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Abstract 9 

The presence of water vapor in the lower atmosphere can introduce errors in satellite-based 10 

geodetic observations. Accurate modeling of this part of atmospheric delay is particularly 11 

challenging due to the considerable variations of water vapor. Therefore, constructing a reasonable 12 

model to predict Zenith Wet Delay (ZWD) can improve the accuracy of geodetic observations and 13 

positioning techniques. In this study, we aim at constructing a regional ZWD model for Iran and 14 

nearby regions (called the IR-ZWD model) using base functions with local support. The mode is 15 

based on the five-year outputs of the Empirical Reanalysis Fifth generation (ERA5) data with the 16 

spatial resolution of about 0.25 degree from 2017-2021. The B-spline base functions are used to 17 

effectively represent local spatial changes in the spectral domain and to decrease the number of 18 

unknown parameters. A B-spline model with the order and surface resolution of about 3 and 5 19 

(scalar values) is found to be efficient, which has an equivalent spatial resolution of ~0.5 degree. 20 

Temporal variations are accounted for by applying a constant term, along with periodic 21 

components with annual, semi-annual, 3-, and 4-monthly periods. Our results demonstrate that the 22 

proposed model has a mean Root Mean Squared Error (RMSE) of about 0.035 m within Iran, 23 

which represents an improvement of approximately 12.5% compared to the commonly used global 24 

empirical models such as GPT3w, GTrop, and HGPT2. The squared correlation coefficient value 25 

of 0.55 is found between IR-ZWD and ERA5 data, which is about 10% higher than that of, e.g., 26 

GPT3w and GTrop. The IR-ZWD model is also evaluated against five radiosonde stations and 27 

ZWD from the Jason-3 satellite mission. In both cases, the results indicate that IR-ZWD can reduce 28 

the RMSE and MAE values of about 10%, and it improves the squared correlation coefficient 29 

value about 9%. 30 

Keywords: Empirical model; Zenith Wet Delay (ZWD); ERA5; B-spline; radiosonde station; 31 

Jason-3 mission 32 

 33 

1. Introduction 34 

Satellite geodetic observations of the Global Navigation Satellite System (GNSS) have been 35 

frequently used for positioning, navigation, and remote sensing of atmospheric parameters (Bender 36 

et al., 2011; Bevis et al., 1992; Forootan et al., 2021). GNSS observations are of very high temporal 37 

resolution with the benefits of all-weather capabilities, and they induce relatively low cost (Sun et 38 
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al., 2017b). However, these observations encounter errors caused by the movement of GNSS signal 39 

through the atmosphere, namely the ionospheric and tropospheric errors. The ionosphere delay can 40 

be mitigated via dual frequency observations in the form of ionosphere-free or other types of 41 

combinations (Subirana et al., 2013). Therefore, the remaining tropospheric delay, also known as 42 

the Zenith Total Delay (ZTD), is a considerable error source, which cannot be reduced by 43 

combining GNSS bands (Sun et al., 2017a). The ZTD consists of two parts, i.e., the Zenith 44 

Hydrostatic Delay (ZHD) and the Zenith Wet Delay (ZWD), where ZHD can be modeled quite 45 

precisely using surface pressure and temperature observations (Davis et al., 1985; Dogan and 46 

Erdogan, 2022). The spatial and temporal variations of the ZWD are, however, driven by weather 47 

and might contain many local features that make it difficult to be accurately modeled (Forootan et 48 

al., 2021; Tunalı and Özlüdemir, 2019). Presenting ZWD with high accuracy can be helpful for 49 

predicting seasonal weather, and increasing the accuracy of space-based geodetic observations, 50 

especially enhancing the accuracy of the Single Point Positioning (SPP) technique (Kalita and 51 

Rzepecka, 2017; Tregoning and Herring, 2006; Vedel and Huang, 2004; Yan et al., 2009). 52 

Therefore, it is beneficial to construct models that present ZWD as precisely as possible .  53 

Many empirical models have been constructed to mitigate the effects of tropospheric delay, which 54 

can be separated into two different types based on the required parameters. The first one consists 55 

of empirical models such as the Hopfield model (Hopfield, 1969), the Saastamoinen model 56 

(Saastamoinen, 1972), and the Black model (Black, 1978), which requires surface meteorological 57 

parameters for the calculation of atmospheric delays. However, due to a lack of measurements 58 

about the vertical profile of water vapor, the reliability of these models is found to be low (Yao 59 

and Hu, 2018). Also, the real-time application of these models in positioning and navigation may 60 

be limited due to the high dependence of models on meteorological measurements (Sun et al., 61 

2017b). The second category comprises empirical models that are constructed based on numerical 62 

analysis or reanalysis datasets such as ERA5 (Hersbach et al., 2020), ERA-Interim (Dee et al., 63 

2011), or the Global Geodetic Observing System (GGOS) (Plag et al., 2009). From these models, 64 

the UNB series (Collins and Langley, 1997), EGNOS (Penna et al., 2001), IGGtrop (Li et al., 65 

2012), GZTD Series (YAO et al., 2013; Yao et al., 2016), GZTDS (Sun et al., 2017a), GPT2w 66 

(Böhm et al., 2015), IGPT2W (Du et al., 2020), GPT3w (Landskron and Böhm, 2018), GEOFT 67 

(Sun et al., 2017b), GTrop (Sun et al., 2019), EGtrop (Ma et al., 2021), AGtrop (Ma et al., 2022), 68 

and the HGPT series (Mateus et al., 2020; Mateus et al., 2021) have been constructed with global 69 

coverage but with different spatial and temporal resolutions. The data source for the construction 70 

of the mentioned models and the corresponding spatial resolution of each model are listed in Table 71 

1. 72 
 73 

Table 1. An overview of the available empirical atmospheric delay models. 74 

Model Spatial resolution(deg) Source 

UNB3 15 Multi source observations 

EGNOS 15 European Centre for Medium-Range Weather Forecast 

(ECMWF) reanalysis dataset 

IGGtrop 2.5 National Centers for Environmental Prediction (NCEP) 

reanalysis data 

GZTD 18 GGOS ZTD data 
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GZTD2 10 GGOS ZTD data 

GZTDS 2 × 2.5 GGOS ZTD data 

GPT2w 1 ERA-Interim 

IGPT2W 1 ERA-Interim 

GPT3w 1 ERA-Interim 

GEOFT 2.5 GGOS 

GTrop 1 ERA-Interim 

EGtrop 12 ERA5 

AGtrop 1 ERA5 

HGPT2 0.25 ERA5 
 75 

The empirical models in Table 1 present the global average of tropospheric delay at the best spatial 76 

resolution of about 1° (except HGPT2 model). Considering the high spatial changes of water vapor, 77 

it can be concluded that these models have limitations for representing the regional spatio-temporal 78 

changes of ZWD values. Also, these models calculate atmospheric delay in a grid-based approach 79 

or using a functional model (e.g., in terms of spherical harmonics coefficients) with global support. 80 

Compared with grid-based models, functional models might be more numerically stable, because 81 

a smaller number of parameters needs to be computed to numerical build the model. For example, 82 

for 1-degree resolution global ZWD model one needs to estimate 64800 parameters in the grid 83 

domain, which is equivalent with 32761 coefficients in terms of spherical harmonics up to degree 84 

and order 180. Among the empirical models listed in Table 1, the HGPT2 model is a grid-based 85 

model for atmospheric parameters, featuring a spatial resolution of approximately 0.25 degrees. 86 

This model is Constructed using 20 years of ERA5 data and incorporating a time segmentation 87 

concept, which boasts an hourly temporal resolution. 88 

 The aim of this study is to produce an empirical ZWD model for Iran and nearby regions, which 89 

is called here IR-ZWD. This model is constructed based on five years of the high-resolution ERA5 90 

dataset from January 1, 2017 to 31 December 2021. IR-ZWD considers a constant component 91 

along with the annual, semi-annual, 3-, and 4-monthly harmonics to account for the temporal 92 

variations of the ZWD values. To represent the spatial anomaly maps, the B-spline base functions 93 

(Limberger, 2015) are used. Compared with the functional model with global coverage (e.g. 94 

spherical harmonics in (Dehvari et al., 2023; YAO et al., 2013; Yao et al., 2016), the B-splines can 95 

retrieve the local features of ZWD with a lower number of required unknown coefficients. 96 

Therefore, our motivation for selecting this configuration is the usage of a high-resolution dataset 97 

(ERA5) for the reconstruction of the empirical ZWD model using base functions with local support 98 

that benefits from a lower number of unknown parameters compared to the grid-based model. The 99 

proposed model provides ZWD values with spatial resolution of about 0.5 degrees (B-spline 100 

functions with order 3 and surface resolution of about 5). For constructing this model in the grid 101 

domain, one must use 36936 unknown points, 25921 spherical cap harmonics coefficients (Al-102 

Fanek, 2013; Forootan et al., 2021), where the cap extension is required to solve the local 103 

orthogonality.  104 

To evaluate the performance of IR-ZWD, the outputs are compared with those of GPT3w 105 

(Landskron and Böhm, 2018), GTrop (Sun et al., 2019), and HGPT2 (Mateus et al., 2021) models, 106 

as well as the outputs of ERA5 during 1 January 2022 to 31 December 2022, which are not used 107 
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within the IR-ZWD model. Additionally, the outputs of IR-ZWD are compared with 5 located 108 

radiosonde stations in Iran and the ZWD estimated from the Jason-3 satellite altimetry mission 109 

(Dumont et al., 2016) over the Caspian Sea and the Persian Gulf. 110 

In what follows, in section 2, the datasets and the study region are introduced. In Section 3, the 111 

construction of the proposed empirical model is explained. In Section 4, the numerical results of 112 

the study are presented, and finally in section 5, this study is concluded. 113 

 114 

2. Data and region of study 115 

2.1. Data 116 

The European Centre for Medium-Range Weather Forecasts (ECMWF) has introduced the 117 

Empirical Reanalysis Fifth Generation (ERA5) global meteorological model, which has a spatial 118 

resolution of about 0.25 degrees and an hourly temporal resolution for 37 different pressure levels 119 

ranging from 1 hPa to 1000 hPa (baba shaeb Kannemadugu et al., 2022; Forootan et al., 2021). 120 

This dataset is freely accessiable from https://cds.climate.copernicus.eu/. The numerical model 121 

provides a wide range of meteorological parameters, including temperature, geopotential, and 122 

relative humidity, which can be used to calculate wet refractivity indices at different pressure 123 

levels. The geopotential data is employed to determine the corresponding ellipsoidal height of the 124 

dataset (Ma et al., 2021). By incorporating the remaining meteorological parameters, the wet 125 

refractivity indices can be calculated using : 126 

𝑒 =
𝑅𝐻.𝛼1.𝑒

(
𝛼2.𝑡

𝑡+𝛼3
)

100
, (1) 

𝑁𝑤 = 3.732 ∗ 105 ∗
𝑒

𝑇2, (2) 

(Forootan et al., 2023), where 𝑒 is the water vapor pressure in hPa, 𝑅𝐻 is relative humidity, 𝑡 and 127 

T are temperature in Celsius and Kelvin, respectively, and 𝑁𝑤 is the wet refractivity index. The 128 

constant coefficients of 𝛼1, 𝛼2, and 𝛼3 are selected to be 6.1121, 17.502, and 240.97 respectively. 129 

Using the wet refractivity indices of Eq. (?) at different altitudes, the Zenith Wet Delay (ZWD) 130 

can be calculated by integrating them over the zenith direction as in (Bevis et al., 1992): 131 

𝑍𝑊𝐷 = 10−6
∫ 𝑁𝑊 𝑑𝑙

𝐿
 . (3) 

The aim of this study was to develop a regional model for estimating ZWD values. To achieve this 132 

goal, we used ERA5 data that include temperature, geopotential, and relative humidity from 133 

January 1, 2017 to December 31, 2021. Since the wet refractivity indices tend to zero for altitudes 134 

above 10 km, we selected only 16 levels (out of 37) from 1000 hPa to 250 hPa  of ERA5 pressure 135 

levels. Additionally, we used the data with a time resolution of approximately 6 hours (0, 6, 12, 136 

and 18 UTC times) to establish the regional ZWD model. This is also justified because the finest 137 

harmonics base functions used in the regional model has a period of three months (see section 4.1). 138 

The study region is shown in Fig. 1 and contains 4104 unique grid points, for which we calculated 139 

ZWD values using the 6-hourly inputs of 2017-2021. 140 

 141 

Commented [EF3]: Check the reference! 
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2.2. The region of study 142 

The study area has been selected to include Iran and the nearby regions, covering the latitudes 143 

between 25.5 to 39.5° and the longitudes 44.5 to 62.5°, with its altitudes ranging from 144 

approximately -37 to 2524 m (Fig. 1). This region is located in the mid-latitude zone and is 145 

influenced by its proximity to the Caspian Sea, the Persian Gulf, as well as Zagros, and Alborz 146 

Mountains, thus, resulting in diverse climates with local variations (Heydarizadeh Shali et al., 147 

2020). Some regions experience arid and hot climates with low water vapor content, while others 148 

exhibit a more moderate climate with high water vapor content and rapid changes. To evaluate the 149 

proposed model’s derived ZWD values, the study uses observations from 5 existing radiosonde 150 

stations and the valid microwave radiometer of Jason-3. Fig. 1 shows the location of the radiosonde 151 

stations and Jason-3 ZWD observations in the study area, and Table 2 lists the geographical 152 

coordinates of the radiosonde stations. 153 

 154 

 
Fig. 1. The presentation of the region of study. The green dots show the location of 5 radiosonde stations 

(location are reported in Table 2) in the region. Also, the red dots display the Jason-3 ZWD observations (cycles 

217-325), including the path numbers ?. 

 155 

Table 2. Geographical coordinates of radiosonde stations. 156 

Station name Latitude(deg) Longitude(deg) Altitude(m) 

OICC 34.26 47.11 1322 

OIFM 32.46 51.71 1550 

OIII 35.68 51.35 1191 

OISS 29.53 52.58 1491 

OIZH 29.46 60.88 1370 
 157 
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 158 

3. Methodology 159 

3.1. Quadratic B-spline Functions 160 

The B-spline functions are often used for local and global signal localization due to their compact 161 

support (Nohutcu et al., 2010). These functions are commonly implemented in Euclidean space 162 

and can be used to decompose target parameters into a series of detailed signals via consecutive 163 

low-pass filters (Limberger, 2015). A one-dimensional signal can be expanded in terms of B-spline 164 

functions using: 165 

g(x) = ∑ 𝛼ℎ
𝑠φh

m,s(x)

ℎ𝑠

h=0

, (4) 

 166 

(Schmidt et al., 2008), where g(. ) is the considered signal,  𝛼𝑘
𝑠  are the coefficients of the base 167 

function, φk
s  are the kernel of the normalized polynomial B-splines of order 𝑚, 𝑠 is the surface 168 

resolution for corresponding kernel, and ℎ𝑠 is set of polynomial B-splines for selected surface 169 

resolution and is equal to: 170 

ℎ𝑠 = 2𝑠 + 𝑚 − 1. (5) 
 171 

The number of coefficients for retrieving g(x) is also equal to ℎ𝑠. The base function with order m 172 

and the corresponding surface resolution can be calculated in a recursive procedure as: 173 

φh
m.s(x) =

𝑥 − 𝑡ℎ
𝑠

𝑡ℎ+𝑚
𝑠 − 𝑡ℎ

𝑠 φh
m−1.s(x) +

𝑡ℎ+𝑚+1
𝑠 − 𝑥

𝑡ℎ+𝑚+1
𝑠 − 𝑡ℎ+1

𝑠 φh+1
m−1.s(x) (6) 

φh
0.s(x) = {

1    𝑡ℎ
𝑠 ≤ 𝑥 < 𝑡ℎ+1

𝑠

0                      𝑒𝑙𝑠𝑒
. (7) 

   174 

(Limberger, 2015). In these expressions, 𝑡ℎ
𝑠  are knots and the number of them are equals to 2𝑠 +175 

2 and control the spatial resolution of B-spline functions (Schmidt et al., 2008). For the 2D 176 

modeling of a parameter, Eq. (1) can be expanded as: 177 

g(x1. x2) = ∑ ∑ 𝛼ℎ1.ℎ2

𝑠1.𝑠2 φℎ1

m.𝑠1(x1)φℎ2

m.𝑠2(x2)

ℎ𝑠2

h2=0

.

ℎ𝑠1

h1=0

 (8) 

 178 

In this case, the number of coefficients ( 𝛼ℎ1.ℎ2

𝑠1.𝑠2 ) are about ℎ𝑠1
× ℎ𝑠2

. In order to reconstruct the 179 

g(x1. x2) function, the mentioned coefficients need to be estimated, where the computation 180 

procedure follows a least squares optimization, see section 3.2. 181 

 182 

3.2. The IR-ZWD model  183 
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The values of ZWD exhibit a periodical change, which is usually modeled using sinusoidal and 184 

cosine functions (YAO et al., 2013; Yao et al., 2016). Based on the characteristics of ZWD values, 185 

the considered periodical model can be written as follows: 186 

𝑍𝑊𝐷(𝜑. 𝜆. ℎ) =  [𝑎0(𝜑. 𝜆)

+ ∑(𝑎𝑖(𝜑. 𝜆) cos (
𝑖. 2𝜋. 𝑑𝑜𝑦

365.25
) + 𝑏𝑖(𝜑. 𝜆)cos (

𝑖. 2𝜋. 𝑑𝑜𝑦

365.25
))

4

𝑖=1

] 𝑒−𝜗ℎ 

(9) 

𝑎𝑖(𝜑, 𝜆) = ∑ ∑ 𝛼ℎ1.ℎ2

𝑠1.𝑠2 φℎ1

m.𝑠1(𝜑)φℎ2

m.𝑠2(𝜆).

ℎ𝑠2

h2=0

ℎ𝑠1

h1=0

 
(10) 

 187 

where 𝜑 and 𝜆 are the geographical latitude and longitude, h is the height, 𝑑𝑜𝑦 is the day of the 188 

year, 𝜗 is the height scale, and is about −0.00013137 (Yao et al., 2016). The considered periodical 189 

variation of ZWD values are the mean value (𝑎0), annual variations (𝑎1 and 𝑏1), semi-annual 190 

variations (𝑎2 and 𝑏2), 4-monthly variations (𝑎3 and 𝑏3), and 3-monthly variations (𝑎4 and 𝑏4). In 191 

this model, the coefficients 𝑎𝑖 & 𝑏𝑖 , 𝑖 = 1,2,3,4, are determined using B-spline functions. 192 

Therefore, for implementing the IR_ZWD models, the B-spline coefficients (𝛼ℎ1,ℎ2

𝑠1,𝑠2 ) for each 193 

amplitude must be determined. Here the ZWD values are computed using the ERA5 data of 2017-194 

2021. The corresponding B-spline coefficients are computed using the least squares method (Koch, 195 

2007). After the estimation of B-spline coefficients, the amplitude (Amp, except for the mean value 196 

(𝑎0)) can be calculated as: 197 

𝐴𝑚𝑝(𝜑, 𝜆) = √𝑎𝑖(𝜑, 𝜆)2 + 𝑏𝑖(𝜑, 𝜆)2. 
(11) 

To build the B-spline expansion of the ZWD fields, one needs to select the order and resolution of 198 

B-splines. The higher number of parameters, results in a higher resolution. However, considering 199 

too high number for these parameters results in huge number of model coefficients which are not 200 

desired (reference?). Therefore, the accuracy of the results is correlated with these parameters and 201 

needs to be examined. Our numerical experiment is described in section 4.1. 202 

For examining the accuracy and reliability of the proposed model, the Root Mean Squared Error 203 

(RMSE), the squared Correlation Coefficients (𝐶𝐶), and the Mean Absolute Error (MAE) are 204 

calculated as: 205 

𝑀𝐴𝐸 =
1

𝑛
∑ 𝑍𝑊𝐷𝑚

𝑖 − 𝑍𝑊𝐷𝑜
𝑖

𝑛

𝑖=1

. (12) 

𝑅𝑀𝑆𝐸 =  √
∑ ( 𝑍𝑊𝐷𝑚

𝑖 − 𝑍𝑊𝐷𝑜
𝑖  )2𝑛

𝑖=1

𝑛
. (13) 
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𝐶𝐶 = 1 − (
∑ (𝑍𝑊𝐷𝑚

𝑖 − 𝑍𝑊𝐷𝑜
𝑖 )

2𝑛
𝑖=1

∑ (𝑍𝑊𝐷𝑜
𝑖 − 𝑍𝑊𝐷𝑜

̅̅ ̅̅ ̅̅ ̅̅ )
2𝑛

𝑖=1

). (14) 

In the mentioned expressions, 𝑍𝑊𝐷𝑚 and 𝑍𝑊𝐷𝑜 correspond to the modeled and observed values, 206 

respectively, and 𝑍𝑊𝐷𝑜
̅̅ ̅̅ ̅̅ ̅̅  represents the mean observed value. 207 

 208 

4. Results 209 
 210 

4.1. Determination of the B-spline parameters 211 

The spatial resolution of the functional models depends on the properties of their base functions, 212 

which is in this case, consists of the defined B-spline parameters in Eq. (10) . Besides, the temporal 213 

resolution of the model is controlled by the number and frequency of the (temporal) harmonics in 214 

Eq. (9). Therefore, for constructing the IR-ZWD model, the order of temporal resolution (𝑖 in Eq. 215 

(9)), the surface resolution of B-splines (s), and the order of B-splines (m) in Eq. (10) needs to be 216 

fixed. These parameters have been determined empirically by developing the IR-ZWD model for 217 

the considered groups of parameters. For this, in an empirical approach, the model has been 218 

developed for different groups of parameters and the corresponding performance has been 219 

examined (Al-Fanek, 2013; Forootan et al., 2021; Razin and Voosoghi, 2017). For implementing 220 

the B-spline, the order and surface resolutions are considered to be between 2 and 3 and 2 to 5, 221 

respectively. The temporal resolution is selected to be up to semi-annual variations (𝑖 = 1 and 2), 222 

up to 4-month variations (𝑖 = 1. 2. and 3), and up to 3-month variations (𝑖 = 1. 2. 3, and 4). For 223 

each case, a set of model parameters (e.g. B-spline order, B-spline surface resolution, and temporal 224 

resolution) has been used for developing the proposed model using 20% of the ERA5 data from 225 

years 2017-2021 that have been randomly used. Afterwards, ZWD values are computed using the 226 

developed model, for each case, and the RMSE value (Eq. (13)) was calculated with respect to the 227 

original ERA5 values. Accordingly, the group of parameters that provided the minimum mean 228 

RMSE is selected as the “optimal” functional model parameters. Table 3 reports the results of this 229 

comparison, where the 3 last columns list the RMSE values for different temporal resolutions of 230 

the proposed model. 231 

 232 

Table 3. RMSE values for various group of functional model parameters. 233 

 Semi-annual (i=2) 
4-monthly 

(i=3) 
3-monthly (i=4) 

B-spline order(m) B-spline resolution(s) RMSE(m) RMSE(m) RMSE(m) 

2 2 0.040 0.0393 0.0382 

2 3 0.0388 0.0380 0.0369 

2 4 0.0380 0.0372 0.0361 

2 5 0.0374 0.0367 0.0355 

3 2 0.0395 0.0388 0.0376 

3 3 0.0386 0.0379 0.0367 

3 4 0.0379 0.0371 0.0360 
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3 5 0.0374 0.0367 0.0355 

 234 

Given the RMSE values in Table 1, it can be concluded that by increasing the number of model 235 

parameters, the RMSE value drops, and the minimum RMSE derived by considering model 236 

parameters as 𝑚 = 3. 𝑠 = 5. 𝑖 = 4. As mentioned, the motivation for using the B-spline function 237 

as the functional model was to decrease the model parameters compared to the grid-based 238 

approach. Considering the grid-based formulation with a temporal resolution up to 3-months 239 

results in 9 model parameters for each point, and overall 36936 parameters for this model. 240 

However, our proposed model, that contains B-spline functions, contains10404 parameters, which 241 

are less than the grid-based approach making the computation more stable. The region of study 242 

covers about 18° × 14° in longitude and latitude directions. According to the considered surface 243 

resolution of the B-spline, the number of knots is about 32. Therefore, the spatial resolution of the 244 

considered B-spline functions is ~0.5°. As a result, given the geographical coordinates and the day 245 

of the year, using the IR-ZWD model, the ZWD value can be calculated for the entire study region. 246 

 247 

4.2. The amplitude of temporal variations 248 

 The regional ZWD model was constructed using ERA5 data from 2017 to 2021, and the 249 

corresponding B-spline model with 𝑚 = 3. 𝑠 = 5. 𝑖 = 4 as model parameters. Using Eq. (11), the 250 

amplitude of each considered periodic variation for the corresponding regional model can be 251 

calculated. Fig. 2 displays the amplitudes of the mean, annual, semi-annual, 4-month, and 3-month 252 

variations over the study area. 253 

 254 

  

Commented [EF4]: Table 3? 
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Fig. 2. An overview of the amplitude of the mean (a), annual (b), semi-annual (c), 4-monthly (d), and 3-monthly 

(e) variations of IR-ZWD over the considered region. 

From Fig. 2, it can be observed that the reduction of the period of variations is accompanied by a 255 

decrease in the amplitude of the corresponding component. As depicted in Fig. 2, the maximum 256 

mean amplitude of ZWD corresponds to the regions over or near the oceans in the study area, 257 

which is expected due to the higher amount of water vapor in these regions. Similarly, the 258 

maximum amplitude of the annual variations also corresponds to these regions due to the high 259 

contribution of water vapor content. Moreover, the strongest semi-annual amplitude is observed 260 

in the southeast regions, reaching up to 3 centimeters, and can be related to the monsoon effect 261 

(Vuille et al., 2005). We found the near ocean region such as those in the southern part of the study 262 

area to be associated with the maximum amplitude of the 4- and 3-monthly variations, which reach 263 

up to 2 and 1 cm, respectively. This is due to seasonal changes in the ZWD values which show a 264 

higher amplitude in coastal areas.  265 

Using the estimated B-spline coefficients, geographical longitude and latitude, and the day of the 266 

year (DOY), ZWD can be calculated using the proposed regional model. In the following, the 267 

constructed model has been evaluated using ERA5 ZWD data for the entire year 2022. For this 268 

case, the ZWD values derived from the proposed model, as well as those calculated from the 269 

GPT3w, GTrop, and HGPT2 models, will be compared with the corresponding ERA5 values. 270 

Afterwards, to evaluate the proposed model using a different dataset, the obtained ZWD values 271 

from the IR_ZWD model will be compared with the corresponding values from six radiosonde 272 

stations and Jason-3 radiometer measurements in the study region. 273 
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 274 

4.3. Comparison with the ERA5 ZWD values 275 

In this section, the performance of models is compared to the ERA5 ZWD values for the time 276 

period of January 1, 2022 to December 31, 2022. For this, we calculated ZWD values from IR-277 

ZWD, GPT3w, GTrop, and HGPT2 at the same grid points as the ERA5 dataset and with a time 278 

resolution of approximately 6 hours (0, 6, 12, and 18 UTC times). The calculated ZWD time series 279 

from these models are then compared with the corresponding ERA5 values at each grid point, and 280 

the statistical values are computed for each grid point. For example, Fig. 3 shows the comparison 281 

for a grid point with the latitude=39◦, the longitude=45.75◦, and the altitude=833m. This location 282 

is selected because that of  IRI-ZWD was different from other models. 283 

 284 

 
Fig. 3. The ZWD values of a grid point with latitude=39◦, longitude=45.75◦, and altitude=833m from ERA5 data, 

IR-ZWD, GPT3w, GTrop, and HGPT2 models with gray, red, green, blue, and purple lines, respectively. 
 285 

In Fig. 3, the RMSE of the IR-ZWD, GPT3w, GTrop , and HGPT2 models are found to be about 286 

0.025, 0.032, 0.031, and 0.039 m, respectively. This shows IR-ZWD provides a slightly better 287 

regional fit to ERA5. Fig. 4 displays the calculated statistical values for each model at each grid 288 

point across the study region. Additionally, Fig. 5 depicts the Taylor diagram for the mean RMSE 289 

and CC values obtained from the evaluation of these models. 290 

 291 
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Fig. 4. An overview of the RMSE values for the IR-ZWD, GPT3w, GTrop, and HGPT2 models over the study 

region, which are in the subplot a, b, c, and, d, respectively. Figures e, f, g, and h show the corresponding CC 

values of the considered models. Also, the distribution of the calculated MAE values for considered models has 

been depicted in i, j, k, and l figures. These parameters are calculated through comparison with the ERA5 ZWD 

values from 1 January 2020–31 December 2022. 

 292 

 
Fig. 5. An overview of the calculated mean RMSE and CC values over the region of study based on the Taylor 

diagram. 

 293 

Considering Fig. 4a, b, c, and d, we found that the RMSE values of the IR-ZWD model to be lower 294 

than the corresponding values of GPT3w ,GTrop, and HGPT2 models in regions over or nearby 295 

oceans or seas. These areas have the highest water vapor content and its variations. Therefore, 296 

developing the IR-ZWD model with a higher spatial and temporal resolution has improved the 297 

accuracy in these regions. Additionally, Fig. 5 shows that the mean RMSE of IR-ZWD is about 298 

0.035 m, indicating an improvement of approximately 12.5% compared to the GPT3w and GTrop 299 

models, and improvement of about 27.5% compared to HGPT2 model. Comparing the CC values 300 

in Fig. 4e, f, g, and h, it can be seen that the proposed model greatly improved the CC values in 301 
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regions where the corresponding values of GPT3w, GTrop, and HGPT2 were low (the region with 302 

the blue colors in Fig. 4f, g, and h). Moreover, as illustrated in Fig. 5,  the mean CC of IR-ZWD, 303 

i.e., about 0.55, is approximately 10, 11, and 15% higher than the corresponding CC values of 304 

GPT3w, GTrop, and HGPT2. The mean MAE values for IR-ZWD, GPT3w, GTrop, and HGPT2 305 

models are found to be about 0.028, 0.030, 0.030, and 0.037 m, respectively. These values indicate 306 

an improvement of approximately 7, 7, and 29% in the MAE value of IR-ZWD compared to the 307 

GPT3w, GTrop, and HGPT2 models. By comparing the statistical parameters in Fig. 5, it can be 308 

seen that GPT3w slightly outperforms the GTrop model over the study region. It should be noted 309 

that the spatial resolution of the two models is the same and GTrop is constructed with a higher 310 

temporal resolution. Referring Fig. 4d and l, it becomes evident that, for the southern part of the 311 

study region (including the Persian Gulf and the Oman Sea), the RMSE and MAE values of the 312 

HGPT2 model are higher than those of other models.  313 

To compare the performance of IR-ZWD at different altitudes, we examined the mean RMSE 314 

calculated at each grid point of ERA5 data (Fig. 4a, b, c, and d) and considered the corresponding 315 

altitudes of the points. Fig. 6 shows the mean RMSE of each ERA5 grid point for the IR-ZWD, 316 

GPT3w, GTrop, and HGPT2 models, plotted against the altitude of each point. The vertical profile 317 

of the mean RMSE for each model is also shown in this figure. 318 

  
Fig. 6. An overview of a) the comparison of the mean RMSE values for different grid points with respect to the 

altitude of each point. the mean RMSE of GTrop, GPT3w, HGPT2, and IR-ZWD models are displayed with 

green, blue, purple, and red lines respectively. In b) the vertical profile of the mean RMSE value for each model 

is provided. 

From Fig. 6, it can be seen that the performance of the IR-ZWD model for all altitudes is relatively 319 

closer to observations compared to other models. Fig. 6b compares the mean RMSE of three 320 

models for points with a low altitude (between 0 and 1 km), which that of IR-ZWD is 0.045 m 321 

compared with 0.05, 0.05, and 0.074 m from GPT3w, GTrop, and HGPT2 models. while the 322 

performance of all three models is found almost similar for points with high altitudes. According 323 

to the RMSE values depicted in Fig. 6a, for the HGPT2 model, one can infer that the model's 324 

accuracy is comparatively lower for points with low altitudes compared to the GPT3w and GTrop 325 

models.  326 

 327 
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4.4. Comparison with the radiosonde measurements 328 

A radiosonde is an instrument attached to a balloon that rises up to different atmospheric layers 329 

and measures several atmospheric parameters that can be used to calculate wet refractivity indices 330 

and thus ZWD values. These measurements are provided twice per day (at 12 and 24 UTC time) 331 

and, due to their high accuracy, are always considered as a reference for evaluation in atmospheric-332 

related research (Adavi and Mashhadi-Hossainali, 2014; Bender et al., 2011; Forootan et al., 2023; 333 

Forootan et al., 2021). In this section, to further evaluate the estimated ZWD values from models, 334 

they are compared with the data from five existing radiosonde stations in the study region (Fig. 1). 335 

This evaluation is done over the period of January 1, 2022 to December 31, 2022, where data were 336 

not used in the modelling but were available for validation. The radiosonde data have been 337 

obtained from http://weather.uwyo.edu/upperair/sounding.html. Fig. 7 shows the results of IR-338 

ZWD, GPT3w, GTrop, and HGPT2 ZWD. The calculated statistical parameters are depicted in 339 

Fig. 8. 340 

 
Fig. 7. An overview of the validation of ZWD estimated from the four considered models with corresponding 

measurements of 5 existing radiosonde stations in the study region. The gray, red, green, blue, and purple dots 

correspond to the radiosonde, IR-ZWD, GPT3w, GTrop, and HGPT2 ZWD values, respectively.  

 341 

http://weather.uwyo.edu/upperair/sounding.html
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Fig. 8. A summary of the calculated RMSE, CC, and MAE statistic parameters for each radiosonde station in a, b, 

and c, respectively. The bars with the red, cyan, green, and purple colors are for the IR-ZWD, GPT3w, GTrop, 

and HGPT2 models, respectively. Also, the mean value of each parameter has been shown with the 

corresponding dashed lines. 

Fig. 8a shows that the mean RMSE of IR-ZWD model is about 0.03 m, indicating an improvement 342 

of about 11%, 13%, and 13% compared to GPT3w, GTrop, and HGPT2, respectively. In Fig. 8b, 343 

the mean CC value of IR-ZWD is found to be about 0.41, which is approximately 10, 10, and 17% 344 

higher than the corresponding values for the GPT3w, GTrop, and HGPT2 models, respectively. 345 

Additionally, Fig. 8c displays the IR-ZWD mean MAE value of 0.023 m, indicating an 346 

improvement of about 9, 12, and 12% compared to the GPT3w, GTrop, and HGPT2 models, 347 

respectively. These statistical measures are found to be consistent with those reported in the 348 

comparison with ERA5 data except for statistic parameters from the HGPT2 model. It is worth 349 

noting that the higher improvement in RMSE for IR-ZWD is observed at the OIII station, as shown 350 

in Fig. 8a. Referring to Table 2, we can see that this station has the lowest altitude among the 351 

considered radiosonde stations. Thus, consistent with the results of the comparison with ERA5 352 

data, the IR-ZWD model outperforms the GPT3w and GTrop models for locations of lower 353 

altitudes with higher vapor fluctuations. Comparing RMSE values of the HGPT2 model in Fig. 8 354 

and Fig. 5, it can be seen that the RMSE value of the HGPT2 model is lower when compared to  355 

radiosonde stations (about 28% lower).  Referring to Fig. 4d, it can be seen that the RMSE values 356 

of the HGPT model for land areas are almost the same as the GPT3w and GTrop models. Thus, 357 

considering the fact that the considered radiosonde stations are located inland areas, it can be 358 
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concluded that the performance of the HGPT2 model only in the Persian Gulf and Oman Sea is 359 

weaker than the GPT3w and GTrop models. 360 

 361 

4.5. Comparison with the Jason-3 radiometer measurements 362 

One of the valuable sources of water vapor-related observations over oceans is measurements from 363 

equipped radiometers in altimetry missions. The Jason-3 mission was launched in 2016 with the 364 

Advanced Microwave Radiometer-2 (AMR-2) to correct the effect of ZWD value in satellite range 365 

observations (Gong and Liu, 2020). The presence of the Caspian Sea and Persian Gulf in the study 366 

region provides an opportunity to further evaluate the IR_ZWD model with respect to estimated 367 

ZWD values from Jason-3 radiometer observations. For this purpose, IR-ZWD model was 368 

compared with the Jason-3 ZWD values over the time interval of 1 January 2022 to 31 December 369 

2022 (Jason-3 cycles 217-325). The Jason-3 data can be downloaded from 370 

https://www.aviso.altimetry.fr. Radiometer observations are unreliable and biased near coastal 371 

regions (Desportes et al., 2007). Therefore, only observations with a distance of more than 50 km 372 

from the nearest coastal region were considered (the points with valid ZWD observations have 373 

been displayed in Fig. 1). Hence, the valid Jason-3 radiometer measurements were about 6251 in 374 

the study region. Fig. 9 shows the joint Kernel Density Estimate plots of IR-ZWD, GPT3w, GTrop, 375 

and HGPT models in comparison with the Jason-3 estimated ZWD value that have been plotted 376 

using the Seaborn library in the Python (Waskom et al., 2014). These plots show the comparison 377 

of the modeled ZWD values versus the objective one and the contributed blue colorized points, 378 

indicate the probability of each value. The corresponding Taylor diagram for calculated statistical 379 

parameters has been displayed in Fig. 10. 380 

 

https://www.aviso.altimetry.fr/
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Fig. 9. An overview of the joint Kernel Density Estimate (KDE) plots of Jason-3 ZWD values versus the IR-

ZWD (a), GPT3w (b), GTrop (c), and HGPT (d) models, respectively. 

 381 

 
Fig. 10. An overview of the Taylor Diagram for comparing the ZWD estimated from Jason-3 with those of IR-

ZWD, GPT3w, GTrop, and HGPT2. Radial and angular directions stand for different RMSE and CC values. The 

red, green, blue, and purple dots represent the IR-ZWD, GPT3w, GTrop, and HGPT2 models, respectively. 

 382 

According to Fig. 10, the RMSE of IR-ZWD model is about 0.042 m, which indicates an 383 

improvement of approximately 10%, 7%, and 36% compared to the GPT3w, GTrop, and HGPT2 384 

models, respectively. The CC of IR-ZWD model is found to be approximately 0.69, which is about 385 

5%, 6%, and 15% higher than the corresponding CC values for GPT3w, GTrop, and HGPT2 386 

models, respectively. Additionally, the calculated MAE value for IR-ZWD is found to be 0.031 387 

m, which represents improvements of approximately 11%, 7%, and 36% compared to GPT3w, 388 

GTrop, and HGPT2 models, respectively. Referring to Fig. 10, in comparison with  Jason-3 389 

radiometer measurements, the HGPT2 model exhibits an RMSE of approximately 0.066 m, 390 

signifying the weakest performance among the considered models in the Persian Gulf and Oman 391 

Sea regions. 392 

 393 

5. Conclusion 394 

Atmospheric delay, specifically the Zenith Wet Delay (ZWD), is a challenging parameter to 395 

empirically parameterize due to high spatiotemporal variations. As it is the main source of error in 396 

space-based geodetic observations, constructing a reliable empirical model for real-time 397 

applications in positioning and weather prediction is crucial. However, in data sparse regions like 398 

Iran that exhibits considerable spatial and temporal vapor variations, the application of global 399 

atmospheric models might represent limited skills for positioning applications. In this study, we 400 

developed a regional ZWD model for a region including Iran, thus called the IR-ZWD model, 401 

which uses local base functions for an effective representation of the spatial distribution.  This 402 

model incorporates ERA5 data from 2017-2022 to construct the model over five different time 403 
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scales: mean, annual, semi-annual, 4-monthly, and 3-monthly variations. We optimized the 404 

structure of the model empirically and compared its result with the ZWD values from ERA5 data 405 

over the time interval outside of the fitting period (i.e., January 1, 2022, to December 31, 2022), 406 

and found that IR-ZWD has the least mean RMSE of about 0.035 m over the region of study. This 407 

is about 12.5% better than the global GPT3w and GTrop models, and 27.5% better than the HGPT2 408 

model. Additionally, the squared correlation coefficient of IR-ZWD is found to be 0.55, i.e., about 409 

10% higher than the other models. To further evaluate the accuracy of our proposed model, we 410 

compared the ZWD values from IR-ZWD with five located radiosonde stations in the region of 411 

study. We found that the mean RMSE of IR-ZWD is about 0.03 m, 11%, 13%, and 13% lower 412 

than the GPT3w, GTrop, and HGPT2 models, respectively. Furthermore, the derived CC value of 413 

the IR_ZWD model was about 0.41, which was about 10% higher than the corresponding GPT3w 414 

and GTrop models, and 17% higher than the CC value from the HGPT2 model. Finally, we 415 

compared the ZWD values from our model with corresponding Jason-3 radiometer measurements. 416 

The IR-ZWD model showed an improvement of about 10%, 6%, and 11% in RMSE, CC, and 417 

MAE values, respectively, compared to the GPT3w and GTrop models. Overall, our results 418 

suggest that the IR-ZWD model has higher accuracy than global empirical models and that our 419 

proposed method increases the reliability of the estimated ZWD values. In future, the impact of 420 

IR-ZWD for Standard Point Positioning (SPP) applications will be evaluated.  421 

 422 
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