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Abstract—The widespread usage of wide bandgap (WBG)
semiconductors forces extra emphasis on the early estimation
of the layout parasitic elements. Be it a printed circuit board or
a power module, layout optimization is necessary to minimize
the negative effects of present inductances. Unfortunately, mul-
tiple invocations of inductance extraction software can be time-
consuming. In this work, state-of-the-art convolutional neural
networks (CNN) are applied in order to lower the time consump-
tion of inductance estimation without compromising the accuracy.

Index Terms—inductance extraction, power module, printed
circuit board, neural networks, layout optimization

I. INTRODUCTION

With the recent growth in wide bandgap (WBG) device
applications, a need for fast and accurate assessment of
layout parasitic elements is becoming evident. The parasitic
inductance is one of the most of important factors limiting the
switching speed, significantly contributing to the final EMI
and potentially leading to instability or failure of paralleled
switches. For this reason, accurate knowledge of the parasitic
inductances during the design process is necessary. The ac-
curate parasitic inductance extraction is normally performed
numerically, using the method of moments (MoM) based
software such as Ansys Q3D, or finite element method (FEM)
like Ansys Maxwell or COMSOL. Aside from specific very
high-frequency cases, those methods give a fairly accurate
estimation leading to the widespread usage in manual design.
However, the above-mentioned methods tend to be computa-
tionally costly when multiple consecutive inductance extrac-
tions are to be performed, what limits their usability for layout
optimization. For optimization where the computational time
of the parasitic inductance extraction is a crucial factor, more
commonly used methods are to utilize lumped element circuit
methodologies, such as with analytical microstrip equations
available in PowerSynth [1] with some accuracy loss, or crude
mesh analysis present in FastHenry [2]. Recent developments
brought FFT-accelerated partial element equivalent circuit
(PEEC) [3] and volume integral equation (VIE) [4] methods,
achieving a significant reduction in computation time while
maintaining good accuracy. An even higher improvement has
been achieved using the Current Bunch concept and loop-
based method at the cost of accuracy [5]. As power module
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layouts are normally constrained by the fixed packaging di-
mensions, such as two-layer ceramic with copper traces on one
side only, and can be approximately treated as 2.5D structures,
makes them a good candidate for a fundamentally different
approach to parasitic inductance extraction with the help of
machine learning. Machine learning has been applied to some
well-defined inductance estimation tasks, such as microstrips
[6], coils [7] or parametrized bondwires [8]. However, it has
not been yet applied to inductance estimation problems where
geometry can significantly vary and is not easy to describe
with a few simple parameters.

In this paper, the viability of using deep neural networks
(DNN) for fast and accurate parasitic inductance estimation
is investigated for power module 2D layouts, to reduce the
computational time, thus unlocking the potential of improved
optimization of such layouts.

II. DATA GENERATION

In order to use neural networks for inductance estimation, a
labeled dataset for DNN training has to be prepared. Based on
those data, weights between neurons are to be optimized until
the desired behavior is reached, in the approach also known
as supervised learning. Data generation is an important step in
procuring highly accurate neural networks. Both quantity and
quality are crucial factors, as a rule of thumb the more data
are available the more accurate estimation can be achieved.
For this reason, simulation data are strongly preferred, as
experimental data preparation would require thousands of
unique trace pairs to be procured. The full data generation
scheme has been depicted in the figure below.
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Fig. 1. Data generation scheme



As most of the literature compares the accuracy and speed of
parasitic inductance extraction methods to Ansys Q3D, it has
been chosen for training data generation. The generation has
been automated using the PyAEDT package, offering a link
between Ansys Q3D and trace shape generation in Python.
The traces are represented as 2D matrices, where ones and
zeros represent copper square and clearance respectably. Sinks
and sources are placed at the ends of the traces, as the final
network will assume a source at the end of the trace closer
to the substrate edge and a sink on the other side. Due to
this approach, mutual inductance sign is also implied. The
randomized trace pairs are generated using a python script,
based on a maze solver and parameters described in the table
below.

TABLE I

PARAMETERS FOR DATA GENERATION
Parameter Value Unit
Substrate dimensions 50x60 | mm
Trace width 2 mm
Trace height 0.3 mm
Maximum trace length | 40 mm
Minimum trace length | 4 mm
Trace material Copper | -
Substrate material AlI203 | -

The generated self-inductance data have been depicted in
Fig. 2.
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Fig. 2. Generated self-inductance data

There are no significant outliers in the raw data, and the
range between 0 and 20nH is well populated. This is a
desirable case for machine learning as the network trained on
a set well-covering the intended application range, is expected
to achieve higher accuracy. The generated mutual inductance
data have been depicted in Fig. 3.

In this case, significant outliers are present and the coverage
is much worse. For this reason, a worse performance is
expected, compared to the self-inductance. The outliers have
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Fig. 3. Generated mutual inductance data

not been removed, due to them representing cases of high
coupling which are essential to capture.

III. TOPOLOGY SELECTION

Convolutional neural networks (CNN) are DNN known for
good performance when applied to pattern recognition-related
problems [9]. In order to do so, the 2D matrices representing
the DBC structure are scanned using multiple filters to capture
present features in a process called convolution. Next, max
pooling downsamples the feature maps. Depending on the
architecture, after one or more of those cycles the dimension-
reducing flatten operation is performed to make it a viable
input for dense layers. The fully-connected dense layers further
process the acquired features into the inductance estimations.
The described process has been depicted in the Fig 4.
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Fig. 4. CNN structure and principle of working

One of the main struggles of basic CNN was that training
difficulty increased with the number of layers. As the training
process is essentially the optimization of weights in the
network structure by error backpropagation, bigger models
suffered from decreased accuracy due to the optimization
problem size. The available optimizers increasingly struggle
in minimizing the error in basic CNN structure with added
number of layers [10]. In order to solve this problem,
the residual network (ResNet) has been developed [10].
The reason for the optimization algorithms performance
decrease has been identified as a struggle with providing
identity mapping [10]. The solution was to precondition the
problem by changing the CNN structure, introducing shortcut
connections passing the residual to the deeper layers [10].
The authors proposed using so-called residual blocks for



building neural networks based on this approach. A simplified
ResNet structure with two residual blocks has been depicted
in the figure below.
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Fig. 5. ResNet structure and principle of working

Further improvements have been brought by the introduc-
tion of DenseNet architecture, depicted in Fig. 6. The archi-
tecture introduces so-called dense blocks, providing each layer
with a connection to all the preceding ones by concatenating
the features from preceding layers with input to the current
layer [11]. This solution provides several benefits. Firstly, con-
trary to ResNets, the information passed is not potentially con-
strained by summation with the preceding features. Secondly,
by having access to information form all of the preceding
layers, feature levels are more diversified [11]. In basic CNN
or ResNet, increased depth forces final levels to rely on higher-
level features created by passing through multiple convolutions
as it is the only available information. In DenseNet, informa-
tion from all of the feature levels is available allowing for
mixing of high- and low-level features accordingly to the needs
[11]. Finally, in basic CNN and ResNet architectures, different
layers tend to contribute minimally or learn redundant features.
The availability of all preceding features in DenseNets reduces
the tendency to redundancy, reducing the overall number of
network parameters necessary [11].
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Fig. 6. DenseNet structure and principle of working

The three above-mentioned types of CNN architectures
have been implemented in Keras and PyTorch Lightning and
explored in order to find the best-performing networks. In
this work, self and mutual inductance estimation are executed
using two separate networks, to allow for customizing their
hyperparameters separately. The network hyperparameters can
include number of layers, filter dimensions, the number of
neurons in fully connected layers etc. Architecture parameters
and the considered range have been described in the table
below.

TABLE II
PARAMETER RANGES FOR CONSIDERED ARCHITECTURES
Basic CNN Min | Max
Number of convolutions 1 5
Kernel size 2x2 | 5x5
Number of fully connected layers 3 10
Size of fully connected layers 50 | 2000
ResNet Min | Max
Number of Conv2 layers 2 3
Number of Conv3 layers 2 4
Number of Conv4 layers 2 23
Number of Conv5 layers 2 3
DesneNet Min | Max
Number of blocks 3 6
Number of layers in a block 6 6
Growth rate 6 12

IV. TRAINING AND RESULTS

Training hyperparameters on the other hand control the
process of weight optimization by selecting the optimizer
type, learning rate, weight decay, batch size and the number of
epochs signifying the number of repetitions of the same data
during the training. Training parameters and their investigated
ranges for each architecture type are presented in the table
below.

TABLE III
TRAINING PARAMETER RANGES

Basic CNN Min Max
Optimizer type Adam | SGD
Learning rate 0.00001 | 0.5
Weight decay 0.001 0.01
Batch size 50 5000
ResNet Max Min
Optimizer types SGD -
Learning rate 2 4
Weight decay 2 23
Batch size 2 3
DenseNet Max Min
Optimizer types | Adam | SGD
Learning rate 2 4
Weight decay 2 23
Batch size 2 3

The models were trained using the Huber loss function and
the absolute mean error has been used as a metric. The training
results has been depicted in the figure below.

V. FINAL VALIDATION AND ERROR ANALYSIS

For additional validation, a hundred new random trace pairs
are generated and evaluated using ANSYS Q3D and trained
networks prepared. The evaluation has been performed on
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Fig. 7. Training results for different networks considered

a Lenovo Thinkpad equipped with Intel(R) Core(TM) iS5-
10210 and 64GB RAM. The execution times for models
were measured using Python time.time() function on a batch
input model and divided by the batch size, as a significant
acceleration was noticed when evaluating multiple layouts in
once batch. The summary of validation results is presented in
Table IV. Full result are available in the GitHub repository
[13].

TABLE IV

RESULT OVERVIEW
Method Evaluation time | Acceleration | Reported error
Q3D 120s - -
Loop-based [12] - Tx 5.5%
Basic CNN Keras 0.004s 3000x 8%
Basic CNN PyTorch 0.00032s 375000x 20%
Best accuracy (Resnet + DenseNet) | 0.00064s 187500x 1.4/6%

As can be seen in Table IV, an acceleration of inductance
estimation has been achieved compared to the methods avail-
able in the literature.

VI. CONCLUSION

In this work, the viability of DNN for trace inductance
estimation has been verified, achieving at least 3000 times
speedup compared to the commercial software, and 400 times
compared to the state-of-the-art works. This paves the way
towards ultra-fast layout optimization of power modules, at
the cost of a slight accuracy decrease. This decrease can po-
tentially be solved by architecture refinement and an increase
in the training dataset size. More refined architectures will be
presented in the full version of this paper, along with detailed
error analysis.
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