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Temperature Independent Fault Detection of
Solenoid Actuated Proportional Valve

Henrik C. Pedersen, Terkil Bak-Jensen, Rasmus H. Jessen, Jesper Liniger

Abstract—Most electrically actuated hydraulic valves utilize
solenoids as the actuating element due to their robustness and
simplicity. This goes for both on-off and proportional type valves.
However, despite their robustness, solenoid coil malfunction is
the largest single failure mode in solenoid actuated valves. An
outspoken fault is here solenoid winding short-circuit, i.e. two
windings short-circuiting, which may ultimately lead to solenoid
failure if more windings short-circuit. Research has therefore
also focused on detecting winding short-circuits. Common for
the approaches are that they, directly or indirectly, depend on
the coil winding temperature, as this directly influences the coil
resistance. Alternatively, the approaches are based on injection
of high-frequency signals, which is typically a costly solution that
is not a feasible approach for use in hydraulic valves, with the
limitations imposed by the control electronics. Therefore, this
paper focuses on a temperature independent algorithm to detect
coil winding short-circuit, which is easy to implement and only
relies on existing position and current sensors. The proposed
algorithm is based on an Extended Kalman Filter (EKF),
which estimates the coil resistance. As this resistance estimate
is indirectly dependent on the coil temperature, a window-based
CUmulative SUM (CUSUM) fault detection method is included to
detect transient changes in the coil resistance while compensating
for the temperature variations. The algorithm is developed based
on an experimentally validated model of the valve and has been
tested for several different situations through both simulations
and experimentally. Based on the presented results, it is found
that the algorithm can consistently detect resistance changes
down to 0.11Ω for constant input signals, and down to 0.17Ω
for sinusoidal varying input signals. This while still being robust
to parameter variations, like increased valve friction, spring
coefficients and sensor signal deviations.

Index Terms—Fault detection, temperature independent,
solenoid, valve, winding short-circuit.

I. INTRODUCTION

SOLENOID valves are used in a long range of applications
due to their simplicity, high force capacity and robustness,

where the solenoid coil is separated from the pressurized
fluid chamber(s). Despite their simplicity, the solenoids and
solenoid coils are reported to be one of the major failure
sources for solenoid operated valves, [1], [2], accounting for
more than 50% of the failures reported in [1] for valves used
in nuclear systems. Similarly, Angadi et al., [3], points to coil
malfunction due to thermal overheating and break-down of
insulation material as the main failure cause for the valves they
investigate. Hence, typical causes for insulation break-down
are thermal effects, vibrations and/or chemical degradation
of the insulation material. In the short run, this will lead to
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winding short-circuits, which then again leads to increased coil
current, increasing temperature and ultimately coil burn-out.
Typically, at least five coil (short circuit) faults are seen before
coil failure (burn-out), [4]. Being able to detect these coil faults
will hence be a good indicator for the coil’s degradation and
may aid in replacing/servicing the valve before failure.

Detecting solenoid faults is not a new idea, and several
approaches have been presented. However, it should be
noted that winding short-circuits will yield both a drop
in resistance and change the inductance and capacitance
of the coil. Therefore, most of the approaches presented
have been based on estimating/determining one or more of
these parameters. Therefore, one group of methods effectively
considers resistance changes due to coil faults, whereas other
(basically impedance-based) methods focus on the transient
and/or high-frequency changes primarily resulting from the
inductance also being affected by coil faults. Starting with the
latter Kryter, [1], investigated several detection methods for
solenoid valve failure finding that the most promising method
relied on monitoring the coil voltage when disconnecting the
power system. Jameson et al., [2], [5], utilized frequency
analysis and accelerated lifetime testing to investigate a
variety of coils, measuring reactance and resistance in a large
frequency span. Utilizing Spearman correlation analysis, it was
found that the best excitation frequencies to detect insulation
break-down was in the range 20− 100 kHz. However, while
these methods may show promising results, the applicability to
hydraulic valves is very limited due to the limitations imposed
by the control electronics, which are not designed to handle
high-frequency signals for cost reasons.

Considering the methods relating to resistance estimation,
then Jo et al., [6], presented a fault detection method for
detecting short circuit faults in solenoid operated on/off valves.
The method utilizes ambient temperature and maximum
solenoid supply current to calculate a temperature-dependent
health indicating current value, which is compared to a
tolerance value to detect faulty valves. The method yielded
a fault detection accuracy of 100% for ambient temperatures
of −20◦ to 60◦ for the considered batch. Liniger et al.
utilize a state augmented EKF-approach to describe not only
the coil current but also predict the coil temperatures based
on measurement of ambient temperature, fluid temperature,
voltage and coil current. Based on the current residuals, a
cumulative sum was used to indicate when a winding short
circuit occurred. The approach was shown to be effective
with detection probabilities above 97% and was also shown to
be robust to changes in the ambient temperature, convection,
and fluid flow conditions. However, the method relies on
temperature measurements and the need for fairly accurate
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thermal models for the solenoid. Khoshzaban-Zavarehi, [7],
also utilized an EKF-based approach to estimate coil resistance
based on coil voltage and current but did not address the effect
of temperature drift of the resistance. The same applies to
the results of Jung et al., [8], and Dülk and Kovácsházy, [9],
which present methods for estimating the coil resistance, but
do not focus on fault detection and therefore do not need to
consider the resistance change due to temperature drift. On
a more general scale, insulation break-down has also been
considered in relation to, e.g. stator windings in induction
motors. However, these methods generally rely on multiple
phases, whereby the temperature drift is out compensated,
which is hence not possible for a single coil solenoid. For
an overview of these methods, see e.g. [10], [11].

From the above, it is clear that multiple approaches have
been taken to detect solenoid short circuit faults. However,
the high-frequency measurement based methods are not suited
for hydraulic valves, whereas the resistance estimation based
methods are temperature dependent, as a result of this
imposing requirements for extra sensors or limiting their
applicability. Therefore, the focus of the current paper is
on a novel algorithm for temperature independent detection
of early short circuit faults in solenoid coils, with minimal
sensor and sampling frequency requirements. The temperature
independence here means that the algorithms detect short
circuit faults fully independent on the temperature in both coil
and surroundings, and unlike the approach in [4] does not rely
on determining the temperatures or thermal time constants for
the different parts in the system. On the contrary, the algorithm
compensates for the resistance changes in the coil due to
temperature variations without applying any kind of thermal
elements, advanced sensors or the like. As the computational
requirements are also low, this yields a widely applicable
algorithm. The method is based on an EKF for joint state and
parameter estimation of the coil current, spool position and
coil resistance while compensating for multiple non-linearities
in the model. Based on the EKF resistance estimation, a
windowed CUSUM approach is used to detect winding short
circuits while disregarding the influence of resistance drift
caused by temperature variations of the coil. Furthermore, the
algorithm’s robustness is tested towards common parameter
variations for the considered valve, including gain, noise, and
bias variations in the sensor signals. It should be noted that
while the algorithm is developed and tested on a proportional
solenoid valve, it may readily be applied on on-off solenoid
valves as well, as long as the plunger position is properly
estimated or measured.

The paper is organized as follows: An experimentally
validated model is first presented, upon which the EKF is
based. The validity of the EKF and its ability to detect
resistance changes are then presented. This is followed by
a description of the windowed CUSUM approach used, and
validation of its ability to consistently detect coil short-circuits
even in case of parameter variations. Finally, experimental
results are presented along with a conclusion summarizing the
main findings.

II. SYSTEM DESCRIPTION

The valve utilized in this study is a solenoid driven 4/3
proportional 4WRE-10 valve from Bosch-Rexroth. This is a
common type solenoid valve, which is finding widespread
use in both industry and pitch systems in wind turbine
applications. An illustration of the exploded valve is shown
in Fig. 1. The spool assembly consists of a spool guiding the
oil in specified directions, two plungers adjusting the spool
position, and four springs centering the spool when current
is not applied to either solenoid. Furthermore, it may be seen
from the figure that the valve incorporates a position transducer
in the form of an LVDT. The electrical part consists of two
solenoids, one on each side to move the spool in the given
direction. An illustration of the right side solenoid and the
attached LVDT is shown in Fig. 2. The solenoid resistance
given in the datasheet is 4.55Ω.

It should be stressed that, although the valve considered here
is a proportional valve, the algorithm presented is generally
applicable and may also be used on, e.g. solenoid driven on-
off type valves. Hence, for the latter case, the plunger position
estimation, as described later, will simply be left out in the
EKF-model.

Non-ferromagnetic parts

Coil

Plunger

Ferromagnetic parts

Tube

LVDT

Air gab

Fig. 2. Illustration of right side solenoid and the attached LVDT.

A. System Model

A model of the system is first presented, which is used
as basis for describing the proposed EKF based Fault
Detection and Diagnostics (FDD) algorithm, and for testing the
robustness of this. Although the focus is on electrical winding
short-circuit faults, the model also includes the mechanical
part of the valve, as the flux linkage is dependent on both
the plunger position and current. The model is governed by
the solenoid voltage equation, the electromagnetic force and
Newton’s second law of motion, and may be illustrated as
shown in Fig. 3

+
_

Fss,rFss,l

Fps,l

Fem,rFem,l

Fps,rFfric

xs

Fig. 3. Model structure.

The solenoid voltage equations is given by:

v = Ri+
dλ(i, x)

dt
(1)
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Plunger

Plunger spring Tube
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Housing

Spool spring

Plunger
Solenoid Tube

End cover
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Fig. 1. Exploded view of the valve with notation.

where all states, of course, are time-dependent, but this is
omitted to ease the notation. The flux linkage, λ, is a function
of the plunger position and the current and may be written
as λ(i, x) = L(i, x)i and R is the coil resistance. The
flux linkage is hysteresis dependent. Therefore, determining
the flux linkage and electromagnetic force analytically is
complicated and earlier attempts at this have shown to
yield poor results. Therefore, both the flux linkage and
electromagnetic force have been determined experimentally.
The flux linkage is determined by mechanically fixing the
plunger position and applying applying slow (1Hz) sinusoidal
input voltages to the valve with different amplitudes, while at
the same time measuring the current. This experiment is then
repeated for different plunger positions. A plot of the results
from these experiments is shown in Fig. 4, where the flux
density is plotted as function of the current.

0 0.5 1 1.5 2 2.5 3 3.5 4
Current [A]

0
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0.6
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x 
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b]

Measured positive flux
Measured negative flux
Flux mean

Fig. 4. Flux density for sinusoidal voltage with three different amplitudes.

Since the flux linkage is influenced by hysteresis, the mean
value is utilized in the following. The mean flux linkage is
mapped as a function of plunger position and current, and a
polynomial fit of this is made to avoid interpolating in the
algorithm. In a similar way, a mapping and polynomial fit
of the electromagnetic force has been made. This has been
done by controlling the current and linearly increasing this
from 0A to 3A over a 10 second period, and again repeating
this for several different fixed plunger positions. The resulting
mappings of the flux density and electromagnetic force as
functions of plunger position and current are shown in Fig.
5.

Fig. 5. Flux density (Coefficient of determination: R2 = 0.98) and electro-
magnetic force (R2 = 0.99) mapping.

Considering the mechanical part of the model, the forces
acting on the spool and plungers may be seen in Fig. 6. As the
plunger springs are pre-compressed by more than the possible
movement of the spool, the plungers and spool may be treated
as a single element.

Fss,rFss,l

Fps,l

Fem,rFem,l

Fps,rFfric

xs

Fig. 6. Free body diagram of valve spool and plungers.

The motion of the spool is determined from Newton’s
second law of motion as:

msẍs = Fem − Fs − Ffric(ẋ)− Fd (2)

where Fem is the combined electromagnetic force from the
two solenoids. Fs = (2 kps + kss)xs is the combined
spring force, and Ffric is the friction force modelled as a
combination of viscous and Coulomb friction. Finally Fd is
a lumping included to account for unmodelled effects and
external disturbances such as the flow force.

B. Model validation

To illustrate the validity of the model, the simulated current
and position is compared to the experimentally measured data.
The same input voltage signal is used for the simulation as in
the experiments, which is a sinusoidal signal that increases in
frequency from 0.125 to 10 Hz. The result from the validation
may be seen in Fig. 7.
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Fig. 7. Simulated and measured position and current. The spool end position
is at -4 mm. The small current spikes aligns with when spool hits and leaves
the end position.

From the graphs, it may be seen that there is a fair
correspondence between the model and the measured response.
Considering the spool position, there are some unmodelled
effects near the spool end-stop, which the model does not
capture. This deviation is due to the spool "sticking to the
end" when in the end positions, i.e. it needs to overcome
Stribeck friction before moving. However, this is mainly a
problem in this model validation experiment, as the experiment
is made without oil in the valve. Before the experiment the
valve has been filled with oil, but the experiments are done
without oil in the valve. Thus, there is only a thin oil film
left and no oil pressure to help lubricate and radially center
the spool, which results in the spool sticking, as the fluid
tension forces in the oil film has to be overcome, which is
not captured by the model. The small deviation between the
measured and simulated current, particularly the misalignment
of the spikes when the spool starts moving, is therefore also a
result of the spool sticking, which is not captured. However,
for the development and validation of the solenoid winding
short-circuit FDD algorithm this deviation is of insignificant
importance. Therefore, the model is also sufficient for the
development and testing of the algorithm, as it captures the
current correctly, and this is the most important of the two
states, as the resistance estimation is based on this.

III. STATE AND RESISTANCE ESTIMATION (FDD PART 1)

The presented FDD algorithm is comprised of two parts.
The first part is an Extended Kalman Filter (EKF) for
estimating the valve’s states, i.e. coil current, spool position
and velocity, and augmented with a state parameter estimation
part for estimating the coil resistance. The reason for using
this kind of observer is that, besides its noise benefits,
the EKF is well suited to accommodate the non-linearities
inherent in the system resulting from both the flux-linkage
and electromagnetic force, but also the non-linearities in from
the parameter estimation building on these. However, as the
functions are still continuous there in no need to apply, e.g.
an Unscented Kalman Filter. The benefit of the EKF approach

is in this regard, that it is easy to implement and augment
with the parameter estimation. Still, it is fairly easy to tune, as
the EKF parameters directly rely on measurement and process
noise and considerations of the model uncertainties.

A. EKF algorithm

The EKF is based on the non-linear stochastic model
given below, where the external disturbance force is omitted,
and the current derivative is found from (1) by taking the
partial derivative of the flux linkage. Furthermore, the model
is augmented with the state estimation for the solenoid
resistance:

f(x, u,w) =

[
i̇
ẍs

]
+w =


v−Ri− ∂λ(i,xs)

∂ xs
ẋs

∂λ(i,xs)
∂ i

Fem(i,xs)−(2 kps+kss) xs−Bẋs

ms

+w

(3)

g(x,v) =
[
i xs

]T
+ v (4)

x =
[
i xs ẋs R

]T
(5)

Here w is the process noise and v the measurement noise.
The EKF algorithm is separated into three steps. In the
initialization step the initial state and parameter estimate, x̂0,
the initial predicted state estimate covariance, P0, as well as
both the measurement noise, N, and state transition matrix
process noise, M, are defined. The initial state estimates are
based on the datasheet value for R, whereas the other states
are zero at start-up. The measurement noise, N, is based
on analysis of the steady-state measurement noise, whereas
the process noise, M, is adjusted considering the model
uncertainty and to obtain a good compromise between filter
dynamics and steady-state oscillations. It is further assumed
that the noise characteristics for each state are independent,
resulting in diagonal matrices. Finally, P0 is adjusted to obtain
an acceptable convergence speed of the filter, here resulting in
using the identity matrix:

x̂0 =
[
0 0 0 R

]T
(6)

N =

[
σ2
i 0
0 σ2

x

]
(7)

M =


1 0 0 0
0 1 0 0
0 0 100 0
0 0 0 1 · 10−7

 (8)

P0 = I (9)

The sensor noise variation is measured through a series of
steady-state tests, and the mean is σi = 15.4mA and σx =
4.56µm. The initial test resistance used is the datasheet value
of R = 4.55Ω.

In the prediction phase, an estimate of the system states
in equation (10) is created, along with the state transition
covariance matrix in equation (11). The subscript k|k − 1
indicates that the intermediate value for the current time step
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is being calculated based on information from the previous
timestep:

x̂k|k−1 = x̂k−1|k−1 + f(xk−1, uk−1)Ts (10)

Pk|k−1 = Jk−1Pk−1|k−1J
T
k−1 +WMWT (11)

In Eq. (10) W is a distribution matrix which is chosen as a
4× 4 identity matrix since the process noises are assumed to
be independent from each other. J is the Jacobian matrix:

Jk[i,j] =
∂fi
∂xj

∣∣∣∣
x̂k−1,uk−1

(12)

In the update stage a posteriori estimation is done based on
the predicted (a priori) estimates:

Kk = Pk|k−1C
T
k−1(Ck−1Pk|k−1C

T
k−1 +VNVT )−1

(13)
x̂k|k = x̂k|k−1 +Kk(yk −Cx̂k|k−1) (14)

Pk+1 = (I−KkCk)Pk|k−1 (15)

Here V is a 4×4 identity matrix as the measurement noises are
assumed independent from each other. Throughout the update
stage, C is the Jacobian matrix:

Ck[i,j] =
∂gi

∂xj

∣∣∣∣
x̂k−1,0

=

[
1 0 0 0
0 1 0 0

]
(16)

With the algorithm derived and the necessary matrices tuned,
the next sections will focus on the performance of the state
and parameter estimation of the EKF.

B. Validation of EKF

To show the performance of the EKF Figs. 8 & 9 shows
the estimated, simulated, and measured current, position and
resistance.
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Fig. 8. EKF state estimations for constant input.
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Fig. 9. EKF state estimations for 1Hz sine input.

Overall, the state estimation of the EKF is seen to nicely
track both current and position, displaying errors of 40 mA
and 10 µm respectively for the constant input due to noise.
Also, the resistance is tracked nicely, even with a starting guess
from 4Ω. The drift in current and resistance is due to the
temperature increase of the coil. However, the EKF ensures
that the measured current is included in the estimation of
the resistance. For the sine input, the errors are larger. The
current error is here 200mA, and the position error is 600µm.
This is mainly due to the flux linkage approximation, which
is based on a mean flux linkage hence not accounting for the
hysteresis effects. The figure shows that the resistance estimate
is influenced by the state oscillations, as the EKF is adjusted
to yield a good compromise between accuracy (due to flux
linkage approximation) and fast detection capability. While
improving the flux linkage model may yield better results,
it is actually desirable for the FDD algorithm to make this
robust towards uncertainties in the flux and model parameters.
Therefore the implemented flux linkage model is sufficient as
it is.

C. Fault injection

In order to test the ability to detect a resistance drop a
change is imposed in the measurement data at t = 250 s. The
input to the EKF is the voltage, but to emulate the resistance
change in the measured data, which is feed back in the update
stage of the EKF, in Eq. (14), an offset is added to the
measured current corresponding to a resistance decrease of
0.1Ω. The result of this emulated resistance change is seen in
Fig. 10.
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Fig. 10. EKF state and parameter estimations for a 0.1Ω fault injection.

A similar plot is seen for the estimated resistance, when the
resistance change is imposed in the sine signal. The results of
this fault injection can be seen in Fig. 11.
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Fig. 11. Resistance estimation using a sinusoidal input voltage. Vpeak =
2.4V

From both the above results, it is seen that the EKF
detects the change in resistance very well, although the current
fluctuations still influence the estimation for the sine input.
Still, the mean value indicates the resistance drop, which is
used in the following part of the FDD algorithm.

IV. FDD USING WINDOWED CUSUM (FDD PART 2)

A typical method concerning fault detection is the CUSUM
method. The CUSUM method depends on detecting deviations
from a calculated target mean. The cumulative sum is
generated from an input, in this case the resistance estimate,
to determine if the mean changes throughout the dataset. The
output of the CUSUM is a lower and upper CUSUM, where
the CUSUM denotes the number of standard deviations in
which the cumulative signal deviates from the cumulative
mean. The problem with this approach is the resistance drift
due to changes in temperature, which means that in its basic
form, the CUSUM will also detect resistance changes due
to temperature drift. This hence needs to be compensated
for, like, e.g. using a temperature model as presented in
[4]. However, an accurate temperature model requires an
ambient temperature sensor and detailed knowledge of the
thermal characteristics of the solenoid and valve. Therefore,
a detection method, which is temperature independent but
still robust to parameter uncertainties, is introduced in the
following. The method is here based on calculating a CUSUM

twice; first for the resistance deviation within a given window,
where the output considered is the number of samples before
the threshold is exceeded (if exceeded), and secondly for
determining the deviations in the outputs of the first CUSUM
for a series of windows. Conceptually this corresponds to
a moving target mean as illustrated in Fig. 12, where the
tolerance band, which is usually static, is modified, so it
follows the slow drift of the temperature. In these CUSUM
plots, the red circles indicate the samples where the threshold
is exceeded. It should here be noted that while the presented
algorithm has been implemented offline for the testing, the
algorithm may easily be modified to be implemented online
instead. This is done by only looking at a specified set of
windows in the second application of the CUSUM and/or
applying moving windows.

Time [s]
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s

Fig. 12. Concept sketch of the windowed CUSUM.

A. Fault detection using windowed CUSUM

The algorithm has to take into account the resistance change
due to temperature, which is slower than the change due to a
winding short-circuit. The concept is to use this information to
make the resistance variation due to the temperature allowable
while being able to detect short circuit faults. This is handled
by separating the estimated resistance into smaller windows
and applying a cumulative sum to each window. As a result
of this, it will be utilized that a short circuit will result in a
fast drop in resistance, which will trigger the lower CUSUM,
while a temperature drift will stay within the "target" limits for
the considered window. The adjustment is here to determine
the correct window size (relative to the convergence rate of
the EKF and the sampling frequency.).

Denoting the number of samples in a window by L, the
allowable number of standard deviations by nσ,w and the
detection target standard deviation by σw then the cumulative
sum for the i’th sample within the window is calculated as
(with both U0 = 0 and L0 = 0):

Ui = max{0, Ui−1 + xi − µw,i −
nσ,wσw

2
} , i > 0 (17)

Li = min{0, Ui−1 + xi − µw,i +
nσ,wσw

2
} , i > 0 (18)

where µw is the estimated average and σw the estimated
standard deviation. The estimated average µw,i is here
calculated as the mean of the samples within the given window,
i.e. µw,i =

∑L
i=1 xi/L.

Based on the cumulative sum, the indices k and l, denote
the points where the cumulative sum exceeds the allowed
threshold, i.e. Uk > nσ,wσw and Ll < −nσ,wσw respectively.
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The effect is illustrated in Fig. 13, showing a window for both
a healthy case and where a fault is detected.
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Fig. 13. CUSUM of respectively healthy and faulty window. The sample,
where the CUSUM thresholds are exceed are shown by red circles.

From Fig. 13 it may be seen that for the faulty case (shown
to the right), the fault happens early in the window because the
upper CUSUM early exceeds the threshold, i.e. the mean is
well below the estimated samples in the beginning. Therefore
as a short circuit will result in a resistance drop, and the mean
is based on the entire window, it is the upper CUSUM value,
which is of interest. Based on this detection index, a new
vector, α = [α1 . . . αj . . . αn], is generated, where αj stores
the detection samples for the j’th window and n is the number
of windows considered. In the case no detection occurs, the
window length is stored instead, i.e. for the j’th window: αj =
min{k, L}, where k was determined from the first application
of the CUSUM. The size of α is determined by the number
of windows analyzed and may, for online implementation, be
adjusted according to the used sample rate, window length
and EKF convergence rate. In the case of external cooling of
a coil, this may also need to be considered when adjusting the
window length and number of windows to avoid triggering
false positives.

Based on the generated vector, α, a second CUSUM is
applied, similar to above, but where the target mean is equal
to the window size, L, and the allowed number of standard
deviations is nσ,α < 1. All deviations in the entries in α (from
L) will hence be triggered. This results in a triangular shape
in the CUSUM chart, as, e.g. seen in the right part of Fig.
14. This is a result of the EKF convergence time being longer
than the length of the window. Hence, it is the consecutive
windows in the α-vector exceeding the threshold, which yields
the triangular shape in the CUSUM plot, indicating a winding
short-circuit and not false triggerings due to noise and/or
temperature variation. Here, the short circuit fault is related
to the first window where the lower CUSUM standard error
becomes negative. Therefore, the window size and the first
set of CUSUM parameters have to be adjusted to achieve
the desired fault detection. Adjusting the window size is here
related to the sampling frequency, the settings of the EKF and
its convergence rate, and the compromise between fast and
robust detection relative to higher numbers of false or missed
detections. Therefore, the compromise is to include sufficient
samples in the window to capture the drop in resistance
without making the window too long. The window length is
adjusted to be in the same range as the time it takes for the
EKF to converge to a new resistance level, which is around 7
seconds with the current settings. As the system is operated
with an update frequency of 10Hz, small adjustments of the
window length has yielded the best results with a window

length of 68 samples. The values have been slightly adjusted
to filter out false detections caused by noise or fluctuations in
the estimated resistance. Contrary, the second set of CUSUM
parameters (related to α) just have to be large enough to
result in consistent detection regardless of the magnitude of
the deviation from the default αj-value. The used parameters
are given in table I.

TABLE I
CONFIGURABLE PARAMETERS AND VALUES USED.

Parameter L nσw µw σw nσ,α µα σα

Value 68 5
∑L

i=1 xi/L 0.015 0.1 L 1

V. RESULTS

This section presents and evaluates the results generated by
the algorithm through simulations, where faults are artificially
injected. The results of different steady-state cases are shown
in Fig. 14, showing the results for both a healthy valve and
valve where a short-circuit fault of ∆R = 0.1Ω is injected at
t = 250 s. The fault is artificially injected. The figure shows
the α CUSUM chart for both cases. It should be noted that
this corresponds to the first winding short-circuit seen, and
the method is, therefore, excellent as an early fault detection
method before the coil may eventually fail.
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Fig. 14. Windowed CUSUM based fault detection for constant input voltages.
Left: no fault injections, right, with fault injected at t = 250 s.

Figure 14 shows that for all fault injections, the fault is
detected while no false detections occur for the healthy tests.
The utilized parameter adjustment results in a detection time
of < 4 s for all three test cases. Other tests have been made,
where the fault is injected at other time instances. However,
similar results are obtained for these cases, why they are
not included in the paper. However, it should be noted that
in special cases, where the fault occurs late in a window,
there may be two consecutive detections rather than a single
detection, i.e. the second detection shows a larger drop than the
first.However, this does not influence the detection. Overall,
the FDD algorithm is shown to be effective for steady-state
fault detection. Therefore, the following section will focus
on detecting faults when a sinusoidal input is applied to the
solenoid.

A. Sinusoidal test

In this section, a sinusoidal input is applied to the
solenoid. As the estimated resistance is influenced by the
input oscillations, due to the mean flux linkage approximation
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described in sec. III-B, a 40 sample moving average is applied
to the estimated resistance in order to reduce signal variance
as shown in Fig. 15. It is the filtered resistance that is then
used as input for the CUSUM part of the method.
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Fig. 15. Moving average resistance filtering. Left 4.8V right 2.4V .

From Fig. 15 it may also be seen that the variation
in the resistance estimation is slightly higher for the low
voltage input, as the signal-to-noise ratio is lower. This also
means that the required resistance change, which may be
consistently detected, will be larger for small signal inputs for
the same settings of the EKF-algorithm. The noise sensitivity
may, of course, be altered through the settings in the EKF-
algorithm. However, this will come at the expense of a longer
convergence time and is also limited by the used flux linkage
approximation. Longer convergence times may be handled
by reducing σw to identify lower gradient changes in the
resistance, but this comes at the expense of the algorithm being
more sensitive to temperature drift. Considering that both the
EKF and CUSUM parameters are adjusted to yield a good
compromise between convergence time, noise sensitivity and
robustness, it is not desirable to significantly alter these in the
present case. Instead, the focus has here been on determining
the limitations of the algorithm. In general, the change in
resistance for a winding short-circuit will be dependent on the
specific coil in question and is not known for the specific coil.
Therefore the analysis has been made, where the least possible
resistance change has been determined, for which faults are
consistently detected. For small input signals, the required
resistance change is hence 0.17Ω for consistent detection.

In the following the results for an input voltage of 4.8V
are shown in Fig. 16, for which resistance changes down to
0.11Ω are consistently detected, i.e. with a 100% detection rate
under the considered conditions. Similar results are obtained
for all other tested cases and input voltages when the resistance
change detection is set to 0.17Ω.
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The first circle indicate the detection point of the fault (here injected at t=100)

Fig. 16. To the left the estimated resistance, when faults are emulated at
different time instances. To the right the corresponding CUSUM output of
the algorithm.

Figure 16 shows the results for the 4.8V sinusoidal test
with fault injection magnitudes of 0.11Ω. The left part of the
graphs shows the estimated resistance for the different cases,
whereas the corresponding fault detection is shown to the right.
The graphs show that the FDD algorithm correctly flags all the
injected faults shortly after the injection of the given fault.

VI. ROBUSTNESS EVALUATION

As a typical valve may be subject to some parameter
uncertainty, the algorithm’s robustness is tested in the
following. This is done for the steady-state tests with ∆R =
0.1Ω and is done with both increasing and decreasing
parameters, these being: ±50 % viscous friction coefficient
change, ±10 % spool spring constant change (these values are
chosen based on the magnitude of their influence). The results
show that mechanical parameter variations have only minimal
impact on the estimated resistance. Thus the performance of
the FDD algorithm remains unchanged for both variations.
Given that the EKF was adjusted to rely heavily on the position
measurement and not the modelled position, these results are
expected. For this reason, the robustness is also tested by
introducing three different measurement faults to the system.
Sensor faults considered are offset, bias drift, and noise faults.
The results of sensor offsets are seen in Fig. 17, where the
current sensor offset is ±0.05A while the position offset is
±0.2mm. The values used are approximately 10% of the
working ranges. As may be seen in the graphs, these offsets
are not enough to impact the detection, but the (actual value
of the) resistance estimation in the EKF is influenced by the
current offset. The second sensor fault implementation is based
on sensor calibration drift. This is implemented as a change in
the sensor gain. The sensor gains are 0.95 and 1.05 for both
sensors, and the results of these gain changes can be seen in
Fig. 18.



IEEE/ASME TRANSACTIONS ON MECHATRONICS 9

30 80 130 180 230 280 330 380 430

-20

-15

-10

-5

0

S
ta

nd
ar

d 
E

rr
or

s

C
i
=-0.05 A

30 80 130 180 230 280 330 380 430

Time [s]

-15

-10

-5

0

S
ta

nd
ar

d 
E

rr
or

s

C
i
=0.05 A

30 80 130 180 230 280 330 380 430
-15

-10

-5

0

S
ta

nd
ar

d 
E

rr
or

s

C
x
=-0.2 mm

30 80 130 180 230 280 330 380 430

Time [s]

-15

-10

-5

0

S
ta

nd
ar

d 
E

rr
or

s

C
x
=0.2 mm

Fig. 17. Fault detection with sensor offset on both current (left) and position
(right) sensor with 0.05 A and 0.2 mm offset respectively.
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Fig. 18. Fault detection with 0.95 and 1.05 gain on both current (left) and
position (right) sensor.

Similarly to what was observed for sensor offsets, the
current gain variations have an impact on the estimated
resistance magnitude, but not the change in resistance and
the fault is still consistently detected. Furthermore, the current
feedback is more influential than the position sensor regarding
the estimated resistance. Finally, the influence of increased
sensor noise is considered in Fig. 19, showing that the impact
of the noise magnitude is little to none.
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Fig. 19. Fault detection with increased sensor noise added on both sensors.
The noise added to the current (left) and position (right )sensors are σ = 2σi

and σ = 5σx respectively.

From the above, it may be concluded that the FDD
algorithm is robust within the considered margins but will,
of course, be limited if much larger parameter variations are
encountered. Furthermore, since the FDD algorithm relies
entirely on the estimated resistance gradient, and therefore
the current gradient, it is also expected to be weak against
variations in the flux linkage approximation.

VII. EXPERIMENTAL FAULT INJECTION AND DETECTION

To experimentally validate the algorithm, it is tested in the
laboratory, here using a 9.6V steady-state input. As it is not
possible to directly alter the solenoids to create a short circuit,
a fault is emulated by connecting a resistor, Re, and a switch

in parallel with the coil as shown in Fig. 20. Closing the switch
will hence emulate a winding short-circuit as the equivalent
resistance of the system drops. The resistor connected in
parallel has a resistance of 180Ω, resulting in an emulated
resistance drop of 0.12Ω.

+

_ e SolenoidPower
supply

Fault 
emulation
resistance

LVDT
Solenoid

Power supply

Valve control
board

Fig. 20. Electric circuit for fault emulation and the actual valve in the
laboratory. The NI-DAQ-equipment and fault emulation circuit is located
outside the picture.

As a result of emulating a winding short-circuit through
an external resistor, the system is significantly more noise
sensitive, as seen from Fig. 21 where a measurement of the
current is shown when a fault is injected.
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Fig. 21. Measured current, when fault is injected at t ≈ 320 s.

From Fig. 21 it may be seen that the current is much more
oscillatory with fluctuations of approximately 0.1A. Beyond
that, the sensor noise is also significantly larger than seen for
the previous steady-state tests with σi = 15.4 −→ 42.8mA.
Furthermore, it can be seen that after the injection of the fault,
the sensor noise increases further, resulting in σi = 42.8 −→
90.3mA. This hence has a direct influence on resistance and
current estimation in the EKF algorithm. Usually, this would
call for a readjustment of the EKF parameters. However, as
seen in the below results (and the robustness evaluation), the
algorithm is fairly robust to the increased noise, which shows
that the algorithm detects the fault when injected after 323
seconds. However, the increased noise does mean that there is
a false positive detection in the beginning. This is not included
in the graph, but it may be circumvented by readjusting the
EKF parameters. However, as this noise increase will not be
present if the fault was not emulated, but the fault was a real
winding short-circuit, this has not been done.

From Fig. 22 it may be seen that the current noise is
increased significantly from previous tests as a result of the
increased sensor noise. More significantly, it may be seen that
the fluctuations in the current directly influences the estimated
resistance. However, the tendencies are the same as the original
conducted test, and it is seen that the proposed FDD algorithm
correctly detects the fault injected. Similar results are obtained
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Fig. 22. Estimated current, resistance and windowed CUSUM based on the
results of the experimental test.

for other input voltages and when the fault is emulated at
different time instances. Overall, this proves the validity of the
algorithm and indicates that the FDD algorithm is functional
when implemented in the laboratory with injected faults being
detected.

VIII. CONCLUSION

In the current paper, a fault detection algorithm for detecting
coil short circuits has been presented. The method, which
is temperature independent, is based on an EKF-approach
and a windowed dual-CUSUM implementation. The EKF is
augmented to estimate coil resistance, and the windowing
technique is implemented to accommodate for the variations
in the estimated resistance, which are caused by the EKF
and the drift of the resistance due to temperature variations.
The approach was shown to be able to consistently detect
resistance changes down to 0.11Ω and 0.17Ω for a constant
and a sinusoidal varying input signal, respectively, correctly
detecting all changes for the considered test cases. This
was done even in the presence of parameter variations and
increased noise in the system. However, the EKF/method
is dependent on a fair approximation of the flux linkage
in the solenoid, which directly affects the model precision.
Including hysteresis in the flux description may, therefore,
improve the results further. Finally, experimental results were
presented, showing that the algorithm could detect a resistance
drop emulating a coil short circuit despite the noise in the
experimental setup is significantly increased by implementing
the external resistance used to emulate the fault.
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