependencies between domain
concepts through their usage of nodes and multi-relational edges. As EHR
graph representations can leverage the relational dependencies within data, it
has recently gained traction as an input representation for the deep learning
technology of graph convolution neural networks (GCNs) [17]. GCNs learn a
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latent representation of graph nodes for subsequent downstream tasks, such
as link prediction, whole graph classification, and node classification [49].

While much effort has been recently made in the creation of innovative
GCN architectures in a model-centric way, such as the multi-relational Rela-
tionGCN [43] networks, and GraphSAGE [16] with its scalable node sampling
approach, only nascent attempts have been made in data-centric integration
of domain knowledge to improve the performance of graph-based DL sys-
tems. Incorporating semantically rich information into DL technologies can
enhance their predictive power for solving medical tasks such as diagnosis
prediction. In the context of EHR graphs, rich semantic information such as
textual descriptions, hierarchical taxonomies, and uncertainty information is
often inherent to the concepts described in graphs [25]; however, integrating
such information has been only sparsely explored [6]. The process of pre-
initializing the embeddings of graph nodes is a key method of adding do-
main knowledge to graphs with previous work investigating text attributes,
TF/IDF scores, binary work presence vectors, node and edge degrees, and
many more features for the pre-initialization of node embeddings [16, 54].
However, we are the first to investigate the latent knowledge contained within
medical hierarchical taxonomies for pre-initializing node embeddings.

In Paper C, we explore graph representations for representing EHR data
as structures consisting of nodes and edges for exploiting the intricate re-
lationships between medical concepts. However, representing EHR data as
graphs is a challenging task. Applying DL technologies such as Graph Con-
volution Networks (GCNs) for graph representations requires an initial la-
tent vector representation of each node in the graph. We investigate how
the structure of hierarchical medical domain taxonomies can be extracted as
vector representations pertaining to the properties of domain concepts for
subsequent usage in the node initialization process of EHR graphs for im-
proved performance in the downstream task of diagnosis prediction.

By transforming EHR data from the tabular format to graph-based repre-
sentations, following GCNs for learning from the EHR graph, we unveil new
opportunities for learning from the steadily expanding volumes of health-
care data for better decision-making support and ultimately improved patient
care. The remainder of this chapter summarize the contributions of Paper C:

• First, we investigate the transformation of tabular EHR data into patient
graph representations.

• Second, we devise a novel method of initializing node embeddings
by extracting the latent knowledge within hierarchical medical domain
taxonomies.

• Third, we present the results of our work.
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2. EHR Graph Representations

Fig. 3.1: Illustration of electronic health record graph consisting of two patients s1 and s2, two
laboratory test concepts l1 and l2, two procedure concepts p1 and p2, and three medication
concepts m1, m2, and m3 [19].

2 EHR Graph Representations

Patient EHR data relates patients to clinical observations such as laboratory
tests, vital measurements, imaging modalities, and procedures. Each ob-
servation is coded using standardized medical taxonomies such as ICD for
diagnosis codes, the Nomenclature of Properties and Units (NPU) [37] codes
for laboratory tests, and ATC for medication concepts. Hence, given the full
set of medical concepts used to code clinical observations, we can organize a
patient’s EHR data as a graph representation consisting of one node for each
medical concept, one node for each patient in the dataset, and edges between
nodes relating patients to their clinical observations. An example EHR graph
is illustrated in Figure 3.1. The example illustrates a graph with two patients,
s1 and s2. Patient s1 is related to the set of concepts {p1, p2, l1, m1, m2} and
patient s2 is related to the set of concepts {l1, l2, p2, m2, m3}. Furthermore, s1
and s2 are related to each other through the intersection of their respective
sets of concepts, e.g., {l1, p2, m2}.

Graphs naturally overcome the problem of missing patient observations,
as a missing observation is modeled as an edge that does not exist in the
graph. Moreover, patients are naturally related to each other through the
medical concepts that both patients have encountered. Given an EHR graph,
the deep learning technology of graph convolution neural networks can be
used to learn a latent representation of each patient that incorporates the
patient’s medical history and knowledge about similar patients through their
shared related medical concepts.
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3 Graph Representation Learning

The deep learning technology of graph neural networks takes as an input a
graph consisting of nodes and edges and learns from the characteristics of
each node by propagating node information along the edges of the graph.
GCNs thus learn how to aggregate information from the neighborhood of a
node to determine a latent representation of the node that can be further used
in downstream tasks such as patient diagnosis prediction. This is achieved
using an aggregation function and an update function. The aggregate function
is described in Equation 3.1. Given a node v, a user-defined function agg
combines the initial feature representations of the neighborhood nodes N (v)
of node v.

hN (v) = agg({hu, ∀u ∈ N (v)} (3.1)

Subsequently, an update function is used to merge the initial feature rep-
resentation of node v with the aggregated representation of its neighborhood
as described in Equation 3.2. Given a user-defined function upd, the initial
feature representation of node v is combined with the neighborhood feature
representation N (v). Subsequently, a learnable non-linear transformation is
applied to the output of upd through a linear transformation W and an acti-
vation function σ.

h
′
v = σ(W · upd(hv, hN (v))) (3.2)

To learn latent node embeddings in a scalable way, we use the Graph-
SAGE algorithm [16]. However, we modify the algorithm to work on het-
erogeneous graphs consisting of multiple node types to accommodate the
complex nature of EHR data as illustrated in Figure 3.2. More specifically,
Figure 3.2a) illustrates a 2-layer, 2-node fanout sampling strategy. The sam-
pling strategy identifies the neighborhood K1 for patient s1. Every sampled
node in this set {l1, m1}, applies the same sampling strategy on their imme-
diate neighborhoods K2 to further sample nodes {s2, s3, s6, s7}. Based on the
subgraph constructed by the sampling strategy, node features from each of
the 7 nodes are extracted. Finally, as illustrated in Figure 3.2c) the aggre-
gate and update step of the graph convolution network can be used to train
the network toward the downstream task of diagnosis prediction. We use a
relation-specific transformation matrix Wi that operates on the average value
(indicated by ⊙) of similar typed entities, as previously done in [16]. Once
complete, we apply a non-linear activation function σ to individual convolu-
tions. If it becomes necessary to combine features of different types, such as
in the combination of {u1, u

′
2, u

′
3}, we use the element-wise mean to integrate

individual transformation.
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3. Graph Representation Learning

Fig. 3.2: Illustration of the steps involved in our graph convolution process. a) A sampling
strategy is used to define a small set of notes. b Second, node representations of the subgraph
are extracted. c, Finally, a new latent representation for node s1 is calculated by combining its
current representation with the representations of its neigborhood [19].

As the initial feature values of node embeddings serve as the starting
point for all successive transformations and updates, they greatly impact
the performance of GCN models. Hence, appropriately initializing these
embeddings can significantly influence the ability of the model to capture
and reflect the intricate relational patterns within the graph, thereby leading
to more accurate predictions. Influenced by our work in using hierarchical
medical taxonomies to improve the predictive capabilities of a diagnosis pre-
diction system in Paper A and Paper B, we investigated whether hierarchical
taxonomies could also be used in the pre-initialization of node feature em-
beddings.

We surmise that the hierarchical position of medical concepts within their
respective standardized hierarchical taxonomies could contain semantically
relevant information for diagnosis prediction. For example, the medication
metformin (coded as A10BA02) at the top level of the ATC hierarchy indicates
that it targets the alimentary tract and metabolism, the second level reveals
it is used for diabetes, the third level shows it lowers blood glucose, the
fourth level classifies it in the chemical subgroup of biguanides, and the final
level identifies the chemical substance as metformin. Hence, if the patient
has been prescribed metformin, they likely have type 2 diabetes. Integrating
such information into the DL model should enhance the model’s ability to
learn the usage of specific medications. Similarly, hierarchies exist for sur-
gical procedures, coded by the ICD-9 Procedures (PROC) taxonomy, which
groups related procedures based on the operation site. If a patient underwent
partial adrenalectomy (code 07.2), they likely had a condition related to the
endocrine glands. Likewise, laboratory tests are coded using the hierarchical
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LOINC concept codes, which group related laboratory tests based on their
class, component, and system, which provides important information on the
purpose of the laboratory test.

Using a combination of breadth-first and depth-first searches, we devised
an algorithm TreeEmb to extract the structural knowledge of medical con-
cepts from their hierarchical medical taxonomies. The computed concept
attributes can then be leveraged to pre-initialize node embeddings of EHR
concepts. Moreover, this method of creating embeddings guarantees that con-
cepts closely linked in the tree will have more similar embeddings than those
with a larger distance. Herefore, GCNs will more likely learn that clusters
of closely associated concepts are used in treating the same disease, thereby
reducing the epistemic uncertainty by incorporating domain knowledge.

4 Evaluation and Discussion

To investigate our proposed method of pre-initializing graph node embed-
dings using the structural knowledge contained within hierarchical medical
taxonomies, we created a graph representation of the MIMIC-IV EHR dataset
from PhysioNet, which contains data from 382, 278 emergency care patients.
The MIMIC-IV database includes laboratory results, vital measurements, de-
termined diagnoses, administered medications, and demographic data struc-
tured as a relational database.

We convert the dataset into the OMOP CDM format using an Extract-
Transform-Load (ETL) conversion process to disambiguate medical concepts.
The CDM format helps standardize and clarify medical concepts, providing
a bridge for future AI models to work on different datasets converted to the
CDM format. In the CDM format, laboratory tests, procedures, and medi-
cations are encoded using the LOINC, ICD-9, and RxNorm taxonomies. As
RxNorm is a non-hierarchical taxonomy, we link each medication concept to
the hierarchical ATC medication taxonomy through its active ingredients.

We experimented with three different methods of node pre-initialization,
including graphlet and edge count features [1] (Graphlet) [40], random-
initialized node embeddings using Xavier initialization [14] (Rand), and our
method (FeatInit) using the TreeEmb algorithm to extract the structure of
hierarchical domain taxonomies. The random-initialized node embedding
method serves as a transductive baseline, as the node embeddings are made
trainable as part of the supervised model training phase [17]. The Graphlet
and FeatInit methods are inductive in the way that original node features are
not changed during the graph training phase.

We found that using TreeEmb embeddings to pre-initialize node embed-
dings led to an improvement in F1 scores compared to when node embed-
dings were learned during training or pre-initialized using graphlet features.
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5. Conclusion

These findings indicate that medical domain hierarchies contain knowledge
that, when integrated with DL technologies, can be beneficial for solving
downstream tasks such as patient diagnosis prediction.

5 Conclusion

In Paper C, we investigated how tabular EHR data can be transformed into
graph representations to integrate the relational dependencies in the data.
Subsequently, we trained a GCN model toward the task of diagnosis predic-
tion by learning a latent embedding for each patient. Furthermore, we de-
vise a novel node pre-initialization method for adding domain knowledge to
the initial graph representation using the latent knowledge contained within
hierarchical medical domain taxonomies. Experiments on the MIMIC-IV
dataset demonstrated the feasibility of our proposed node pre-initialization
technique.

In Paper C, we investigated diagnosis prediction from the perspective of
graph-based EHR representations. While graph representations can leverage
the relational dependencies of EHR data, it does not integrate the critical
temporal dependencies. Hence, in the next chapter, we investigate sequence
representations to structure EHR data. By transforming tabular EHR data
into sequences of medical events pertaining to individual patient hospitaliza-
tions, we can better leverage the data’s temporal dependencies.
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Chapter 4

Sequence-based EHR
Representations

This chapter describes how we model EHR data as sequences of medical
events for training a transformer encoder towards predicting the hospital-
ization time of patients. We investigate how measurement values can be
encoded as part of the medical events using demographic-specific reference
thresholds and domain taxonomies. The content in this chapter provides an
overview of Paper D [18] and partly reuses its content.

1 Problem Motivation and Statement

In Chapter 3 we investigate the transformation of EHR data into graph rep-
resentations in order to better integrate the relational dependencies of the
data. However, graph representations neglect the temporal dependencies of
the data. Hence, in this Chapter we investigate sequence representations
of EHR data. We argue that EHR data inherently is sequential, with each
patient’s medical history being a temporal sequence of events. Transforming
tabular EHR data into sequence representations could allow us to capture the
temporal dependencies and patterns over time in a patient’s healthcare data.
However, transforming tabular data into sequences is not trivial. Hence, in
Paper D, we investigate how medical domain taxonomies and demographic-
specific reference threshold values can be used to create a finite lexicon for
describing patients as sequences of medical events. Subsequently, we em-
ploy the transformer encoder DL model for learning to predict the length of
patient hospitalizations.

Models that can predict the duration of a patient’s stay, or length of stay
(LOS), can benefit healthcare facilities in resource management, such as staff
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Event: Pulse-High
Heartbeat of 113bpm

Event: ICD-Z039
Diagnosed with ICD10 code 
For observation for suspected 
disease or condition, unspecified

Event: Temp-High
Temperature 
measurement of 39.2°
degrees

Event: NPU-03568-High
Platelet count of 
504 x 109/L

Event: ICD-N300
Diagnosed with Acute cystitis 
without hematuria

Event: ATC-J01XE01
Medical Treatment of
antimicrobial regime 
with nitrofurantoin

Event: Oxygen-Low
Oxygen saturation
level of 96%

Event: NPU-01370-Low
Bilirubin level of 4 µmol/l 

Medical History
Including prescription, 
comorbidities, and mode 
and time of hospitalization

Fig. 4.1: Illustration of patient hospitalization structured as a sequence of medical events per-
taining to the patient [18].

allocation and pre-emptive freeing of hospital beds. Applications for auto-
matic forecasting of discharge times could be integrated into planning sys-
tems to alleviate hospital ward oversaturation [45]. Nonetheless, LOS predic-
tion is a significant challenge due to the complexity of EHR data.

Historically, LOS prediction has been made on tabular EHR data since
many ML models, such as the feedforward neural network, gradient boost-
ing (GB), and support vector machines (SVM), already require the tabular
data format as input. However, medical tabular EHR data often contain miss-
ing patient data values. Hence, imputation methods are often used to fill in
the missing gaps [2]. However, missing observations in EHR data often are
not missing at random (NMAR), which indicates that the absence of an ob-
servation itself carries significant information [28]. Furthermore, the tabular
data format does not include temporal dependencies between observations,
such as the chronological order between patient treatment events. To address
these problems, we convert EHR data from a tabular structure into a sequen-
tial format, subsequently employing advanced DL technologies, we uncover
novel prospects for deriving insights from the constantly growing corpora
of healthcare data. Our approach can pave the way for enhanced decision
support, ultimately leading to better quality of patient care.

The remainder of this chapter summarize the contributions of Paper D:

• First, we investigate the transformation of tabular EHR data into se-
quences of patient events.

• Second, We design a method of including measurement values into
sequence events by utilizing domain taxonomies and demographic-
specific reference thresholds.

• Third, we present the findings from Paper C, including the performance
of using a transformer model for LOS prediction based on patient se-
quences.
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2 Patient Sequence Representations

Patient hospitalizations can be naturally represented as sequences of medi-
cal events for evaluating, assessing, or diagnosing the patient’s health status.
Healthcare facilities codify these events using standardized taxonomies such
as the Anatomical Therapeutic Classification (ATC) [39] for medication events
and ICD [7] for diagnosis events. Thus, a patient’s stay at the hospital can
be expressed as a sequence of standardized concept tokens that capture the
medical events pertaining to the patient. An example patient sequence is il-
lustrated in Figure 4.1. As a patient’s medical history is vital to understand
what treatment should be given, we incorporate the patient’s medical history
as a tokenized vector pre-pended to the hospital sequence. At the begin-
ning of the hospitalization, the patient is diagnosed with the ICD-10 code
Z039. Subsequently, vital measurements and laboratory tests are conducted
to monitor the patient’s health status and diagnose the underlying condition.
As a result, the patient is diagnosed with acute cystitis without hematuria,
denoted by the ICD-10 code N300, and the antibiotics nitrofurantoin (ATC
code J01XE01) is prescribed. Following additional medical procedures and
treatments, the patient is eventually discharged from the hospital. Hence,
it is natural to structure a patient hospitalization as a sequence of medical
events.

3 Event Measurements and Event Groupings

Numerical values often follow medical procedures and treatments like vital
measurements and laboratory tests. Instead of disregarding these, we incor-
porate this data into patient sequences due to the crucial information they
provide about a patient’s condition. For instance, knowing that a tempera-
ture reading was taken is in itself essential knowledge, but learning the mea-
surement was 40.1°C indicates the patient has a fever. Using patient-specific
thresholds for measurement values based on age, gender, and pregnancy
status, we convert measurement values into tokens indicating normal, low
abnormal, or high abnormal results. For example, if an albumin level of 56
g/L is measured for a 31-year-old male patient, we would create the albumin-
high token to signify the measurement exceeded the expected range (36 − 48
g/L) for a patient with this demographic.

Furthermore, some measurement events are grouped together due to the
nature of patient care and hospital administration. Nurses often perform sev-
eral patient measurements, such as blood pressure, temperature, and heart
rate, sequentially before updating the patient’s EHR. Consequently, we are
often prevented from knowing the exact times and hence ordering of medical
events. This issue is especially prevalent with laboratory tests, as multiple
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Respiration-Normal
Puls-Normal
A06A

Temp-Normal
Oxygen-Low ZZ7098

Oxygen-Low
Respiration-Normal
Temp-Normal

Temp-Normal

NPU02840-Normal
NPU02319-Low
NPU01370-Low

NPU03230-Low

Puls-Normal
Temp-Normal
Respiration-Normal
Oxygen-low

Fig. 4.2: Illustration of patient events grouping together [18].

Event Code

Event
Embedding

Position
Embedding

Time of 
Admission

Input

Output

Age
Embedding

Sex
Embedding

Fig. 4.3: Illustration of a patient event sequence embedding [18].

tests are often run on a single patient sample, making it impossible to deter-
mine the chronological order of event results. This problem is illustrated in
Figure 4.2. We overcome this problem by assigning the same position em-
bedding to events with the same start time, to ensure the model recognizes
that these events do not have a fixed ordering. Using our specialized position
embedding, we are also able to express the co-existence of complex medical
events consisting multiple medical modalities. Figure 4.3 illustrates an event
group by the position embedding where event codes L1 and L2 are mapped
to the same position embedding EP3 .

Additionally, just as it is common in medical reports to immediately state
the age and sex of the patient, as these are essential factors for the treatment
of the patient, so too do we put extra weight on these concepts by adding the
age and sex embedding to every event embedding within a sequence. This
can also be seen as a way of adding domain knowledge to the DL model [29].

4 Evaluation and Discussion

To investigate patient sequences for LOS prediction, we compiled a large
Danish dataset of more than 48k emergency care patients from a large Dan-
ish hospital from 2018-2021. Using standardized medical taxonomies and
demographic-specific threshold values, we transformed the tabular EHR data
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into sequences of events pertaining to the patient hospitalizations. Further-
more, we created a modified version of the bidirectional encoder represen-
tations from transformers (BERT) [11] model, termed Medic-BERT (M-BERT)
DL model, that can accommodate medical event groupings.

We compared our sequence-based approach to three standard tabular LOS
prediction approaches: feedforward neural networks, random forest classi-
fication, and support vector machines. While random forest classification
can naturally learn from missing data, the feedforward neural networks and
support vector machines rely on imputation techniques for missing values.
Experimental results from a binary, ternary, and regression problem demon-
strated the feasibility of our approach.

These findings underscore the potential of employing transformer en-
coders for sequences of medical events. However, an interesting area of ex-
ploration lies in augmenting the method to more effectively assimilate and in-
terpret the irregular intervals characterizing patient observations. At present,
transformer encoders are constrained in that they predominantly focus on
the ordering of events, neglecting the temporal durations between individual
medical events.

5 Conclusion

In Paper D, we investigated how tabular EHR data can be transformed
to sequence representations to integrate the temporal dependencies in the
data. Furthermore, we could integrate the measurement values of medical
events into the sequences using demographic-specific threshold values. Sub-
sequently, we created and trained a specialized transformer encoder model,
M-BERT, to accommodate the unique nature of EHR data, such as event
groupings. Experiments on a large Danish dataset demonstrated the feasi-
bility of our proposed method for LOS prediction and regression problems.

From the work of Paper C and Paper D, we have investigated graph rep-
resentations and sequence-based EHR representations. While graph and se-
quence representations enable us to integrate disparate EHR modalities into
the same data representation, none of them can naturally integrate and learn
from raw medical modalities such as images, genome, and time-series data.
Hence, in the next chapter, we investigate multi-modal representation learn-
ing (MRL) for medical modalities, which is the area concerned with learning
from multiple modalities in an automated manner.
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Chapter 5

Multi-modal Representation
Learning

This chapter describes how we create a hierarchical taxonomy of medical
information modalities and a hierarchical taxonomy of multi-modal repre-
sentation learning technologies as a framework for surveying multi-modal
representation learning techniques for medical applications. The content in
this chapter provides an overview of Paper E [20] and partly reuses its con-
tent.

1 Motivation and Problem Statement

A patient’s medical history can only be fully understood and represented
using various medical observations, such as medical imaging events, mi-
crobiology events, clinical text, genomic sequences, etc., known as medical
modalities. In the medical field, the progression of various diseases can be
understood by observable changes in specific biomarker modalities, such as
blood pressure, heart rate, and X-ray results. For instance, the progression of
Alzheimer’s Disease has been correlated with modalities like Magnetic Res-
onance Imaging (MRI), Positron Emission Tomography (PET), and protein
measures of Cerebrospinal Fluid (CSF) [5, 8, 27]. Each of these modalities
offers distinct insights that, when combined, could provide added insights
into complex medical tasks such as predicting Alzheimer’s progression.

While machine learning aims to enhance the quality and speed of tradi-
tional manual medical tasks, many tasks are still predominantly done using
single-modality approaches. However, integrating multiple complementary
medical modalities into machine learning models could boost the perfor-
mance of predictive models.
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Multi-modal representation learning (MRL) is the field concerned with
combining diverse medical modalities to enhance machine learning tasks [3].
Recently, MRL has made its way into the medical domain, where it has
been used to combine various medical modalities for diagnosis and prog-
nosis tasks. However, no comprehensive survey has been conducted on the
application of MRL in the healthcare domain. Numerous medical modal-
ities exist in healthcare, including genomics data, medical images, textual
medical records, electronic health records (EHR), clinical practice guidelines,
and biomedical knowledge graphs. Navigating the vast number of distinct
modalities, the prospect of their combination for enhanced medical tasks, and
the technologies that can be used to combine them is challenging.

In Paper E, We investigate the landscape of MRL from the perspective of
the medical domain. Starting with structured and unstructured modalities,
we build a three-level hierarchical taxonomy for organizing medical informa-
tion modalities. The modality taxonomy is one of two taxonomies we create
for structuring related work in MRL in the medical domain. The second
taxonomy structures the techniques of MRL into three main classes, namely
Alignment, Fusion, and Neural techniques, with two further hierarchical lev-
els for granular classification of individual approaches.

The remainder of this chapter summarize the contributions of Paper E.

• First, we create a hierarchical taxonomy for organizing medical infor-
mation modalities into three levels of increasing granularity.

• Second, we build a hierarchical taxonomy of MRL techniques, with
Neural deep learning techniques as one of the main classifications.

• Third, we make a comprehensive literature survey of more than 1000
papers on combining medical modalities for solving medical analytics
tasks.

2 Medical Information Modality Taxonomy

Medical information modalities describe patients in structured and unstruc-
tured ways to get insights into the patient’s current and future healthcare
status. Hence, medical information modalities are the prime source of infor-
mation for medical analytics systems.

Structured data is an organization of distinct measurements containing
specific values, such as a relational database where a patient’s health sta-
tus can be described using specific predefined attributes in a fixed way. In
medicine, structured data modalities could be vital measurements, laboratory
results, and demographic data.

On the other hand, unstructured data is less straightforward to under-
stand. It contains many data points that do not hold any meaning when
viewed individually but collectively, if interpreted correctly, provide insights
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Fig. 5.1: Partial hierarchy for structuring medical modalities. The full hierarchy can be found at
https://tabsoft.co/40aAECd [20].

into the patient’s health status. Take the X-ray image as an example. Individ-
ual pixel values of the image do not provide any information, but by looking
at the whole image, a trained professional might identify a fracture in the
tibia. Besides imaging modalities, other forms of unstructured data include
video, time series, genomic sequences, and text.

Numerous medical taxonomies exist for organizing medical concepts into
categories and groups with terminologies such as ICD-10, SNOMED, and
ATC. However, currently, no comprehensive taxonomy for organizing medi-
cal modalities exist. In Paper E, we propose a three-level hierarchical taxon-
omy for organizing medical modalities.

Figure 5.1 depicts part of our proposed hierarchy. The top-level struc-
tures modalities as either structured or unstructured data. The second level
categorizes modalities in groups familiar in machine learning literature, such
as images, text, and timeseries data. The third level specifies specific medi-
cal information modalities used to get insights into the healthcare status of
patients. Furthermore, we connect the third-level modalities to SNOMED
taxonomy concepts to enable smooth linkage to other terminologies and tax-
onomies. For example, the level three concept Computed Tomography aligns
with the SNOMED concept Computed tomography (procedure). The SNOMED
concept can then be mapped to other taxonomies such as MedDRA’s CT scan
and BIM’s Computed_tomography concepts. The entire hierarchy can be ac-
cessed online.

Thus, our medical modality hierarchy provides an excellent framework
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for studying MRL approaches in the medical domain.

3 Multi-modal Representation Learning Taxon-
omy

It is a common challenge in medical analytics to deal with multiple medi-
cal modalities. Different data types, such as medical images, genomics, and
clinical data, provide complementary perspectives on a patient’s health sta-
tus. However, integrating such diverse modalities in a meaningful way is a
complex task. The first step in investigating what MRL technologies could
help combine specific medical analytics is knowing what technologies exist
and how they have been used. Hence, we create a hierarchical taxonomy
for MRL methods that can be used to structure the technologies used in the
amalgamation of modalities for medical analytics.

The taxonomy can serve as an entry point for researchers, practitioners,
and newcomers to the field of MRL, enabling them to quickly get an overview
of the landscape of approaches to find the one that best suits their needs.
Furthermore, it can inspire new ideas by highlighting novel MRL techniques
within the medical domain.

We break down MRL techniques into Alignment, Fusion, and Neural ap-
proaches as illustrated in Figure 5.2. Alignment methods aim to identify
a feature space where modalities can co-exist, fusion methods merge uni-
modal features into a shared representation space, and neural methods jointly
learn a latent representation that combines uni-modalities for solving a spe-
cific medical analytics task.

Fig. 5.2: Taxonomic hierarchy of reviewed MRL techniques used in medical analytics [20].

Alignment-based MRL finds a representation space where uni-modal
modalities x and y can co-exist. This group of techniques works on the
premise that similar samples should be closer to each other in the learned
space than dissimilar ones. Mathematically this can be expressed as f (xi) ∼
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g(yi) where g and f are modality-specific projection functions that map in-
dividual samples xi and yi into a multi-modal space aligned by the distance
function ∼. We further categorize alignment-based techniques into correla-
tion and similarity-based techniques.

Fusion-based MRL can be mathematically defined as z = ϕ(xi, yi), where
ϕ is a function that combines uni-modal modality samples xi and yi into a
merged latent representation z. Fusion techniques are typically used to boost
the performance of medical analytics models in cases where distinct uni-
modalities possess unique discriminative properties [51]. We divide fusion-
based MRL techniques into joining, kernels, and graphical techniques with
complexities ranging from straightforward feature concatenation to intricate
kernel combinations.

Neural architectures aim to combine uni-modal representations through
supervised, semi-supervised, and unsupervised methods. They share the
idea of utilizing layers of non-linear trainable transformations to fuse uni-
modalities into a latent representations space, guided by optimizing a loss
function that targets a specific medical analytic [12].

Our MRL taxonomy enables us to evaluate MLR techniques in the context
of combining uni-modal medical modalities. As the best technique for the
amalgamation of uni-modal medical modalities will always depend on the
data and the medical analytics, our taxonomy provides a comprehensive,
structured overview of the MRL landscape that can be explored for insights
and ideas in building multi-modal medical analytics.

4 Literature Survey of MRL for Medical Analytics

A last contribution of this work is the systematic literature survey we con-
ducted in multi-modal representation learning for medical analytics using
our constructed hierarchical MRL and medical modality taxonomies. We sur-
veyed more than 1000 scientific articles in the PubMed search engine using
the PRISMA flow chart for reporting systematic reviews [34]. The result-
ing classification facilitated the exploration of each paper’s contribution to
the field within the scope of the taxonomies. Furthermore, the classification
made it possible to discover patterns, such as the number of papers using
neural technologies to combine various medical modalities.

Moreover, we provide an interactive online analysis as an electronic sup-
plement accompanying this work to provide researchers with a platform for
investigating the literature survey themselves. Using the platform, we elu-
cidate intriguing aspects of the literature survey, such as the commonality
of modality pairings and the prevalence of MRL techniques across medical
analytics. The frequency of modality combinations indicates that unstruc-
tured brain imaging modalities are often combined with other unstructured
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brain imaging modalities for medical analytics related to the nervous sys-
tem. Moreover, there is a lack of research combining structured data with
unstructured modalities. The lack could be a potential area for future re-
search. Furthermore, the survey shows a substantial prevalence of neural
joining techniques for amalgamating structured modalities such as labora-
tory results and demographics data.

The review further demonstrates that most studies focus on analytics-
targeted nervous system diseases. We believe this finding origins from the
popularity of open datasets related to investigating Alzheimer’s disease, such
as ADNI [35]. As diseases of the circulatory system are a significant focus
area for medical AI research, the lack of MRL research points towards the
need for more openly available datasets in this field. Furthermore, we ob-
serve that most medical analytics are predictive.

This research contributes to creating a taxonomy for medical modalities,
MRL techniques, and a comprehensive literature survey into multi-modal
representation learning for medical analytics. While progress has been made
in applying MRL to medical analytics, there remains vast untapped potential,
especially in less-studied disease categories such as diseases related to the
circulatory system. For research to flourish, an obstacle we must overcome
is the collective effort to make medical data repositories openly available
for researchers to continue investigating new ideas in the amalgamation of
modalities for creating medical analytics.

5 Conclusion

In Paper E, we investigate the field of MRL from the perspective of med-
ical analytics. To study MRL from the medical domain, we first create a
novel three-layer hierarchical taxonomy for structuring medical modalities.
The first level classifies modalities into structured and unstructured modali-
ties. The second level groups modalities based on classical groups from the
machine learning literature. The third level specifies specific medical infor-
mation modalities. Furthermore, we create a hierarchical taxonomy of MRL
technologies for merging and aligning disparate modalities.

Based on the MRL and modality hierarchies, we created a systematic lit-
erature survey of more than 1000 scientific articles to discover what MRL
technologies have been previously used to combine specific medical modal-
ities. Furthermore, we made the literature survey publicly available as an
interactive online analysis for researchers to investigate the survey for them-
selves.
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Chapter 6

Conclusions and Future Work

Deep learning for EHR data is becoming a large and important field of re-
search due to its prospects for the future of the healthcare domain. DL
technologies for the healthcare domain hold the prospects to complement
the work of medical professionals by providing timely and accurate decision
support for improved diagnostic accuracy in decision-making, reducing the
time to diagnosis, and providing more personalized patient care. In this the-
sis, we investigate complex aspects of deep learning for EHR data, such as
integrating medical domain knowledge and transforming tabular EHR data
into representations such as sequences and graphs. Advances in these areas
are essential to realize the full potential of DL for EHR data and ultimately
provide the best patient care.

In summary, each research paper provides the following contribution:

• In Paper A [41], we examine the novel task of diagnosis prediction
based on a patient’s medication history. We develop a language-
agnostic DL-based system that can accurately predict the diagnosis
codes of a patient, given a patient’s medication list. We developed a
novel loss function to advance the system’s performance to distinguish
minor from significant model errors using the similarity between dis-
eases from the hierarchical ICD taxonomy.

• In Paper B [22], we investigate the transferability and generalizability of
the system and novel loss function developed in Paper A by using and
testing our approach on a large Danish dataset consisting of more than
2 million patients. To facilitate interoperability between the datasets, we
created a mapping between diagnosis concepts from the Danish ICD-
10-SKS and the American ICD-9-CM taxonomies and between the ATC
and the RxNorm vocabularies using the OMOP CDM.

• In Paper C [19], we transform tabular EHR data into graph represen-
tations for subsequent patient diagnosis prediction. Graphs elegantly
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overcome the prevalent problem of missing data and enable learning
from the relational dependencies of EHR data. We transform tabular
patient EHR data into graphs consisting of nodes and edges connect-
ing patients with their clinical observations. We can learn from the
graph’s structure by leveraging the graph convolution neural network
technology. Furthermore, we investigate a novel node pre-initialization
method based on extracting the structure of medical hierarchical tax-
onomies. Such embedding enables the model to work in an inductive
setting by keeping node embeddings stable during training.

• In Paper D [18], develop a method for transforming tabular EHR data
into sequences representing the medical events of patient hospitaliza-
tions and leverage a specialized transformer encoder DL technology to
learn from the temporal order of patient events. Furthermore, we were
able to integrate event measurement values into the event concepts by
leveraging demographic-specific threshold values. To further advance
the system’s performance, we investigate a position encoding that en-
ables groups of sequence events to be unordered.

• In Paper E [20], we investigate the field of multi-modal representation
learning from the perspective of medical analytics. We build two novel
hierarchical taxonomies, one for structuring medical modalities and one
for structuring multi-modal representation learning techniques. The
taxonomies allow us to conduct a structured literature survey of more
than 1000 scientific papers for investigating previous work in MRL for
medical analytics. Furthermore, we made the survey publicly available
as an interactive online analysis.

Future Work

The papers outline multiple paths of future work. However, the following
three are vital for DL technologies to be widely used in a clinical setting.

Firstly, to fully harvest the benefits of DL for EHR data, we need to im-
prove our integration of diverse medical domain knowledge with DL tech-
nologies. In our work, we have been focusing on hierarchical medical domain
taxonomies; however, this is only one type of knowledge that could be used to
improve the performance of DL systems in the medical domain. Biomedical
knowledge, such as our understanding of disease pathways, could be used
in the model design or to create more sophisticated features. Understanding
disease prevalence and risk factors, such as prior knowledge about the preva-
lence of certain diseases, could be used to improve the model performance
for imbalanced datasets. Furthermore, integrating drug-drug interactions,
drug-disease interactions, and pharmacokinetics into DL models is an excit-
ing research direction. These are only a few of the possible types of domain
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knowledge that, if added to DL models, could improve their performance.
Secondly, the graph and sequence representations we have investigated in

this thesis are great representations for expressing EHR data. Furthermore,
transformer encoders and graph convolution neural networks are compelling
DL models for learning from these representations. However, DL models are
not inherently explainable. In order to use DL systems in a clinical context,
we need an explanation for their predictions. It is not enough to tell that a
patient will likely have a prolonged hospitalization; we want to know the rea-
son for this prediction. As the decisions of medical decision systems can have
a profound impact on the treatment of patients, clinicians need the models to
explain their predictions to facilitate trust in the DL systems. Moreover, the
European Union’s General Data Protection Regulation (GDPR) regulatory
requirements include a clause on the patient’s right to explanation. Thus,
medical decision support systems are required to be able to explain their de-
cisions. Lastly, DL systems are often prone to learn from biases in medical
data, often due to imbalances in our medical datasets. Hence, explainability
methods can facilitate finding and correcting such biases.

Thirdly, EHR data is intrinsically temporal in nature. Medical events of
different types exhibit varying temporal granularities with measurement fre-
quencies ranging from seconds to years. Additionally, medical events can
occur simultaneously and relate to each other using the spectrum of Allen’s
13 temporal relations. The deep learning models used in this thesis predom-
inantly overlook the integration or learning from the tempral dimensions in-
herent to EHR data, with the notable except of the transformer encoder that
learns from the sequential ordering of medical events. There lies significant
potential in exploring the augmentation of deep learning technologies, such
as the graph convolution neural network or the transformer encoder to better
harness and learn from the temporal aspects of EHR data.
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Abstract

Prior studies have manually assessed diagnosis codes and found them to be erro-
neous/incomplete between 4–30% of the time. Previous methods to validate and
suggest missing codes from medical notes are limited in the absence of these, or when
the notes are not written in English. In this work, we propose using patients’ medica-
tion data to suggest and validate diagnosis codes. Previous attempts to assign codes
using medication data have focused on a single condition. We present a proof-of-
concept study using MIMIC-III prescription data to train a machine-learning-based
model to predict a large collection of diagnosis codes assigned on four levels of ag-
gregation of the ICD-9 hierarchy. The model is able to correctly recall 58.2% of the
ICD-9 categories and is precise in 78.3% of the cases. We evaluate the model’s perfor-
mance on more detailed ICD-9 levels and examine which codes and code groups can
be accurately assigned using medication data. We suggest a specialized loss func-
tion designed to utilize ICD-9’s natural hierarchical nature. It performs consistently
better than the non-hierarchical state-of-the-art.
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1. Introduction

1 Introduction

The practice of coding diagnoses of medical conditions using standardized
coding systems such as ICD-10 [25] has grown prevalent. However, while
coding systems are in wide-spread use, coding quality is uneven. Coding a
medical diagnosis is notoriously complex. There exist multiple hierarchies
and choosing the appropriate code requires a deep understanding of their
structure and the relationships. For example, in a review of 1800 injury
discharges from a New Zealand hospital, Davie et al. [6] found 2% to be
uncoded, and 14% of PDx codes and 26% of external cause codes to be in-
accurately coded. Wockenfuss et al. [26] determined that ICD-10 three and
four level codes are too detailed to be reliable for general practitioners by
measuring the Kappa inter-rater agreement scores. and found a sensitivity
(recall) of 93.4 and positive predictive value (precision) of 88.9. Some work
exists on predicting diagnoses from laboratory results (e.g., [19]), but is lim-
ited to cases where such results are available and relevant. A large body of
work exists on extracting diagnoses from clinical notes and reports (see re-
view [23]). However, these systems’ performance is reliant on techniques that
tend to work much better in English, and must be retrained for every new
language [17].

A patient’s current medication can shed valuable light on their existing
medical conditions. For example, observing that a patient has a chronic pre-
scription for Metoprolol usually indicates that he/she is suffering from hy-
pertension or ischaemic heart disease. Generalizing upon this observation, in
this work we develop a machine-learning-based model able to predict the list
of diagnoses assigned to a patient based upon his/her medications. Further-
more, in some countries (e.g., Denmark [20] and South Korea [15]) central-
ized medication repositories are comprehensive, while diagnosis codes are
sporadic. Thus, such a model could provide emergency responders and crit-
ical care facilities with a rapid assessment of a patient’s existing conditions
in addition to the model’s utility in diagnoses quality control. For example,
an unconscious patient with a history of diabetes, will be first assessed for
hyper/hypoglycemia, while one without a history of diabetes, but with a his-
tory of heart-disease, will be first assessed for acute heart conditions such as a
heart-attack. We assess the viability of our approach using the publicly avail-
able MIMIC-III dataset [14]. The dataset contains rigorously anonymized and
detailed medical records for over 50K ICU patients.

2 Related Work

The need to perform quality control of diagnosis code assignment is justified
by several studies. Cooke et al. [4] have shown that an ICD-9 code as a
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predictor of true COPD had a sensitivity of 76% and specificity of 67% using
spirometry as their golden standard. A validity study of Danish national
registry diagnoses [5] showed that only 75% of diabetic patients labeled with
MI or stroke actually had such an event. Recent work attempted to predict
ICD-9 assignment in MIMIC-III from discharge notes [12]. Their solution to
the problem of multi-label, multi-level was to either limit the number of labels
or aggregate predicted codes into categories, thereby solving two separate
problems, namely to predict the top-10/50 codes or the top 10/50 categories.
In this work, we aim to predict all codes, at different aggregation levels,
in order to examine which codes and code groups can be predicted from
medication data.

There have been a few attempts to use prescription data to predict a single
or at most two conditions. Schmidt et. al. developed and validated an
algorithm with 87% accuracy able to identify herpes zoster [22]. In another
study, prescription data was used to classify whether or not patients had
preexisting conditions of diabetes or hypertension [21]. In a recent review [8]
of algorithms designed to extract cases for medical research from EMR data,
some of the studies use medication data. However all studies extract cases for
a single condition, often aggregating several diagnosis codes. In our scenario,
we identify the probable diagnosis codes of multiple conditions at once and
thus identify cases where improbable diagnosis codes have been used.

3 Methods and Data

3.1 Data

We use MIMIC-III [14] from PhysioNet [9], EHR data for 50K patients from
an American hospital’s ICU departments over four years. MIMIC-III contains
an extensive variety of data, including lab results, vital signs, medical notes,
and most importantly for our needs, drugs administered and diagnoses as-
certained. The prescriptions table (model input) contains 4M rows of drugs
prescribed during 50,216 admissions. There are 4,525 different drug names
in the DRUG field, which are often the same drug, with different spelling
or with an added comment, e.g., Basiliximab and *NF* Basiliximab. To disam-
biguate and standardize the codes we use a mapping of MIMIC terms to the
OMOP concepts [11] and group them by Clinical Drug Form to receive 1,602
RxNorm drug codes.

The diagnosis table (expected output) contains 651,048 diagnoses for
58,925 admissions using 6,841 different ICD-9 codes. ICD-9 is a hierarchi-
cal grouping of disease codes that consists of 5 levels starting from 0 (most
general), to 4 (most specific). ICD-9 is built on the basis of grouping for
similar disease. Upon review, we omit 5,994 codes for which less than 100
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cases exist as it is typically not possible to generalize from such a low num-
ber. We further omit a number of codes focusing on diagnoses for chronic
or persistent conditions. A complete and more detailed description of omis-
sions can be found in the appendix. We use the patient data to add the age
in years upon admission. MIMIC hides elderly (over 89) patient ages due to
anonymization concerns and reports an average of 92.4 for the patients over
89. We use this age as the replacement age for these patients and further
normalize the age by dividing it by 92.4, a practice that has been shown to
be beneficial in machine learning techniques. After joining with the prescrip-
tions table, the final table contains 52K admissions of 40K different patients
using 567 unique codes, denoted labels in the following.

3.2 Task - Hierarchical Multi-label Classification (HMC)

Binary classification problems (e.g., will this person develop Sepsis ) aim to
correctly classify each task as either positive or negative. Single-label multi-
class problems (e.g., is the following brain MRI normal, or does it contain a
glioblastoma, a sarcoma, or a metastatic bronchogenic carcinoma?), extend
the classification to allow more than one class for each task. These two types
of ML tasks are, by far, the most commonly studied in the medical domain.
Less common are multi-label classification problems which attempt to assign
a set of labels to each example (e.g., which of the ICD-9 codes should be as-
signed following this medical report [1]), each of the labels is drawn from a
possible set of classes. Since each person may have multiple co-morbidity, the
task of assigning the correct set of diagnosis codes can be characterized as a
multi-label classification problem [27]. The hierarchical nature of diagnoses
both complicates the task and offers an opportunity to improve its applica-
bility. If an algorithm predicts a patient suffering from non-specified chirosis
(ICD-9 code 571.5) to be suffering from alcoholic chirosis (ICD-9 code 571.2) it
should be more appreciated than if no chirosis related diagnosis are returned
since both codes share a common ancestor. Further hierarchical constraints
may dictate that a person cannot have more than one label from the same
sub-tree of codes. Since ICD-9 is indeed hierarchical and imposes such con-
straints on some of its sub-trees, we can classify our task as an hierarchical
multi-label classification (HMC) problem.

3.3 Machine Learning and Loss Functions

Many approaches to HMC include splitting the problem into multiple simple
(single label) classification tasks, each of which is trained separately. Within
these approaches, local and global approaches [7] differ by the amount of
classifiers trained. In the local case, multiple classifiers are trained over a bi-
nary label pertaining to a single node in the hierarchy and the predictions of
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each level are subsequently propagated. In the global case, the labels are se-
lected from a set of all possible labels. In this work we follow the observation
of Cerri et al. [2] that by training a single global classifier based on a multi-
level neural network representation, one can effectively reuse the high-level
features learned to discriminate between high levels in the hierarchy and
then refine these to more accurate code assignments using the subsequent
levels of the neural network. Furthermore, deep neural networks (DNN)
have repeatedly shown superiority over other techniques in the medical do-
main (e.g., [13], [3]). We therefore employ a multi-layer perceptron, or fully
connected neural network. The input layer for this network is comprised of
one node for each RxNorm code in the data (and one for normalized age)
and the output layer of one node for each ICD-9 code at the chosen roll-up
level. The number of internal layers and the number of nodes in each layer
are hyper-parameters over which we perform a classic grid-search.

Machine learning, in particular deep learning, uses a loss function during
the training phase to quantify the error of the current iteration of the model
with respect to the expected output. Choosing an appropriate loss function
is crucial and in general must reflect the structure of the expected output.
Thus, specific loss functions have been suggested for the multi-label case [16]
as well as hierarchical multi-label functions [24]. However, these are tied
directly to the structure of the global classifier, and none have been applied
in the medical data setting using the inherent hierarchy of a medical ontology.

We therefore experiment with two types of loss functions. One suitable for
the multi-label case, where each missed label is treated the same regardless
of the extent of the mistake, and one designed for the HMC case. Our multi-
label function is the multi-label soft margin loss function [28], defined as
follows with C being the number of classes y being the class indicator and x
the current value of the corresponding output node (i iterates over all classes).

loss(x, y) =− 1
C ∑

i
y[i] · log((1 + exp(−x[i]))−1)+

(1 − y[i]) · log
(

exp(−x[i])
(1 + exp(−x[i]))

) (A.1)

We model our HMC loss function (hml, Eq. A.2) after the one developed
for HMCN-F [24], while adjusting it to account for the differences between a
text-classification problem and our own task and minimize a function com-
prised of two components.

Lhml = LL + LG (A.2)

LL is the local loss – calculation of Eq. A.1 at the leaf level. LG is cal-
culated by rolling up the results one layer at a time until the ICD-9 chapter
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level (0). At each phase of the roll-up, the predictions for each inner node
are set to the average of the predictions over its children. The loss of each
level is calculated and summed to the other levels. Since our neural network
does not directly predict the global scores, we do not suffer from hierarchi-
cal violations and do not require the third component that penalizes them in
HMCN-F. We employ the Roll Up method to aggregate diagnoses given the

Roll Up Roll Up
L0 .....
L1 .....
L2 .....
L3 .....
L4 .....

A-L4 B-L3 C-L2

a

b c d

e f

g h

i

j k

a bc d e f gh i jk

abc de fgh ijk

Fig. A.1: Example of the roll up algorithm. An example level 4 code assignment is shown as
tree A-L4. Disease codes {b, c, d, g, f, j, k} are level 4 billable codes, whereas codes {a, e, f, i} are
billable codes on level 3. Red circles are the registered comorbidities of the patient. Green circles
are diseases not recorded in the patient.

ICD-9 hierarchy (see example in Figure A.1). A disease is only billable if it is
a leaf-node of the ICD-9 hierarchy. However, not all leaves are on the same
level. As an example, the code 322.2 is a billable level 4 code, which rep-
resents Chronic meningitis, whereas code 003.22 is a billable level 5 code for
Salmonella pneumonia. Each patient initially starts with one or more billable
disease from the ICD-9 hierarchy.

3.4 Evaluation

R² = 0.2912
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Fig. A.2: F-1 by number of cases over level 2 codes.

A few previous ICD cod-
ing tasks have been evalu-
ated by measures that con-
sider its hierarchical nature
as well [18]. To allow com-
parison of ICD code assign-
ment using medication data
to algorithms using medi-
cal notes, we use the more
common micro-averaged pre-
cision and recall, and their
harmonic mean F1. We per-
form the experiments on dif-
ferent prediction resolutions.

With level 0 corresponding to the chapter level of ICD-9 (e.g., 520–579: dis-
eases of the digestive system) and level 1 to the code group level (e.g., 401-405
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Hypertensive Disease). Our last level corresponds to the most detailed avail-
able in the ICD-9 hierarchy (level 4) with 576 possible codes.

4 Results

Table A.1 presents the best results (by F1) obtained by the ML-model follow-
ing a standard hyper-parameter grid search. In each task, the code assign-
ments were rolled up prior to both the training and the test phase and not
only for the purpose of evaluation, such that the neural network encountered
a different task for each level. For each ICD level we provide the number of
codes in that level, the average branching factor, and the average number of
eventual leaves a node in this level’s sub-tree. In addition to precision, recall,
and F1, we show the number of diagnosis codes for which F1 was equal to
zero.

Since this is a relatively small dataset, the number of cases for many di-
agnoses is too low to expect reasonable performance. When examining the
effect of the number of cases on the model’s performance (Fig. A.2) we find
that at least some of the variance can be explained by the small number of
cases (R2 of 0.29 for a linear model). Top-5/top-10 results by code are avail-
able as an online appendix containing the full results [10].

Table A.1: MIMIC-III Diagnosis Prediction Results

Prediction Task Codes Branch Avg.
Leaves

Prec Rec F1 F1=0

Top-10-groups (L0) 10 NA NA 82.6 52.4 64.1 0
Top-10-codes (L4) 10 NA NA 61.3 50.5 55.4 0
Rolled Up (L0) 15 5.7 565.1 78.3 58.2 66.8 2
Rolled Up (L1) 65 8.4 108.3 60.9 43.0 50.4 15
Rolled Up (L2) 236 6.6 14.0 56.6 31.5 40.5 122
Rolled Up (L3) 461 1.6 1.6 52.3 19.9 28.8 297
Raw (L4) 567 0 0 49.9 18.8 27.3 315

4.1 Choice of Loss Function

To assess the effect of using hml versus a standard multi-label loss function
(ml) we examine all experimental results where the F1 was at least 5.0 (Fig.
A.3). Models trained using hml consistently out-performed those trained us-
ing ml with an average F1 result between 3-8% better. This result holds when
comparing the max values obtained in each levels as well with a 2-7% im-
provement for levels 2-4, although no significant improvement was seen for
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level 1. This last result is expected since the roll-up process for this level only
rolls-up to level 0.

4.2 Discussion

The model’s performance was able to recall 52.4% of the correct ICD-9 cate-
gories in a top-10 setting and assign the precise code in 82.6% of the cases.
For this setting at the categorical level 0, and for the top-10 ICD codes (level
4), results are comparable to those published by Huang et al. [12] which pre-
dicted top-10 ICD-9 categories/codes by training deep neural networks over
medical notes. In these days of automated electronic health records, this ap-
proach offers a potential application to automatically assign a disease code
on the basis of drugs prescribed. This may also provide opportunities to
create quality control mechanisms for diagnosis code assignment.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

15

20

25

30

35

40

45

50

1 2 3 4

im
p

ro
ve

m
en

t 
(h

m
l-

m
l)

/m
l

A
ve

ra
ge

 F
-1

 (
o

ve
r 

5
.0

)

ICD-9 Level

hml>ml improvement hml ml

Fig. A.3: F1 difference between models trained using
hierarchical multi-label loss (hml) and multi-label loss
(ml).

F1 scores improve as the
task is simplified with the
worse performance obtained
when the model is trying to
assign the correct code from
a set of 567 possible codes
at level 4. The best perfor-
mance is on level 0, when
the model only has 15 possi-
ble labels. Consistently, in all
experimental conditions, pre-
cision is higher than recall.
This is partially explained by
codes and groups that can-
not be differentiated by their
medication, and for which the

model was unable to find any of the cases (F1=0). For example, at level 0, the
model was unable to predict any assignment of chapters 780-799 (Symptoms,
Signs, And Ill-Defined Conditions) and 710-739 (Diseases Of The Muscu-
loskeletal System And Connective Tissue). These chapters may not be dif-
ferentiable by medication, as the former is comprised of symptoms for many
underlying conditions and the latter may be treated by orthopedic treatments
and generic pain-relief medication. Further analysis shows that prediction of
neoplasms mostly fails as well, as the treatment of cancer can be surgical or
radiation-based. Furthermore, since MIMIC contains only ICU records, the
patient may not be currently undergoing any medication-based cancer treat-
ment. Further limitations include some drugs being prescribed for more than
one diagnosis. For example, ACE inhibitors may be used for management of
hypertension, heart failure, vascular disease and post-stroke. Also, doses of
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some drugs may vary depending on the disease indication, for example, ri-
varoxaban 2.5mg BID is licensed for high risk patients with acute coronary
syndrome, while rivaroxaban 20mg OD is for stroke prevention in atrial fib-
rillation. Our analysis also does not consider changes in drugs over time, nor
dose changes of the same drug. Also, some patients may swap their drug
into another agent from the same class of drugs, causing a further dilution of
the number of cases a model can learn from. Some drugs are also in combi-
nation therapies, for example, combining ACE inhibitors and a diuretic in a
single combo pill for the treatment of hypertension.

5 Conclusion and Future Work

We presented a proof-of-concept study of the feasibility of using an ML-
model to assign multiple diagnosis codes on multiple aggregation levels us-
ing a person’s current medication. The model was able to correctly assign
diagnosis codes on multiple levels and the detailed results allow to identify
which codes and code-groups are predictable by medication data. The use
of a hierarchical loss function has improved the model’s performance by an
average of 3–8%. The promising results support continued research into the
ability to utilize larger medication datasets to create quality control mecha-
nisms for diagnosis code assignment and to provide diagnostic information
to caregivers in emergency situations that is language agnostic. We wish to
pursue this expansion in future work, as well as experiment with additional
hierarchical loss functions and methods to incorporate dosage and treatment
regimen information in the model’s input.

A Appendix - Omitted codes and detailed results

Table A.2 details the ommitted ocdes from the diagnosis table and the reasons
for omission. We omit all codes with a low number of cases. We further
omit 61 codes used to describe symptoms, as these are shared by multiple
causes and will, most-probably, supplant a diagnosis code following medical
investigation. Injuries and foreign bodies (30 codes) are omitted as well as
their treatment is usually orthopedic or surgical, rather than medicinal. We
omit the codes used in ICD-9 to classify birth-age and pre-term phase for
infants (14 codes) as these are more descriptive than diagnostic. Finally, we
omit the E and V series of codes that are used to provide additional details for
statistical reasons and which do not cause differences in medicinal treatment.
We remain with 567 codes and 54,423 cases (92.4%) that contain at least one
of the remaining codes. Filtering out only admissions contained in both the
diagnosis and prescription tables we remain with 50,211 admissions.
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Table A.2: List of Omitted ICD-9 Codes and Code Groups

Code(s) Description Reason

5994 differ-
ent codes

A large collection of vari-
ous codes

Low base rate (less than 100
cases)

765.X Descriptive of gestation
week or preterm weight

Will be accompanied by the
specific results of pre-term
birth if such exist

8XX and
9XX

Injury Medical result would be
Surgical or Orthopedic and
impossible to accurately
specify from medication

93.31,93.41 Foreign body Undiscernable medicinally
99.X Complications of medical

care
Undiscernable medicinally

61 different
codes

Collection of different
symptoms such as pain,
nausea, and nuances of
mental state/ faculties

Should be accompanied by
the symptom’s cause which
is the main diagnosis

Detailed results are available online [10].
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Abstract

Diagnosis assignment is the process of assigning disease codes to patients. Auto-
matic diagnosis assignment has the potential to validate code assignments, correct
erroneous codes, and register completion. Previous methods build on text-based tech-
niques utilizing medical notes but are inapplicable in the absence of these notes. We
propose using patients’ medication data to assign diagnosis codes. We present a
proof-of-concept study using medical data from an American dataset (MIMIC-III)
and Danish nationwide registers to train a machine-learning-based model that pre-
dicts an extensive collection of diagnosis codes for multiple levels of aggregation over
a disease hierarchy. We further suggest a specialized loss function designed to uti-
lize the innate hierarchical nature of the disease hierarchy. We evaluate the proposed
method on a subset of 567 disease codes. Moreover, we investigate the technique’s
generalizability and transferability by (1) training and testing models on the same
subsets of disease codes over the two medical datasets and (2) training models on the
American dataset while evaluating them on the Danish dataset, respectively. Results
demonstrate the proposed method can correctly assign diagnosis codes on multiple
levels of aggregation from the disease hierarchy over the American dataset with re-
call 70.0% and precision 69.48% for top-10 assigned codes; thereby being comparable
to text-based techniques. Furthermore, the specialised loss function performs con-
sistently better than the non-hierarchical state-of-the-art version. Moreover, results
suggest the proposed method is language and dataset-agnostic, with initial indica-
tions of transferability over subsets of disease codes.
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1. Introduction

1 Introduction

The practice of coding diagnoses of medical conditions using standardized
vocabularies of disease codes such as ICD-10 [2] has steadily grown. How-
ever, while coding systems are in widespread use, coding quality is uneven.
Coding a medical diagnosis is notoriously complex. There exist multiple hi-
erarchies and choosing the appropriate code requires a deep understanding
of their structure and the relationships. For example, in a review of 1800
injury discharges from a New Zealand hospital, Davie et al. [7] found 2% to
be uncoded, and 14% of principal injury diagnosis codes and 26% of external
cause codes to be inaccurately coded. Wockenfuss et al. [33] determined that
ICD-10 three and four level codes are too detailed to be reliable for general
practitioners by measuring the Kappa inter-rater agreement scores.

Some work exists on predicting diagnoses from laboratory results
(e.g., [23]), however, it is limited to cases where such results are available
and relevant. A large body of work exists on extracting diagnoses from clin-
ical notes and reports (see review [31]). However, the performance of these
systems relies on techniques that tend to work much better in English and
must be retrained for every new language [21].

A patient’s current medication can shed valuable light on their existing
medical conditions. For example, observing that a patient has a long-term
prescription for Metoprolol usually indicates that he/she is suffering from
hypertension or ischaemic heart disease. Generalizing upon this observation,
in this work, we develop a machine-learning-based model able to predict the
list of diagnoses assigned to a patient based on his/her medications. Thus,
such a model could provide emergency responders and critical care facilities
with a rapid assessment of a patient’s existing conditions in addition to the
model’s utility in diagnosis quality control. For example, an unconscious pa-
tient with a history of diabetes will be first assessed for hyper/hypoglycemia.
In contrast, one without a history of diabetes but with a history of heart dis-
ease will be first assessed for acute heart conditions, such as a heart attack.
We assess the viability of our approach using the publicly available Amer-
ican dataset (MIMIC-III) [16] and a Danish dataset combining prescription
and diagnosis register data [18, 30] denoted DNPR in the following. While
MIMIC-III contains rigorously anonymized and detailed medical records for
over 50K intensive care unit (ICU) patients, DNPR contains data from an un-
selected population on disease codes from Danish hospital admissions and
medication prescription history from Danish pharmacies.

This work extends our previous paper [26] in three ways. We investigate
the generalizability and transferability of our approach by extensive experi-
mentation on the Danish DNPR dataset. We investigate different aspects of
heterogeneity between MIMIC-III and DNPR and provide results for compa-
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rable non-medication-based methods.
The rest of the paper is structured as follows. In Section 2 we review re-

lated work. In Section 3 we describe MIMIC-III and DNPR, comparing and
contrasting the two datasets. In Section 4 we detail our proposed method.
In Section 5 we describe our experimental setup. In Section 6 we report ex-
perimental findings and provide results for text-based methods. We discuss
the implications of the results in Section 7 while concluding and providing
opportunities for future work in Section 8.

2 Related Work

Several studies justify the need to perform quality control of diagnosis code
assignment. Cooke et al. [6] have shown that an ICD-9 code as a predic-
tor of true chronic obstructive pulmonary disease had a sensitivity of 76%
and specificity of 67% using spirometry as their gold standard. A compre-
hensive review of Danish validation studies on the Danish national patient
registry [27] showed that the positive predictive values of disease and treat-
ments varies from 15% to 100%. Recent work attempted to predict ICD-9
assignment in MIMIC-III from discharge notes [14]. Their solution to the
multi-label multi-level problem was to limit the number of labels or aggre-
gate predicted codes into categories, thereby solving two different problems,
namely to predict the top-10/50 codes or the top 10/50 categories. In this
work, we aim to predict a large set of codes at different aggregation levels to
examine which codes and code groups are predictable from medication data.

There have been a few attempts to use prescription data to predict a single
or at most two conditions. Schmidt et. al. developed and validated an algo-
rithm with 87% accuracy able to identify herpes zoster [29]. In another study,
prescription data was used to classify whether or not patients had preexisting
conditions of diabetes or hypertension [28]. In a recent review [10] of algo-
rithms designed to extract cases for medical research from electronic medical
records data, some of the studies use medication data. However, all stud-
ies extract cases for a single condition, often aggregating several diagnosis
codes. In our scenario, we identify the probable diagnosis codes of multiple
conditions at once and thus identify cases where improbable diagnosis codes
have been used.

3 Data and Heterogeneity

In this section we introduce the MIMIC-III and DNPR datasets and specify
our steps of data preprocessing. Furthermore, to understand the heterogene-
ity between the datasets, we investigate and highlight their main differences.
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3.1 MIMIC-III

We use MIMIC-III [16] from PhysioNet [11], electronic health record (EHR)
data for 50K patients who stayed in critical care units (ICU) of the Beth Is-
rael Deaconess Medical Center for 11 years. MIMIC-III contains an extensive
variety of data, including lab results, vital signs, medical notes, and most
importantly for our needs, drugs administered, and diagnoses ascertained.
MIMIC-III is structured as a relational database consisting of multiple tables.
For instance, MIMIC-III contains a table for drug data, a table for diagno-
sis data, and a table for general patient information enclosing patient age,
gender etc. The drug data table (model input) contains four million rows
of drugs administered during 58, 976 admissions. There are 4, 525 different
drug names in the DRUG field, which are often the same drug, with differ-
ent spelling or with an added comment, e.g., Basiliximab and *NF* Basiliximab.
To disambiguate and standardize the codes we use a mapping of MIMIC-III
terms to the Observational Medical Outputs Partnerships (OMOP) Common
Data Model (CDM) concepts [13] and group them by Clinical Drug Form to
receive 1, 602 RxNorm drug codes.

The diagnosis table (expected output) contains 651, 047 diagnoses for
58, 976 admissions using 6, 984 different ICD-9 codes. ICD-9 is a hierarchi-
cal grouping of disease codes that consists of 5 levels starting from 0 (most
general), to 4 (most specific). ICD-9 is built on the basis of grouping similar
diseases. Upon review, we omit 6, 110 codes for which less than 100 cases
exist as it is typically not possible to generalize from such a low number. We
further omit several codes focusing on diagnoses for persistent conditions not
treatable by medication. A complete and detailed description of omissions
can be found in A.

We use the patient table to add the age in years upon admission and gender
to the model input normalized as described in Section 3.3.

3.2 DNPR

To evaluate the generalizability of the proposed method, including its
language-agnostic nature, we combine the two Danish datasets "The Danish
National Patient Register" [18] and "The Danish National Prescription Reg-
istry" [30]. The Danish National Patient Register is the Danish national regis-
ter of diagnosis data, which contains diagnosis codes assigned during patient
hospitalizations. The register contains patient records since 1977. The Danish
National Prescription Registry contains prescription data for all prescriptions
sold in Denmark though pharmacies since 1994. The registers can be com-
bined patient-wise though the Danish unique personal identification number
which is used throughout in Danish registers. Demographic and vital status
information is obtained from the Central Person Register [8]. Throughout this
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work we refer to the combination of these three registers as DNPR. Due to
the continuous approval of new drugs and expanding hierarchy of disease,
we limit data from DNPR to the same range of years as MIMIC-III (2002 -
2012)

The combined register DNPR is structured as a relational database. It con-
tains tables for patient diagnoses, prescribed drugs and general patient infor-
mation among others. A main difference between MIMIC-III and DNPR is
their different utilization of drug and disease vocabularies. Whereas MIMIC-
III uses ICD-9 to code disease, DNPR uses a Danish extension of ICD-10
called The Danish Health Authority Classification System (SKS). Further-
more, DNPR utilizes the World Health Organization’s (WHOs) Anatomical
Therapeutic Classification (ATC) [25] for coding prescription drugs. DNPR
contains 6, 273, 158 prescriptions (model input) and 2, 351, 769 diagnoses (ex-
pected output) for 2, 093, 987 admissions. Each admission (both inpatient and
outpatient) consists of one or multiple diseases (both primary and secondary
codes) diagnosed during hospitalization and all prescriptions administered
to the patient within 30 days before and after diagnosis as illustrated in Figure
B.1. In addition, we add patient age and gender to the model input normalized
as described in Section 3.3.

3.3 Homogenization

Due to the differences between MIMIC and DNPR, a homogenization of the
datasets is required. As MIMIC-III and DNPR are coded using different
disease and medication vocabularies, we created mappings to convert the
DNPR disease and prescription codes to the code systems used in MIMIC-III.
As detailed in Sections 3.4 and 3.4, based on many-to-many general equiv-
alence mappings (GAMs) [3] and the OMOP CDM concept mappings, we
managed to create a mapping for converting disease codes between ICD-9
and ICD-10-SKS as well as one for converting prescriptions from RxNorm
to ATC. We map 567 unique ICD-9 codes to 320 unique ICD-10-SKS codes
and 1602 unique RxNorm drug concepts to 834 unique ATC codes. Further-
more, MIMIC-III hides elderly patients (over 89 years) due to anonymization
concerns and reports the age of 92.4 for each of these. We normalize the
age of all patients from MIMIC-III by dividing it by 92.4; a practice that is
beneficial in machine learning techniques. We normalize the age of patients
from DNPR using the same approach by first calculating the average age of
elderly patients (over 89 years), then reporting elderly patients with the av-
erage age, and finally dividing all patients by the average age of the elderly.
When joining the prescription, diagnosis, and patient tables for MIMIC-III,
we end up with 48K admissions for 38K different patients using 567 unique
codes, referred to as labels in the following.
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3.4 Data Heterogeneity

MIMIC-III and DNPR both consist of drug prescriptions and diagnosed dis-
eases albeit they are collected for different purposes. Whereas MIMIC-III is
collected in an insurance financed setting, DNPR is collected for administra-
tive purposes but in a tax financed setting naturally leading to data hetero-
geneity.

The main difference between MIMIC-III and DNPR is the way prescrip-
tion data is gathered. While diagnosis codes from MIMIC-III and DNPR are
both assigned while the patient is hospitalized, prescription data from DNPR
differs from MIMIC-III by not consisting of the medicine administered dur-
ing hospitalization but rather the medicine taken before and after release
as illustrated in Figure B.1. Furthermore, since MIMIC-III consists of ICU
patients often hospitalized with acute disease, the purpose of drug adminis-
tration will initially be patient stabilization. On the other hand, the purpose
of DNPR prescription data is directed at treating the disease diagnosed at
release, as well as chronic conditions present before and after hospitalization
(e.g., diabetes).

MIMIC

DNPR

Admission Discharge

Diagnosis
Prescription

Time

Fig. B.1: Differences between MIMIC-III and DNPR in terms of prescription data gathering. An
orange box represents the time of diagnosis assignment and a blue box represents the time span
for which prescription medicine consumption data is gathered. Whereas MIMIC-III contains
information on prescription data from time of admission until release, DNPR only contains
prescription data taken before and after the patient is released from the hospital.

Disease vocabularies

Although MIMIC-III and DNPR both utilize the ICD disease code hierarchy
for standardized patient diagnosis, the hierarchy is used in different ways
based on the purpose of the databases. Since subtle changes in disease codes
can cause major changes to the final patient bill, MIMIC-III disease codes
have to be as specific as possible. Comparatively, Danish physicians are not
too concerned with the precision of specifying diagnosis codes as long as
other clinicians can understand the patient’s symptomatology. As an exam-
ple, a patient from MIMIC-III might get diagnosed with the billable diagnosis
code 280.1 - "Iron deficiency anemias - secondary to inadequate dietary iron
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Fig. B.2: (a) RxNorm to ATC mapping. The mapping between RxNorm concepts and ATC
codes forms a many-to-many relationship between the two vocabularies. This can be seen by
the two RxNorm concepts x

′
3 and x

′
4 both mapping to the ATC concept y

′
3 and the RxNorm

concept x
′
2 mapping to the two ATC concepts y

′
1 and y

′
2. As an example, the RxNorm concepts

"Digoxin Injection" and "Digoxin Oral Tablet" both map to the ATC concept "digoxin" and the
ATC concepts "triamterene" and "hydrochlorothiazide" both map to the RxNorm concept "Hy-
drochlorothiazide / Triamterene Oral Tablet". (b) ICD-9 to ICD-10-SKS mapping. The mapping
forms a many-to-many relationship between the two vocabularies as seen by subsets s

′
and p

′
.

Furthermore, some codes only have one corresponding code from the other vocabulary, thus we
create the sets s

′′ ⊂ s
′

and p
′′ ⊂ p

′
which have a one-to-one relationship. All mappings have

been made available through an online data repository [12].

intake", whilst a patient from DNPR will be diagnosed with the less specific
diagnosis code 280 - "Iron deficiency anemias", which is a non-billable ICD
code.

For many years, ICD has been used globally and has thus gone through
several iterations to accommodate new disease and better disease hierar-
chy structures. Whereas Denmark has been using the 10th version of ICD
(ICD-10) since 1994, MIMIC-III patients have been diagnosed using the ICD-
9 disease hierarchy. Furthermore, DNPR is coded using a Danish extension
of ICD-10 called The Danish Health Authority Classification System (SKS)
which extends the ICD-10 by introducing new branches of diseases and re-
moving some codes that were originally in ICD-10. A bijective mapping
between ICD-9 and ICD-10 is not possible due to the big changes between
ICD versions [3]; however, a many-to-many mapping exists1 as illustrated in
Figure B.2(b) by the subset s

′
mapping to the subset p

′
. Additionally, we cre-

ate subsets s
′′ ⊂ s

′
and p

′′ ⊂ p
′

of ICD-9 and ICD-10-SKS codes respectively
for which there exists a one-to-one mapping between the sets; this is illus-
trated in Figure B.2 as the sets s

′′
and p

′′
. From the initial 567 ICD-9 codes

with more than 100 MIMIC-III patient cases, we managed to map 320 unique
ICD-9 codes to 532 ICD-10-SKS codes using the following procedure.

We utilize a many-to-many general equivalence mapping (GAM) between

1https://www.cms.gov/Medicare/Coding/ICD10/2018-ICD-10-CM-and-GEMs
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3. Data and Heterogeneity

leaf nodes of the ICD-9 and ICD-10 disease hierarchies and consequently
map 558 ICD-9 codes to 2525 ICD-10 codes. However, 1967 ICD-10 codes
do not automatically correspond to ICD-10-SKS codes which results in 558
mappings from ICD-9 to ICD-10-SKS with 320 Unique ICD-9 codes mapping
to 532 unique ICD-10-SKS codes forming a many-to-many relational map-
ping. Furthermore, we found a subset of 148 relations forming a one-to-one
mapping between the two vocabularies.

Prescription vocabularies

Adding to the heterogeneous nature of prescription data, MIMIC-III and
DNPR use different medicine vocabularies. Whereas MIMIC-III can be
mapped to the RxNorm drug vocabulary using the OMOP CDM maps,
DNPR is coded using the anatomical therapeutic classification (ATC). To com-
pare the datasets we create a mapping from ATC codes to the RxNorm drug
vocabulary using the OMOP CDM concept hierarchy. This results in a many-
to-many mapping as seen in Figure B.2(a). Furthermore, the mapping is only
partial since the OMOP CDM concept hierarchy has missing links between
the two vocabularies. From the initial 1602 RxNorm drug codes, we were
able to map 1257 unique RxNorm drug codes, illustrated as the set x

′ ⊂ x
in Figure B.2, to 834 unique ATC drug codes, illustrated as the set y

′ ⊂ y in
Figure B.2, with 1351 relations between x

′
and y

′
.

Statistical Heterogeneity

Of the resulting 834 mappable ATC codes, 771 are used at least once for
patients from DNPR. Furthermore, counting only the 1, 257 mappable drugs,
the total number of drugs given to patients from MIMIC-III is 1, 129, 677 with
an average of 23.72 drugs per patient case. In contrast, 6, 273, 158 drugs are
prescribed to patients from DNPR averaging at 3.00 drugs per patient case.
Likewise, using the many-to-many disease code mapping, we found that
of the 320 unique ICD-9 disease codes, 307 have been assigned to patients
from the DNPR dataset. MIMIC-III has 47, 634 patient cases with a total
of 282, 150 assigned disease codes which gives an average of 5.94 diseases
per patient. DNPR has 2, 093, 987 patient cases with a total of 2, 351, 769
diagnosed disease, averaging at 1.12 disease per patient. The distribution of
patients diagnosed with each of the 320 mappable ICD-9 codes is illustrated
in Figure B.3.
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(a) (b)

Fig. B.3: Distribution of patient cases with assigned ICD-9 codes. (a) The distribution of diag-
nosed patients for each of the 320 predictable ICD-9 codes. As illustrated, Q3 of DNPR codes
is below the interquartile range of MIMIC-III codes. For the sake of readability, no percentage
above 3 is shown. However, MIMIC-III has 29 outliers not shown on the figure and DNPR has 3.
(b) The distribution of the top-10 used ICD-9 codes in MIMIC. As illustrated, all disease codes
are used more frequently in MIMIC-III as compared to DNPR.

4 Hierarchical Multi-label Classification (HMC)

Binary classification problems (e.g., has this person received treatment related
to sepsis) aim to correctly classify each task as either positive or negative.
Single-label multi-class problems (e.g., is the following brain magnetic reso-
nance imaging (MRI) normal or does it contain a glioblastoma, a sarcoma,
or a metastatic bronchogenic carcinoma?) extend the classification to allow
more than one class for each task. These two types of Machine Learning (ML)
tasks are, by far, the most commonly studied in the medical domain. Less
common are multi-label classification problems, which attempt to assign a
set of labels to each example (e.g., which of the ICD-9 codes should be as-
signed following this medical report [1]), each of the labels is drawn from a
possible set of classes. Since each person may have multiple co-morbidities,
the task of assigning the correct set of diagnosis codes can be characterized
as a multi-label classification problem [34]. The hierarchical nature of diag-
noses both complicates the task and offers an opportunity to improve the
applicability of an ML model. If an algorithm predicts a patient suffering
from non-specified chirosis (ICD-9 code 571.5) to be suffering from alcoholic
chirosis (ICD-9 code 571.2) it should be more appreciated than if no chirosis
related diagnoses are returned since both codes share a common ancestor.
Further hierarchical constraints may dictate that a person cannot have more
than one label from the same sub-tree of codes. Since ICD-9 is indeed hierar-
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chical and imposes such constraints on some of its sub-trees, we can classify
our task as a hierarchical multi-label classification (HMC) problem.

4.1 Machine Learning and Loss Functions

Many approaches to HMC include splitting the problem into multiple simple
(single label) classification tasks, each of which is trained separately. Within
these approaches, local and global approaches [9] differ by the number of
classifiers trained. In the local case, multiple classifiers are trained over a
binary label pertaining to a single node in the hierarchy and the predictions
of each level are subsequently propagated [22]. In the global case, the labels
are selected from a set of all possible labels. In this work, we follow the ob-
servation of Cerri et al. [4] that by training a single global classifier based
on a multi-level neural network representation, one can effectively reuse the
high-level features learned to discriminate between high levels in the hier-
archy and then refine these to more accurate code assignments using the
subsequent levels of the neural network. Furthermore, deep neural networks
(DNN) have repeatedly shown superiority over other techniques in the med-
ical domain (e.g., [15], [5]). We therefore employ a multi-layer perceptron, or
fully connected neural network. The input layer for this network consists of
one node for each RxNorm code in the data (one for normalized age and one
for biological sex) and the output layer of one node for each ICD-9 code at
the chosen roll-up level.

Machine learning, in particular deep learning, uses a loss function during
the training phase to quantify the error of the current iteration of the model
with respect to the expected output. Choosing an appropriate loss function
is crucial and in general must reflect the structure of the expected output.
Thus, specific loss functions have been suggested for the multi-label case [19]
as well as hierarchical multi-label functions [32]. However, these are tied
directly to the structure of the global classifier, and none have been applied in
the medical data setting using the inherent hierarchy of a medical taxonomy.

We therefore experiment with two types of loss functions, ml and hml as
described below. One suitable for the multi-label case, where each missed
label is treated the same regardless of the extent of the mistake (ml, Eq. 1),
and one designed for the HMC case. For the general multi-label case, we
chose the multi-label soft margin loss function [35], defined as follows with
C being the number of classes, y being the class indicator, and x the current
value of the corresponding output node (i iterates over all classes).
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loss(x, y) =− 1
C ∑

i
y[i] · log((1 + exp(−x[i]))−1)+

(1 − y[i]) · log
(

exp(−x[i])
(1 + exp(−x[i]))

) (B.1)

We model our HMC loss function (hml, Eq. B.2) after the one developed
for HMCN-F [32] while adjusting it to account for the differences between a
text-classification problem and our own task and minimize a function com-
prised of two components.

Lhml = LL + LG (B.2)

LL is the local loss – calculation of Eq. B.1 at the leaf level. LG is calculated
by rolling up the results one layer at a time until the ICD-9 chapter level (0).
At each phase of the roll-up, the predictions for each inner node are set to the
average of the predictions over its children. The loss of each level is calculated
and summed to the other levels. Since our neural network does not directly
predict the global scores, we do not suffer from hierarchical violations and do
not require the third component that penalizes them in HMCN-F. We employ

Roll Up Roll Up
L0 .....
L1 .....
L2 .....
L3 .....
L4 .....

A-L4 B-L3 C-L2

a

b c d

e f

g h

i

j k

a bc d e f gh i jk

abc de fgh ijk

Fig. B.4: Example of the roll up algorithm. An example level 4 code assignment is shown as
tree A-L4. Disease codes {b, c, d, g, h, j, k} are level 4 codes, whereas codes {a, e, f, i} are codes
on level 3. Red circles are the registered comorbidities of the patient. Green circles are diseases
not recorded in the patient.

the Roll Up method to aggregate diagnoses given the ICD-9 hierarchy (see
example in Figure B.4). Leaf node of the ICD-9 hierarchy can be assigned to
patients. However, not all leaves are on the same level. As an example, 322.2
is a level 3 code, which represents Chronic meningitis, whereas code 003.22 is
a level 4 code for Salmonella pneumonia. Each patient starts with one or more
codes from the ICD-9 hierarchy.

5 Experimental Setup

In this section, we introduce the experimental setups for evaluating different
aspects of our proposed method. We evaluate the proposed method’s over-
all performance by investigating the model’s performance on the MIMIC-III
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dataset. Furthermore, we relate the model’s performance to baseline results
from several textual-based diagnosis assignment methods. To evaluate the
method’s generalizability, we investigate the model’s performance on the
Danish DNPR dataset comparing it to the performance of MIMIC-III when
trained and evaluated on the same sets of ICD-9 disease codes. Finally, we
investigate the model’s transferability properties by training a model on the
MIMIC-III dataset whilst testing the model on the DNPR dataset.

5.1 Diagnosis assignment using medication data (proposed
method)

To evaluate the proposed method of using medication data to assign diag-
nosis codes, we train, evaluate and test hml and ml models on the MIMIC-III
dataset with an 80/10/10 train/evaluate/test data split.

Utilizing the roll up method for initial data transformation, we perform
experiments on different prediction resolutions, with level 0 corresponding
to the chapter level of ICD-9 (e.g., 520–579: diseases of the digestive sys-
tem) with 16 possible codes and level 1 to the code group level (e.g., 401-405
Hypertensive Disease) with 65 possible codes. Our last level corresponds to
the most detailed available in the ICD-9 hierarchy (level 4) with 567 possible
codes as identified in Section 3.1. Furthermore, we experiment with a Top-10
(level 4) setting and a Top-10 (Level 0) setting in terms of the most prevalent
MIMIC-III codes. Furthermore, for each experiment, we perform a classic
hyperparameter search over the number of internal layers and the number of
nodes in each layer over the following values and ranges - Activation function:
[Rectified Unit, Sigmoid], Batch Size: [32 - 2048], layer Dropout: [0.001 - 0.1],
Layer Sizes: [1 - 4 layers, 128 - 512 perceptrons]. For each prediction resolution
and parameter combination, we train and evaluate an hml and an ml model.

5.2 Generalizability

Generalizability should be understood as the model’s ability to perform well
on new datasets and in new settings. To investigate the proposed method’s
generalizability, we evaluate the model on the Danish DNPR dataset. DNPR
is an ideal target for evaluating the method’s generalizability due to the het-
erogeneity between MIMIC and DNPR as detailed in Section 3.4. Since DNPR
is coded using a different disease vocabulary and prescription vocabulary
than that of MIMIC-III, the generalizability experiment reveals the dataset-
agnostic and language-agnostic nature of the proposed method.

The experimental setup for the generalizability experiments are summa-
rized in Table B.1. Experiments are performed using ICD-9 (level 4) codes
on hml and ml models. Furthermore, all experiments are trained, evaluated,
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Experiment Codes Disease Mapping Train Test

M - M (multi) 320 k−1 : p
′ → s

′
38, 107 4, 763

M - M (bijection) 148 r−1 : p
′′ → s

′′
32, 228 4, 028

M - M (Top 50) 50 k−1 : p
′ → s

′
30, 367 3, 795

M - M (Top 10) 10 k−1 : p
′ → s

′
23, 286 2, 910

D - D (multi) 306 k−1 : p
′ → s

′
1, 675, 189 209, 398

D - D (bijection) 142 r−1 : p
′′ → s

′′
561, 789 70, 223

D - D (Top 50) 50 k−1 : p
′ → s

′
315, 007 39, 375

D - D (Top 10) 10 k−1 : p
′ → s

′
171, 372 21, 421

Table B.1: Experimental settings for evaluating the generalizability of the proposed method. M
and D stand for MIMIC-III and DNPR respectively. Experiment is the name of the experiment
where letters on the left and right side of the dash stand for the dataset used for training and
testing respectively. Codes are the number of different disease predicted in the experiment.
Train and Evaluation are the number of admissions for training and testing the model. Due to
server limitations, hyperparameter optimization through standard grid search was not possible.
Instead, model parameters were held constant for all experiments with the following settings -
Batch Size: 256, Activation Function: Rectified Unit, Layer Dropout: 0.01, Layer Sizes: [512, 256,
128, 256]

and tested on an 80/10/10 data split. The DNPR data is hosted on a gov-
ernment server with severely restricted access and computational power thus
limiting our ability to perform parameter grid search to tune the models.
Hence, all experiments use the same parameter settings which can be found
in the legend of Table B.1.

5.3 Transferability

Transferability is the model’s ability to work in a different setting from the
setting in which it has been originally trained. We evaluate the proposed
method’s transferability by training a model on the MIMIC-III dataset while
testing the model on the DNPR dataset. The transferability experiments are
listed in Table B.2. To ensure data compatibility, we preprocess the DNPR
dataset by translating the model input and output according to the taxonomy
mappings developed in Section 3.4 and Section 3.4 as illustrated in Figure
B.2. All experiments are done for the most detailed level of ICD-9 (level 4)
using both an hml and ml model. Due to server limitations, model parameter
optimization is not possible. Model parameter settings are held constant, as
listed in Table B.2. All transferability experiments are trained and evaluated
on an 80/20 MIMIC data split while tested on all DNPR data.
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5.4 Experimentation Settings

For the generalizability and transferability experiments as described in Sec-
tions 5.2 and 5.3, we experiment with multiple settings of disease codes and
hierarchies. Each setting has a different rationale and clinical application in
hospital settings.

The multi experiments utilize the k−1 disease mapping as described in
Section 3.4. k−1 establishes a many-to-many link between diseases of the
ICD-9 vocabulary and that of the ICD-10 vocabulary. In total, we were able
to map 320 ICD-9 codes to ICD-10 codes using this mapping. The mapping is
a naive conversion method since the mapping from ICD-10 to ICD-9 merges
several ICD-10 codes into a single ICD-9 code. However, since most groups of
merged ICD-10 codes are very similar, it should be uncommon for patients to
loose important disease information when using the mapping. Furthermore,
this mapping keeps many of the original disease codes from the 567 ICD-
9 code set. A model based on such a mapping can be used in a clinical
setting for various purposes such as automatic disease code assignment, as
a validation tool for manual disease code assignment, for finding registry
errors, or as a clinical tool for assessing the disease history of a patient based
on the patients prescription history.

To evaluate the performance of one-to-one corresponding codes from
ICD-9 and ICD-10, we created a bijective mapping function R−1 to map ICD-
10 disease codes to ICD-9 disease codes. The experiments using this mapping
are mainly used to investigate the performance of a model when mitigating
the problems introduced by many-to-many mappings.

Top 10 (level 4) and top 50 (level 4) experiments use the top 10 and top
50 diagnosed codes. Previous diagnosis assignment approaches [17, 24] have
used top 10 and top 50 codes for experimentation. To be comparable with
other approaches for diagnosis assignment on the MIMIC-III dataset, we
chose to incorporate these experimental settings as well.

Experiment Codes Disease Mapping Train Test

M - D (multi) 320 k−1 : p
′ → s

′
47, 634 2, 093, 987

M - D (bijection) 148 r−1 : p
′′ → s

′′
40, 286 693, 950

M - D (Top 50) 50 k−1 : p
′ → s

′
37, 959 389, 344

M - D (Top 10) 10 k−1 : p
′ → s

′
29, 108 211, 579

Table B.2: Experimental settings for evaluating the transferability of the proposed method. M
and D stand for MIMIC-III and DNPR, respectively. The description of the legend and experi-
ments follows the same format as that of Table B.1.
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5.5 Comparison to text-based methods

We evaluated several textual-based approaches similar to those proposed
by [24] for diagnosis assignment on different sets of the 567 MIMIC-III codes
described in Section 3.1. We evaluated a Convolutional Neural Network
(CNN) [20], a Recurrent Neural Network followed by a Gated Recurrent Unit
(GRU), and a Convolutional Neural Network with Attention (CNN-att) [24].

The evaluated text-based methods treat ICD-9 code prediction as a multi-
label classification problem. The input for text-based methods are the textual
discharge summaries for patient stays, and the output is the ICD-9 codes
assigned to the patient. To compare against our approach, we evaluate each
of the three text-based models in a Top-10 (level 4) setting and a Raw (Level
4) setting, with Top-10 occurring MIMIC-III (level 4) codes and the set of all
567 MIMIC-III (level 4) codes, respectively.

The convolutional neural network we evaluate against, as described
in [24], works as follows. As an initial data transformation step, the dis-
charge summary notes are transformed into a feature matrix by substituting
each word using pre-trained de-dimensional word embeddings to create an
embedding matrix X = [x1, x2, ..., xN ], where N is the length of the docu-
ment. A convolution layer then applies a convolutional filter Wc ∈ Rk×de×dc ,
where dc is the size of the filter output, to X, to produce a convolution matrix
H. A global average pooling layer is then applied to H to generate a feature
for each corresponding disease to classify. The only difference between the
CNN and the GRU network architecture is that a gated recurrent unit layer
replaces the convolution layer from the CNN-based architecture. The CNN-
att model utilizes a per-label attention mechanism since different parts of the
convolution H may be relevant for different labels. The attention mechanism
learns a vector parameter ul ∈ Rdc for each disease label. By doing matrix
multiplication between ul and H and using a softmax function to normalize
over all words from the input file, an attention vector al is learned for each
label. The intuition behind al is that it learns which words in a document are
important for classifying a specific label l.

5.6 Baseline

We introduced a statistics based disease code assignment approach as a base-
line method for the task of disease code assignment. The approach is based
on the statistical prior that patients are more likely to be diagnosed with
common diseases than rare diseases. For each disease, we first calculate the
dataset-specific probability of a patient having a disease. The assignment of
patient diseases then follows a schema of generating a random floating point
number between 0 and 100 for each patient for each disease. If the randomly
generated number is lower than or equal to the probability of having the
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disease, we assign the diagnosis code to the patient. A good model should
outperform this baseline by learning from the input features to choose against
the statistical prior.

6 Experimental Results

This section presents the results obtained from the experimental settings de-
fined in Section 5. The obtained results are presented in separate sections
according to their experimental setting. To allow easy comparison between
our approach and techniques utilizing medical notes, we evaluate experi-
mental results using the standard micro-averaged precision and recall and
their harmonic mean F1. The choice of experimental settings is described in
Section 5.4.

6.1 Diagnosis assignment using medication data (Proposed
Method)

R² = 0.2912
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Fig. B.5: F-1 by number of cases over level 2 codes.

To evaluate the
proposed method,
we trained sev-
eral models on the
MIMIC-III dataset
for each ICD-9
level according to
the experimental
setup described in
Section 5.1. Table
B.3 presents the
best results (by
F1) obtained over
MIMIC-III using an
80/10/10 split by an
hml mode following a standard hyper-parameter grid search. In each task,
the code assignments were rolled up before both the training and the test
phase and not only for evaluation, such that the neural network encountered
a different task for each level. For each ICD-9 level, we provide the number
of codes in that level, the average branching factor, and the average number
of eventual leaves of a node in this level’s sub-tree. In addition to precision,
recall, and F1, we show the number of diagnosis codes for which F1 was
equal to zero. Table B.3 further presents the results of the baseline approach
for easily comparing our proposed method against the baseline. We evaluate
the Raw (level 4), Top-10 (level 0) and Top-10 (level 4) tasks for the baseline.
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Prediction Task Codes Br. Avg.
Leaves

Prec. Recall F1 F1=0

Baseline
Top-10 (level 0) 10 NA NA 42.04 40.10 41.05 1
Top-10 (level 4) 10 NA NA 23.25 21.46 22.32 0
Raw (level 4) 567 0 0 8.79 8.24 8.51 402

Our Approach
Top-10 (level 0) 10 NA NA 69.48 70.23 70.01 0
Top-10 (level 4) 10 NA NA 52.38 70.00 59.92 0
Rolled Up (level 0) 16 5.7 565.1 68.46 69.27 68.86 0
Rolled Up (level 1) 65 8.4 108.3 58.05 57.21 57.63 10
Rolled Up (level 2) 236 6.6 14.0 48.45 47.19 47.81 83
Rolled Up (level 3) 461 1.6 1.6 37.36 41.61 39.37 195
Raw (level 4) 567 0 0 36.98 36.26 36.62 311

Table B.3: MIMIC-III diagnosis prediction results for our approach and for the baseline. Br. is
the branching factor and Prec. is precision. F1=0 is the number of codes for which F1 was equal
to zero.

Since MIMIC-III is a relatively small dataset, the number of cases for many
diagnoses is too low to expect good performance. When examining the effect
of the number of cases on the model’s performance (Fig. B.5) we find that at
least some of the variance can be explained by the small number of cases (R2

of 0.29 for a linear model). Top-5/top-10 results by code are available as an
online appendix containing the full results [12].

To assess the effect of using a hierarchical multi-label loss function (hml)
versus a standard multi-label loss function (ml) we examine all experimental
results from the proposed method experiment as described in Section 5.1 where
the F1 was at least 5.0. Models trained using hml consistently out-performed
those trained using ml with an average F1 result between 3 − 8% better. This
result holds when comparing the max values obtained in each level with a
2 − 7% improvement for levels 2 − 4, although no significant improvement
was seen for level 1. This last result is expected since the roll-up process for
this level only rolls up to level 0.

6.2 Generalizability Results

To investigate the proposed method’s generalizability, we compare the per-
formance of models trained on the MIMIC-III dataset to models trained on
the same set of ICD-9 codes on the Danish DNPR dataset. The experimental
setting is described in section 5.2. Results in terms of F1 scores for hml and ml
models grouped by experimental setting for all generalizability experiments
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are illustrated in Figure B.6.
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Fig. B.6: F1 scores for hml models grouped by the type of experi-
ment.

Even though
the two datasets are
heterogeneous in na-
ture, as described in
Section 3.4, results
indicate that the
proposed method
provides compara-
ble predictive power
for models trained
on the MIMIC-III
dataset and mod-
els trained on the
DNPR dataset, for
the same subsets of
ICD-9 codes. Inter-
estingly, models trained on MIMIC-III outperform models trained on DNPR
when the number of predictable diseases is high. In contrast, the opposite is
true when the number of predictable diseases is low.

Furthermore, results obtained from the generalizability experiments fur-
ther validate the superiority of using an hml model as illustrated by Figure
B.7, as hml models persistently out-performed ml models on F1 scores by up
to 7.5% with an average performance increase of 3.1%.

HML ML
Experiment Codes F1 Prec. Recall F1 Prec. Recall
M - M (multi) 320 39.93 40.16 39.71 37.30 36.53 38.12
M - M (bijection) 148 35.56 34.64 36.53 31.34 29.46 33.48
M - M (Top 50) 50 38.09 36.51 39.81 34.83 32.72 37.23
M - M (Top 10) 10 48.62 40.93 59.86 41.16 40.83 41.49
D - D (multi) 306 30.25 31.70 28.92 30.24 30.64 29.86
D - D (bijection) 142 25.42 20.43 33.61 24.42 24.36 26.57
D - D (Top 50) 50 38.55 36.25 41.16 38.09 35.14 41.58
D - D (Top 10) 10 63.16 59.54 67.25 57.38 52.42 63.38

Table B.4: F1, precision and recall of generalizability experiments for hml and ml models. M and
D stand for MIMIC-III and DNPR respectively.

6.3 Transferability Results
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Fig. B.7: F1 scores for generalizability experiments as listed in Table
B.1

To assess the pro-
posed method’s
transferability, we
performed exper-
iments described
in Section 5.3. We
trained and evalu-
ated a model on the
MIMIC-III dataset
for each transferabil-
ity experiment with
an 80/20 data split
while testing the
model on the whole
DNPR dataset. Re-
sults in terms of F1
score, precision and
recall for all transfer-
ability experiments
for hml and ml models are presented in Table B.2. Results in terms of F1 score
range from 6.28 when trained and tested on 320 disease codes to 28.25 when
trained and tested on the top-10 most prevalent MIMIC-III ICD-9 codes as
summarized in Table B.5. Although transferability results indicate weak
performance for models trained on the 320 ICD-9 codes, the performance
improves as the prediction task gets easier.

HML ML
Experiment Codes F1 Prec. Recall F1 Prec. Recall
M - D (multi) 320 6.28 7.38 5.46 5.46 4.72 6.49
M - D (bijection) 148 6.68 4.77 11.12 5.92 3.75 13.90
M - D (Top 50) 50 10.86 7.65 18.70 9.70 6.27 21.29
M - D (Top 10) 10 28.25 19.26 50.45 21.22 20.34 22.17

Table B.5: F1, precision and recall of transferability experiments for hml and ml models. M and
D stands for MIMIC-III and DNPR respectively.

6.4 Results for text-based methods

To compare our work to text-based methods of diagnosis assignment, we
experimented with implementations of several such methods. We evaluated
state of the art Convolutional Neural Network (CNN), a Recurrent Neural
Network followed by a Gated Recurrent Unit (GRU), and a Convolutional
Neural Network with Attention (CNN-att) [24]. Results in terms of precision,
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recall, and F1 for all textual techniques are listed in Table B.6. The best
result in terms of F1 for the Top 10 (level 4) experiment was achieved with
a CNN-att model with a score of 82.74. In comparison, the best result for
our proposed method on the same set of codes is 59.92 as listed in Table B.3.
Similarly, whereas our proposed method achieved an F1 score of 36.62 when
predicting the complete set of 567 ICD-9 codes (level 4), the best result for
the text-based methods was achieved on the CNN-att model with a score of
55.76.

Model Codes Precision Recall F1

CNN Top 10 (level 4) 76.13 77.65 76.89
CNN Raw (level 4) 44.51 46.33 42.82
GRU Top 10 (level 4) 77.82 82.65 80.16
GRU Raw (level 4) 62.02 49.96 55.34
CNN-att Top 10 (level 4) 79.34 82.26 80.77
CNN-att Raw (level 4) 57.51 59.38 55.76
hml Top 10 (level 4) 54.24 67.92 60.31
hml Raw (level 4) 36.98 36.26 36.62

Table B.6: Results of text-based methods of diagnosis assignment. Codes are the sets of ICD-9
disease codes used in the experiment. Top 10 (level 4) is the 10 most frequently used ICD-9
codes in MIMIC-III from the initial set of 567 codes. Raw (level 4) is the complete set of 567
ICD-9 codes. For comparison, the table contains the best results for medication-based diagnosis
code assignment for the same tasks.

We further present the results for the Top-10 (level 4) assigned diagno-
sis codes for the text-based CNN model and our medication based HML
model in Table B.7. CNN predicts "Atrial fibrillation" with an F1 score of
89.66 whereas HML predicts the same disease with an F1 score of 73.09. The
best performing class in terms of F1 score for the HML model is "Coronary
atherosclerosis of native coronary artery" with an F1 score of 68.84. CNN pre-
dicts the same code with an F1 score of 77.23. Further results with the Top-10
assigned codes for the GRU and CNN-att text-based models are available as
an online appendix [12].

7 Discussion

This section discusses and reflects upon the experimental results for the pro-
posed method and its generalizability and transferability.
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HML CNN
Disease Prec. Recall F1 Prec. Recall F1
Atrial fibrillation 69.03 77.65 73.09 87.62 91.78 89.66
Coronary atherosclerosis
of native coronary artery

63.05 75.79 68.84 92.81 66.13 77.23

Unspecified essential hy-
pertension

55.54 85.65 67.38 70.72 90.84 79.53

Congestive heart failure;
unspecified

60.20 72.92 65.95 86.10 79.20 82.50

Acute respiratory failure 51.77 73.02 60.58 66.27 66.93 66.60
Acute kidney failure; un-
specified

45.23 62.50 52.48 77.48 45.43 57.27

Diabetes mellitus without
mention of complication

49.09 56.28 52.44 71.28 82.75 76.59

Urinary tract infection;
site not specified

42.09 61.58 50.00 71.68 70.13 70.90

Other and unspecified
hyperlipidemia

44.72 49.48 46.98 77.96 76.26 77.10

Esophageal reflux 36.77 21.32 26.99 82.10 67.19 73.90

Table B.7: F1, precision and recall of top-10 assigned ICD-9 codes for our medication-based hml
model and the text-based CNN model.

7.1 Proposed method

In the top-10 setting, an hml model was trained to assign one or more diseases
to a patient among 10 unique ICD-9 disease codes. The model correctly
assigned codes in 69.48% of all cases and was able to find 70.23% of all disease
codes as summarized in Table B.3.

The results of the performance of the top-10 assigned codes setting shows
that text-based methods perform well in the diagnosis of all top-10 diseases
as summarized in Table B.7. The results indicate that diagnosis observations
are diligently written down in clinical discharge notes, with a precision such
that text-based methods of diagnosis classification works well. Not surpris-
ingly, it is more difficult to differentiate between diagnosis codes based on
medication since some medications can be used in various contexts for treat-
ing multiple diseases. Furthermore, some diseases are not treated directly,
but by adjusting some other treatments if the disease is a side effect, such
as is often the case with Esophageal reflux. Hence, the F1 score of 26.99 for
the medication based prediction of Esophageal reflux. However, for 8 out of
9 top-10 assigned codes, the F1 score for our medication based HML model
was above 50.

The results are encouraging compared to the CNN, GRU and CNN-att
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textual methods of diagnosis assignment as illustrated in Figure B.6. In these
days of computerized electronic health records, this approach offers a poten-
tial application to assign disease codes based on drugs prescribed automati-
cally. The approach may also provide opportunities to create quality control
mechanisms for diagnosis code assignments. The proposed method works
in cases where registers do not contain medical notes but contain patient
medication history, as in the Danish patient register DNPR.

As summarized in Table B.3, F1 scores improve as the task is simplified
with the worse performance obtained when the model tries to assign the cor-
rect code from a set of 567 possible codes at level 4. The best performance
is on level 0 when the model only has 16 possible labels. Consistently, in
all experimental conditions, precision and recall are approximately the same.
Precision and recall are relatively low when predicting all 567 (level 4) codes.
This result is partially explained by codes and groups that their medication
cannot differentiate, and for which the model was unable to find any of the
cases (F1=0). For example, at level 4, the model could not predict any as-
signment of codes from chapter 780-799 (Symptoms, Signs, And Ill-Defined
Conditions). This chapter may not be differentiable by medication, as it com-
prises symptoms for many underlying conditions. Further analysis shows
that prediction of neoplasms mostly fails, as cancer treatment can be surgical
or radiation-based. Furthermore, since MIMIC contains only ICU records,
the patient may not be currently undergoing any medication-based cancer
treatment.

In addition, many diseases of the circulatory system were not differen-
tiable by medication. Some diseases are asymptomatic and will thus rarely
be treated by medication since the patient does not produce or show any
symptoms regardless of the presence of the disease. The branch of diseases
under code 426 (Conduction Disorders) are mostly asymptomatic, such as
426.0 (Atrioventricular Block, Complete), 426.4 (Right Bundle Branch Block),
and 426.7 (Anomalous Atrioventricular Excitation). Other diseases are ei-
ther too general, as in 427.89 (Other Specified Cardiac Dysrhythmias), which
makes it medically undiscernible, or does not have a specific medication treat-
ment regime such as 437.0 (Cerebral Atherosclerosis). The treatment of cere-
bral atherosclerosis often involves administering statin, used for lowering
cholesterol levels in the blood. However, statin is also used for various other
atherosclerosis diseases such as aortic atherosclerosis and atherosclerosis of
renal artery. Since no other discernable medication is used to treat cerebral
atherosclerosis, this disease cannot be differentiated by medication.

Nonetheless, in some cases, diseases will have specific regimes of medi-
cation treatment, such as atrial fibrillation and hypertension. Patients with
hypertension will often be treated by beta-blockers, ACE inhibitors or an-
giotensin II inhibitors. If two of these have been prescribed to a patient, there
is a high probability of suffering from hypertension.
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Another issue that is difficult to capture is that doses information of some
drugs may vary depending on the disease indication. For example, rivarox-
aban 2.5mg BID is licensed for high-risk patients with acute coronary syn-
drome, while rivaroxaban 20mg OD is for stroke prevention in atrial fibril-
lation. In this paper, we focused our analysis on static patient information,
which means that we do not model changes in drugs over time. For exam-
ple, the medication warfarin will often be prescribed to patients with venous
thromboembolism and patients with atrial flutter. Whereas patients with
atrial flutter will be prescribed warfarin for their entire life, venous throm-
boembolism patients will often stop taking warfarin after a certain period.
Designing a model that can capture temporal drug information is an inter-
esting aspect that we plan to address in our future work. Also, some patients
may swap their drug into another agent from the same class of drugs, causing
a further dilution of the number of cases a model can learn from. Some drugs
are also in combination therapies, for example, combining ACE inhibitors
and a diuretic in a single combo pill for the treatment of hypertension.

7.2 Generalizability

We evaluated the generalizability of the proposed method by experiment-
ing with the Danish DNPR dataset. We compared results obtained from hml
and ml models created over sets of ICD-9 codes from the MIMIC-III dataset
to results obtained over the same sets of ICD-9 codes from the DNPR dataset.
Experiments are summarized in Table B.1. Despite their different aspects
of heterogeneity, experimental results indicate comparable predictive model
power for both datasets as illustrated in Figure B.6. This finding demon-
strates the proposed method’s dataset-agnostic properties. Furthermore, as
the Danish and American datasets use distinct prescription and diagnosis vo-
cabularies with different naming conventions for medications and diseases,
we created mappings to convert between the vocabularies as described in
Sections 3.4 and 3.4. Even though the mappings are incomplete and include
many-to-many relations, results indicate that such conversion does not hurt
the predictable properties of the proposed model when used on the Danish
dataset. This result demonstrates the proposed method’s language-agnostic
properties.

7.3 Transferability

As indicated by the results gained from investigating the model’s transfer-
ability, patient data’s heterogeneous nature negatively affects the proposed
methods predictive power. We evaluated the transferability of the proposed
method by training models on subsets of ICD-9 disease codes of the MIMIC-
III dataset while evaluating the models on the same sets of ICD-9 codes for
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the DNPR dataset as listed in Table B.2. Results are summarized in Table B.5.
We achieve the F1 score of 6.28% from training an hml model on 320 ICD-
9 level 4 codes while testing on the same subset of ATC-converted ICD-9
codes from the DNPR dataset. Furthermore, for 229 out of 320 disease codes,
the model could not provide any accurate predictions (F1=0). The results
suggest that the heterogeneity between patient data across countries is too
considerable to create a model with good transferability. As investigated in
Section 3.4, the variability in purpose, collection method, and utilization of
diverse vocabulary standards for prescription and disease code hierarchies
arguably add to the variance between MIMIC and DNPR. Notwithstanding,
when limiting to subsets of ICD-9 codes, model transferability significantly
improves. An hml model trained on the top 10 occurring ICD-9 codes from
the s

′
code subset achieves an F1 score of 28.25 when tested on the same

10 ATC converted codes from the DNPR dataset. Noticeably, 4 out of 10
ICD-9 codes achieve an F1 score below 5.00, which indicates that the pro-
posed method could potentially have a high transferability on specific sets of
disease codes.

7.4 Domain Knowledge

As with the majority of AI models today, domain knowledge is required to
train models with satisfactory performance in real world applications. Al-
though the proposed method incorporates external knowledge such as the
ICD-9 disease code hierarchy and the RxNorm medication vocabulary, the
proposed method is in fact agnostic towards these. Given a medical dataset
coded using arbitrary disease and medication vocabularies, one could train a
model using the proposed method either with or without a hierarchical tax-
onomy over the vocabularies. While our model performs adequately without
any added domain knowledge, we show that incorporating domain knowl-
edge in the form of hierarchical taxonomies directly into the loss function for
multi-label diagnosis prediction consistently improves model results.

7.5 Practical Implications

Automatic diagnosis code assignment using medication history has multi-
ple practical implications such as registry error correction, a supportive val-
idation tool for manual code assignment, or indicative tools usable in cases
where prescription information is present but diagnosis information is not.
Disease registers with manually assigned disease codes have been shown to
be error-prone [7]. Using a neural model to find general patterns of medica-
tion to disease indications could automatically find outliers in register data.
Currently we achieve an F1 score of 36.98% on a model for the prediction of
567 codes as summarized in Table B.3. Furthermore, 311 of these codes are
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not discernible by medication. Hence, a neural model using only patients’
prescription history can not find registry errors for all disease codes. How-
ever, as our experiments show, medication history can for some diagnosis
codes be used for highly accurate diagnosis prediction and thereby be used
in a system for finding register errors.

Manual diagnosis assignment is a cumbersome and error-prone task. Us-
ing a supportive tool to validate medical inputs of clinicians could help catch
errors before they enter the system. As summarized in Table B.3 the model
performs better on higher levels of prediction. Although the model might
not catch wrongly assigned diagnosis codes at the most specific level (level
4), it could help catch cases on higher aggregation levels where the error’s
severity is large.

In countries such as Germany, disease and medication registers are not
combined. This means that emergency health care providers in ambulant
settings sometimes only know the patient’s prescription history and not the
disease history. This can have severe implications for the treatment of the
patients, such as in the case of a patient having diabetes where several treat-
ment protocols drastically change. In this case, a medication based diagnosis
prescription model could help identify serious diseases present in the patient
to guide emergency health care providers in providing the correct treatment
protocol in ambulant settings.

8 Conclusion and Future Work

We presented a proof-of-concept study of the feasibility of using a machine
learning model to assign multiple diagnosis codes on multiple aggregation
levels using a person’s current medication. The proposed method correctly
assigned diagnosis codes on multiple levels of the ICD-9 hierarchy over the
MIMIC-III dataset. The detailed results allow identifying which codes and
code- groups are predictable by medication data. The use of a hierarchical
loss function improved the proposed method’s performance by an average
F1 of 3-8% on multiple levels of aggregation of the MIMIC-III dataset while
also increasing generalizability results by up to 7.5% in terms of F1 score. The
promising results support continued research into utilising larger medication
datasets to create quality control mechanisms for diagnosis code assignment
and provide diagnostic information to caregivers in emergencies.

Future work will further explore applications to clinical care using med-
ication based diagnosis. Generalizability experiments demonstrate the feasi-
bility and efficiency of the technique when applied to new dataset. General-
izability results from experimentation on the Danish DNPR dataset indicate
that the technique is language-agnostic and can be directly used over new
datasets. The technique is also helpful in situations where prescription data
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is present, but clinical discharge notes are not, as is the case with DNPR.
Although model transferability underperformed when tested on the Danish
DNPR dataset, results indicate that specific subsets of codes could be trained
to perform well, even in model transferability. Furthermore, integrating more
and diverse patient information into a unified model for diagnosis prediction
should be further investigated. Patient clinical notes, medical imaging, cod-
ing systems such as laboratory codes, symptom codes and others are but a
few examples of the diverse information contained in patient EHR that com-
bined could increase the predictive performance of medical AI systems.

A Appendix - Omitted codes and detailed results

Table B.8 details the ommitted codes from the diagnosis table and the reasons
for omission. We omit all codes with a low number of cases. We further
omit 61 codes used to describe symptoms, as these are shared by multiple
causes and will, most-probably, supplant a diagnosis code following medical
investigation. Injuries and foreign bodies (30 codes) are omitted as well as
their treatment is usually orthopedic or surgical, rather than medicinal. We
omit the codes used in ICD-9 to classify birth-age and pre-term phase for
infants (14 codes) as these are more descriptive than diagnostic. Finally, we
omit the E and V series of codes that are used to provide additional details for
statistical reasons and which do not cause differences in medicinal treatment.
We remain with 567 codes and 54, 419 cases (92.4%) that contain at least one
of the remaining codes. Filtering out only admissions contained in both the
diagnosis and prescription tables we remain with 48, 516 admissions.
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Abstract

A variety of hierarchical domain taxonomies exist in the medical domain for describ-
ing medical concepts such as laboratory tests, medications, and procedures. The
structural information contained within domain taxonomies contains rich semantic
information pertaining to the described concepts and their relationships to each other.
As AI models are successfully applied in many medical areas, it is only natural to ex-
plore integrating AI models with medical domain taxonomies. However, only a few,
nascent attempts have been made. In this work, we investigate how the structure of
hierarchical medical taxonomies can be used to improve the performance of a diagno-
sis prediction task. Specifically, we suggest a method titled TreeEmb to pre-initialize
the node embeddings of a patient graph derived from electronic health records using
information from the taxonomy. We expect this method to improve the performance
of graph convolution network models over the enriched patient graph. We evalu-
ate our method over a patient graph created from the MIMIC-IV electronic health
record dataset enriched by initializing node embeddings using hierarchical medical
taxonomies. We use type-specific domain knowledge from hierarchical medical tax-
onomies such as the ICD-9 procedures, ATC medication, and LOINC laboratory test
taxonomies. Experimental results from a multi-label diagnosis prediction task over
this graph demonstrate the efficacy of our approach.
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1. Introduction

PatientDiagnosis

Medication

Laboratory
Test

Procedure

LOINC

ICD 9
Procedure

ATC

ICD 9
Diagnosis

Demographics

Fig. C.1: EHR graph representation relating patients to laboratory tests, procedure codes, and
medication intake. Dashed lines represent related information such as patient demographics
and hierarchical medical structures such as LOINC, ICD-9 Procedures, and ATC as described in
Section 3.2.

1 Introduction

The medical domain has accumulated an abundance of domain knowledge
structured as hierarchical taxonomies. Integrating semantically rich domain
knowledge such as hierarchical taxonomies into Artificial Intelligence (AI)
technologies could improve their predictive capabilities in numerous med-
ical applications such as patient diagnosis prediction and protein function
prediction using end-to-end supervised learning [25].

Patients’ Electronic Health Records (EHR) can be readily modeled as
multi-relational graphs connect patients with their associated medical his-
tories, such as prescriptions, laboratory tests, and procedures, as illustrated
in Figure C.1. We, henceforth, name such graphs EHR graphs. The AI tech-
nology of Graph Convolution Networks (GCNs) has recently become the de
facto standard for solving many medical problems over EHR graphs due to
their seamless ability to learn latent node embeddings for subsequent down-
stream tasks, such as node classification, link prediction, and whole graph
classification in an end-to-end manner [29].

Much work has recently been put into the model-centric development
of novel GCN architectures, such as RelationalGCN [24] utilizing the multi-
relational nature of graphs and GraphSAGE [9] with a scalable node sam-
pling approach. However, although rich semantic information often ex-
ists alongside medical graphs, such as textual descriptions, hierarchical tax-
onomies, and uncertainty information [14], only a few works investigate in-
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corporating such information in a data-centric way for improving classifica-
tion and regression tasks [4].

As the structure of hierarchical medical domain taxonomies contains
human-curated knowledge pertaining to the properties and similarity be-
tween taxonomic concepts, we surmise that such structural knowledge can
benefit downstream tasks if integrated into AI models. Hence, in this paper,
we investigate a method termed TreeEmb for encoding the structure of hierar-
chical medical domain taxonomies to pre-initialize node embeddings in EHR
graphs for improved classification performance in a patient diagnosis code
prediction task.

This paper is structured as follows; in Section 2, we present related work
using domain hierarchies in the initialization of node embeddings and the
task of patient diagnosis prediction using graph convolution networks. Sec-
tion 3 presents the proposed method and theoretical concepts. In Section 4,
we present the data used for experimentation, followed by Section 5, where
the experimental setup and results are analyzed and explained. Lastly, in
Section 6, we conclude and introduce future work.

2 Related Work

Embedding Initialization. Research into integrating domain information,
such as textual descriptions, images, type-hierarchies, and uncertainty infor-
mation into graph convolution models has lately shown promise [14]. Pre-
initializing node embeddings is a central method for integrating auxiliary
information with graph convolution networks. Hamilton et al. [9] use text at-
tributes, node profile information, and node degrees to pre-initialize embed-
dings of three datasets. Zhao et al. [30] use TF/IDF and binary word presence
vectors to pre-initialize node embeddings for citation graphs. Other works
pre-initialize node embeddings by extracting graphlet features directly from
the structure of the input graph [22]. Ali et al. [2] construct manual features
such as age and follower count for each social network user. While individ-
ual or combinations of manually constructed features have shown promising
results for the pre-initialization of node embeddings, none of these works
have so far investigated integrating hierarchical domain taxonomies to pre-
initialize node embeddings.

Patient Diagnosis Prediction. Diagnosis prediction is the vital medical ap-
plication of finding patient co-morbidities using the patient’s medical his-
tory [26]. Hierarchical domain knowledge has recently been introduced into
various AI models for diagnosis prediction. In [6], hierarchical medical tax-
onomies are used to embed medical concepts to leverage the general problem
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of data insufficiency and model interpretability by learning hierarchical med-
ical concept embeddings, pre-initialized on co-occurrence information by a
weighted sum of concept paths. Instead, in this work, we propose using the
concept taxonomies for pre-initializing node embeddings of a medical patient
graph for subsequent GCN-based diagnosis prediction. The approach by Sun
et al. [27] utilizes GCNs on two bipartite graphs, e.g., symptom-relationship
and patient-diagnosis, to learn an optimized space wherein patients will have
a small distance to assigned diagnosis concepts. However, instead of dividing
domain knowledge and patient information into separate bipartite graphs,
we investigate the effect of integrating hierarchical auxiliary domain knowl-
edge with a patient graph consisting of multiple patients and their related
medical concepts, not limited to symptoms. The work closest to ours is that
of [20], in which a knowledge graph is built using auxiliary domain knowl-
edge from the MEDLINE medical corpus for multi-label prediction of patient
diseases. Patients are associated with diagnosis codes related to laboratory
tests, habits, and profiles in their work. However, different from our work,
their method of diagnosis prediction is not related to graph convolutions,
and patients are not associated with each other.

3 Initializing Graph Embeddings

In this section, we formalize our method TreeEmb of using hierarchical medi-
cal taxonomies to pre-initialize node embeddings for the medical application
of multi-label diagnosis prediction. The overall approach is illustrated in
Figure C.2, with section references for further details.

An EHR graph is first created from an EHR dataset as detailed in Sec-
tion 3.1. Concept embeddings are then created from the hierarchical medi-
cal taxonomies’ structure to derive meaningful latent descriptions of medical
concepts and used to pre-initialize node embeddings in the EHR graph as
described in Section 3.2. Finally, multiple layers of graph convolutions, as
described in Section 3.3, are trained for multi-label patient diagnosis predic-
tion.

3.1 Multi-label Diagnosis Prediction over EHR Data

This section introduces how a multi-relational patient-centric graph can be
constructed from an EHR dataset and the challenge of multi-label patient
diagnosis prediction.

EHR data relate patients to medical concepts such as medications, labo-
ratory tests, and procedures. Given a set of patients S and a set of medical
concepts C, where Ct ⊂ C is the subset of distinct medical concepts types,
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Fig. C.2: Illustration of the overall approach. Blue boxes reference sections with further details
on the specific step. Arrows represent the directional flow of data. Orange boxes represent our
primary contribution of pre-initializing graph node embeddings using concept features extracted
from hierarchical medical domain taxonomies. Orange arrows describe the parts of the approach
that are learned using backpropagation.

then an EHR dataset can formally be defined as the set H of tuples (s, c)
relating a patient s ∈ S with an associated medical concept c ∈ C.

Given the example EHR dataset H and a set of patients S as illustrated in
Figure C.3a), we create an EHR graph as follows.

The set of graph nodes V is created as the union between the set of unique
patients and the set of unique medical concepts from C as illustrated in Figure
C.3b), and the graph edges are created as the set E of relations and reversed
relations between concepts and patients from H. Furthermore, every edge
in E is given an edge type as specified by the medical concept type involved
in the relation. As an example, the edge (s1, cm

1 ) could have an edge type of
prescribed as illustrated in Figure C.3c), as the patient s1 has been prescribed
the medication cm

1 . The final patient graph created from H and S is illustrated
in Figure C.3c). For brevity, reverse relations are not depicted in the graph.
Over this graph, we define the mapping function tv : V → T for getting the
type of a node, the function te : E → R for getting the type r of an edge, and
the function fv : V → F for getting the embedding f t

i of a node vi of type
t = tv(vi).

Given an EHR dataset and a set of diagnosis concepts D, the challenge
of patient diagnosis prediction is to find the subset D′ ⊂ D pertaining to a
patient s ∈ S s.t. D′ matches the actual set of diagnosis concepts related to
the patient. We model this challenge as a multi-label classification problem.
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Fig. C.3: Illustration of the EHR graph creation process. a) set of patients S and an EHR datset
H. b) the graph nodes V and graph edges E. c) the final graph represented by nodes and typed
directed edges. For brevity, reverse relations are not depicted in the graph.

3.2 Pre-initialization Using Domain Hierarchies

Node features can be either pre-initialized using entity-specific information
or random-initialized and learned as part of the model training process. Pre-
initialization of node embeddings can be done by extracting type-specific
entity information from the nodes or by extracting features from the graph
structure. Examples of the former are pre-trained convolution neural net-
works for imaging information and natural language processing models for
text data. An example of the use of graph structure is by counting sub-
structures such as graphlets [1]. However, an overlooked source of rich se-
mantic information can be found in type-specific domain hierarchies preva-
lent in many domains. Domain hierarchies are curated hierarchies of related
concepts. Inherently, their structure contains knowledge regarding the rela-
tionship between concepts, and each hierarchical layer contains information
about the properties of its concepts. Hence, we argue that the position of a
concept within hierarchies contains rich semantic information.

In the medical domain, structured medical concepts such as medications,
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diagnoses, laboratory tests, and procedures are coded in hierarchical tax-
onomies. Medication can be coded using the world health organization’s
anatomical therapeutic classification system (ATC) [21] and classifies medica-
tion based on its active ingredients and organ or system. Hence, the location
of medications within the hierarchy contains semantic information relevant
to the task of diagnosis prediction. As an example, for the medication with
code A10BA02, e.g., metformin, the first level of the ATC hierarchy speci-
fies that the medication targets the alimentary tract and metabolism system.
Level two specifies the therapeutic subgroup, e.g., the drug is used in di-
abetes. Level three defines the pharmacological subgroup, e.g., the drug
lowers blood glucose. The fourth level indicates the chemical subgroup of
the drug, in this case, biguanides, and the last level specifies the chemical
substance, e.g., metformin. Given that a patient has received metformin, the
patient likely suffered from type 2 diabetes. Explicitly integrating such hier-
archical information into concept embeddings should enable the AI model to
learn from the proximity of similar concepts.

Surgical procedures performed on patients can be coded using the ICD-
9 Procedures (PROC) taxonomy [28] grouping related procedures based on
their site of operation. Given that a patient has received the surgical proce-
dure with code 07.2, e.g., partial adrenalectomy, the patient likely suffered
from a disease related to the endocrine glands.

Laboratory tests can be coded using the LOINC concept codes [18] over
which a hierarchical taxonomy exists, grouping related laboratory tests by
their class, component, and system, providing valuable information on the
purpose of laboratory tests.

Using the aforementioned hierarchical medical taxonomies, and the ex-
ample of the medical concept with code B02AA02, e.g., Tranexamic acid
from the ATC hierarchy, we propose the TreeEmb method for pre-initializing
node embeddings using type-specific hierarchical domain knowledge. Start-
ing from 0, a unique index is assigned to each node in the tree as illustrated
in Figure C.5b). Subsequently, a depth-first search is performed from the
root of the hierarchical domain taxonomy to each leaf node for collecting the
indexes along the shortest path to each leaf. Suppose the concept B02AA02
is given the initial index 3, then the indexes between B02AA02 and the root
node is [0, 1, 3] as illustrated in Figure C.5c). Eventually, leaf nodes are as-
signed an embedding as the one-hot encoded version of their shortest path
indexes. As the concept B02AA02 has accumulated indexes [0, 1, 3] and as
the example tree has 11 nodes, B02AA02 is assigned an embedding vector
of dimensionality 11 with 1 in the positions 0, 1, and 3 and 0 in every other
position as illustrated in Figure C.5d). The computed features of tree leaf
concepts can then be used to pre-initialize node embeddings. Furthermore,
using this embedding technique ensures that concepts closely related in the
tree will have similar embeddings compared to concepts far away. Hence, we
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Fig. C.4: Example steps of our graph convolution. a) A 2-layer 2-node fanout sampling strategy
finds the neighborhood K1 of patient s1. Each of the sampled nodes {cp

1 , cm
1 } uses the same

sampling strategy on their immediate neighborhood K2 to further sample nodes {s2, s3, s6, s7}.
b) The sampled subgraph with node features u1 to u7 as extracted through the node feature
mapping fv. c) Our combined graph convolution aggregate and update step. A relation-specific
transformation matrix W i is applied to the element-wise mean ⊙ of similar typed entities as
done in [9]. Finally, a non-linear activation function σ is applied to individual convolutions. If
different typed features are to be combined as in the combination of {u1, u

′
2, u

′
3} the element-

wise mean combines individual transformations.

conjecture that GCNs will be more easily able to learn that groups of closely
related concepts are used in treating the same disease, thus decreasing the
epistemic uncertainty by adding domain knowledge.

3.3 Graph Convolution Networks

Graph convolutions can learn from the structure of graphs by propagating
node features between neighboring nodes using learnable aggregation and
update functions as illustrated in Figure C.4. Aggregation functions combine
neighborhood information by imposing transformation matrices on the out-
put of the neighborhood aggregation. Update functions, then learn how to
integrate information from the current node embedding and the features of
the neighborhood aggregation function. We employ a multi-relational vari-
ant of the GraphSAGE [9] algorithm for learning latent node embeddings for
graphs with multiple relation types between concept nodes by exploiting not
only the structure but also the multi-relational nature of EHR graphs.
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Fig. C.5: TreeEmb method for constructing concept embeddings from hierarchical taxonomies. a
A tree-structured hierarchical taxonomy. b) breath first search indexes every node from 0. c)
Depth-first search from the root to each leaf collects shortest path indexes. d One-hot encoding
generates embeddings for leaf node concepts.

4 Data

We perform experiments on the MIMIC-IV [15] EHR dataset from Phys-
ioNet [8] consisting of 382, 278 intensive care unit patients from the Beth
Israel Deaconess Medical Center from the period 2008 to 2019. MIMIC-IV
encompasses laboratory results, vital signs, diagnoses ascertained, adminis-
tered medications, and demographics. The data is structured as a relational
database.

To disambiguate medical concepts, we transform the dataset into the
observational medical outcomes partnership (OMOP) common data model
(CDM) [13] using an extract-transform-load (ETL) conversion flow.1 The
CDM format disambiguates and standardizes medical concepts and thus pro-
vides a means of interoperability for subsequent AI models to operate on
disparate medical datasets converted into the CDM. In the CDM format lab-
oratory tests are coded using the LOINC taxonomy, procedures are coded
using the ICD-9 procedures taxonomy, and laboratory tests are coded using

1https://github.com/OHDSI/MIMIC
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the RxNorm taxonomy [19]. Since RxNorm is a flat taxonomy, we map each
medication concept through its active ingredients to the hierarchical ATC
medication taxonomy.

Table C.1: Number of distinct concepts for EHR data types.

Data Type Distinct Concepts
Medication 1, 749
Diagnosis 537
Laboratory Test 1, 328
Procedure 1, 228

For patient multi-label diagnosis prediction, we build the EHR graph
based on patient diagnostic EHR concept types used in related work in EHR-
based diagnosis prediction [12, 17, 26] and end up with demographic in-
formation, prescriptions, procedures, laboratory tests, and the task labels as
patient diagnosis codes.

Patient diagnosis codes are coded using the 9th version of the Interna-
tional Classification of Diseases (ICD-9) and consist of approximately 13, 000
diagnosis codes [5]. We omit codes related to the ICD-9 E and V hierarchies
as these are related to external causes of injury and are generally not dis-
cernible by EHR data. We further omit hierarchies of codes as summarized
in Table C.2. Omitting these hierarchies, we are left with 8, 681 disease codes.
Since it is usually not possible to generalize from a low number of cases, we
omit codes for which less than 500 patient cases exist. We are ultimately left
with 128, 605 patients diagnosed with a total of 1, 054, 670 diagnoses from 537
distinct diagnosis codes. The full list of 537 diagnosis codes are available on-
line2. Table C.1 summarizes the number of distinct concepts for each medical
EHR concept type.

Table C.2: Summarizing disease codes omitted from further analysis.

Codes Count Description
290 − 319 375 Mental Disorders
630 − 679 530 Comp. of Pregnancy
780 − 799 330 Injuries and Poison
800 − 999 1, 617 Ill-Defined Conditions
E and V 1, 467 Ext. Causes of Injury

2https://github.com/dkw-aau/graph_embedding_initialization
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5 Experiments and Results

To investigate the effect of pre-initializing node embeddings using domain
hierarchies, we conduct several empirical experiments as summarized in Ta-
ble C.3 using the model pipeline as illustrated in Figure C.2. Each exper-
iment is trained on the problem of multi-label patient diagnosis prediction
using a multi-relational version of the GraphSAGE algorithm as described in
Section 3 with the input EHR dataset described in Section 4. In the Rand
experimental setting, initial graph node embeddings are random-initialized
using Xavier initialization [7] and made trainable as part of the supervised
model training phase [10]. Hence, Rand serves as a transductive baseline
experiment. Transductive methods generally perform better on subsequent
downstream prediction tasks, however, with the cost of not being able to
extrapolate to unseen examples [9].

Table C.3: Overview of experimental settings.

Experiment Learning Embedding Data
FeatInit Inductive Hierarchical Taxonomies
Rand Transductive Xavier Initialization
Graphlet Inductive Graph Structure

In the Graphlet experimental setting, features are pre-initialized using
state-of-the-art graphlet and edge count features [1] as in [22]. Graphlet
serves as an inductive baseline experiment, as trained models can extrapolate
to unseen examples.

The FeatInit experimental setting investigates the effect of pre-initializing
node concept embeddings using the latent information contained within hi-
erarchical medical taxonomies using the TreeEmb method as described in Sec-
tion 3. In FeatInit, node embeddings should already contain domain infor-
mation relevant to the task of diagnosis prediction; hence embeddings are
kept constant during training. Furthermore, in the FeatInit experimental set-
ting, patient features are pre-initialized using categorical values for sex, race,
and ethnicity and a continuous variable for the patient’s age. Moreover, as
FeatInit does not train node embeddings, trained models can extrapolate to
unseen examples.

5.1 Experimental Details

For each experiment, we perform 100 iterations of tree-based Parzen estima-
tion (TPE) [3] for hyperparameter optimization over the set of parameters as
summarized in Table C.4. Each iteration is trained using the Adam [16] varia-
tion of stochastic gradient descent with binary cross-entropy as the loss func-
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Table C.4: Parameter settings for hyperparameter optimization using tree-based Parzen estima-
tion. U means uniform distribution.

Parameter Values
Model Depth {2, 3}
Learning Rate {1e-3, 5e-3, 1e-2}
Dropout U(0.0..0.5)
Hidden Dim {32, 64, 128, 256}

tion. Each experimental setting is investigated on the prediction of five sets of
diagnosis codes as in [11, 23], with each set relating to a level of aggregation
on the hierarchical ICD-9 diagnosis taxonomy. In the first setting, named L5,
the task is to predict the raw comorbidities of patients from the entirety of the
537 diagnosis codes as described in Section 4. The remaining settings inves-
tigate diagnosis code prediction on aggregated levels of the ICD-9 diagnosis
taxonomy named L4 through L1 with 427 disparate diagnosis codes for L4
to 13 disparate diagnosis codes for L1. Aggregating diagnosis codes enables
us to investigate the effect of pre-initializing graph concept embeddings from
hierarchical medical taxonomies extracted through TreeEmb on classification
problems of varying complexities.
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Fig. C.6: Experimental results of diagnosis code prediction on five sets of diagnosis codes for the
experimental settings Rand, Graphlet, and FeatInit.

As graph convolutions require the same dimensionality for each node
type, we do an initial transformation on node input features using type-
specific non-linear transformations into the feature dimensionality required
by the graph convolution layers. Thus, the transformation is learned end-
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Table C.5: Experimental results in terms of harmonic mean F1 scores for the experimental set-
tings Graphlet, Rand, and FeatInit on five diagnosis code prediction problems with varying
number of classes. Imp. presents the relative improvement in terms of F1 value for initializing
concept embeddings using the TreeEmb embeddings.

Median
Setting Graphlet Rand FeatInit Imp.
L5 - 537 codes 26.54 30.30 32.84 2.54
L4 - 427 codes 25.27 32.58 35.60 3.02
L3 - 229 codes 34.00 40.01 45.40 5.39
L2 - 61 codes 47.18 55.25 59.30 4.05
L1 - 13 codes 66.72 72.69 74.58 1.89

Best
Setting Graphlet Rand FeatInit Imp.
L5 - 537 codes 27.21 30.98 34.56 3.58
L4 - 427 codes 26.01 32.87 37.56 4.69
L3 - 229 codes 34.81 40.97 47.11 6.14
L2 - 61 codes 48.21 56.41 59.69 3.28
L1 - 13 codes 68.25 73.63 75.05 1.42

to-end with the task of diagnosis prediction. Additionally, we transform the
output node embeddings as computed by the final convolution layer using a
non-linear transformation into the dimensionality of the number of diagnosis
codes in a specific level of ICD-9 aggregation, such that we end up with
one output node for each predictable diagnosis code. We split patients into
training validation and test sets with sizes 80/10/10 and used early stopping
based on validation loss.

To evaluate and compare across experimental settings, we use the stan-
dard harmonic mean F1 value between the micro-averaged precision and
recall as it is commonly used in the evaluation of multi-label classification
tasks [20]. Furthermore, to investigate the robustness of pre-initializing fea-
tures using TreeEmb embeddings, we evaluate the median over all 100 model
iterations for each experiment. All experimental code and data are available
online3.

5.2 Results and Analysis

Figure C.6 presents the results for each experimental setting over all iterations
of the TPE. Experimental results in terms of the F1 value for the median and
best-performing models are summarized in Table C.5.

As illustrated in Figure C.6, using TreeEmb embeddings for pre-initializing
node features resulted in improved F1 scores compared to learning node em-

3https://github.com/dkw-aau/graph_embedding_initialization
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beddings as part of the training and pre-initialization using graphlet features.
Furthermore, using unpaired t-test between Rand and FeatInit and between
Graphlet and FeatInit results for any level of diagnosis code aggregation
results in the two-tailed P value p < .001, which by conventional criteria
indicates a statistically significant difference between the two groups.

Fig. C.7: Monotonicity of LOINC concept embedding space.

As summarized in Table C.5, for each setting, the best performing Fea-
tInit model outperforms the best performing Rand and Graphlet models by
1.42 − 6.14 and 6.80 − 12.30 percentage points in terms of F1 score respec-
tively. These results indicate that the initialization of node features using
the hierarchical knowledge contained within domain taxonomies could pro-
vide valuable knowledge for solving domain-specific problems such as the
medical problem of patient diagnosis prediction.

The embeddings produced by TreeEmb should reflect the structure of the
hierarchical taxonomy. Assuming that semantically similar concepts are close
in the tree and disparate concepts far from each other, the distance between
constructed embeddings should increase as the path length between nodes in
the tree increases. To investigate this aspect of the TreeEmb embeddings, we
compared the Euclidean distance between pairs of concept embeddings with
the length of the shortest path on the tree between the pairs. As illustrated in
Figure C.7, the Euclidean distance between node embeddings is a monotonic
increasing function given the length of the shortest path between nodes. This
means that similar concepts will have similar embeddings while dissimilar
concepts will have disparate embeddings.
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6 Conclusion

In this work, we proposed that hierarchical medical taxonomies contain valu-
able knowledge that can be utilized by the pre-initialization of graph node
embeddings. We then presented a method termed TreeEmb to do so. We eval-
uated the proposed method on the medical problem of multi-label diagno-
sis prediction by constructing TreeEmb embeddings for the pre-initialization
of concept nodes in an EHR graph for the three medical hierarchical tax-
onomies ATC, LOINC, and ICD-9 Procedures. Experimental results from
the prediction task on five different sets of diagnosis codes of varying diffi-
culty demonstrate the superiority of TreeEmb embeddings over a transductive
baseline of learned concept embeddings and an inductive baseline of pre-
computed graphlet features. All experimental code and data are available
online4.

For future work, we aim to investigate the proposed method in domains
beyond the medical. Furthermore, since not all levels of hierarchical domain
taxonomies may be equally important for the given prediction task, we aim
to investigate trainable attention mechanisms for constructing concept em-
beddings from only the most relevant hierarchical knowledge. We also aim
to explore other graph convolution models, including attention techniques.
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Abstract

Predicting patients’ hospital length of stay (LOS) is essential for improving resource
allocation and supporting decision-making in healthcare organizations. This paper
proposes a novel transformer-based model, termed Medic-BERT (M-BERT), for pre-
dicting LOS by modeling patient information as sequences of events. We performed
empirical experiments on a cohort of 48k emergency care patients from a large Dan-
ish hospital. Experimental results show that M-BERT can achieve high accuracy on
a variety of LOS problems and outperforms traditional non-sequence-based machine
learning approaches.
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1. Introduction

1 Introduction

Increasingly scarce hospital resources challenge (often oversaturated) hospi-
tal wards, negatively impacting the quality of health care [1]. Models for
predicting the remaining patient hospitalization time, i.e., patient length of
stay (LOS), is a valuable tool for healthcare facilities in resource availability
planning of, e.g., beds and staff. For instance, prediction of discharge time
can be used to preemptively free in-hospital resources to alleviate hospital
ward oversaturation [11]. However, LOS prediction is a challenging problem,
requiring methods for handling missing data [6] and temporal event depen-
dencies integration.

Previous work on LOS prediction often models patient hospitalizations
using standard ML models, such as RFs, GBs, and ANNs, relying on impu-
tation techniques for replacing missing values [2]. However, missing obser-
vations in healthcare data are often not missing at random (NMAR), and the
mere fact that observations are missing is essential information [6].

To alleviate this and other shortcomings, attention-based models have re-
cently been investigated for sequence structured Electronic Health Record
(EHR) data [8, 10]. Attention models address the inefficiency of recurrent
networks for long sequences [10] while still capturing significant sequential
information by learning from the order of tokens in a sequence. However,
in medical data, observations are often grouped with the same timestamp.
For example, a blood panel drawn from a patient contains several measure-
ments whose order is undefined. Based on layers of transformer encoders,
we propose the Medic-BERT (M-BERT) model inspired by the original BERT
model [3]. Using sequences of in-hospital medical events exhibiting event
concurrences common in EHR data, we employ M-BERT for LOS prediction.
We evaluate M-BERT on a cohort of 48k patient admissions from a large
Danish hospital with information on diverse medical events, such as mea-
surements of vital parameters, medication administration, laboratory tests,
and conducted procedures.

2 Transformer Models for EHR

Patient hospitalizations can naturally be modeled as sequences of medical
codes for determining, measuring, or diagnosing the patients’ conditions. To
standardize how procedures are described, medical facilities code concepts
using accepted taxonomies. Hence, hospitalization can be described as a se-
quence of concept tokens detailing the medical procedures pertaining to a
patient and coded using taxonomical concepts. For some procedures, such
as vitals and lab tests, a numerical measurement value accompanies the pro-
cedure. These measurement values are mapped into normal, abnormal-low,
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Fig. D.1: Medical event sequence pre-pended with the patient’s medical history.

or abnormal-high tokens.
Furthermore, as patient history is essential for correct treatment, we pre-

pend the patient’s medical history to the hospitalization sequence as a tok-
enized vector consisting of 38 tokens. These include comorbidities (Charlson
Index [12]), five years of prescription history grouped by the first level of
the ATC hierarchy [9], and the mode, time, and initial hospitalization triage
category [13].

In this paper, we propose Medic-BERT (M-BERT), see Fig. D.1, an EHR-
data modification of the Bidirectional Encoder Representations from Trans-
formers (BERT) model [3]. BERT is an NLP model based on a stack of encoder
layers.The transformer encoder naturally handles complex long-term depen-
dencies that occur between medical concepts through its utilization of multi-
head self-attention. Furthermore, BERT naturally operates in domains with
irregular intervals between events, as is the case with EHR data. BERT can
also naturally integrate disparate input, such as diagnostic and therapeutic
events, encoding each event as an n-dimensional vector.

Respiration-Normal
Puls-Normal
A06A

Temp-Normal
Oxygen-Low ZZ7098

Oxygen-Low
Respiration-Normal
Temp-Normal

Temp-Normal

NPU02840-Normal
NPU02319-Low
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Fig. D.2: Patient event sequence illustrating events grouping together.

M-BERT learns embeddings for the demographic features and the medi-
cal event tokens. Together with positional embeddings, the model can learn
temporal dependencies within a sequence. We use a static positional em-
beddingmodified for usage on medical event sequences: medical events with
no natural chronological ordering (e.g., multiple lab tests done on the same
sample as illustrated in Fig. D.2) are assigned the same positional embedding.
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Fig. D.3: Length of stay distribution over patient hospitalizations.

Finally, we use a classification (CLS) token as a final aggregate representation
fed to a linear output layer for LOS classification and regression tasks.

3 Empirical Evaluation and Results

3.1 Data and Experimental Setting

Table D.1: Concept types with occurrences.

Event Type #Tokens #Events
Lab Tests 748 2, 774, 790
Vitals 22 837, 931
Medication 1, 441 376, 591
Procedures 2049 247, 924
History 81 1, 880, 580

We compiled a dataset of hospital emergency care admissions in northern
Jutland (Denmark) between 2018-2021. The dataset comprises 48, 177 admis-
sions (>one day). Fig. D.3 presents the remaining length of stay distribution.
Tab. D.1 summarizes the event types present in the data.

Due to our focus on a single prediction task, we directly train model pa-
rameters and token embeddings toward the downstream task of LOS predic-
tion without any unsupervised pre-training.1 Using the data gathered within
24 hours of admission, we evaluate M-BERT on three LOS prediction tasks:
Binary classification of LOS > 2 days, a three-class Category task of LOS
> 2, 2 ≤ LOS ≤ 7, and LOS > 7 days with class balances as shown in Fig.
D.3, and the Real regression task of predicting LOS in days (decimal).

We compare our approach with an RF, ANN, and SVM model as imple-
mented in the Sklearn library [7] using default hyper-parameters. The last

1https://github.com/dkw-aau/medic_transformer
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measured value for each event type (within 24 hours) defined the input fea-
tures [5]. For features with missing values, we relied on imputation using the
mean of the features, and subsequently scaled the values to be between 0 and
1. A chi2 test was finally used for extracting the 50 most relevant features.

M-BERT was trained with a 1e-5 learning rate on a 80/10/10 random split
of patients. We use the evaluation loss for early stopping within ten epochs.
The model architecture has six hidden layers with an intermediate layer size
of 288, eight attention heads, and an input token embedding size of 288. We
truncate sequences to 256 tokens, as most sequences adhere to this limit. To
counter overfitting, we add a 10% dropout layer after the final encoder layer,
a 10% attention dropout, and a weight decay of 0.003. Further details are
available in the extended version of this paper [4].

3.2 Results

Table D.2 presents AUROC and F1 scores for the Binary and Category ex-
periments and Mean Absolute Error (MAE) and Mean Squared Error (MSE)
for the regression task. Model performance is stable for different age groups.
The results indicate that M-BERT can leverage temporal dependencies inher-
ent to EHR data for increased predictive accuracy. Being a transformer-based
model, M-BERT overcomes the challenge of missing data as patient sequences
are not required to contain the same events or be of the same length.

Table D.2: Experimental results.

Binary Category Real
AUROC F1 AUROC F1 MAE MSE

RF 0.72 0.70 0.66 0.45 4.18 39.08
ANN 0.67 0.68 0.63 0.43 4.09 38.10
SVM 0.70 0.70 0.65 0.38 3.56 43.36
M-BERT 0.78 0.77 0.74 0.54 3.42 37.48

4 Conclusion

We have proposed a novel approach for predicting LOS by modeling patient
information as event sequences. We adapt the transformer-based architec-
ture to sequence prediction over grouped events of varying data types as
typically found in medical event sequences. Our empirical evaluation on a
large cohort of emergency care patients from a Danish hospital demonstrates
high accuracy on various LOS problems, while also outperforming traditional
non-sequence-based approaches. Future work includes model pre-training as
well as evaluation of the predictive uncertainty offer by the model. Overall,
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the proposed approach has the potential to improve resource allocation in
healthcare organizations by providing accurate and reliable predictions of
LOS.
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Abstract

Machine learning-based analytics over uni-modal medical data has shown consid-
erable promise and is rapidly being deployed in routine diagnostic procedures. Pa-
tient data is diverse and comprised of multiple data types. Multi-modal approaches
promise to revolutionize our ability to provide personalized care. Nascent attempts
to combine two modalities in a single diagnostic task have utilized the evolving field
of multi-modal representation learning (MRL), which learns a shared latent space
between related modality samples. This new space can be used to improve the per-
formance of machine-learning-based analytics. However, our understanding of how
modalities have been applied in MRL-based medical applications and what modalities
are best suited for which medical tasks is still unclear. In this work, we explore the
landscape of MRL for medical tasks by presenting a framework for positioning MRL
techniques and medical modalities to highlight opportunities for advancing medical
applications. We demonstrate our approach by reviewing and classifying more than
1000 papers related to medical analytics using our proposed framework in the most
extensive review of its kind to date. We further provide an online tool for researchers
and developers of medical analytics to dive into the rapidly changing landscape of
MRL for medical applications.

The layout has been revised.



1. Introduction

1 Introduction

The world is inherently multi-modal. Entities, from patients to proteins, can
be described in various ways called modalities. The onset of various diseases
and conditions can be measured in a medical setting through a measurable
change in biomarker modalities, such as blood pressure, heart rate, and x-
ray findings. As an example, the progression of Alzheimer’s Disease (AD)
has shown correlation with modalities such as Magnetic Resonance Imaging
(MRI) [20], Positron Emission Tomography (PET) [8], and protein measures of
Cerebrospinal Fluid (CSF) [4]. MRI provides a means of detecting atrophied
brain regions, PET can reveal hypometabolism [27], and protein measures
of CSF can detect the presence of beta-amyloid (Aβ42), and tau (τ) proteins
characteristic of AD [37]. Each modality provides unique information, which
combined, could be used to perform medical analytic tasks such as AD pro-
gression classification.

Medical machine learning (ML)-based analytics attempt to improve the
quality and speed of previously manual tasks and have featured predomi-
nantly uni-modal approaches. Combining multiple information modalities
in the same manner as a physician considers multiple sources of information
can enhance the performance of complex predictive ML-based analytics.

Multi-modal representation learning (MRL) [3]) is a theoretical and practi-
cal framework for combining multiple information modalities to improve the
effectiveness of ML-based tasks ranging from video classification to emotion
recognition. MRL has recently expanded into the medical analytics domain,
where it has been used to combine multiple medical modalities for diagnosis
and prognosis tasks [6]. However, no comprehensive survey of MRL in the
medical domain has been performed, leaving researchers to piece together
which combinations of medical information modalities have been attempted
for various medical analytics using disparate MRL techniques. Furthermore,
various medical information modalities such as omics data, medical images,
textual medical records, electronic health records (EHR), computerized clin-
ical practice guidelines, and biomedical knowledge graphs exist in the med-
ical space. It has become a daunting task to sift through these options with
medical analytics in mind and identify which are relevant, has been used
previously, and in what combination of modalities.

In this work, we investigate MRL as a technique for utilizing multiple
sources of information to improve the performance of ML-based medical an-
alytics. We describe and classify the different MRL techniques. We provide
a hierarchy of medical information modalities over which one could attempt
MRL. We do a comprehensive, structured survey of publications utilizing
MRL for ML-based medical analytics, positioning them in the MRL classifi-
cation space, the medical information modality classification space, a medical
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application classification space, and a utility classification space. The MRL
classification space describes the specific MRL technique used. The medical
information modality classification space describes the modalities being in-
tegrated. The medical application classification space describes the clinical
motivation, and the utility classification space describes the intended use of
the medical analytic. Finally, we create an online electronic business intelli-
gence (BI) tool to demonstrate how these spaces can be used to understand
which medical information modalities have been used together and what
MRL techniques are appropriate for specific medical analytics.

Our contribution can be summarized as follows. We provide a compre-
hensive review of MRL technologies that extends upon previous surveys with
a novel and updated MRL classification space, including neural network tech-
nologies as a top-level category. We further expand this category with recent
technologies such as attention techniques, convolution neural networks, and
autoencoders for combining disparate medical information modalities in an
end-to-end system. We provide a novel taxonomic hierarchy for structur-
ing medical information modalities into three levels starting from structured
and unstructured data. Furthermore, we provide a BI tool for diving into
MRL-based techniques for medical applications, opening up the potential
for researchers to investigate the current state of the art and novel ideas for
medical MRL.

The rest of the paper is structured as follows. In Section 2, we introduce
preliminary definitions, including the three classification spaces. In Section
3, we introduce the online BI tool. We present a review of previous MRL
surveys in Section 4 and conclude in Section 5.

2 Classification Spaces

The following classification spaces are used throughout this work to struc-
ture our survey of previous work utilizing MRL for ML-based medical ana-
lytics. We present three orthogonal dimensions of classification. The utility
dimension (Section 2.1) describes the intended use of the medical analytics
task. The information modality dimension (Section 2.2) describes the types of
medical information modalities incorporated in the MRL approach. Finally,
the MRL approach dimension (Section 2.3) describes the MRL technique being
used. We begin, however, by defining a medical analytics task.

Definition E.1 (Medical Analytics Task)
A medical entity is an item of interest for medical purposes. Entities can be
patients, diseases, tumors, viruses, blood samples, etc. A medical analytics task
provides information on a medical entity in an automated manner using an
algorithm or a learned model over some input data. For example, an ejection-
fraction algorithm is designed to calculate the fraction of blood entering the
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heart ventricle that is successfully ejected in each cycle using two ultrasound
images.

2.1 Medical Analytics Utility

It is common to classify analytics into one of the following categories of util-
ity [28]. Descriptive analytics, as the name suggests, describe the given input.
This type of analytics is the most commonly used. It contains methods such
as classification (this is an ultrasound image) and object detection (the im-
age contains three lesions in these spatial coordinates). Diagnostic analytic
methods attempt to identify the root cause of the observed phenomena and
are widely used to diagnose diseases and sub-types of diseases with sim-
ilar symptoms but slightly different causes. Predictive analytics, also often
described in the medical domain as prognostic, attempts to predict the occur-
rence of a future event or state from the current state or the sequence of states
given as input. A medical example could be a sepsis mortality prediction [23].
Prescriptive analytics are the most ambitious of the categories, providing one
or more recommended actions to take in response to the given input. While
in the general domain, this form of analytics is sometimes employed as au-
tonomous agents (e.g., ad recommendation systems), in the medical domain,
they are used in a decision support capacity, e.g., treatment recommenda-
tion [33].

2.2 Medical Information Modalities

A medical information modality is a data representation that can be used to
obtain information about a medical entity and used by medical analytics.
In data management and machine learning [9], it is common to distinguish
between structured and unstructured data. Structured information is dis-
cretized into records, each containing fields that are assigned values describ-
ing some medical entity. For example, a relational database, where tables
contain records sharing a fixed schema for describing the status of a pa-
tient. However, more flexible data formats such as JSON and XML allow the
schema (field names and types) to vary between records.

In the medical domain, we would consider vitals, lab results, and demo-
graphics as examples of structured data, as these are mostly single or multi-
valued data with a clear interpretation. Unstructured data contains (often
large amounts of) data points that hold no inherent meaning when taken in-
dividually but that could be interpreted to glean information. For example,
the collection of numbers representing an X-Ray image makes no sense, but
presented as a picture, a trained professional could surmise that it shows a
broken tibia. Images, videos, timeseries, (genomic) sequences, and text are addi-
tional examples of unstructured data. While several medical terminologies
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Fig. E.1: Partial hierarchy for structuring medical modalities. The full hierarchy can be found at
http://tabsoft.co/3DEDlSq.

exist, e.g., SNOMED [31] and ICD-10 [24], to the best of our knowledge, there
exists no hierarchical classification of the medical information modalities that
would allow us to perform a structured analysis of the classification. We,
therefore, provide a three-level hierarchy of medical information modalities.

Figure E.1 presents a partial view of the proposed hierarchy, showing
levels one and two in full and examples from the third level. The top level
of the hierarchy separates structured and unstructured modalities. On the
second level, we group multiple medical modalities using groupings that
are common in ML literature, such as image, text, and timeseries. The third
level represents specific medical information modalities used in MRL analyt-
ics and can be used to identify which modalities are used by each surveyed
analytic approach. Furthermore, to the extent possible1, we map our level-
three-concepts to SNOMED taxonomy concepts. Hence, the SNOMED sub-
classes can serve as the fourth and onward levels of the hierarchy if needed.
Furthermore, through these concepts, our third-level concepts can be con-
nected to other terminologies using new or established taxonomy mappings
to SNOMED and translated to other languages using SNOMED’s language
mappings. As an example, our level three concept Computed Tomography is
mapped to the SNOMED concept Computed tomography (procedure). Using the
Bioportal SNOMED ontology2 the SNOMED concept can be mapped to other

1Of the 71 level 3 modalities we identified, 51 were successfully mapped to an equivalent
SNOMED concept.

2https://bioportal.bioontology.org/ontologies/SNOMEDCT
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taxonomies like MedDRA3 with the concept CT scan and BIM4 with the con-
cept Computed_Tomography. The full hierarchy and its mapping to SNOMED
have been made available online at http://tabsoft.co/3DEDlSq. Further-
more, the medical modality hierarchy is complete with respect to the set of
publications surveyed in this work as described in Section 3.

2.3 Multi-modal Representation Learning

Fig. E.2: MRL for discriminating AD patients from healthy subjects (HS). The three models (1
and 2 - uni-modal, 3 - multi-modal) consist of three steps: a) receive multi-modal samples, b)
map samples to their individual representation spaces or, in the case of Model 3, use MRL to map
modalities to a shared semantic space, c) classification of AD/HS. Red represents AD-positive
samples, and green represents AD-negative samples. In Models 1 and 2, MRI and PET images
are used for uni-modal AD classification. In Model 3, MRL is used to find a shared semantic
space combining MRI and PET images, capturing the underlying semantic correlation between
these modalities. As illustrated by step c) of Model 3, the combined discriminative information
from a shared semantic space between MRI and PET can be used for superior medical analytics.
See [30] for an example of AD classification using multi-modal MRI and PET images.

To perform a structured analysis of existing MRL approaches, we organize
them in a hierarchical structure. Let us first define MRL.

Definition E.2 (Multi-Modal Representation Learning)
Given two datasets x and y of disparate but correlated information modal-
ities, where xi ∈ x and yi ∈ y represent samples describing the same real-
world entity, then multi-modal representation learning (MRL) is defined as the
challenge of finding a latent space where uni-modal modalities can coexist.

3https://www.meddra.org/ - MedDRA® trademark is registered by ICH
4https://bioportal.bioontology.org/ontologies/BIM
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Thus, the latent space contains information from both medical modalities
and hence should enable improved subsequent medical analytics compared
to uni-modal approaches. The concept is illustrated in Figure E.2, using the
example of Alzheimer’s Disease (AD) classification. MRL techniques can

Fig. E.3: An illustration of fusion and coordination categories of MRL, adapted from [22]. The
MRL step of Model 3 from Figure E.2 can be substituted by techniques from all three categories
of MRL. xi and yi are disparate but correlated uni-modal samples describing the same real-
world entity. Arrows represent data transformations, dashed lines are optional transformation
steps, and colored dots represent features of xi and yi . Figure E.3a) illustrates alignment MRL,
where xi and yi are aligned though the coordination operator ∼ on f (xi) and g(yi). Figure
E.3b) illustrates fusion MRL, where uni-modal features from xi and yi are fused through a
vector combination technique ϕ. Figure E.3c) illustrates neural MRL, where neural network
technologies combined with a loss function L are used to simultaneously learn uni-modal latent
representations, a shared latent representation and a medical analytic based on it. Red arrows
indicate representation updates using backpropagation.

be broadly classified into alignment, fusion, and neural as illustrated in Figure
E.3. Generally, alignment techniques find a feature space where modalities can
coexist, fusion techniques combine uni-modal features into a new latent rep-
resentation, and neural techniques jointly learn a latent representation com-
bining uni-modalities and learn a model for solving a medical analytic. In
Section 2.3, Section 2.3, and Section 2.3, we present subcategories of align-
ment-based, fusion-based, and neural-based MRL techniques respectively.

Alignment MRL (AMRL)

AMRL learns a representation space in which uni-modal modalities x and
y can co-exist, with the goal that similar samples should be closer together
in the learned space than dissimilar samples. This can be mathematically
formulated as f (xi) ∼ g(yi), where f and g are modality-specific projection
functions that map individual samples xi and yi into a multi-modal space and
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∼ indicates that some distance measure aligns the new space, as illustrated
in Figure E.3a. We subdivide AMRL into correlation and similarity techniques.

Fig. E.4: Classification space of reviewed MRL techniques used in medical analytics.

Similarity-aligned representation learning learns an aligned space be-
tween x and y by optimizing a distance function for positive and negative
modality samples [3]. Shared for all similarity-based methods is the idea
of learning transformation matrices f and g by minimizing a distance metric
such as dot-product similarity or hinge rank loss, often by utilizing stochastic
gradient descent (SGD) (Figure E.5). One of the earliest examples is general
similarity learning (GSL) [35]. GSL creates an aligned space between pairs of
images and textual annotations by learning projection functions to map the
modalities into a shared space using the weighted approximate-rank pair-
wise loss. In the resulting coordinated space, similar samples of images and
textual annotations will have a smaller cosine distance from each other.

Fig. E.5: GSL technique of AMRL. a -
Modality samples xi and yi are transformed
by modality-specific transformations f and
g. b - Using a similarity loss between f (xi)
and g(yi), SGD iteratively updates f and
g. c - When learning has finished, f and g
transform entities xi and yi into the coordi-
nated space x′i and y′i .

Whereas GSL is limited by choice of
initial uni-modal embeddings, deep sim-
ilarity learning (DSL [10]) jointly learns
initial uni-modal feature representa-
tions and subsequent transformation
matrices f and g in an end-to-end
framework. This can be achieved by
adding layers of trainable fully con-
nected neural networks (NN) to step a
in Figure E.5.

Hence, the initial embeddings and
subsequent aligned representation
space can be jointly learned. Extensions
of DSL include using different combina-
tions of loss functions [21] and diverse
neural network architectures for uni-modal data transformations.

129



Paper E.

Fig. E.6: CCA technique of AMRL. a - CCA
finds linear transformations f and g for
uni-modal samples xi and yi that maxi-
mize their projected correlation. b - The
linear transformations f and g are used
to project uni-modal samples into the new
correlation-optimized aligned space.

Correlation entails a set of statis-
tical methods for finding the corre-
lation between two sets of variables.
One of the most popular techniques
is canonical correlation analysis (CCA).
CCA was first introduced in 1936 by
H. Hotelling [16]. Given two sets of
variables x and y, CCA finds the lin-
ear projections f and g that maximize
the correlation between variables from
the projected space of f (x) and g(y) as
arg max

f ,g
corr( f (x), g(y)) as illustrated in

Figure E.6. Finding the transformations
resulting in a maximally correlated space can be solved by generalized eigen-
decomposition. CCA is thus able to find the linear transformations f and g,
which maximize the correlation between variables of the transformed modal-
ities. Hence, the original CCA technique is linear with respect to the pro-
jection matrices f and g, in which case non-linear relationships will not be
found. Various extensions to the classical CCA have been proposed to dis-
cover non-linear relationships, such as Deep CCA (DCCA) [1] using Fully
Connected Neural Networks (FCNNs) for initial feature learning and Ker-
nel CCA (KCCA) [15] utilizing kernels for non-linear feature transformation.
Furthermore, extensions to multiple sets of variables have also been pro-
posed, such as Multi CCA (MCCA) [19], which learns a shared space between
multiple sets of variables. A review of the relationships between the many
CCA variants can be found in [39].

Fusion MRL (FMRL)

Mathematically, FMRL can be formulated as z = ϕ(xi, yi) where ϕ is a func-
tion that combines uni-modal data samples xi and yi, and z is the combined
multi-modal representation. Fusion techniques are usually used to increase
the accuracy of classification problems where multiple modalities have dis-
tinct discriminative properties [38]. We further divide FMRL techniques into
joining, kernels, and graphical models, with complexities varying from linear
feature concatenation to complex kernel combinations.

Joining combines modalities by concatenating early, intermediate, or late
modality-specific features. Early Joining (EJ) [2] combines modality features
using concatenation functions before any data transformations have been
applied to individual modalities as illustrated in Figure E.7a). While EJ is
simple and efficient in combining multi-modal data, problems arise when
modalities have varying sampling rates. For example, in the combination of
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Fig. E.7: a) Illustrates EJ FMRL. Features of uni-modal samples xi and yi are concatenated
through ⊕ to form the fused representation zi . b) Illustrates IJ FMRL, where uni-modal modal-
ities xi and yi are first processed individually. Later these are concatenated through ⊕. c)
Illustrates DJ FMRL. Uni-modal modalities xi and yi are processed through disparate models
Mx and My. Finally, a voting mechanism is applied to the outputs of the individual models.

MRI images and EEG signals. To alleviate such problems, Intermediate Join-
ing can be used, where uni-modalities are transformed before latent features
are concatenated as illustrated in Figure E.7b); however, manual engineering
of modality-specific feature transformations is time-consuming and requires
extensive domain knowledge.

Decision Joining (DJ) combines the results of multiple uni-modal analyt-
ics, either by majority vote, weighted linear combinations, or more complex
techniques as illustrated in Figure E.7b). DJ is sometimes preferred in tasks
involving low-correlated modalities as the technique is modality indepen-
dent, and errors from individual analytics tend to be uncorrelated [29].

Kernels projects linearly inseparable data into higher dimensional but
linearly separable representation spaces using a non-linear kernel transfor-
mation. Multiple Kernel Learning (MKL) is a sub-type utilizing multiple such
kernels. Well-known kernel techniques include support vector machines, the
kernel-fisher discriminant, and regularized AdaBoost [12]. Multi-modal rep-
resentation learning can be achieved by linear, non-linear, or weighted com-
binations of the resulting modality-specific kernel transformations.

Graphical Models are a class of probabilistic machine learning techniques
used to discover latent factors explaining the data distribution. Among the
most common graphical models for MRL is the multi-modal deep Boltzmann
machine (MDBM) [32]. An MDBM stacks layers of fully connected restricted
Boltzmann machines to form a multi-layer network structure for each modal-
ity, which are subsequently joined by an output layer. The idea is to learn a
joined density model over the multi-modal inputs such that similarity in the
joined space implies similarity between the individual modalities.
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Neural MRL (NMRL)

Neural Architectures aim to learn to join representation spaces for multi-
modal data in supervised, semi-supervised, or unsupervised ways. Shared
for all architectures is the idea of learning layers of non-linear transforma-
tions for fusing uni-modal representations into a multi-modal representation
space guided by optimizing a loss function [11]. The basis of neural network
architectures is the perceptron. The perceptron contains a learnable trans-
formation matrix to linearly transform incoming data modalities into a new
representation space, subsequently exercising non-linearity by applying an
activation function such as sigmoid or the rectified linear unit.

Fig. E.8: a) Illustrates the Concat technique of NMRL. Uni-modalities are fused by layers of non-
linear transformations between input modalities xi and yi and the fused output space zi . Arrows
between two neural layers represent the existence of a connection between each neuron/input
from a layer to each neuron/output of the next layer. This is true for all neural architectures. b)
Illustration of the AE neural network structure. Uni-modal features xi and yi are transformed
through multiple fully connected neural layers. The AEs middle layer learns a low-dimensional
fused representation of uni-modalities zi by training the neurons using a reconstruction loss
between the original modalities xi and yi and their corresponding reconstructed representations
x′i , y′i .

Concatenation (Concat) is the most straightforward neural architecture for
multi-modal data fusion [14]. Multiple layers of fully connected perceptrons
are used to ultimately fuse uni-modal representations in either early, inter-
mediate, or late layers of the network structure (Figure E.8a).

An Auto Encoder (AE) is an unsupervised architecture that utilizes a re-
construction loss to learn low-dimensional entity representations that capture
most of the original modality information [17]. Multi-modal AE architectures
have three stages as illustrated in Figure E.8b). Modality-specific networks
that transform uni-modal modalities are initiated and then joined by an inter-
mediary layer that acts as the fused modality representation. The last stage of
the architecture splits the intermediary layer into uni-modal networks trained
on a reconstruction loss between the final representations x′i and y′i and the
initial representations xi and yi.
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Fig. E.9: Illustration of CNN technique of NMRL. a - A 3 x 3 convolution matrix with shared
weights (as indicated by dotted blue lines) slide over the two input modalities xi and yi . b - When
sufficiently condensed, features from both modalities can be appended for further processing.

A Convolutional Neural Network (CNN) is a technique for learning repre-
sentations of imaging modalities. Due to the essential domain-specific in-
formation images contain, CNNs are often used to learn low-dimensional
image representations in end-to-end architectures (Figure E.9). CNNs apply
layers of convolution matrices and pooling operations to condense images to
their essential discriminative features. Due to their properties, they are often
used as an intermediary step of imaging processing with subsequent fully
connected layers fusing uni-modal entities [13].

Transformers (TF) specialize in learning to represent sequence data. Utiliz-
ing a powerful component called self-attention, the model learns the relation-
ships between different parts of the input sequence. This allows the model
to attend to specific parts of the input sequence while learning a latent rep-
resentation for each part of the sequence. This technique can be extended to
multi-modal networks by using the learned self-attention weights from one
modality in the self-attention mechanism of other modalities. In [25], skin le-
sion diagnosis is performed using an end-to-end transformer neural network
for learning a latent representation between images and clinical features.

3 Analyzing Multi-Modal Research Contributions

To understand how medical information modalities have been used together
with MRL for medical analytic tasks, we performed a comprehensive, struc-
tured survey of publications involving MRL and medical analytics tasks. Us-
ing the PubMed search engine5, we searched for MRL articles targeting medi-
cal analytics tasks while following the PRISMA guidelines [26] for structured

5https://pubmed.ncbi.nlm.nih.gov/
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surveys as summarized in Figure E.10. Our search terms were ("joint" OR "fu-
sion" OR "coordinated" OR "alignment") AND ("multimodal" OR "multi-view")
AND ("machine learning" OR "deep learning" OR "representation learning") and
("different modalities" OR "multiple modalities") AND ("machine learning" OR
"deep learning" OR "representation learning"). We excluded studies on criteria
as summarized in the screening step of the PRISMA guidelines as illustrated
in Figure E.10. Eventually, we identified 146 eligible publications.

Records identified from
Databases (n = 1453)

Records after duplicates removed
(n=1118)

Records screened
(n = 1118)

Records excluded
(n = 5 Not accessible;

n = 617 No indication of 
medical analytic or MRL;

n = 58 Survey paper)

Records assessed 
for eligibility

(n = 438)

Records excluded
(n = 98 Unimodal;

n = 162 No medical analytic; 
n = 32 No MRL)

Publications included 
in review
(n = 146)

Identification of studies via databases and registers
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Fig. E.10: PRISMA 6flow chart for reporting systematic reviews.

To better structure our analysis, we designed four hierarchical dimensions
to put the many surveyed papers into a medical and algorithmic context. In
total, our analysis employs four dimensions. Namely, Utility, Medical, Modal-
ity, and MRL. The utility dimension characterizes the analytic utility as de-
scribed in Section 2.1. The medical dimension uses the ICD-10 [24] diagnosis
classification hierarchy to describe the analytic task’s medical domain. The
modality dimension describes our medical information modality hierarchy
as introduced in Section 2.2. The MRL dimension (Figure E.4) describes the
MRL technique (Section 2.3).Our primary measure of interest is the number

6http://prisma-statement.org

134

http://prisma-statement.org
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of papers in a specific intersection of dimension values, such as how many
papers have used joining MRL for combining structured patient information
modalities and unstructured imaging modalities.

Based on the structured survey and our four dimensions of classification,
we provide a BI tool together with this work as an electronic supplement 7.
The BI tool can be used to investigate the publications included in this review
on our four classification dimensions and provide visual representations of
findings. In the remainder of the section, we present a structured analysis of
our findings using the BI tool. In Section 3.1, we explore the pairs of modal-
ities observed. In Section 3.2, we examine the prevalence of different MRL
techniques in disparate medical fields and for different modality types. In
Section 3.3 we examine from the perspective of the different medical analyt-
ics tasks encountered.
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3.1 Modality Pairings

Figure E.11 presents the frequency of MRL applications utilizing level 2 (L2)
MRL modalities (Figure E.4), combined with level 1 (L1) modalities (Fig-
ure E.1). As illustrated, imaging modalities are often combined with other

7https://tabsoft.co/3L41do6
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unstructured modalities, specifically other imaging modalities. This is pri-
marily due to medical brain imaging applications, such as AD classification
utilizing the distinct discriminative properties of disparate medical imaging
technologies. This insight is verified when drilling down into the darkest box
(representing imaging-imaging pairings) in Figure E.11 using the Level 3 (L3)
modality level. We can see (Figure E.12) that many of these pairs involve PET
and MRI scans often utilized in brain studies. A more direct verification can
be achieved by adding the medical dimension to this diagram (Figure E.13),
where one can see that an overwhelming majority of MRI and PET modalities
are used as part of a mental or nervous system analytics task.
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Returning to Figure E.11, notice the significantly limited utilization of
structured data together with imaging and other unstructured modalities such

136



3. Analyzing Multi-Modal Research Contributions
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Fig. E.14: Percentage of papers by level-two MRL technique. Techniques in red/orange employ
CMRL. The rest of the techniques employ FMRL. Level one followed by level two MRL class is
shown for each group of papers.

as audio, graphs, time-series, and video. This could indicate opportunities
for future research, as simple structured data, such as demographics, diagno-
sis codes, and prescriptions, have been shown to increase the discriminative
power in multiple medical MRL tasks [7, 18].

3.2 MRL Techniques

A hierarchical analysis of the MRL techniques used in literature (Figure E.14)
shows that the majority (83, 5%) uses fusion MRL techniques, of which the
neural architectures and joining L2 types are the most common. Further
drill-down into L3 is available in the online supplement BI system.

Comparing the modalities utilized and the MRL techniques employed
(Figure E.15), a few results stand out. While neural architectures and joining
techniques are evenly used, joining techniques are more prevalent in time-
series data and lab results. For time-series, this amounts to 75% of the papers,
while in lab results, over 70% of the papers utilize MRL joining techniques.
Frequently, medical time series data has an immense sampling frequency
leading to hundreds or even thousands of observations per second. Al-
though data transformations can be learned directly for raw time-series data
using deep learning techniques such as the artificial recurrent neural network
(RNN), the significant sampling rate of modalities like electroencephalogra-
phy (EEG) can pose algorithmic problems, such as processing time, due to
the sheer extent of raw data. This could explain why most time-series data
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is processed uni-modally and then fused with other modalities using joining
MRL.
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ICD-10 Cat. #papers ICD-10 Cat. #Papers
Nervous Sys. 55 Musculoskeletal 3
Neoplasms 28 Congenital 2
Mental 20 Skin 2
Circulatory 8 Injury 2
Ocular 6 Ear and mastoid 1
Other 4 Blood diseases 0
Endocrinal/Metabolic 4 Genitourinary 0
Infectious 3 Perinatal 0
Digestive 3 External causes 0
Respiratory 3 Pregnancy and childbirth 0

Table E.1: Number of papers by medical task (ICD10 top-level category).

3.3 Medical Analytics Tasks

Table E.1 lists the number of publications by medical task (ICD 10 code
level 1) in descending order. The names of the categories were shortened
for brevity. Thus, diseases of the eye and adnexa became Ocular. An overwhelm-
ing majority of the publications attempt to identify conditions in the nervous
system, most commonly the brain itself, as evidenced by 67 of 115 papers
being of the nervous system or mental disease categories. Of the remaining
categories, neoplasms receive most of the attention, which is an expected re-
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sult, given that most of the MRL papers center around imaging modalities.
It is somewhat surprising that circulatory system diseases are not commonly
addressed as it is a significant focus of medical AI research in general and
specifically imaging [5]. Analysis of the type of analytical tasks derived from
the MRL revealed that the only two types used were predictive (10) and de-
scriptive (105), as illustrated in Figure E.16.

Descriptive
88%

Predictive
12%

Fig. E.16: Papers by analytic type.

Machine learning and, in particular,
deep learning for medical analytics tasks
have recently increased interest. These tech-
niques can learn models directly from la-
beled data instead of human-engineered
feature extraction and modeling techniques.
However, the required amount of labeled
data needed for training medical analytics
in an end-to-end practice exceeds what is
readily available for the automated model-
ing of many medical analytical questions.
While some medical analytics tasks have
large datasets accessible for immediate con-
sumption in model creation, such as the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database8, researchers
are mostly faced with a dearth of annotated datasets [36] significantly lim-
iting the set of problems that can be investigated using ML. MRL still has
untapped potential in medical analytics, especially for the less-investigated
disease categories of ICD-10, such as dermatological diseases or diseases per-
taining to the blood and blood-forming organs. However, ML advances for
medical analytics can only progress through considerable data collection pro-
cesses and open shared access to the collected labeled data repositories.

4 Related work

Several previous surveys of MRL over general-purpose application domains
have focused on the type of MRL technique employed. While surveys review-
ing multi-modal deep-learning [14], [34], [38], review new deep learning tech-
nologies such as encoder-decoder models, generative adversarial networks,
and attention mechanisms, they are narrow in scope of the MRL technique
employed and only focus on general-purpose applications. In this work, we
do not limit ourselves to specific branches of MRL techniques, but instead do
a broad investigation into MRL techniques.

While additional surveys contextualize MRL in the general challenge of
multi-modal machine learning [3], with a focus on fusion-based MRL [29],

8www.loni.ucla.edu/ADNI
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or on its mathematical-theoretical foundations [22], they disregard any spe-
cific application domain. We, however, narrow the scope to a comprehensive
systematic review of the medical analytics tasks application domain of MRL.

To the best of our knowledge, this paper presents the first attempt to
review MRL for medical applications and provide a classification space in
which modality combinations from the literature can be placed and future
medical analytics designed. Furthermore, we are the first to provide a com-
prehensive survey on more than 1000 papers for MRL in multi-modal medical
applications, while classifying the literature into 4 dimensions of classifica-
tion e.g., utility, medical, modality and MRL.

5 Conclusion

In this work, we created a hierarchical taxonomy of medical information
modalities linked to the SNOMED concept hierarchy and a hierarchy of
related multi-modal representation learning techniques. Subsequently, we
performed a literature review of nearly 1100 papers, following the PRISMA
guidelines for structured surveys, using MRL to integrate multi-modal med-
ical modalities while inserting these into the four orthogonal dimensions of
classification; utility, medical, modality, and MRL). Using our classifications,
we constructed a free and publically available BI tool for investigating what
modalities have been used in combination with each other, for which medical
analytics, and what MRL techniques have been successful in what combina-
tions.

We found that a few classes of ICD-10 top-level category disease codes
had been the primary target for multi-modal medical analytics. Many ICD-
10 classes had only a few to no cases of medical analytics using multi-modal
data. We hypothesize that this could be due to the scarcity of openly available
labelled training data for medical analytics, forcing ML research to progress
in the direction of the medical analytics for which such data is readily avail-
able.

While some medical information modalities can be integrated using most
MRL techniques, modalities like timeseries need special attention since prob-
lems can arise in utilizing end-to-end learning using neural architectures
when sampling rates are too high. Before subsequent MRL integration, pre-
processing of timeseries modalities using uni-modal techniques is often re-
quired.

Furthermore, investigations of the utility dimension show that most med-
ical applications have been developed for descriptive analytics and only a
few for predictive analytics. This finding suggests that we are still in an
early phase of adopting ML for medical analytics and opens the door for
future work in developing prescriptive and even cognitive utility analytics.
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As indicated by our systematic review, there is still substantial potential in
developing medical analytics using combinations of multi-modal medical in-
formation modalities.

5.1 Future Work.

To the best of our knowledge, we are the first to do a thorough review of MRL
techniques for solving medical ML tasks. In future work, we aim to utilize
our four dimensions of classification together with known disease biomarkers
for automated modality proposals in medical analytics tasks.

The work presented in this paper is part of our ongoing work to inves-
tigate and expand upon techniques for solving medical multi-modal ML
tasks. Our long term goal is to utilize multi-modal representation learn-
ing for solving medical problems and thereby help clinicians and decision-
makers in their work, leading to better patient treatment through personal-
ized medicine.
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