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Non-Causal Time-Domain Filters for Single-Channel
Noise Reduction

Jesper Rindom Jensen, Student Member, IEEE, Jacob Benesty, Mads Græsbøll Christensen, Senior Member, IEEE,
and Søren Holdt Jensen, Senior Member, IEEE

Abstract—In many existing time-domain filtering methods for
noise reduction in, e.g., speech processing, the filters are causal.
Such causal filters can be implemented directly in practice. How-
ever, it is possible to improve the performance of such noise reduc-
tion filtering methods in terms of both noise suppression and signal
distortion by allowing the filters to be non-causal. Non-causal time-
domain filters require knowledge of the future, and are therefore
not directly implementable. If the observed signal is processed in
blocks, however, the non-causal filters are implementable. In this
paper, we propose such non-causal time-domain filters for noise re-
duction in speech applications. We also propose some performance
measures that enable us to evaluate the performance of non-causal
filters. Moreover, it is shown how some of the filters can be updated
recursively. Using the recursive expressions, it is also shown that
the output SNRs of the filters always increase as we increase the
length of the filter when the desired signal is stationary. From both
the theoretical and practical evaluations of the filters, it is clearly
shown that the performance of time-domain filtering methods for
noise reduction can be improved by introducing non-causality.

Index Terms—Linearly constrained minimum variance (LCMV)
filter, maximum signal-to-noise ratio (SNR) filter, minimum vari-
ance distortionless response (MVDR) filter, noise reduction,
non-causal filters, performance measures, time-domain filtering,
Wiener filter.

I. INTRODUCTION

N OISE reduction is an important fundamental signal
processing problem. In this paper, we consider generic

noise reduction filters which are useful for enhancing any kind
of desired signal. An example of a desired signal is speech
which is commonly utilized in a multitude of applications such
as telecommunications, teleconferencing, hearing-aids, and
human–machine interfaces. In all these, the speech first has to
be recorded using one or more microphones, and the speech will
inevitably be corrupted by some degree of background noise.
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The noise could be, for example, other interfering speakers,
fan noise, car noise, etc. Since the noise will reduce the speech
quality and intelligibility, it will most likely have a detrimental
impact on speech applications. In hearing-aids, for example,
decreased speech quality can cause listener fatigue. It is there-
fore highly important to develop noise reduction methods to
reduce the impact of the noise in various signal processing ap-
plications. Over the years, numerous noise reduction methods
have been proposed. For an overview of speech related noise
reduction methods, see, e.g., [1], [2], and the references therein.
In general, we can divide these speech related noise reduction
methods into three groups, i.e., spectral-subtractive algorithms
[3], statistical-model-based algorithms [4]–[7], and subspace
algorithms [8]–[11]. The references, [3]–[5], and [8]–[10], refer
to some of the pioneering work within these groups. Note that
in the literature, noise reduction in speech applications is also
termed speech enhancement.

Often, noise reduction methods rely on linear filtering. In
such filtering methods, the noise reduction problem is formu-
lated as a filter design problem. The goal of such filter design
problems is to design a filter which attenuates the noise as much
as possible while it only introduces an inconsiderable amount
of distortion of the desired signal, e.g., speech. The filter can
be derived directly in the time domain or in different trans-
form domains. For example, it is possible to reduce the compu-
tational complexity by utilizing transform domain filters [12].
Two examples of transform domains are the Fourier [3], [9],
[13], [14] and Karhunen–Loève [15], [16] domains. The fil-
ters can, though, be equivalently derived in all domains. In this
paper, we consider time-domain filters only. Moreover, we re-
strict ourselves to the study of single-channel filters only.

Many existing time-domain filter designs for noise reduction
are causal. In this paper, however, we propose novel non-causal
filter designs, and we quantify the performance gain which can
be obtained by exploiting non-causality. Note that we only con-
sider the effects of introducing non-causality in the filter designs
and not of introducing non-causality in the estimation of the
signal and noise statistics since the statistics are assumed to be
known exactly in most parts of the paper. The proposed filter
designs are based on two different decompositions of the de-
sired signal; three designs are based on an orthogonal decom-
position [12], and one is based on a harmonic decomposition
[17], [18]. The orthogonal decomposition based filters are suit-
able for enhancing any kind of desired signal since they are de-
signed using the noise statistics, whereas the harmonic decom-
position based filter is calculated from the statistics of the de-
sired signal under the assumption that it is periodic. Periodicity
or quasi-periodicity is a reasonable assumption for, e.g., short
segments of voiced speech and musical instrument signals. The

1558-7916/$31.00 © 2012 IEEE
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two decomposition approaches both have advantages and dis-
advantages as discussed in [19]. For example, the orthogonal
decomposition based filters can be used for enhancing any kind
of desired signal, however, they are sensible to nonstationary
noise since it is difficult to estimate the noise statistics when the
desired signal is present. The harmonic decomposition filter, on
the other hand, is robust against nonstationary noise since it is
based on the statistics of the desired signal, but it will cause
distortion of the desired signal when the periodicity assumption
does not hold exactly. It was shown in [19] and [20] that the or-
thogonal and harmonic decomposition based filters are closely
related, and that it is beneficial to use them jointly for speech
enhancement.

In this paper, we generalize the mentioned decompositions
such that they support the derivation of non-causal time-do-
main filters. Based on these generalized decompositions, we
propose several performance measures suited for evaluation of
non-causal filters. Moreover, we derive different non-causal or-
thogonal and harmonic decomposition based filters. Note that
the causal filters proposed in [12], [17], [18], and [21] can be
seen as special cases of the proposed designs. For the two par-
ticular cases where the filter is causal and anti-causal, respec-
tively, we derive expressions for recursive updates of the or-
thogonal decomposition based filters and the maximum output
signal-to-noise ratio of these. From these recursive expressions,
it can be shown that the maximum output SNR always increases
if we increase the filter order when the desired signal is sta-
tionary. We quantify the performance gain that can be achieved
by introducing non-causality in the filter design. To this end, we
assume that the desired signal is periodic and, therefore, has a
harmonic structure. Using this assumption, we can obtain exact
closed-form expressions for the performance measures which
we can use to precisely quantify the theoretical gains that can
be achieved by using non-causal filters. Finally, we apply the
non-causal filters to noise reduction of noisy speech signals to
show the practical benefits of introducing non-causality in the
filter design.

The rest of the paper is organized as follows. In Section II,
we introduce the signal model utilized in the paper, and we de-
fine the problem of designing non-causal time-domain filters for
noise reduction. We then, in Section III, describe the concept of
linear non-causal filtering for noise reduction for two different
signal decompositions. Based on the different decompositions,
we propose several performance measures for non-causal noise
reduction filters in Section IV. In Section V, we propose new op-
timal non-causal noise reduction filters. We show, in Section VI,
that some of the filters and their output signal-to-noise ratios can
be updated recursively. In Section VII, we quantify the perfor-
mance gain that can be obtained by introducing non-causality in
the filter design. Finally, we conclude on the paper in Section IX.

II. SIGNAL MODEL AND PROBLEM STATEMENT

In this paper, we consider the benefits of introducing non-
causality in optimal time-domain linear filters for noise reduc-
tion. The objective of such filters is to extract a zero-mean de-
sired signal from an observed signal defined
as

(1)

where is additive noise and denotes the discrete-
time index. The observed signal could, for example, be
a microphone recording and the desired signal could be
clean speech. In the rest of the paper, we assume that the noise

is a zero-mean random process which is uncorrelated with
the desired signal.

In some parts of the paper, we assume that the desired signal
is quasi-periodic. This is a reasonable assumption for voiced
speech segments. By assuming this specific signal structure,
we can obtain closed-form expressions for certain performance
measures related to optimal filters which are applied on the ob-
served signal. Ultimately, the closed-form performance mea-
sures enable easy quantification of the performance gain which
can be obtained by introducing non-causality in noise reduction
filters. This will become clear from the later sections. When the
desired signal is quasi-periodic, we can express it in terms of a
harmonic model. The signal model in (1) then becomes

(2)

where is the fundamental frequency (aka. the pitch), is the
number of harmonics, is the amplitude of the th harmonic,
and is the phase of the th harmonic. In this paper, we consider
the pitch, , and the model order, , as known parameters. Nu-
merous methods for estimation of these parameters exist [17],
[18], [22]–[28]. Using Euler’s formula, we can also write (2) as

(3)

where is the complex amplitude of the th
harmonic, and denotes the elementwise complex conjugate
of a matrix/vector.

To make the notation simpler when deriving the optimal non-
causal noise reduction filters, we stack consecutive samples of
the observed signal into a vector where

. The vector signal model is then given by

(4)

where

(5)

with denoting the matrix/vector transpose. Note that the
definitions of the desired signal vector and the noise
vector follow the definition of the observed signal vector

in (5). Since the observed signal and the noise
are uncorrelated by assumption, we can obtain a simple

expression for the covariance matrix of as

(6)

where is the mathematical expectation operator,
is the covariance matrix of , and
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is the covariance matrix of . When
is quasi-periodic, we can also model as [29]

(7)

with denoting the complex conjugate transpose operator,
and

(8)

(9)

(10)

(11)

(12)

where denotes the construction of a diagonal matrix
from a vector.

The objective in traditional noise reduction methods is to find
a “good” estimate of or from the observed signal
vector . Within the field of speech enhancement research
there is, in general, consensus on that “good” means the noise
should be reduced as much as possible while the desired signal
remains undistorted or nearly undistorted in the noise reduction
process. In this paper, we consider another approach on noise
reduction where we instead estimate from where

. That is, we introduce non-causality in the es-
timation procedure which, eventually, can increase the amount
of noise reduction.

III. NOISE REDUCTION USING NON-CAUSAL LINEAR FILTERS

Filtering methods constitute a commonly used group of
methods for noise reduction tasks such as speech enhancement.
In the majority of such filtering methods, a finite impulse
response (FIR) filter is applied on the observed signal vector. If
the filter is allowed to be non-causal, we can, in general, write
the noise reduction filtering operation as

(13)

for and where

(14)

and should be an estimate of . Traditionally, time-do-
main filters for noise reduction have been considered causal, i.e.,
they have been derived for (see, e.g., [12] and the refer-
ences therein). In this paper, however, we consider the general
case where can be any integer in the interval . In
practice, we can easily implement non-causal filters by doing
block processing and allowing a small delay.

In the last couple of decades, several different causal filter de-
signs have been proposed. The main difference between the de-
signs is how the observed signal is decomposed. For the causal

filter design problem, we have, for example, the classical, the
orthogonal, and the harmonic decompositions [12], [18]. In the
following, we redefine the orthogonal and harmonic decompo-
sitions by introducing non-causality.

A. Orthogonal Decomposition

Recently, it was proposed to design causal time-domain noise
reduction filter based on an orthogonal decomposition of the de-
sired signal [21], [12]. By using this approach, it is clear that
some components of the signal vector actually act as inter-
ference when we estimate the desired signal . Here, we gen-
eralize this decomposition by introducing non-causality to en-
able the estimation of from . If we apply the orthog-
onal decomposition with respect to on the signal vector

, we get

(15)

where

(16)

(17)

Note that for . The elements in in (15)
are the parts of the elements in which are proportional to
the desired signal and is the “interference” which
is orthogonal to . If we insert (15) into (13), we get

(18)

where is the filtered desired signal,
is the residual interference, and

is the residual noise. Since ,
and are all orthogonal to each other, the variance

of is given by

(19)

where

(20)

(21)

(22)

is the covariance matrix of ,
is the variance of the desired signal, and

is the covariance matrix of the interference
.

We can obtain the following error function for the orthogonal
decomposition approach

(23)
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Compared to the classical filtering approach, the orthogonal
decomposition approach has an extra noise term, namely the
residual interference [12]. Moreover, the desired signal

is different from the desired signal in the classical
filtering approach. The design goal is to minimize the effect
of and while keeping the difference between

and small. These goals can obviously be fulfilled
by minimizing the error function in the mean square error
(MSE) sense, possibly under some constraints.

B. Harmonic Decomposition

The harmonic decomposition approach to noise reduction
filter design is a special case of the classical approach to linear
filtering. In the harmonic decomposition, it is assumed that
the desired signal is periodic and modeled by the harmonic
model in (3). The harmonic model has previously been applied
in numerous pitch estimation methods [18]. Many real-life
signals such as audio and voiced speech are quasi-periodic
which makes the harmonic decomposition approach useful in
practice. By using the harmonic model, we can write the signal
vector as

(24)

where

(25)

In this approach, there is no interference since the harmonic
model enables us to use all information embedded in in
the estimation of . Moreover, the desired signal is the

th entry of the vector , i.e., we can write it as

(26)

where is the th row of . An estimate of
the desired signal can be obtained by inserting (24) into
(13). This yields

(27)

where is the filtered desired periodic
signal. The orthogonality between the desired signal and the
noise enables us to write the variance of as

(28)

Since the desired signal is assumed periodic in this approach,
the variance of the filtered signal can also be written as

(29)

where

(30)

is the covariance matrix of . We can obtain the following
error function for harmonic decomposition approach:

(31)

A filter which minimizes the effect of the noise, , and
the difference between and can then be
designed by minimizing (31), possibly under some constraints.

IV. PERFORMANCE MEASURES

Recently, several performance measures for noise reduction
tasks were proposed in [12] and [21]. In this section, we gen-
eralize these performance measures to encompass non-causal
filters. Note that while the measures are here derived for the or-
thogonal decomposition approach, they can easily be derived
for the harmonic decomposition approach by replacing
by and by 0.

A. Noise Reduction

A common measure of noise reduction is the signal-to-noise
ratio (SNR). Here, we consider two SNRs, i.e., the input SNR
(iSNR) and the output SNR (oSNR). The iSNR is the SNR of
the observed signal before filtering

(32)

with being the variance of the noise. The oSNR
is defined as the SNR after filtering. When using the orthogonal
decomposition, it is therefore given by

(33)

Another measure is the noise reduction factor . This
measure is defined as the ratio between the noise before and
after noise reduction. That is, we can write the factor as

(34)

The noise reduction factor is expected to be larger than or equal
to 1.

B. Signal Distortion

In many noise reduction methods, the desired signal is dis-
torted in the process of noise reduction. One measure which
quantifies this distortion is the desired signal reduction factor.
This factor is defined as the ratio between the variances of the
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desired signal before and after filtering, respectively. The mea-
sure can also be written as

(35)

If there is no distortion, the desired signal reduction factor will
be 1. Otherwise, it will be different from 1. According to (20),
this implies that we must require that

(36)

if a filter should be distortionless. This knowledge can, for ex-
ample, be applied in the filter design by using it as a constraint.

When the desired signal is periodic, we can also consider the
harmonic distortion incurred by the filter. The harmonic distor-
tion measure was proposed in [19]. This measure is defined as
the sum of the absolute differences between the powers of the
sinusoids before and after noise reduction, i.e.,

(37)

where is the power of the th harmonic after filtering using
. The harmonic distortion measure will be zero when the har-

monics are not distorted. Otherwise, it will be larger than zero.
Note that the harmonics might be distorted even though (36) is
fulfilled.

V. OPTIMAL NON-CAUSAL FILTERS FOR NOISE REDUCTION

In this section, we re-derive some optimal orthogonal and
harmonic decomposition based noise reduction filters to obtain
non-causal filters. The corresponding causal filters were derived
in [12], [17], [18], and [21]. Note that all filters derived here
except the harmonic decomposition based linearly constrained
minimum variance (HDLCMV) filter are based on the orthog-
onal decomposition.

A. Maximum SNR

The maximum SNR filter, , is a filter which maxi-
mizes the output SNR with respect to the estimation of .
The output SNR is defined in (33). If we insert (20)–(22) into
(33), we can also write the output SNR for an orthogonal de-
composition based filter as

(38)

where

(39)

is the covariance matrix of the interference-plus-noise. The
expression in (38) can also be recognized as a generalized
Rayleigh quotient [30]. This quotient is maximized when the
filter, , equals the eigenvector corresponding to the

largest eigenvalue, , of . Clearly,
is rank one, i.e.,

(40)

with denoting the trace operator. An important observa-
tion from the above expression is that, in general,

for . That is, the output SNR may be different
for different s which means that we may be able to improve
the oSNR by introducing non-causality in the filter design.

From (40), we can readily see that and thus
are given by

(41)

where is some arbitrary scaling factor. As it will become
clear soon, the only difference between the orthogonal decom-
position based filters described in this paper, is the scaling factor

.

B. Wiener

In the orthogonal decomposition-based Wiener (ODW) filter
design, the filter is designed by minimizing the MSE. The MSE
criterion, , can be written as

(42)

The minimizer of is found by differentiating with respect
to and equating with zero. If we do this, we get the following
expression for the non-causal orthogonal decomposition based
Wiener filter

(43)

If we note that can also be written as

(44)

and if we apply the matrix inversion lemma on , we can
obtain another expression:

(45)

for the Wiener filter. It appears from this expression that the
ODW filter indeed maximizes the output SNR since it is just
a scaled version of the maximum SNR filter where the scaling
factor, , is given by

(46)

The output SNR of the non-causal ODW filter is therefore given
by

(47)
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C. Minimum Variance Distortionless Response

The minimum variance distortionless response (MVDR) filter
(a.k.a. the Capon filter) was proposed by Capon in the con-
text of spatial filtering [31], [32]. Here, the MVDR filter, or or-
thogonal decomposition-based MVDR (ODMVDR) filter as we
term it, is used for temporal filtering, and it is designed on basis
of the orthogonal decomposition. The ODMVDR filter is de-
signed such that it minimizes the variances of both the residual
interference, , and the residual noise, . More-
over, the ODMVDR filter is designed to be distortionless with
respect to the desired signal. Such a filter design can be obtained
by solving the following quadratic minimization problem:

s.t. (48)

The well-known solution of this optimization problem is given
by

(49)

It turns out that the ODMVDR filter can be equivalently ex-
pressed as

(50)

Another important expression for the ODMVDR filter is given
by

(51)

from which it is clear that the ODMVDR filter maximizes the
output SNR. The scaling factor, , is given by

(52)

That is, by using the , we can have maximum output
SNR while not distorting the desired signal, . Since the
ODMVDR filter is just a scaled version of the maximum SNR
filter, its output SNR is given by

(53)

D. Harmonic LCMV

The last filter, described in this section, is the HDLCMV
filter. This filter design is inspired by the LCMV beamformer
(a.k.a. the Frost beamformer) proposed by Frost in the context
of spatial filtering [33]. Here, we derive a non-causal HDLCMV
filter for temporal filtering. The HDLCMV filter is designed to
extract periodic signals modeled by (2), i.e., it is suited for ex-
traction of signals such as voiced speech and musical instru-
ments. The causal version of the HDLCMV filter was proposed
in [17].

Since the non-causal HDLCMV filter is based on the har-
monic decomposition, it utilizes all the information in

to estimate . In the harmonic decomposition, there is no in-
terference term as opposed to in the orthogonal decomposition
where we have . Therefore, in the harmonic decomposi-
tion-based filter design, we only have to minimize the residual
noise power, , without distorting the signal too much. The
HDLCMV filter, in particular, is designed to minimize
without distorting the harmonics of the desired periodic signal,

. Such a filter can be obtained by solving the following op-
timization problem:

s.t. (54)

where . It can readily be verified that the con-
straint in (54) makes the filter distortionless with respect to both
the desired signal reduction factor and the harmonic distortion
measure, respectively, by applying the covariance matrix model
in (35) and (37).

The well-known solution to the multiple constrained
quadratic optimization problem in (54) is given by

(55)

In [19], it was shown that we can replace by in the above
expression without changing the filter response. If we do this,
we get the following equivalent expression for the HDLCMV
filter:

(56)

This expression is interesting since we can find the optimal
HDLCMV filter without knowing the noise statistics which is
often a requirement in noise reduction methods. On the other
hand, we need to know the pitch, , and the number of har-
monics, , of the desired signal, . When the HDLCMV
filter is applied to a noise corrupted periodic signal, the output
SNR can be found by replacing by and by 0
in (33). If we do this, we get the following expression:

(57)

VI. RECURSIVE FILTER UPDATES AND THE MAXIMUM OUTPUT

SNR

We now show how the ODW and ODMVDR filters presented
in the previous section can be updated recursively. As a by
product of this result, we also show how the maximum output
SNR can be updated recursively which, eventually, proofs that
the maximum output SNR always increases when the filter order

is increased. Here, we only provide the recursion for ,
but it can be generalized for all s. Note that the derived recur-
sive expressions also holds for due to prediction
symmetry.

From (43) and (50), it is clear that the ODW and ODMVDR
filters both depend on for where .
Therefore, to find recursive filter and output SNR expressions,
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TABLE I
EFFICIENT AND RECURSIVE COMPUTATION OF� ���

we derive a recursive expression for . To simplify the
derivations of the recursion, we introduce a slightly different
notation. First, we define the length observed signal vector
as

(58)

Using the above expression, we can write the covariance matrix
of the observed signal as

(59)

where

(60)

(61)

Using the new notation, we can write the Wiener–Hopf equa-
tions as

(62)

where

(63)

We know from backward linear prediction theory that

(64)

where is the length optimal linear backward
predictor. Moreover, we know that

(65)

with being the prediction error energy defined as

(66)

Consider now the following expression:

(67)

If we use (64) on in the above expression we immediately see
that

(68)

Then we subtract (67) from (62) which yields

(69)

where

(70)

If we multiply both sides of (65) with and compare
it to (69), we can obtain that

(71)

That is, if we use the above expression in connection with the
Levinson–Durbin algorithm, we can calculate recur-
sively. The resulting algorithm is depicted in Table I. Note that
in Table I, the matrix is defined as

...
...

. . .
...

... (72)

and can be interpreted as the reflection coefficient.
We can now use the algorithm in Table I to recursively cal-

culate the orthogonal decomposition based Wiener and MVDR
filters for using the definitions in (43) and (51), respec-
tively. By doing this, we get the following recursive expressions
for the filters:

(73)

(74)

where the third subscript on the filters denotes the filter order.
By calculating the Wiener and MVDR filters using the recur-
sive procedure in Table I, we can reduce the computational com-
plexity significantly compared to when the filters are calculated
directly using (43) and (50), respectively [34]. Similar recursive



JENSEN et al.: NON-CAUSAL TIME-DOMAIN FILTERS FOR SINGLE-CHANNEL NOISE REDUCTION 1533

filter expressions can be found for the non-causal filters where
is between 0 and .
Moreover, we can use the recursive algorithm developed in

this section, to find a recursive expression for the maximum
output SNR when using orthogonal decomposition based filters.
Again, we only derive the recursive expression for (and
thereby also for ), but it can be generalized to dif-
ferent s. First, we have to rewrite the expression for the max-
imum output SNR. It can be seen that the covariance matrix,

, of the interference vector, , is given by

(75)

If we then insert (75) into (39) which is then inserted into (40),
and if we use the matrix inversion lemma, we can show that

(76)

We now consider the case where . In this case, we can use
the recursive expressions in Table I to write

(77)

If we substitute (77) back into (76) we get

(78)

From the above expression, we can readily see that the output
SNR will always increase as we increase when the desired
signal is stationary.

VII. STUDY OF OUTPUT SNR AND DISTORTION

In this section, we investigate the performance of all the non-
causal filters proposed in this paper when the desired signal
is periodic. The assumption of periodicity enables us to ex-
actly quantify the gains which can be obtained by introducing
non-causality in the filters since we can then model the requi-
site statistics with closed-form expressions. First, we conduct a
study where we measure the performance of all the non-causal
filters as a function of . Then, we investigate the asymptotic
behavior of the maximum output SNR for different s.

A. Filter Performances for Small

We now investigate the performance of the non-causal ODW,
ODMVDR, and HDLCMV filters in terms of output SNR and
harmonic distortion when the filters are applied on periodic sig-
nals. First, we derive closed-form expressions for the perfor-
mance measures under the assumption of periodicity. When the
desired signal is periodic, we know that

(79)

where is a vector of zeros except at the th entry
which is a 1. If we insert (79) into (40), we see that the output
SNR for the ODW and ODMVDR filters is

(80)

when they are applied on periodic signals. The output SNR for
the HDLCMV filter on periodic signals are given in (57). To
find expressions for the harmonic distortion of the ODW and
ODMVDR filters, we need expression for the filters for periodic
signals. These can be obtained by inserting (79) into (43) and
(50) which yields

(81)

(82)

We can then obtain closed-form expression for the harmonic
distortion of the ODW and ODMVDR filters by inserting (81)
and (82) into (37):

(83)

(84)

The harmonic distortion for the HDLCMV filter will always be
zero due to its constraints.

In the following, we have evaluated the performances of the
ODW, ODMVDR, and HDLCMV filters in different scenarios.
We evaluated the performances when the filters were applied
for enhancement of a periodic signal, , in noise, . The
periodic signal was constituted by harmonic sinusoids
with a pitch of . The amplitudes of the harmonics
were chosen to be

(85)

By using decreasing amplitudes, we can get insight into how the
filters perform with respect to noise reduction of, for example,
voiced speech. First, we evaluated the performances when the
desired signal was corrupted by white Gaussian noise at an input
SNR of 10 dB, and when the filter order was . In
Fig. 1 the results are shown for different values of . From these
results, it is clear that the output SNR can be improved sig-
nificantly by changing compared to the traditional approach
where . For the ODW and ODMVDR filters, the output
SNR can be improved by 3 dB by choosing , and for
the HDLCMV filter an improvement of 4 dB is obtainable by
choosing . It is important to note that we do not nec-
essarily introduce additional harmonic distortion by improving
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Fig. 1. Performance measures and filter responses of the ODW, ODMVDR,
and HDLCMV filters for � � �� when the noise is white Gaussian and the
input SNR is 10 dB.

the output SNR by changing . In this case, the harmonic dis-
tortion is also lowered compared to for both the ODW
and ODMVDR filters when the output SNR is maximized in .
Also, in Fig. 1, we have plotted the responses of the filters, for
both and for the that maximizes the output SNR. It is
clear from the filter responses, that the noise reduction can be
improved significantly for by choosing .

Then we conducted similar simulations, but with a filter order
of . The results from these simulations are depicted
in Fig. 2. Now, the gain that can be obtained by changing is
smaller. Compared to the case with , we can obtain a gain
of 0.8 dB if we chose . Again, we can see that we can im-
prove the output SNR and harmonic distortion simultaneously
by changing . We also plotted the filter responses. From these
it is clear that we can obtain better noise reduction by choosing

. This is especially so for high frequencies .
We also conducted simulations where the noise was a sum

of white Gaussian noise and sinusoidal noise. The sinusoidal
noise source is used to investigate the impact of noise resem-
bling voiced speech. In these simulations, the ratio between the

Fig. 2. Performance measures and filter responses of the ODW, ODMVDR,
and HDLCMV filters for� � �� when the noise is white Gaussian and the
input SNR is 10 dB.

desired signal and the white Gaussian noise was 10 dB. The si-
nusoidal noise source was constituted by three harmonic sinu-
soids having a pitch of 0.1932. The amplitudes of the three har-
monics of the sinusoidal noise source were [1 0.9 0.3]. The input
SNR is therefore 0.09 dB in these simulations. Again, we
conducted some simulations where the performances of the fil-
ters were evaluated for different s. The results for a filter order
of are shown in Fig. 3. In this case, no improvement
can be obtained for the ODW and ODMVDR filters compared
to . For the HDLCMV filter a small improvement of 0.1
dB can be obtained by choosing instead of . While
the output SNR for the ODMVDR filter cannot be improved by
changing , its harmonic distortion can still be reduced. If we
take a look on the filter responses, we can see that the HDLCMV
filter for provides significantly more noise reduction for

compared to when .
The simulations with sinusoidal noise were also conducted

for a filter order of . The results from this simulation
are depicted in Fig. 4. In these simulations, we see that the output
SNR can be improved by 0.5 dB by changing from 0 to
10 for the ODW and ODMVDR filters, and from 0 to 9 for
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Fig. 3. Performance measures and filter responses of the ODW, ODMVDR,
and HDLCMV filters for� � �� when the noise is a sum of sinusoidal noise
and white Gaussian. The ratio between the desired signal and the white noise is
10 dB and the input SNR is � �0.09 dB.

the HDLCMV filter. We can see that the harmonic distortion of
the ODW and ODMVDR filters are also improved by changing

. Again, it is clear from the frequency responses of the filters
that we can obtain significantly more noise reduction for high
frequencies by optimizing the output SNR over .

From the results in Figs. 1–4, we can conclude that the that
maximizes the output SNR is dependent on the filter length, the
noise, the fundamental frequency and the number of harmonics.
To the extend of our knowledge, there is no simple expression
for this optimal and, in practice, it therefore has to be estimated
by maximizing over the estimated output SNRs for all s in

at every time instance.

B. Filter Performances for Large

We now consider the performances of the filters when we let
approach infinity. Recall that the maximum output SNR for

the orthogonal decomposition based filters can be written as

Fig. 4. Performance measures and filter responses of the ODW, ODMVDR,
and HDLCMV filters for� � ���when the noise is a sum of sinusoidal noise
and white Gaussian. The ratio between the desired signal and the white noise is
10 dB and the input SNR is � �0.09 dB.

(86)

Inserting (79) in (86) and applying (79) in the left-hand side of
the denominator in (86) yields

(87)

where

(88)

When the noise is a summation of white Gaussian noise and
sinusoidal interferers, it can be shown that [19]

(89)
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Fig. 5 Spectrograms of (a) a clean female speaker signal, (b) a female speaker signal in white noise at an iSNR of 5 dB, (c) an enhanced signal obtained using
a causal ODW filter, (d) an enhanced signal obtained using a causal ODMVDR filter, (e) an enhanced signal obtained using a causal HDLCMV filter, (f) an
enhanced signal obtained using a non-causal OD Wiener filtering scheme, (g) an enhanced signal obtained using a non-causal ODMVDR filtering scheme, and (h)
an enhanced signal obtained using a non-causal HDLCMV filtering scheme. The enhancement filters were all of length� � ��

If we combine (86), (87), and (89) we can see that

(90)

That is, when becomes very large and the noise is a sum of
white Gaussian noise and sinusoidal noise, the maximum output
SNR of the orthogonal decomposition filter will approach for
all values of . The same will be the case for the HDLCMV filter
since it equals the ODMVDR filter for large [19].

In the following, we consider the asymptotic behavior of the
harmonic distortion of the filters. Again, we assume that the de-
sired signal is periodic. We know that the HDLCMV filter al-
ways has no harmonic distortion due to its constraints, so this
filter is not considered in this investigation. The expression for
the ODW and ODMVDR filters when the desired signal is pe-
riodic are given in (81) and (82). If we then let approach
infinity we can see that

(91)

It can now be seen that the harmonic distortion of the ODW
and ODMVDR filters approaches zero when is increased.

This can be seen by inserting (91) into (37), and by letting
approach infinity, which yields

(92)

In summary, all filters show the same asymptotic performances
for all s both with respect to noise reduction and distortion.
This motivates using the orthogonal and harmonic decomposi-
tion based filters jointly as considered in [19], [20] for
since they have complementary advantages and disadvantages.
However, this will not be treated in this paper.

VIII. EXAMPLE: NOISE REDUCTION OF SPEECH

In the following, we demonstrate the applicability of the pro-
posed non-causal filters on real-life signals. In particular, we
consider noise reduction of speech recordings. First, we consid-
ered a 2.2 seconds long speech segment sampled at 8 kHz. The
segment contains a female speaker uttering the sentence “Why
where you away a year Roy?”. In Fig. 5(a), the spectrogram of
the clean speech signal is plotted. As it can be seen from this
spectrogram, the speech signal used in the first experiment on
real-life speech contains voiced speech only. This was chosen to
allow for the evaluation of the HDLCMV filter which is only ap-
plicable on (quasi-)periodic signals. We added white Gaussian
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Fig. 6. Estimated output SNRs over time for causal and non-causal (a) ODW,
(b) ODMVDR, and (c) HDLCMV filtering schemes.

noise to the speech signal at an average input SNR of 5 dB,
and the spectrogram of the noisy signal is depicted in Fig. 5(b).
The noisy signal was then enhanced using different causal and
non-causal filtering schemes; we used causal and non-causal
ODW, ODMVDR, and HDLCMV filtering schemes involving
filters of length . In the filtering schemes, we used (43),
(51) and (56) for different ; for the causal filtering schemes,

was set to 0 whereas, for the non-causal filtering schemes,
was chosen such that the estimated output SNRs of the filters
were maximized at every time instance. Note that the applied
filters require that the noise and/or signal statistics are known
or estimated in practice which justifies that we require knowl-
edge about the output SNRs. In all filtering schemes, we recal-
culated the filters and their output SNRs at every time instance,

, using the estimated observed signal, desired signal and noise
statistics ( , , and ). The statistics were estimated from
the previous samples of the observed signal, desired
signal and noise, respectively. We focus on comparing the per-
formance of causal and non-causal filters in this section, so we
assume that the noise signal is always available. In practice,
we can estimate the noise statistics during silences by using a
voice activity detector (VAD) if the noise is stationary, or we
can estimate the noise statistics even in periods with voice ac-
tivity using, e.g., [14], [35]. The ODW and ODMVDR filters
were calculated using and , whereas the HDLCMV filter

Fig. 7. Estimated log-spectral distances over time for causal and non-causal (a)
ODW, (b) ODMVDR, and (c) HDLCMV filtering schemes.

was calculated using , the pitch estimated at every time in-
stance, and a fixed harmonic model order of . We esti-
mated the pitch using the orthogonality based subspace method
in [17], [18] which is freely available online.1 The model order,
on the other hand, was chosen on basis of an inspection of the
spectrogram in Fig. 5(a). Furthermore, in the calculations of the
HDLCMV filter, we regularized the covariance matrix of the ob-
served signal as in [36]

(93)

The regularization is necessary due to estimation errors on the
signal statistics and mismatch between the assumed harmonic
model and the speech signal. We experienced that
gives consistently good results in terms of oSNR and percep-
tual scores.

The spectrograms of the resulting enhanced signals ob-
tained using the described simulation setup are depicted in
Fig. 5(c)–(h). It is clearly indicated by these spectrograms that
the non-causal filtering schemes reduce the noise more than
their causal counterparts. At the same time, the non-causal
filtering schemes do not introduce additional distortion of
the desired signal compared to the causal filters. To support
the rather subjective observations on the noise reduction per-
formances, we also estimated the output SNRs for both the

1http://www.morganclaypool.com/page/multi-pitch.
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Fig. 8. PESQ scores for noisy (a) female and (b) male speech signals enhanced using the causal ODW filter, the non-causal maximum SNR ODW filtering scheme,
the causal ODMVDR filter, and the non-causal maximum SNR ODMVDR filtering scheme. The scores were measured in different noise scenarios for different
filter lengths.

non-causal filtering schemes and the causal filters at each time
instance. The estimated output SNRs are depicted in Fig. 6. As
expected, the non-causal filtering schemes has higher output
SNRs at every time instance compared to the causal filters.
This is expected, since we maximize the output SNR at every
time instance in the non-causal filtering schemes. It seems from
the results in Fig. 6 that the HDLCMV filter outperforms both
the ODW and ODMVDR filters in terms of output SNR. This
cannot be concluded, however, since the output SNRs for the
orthogonal and harmonic decomposition are defined differ-
ently. In practice, the orthogonal decomposition based filters
actually show superior noise reduction performances compared

to the HDLCMV filter according to our listening experience.
We also measured the log-spectral distance (LSD) between
the clean signal and the enhanced signals over time, and the
results are depicted in Fig. 7. First of all, we can see from these
results that the enhanced signals obtained using the non-causal
filtering schemes have lower LSDs compared to the enhanced
signals obtained using the causal filters at almost every time
instance. That is, these results indicate that the non-causal
filtering schemes have better distortion properties compared
to the causal filters. Moreover, we can see from the results in
Fig. 7 that both the ODW and ODMVDR filters outperform the
HDLCMV filter in terms of LSDs. This supports our previous
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claim on that, in practice, the ODW and ODMVDR filters
introduce less distortion of the desired signal compared to the
HDLCMV filter.

The results from the previous simulations indicate that we
can achieve better noise reduction and distortion performances
by using non-causal filtering schemes instead of non-causal
filters. However, these results do not necessarily reflect the
achievable perceptual improvement in performance. Therefore,
we conducted another real-life experiment on speech where
we considered enhancement of female (sp12.wav) and male
(sp02.wav) speech signals in noise. The speech signals are
part of the NOIZEUS speech corpus [37]. Note that since
the utilized speech signals contain segments of unvoiced
speech, we only evaluate the ODW and ODMVDR filters in
this experiment. Using the ODW and ODMVDR non-causal
filtering schemes and causal filters considered in the previous
experiment, we conducted simulations where we enhanced the
female and male speech signals in different noise scenarios,
for different input SNRs, and for different filter lengths. The
necessary statistics for this experiment were estimated as in
the previous simulations. In each simulation, we measured the
“Perceptual Evaluation of Speech Quality” (PESQ) scores [38]
of the different enhanced signals compared to the clean speech
signals using a freely available online toolbox.2 The PESQ
score is an objective measure which reflects the perceptual
quality of a speech signal. That is, we can use PESQ scores to
evaluate the practical applicability of the non-causal filtering
schemes versus causal filters. The PESQ scores resulting from
the simulations involving the female and male speech signals
are shown in Fig. 8. First, we observe from these results that the
ODW non-causal filtering schemes and causal filters outper-
form the ODMVDR non-causal filtering schemes and causal
filters, respectively. Moreover, we observe that, in the simu-
lations with female speech, the non-causal filtering schemes
outperform their causal counterparts in almost all scenarios.
Only for some noise types (street and car), for a 10-dB iSNR,
and for small filter lengths, the causal filters get similar or
a slightly better PESQ scores compared to the non-causal
filtering schemes. Finally, we observe that the non-causal OD
Wiener and ODMVDR filtering schemes outperforms their
causal versions in all of the considered scenarios with male
speech. Furthermore, by listening to the enhanced signals, it
is our experience that the non-causal filtering schemes indeed
outperforms the corresponding causal filter versions in terms of
noise reduction in most scenarios. The enhanced signals used
in our informal listening test can be found at the demo website3

for the paper.

IX. CONCLUSION

In this paper, we proposed novel non-causal time-domain
filters for noise reduction in, e.g., speech applications. The pro-
posed filters are based on the orthogonal and harmonic signal
decompositions. To enable the design of non-causal filters from
these decompositions, we generalized the decompositions. We

2http://www.utdallas.edu/~loizou/speech/software.htm.
3http://kom.aau.dk/~jrj/Demo/non_causal_filt/demo.html

also proposed performance measures for evaluating non-causal
time-domain filters based on the generalized decompositions.
On a side note, we showed how the non-causal orthogonal
decomposition based filters can be updated recursively when
the filter order is increased. This was shown for the two partic-
ular cases where the filters are either causal or anti-causal. A
by-product of these recursive updates is that we can also show
how the output SNR is updated recursively which, eventually,
proofs that the output SNR is always increased when we in-
crease the filter length and the desired signal is stationary. We
also conducted theoretical evaluations of the filters. In these
evaluations, we assumed that the desired signal is periodic and
thereby has a harmonic structure. By making this assumption,
it is possible to obtain exact closed-form expressions for the
performance measures of the filters. The theoretical evaluations
showed that we can indeed improve both the output SNR
and the harmonic distortion of the filters simultaneously by
allowing the filters to be non-causal. Moreover, we applied the
non-causal filters for noise reduction of noisy real-life speech
signals. These simulations showed that the non-causal filters
can achieve more noise reduction compared to the causal filters
in practice in terms of output SNR, log-spectral distance and
PESQ scores.
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