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Robust Congestion Control for Demand-Based
Optimization in Precoded Multi-Beam High

Throughput Satellite Communications
Van-Phuc Bui, Trinh Van Chien , Member, IEEE, Eva Lagunas , Senior Member, IEEE,

Joël Grotz , Senior Member, IEEE, Symeon Chatzinotas , Senior Member, IEEE,

and Björn Ottersten , Fellow, IEEE

Abstract— High-throughput satellite communication systems1

are growing in strategic importance thanks to their role in2

delivering broadband services to mobile platforms and resi-3

dences and/or businesses in rural and remote regions globally.4

Although precoding has emerged as a prominent technique to5

meet ever-increasing user demands, there is a lack of studies6

dealing with congestion control. This paper enhances the per-7

formance of multi-beam high throughput geostationary satellite8

systems under congestion, where the users’ quality of service9

(QoS) demands cannot be fully satisfied with limited resources.10

In particular, we propose congestion control strategies, relying11

on simple power control schemes. We formulate a multi-objective12

optimization framework balancing the system sum-rate and13

the number of users satisfying their QoS requirements. Next,14

we propose two novel approaches that effectively handle the15

proposed multi-objective optimization problem. The former is16

a model-based approach that relies on the weighted sum method17

to enrich the number of satisfied users by solving a series of18

the sum-rate optimization problems in an iterative manner. The19

latter is a data-driven approach that offers a low-cost solution20

by utilizing supervised learning and exploiting the optimiza-21

tion structures as continuous mappings. The proposed general22
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framework is evaluated for different linear precoding techniques, 23

for which the low computational complexity algorithms are 24

designed. Numerical results manifest that our proposed frame- 25

work effectively handles the congestion issue and brings superior 26

improvements of rate satisfaction to many users than previous 27

works. Furthermore, the proposed algorithms show low run-time 28

and make them realistic for practical systems. 29

Index Terms— Multi-beam high throughput satellite commu- 30

nications, quality of service requirements, multi-objective opti- 31

mization, neural networks. 32

I. INTRODUCTION 33

MULTI-BEAM high throughput satellite (MB-HTS) sys- 34

tems have been acknowledged as an efficient solution 35

providing ubiquitous high-speed broadband services to users 36

in a large coverage area, especially for inaccessible or insuf- 37

ficiently covered places by current terrestrial networks [2]. 38

Current broadband satellite communication systems make use 39

of a multi-beam footprint, which boosts the frequency reuse 40

improving spectral efficiency as well as system capacity [3], 41

[4], [5]. Due to low-cost and low-interference designs, an MB- 42

HTS system may allocate limited radio resources uniformly 43

across beams with the merits of simple procedures and inex- 44

pensive operating expenditure [6]. Notwithstanding, the uni- 45

form resource allocation combined with the limited available 46

spectrum may be inefficient in facing the rapid growth of traf- 47

fic demands [7], [8], [9]. In this context, full frequency reuse 48

across satellite beams has stood up as a promising alternative 49

boosting spectral efficiency and system capacity [10], [11]. 50

There is a vast literature related to precoded MB-HTS, 51

many of them including Quality of Service (QoS) constraints 52

in terms of minimum Signal-to-Noise Ratio or minimum 53

throughput per user [12], [13]. However, the uneven QoS 54

requests pose a constant challenge to such works particu- 55

larly for high QoS scenarios and limited satellite resources. 56

To maintain the individual QoS requirement of each user, the 57

authors in [14] formulated and solved a precoding design in 58

a multi-beam satellite system by the use of an alternating 59

optimization algorithm. Despite the data throughput improve- 60

ment over the proposed iterative procedure, the solution 61

in [14] is not scalable since the max-min fairness optimization 62

framework is not able to guarantee an acceptable QoS level 63

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5675-8414
https://orcid.org/0000-0002-9936-7245
https://orcid.org/0000-0001-5122-0001
https://orcid.org/0000-0003-2298-6774
https://orcid.org/0000-0002-4095-4015


BUI et al.: ROBUST CONGESTION CONTROL FOR DEMAND-BASED OPTIMIZATION 6919

for a large-scale system with many users. A precoding design64

targeting the system energy efficiency maximization is pre-65

sented in [13] under practical total power constraint and66

QoS requirements. Nevertheless, this framework requires time-67

consuming optimization, which greatly limits its applicability68

to real-world systems. Linear precoding [15], e.g., zero-forcing69

(ZF) or regularized zero-forcing (RZF), has demonstrated good70

performance with low complexity in MB-HTS systems [8],71

[16], [17]. However, the aforementioned works relied on72

non-empty feasible regions to make sure that the proposed73

optimization can reach a solution. For a complex system with74

significant number of users with divergent QoS requirements,75

there is an overwhelming probability that at least one user76

is in an extreme adverse channel condition or the requested77

QoS is too high under the limited radio resources. The existed78

solutions will, therefore, be unattainable due to congestion79

resulting in an infeasible problem. No known works have80

studied how to detect unsatisfied users and operate MB-HTS81

systems with a linear precoding technique under harsh opti-82

mization conditions, where the congestion appears. In this83

paper, we address this gap by formulating a multi-objective84

optimization framework balancing the system sum-rate and the85

number of users satisfying their QoS requirements. To solve86

this, we pursue two methodologies: (i) model-based approach,87

and (ii) data-driven approach. While model-based methods are88

known to provide accurate solutions, data-driven approaches89

have shown to speed up the convergence towards close-to-90

optimal solutions [18], [19] that are motivated by advances in91

machine learning as presented subsequently.92

Machine learning has demonstrated its potential in con-93

structing data-driven algorithms for engineering problems in94

signal processing and resource allocation via the use of95

neural networks [18], [20]. Rather than requesting humans96

to identify, formulate, and solve a system-level model as97

in traditional-based optimization theories, neural networks98

make efforts in wireless communications to learn the essential99

features of a data set, then use such information for predicting100

and decision making. One critical role is to design low101

complexity neural networks in which machine learning is102

applied for approximating high-cost optimization algorithms.103

In contrast to the maturity of machine learning developed104

for terrestrial networks, learning-based approaches applied to105

satellite communications and performance evaluations are in106

their infancy [21]. To name a few, the inherent NP-hard issues107

of different beam hopping optimization problems were effec-108

tively handled with high accuracy in [22]. Moreover, channel109

allocation strategies under the viewpoints of mixed-integer110

programming were studied in [23], where authors exploited111

reinforcement learning to minimize the service blocking prob-112

ability and enhance the data throughput. Regarding the power113

allocations, the authors in [24] optimized the transmit power114

coefficients subject to the traffic demands for a multi-beam115

satellite network without considering precoding. Furthermore,116

the work in [25] proposed a deep learning model for power117

allocation with a simplified rate expression. We emphasize118

that these related works only studied single-objective opti-119

mization problems without raising concerns on the congestion120

controls that cannot be avoided in practical systems. For future121

MB-HTS systems, the applications of machine learning for 122

multi-objective signal processing optimization are promising 123

to balance conflicting metrics and to ensure the individual 124

QoS requirements with a tolerable computational complexity 125

towards online resource allocation. 126

The congestion problem was investigated and handled 127

in [26], [27], [28], and [29] and references therein in the 128

terrestrial networks. In particular, the authors in [26] consid- 129

ered a primal-dual decomposition to determine and withdraw 130

users interfering the most with other users until the remain- 131

ing spectral efficiency demands can be satisfied. However, 132

no power constraints were considered in [26]. By using a 133

limited power budget, a game-theoretic formulation of the 134

power control issue was developed in [27] to guarantee 135

users’ information rates. Also, a power allocation policy to 136

decrease the requested throughput of users with poor chan- 137

nel conditions was proposed in [28]. Besides, in [29], the 138

congestion issue was handled by maximizing the minimum 139

spectral efficiency of the users and neglecting the users’ 140

demands, which is a distinct issue that could result in none 141

of the QoS requirements being met. Different solutions to 142

handle the total energy minimization optimization problem 143

under congestion was introduced in [30]. Nonetheless, all 144

these related works considered the congestion control by 145

formulating single objective optimization problems and using a 146

traditional model-based optimization theory to obtain the solu- 147

tion. To the best of the authors’ knowledge, the transmit power 148

allocation and the QoS satisfactions for the multi-objective 149

optimization to tackle the joint maximization of both the sum 150

rate and demand-based constraints subject to the limited power 151

budget has never been considered before. This paper considers 152

MB-HTS systems under multiple-access scenarios where many 153

users with individual data throughout requirements share the 154

same time and frequency resource. Congestion may appear for 155

different reasons. For example, congestion may occur when 156

one of the users has a sudden peak of demand (i.e. high 157

QoS constraint), when their channel condition is not good, 158

and/or when he is receiving too strong interference. We handle 159

the congestion issue that appears when solving the sum data 160

throughput maximization due to the practical aspects such as 161

the weak channel conditions and limited power budget at the 162

satellite. Thanks to the European Space Agency (ESA) [31], 163

the proposed algorithms are tested with a practical beam 164

pattern. Our main contributions are summarized as follows: 165

• We formulate a new multi-objective optimization problem 166

for the MB-HTS systems to maximize the number of 167

users served satisfying their QoS requirements and the 168

sum rate of the entire network. Even though the problem 169

is a non-smooth nonlinear program, it effectively handles 170

the congestion issue by splitting the scheduled user set 171

into the satisfied and unsatisfied user sets and combining 172

both of them into the multi-objective optimization frame- 173

work. 174

• We propose a general model-based solution that 175

exploits the weighted sum method to transfer the 176

original multi-objective problem to a single-objective 177

maximization with a balance between the utility metrics. 178
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Conditioned by the total transmit power limit, a heuristic179

algorithm iteratively solves the single-objective prob-180

lem by prioritizing the number of satisfied users. This181

proposed algorithm then allocates the remaining power182

to maximize the sum rates. The generality of the183

model-based approach lets room for network operators184

to design a sum rate maximization solver.185

• Next, we propose a general data-driven methodology186

where a neural network is used to predict the transmit187

power coefficients and satisfied-user set solutions with188

low computational complexity. It is achieved by exploit-189

ing supervised learning and based on the solution from190

the model-based approach. From a series of continuous191

mappings, the neural network only requires the channel192

gains as input. The generality of the data-driven approach193

is a consequence of the model-based approach and the194

network can opt for an arbitrary type of neural network195

architectures.196

• By the convenience of the semi-closed form solution197

to the power allocation from the water-filling method,198

we typically design the low-cost algorithms for the199

MB-HTS systems by adapting the general model-based200

approach. The channel orthogonality can effectively con-201

tribute to reducing the computational complexity, even202

though the water filling method needs to be applied in an203

iterative manner. The power solutions can be effectively204

used for training fully connected neural networks.205

• By using a practical satellite beam pattern provided by206

ESA, the performance of the proposed algorithms is207

evaluated by extensive numerical results. The solution is208

compared with the benchmarks [8], [9], [32] in the litera-209

ture in terms of both sum rate and users’ QoS satisfaction.210

Meanwhile, the neural network achieves the solution with211

high prediction accuracy in a few milliseconds.212

Notation: The upper and lower bold letters are used to213

denote the matrix and vectors, respectively. The notation214

CN (·, ·) denotes the circularly symmetric Gaussian distribu-215

tion and E{·} is the expectation operator. The notation � · �216

is the Euclidean norm and |K| is the cardinality of the set K.217

The superscripts (·)H and (·)T are the Hermitian transpose and218

regular transpose, respectively. The element-wise inequality is219

denoted as �. A unit vector of length K is denoted as 1K . The220

trace of a matrix is denoted as tr(·). The complex, real, non-221

negative real, extended non-negative real field is C, R, R+,222

and R++ = R+ ∪ ∅, respectively. To the end, the imaginary223

unit of a complex number is j with
√

j = −1.224

The rest of this paper is organized as follows: Section II225

presents in detail the satellite system model and formulates a226

category of multi-objective optimization problems jointly opti-227

mizing the sum rate and individual QoS per user. Section III228

describes the model-based and data-driven approaches to solve229

the above optimization problem in polynomial time. The230

practical applications of our framework are demonstrated by231

the state-of-the-art practical communication satellite systems232

with a linear precoding technique and the water-filling method.233

Section V gives extensive numerical results, while the main 234

conclusions are finally drawn in Section VI. 235

II. SYSTEM MODEL AND PROBLEM STATEMENT 236

In this section, we first introduce the MB-HTS system archi- 237

tecture, where the full available bandwidth is simultaneously 238

used by all beams and, within each beam, the multiple users 239

are multiplexed in a Time Division Multiple (TDM) manner in 240

the forward link on a DVB-S2X carrier from the Gateway to 241

the user beams. Meanwhile, Time Division Multiple Access 242

(TDMA) is used on the return link. Next, motivated by the 243

shortcomings of previous works in handling the demand-based 244

constraints, a new multi-objective optimization framework is 245

proposed. 246

A. System Model & Channel Capacity 247

We consider the forward link of a broadband MB-HTS 248

system that aggressively reuses the user link frequency to 249

simultaneously serve multiple users sharing the same time 250

and frequency plane as schematically shown in Fig. 1(a), 251

with the overlapping beam pattern depicted in Fig. 1(b).1 252

Assuming N overlapping beams, a maximum of N users 253

in the coverage area can be scheduled and served in each 254

scheduling instance by the satellite. We assume that the actual 255

scheduled users per scheduling instance is K , as illustrated 256

by the black-colored users in Fig. 1(a). In this paper, the 257

system operates in a unicast mode, i.e., K ≤ N . We denote 258

UEk the scheduled user k with k ∈ K � {1, 2, . . . , K} and 259

|K| = K . Let us define hk ∈ CN the channel vector 260

between the satellite and UEk, then the channel matrix H 261

is defined as H = [h1,h2, . . . ,hK ] ∈ CN×K . In particular, 262

the channel is modeled in LOS link [16], [33], and collects 263

the channel state information (CSI) and phase rotations from 264

the over-air propagation in the forward link, which is split 265

into the two components as H = H̄Φ, where H̄ ∈ R
N×K
+ 266

indicates the practical features involving the satellite antenna 267

radiation pattern, thermal noise, received antenna gain, and 268

path loss. The (n, k)-th element of H̄ is concretely computed 269

as [H̄]nk = (λ
√

GRGnk)/(4πdk

√
KBTB), where λ is the 270

wavelength of a plane wave; dk is the distance from UEk 271

to the satellite; GR and Gnk are the receiver antenna gain 272

and the gain from the n-th satellite feed towards UEk, ∀n = 273

1, . . .N ; KB is the Boltzmann constant; T is the receiver noise 274

temperature. The diagonal matrix Φ ∈ CK×K indicates the 275

signal phase rotations owing to different propagation paths, 276

whose the (k, l)-th component is given as [Φ]kl = ejφk if 277

k = �, where φk is a residual random phase component 278

introduced by the satellite payload [31]. Otherwise, [Φ]kl = 0. 279

Let us define sk the data symbol that the system transmits to 280

UEk with E{|sk|2} = 1 and its allocated transmit power pk ∈ 281

1The capacity of multi-beam GEO systems allow multiple users to simulta-
neously access the network. The considered multiple-access scenarios bring
superior improvements of the sum rate by serving more users and exploiting
a proper precoding technique to mitigate mutual interference. However, the
congestion will be problematic if, for example, each user is associated with
its individual QoS demand and a limited power budget at the satellite. The
present paper will address this raising issue by using both the model-based
and data-driven approaches.
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Fig. 1. The Precoded multi-beam multi-user satellite system model: (a) Schematic diagram of our considered system model with one single scheduled user
per beam; and (b) The considered overlapping beam pattern.

R+. A predetermined precoding technique is implemented at282

the gateway to eliminate mutual interference among users and283

boost the system performance. Denoting wk ∈ CN as the284

normalized precoding vector for UEk with �wk� = 1, then285

the transmitted signal to all the K scheduled users, denoted286

by x ∈ CN , is x =
∑

k∈K
√

pkwksk. For practical satellite287

systems, the following system transmit power constraint must288

be satisfied:289

E{�x�2} ≤ Pmax290

⇒
∑

k∈K pk�wk�2
E{|sk|2} (a)

=
∑

k∈K pk ≤ Pmax, (1)291

where (a) is obtained assuming that the data symbols are292

mutually independent and the precoding vectors are nor-293

malized. Moreover, Pmax is the maximum power that the294

satellite can allocate to the data transmission. By exploiting295

the transmitted signal notation x, the received signal at UEk,296

denoted by yk ∈ C, is a projection of the transmitted signal297

onto its propagation channel as298

yk = hH
k x + nk,299

=
√

pkhH
k wksk+

∑
�∈K\{k}

√
p�hH

k w�s�+nk, ∀k ∈ K,300

(2)301

where nk denotes the additive noise at the receiver with nk ∼302

CN (0, σ2). In the last equality of (2), the first part contains the303

desired signal for UEk, while the remaining parts are mutual304

interference and noise. Assuming the availability of perfect305

channel state information (CSI) available at the gateway side,2306

the channel capacity of UEk is computed as follows307

Rk({pk�}) = B log2 (1 + γk({pk�})) , [Mbps], ∀k ∈ K,308

(3)309

where {pk�} = {p1, . . . , pK} is the set of all the transmit310

power coefficients, and B [MHz] is the overall bandwidth311

2This paper assumes perfect CSI with the purpose of validating our robust
congestion control as an initial framework focused on static users. The impact
of imperfect CSI besides channel aging problems and many issues are left for
future work.

used for the user link. The signal-to-interference-and-noise 312

ratio (SINR), γk({pk�}), is 313

γk({pk�}) =
pk|hH

k wk|2∑
�∈K\{k} p�|hH

k w�|2 + σ2
, ∀k ∈ K. (4) 314

We emphasize that the SINR expression (4) can be applied to 315

an arbitrary channel model and precoding technique. In this 316

paper, we exploit (4) to formulate and solve the demand-based 317

optimization problems with the practical constraints that arise 318

in the future satellite communications. 319

B. Single-Objective Optimization With QoS Constraints 320

For MB-HTS systems, conventional power allocation prob- 321

lems focus on maximizing a utility function while maintaining 322

the QoS requirements of the scheduled users under a limited 323

power budget. By taking the sum-rate as an objective function 324

example, a popular optimization formulation [34], [35], [36] 325

is 326

maximize
{pk�∈R+}

f0({pk�}) �
∑

k∈K Rk({pk�}) (5a) 327

subject to Rk({pk�}) ≥ ξk, ∀k ∈ K, (5b) 328∑
k∈K pk ≤ Pmax, (5c) 329

where ξk [Mbps] corresponds the QoS requested by UEk. 330

In (5), the objective function f0({pk�}) can be an arbitrary 331

utility function in satellite communications [37], [38]. Even 332

though all the constraints are affine, solving problem (5) is 333

still challenging when the objective function is non-convex. 334

However, the feasible domain is a convex set, thus if f0 ({pk�}) 335

is continuous and bounded from below, the global optimum 336

to problem (5) always exists by means of the Weierstrass’ 337

theorem [39]. 338

Problem (5) optimizes the transmit powers to simultane- 339

ously satisfy the QoS requirements of all the K scheduled 340

users conditioned on the power limitation. Indeed, if the 341

system is able to provide the QoS requirements simultaneously 342

to all the users, problem (5) has a non-empty feasible set and it 343

can be solved to obtain the global optimal solution. However, 344

for many unfortunate users’ locations and channel conditions, 345

as well as for systems with strict power limitations, the system 346
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cannot provide the QoS requirements to every scheduled user347

that results in the congestion issue, where at least one user is348

served less data throughput than requested. This is because,349

in many user locations, one or more scheduled users are350

located in places where the propagation channels are inferior351

with the dramatically small channel gains. Furthermore, the352

interference-limited scenario considered herein may further353

enlarge the infeasible cases. The congestion issue makes it354

challenging for the satellite to meet the requested demands355

simultaneously. In other words, this leads problem (5) to356

be infeasible with high probability due to an empty feasible357

domain, i.e. problem (5) has no solution.358

For tractability, we can formulate an optimization without359

the demand-based constraints as follows360

maximize
{pk�∈R+}

∑
k∈K Rk({pk�}) (6a)361

subject to
∑

k∈K pk ≤ Pmax, (6b)362

which was considered in [40] and references therein. Fig. 2(a)363

shows an example of N = 7 beams with K = 7 scheduled364

users. Fig. 2(c) plots the achievable rates for each of the365

scheduled users by considering problem (6) as a consequence366

of their effective channel gains, which are depicted in Fig. 2(b)367

for completeness. The detailed parameter settings are given in368

Section V. For this particular realization of user locations,369

there are two users with unfortunate effective channel con-370

ditions, which combined with the limited power budget will371

make it challenging for the satellite to ensure the users to be372

simultaneously serve with the same individual QoS require-373

ment (say 500 [Mbps]). However, the remaining scheduled374

users would still get their requested QoS or even better data375

throughput if some demand-based constraints would have been376

relaxed (such that the ones of user 1 and 2). It is because those377

users are located at the extreme locations as the boundary378

of the beams. Not shown here, but the harsh situation also379

comes from the fact that the QoS requirements are too high380

and the system cannot meet their services even consuming381

the entire power budget. Motivated by the results in Fig. 2,382

a practical solution for power allocation is developed in this383

paper where QoS requirement satisfaction for the majority of384

the users is sought. For those users who cannot satisfy the QoS385

constraints, it may be sufficient to relax their QoS constraints386

or skip them for these particular scheduling instances. For387

such, we propose to convert (5) from an infeasible problem388

to a feasible one. However, the identification of the users who389

are not able to reach their QoS requirements is not trivial. This390

paper investigates a class of power allocation problems whose391

objective function includes both the sum-rate and the total392

number of satisfied users, which can effectively cope with such393

infeasible instances due to the network dimension whenever394

the congestion issue appears.3395

3The congestion is a complex issue in satellite communications. One
potential solution for this issue is based on the user scheduling over the
time and frequency plane. However, for a given set of scheduled users, the
congestion may still appear when allocating the limited power budget to
maximize the total sum rate of the entire network and satisfy the individual
QoS demands. Since user scheduling may help mitigating partially the
congestion, the combination of the proposed power and congestion control
approach with more advanced user scheduling is left for future work.

C. Proposed Multi-Objective Optimization 396

To deal with congestion scenarios, we propose to split the 397

K scheduled users into two sets: Q with Q ⊆ K being the 398

satisfied-user set that contains users served by the system with 399

data throughput equal or greater than their QoS requirements. 400

The remaining users belong to the unsatisfied-user set K \Q. 401

Our goal is to maximize the cardinality of the satisfied-user 402

set Q and also to seek for the maximal value of the sum-rate 403

metric
∑

k∈K Rk({pk�}). The ultimate goal is introduced as 404

g ({pk�},Q) =
[∑

k∈K Rk({pk�}), |Q|
]T

, (7) 405

which should be categorized as a multi-objective function, 406

where the two performance metrics are optimized in a single 407

framework. Motivated by the use of (7), we study a joint 408

design of the power allocation and the satisfied-user selection 409

to optimize the multi-objective function g ({pk�},Q) 410

maximize
{pk�∈R+},Q

g ({pk�},Q) (8a) 411

subject to Rk({pk�}) ≥ ξk, ∀k ∈ Q, (8b) 412∑
k∈K pk ≤ Pmax, (8c) 413

Q ⊆ K. (8d) 414

The key distinction from previous works in the literature is 415

that problem (8) is always feasible since the satisfied-user set 416

Q can span from an empty set, i.e., no user satisfies its QoS 417

demand; to the scheduled-user set K, i.e., all the K scheduled 418

users satisfy their QoS requirement. The proposed formulation 419

is very convenient in practice as problem (8) can provide a 420

power allocation solution in any channel conditions whilst 421

still ensuring the system’s performance in some extended 422

aspect. Expressly, the objective function (8a) indicates that 423

we find an optimal set of the transmit power coefficients 424

that simultaneously maximizes the utility function f0({pk�}) 425

and the satisfied-user set Q. We stress that thanks to the 426

constraint (8b), problem (8) only guarantees the individual 427

QoS requirements of the satisfied-user set Q. Different from 428

a single objective function in (5), the decision space of 429

problem (8) is defined by 430

D =
{
{pk�},Q∣∣Rk({pk�}) ≥ ξk, ∀k ∈ Q, 431

Pmax ≥
∑

k∈K pk,Q ⊆ K
}

, (9) 432

which is a non-convex set. The data of problem (8) con- 433

sists of the decision space D, the objective function vector 434

g ({pk�},Q), together with the objective space R
2
++. In prin- 435

ciple, g ({pk�},Q) is mapped from the objective space to an 436

ordered space, say (R2
++,≥,⊆), in which the feasibility is 437

testified along with iterations by the order relations ≥ and 438

⊆. This mapping is referred to as the θ model that depicts 439

a relation between the objective space and the order space, 440

where the maximization in (8) is determined. Alternatively 441

speaking, problem (8) should be completely defined by the 442

data (D,g({pk�},Q), R2
++), the model map θ, and the order 443

space R2
++. We now characterize an 


-Pareto optimal solu- 444

tion {{p∗k�},Q∗} ∈ D to problem (8), if there exists no 445
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Fig. 2. A scheduling instance where each beam serves one scheduled user: (a) the user locations; (b) the effective channel gains, i.e., defined as
|hH

k wk|2,∀k ∈ K; and (c) the served rate [Mbps] by utilizing the ZF precoding technique

{{pk�},Q} ∈ D such that446

g ({pk�},Q) + 


 � g ({p∗k�},Q∗) , (10)447

where 


 = [
1, 
2]T with 
1, 
2 ∈ R+ are the tolerance448

corresponding to the two objective functions. The property449

(10) implies no other solutions {{pk�},Q} ∈ D fulfilled the450

coexisted conditions: f0 ({pk�},Q) + 
1 ≥ f0 ({p∗k�},Q∗),451

and |Q| + 
2 ≥ |Q∗|, which unveils a balance between the452

two objective functions at the optimum. We observe that if453


1 = 
2 = 0, the above definition reduces to an 


-Pareto454

optimal solution, which can be only improved by upgrading455

one objective function and scarifying the other. Thus, an 


-456

properly Pareto optimal solution is introduced as an 


-Pareto457

optimal solution with a bound trade-off between the two458

objectives defined in (7). An 


-Pareto dominant vector is459

derived as the objective function vector g({pk�},Q) at the460

corresponding 


-properly Pareto optimal solution. We notice461

that the 


-Pareto frontier collects all the properly 


-Pareto462

optimal vectors.463

Remark 1: Problem (8) jointly optimizes the sum rate and464

the total number of satisfied users subject to the limited465

transmit power constraint under the viewpoints of multi-466

objective optimization. The proposed problem (8) is a gen-467

eralized version of previous works on a single-objective468

function with/without demand-based constraints as [37], [40]469

and references therein. Problem (8) can effectively han-470

dle the congestion issue appearing when some users do471

not meet their QoS requirements. This practical matter in472

multiple access communications originates from the limited473

power budget, the channel conditions, and the individual474

QoS requirements. An extension to a multiple-objective opti-475

mization framework with more than two objective functions476

or with different metrics should be interesting for a future477

work.478

By exploiting either the scalarization or nonscalarization479

approach to handle the multiple objective functions, we may480

attain an 


-properly Pareto optimal solution to problem (8),481

following by the 


-Pareto frontier. If the nonscalarization482

approach is employed, there is no prior information about the 483

objective functions available in advance. For this direction, 484

natural inspired algorithms that simultaneously optimize all 485

the objective functions are often exploited to attain the 


- 486

Pareto frontier [41]. The nonscalarization approach requires 487

significantly high computational complexity since the Pareto 488

frontier is obtained by directly solving the multiple-objective 489

optimization problem. Once the scalarization approach is uti- 490

lized by exploiting the preferential information from the deci- 491

sion maker about the objective functions, we can transfer the 492

multi-objective optimization problem (8) to a single-objective 493

optimization problem. The scalarization approach obtains the 494




-Pareto frontier by iteratively solving some single objective 495

optimizations, each concentrating on a given set of priorities 496

between the objective functions. Consequently, the scalar- 497

ization approach usually offers the solution to problem (8) 498

with lower computational complexity than the nonscalarization 499

approach [42]. 500

III. MODEL-BASED AND DATA-DRIVEN APPROACHES 501

This section presents the model-based approach to obtain 502

an 


-properly Pareto optimal solution to problem (8) in poly- 503

nomial time by exploiting the scalarization approach. The 504

obtained solution is then utilized in Section III-B for training 505

a neural network that can predict a solution to problem (8) 506

with extremely low computational complexity and tolerable 507

accuracy. 508

A. Model-Based Approach 509

In this section, we proceed with problem (8) by exploiting 510

the weighted sum method [42]. Specifically, we define the 511

weights μ1 ≥ 0 and μ2 ≥ 0 with μ1 + μ2 = 1 that respec- 512

tively stand for the priority of the two objective functions 513

in g({pk�},Q). If {{p∗k�},Q∗} is an optimal solution to the 514
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single-objective optimization problem:515

maximize
{pk�∈R+},Q

μ1

∑
k∈K Rk({pk�}) + μ2|Q| (11a)516

subject to Rk({pk�}) ≥ ξk, ∀k ∈ Q, (11b)517 ∑
k∈K pk ≤ Pmax, (11c)518

Q ⊆ K, (11d)519

with an 


-accuracy, then {{p∗k�},Q∗} is an 


-properly Pareto520

optimal solution to problem (8). We emphasize that in (11),521

the weights μ1 and μ2 are flexibly designed by the decision522

maker. By adjusting these two values, an 


-Pareto frontier523

to problem (8) is obtained. After that, the most desirable524

solution to the decision maker is chosen from the 


-Pareto525

frontier. Even though (11) is a single-objective problem, it is526

still non-convex due to a hybrid between the continuous527

and discrete feasible domains of the optimization variables.528

We, therefore, make an assumption follow the trends in QoS529

satisfaction in future satellite communications [43].530

Assumption 1: In order to offer the QoS requirements for a531

maximum number of users in the coverage area with a finite532

transmit power level, we focus on a scenario that the decision533

maker selects μ1 and μ2 to obtain the largest cardinality of534

the satisfied-user set Q before paying attention to maximize535

the sum-rate for a given assigned bandwidth. The channel536

conditions may lead to some scheduled users not reaching537

their QoS requirements. One can improve the QoSs for those538

unsatisfied users by subtracting the power leftover, which is539

allocated to the satisfied users with a higher served rate than540

requested.541

A priority on the QoSs of the scheduled users has been542

claimed by Assumption 1 and is effectively achieved by the543

satisfied-user set Q. The limited power budget is therefore544

utilized in a strategy to maximize the rate demands for545

all the scheduled users in the network instead of focusing546

on an individual entity. The remaining power, if possible,547

will be dedicated to maximizing the sum rate. Motivated548

by the Perron-Frobenius theorem [44], [45], we observe the549

conditions required to all the scheduled users with their rate550

satisfactions as shown in Theorem 1.551

Theorem 1: If UEk requests a non-zero QoS, i.e., ξk > 0,552

then all the K scheduled users can be served with at least their553

individual QoS requirements as the following conditions hold554

λ(RQ) < 1, (12)555

1T
K(IK − RQ)−1ννν ≤ Pmax, (13)556

where ννν = [ν1, . . . , νK ]T ∈ RK
+ with νk = αkσ2/((αk +557

1)|h2
kwk|2) and αk = 2ξk/B − 1, ∀k ∈ K. The matrix558

R ∈ RK×K has the (k, k�)−th element defined as [R]kk� =559

αk

(αk+1)|hH
k wk|2 if k = k�. Otherwise, [R]kk� = 0. The (k, k�)-560

th element of matrix Q ∈ RK×K is [Q]kk� = |hH
k wk� |2. In561

(12), λ(RQ) = max{|λ1|, . . . , |λK |} is the spectral radius of562

RQ, whose eigenvalues are denoted as λ1, . . . , λK .563

Proof: See Appendix A.564

Theorem 1 gives the necessary and sufficient conditions for565

the satellite to serve all the K scheduled users with the QoS566

requirements in an MB-HTS system, while still maximizing567

a utility function f0({pk�}). Unlike previous works, the con- 568

ditions (12) and (13) explicitly represent the existed unique 569

power solution for a precoded satellite system, which point 570

out the power allocation solution as a multi-variate function 571

of many variables such as the propagation channels, the 572

precoding vectors, the noise power, the QoS requirements, and 573

the power budget. More precisely, the necessary condition in 574

(12) ensures a unique power solution. The sufficient condition 575

(13) ensures the satellite having enough power to provide 576

the demand to each user. Though Theorem 1 assumes that 577

Q = K, it gives an efficient way to testify if all the K 578

scheduled users can be served with their QoSs, and thus 579

facilitates the reformulation of problem (11) in an efficient 580

fashion by removing the optimization variable Q. Conditioned 581

on the power budget of the satellite, the total transmit power 582

needed to satisfy the QoS requirements can be bounded from 583

below as shown in Corollary 1. 584

Corollary 1: For a given realization of users’ locations and 585

QoS requirements, the total transmit power is lower bounded 586

by 587∑
k∈K pk ≥ 1T

Kννν/�IK − RQ�2. (14) 588

Proof: From (49) in Appendix 1, the total transmit power 589

that the K scheduled users need to satisfy the individual 590

rate demand is reformulated as
∑

k∈K pk
(a)
= tr((IK − 591

RQ)−1ννν1T
K)

(b)

≥ tr(ννν1T
K)/�IK − RQ�2

(c)
= 1T

Kννν/�IK − 592

RQ�2, where (a) and (c) is obtained by utilizing the identity 593

tr(XY) = tr(YX) with the two matched-size matrices X and 594

Y; (b) is because IK −RQ is a positive semidefinite matrix 595

and then using [46, Lemma B.8]. We conclude the proof. 596

The lower bound in (14) is two-fold: First, the total transmit 597

power is always positive if each scheduled user requires a 598

non-zero rate due to the mutual interference and the thermal 599

noise. Second, it unveils the effectiveness of the precoding 600

technique. A good selection should effectively mitigate the 601

mutual interference among the scheduled users to attain the 602

large spectral norm of matrix IK − RQ. 603

Motivated by the aforementioned discussions, we next pro- 604

pose an algorithm to effectively address problem (8) and 605

achieve a good local solution by solving the weighted sum 606

optimization problem (11). The satisfied-user set Q is initial- 607

ized as an empty set due to no prior information. For given 608

precoding vectors {wk�}, the conditions (12) and (13) result 609

in two possible cases: 610

i) If those conditions hold, then all the K scheduled users 611

achieve (at least) their individual QoS requirements. 612

Therefore, Rk({pk�}) ≥ ξk, ∀k ∈ K, and Q = K. 613

From Theorem 1 and Assumption 1, problem (11) is 614

mathematically equivalent to (5). This case always offers 615

a nonempty feasible set and corresponds to a system with 616

no congestion. 617

ii) As one of those conditions is not satisfied, at least 618

one scheduled user does not satisfy its QoS require- 619

ment (unsatisfied user), and therefore congestion appears. 620

A special mechanism needs to handle this case if one 621

considers the traditional sum-rate optimization (5) due to 622
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an empty feasible set. However, it is not such the case623

for problem (11).624

We stress that the first case maximizes the sum rate that625

satisfies the demand-based constraints of all the K scheduled626

users by a limited power budget. Since the feasible region must627

have an interior point, we can apply an interior-point method628

to obtain the solution to problem (5), e.g., [17], which may be629

implemented by a general-purpose toolbox such as CVX [47].630

However, it is a high computational complexity solution and631

does not work for the second case when at least one unsatisfied632

user gets a lower data throughput than the requirement. In this633

case, to solve problem (11), the priority is to maximize the634

number of satisfied users. Mathematically, we optimize the635

cardinality of Q as follows636

maximize
{pk�∈R+}

|Q| (15a)637

subject to Rk({pk�}) ≥ ξk, ∀k ∈ Q, (15b)638 ∑
k�∈K pk� ≤ Pmax, (15c)639

Q ⊆ K. (15d)640

Since problem (15) is a non-convex and non-smooth problem,641

it is not trivial to obtain the global optimum of the transmit642

powers. We now propose an iterative low-cost solution to643

get rid of this issue with a good local solution for problem644

(15). As an effective way to initialize the satisfied-user set645

Q, we solve the sum-rate maximization problem without the646

demand constraints in (6) to obtain an initial set of the power647

allocation coefficients {p∗,(0)
k� }. Next, we use these power648

allocation coefficients to define the initial satisfied-user set649

Q∗,(0) as shown below,650

Q∗,(0) =
{

k
∣∣Rk

({
p
∗,(0)
k�

})
≥ ξk, k ∈ K

}
, (16)651

where Rk{p∗,(0)
k� } is given in (3) but with pk� = p

∗,(0)
k� , ∀k.652

We numerically observe that the scheduled users that typically653

satisfy its QoS requirements are those with good effective654

channel gains and/or those suffering less mutual interference.655

Those scheduled users contribute significantly to the objective656

function of problem (6).657

In the following, we exploit the fact that we can move a658

portion of the power that is assigned to scheduled users that are659

getting more than what they actually requested to improve the660

conditions of less fortunate users. In more details, we design661

an iterative approach that enables to expand the set Q after662

each iteration. The main idea is that the satisfied users in Q are663

only served by the exact QoS requirements, all the remaining664

power budget of the satellite should be allocated to the other665

scheduled users to enhance their data throughput such that666

there is an opportunity to join the satisfied-user set Q. To find667

new users to be added to Q at iteration n, we focus on the668

following optimization problem:669

maximize�
p
(n)
k� ∈R+

�
∑

k∈K Rk

({
p
(n)
k�

})
(17a)670

subject to Rk

({
p
(n)
k�

})
= ξk, ∀k ∈ Q∗,(n−1), (17b)671 ∑

k∈K p
(n)
k ≤ Pmax, (17c)672

with the optimal power solution {p∗,(n)
k� }. Different from afore- 673

mentioned problems, it is worth noting that the constraints 674

(17b) target the satellite to serve the satisfied users in Q with 675

only their QoS demands. With a finite power level Pmax, the 676

remaining satellite energy should be allocated to the scheduled 677

users with bad channel conditions by expecting that they are 678

potential candidates to join the satisfied-user set Q. If there are 679

scheduled users served equal to or greater than their demands 680

at iteration n, they will be added to the satisfied-user set Q 681

by 682

Q∗,(n) =
{
k
∣∣Rk

({
p
∗,(n)
k�

)
≥ ξk, k ∈ K

}
, (18) 683

where Rk{p∗,(n)
k� } is given in (3) but with pk� = p

∗,(n)
k� , ∀k. 684

After that the iteration index is increased as n = n+1, which 685

leads to an iterative approach. Notice that it should maximize 686

the number of scheduled users that satisfy their requirements 687

in each iteration with the objective to maximize the sum rate 688

of all the K scheduled users. We emphasize that the second 689

case is only executed after checking that conditions (12) and 690

(13) are not satisfied, so the cardinality of the satisfied-user 691

set is less than the number of scheduled users along iterations, 692

i.e., |Q∗,(n)| < K, ∀n. Our proposed approach is summarized 693

in Algorithm 1 with its convergence given in Theorem 2. 694

Theorem 2: If all the K scheduled users cannot be served 695

with their QoS requirements under a given power budget Pmax 696

and the obtained optimized power coefficients at each iteration 697

by solving (17), the following convergence properties hold and 698

therefore Algorithm 1 converges to a fixed point solution, 699

. . . ≥ |Q∗,(n)| ≥ |Q∗,(n−1)| ≥ . . . ≥ |Q∗,(0)|, (19) 700

. . . ≤
∑

k∈K Rk

({
p
∗,(n)
k�

})
≤

∑
k∈K Rk

({
p
∗,(n−1)
k�

})
701

≤ . . . ≤
∑

k∈K Rk

({
p
∗,(0)
k�

})
, (20) 702

Proof: See Appendix B. 703

Theorem 2 indicates an improvement of the satisfied-user set 704

after each iteration by sacrificing an amount of the sum-data 705

throughput that is aligned with the 


-properly Pareto optimal 706

solution in Section II-C. When the congestion issue appears, 707

the K scheduled users are split into two sets: the satisfied-user 708

set Q containing the users served by the data throughput at 709

least their demands, and the unsatisfied-user set K\Q with the 710

other users served by the throughput less than their demands. 711

Remark 2: Algorithm 1 prioritizes on maintaining the QoS 712

requirement for every user in multi-access scenarios. A finite 713

power budget is strategically allocated to maximize the number 714

of satisfied users before the sum-rate maximization is imple- 715

mented. When the congestion appears, Algorithm 1 still pro- 716

vides service to unsatisfied users for the fairness enhancement. 717

Even though the proposed algorithm cannot guarantee a global 718

optimum due to the inherent nonconvexity of problem (11) 719

as jointly optimizing the satisfied-user set Q and the power 720

coefficients pk, ∀k, it provides a good preliminary mechanism 721

to investigate the demand-based optimization with realistic 722

conditions where the satellite simultaneously serves many 723

users with the same radio resources. 724
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Algorithm 1 An Iterative Algorithm to Obtain a Local Solu-
tion to Problem (8)
INPUT: Channel vectors {hk}; Maximum power Pmax; QoS

requirement set {ξk}.
1: Compute the precoding vectors {wk�} based on the channel

vectors {hk�}.
2: Compute the matrices R,Q, and the vector ννν.
3: if Conditions (12) and (13) are satisfied then
4: Update Q∗ = K and solve problem (5) to obtain {p∗k�}.
5: else
6: Solve problem (6) to obtain {p∗,(0)

k� } and update Q∗,(0)

as in (16).
7: Initialize the accuracy δ = |Q∗,(0)| and set n = 0.
8: while δ 
= 0 do
9: Set iteration index n = n + 1.

10: Solve problem (17) to obtain {p∗,(n)
k� } and then update

Q∗,(n) as in (18).
11: Update the accuracy δ = |Q∗,(n)| − |Q∗,(n−1)|.
12: end while
13: end if
OUTPUT: The satisfied-user set Q∗ = Q∗,(n) and the opti-

mized power coefficients {p∗k�} = {p∗,(n)
k� }.

B. Data-Driven Approach725

In spite of an effective solution to handle the multi-726

objective problem (8) by solving an alternative version in727

(11), Algorithm 1 must update the power coefficients and the728

satisfied-user set after many iterations until reaching a fixed729

point solution. The matter might be, therefore, still burden-730

some for certain practical scenarios. In this subsection, we pro-731

pose to use a neural network model that can learn the features732

of Algorithm 1, and then predict the power coefficients for733

each realization of user locations in the satellite system with734

extremely low computational complexity. We assume that the735

power solution obtained by Algorithm 1 is available for the736

following series of the continuous mappings:737

w� = f̃�({hk}), ∀� ∈ K, (21)738

μkl = |hH
k w�|2, ∀k, � ∈ K, (22)739

α∗
k =

p∗kμkk∑
�∈K\{k} p∗�μkl + σ2

, k ∈ K, (23)740

p∗k = fk (a∗
k, {μk�}) (24)741

= α∗
k

σ2

μkk
+ α∗

k

∑
�∈K\{k} p∗�

μkl

μkk
, k ∈ K,742

where f̃�({hk}) : C
M×K → C

M is a multivariate function743

utilized to construct a precoding vector for user � from the744

instantaneous channels. After (21), the set of the K precoding745

vectors is constructed, which are the input to compute the746

channel gains in the mapping (22) if k = �. Otherwise, (22) is747

used to compute the strength of the mutual interference. The748

continuous mapping in (23) evaluates the SINR level for an749

arbitrarily scheduled user. The optimized satisfied-user set Q∗,750

which is discrete on the definition, can be reformulated by the751

optimized power coefficients {p∗k} via utilizing {α∗
k} in (23),752

which is continuous. It is of paramount importance to design753

a low-cost machine learning framework and guarantee the 754

existence of a neural network with a finite number of neurons 755

for our considered framework. Finally, the last mapping (24) 756

points out a way to update the power coefficient of UEk in 757

relation to the offered rate to this user and the power allocation 758

to the other scheduled users in a multi access scenario. Since a 759

composition of the continuous mappings is also a continuous 760

mapping [48], Lemma 1 hereby approves the existence of a 761

unique mapping that characterizes all the above procedures. 762

Lemma 1: The power coefficients obtained by Algorithm 1 763

are characterized by {pk} = F({hk}), where F({hk}) 764

represents the series of the continuous mappings in (21)–(24). 765

It implies that there exists at least a neural network to learn 766

and predict F({hk}). 767

Proof: See Appendix C. 768

As the key point from Lemma 1, a neural network only 769

distills useful information from the instantaneous channels 770

to learn the continuous mapping F({hk}) and predict the 771

power coefficients with low computational complexity since 772

the satisfied-user set Q can be expressed as in (23), by means 773

of supervised learning. More precisely, different from previous 774

works [49], [50], this paper only makes use of the channel 775

gains to learn a fully-connected neural network as the benefits 776

of (22) conditioned by the precoding vectors as sketched in 777

Fig. 3.4 778

Forward propagation: We denote h̃k = 779

[|hk1|, . . . , |hkN |]T ∈ RN
+ the channel gain vector, with 780

hkn denoting the n-th element. After that, each given 781

realization of those channel gains are stacked into a vector 782

as x = [h̃T
1 , . . . , h̃T

K ]T ∈ RKN
+ . The law of conservation 783

of energy indicates that the channel gain should be in 784

a closed set, but their values might be extremely small 785

due to deep fading. Subsequently, the channel gains are 786

normalized to reducing fluctuations from the propagation 787

environment before utilizing them as the input to train the 788

neural network. We numerically observe that this procedure 789

will speed up the training phase and moderate the gradient 790

vanishing problem. The normalized vector xin ∈ RKN is 791

mathematically formulated from x as follows 792

[xin]m = ([x]m − [xmin]m)/([xmax]m − [xmin]m), (25) 793

where [x]m is the m-th element of vector x; xmin,xmax ∈ 794

RKN
+ with the m-th element [xmin]m, [xmax]m is respec- 795

tively defined as [xmin]m = min {[x]m} and [xmax]m = 796

max {[x]m}, where {[x]m} contains all the realizations of 797

[x]m in the training data set. In the considered framework, 798

both the channel gains and the optimized power coefficients 799

are normalized by applying the same methodology as in (25), 800

and hence the data set is a compact set. The normalized data 801

xin is now considered to be the input of the neural network for 802

learning the set of weights and biases over some hidden layers. 803

4According to the universal approximation theorem [20], [48], an adequately
neural network can approximate a continuous mapping from a provided-input
and designed-output data set. For a given accuracy, there may exist more
than one neural network structures to learn the series of continuous mappings
in (21)–(24). The proof-of-concept idea in this paper is to demonstrate the
effectiveness of neural networks in predicting the solution to a multi-objective
optimization problem with low computational complexity.
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Fig. 3. The considered neural network architecture to learn and predict the solution to problem (11).

Activation functions are executed at neurons of each hidden804

layer to imitate nonlinear properties in the data set. In detail,805

if xuv denotes the input vector of the u-th neuron at the v-th806

hidden layer, then the corresponding output value is defined807

as yuv = fuv(wT
uvxuv + buv), where wuv and buv represent808

the weights and bias associated with this neuron; fuv(·) is the809

activation function that imitates the nonlinear properties in a810

data set. After passing through the hidden layers, the output811

signal of the neural network block is denoted by p̃ ∈ RK
+ .812

The forward propagation is deployed for both the training and813

testing phases. Furthermore, for the testing phase, the predicted814

data power vector p̂ ∈ RK
+ is obtained by denormalizing as815

[p̂]k = [p̃]k ([p̃max]k − [p̃min]k) + [p̃min]k, (26)816

where [·]k is the k-th element of power vectors, while [p̃max]k817

and [p̃min]k are the maximum and minimum value of the818

power coefficient for UEk in the data set. Due to the local819

normalization that has generated a compact set for the power820

coefficient of each user, a neural network with a finite number821

of neurons may not guarantee the limited power budget con-822

straint (11c). To get rid of this issue, the following mapping is823

made as [p̂∗]k = Pmax[p̂]k
/ ∑

k�∈K[p̂]k� , then
∑

k∈K[p̂∗]k =824

Pmax aligning with the full power consumption to maximize825

the sum rate [34].826

Back propagation: It is only exploited in the training phase827

with the supports of the optimized power coefficients from828

Algorithm 1. The mean squared error (MSE) metric is adopted829

as the loss function for the training phase, which is defined as830

LMSE(Θ) = E{�p̃ − p̃∗�2
2}, where Θ is the set comprising831

all the weights and biases used in the neural network; p̃∗
832

is the vector with the optimized power coefficients obtained833

from Algorithm 1 and after normalization. The loss function834

LMSE(Θ) is expected over many realizations of different user835

locations and possible combinations over the N overlapping836

beams. From a set of initial values, the weights and bias are837

iteratively updated by minimizing LMSE(Θ) with the backward838

propagation of the data set [18]. Thanks to the benefits839

of supervised learning in training a neural network and to840

learn the multi-objective problem as analyzed in (21)–(24),841

Algorithm 1 is utilized to generate the training data. The842

Adam optimization is used for backpropagation [51]. The843

momentum and babysitting the learning rate are exploited to 844

reduce training time and get the best performance [20]. 845

IV. SATELLITE COMMUNICATIONS WITH LINEAR 846

PRECODING AND WATER FILLING 847

This section presents an application of our framework with a 848

concrete linear precoding technique. Thanks to the semi-closed 849

form power solution, a fine-tuning should be made to integrate 850

the water filling method into Algorithm 1 on a case-by-case 851

basis. 852

A. Demand-Based Optimization With Zero Forcing Precoding 853

We now apply the ZF precoding technique to our frame- 854

work, which effectively cancels out all mutual interfer- 855

ence [15].5 Precisely, for a given channel matrix H, the 856

precoding matrix Wzf ∈ CN×K is formulated as Wzf = 857

H(HHH)−1, and the precoding vector wzf
k defined for UEk 858

is calculated by wzf
k = w̄zf

k /�w̄zf
k �, where w̄zf

k is the k-th 859

column of the matrix Wzf . The channel capacity of UEk is 860

reformulated from (3) to an equivalent form as 861

Rzf
k (pk) = B log2

(
1 +

pk

�w̄zf
k �2σ2

)
, [Mbps], ∀k ∈ K, 862

(27) 863

which demonstrates that all mutual interference from the other 864

users to UEk is completely eliminated and the channel capacity 865

is only the function of its own power coefficient. We now 866

apply the classical water filling technique to tackle the joint 867

power allocation and demand-based control as presented in 868

Algorithm 2. Specifically, we first compute the precoding 869

vectors {wzf
k }. From the channel capacity (27), the minimum 870

required power p∗min,k allocates to UEk with its demand is 871

Rzf
k (pk) = ξk ⇔ p∗min,k = αk�w̄zf

k �2σ2, ∀k ∈ K. (28) 872

Thanks to the closed-form expression in (28), after obtaining 873

{p∗min,k}, we only need to testify the condition (13) to identify 874

if the system can offer the QoS requirements to all the K 875

scheduled users. Inspirited by Algorithm 1, qualifying (13) by 876

5In this paper, the scheduled users are selected to ensure that the channel
matrix is not ill-conditioned for effectively cancelling out mutual interference
once the ZF precoding technique is utilized.
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Algorithm 2 An Algorithm to Obtain a Local Solution to
Problem (8) With the ZF Precoding Technique

INPUT: Channel vectors {hk}; Maximum power Pmax; QoS
requirement set {ξk}.

1: Compute the precoding vectors {w̄zf
k } as wzf

k =
w̄zf

k /�w̄zf
k �.

2: Compute the minimum power levels {p∗min,k} as in (28).
3: if Condition (13) is satisfied then
4: Solve problem (29) to obtain {p̃∗k} by utilizing (30).
5: Update p∗k = p̃∗k + p∗min,k, ∀k ∈ K and Q∗ = K.
6: else
7: Solve problem (31) with the order in (32) to obtain Q∗

as in (33) and p∗k = p∗min,k, ∀k ∈ Q∗.
8: Solve problem (33) to obtain p∗k, ∀k ∈ K\Q∗ as in (34).
9: end if

OUTPUT: The satisfied-user set Q∗ and the optimized power
coefficients {p∗k�}.

using
∑

k∈K p∗min,k leads to the two possible cases with sepa-877

rated consequences. In the former case, where
∑

k∈K p∗min,k ≤878

Pmax, problem (5) should be solved to the optimal solution879

by the interior-point methods and a successive convex approx-880

imation in polynomial time [52]. However, to avoid a high881

cost of computing the first and second derivatives required by882

the interior-point methods, we propose a low computational883

complexity algorithm that can apply for practical satellite884

communications. Motivated by the fact that a certain amount885

of the power budget will be dedicated to guaranteeing all the886

scheduled users’ demands while the remaining power should887

spend on maximizing the sum rate, the following optimization888

problem is considered as889

maximize
{p̃k�∈K}

∑
k∈K Rzf

k (p̃k) (29a)890

subject to
∑

k∈K p̃k ≤ Pmax −
∑

k∈K p∗min,k. (29b)891

The constraint (29b) implies that the satellite only utilizes892

the remaining power after consuming a portion of the power893

budget to ensure the K scheduled users served by their QoS894

requirements. From the water filling, the optimal solution to895

p̃k is computed in a semi-closed form as follows896

p̃∗k = max
(

0,
1

λ∗ ln 2
− ||w̄zf

k ||2σ2

)
, ∀k ∈ K, (30)897

where λ is the optimal solution to the Lagrange multiplier898

associated with the power constraint (29b). The transmit power899

solution {p∗k} to problem (11) is attained by combining the900

solution {p̃∗k} to problem (29) and the required powers {p̂k�}901

as p∗k = p̃∗k + pmin,k, ∀k. For the latter, if the condition (13)902

is not satisfied, i.e.,
∑

k∈K p∗min,k > Pmax, we construct a903

heuristic mechanism to conquer problem (11) with the inter-904

ference cancellation property of the ZF precoding technique.905

Accordingly, the satisfied-user set Q∗ can be attained by906

solving the problem907

maximize
Q

|Q| (31a)908

subject to
∑

k∈Q p∗min,k ≤ Pmax. (31b)909

From the benefits of the ZF precoding technique in mitigating 910

mutual interference, an scheduled user with better the spectral 911

norm of the precoding vector than the other, i.e., computing as 912

w̄zf
k , ∀k, will consume less power, and therefore having con- 913

structive a contribution to the power resource as demonstrated 914

in (28). Hence, one can attain the solution to problem (31) by, 915

first, sorting {p∗min,k} in ascending order as 916

p∗min,π1
≤ p∗min,π2

≤ . . . p∗min,πK
, (32) 917

where {π1, . . . , πK} is a permutation of {1, . . . , K}. The 918

satisfied-user set Q∗ includes satisfied users, taken one by one, 919

in the sorted-order list (32) such that 920

Q∗ =
{

k
∣∣∣∑|Q∗|

k=1
p∗min,πk

≤ Pmax, 921

∑|Q∗|+1

k=1
p∗min,πk

> Pmax, k ∈ K
}

. 922

The following power budget of the satellite after allocating 923

to the satisfied users in Q∗ with their QoS requirements 924

P̃max = Pmax − ∑|Q∗|
k=1 p∗min,πk

is dedicated to enhancing 925

the data throughout for the remaining users. It results in 926

p∗k = p∗min,k, ∀k ∈ Q∗. The optimal power allocation to the 927

unsatisfied users in K\Q∗ is attained by performing the water 928

filling method for the optimization problem as 929

maximize
{pk�≥0,k�∈K\Q∗}

∑
k∈K\Q∗ Rzf

k (pk�) (33a) 930

subject to
∑

k∈K\Q∗ pk ≤ P̃max. (33b) 931

We emphasize that the water filling method can be applied 932

to obtain the global solution to problem (33), for which the 933

optimal power p∗k of UEk is computed in a semi closed form 934

as 935

p∗k = max
(

0,
1

λ̃∗ ln 2
− ||w̄zf

k ||2σ2

)
, ∀k ∈ K \ Q∗, (34) 936

where λ̃∗ is the optimal solution to the Lagrange multiplier 937

associated with the constraint (33b). By completely mitigating 938

mutual interference among the K scheduled users, Algo- 939

rithm 2 has the main computational complexity on searching 940

for the optimal Lagrangian multipliers λ∗ and λ̃∗. 941

B. Demand-Based Optimization With Regularized 942

Zero-Forcing Precoding 943

We now inherit the major benefits of the water filling 944

method to design a heuristic algorithm for the RZF technique. 945

From the channel matrix H, the precoding matrx is formulated 946

as Wrzf = H(HHH + Kσ2

Pmax
IK)−1, where IK is the identity 947

matrix of size K × K and the RZF precoding vector defined 948

for UEk is wrzf
k = w̄rzf

k /�w̄rzf
k �, where w̄rzf is the k-th 949

column of matrix Wrzf . The RZF precoding technique does 950

not entirely mitigate mutual interference with regard to its 951

own benefits. Precisely, it balances the transmit power and 952

mutual interference up to a level [15]. Hence, the network 953

should utilize (3) to evaluate the channel capacity. To exploit 954
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the water-filling method for the power control, with ∀k ∈ K,955

(3) is upper bounded by956

Rk({pk�}) ≤ B log2

(
1 +

pk|hH
k wrzf

k |2
σ2

)
, [Mbps],957

� R̃k(pk) (35)958

by neglecting mutual interference from the other scheduled959

users. We stress that the upper bound on the channel capacity960

in (35) aligns with the standard form that the water filling961

method can perform as shown in Algorithm 3. Because of962

the mutual interference, we should introduce a tolerable rate963

accuracy for UEk, denoted by ωk ≥ 0. Alternatively, the964

relaxed-QoS requirement of UEk should be ξk +ωk. Similar to965

(28), we thus compute the minimum required power p∗min,k by966

using (35) as p∗min,k = (2(ξk+ωk)/B − 1)�wrzf
k �2σ2, ∀k ∈ K,967

then if the conditions (12) and (13) hold, Algorithm 3 solves968

the sum-rate optimization problem as969

maximize
{p̃k�∈K}

∑
k∈K R̃k(p̃k) (36a)970

subject to
∑

k∈K p̃k ≤ Pmax −
∑

k∈K p∗min,k. (36b)971

Let us denote {p̃∗k} the solution to problem (36) that is972

concretely expressed in a semi-closed form as973

p̃∗k = max
(

0,
1

μ∗ ln 2
− σ2

|hH
k wrzf

k |2
)

, ∀k ∈ K, (37)974

where μ∗ is the optimal Lagrange multiplier associated with975

the constraint (36b), then we obtain the optimized power976

coefficient of UEk as p∗k = p̃∗k+p∗min,k and the satisfied-user set977

Q∗ = {k|k ∈ K, Rk({p∗k�}) ≥ ξk} (Step 5 of Algorithm 3).978

If the conditions (12) and (13) are not satisfied, then the con-979

gestion issue appears. Algorithm 3 initially solves problem (6)980

by applying the water filling method to obtain the optimized981

power coefficients {p∗,(0)
k } and the relaxed satisfied-user set982

Q̃∗,(0) = {k|k ∈ K, Rk({p∗,(0)
k� }) ≥ ξk + ωk}. At iteration n,983

let us decompose Q̃∗,(n−1) = Q̃∗,(n−2) ∪ Q̃∗,(n−1)
1 where984

Q̃∗,(n−2) and Q̃∗,(n−1) contains the users satisfied their985

relaxed-QoS requirements up to iteration n − 2 and the new986

ones at iteration n − 1, respectively. Notice that p
∗,(n−1)
k =987

p
∗,(n−2)
k if k ∈ Q̃∗,(n−2) and Q̃∗,(n−2) = ∅ as n = 1. From988

the optimized power solution {p∗,(n−1)
k } to problem (39),989

we can truncate the transmit power of new satisfied user k990

to as991

p
∗,(n−1)
k =

(
2

(ξk+ωk)
B − 1

)∑
�∈K\{k} p

∗,(n−1)
� |hH

k wrzf
� |2+σ2

|hkwrzf
k |2 ,992

k ∈ Q̃∗,(n−1)
1 , (38)993

and the dedicated power P̃
(n)
max = Pmax−

∑
k∈ �Q∗,(n−1) p

∗,(n−1)
k994

are utilized to improve the remaining scheduled users by995

solving the following optimization problem996

maximize�
p
(n)
k� ≥0,k�∈K\ �Q∗,(n−1)

�
∑

k∈K\ �Q∗,(n−1)
R̃k(p(n)

k� ) (39a)997

subject to
∑

k∈K\ �Q∗,(n−1)
p
(n)
k ≤ P̃ (n)

max.998

(39b)999

Algorithm 3 An Algorithm to Obtain a Local Solution to
Problem (8) With the RZF Precoding Technique

INPUT: Channel vectors {hk}; Maximum power Pmax; QoS
requirement set {ξk}; Tolerable rate accuracy set {ωk}.

1: Compute the precoding vectors {wrzf
k } as wrzf

k =
w̄rzf

k /�w̄rzf
k �.

2: Compute {p∗min,k|k ∈ K, Rk({pk�}) = ξk + ωk}; the
matrices R,Q, and the vector ννν.

3: if Conditions (12) and (13) are satisfied then
4: Solve problem (36) to obtain {p̃∗k}.
5: Update p∗k = p̃∗k + p∗min,k, ∀k ∈ K and Q∗ = {k|k ∈

K, Rk({pk�}) ≥ ξk}.
6: else
7: Solve (6) with the upper bounded channel capacity

in (35) to obtain {p∗,(0)
k } and Q̃∗,(0) = {k|k ∈

K, Rk({p∗,(0)
k� }) ≥ ξk + ωk}.

8: Initial the accuracy δ = |Q̃∗,(0)| and set n = 0.
9: while δ 
= 0 do

10: Set iteration index n = n + 1.
11: Compute p

∗,(n−1)
k for user k ∈ Q̃∗,(n−1) as in (38).

12: Solve problem (39) to obtain {p∗,(n)
k }, ∀k ∈

K\Q̃∗,(n−1).
13: Update Q̃∗,(n) = Q̃∗,(n−1) ∪ Q̃∗,(n)

1 .
14: Update the accuracy δ = |Q̄∗,(n)| − |Q̄∗,(n−1)|.
15: end while
16: Update {p∗k} = {p∗,(n)

k }, and Q∗ = {k|Rk({p∗k�}) ≥
ξk, ∀k ∈ Q̄∗,(n)}.

17: end if
OUTPUT: The satisfied-user set Q∗ and the optimized power

coefficients {p∗k}.

By denoting {p∗,(n)
k }, ∀k ∈ K \ Q̃∗,(n−1), the solution to 1000

problem (39), which is computed in a semi-closed form as 1001

p
∗,(n)
k = max

(
0,

1
μ∗,(n) ln 2

− σ2

|hH
k wrzf

k |2
)

, (40) 1002

where μ∗,(n) is the optimal Lagrange multiplier associated 1003

with the constraint (39b), then the algorithm enables to boost 1004

data throughput for the unsatisfied users. Algorithm 3 termi- 1005

nates as the cardinality of the satisfied-user set retains, i.e., 1006

|Q̄∗,(n)| = |Q̄∗,(n−1)|. 1007

V. NUMERICAL RESULTS 1008

We consider a GEO satellite system consisting of N = 1009

7 beams that serve at most K = 7 scheduled users in 1010

each coherence time interval.6 Specifically, in the simula- 1011

tion section, we investigate a satellite system with a total 1012

of 35000 users evenly distributed across beams, i.e., with 1013

approximately 5000 users laying on each beam coverage 1014

region. At each time slot, a random user per beam selected 1015

for consideration in the power allocation problem (unicast 1016

6In practice the entire system is split in terms of geographical coverage or
carriers due to the limited feeder link bandwidth and each part is handled
by a different gateway. This practical constraint makes our numerical results
reasonable in terms of a single gateway managing a cluster of beams.
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Fig. 4. A snapshot of the served rate per user [Mbps] with the ZF precoding technique for the different benchmarks and the QoS requirement per user
500 [Mbps]: (a) the users’ locations; (b) the effective channel gains; (c) the equal power allocation (EqualPower); (d) the sum rate maximization (SumOpt);
(e) the satisfied-user set maximization (SatisSetOpt); and (f) the joint sum rate and satisfied-user set maximization (JointOpt).

user scheduling). For sake of the simplicity, there is no user1017

mobility. The parameters associated with the satellite and the1018

beam radiation patterns are provided by ESA in the context1019

of [31]. In detail, the radiation patterns are based on a Defo-1020

cused Phased Array-Fed Reflector (PAFR), with reflector size1021

of 2.2m and an array diameter of roughly 1.2m. The antenna1022

array before the reflector is a circular array with the space of1023

2× carrier wavelength and 511 elements. The satellite location1024

is at 13◦ E, and the system operates at Ka band, for which1025

the carrier frequency is 20 [GHz] [53]. The system bandwidth1026

is 500 [MHz] and the satellite height is 35, 786 [km]. The1027

maximum transmit power is Pmax = 23.37 [dBW] corre-1028

sponding to the average beamforming gain 44.4 [dBi] and the1029

effective isotropic radiated power (EIRP) −27 [dBW/Hz]. The1030

receive antenna diameter is 0.6 m and the noise power per1031

user is −118.3 [dB]. For the data-driven approach, we con-1032

struct a fully-connected neural network comprising hidden1033

layers with 128 and 64 neurons, respectively. The rectified1034

linear unit (ReLU) is used as the activation function. The1035

25000 realizations of different user locations are captured1036

for the training phase to learn the continuous mappings in1037

Section III-B. We also use 10000 realizations for the testing1038

Fig. 5. The probability of congestion appearance versus the QoS requirement.

phase to demonstrate the effectiveness of our proposed data- 1039

driven approach. Simulation results are implemented by using 1040

MATLAB on a personal Dell Latitude 5510 laptop with CPU 1041

Intel Core(TM) i7-10610U @ 1.8-2.3 [GHz], and 16 [GB] 1042

RAM. 1043
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Fig. 6. The probability of satisfied users versus the QoS requirement.

Fig. 7. The sum rate versus the QoS requirement.

Fig. 8. The sum rate versus the QoS requirement obtained by JointOpt.

By exploiting the ZF and RZF precoding, the following1044

benchmarks are involved for comparison:1045

i) Joint sum rate and satisfied-user set maximization is1046

presented by Algorithm 1 for a general framework, and1047

by Algorithm 2 and 3 for the ZF and RZF precoding1048

technique, respectively. This benchmark is denoted as1049

“JointOpt” in the figures.1050

ii) Satisfied-user set maximization is a relaxation of Join-1051

tOpt that only focuses on maintaining users’ demand,1052

especially users with bad channel conditions. If all the1053

K scheduled users are served with their demands, the1054

remaining power budget is equally assigned to every1055

Fig. 9. The objective function defined in (41) versus the QoS requirement.

Fig. 10. The Jain’s index versus the QoS requirement.

user. This benchmark is denoted as “SatisSetOpt” in the 1056

figures. 1057

iii) Sum rate maximization has been previously demonstrated 1058

in [32], which only maximizes the total data throughput 1059

for which users with extreme channel conditions may be 1060

out of service to dedicate the power budget to other users. 1061

This benchmark is denoted as “SumOpt” in the figures. 1062

iv) Equal power allocation serves as a baseline to demon- 1063

strate the benefits of power allocation and satisfied-user 1064

set optimization [8], [9]. The transmit power level 1065

14.92 dB is assigned to each user without a guaran- 1066

tee on users’ demand. This benchmark is denoted as 1067

“EqualPower” in the figures. 1068

In Fig. 4, we plot the served rate [Mbps] for every user 1069

relying on (27) by a given realization of user locations 1070

(see Fig. 4(a)). Fig 4(b) shows the effective channel gains, 1071

with users 2 and 4 as the worst who are located near the 1072

boundary of the overlapping beams. For a fixed power level, 1073

EqualPower cannot guarantee the QoS requirements and those 1074

users get lower data throughput than their requests, which is 1075

500 [Mbps]. If the system deploys the sum-rate optimization 1076

to maximize the total data throughput of the entire network, 1077

users 2 and 4 even get 1.5× to 2× lower data throughput 1078

than that of EqualPower. Both SatisSetOpt and JointOpt offer 1079

satisfactory data throughput to all the users. Nonetheless, Join- 1080

tOpt gives 200 [Mbps] higher the sum rate than SatisSetOpt, 1081

corresponding to the 4.8% improvement. In the following, 1082
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we report the average system performance over 200 different1083

realizations of users’ locations.1084

In Fig. 5, we evaluate the probability of congestion appear-1085

ance, which is defined for time instances when at least one1086

scheduled user does not satisfy its QoS requirement. If the1087

QoS requirement increases, our proposed algorithms provide1088

the lowest probability of congestion appearance for both1089

the ZF and RZF precoding techniques, especially at a low1090

QoS regime. By maximizing the total system sum rate only,1091

SumOpt always causes the highest congestion since scheduled1092

users with lower channel gains are allocated less power since1093

there is no QoS guarantee. In Fig. 6, the probability of satisfy-1094

ing demand-based constraints is defined as a ratio between the1095

number of satisfied users and the total users in the networks,1096

i.e., E{|Q|}/K . When the QoS requirement per user increases,1097

the satisfaction reduces since the network faces difficulties in1098

maintaining the demands for many users with a limited power1099

budget. If each user requires a QoS requirement level less than1100

400 [Mpbs], SumOpt offers the lowest probability of satisfying1101

demand-based constraints. After the effort to maximize the1102

number of satisfied users, our proposed approaches allow1103

some users served by a data throughput less than requested to1104

maximize the sum rate. Another possible option is to schedule1105

these unsatisfied users later in the next time slots. The joint1106

congestion control and sum-rate maximization over multiple1107

time slots are left for future work.1108

Besides, Fig. 7 demonstrates the scarification of the sum rate1109

to improve the number of satisfied users. Both EqualPower and1110

SumOpt allocate the transmit powers to the users without any1111

guarantee of the individual QoSs, thus they should provide the1112

constant sum rate of 5618 [Mbps] and 5467 [Mbps] on average1113

by exploiting the RZF precoding technique. Meanwhile, the1114

system with the ZF precoding technique is 4346 [Mbps]1115

and 4670 [Mbps]. By using the RZF precoding technique,1116

SatisSetOpt needs to lower the sum rate 420 [Mbps] compared1117

with SumOpt to enhance the QoS, while the reduction is only1118

about 177 [Mbps] if the network deploys JointOpt. In Fig. 8,1119

we explain the features of the sum rate [Mbps] when the1120

demand-based constraints are involved by utilizing JointOpt1121

with the different sets, including the set of all scheduled users1122

K, the satisfied-user set Q, and the unsatisfied-user set K\Q.1123

The sum rate of all the users is synthesized from the sum1124

rate of satisfied- and unsatisfied-user sets as a consequence of1125

problem (8).1126

For evaluating the balance between the sum rate and the1127

satisfied-user set, we now define a specific case of objective1128

function as1129

Ι � Ω
( |Q|

K
+

∑
k∈K Rk({p∗k�})∑

k∈K RSumOpt
k ({p∗k�})

)
, (41)1130

where Ω = K
�

k∈K RSumOpt
k ({p∗

k�})
K+

�
k∈K RSumOpt

k ({p∗
k�})

stands for the normalized1131

factor and RSumOpt
k ({p∗k�}) is the channel capacity of UEk1132

obtained by solving problem (6). We compare the performance1133

of all the benchmarks versus the different QoS requirements1134

as in Fig. 9. JointOpt gives the highest performance as the1135

individual QoS requirement {ξk} varies. Algorithms 2 and 31136

can handle the conflict utility met rices well. The other1137

TABLE I

THE PERFORMANCE AND RUN TIME (MILLISECONDS) COMPARISON OF
THE MODEL-BASED AND DATA-DRIVEN APPROACHES

benchmarks, i.e., EqualPower and SumOpt, give significantly 1138

lower performance due to ignoring the users’ demands. More- 1139

over, the higher QoS requirements expand the gap between 1140

EqualPower and SumOpt and our proposed algorithms. If UEk 1141

requests ξk = 200 [Mbps] and the system uses the ZF precod- 1142

ing technique, JointOpt and EqualPower is almost overlapped. 1143

However, the gap expands 10× when the individual QoS 1144

requirement is 1200 [Mbps]. 1145

The Jain’s fairness index is a good metric to measure 1146

how the offered data throughput matches the demands at the 1147

user levels [54]. By computing the satisfaction demand of 1148

each user, i.e., denoted by ok as a ratio between the offered 1149

data throughput and the QoS requirement of user k, ∀k, then 1150

the Jain’s index is J = (
∑

k∈K ok)2/(K
∑

k∈K o2
k), which 1151

varies from 1/K to 1. Fig. 10 plots the Jain’s index for 1152

all the benchmarks as a function of the QoS requirement. 1153

To maximize the sum rate, the power should be dedicated to 1154

users with good channel conditions. This unfair policy leads 1155

SumOpt to a very low Jain’s index. Consequently, an equal 1156

power allocation strategy offers a better fairness level with the 1157

Jain’s index 1.2× and 1.1× higher than SumOpt by utilizing 1158

the ZF and RZF precoding techniques, respectively. The two 1159

conflict objective functions, i.e., the satisfied-user set and the 1160

sum rate, results in the second-best Jain’s index with up to 1161

1.23× better than SumOpt with the RZF precoding. 1162

Figure 11 shows the CDF of some metrics for both 1163

the model-based and data-driven approaches. The continu- 1164

ous mappings in (21)–(24) may not be isomorphisms since 1165

the codomains are non-smooth functions, especially for the 1166

achievable rates in (23) (see Figs. 11(a) and (c)). The fact 1167

manifests difficulties in training and predicting the joint power 1168

allocation and satisfied-user set optimization. However, the 1169

neural network learns pretty well for some regimes with 1170

smooth CDFs. Fig 11(b) shows that the power allocation dif- 1171

ference between the data-driven and model-based approaches 1172

are 30.16% and 12.35% on average with the ZF and RZF 1173

precoding techniques, respectively. Furthermore, we show in 1174

detail the performance and run time of those two approaches 1175

in Table I. Although there is a slightly increasing the run 1176

time when the individual QoS requirement increases, all the 1177

proposed approaches yield the results in milliseconds (ms). 1178

Specifically, the data-driven approach reduces run times up to 1179

about 14× compared with the model-based approach. 1180
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Fig. 11. The cumulative distribution function (CDF) of the different metrics provided by the model-based and data-driven approaches with the individual
QoS requirement 250 [Mbps]: (a) the served rate per user; (b) the power allocation to each user; (c) the sum rate.

Fig. 12. The performance evaluation under the propagation environments including the rain and cloud attenuation: (a) the probability of congestion appearance
versus the QoS requirement.; (b) the CDF of the sum rate [Mbps] provided by the model-based and data-driven approaches with the QoS requirement per
user 250 [Mbps].

In Fig. 12, we show the impact of the atmosphere loss1181

including rain and cloud attenuation on the system perfor-1182

mance. In particular, rain fading model can be modeled by a1183

log-normal distribution, whose parameters such as mean and1184

variance have been selected according to the European cli-1185

mate [14]. Salonen-Uppala model [55], [56] is used for mod-1186

eling cloud attenuation, which depends on several features,1187

i.e., the elevation angle toward the satellite, user’s location and1188

the carrier frequency. Particularly, the channel model from the1189

satellite to UEk is formulated as h̃k = hk
√

rk/
√

ck, k ∈ K,1190

where rk and ck is the rain fading and cloud attenuation at UEk,1191

respectively. Herein, rk is modeled as a lognormal random1192

variable with mean −2.6 [dB] and variance 1.63 [dB] [14]. ck1193

is mathematically defined as1194

ck =
0.819fWred

ε��(1 + ζ2)
1

sin(Ek)
, k ∈ K, (42)1195

where f [GHz] is the carrier frequency, Wred = 0.6 [kg/m2]1196

is the statistics for the integrated reduced liquid water content,1197

Ek denotes the elevation angle between UEK and the satellite.1198

We define ζ = (2 + ε�)/ε�� with ε� and ε�� present the real1199

and imaginary parts of the permittivity of water, which is1200

calculated as [56] 1201

ε� = ε2 +
ε0 − ε1

1 + ( f
fp

)2
+

ε1 − ε2

1 + ( f
fs

)2
, (43) 1202

ε�� =
f(ε0 − ε1)

fp

(
1 + ( f

fp
)2

) +
f(ε1 − ε2)

fs

(
1 + ( f

fs
)2

) , (44) 1203

with ε0 = 77.66 + 103.3(ϑ − 1), ε1 = 5.48, ε2 = 3.51. 1204

fp = 20.09 − 142(ϑ − 1) + 294(ϑ − 1)2 [GHz] and fs = 1205

590 − 1500(ϑ − 1) [GHz] are the principal and secondary 1206

relaxation frequencies, respectively. Finally, ϑ = 300/T with 1207

T = 273.15 is temperature measured in Kevin. In Fig. 12(a), 1208

it is numerically observed that even though the congestion 1209

probability increases in all algorithms because of the con- 1210

sideration of the atmosphere loss, our proposed algorithms 1211

still outperforms other benchmarks. Furthermore, Fig. 12(b) 1212

manifests that the data-driven approaches work well with the 1213

updated channel models. 1214

VI. CONCLUSION 1215

This paper has investigated the congestion issue in the 1216

demand-based optimization for multi-beam multi-user satellite 1217

communications. Two for one, under the methodology of 1218

multi-objective optimization, we jointly maximized the sum 1219
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rate and satisfied-user set with all the channel conditions1220

when many users share the same time and frequency resource1221

plane. Conditioned on maintaining the QoS requirements as1222

the priority, we have designed the heuristic algorithms that1223

can effectively solve the optimization problem and operate in1224

both feasible and infeasible domains under the limited power1225

budget and the individual QoS requirements. By exploiting1226

the water filling method and the linear precoding technique,1227

numerical results confirmed that the number of satisfied users1228

is significantly increased by utilizing our framework compared1229

with the state-of-the-art benchmarks. Furthermore, the run1230

time by deploying a neural network reduces to be far away to1231

10 ms enabling real-time power allocation and satisfied-user1232

control in satellite systems where the solution needs to be1233

updated even at the millisecond time sale because of variety1234

in the user scheduling decisions or individual user demands.1235

APPENDIX1236

A. Proof of Theorem 11237

From Assumption 1, the system first prioritizes on max-1238

imizing the number of satisfied users with the minimum1239

transmit power consumption. This priority will lead to the1240

maximum amount of the remaining power budget for the1241

objective function f0({pk�}). By assuming that the solution1242

to power control is available and Q = K, the total transmit1243

power minimization problem is formulated as follows1244

minimize
{pk�∈R+}

∑
k∈K pk, (45a)1245

subject to Rk({pk�}) ≥ ξk, ∀k ∈ K, (45b)1246 ∑
k∈K pk ≤ Pmax. (45c)1247

We notice that problem (45) has a non-empty feasible set, and1248

it is indeed a convex problem. By denoting αk = 2ξk/B −1249

1, ∀k, (45) is converted from the demand-based constraints to1250

the SINR requirements as1251

minimize
{pk�∈R+}

∑
k∈K pk, (46a)1252

subject to γk({pk�}) = αk, ∀k ∈ K, (46b)1253 ∑
k∈K pk ≤ Pmax. (46c)1254

The equality constraints in (46) is obtained by the fact that1255

problems (45) and (46) share the same global optimum.1256

By exploiting the SINR expression in (4) for UEk into the1257

corresponding SINR constraint in (46), we now recast this1258

SINR constraint into an equivalent form as1259

pk|hH
Kwk|2 = αkσ2 + αk

∑
�∈K\{k} p�|hH

k w�|21260

(a)⇔ pk =
αkσ2

(αk + 1)|hH
Kwk|21261

+
αk

(αk + 1)|hH
k wk|2

∑
�∈K p�|hH

k w�|2,1262

(47)1263

where (a) is obtained by adding the extra term1264

αkpk|hH
k wk|2 into both sides of the first equality in1265

(47), then doing some algebraic manipulation. Repeating the1266

same steps for the SINR constraints of all the K−1 scheduled1267

users and then stacking them in the matrix form, we obtain 1268

the linear equation as 1269

(IK − RQ)p = ννν, (48) 1270

where R,Q, and ννν are given in the theorem. In (48), p = 1271

[p1, . . . , pK ] ∈ RK
+ . We observe that RQ has nonnegative 1272

elements. By applying the Perron-Frobenius theorem [44], 1273

the spectral radius of matrix RQ should satisfy ρ(RQ) = 1274

max{|λ1|, . . . , |λK |} < 1. After that, the unique solution to 1275

(48) exists since (RQ)m → 0 as m → ∞, which implies that 1276

(IK −RQ)−1 =
∑∞

m=0(RQ)m converges, and each element 1277

is nonnegative. Consequently, the first condition as shown in 1278

the theorem. The minimum power solution that the satellite 1279

spends on serving all the K scheduled users with the QoS 1280

requirements is 1281

p∗ = (IK − RQ)−1ννν. (49) 1282

Combining the power solution and the limited power budget 1283

constraint in (45), we obtain the second condition as shown 1284

in the theorem. 1285

B. Proof of Theorem 2 1286

Let us define Q(n) a feasible satisfied-user set to prob- 1287

lem (17) that contains all the scheduled users with at least their 1288

QoS requirements at iteration n, which is defined as follows 1289

Q(n) =
{

k|Rk({p(n)
k� }) = ξk, ∀k ∈ Q∗,(n−1), 1290

Rk({p(n)
k� }) ≥ ξk, k ∈ K \ Q∗,(n−1)

}
. (50) 1291

We further introduce Q̃(n) being the feasible region that 1292

contains all the possibilities Q(n), then we obtain the following 1293

properties Q∗,(n−1) ∈ Q̃(n) and |Q∗,(n−1)| ≤ |Q∗,(n)|, where 1294

the first property is attained by the fact that Q∗,(n−1) is 1295

involved in the demand-based constraint at iteration n. The 1296

second property is because problem (17) should give a solution 1297

to the satisfied-user set not worse than the previous one. 1298

This establishes the monotonically increasing property in (19). 1299

We only consider a finite set of scheduled users, i.e., |Q(n)| < 1300

K, ∀n, thus (19) should be bounded from above. If the 1301

convergence holds at iteration n, then the optimal satisfied-user 1302

set must be also a solution to iteration n + 1. Otherwise, 1303

it results in |Q∗,(n+1)| ≥ |Q∗,(n)|. Algorithm 1 ensures the 1304

cardinality of the satisfied-user set Q∗ non-decreasing along 1305

with iterations and converges to a fixed point. 1306

We prove the monotonic decreasing function of the sum 1307

rate in (20) by induction. Indeed, the first inequality holds, 1308

i.e.,
∑

k∈K Rk({p∗,(0)
k� }) ≥ ∑

k∈K Rk({p∗,(1)
k� }) since the 1309

feasible domain of problem (6) corresponding to the weight 1310

values μ1 = 1 and μ2 = 0 that provides a better sum rate 1311

solution than that of problem (17). Assume that the inequal- 1312

ity holds up to iteration n, i.e.,
∑

k∈K Rk({p∗,(n−1)
k� }) ≥ 1313∑

k∈K Rk({p∗,(n)
k� }), and the proof should confirm that it also 1314

holds at iteration n + 1: 1315∑
k∈K Rk

({p∗,(n)
k� }) ≥

∑
k∈K Rk

({p∗,(n+1)
k� }). (51) 1316
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We reformulate the left-hand side of (51) by decomposing1317

the scheduled -user set K into the satisfied-user set and the1318

unsatisfied-user set as follows1319 ∑
k∈K Rk

({p∗,(n)
k� })1320

=
∑

k∈Q∗,(n)
Rk

({p∗,(n)
k� }) +

∑
k∈K\Q∗,(n)

Rk

({p∗,(n)
k� })1321

=
∑

k∈Q∗,(n−1)
ξk +

∑
k∈Q̄∗,(n−1)

Rk

({p∗,(n)
k� })1322

+
∑

k∈K\Q∗,(n)
Rk

({p∗,(n)
k� }), (52)1323

with noting that Q∗,(n) = Q∗,(n−1) ∪ Q̄∗,(n−1), where1324

Q̄∗,(n−1) is the satisfied-user set at iteration n−1 consisting of1325

users with better data throughput than requested. Since the first1326

part of (52) provides users with rates equal to their demands,1327

we can formulate an optimization problem to maximize the1328

left-hand side of (51) with the feasible domain D(n) defined1329

as follows1330

D(n) =
{
p
(n)
k , ∀k ∈ K∣∣Rk({p(n)

k� }) = ξk, ∀k ∈ Q∗,(n−1),1331 ∑
k∈K p

(n)
k ≤ Pmax

}
. (53)1332

Next, we recast the right-hand side of (51) to an equivalent1333

form as1334 ∑
k∈K

Rk

({p∗,(n+1)
k� })1335

=
∑

k∈Q∗,(n+1)
Rk

({p∗,(n+1)
k� })1336

+
∑

k∈K\Q∗,(n+1)
Rk

({p∗,(n+1)
k� })1337

=
∑

k∈Q∗,(n)
ξk +

∑
k∈Q̄∗,(n)

Rk

({p∗,(n+1)
k� })1338

+
∑

k∈K\Q∗,(n+1)
Rk

({p∗,(n+1)
k� })1339

=
∑

k∈Q∗,(n−1)
ξk +

∑
k∈Q̄∗,(n−1)

ξk1340

+
∑

k∈Q̄∗,(n)
Rk

({p∗,(n+1)
k� })1341

+
∑

k∈K\Q∗,(n+1)
Rk

({p∗,(n+1)
k� }). (54)1342

where Q∗,(n+1) = Q∗,(n) ∪ Q̄∗,(n), and (54) is obtained1343

since (20) holds until iteration n by induction. By observing1344

(54), an optimization problem is formulated to maximize1345

the right-hand side of (51) with the feasible domain D(n+1)
1346

defined as follows1347

D(n+1) =
{
p
(n+1)
k , ∀k ∈ K∣∣Rk(

{
p
(n+1)
k�

}
) = ξk,1348

∀k ∈ Q∗,(n−1) ∪ Q̄∗,(n−1),
∑

k∈K p
(n+1)
k ≤ Pmax

}
.1349

(55)1350

Combining (53) and (55), it holds that D(n+1) ⊆ D(n) since1351

∅ is a subset of Q̄∗,(n−1). Hence, (51) holds and we conclude1352

the proof.1353

C. Proof of Lemma 11354

From the given optimized power coefficients {p∗k} to the1355

K scheduled users, the satisfied-user set Q∗ is defined as1356

Q∗ =
{
k
∣∣Rk({p∗k�}) ≥ ξk, k ∈ K}

, where Rk({p∗k�}) is given1357

as in (3) with pk� = p∗k� , ∀k ∈ K. The result indicates that the 1358

discrete set Q is explicitly characterized by the propagation 1359

channels and the power coefficients, which are continuous 1360

variables. This result is obtained by noting that the precoding 1361

vectors are defined by the instantaneous channel state informa- 1362

tion. Let us define τk = �hk� and the law of conservation of 1363

energy points out that 0 ≤ τk ≤ √
N , which is bounded from 1364

above. We observe that 0 ≤ |hH
k w�|2

(a)

≤ �hH
k �2�w��2 (b)

= τ2
k , 1365

where (a) is obtained by the Cauchy-Schwarz inequality and 1366

(b) is due to each precoding vector having the unit norm. From 1367

this, the channel capacity of UEk is a continuous function and 1368

its feasible set is compact, which fulfill all the conditions of 1369

the universal approximation theorem [20], [48]. Consequently, 1370

we can construct a neural network with a finite number of 1371

neurons to learn the sum-rate optimization problem respect to 1372

both the power coefficients and satisfied user set. 1373
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