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 

Abstract—Supervised machine learning models are 
receiving increasing attention in electricity theft detection 
due to their high detection accuracy. However, their 
performance depends on a massive amount of labeled 
training data, which comes from time-consuming and 
resource-intensive annotations. To maximize model 
performance within a limited annotation budget, this paper 
aims to reduce the annotation effort in electricity theft 
detection through optimal sample selection. In particular, a 
general framework and three new strategies are proposed 
to select the most valuable and representative samples 
from different perspectives, including uncertainty, class 
imbalance, and diversity of samples. In-depth simulations 
and analyses are conducted to evaluate the effectiveness 
of the proposed strategies on commonly used machine 
learning models and a real-world dataset. Simulation 
results show that the proposed strategies significantly 
outperform baselines on datasets of different sizes and 
fraudulent ratios. Besides, the proposed strategies are 
effective in improving detection performance across a 
range of classifiers. 

 
Index Terms—Electricity theft, Smart grid, Machine 

Learning, Data annotation, Sample selection 

I. INTRODUCTION 

LECTRICITY theft detection is the process of identifying 

and preventing illegal consumption of electricity, which 

poses significant risks to power systems, including revenue 

losses, equipment damage, and increased operational costs. 

Therefore, electricity theft detection is important to ensure the 

reliability and sustainability of power distribution systems, and 

reduce financial losses [1]. 

Traditionally, the detection of electricity theft typically 

involves dispatching technical personnel or employing video 

surveillance methods, which are evidently time-consuming and 

labor-intensive [2]. In recent years, the widespread deployment 

of advanced metering infrastructure (AMI) in smart grids has 
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made the analysis of historical grid meter data the mainstream 

approach to detect electricity theft [3]. The existing methods 

based on measurement data can be divided into three categories 

[4]: state-based methods, game theory-based methods, and 

machine learning-based methods. 

State-based methods are types of approaches to detect 

electricity theft in low-voltage power distribution systems by 

utilizing additional measurements (e.g., current and voltage) 

beyond electricity consumption reading [5]. These methods 

leverage the inability of fraudulent users to manipulate 

measurements of power distribution systems, thereby creating 

conflicts between the system states and smart meter records, 

enabling the detection of electricity theft with high accuracy. 

However, to implement these methods, knowledge of the 

network topology and additional meters are required. In some 

cases, specific instruments or metering devices may be installed 

to address the issues of electricity theft. For instance, the work 

in [6] designs a new current ammeter to detect electricity theft 

in low-voltage loads, which allows the technician to make a 

comparison between local loggers and remote loggers. While 

these methods have demonstrated their effectiveness at the 

substation-level detection, they may not be as applicable at the 

end-user level due to additional costs and installation 

difficulties associated with some types of devices [6]. 

Game theory-based methods are considered as effective 

ways to detect electricity theft by modeling manipulation 

behaviors as a game between fraudulent users and electric 

utilities, which is a strong assumption [7]. The primary 

objective of these methods is to identify the Nash equilibrium 

for this game. For example, the work in [8] designs a 

game-theoretic model to discover power theft by analyzing 

distributional differences. Compared to state-based methods, 

game theory-based methods are relatively less costly. However, 

it is often challenging to find a suitable equation to explain the 

relationship between fraudulent users and electric utilities in 

this game. 

The machine learning-based methods focus on identifying 

fraudulent users by analyzing their historical bills and usage 

patterns. Machine learning-based methods have become 

increasingly popular in recent years due to their low cost in 

acquiring historical billing or electricity consumption readings. 

The machine learning-based methods can be classified into 

unsupervised and supervised learning methods based on the 

availability of labeled data [4]. The unsupervised learning 

methods deal with discovering patterns and structures in 

unlabeled data, while the supervised learning methods involve 

learning a mapping from inputs to outputs by using labeled 

data. 

Unsupervised electricity theft detection methods operate on 

the principle of identifying power profiles that deviate 
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significantly from the normal behavior of users, without the 

need for labeled training data. For instance, the authors in [9] 

employ the fuzzy c-means clustering model to differentiate 

normal and fraudulent users. The work in [10] proposes three 

indexes to measure the anomalies of electricity consumption 

readings, and then identifies fraudulent users by combining the 

clustering method and the sample-to-subsample decomposition 

method. In [11], a neural network is used to predict power 

consumption, and anomalies are identified based on whether 

the predicted values fall within a reasonable range. Although 

such methods are more scalable and applicable to a wider range 

of locations, they suffer from the limitations of high 

false-positive rates and difficulties in determining the root 

cause of the detected anomalies, as they ignore the prior 

knowledge (i.e., samples with labels). Therefore, the 

performance of these algorithms is relatively limited. 

The supervised electricity theft detection methods involve 

learning a model from labeled training data to differentiate 

between benign and fraudulent behaviors. For example, the 

work in [12] presents an extreme gradient boosting (XGBoost) 

algorithm to project the relationship between consumption 

readings and their labels. In [13], an improved multi-layer 

perception (MLP) with classic tricks (e.g., regularization and 

skip connection) is employed to predict instances of electricity 

theft. To capture the latent features from electricity 

consumption readings, a convolutional neural network (CNN) 

and its variants are proposed in [14]. Although these supervised 

methods typically achieve higher accuracy than the 

unsupervised methods, they often suffer from certain 

limitations, which are listed below: 

 They require a large amount of labeled training samples, 

and may not be applicable to situations where labeled data 

is scarce or costly to obtain. 

 They may suffer from the problem of class imbalance (i.e., 

the number of benign samples far exceeds fraudulent 

samples.), which negatively affects performance. 

 The performance of the supervised electricity theft 

detection methods heavily relies on the quality of the 

training data. 

To address the above limitations and improve the accuracy 

of supervised electricity theft detection, increasing the number 

of labeled data, especially fraudulent samples, is an efficient 

way. However, collecting labeled data from electricity 

consumers is time-consuming and resource-intensive, which 

makes it difficult to collect a large number of labeled samples in 

practical engineering [15]. Therefore, how to select the most 

valuable and representative samples for annotation deserves 

further investigation. One traditional method to select 

informative samples for annotation is random sampling, where 

samples are selected at random [16]. This approach can lead to 

the selection of inefficient or unreliable samples, as it may 

select uninformative or redundant samples. Another traditional 

method is to use clustering-based sampling, which selects 

samples for annotation based on their cluster membership, with 

the assumption that samples within the same cluster have 

similar properties. However, clustering-based sampling is 

sensitive to the choice of clustering algorithm and parameters, 

and may not perform well in complex and high-dimensional 

datasets [17]. 

In this context, this paper aims to reduce the annotation effort 

in electricity theft detection through optimal sample selection. 

Specifically, three new strategies are proposed to select the 

most valuable and representative samples from different 

perspectives. By applying the novel sample selection strategies 

to classifiers (e.g., MLP, CNN, XGBoost, etc.), this study 

demonstrates significant improvements in electricity theft 

detection performance. The selected samples effectively boost 

the performance of classifiers within a limited annotation 

budget, enhancing the overall effectiveness of the detection 

process. 

The main innovations and contributions are summarized as 

follows: 

 New perspective to improve model performance: In 

contrast to most works that focus on improving the model 

structure (i.e., model-centric perspective), this paper 

discusses electricity theft detection from a data-centric 

perspective, i.e., how to select useful samples to maximize 

model performance within a limited annotation budget. 

 Novel Sample Selection Strategies: This paper 

introduces three innovative strategies for selecting 

valuable and representative samples in electricity theft 

detection: uncertainty-based sample annotation, fraud 

class-based sample annotation, and distance-based sample 

annotation. These strategies address different challenges, 

including uncertainty, class imbalance, and sample 

diversity. 

 Real-World Experimental Validation: The proposed 

strategies and methodologies are thoroughly evaluated 

using actual electricity theft datasets and various 

classifiers. The comprehensive experimental study 

provides valuable insights into the advantages and 

limitations of each strategy, establishing their practical 

relevance and usefulness in electricity theft detection. 

The remaining sections are organized as follows. Section II 

briefly introduces data preprocessing followed by data analysis, 

from which the need to annotate representative samples within 

a limited budget is derived. Section III presents a general 

framework and three new strategies to select the most valuable 

and representative samples for annotation from different 

perspectives. Simulation results and analysis are reported in 

section IV. Section V presents the discussion. Finally, section 

VI shows the conclusions and future work. 

II. DATA PRE-PROCESSING AND ANALYSIS 

In this section, a brief overview of data preprocessing is 

presented, followed by a data analysis, which shows that 

annotating representative samples within a limited budget is 

necessary. This step is essential for the rest of the study. 

A. Data Pre-processing 

In raw electricity consumption data, missing values are a 

common issue due to a variety of reasons, including but not 

limited to cyber-attacks, communication blockage, and sensor 

malfunctions. These gaps in data can cause performance 

degradation. To mitigate this effect, a widely used interpolation 

method in [14] is employed to impute missing values in raw 

consumption readings. This helps to ensure that the subsequent 



analysis is based on complete and reliable data. 
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where Xi represents the i
th

 data point; and NaN represents a 

missing value. 

In addition to missing values, electricity consumption 

readings often contain erroneous values and outliers. To 

mitigate their potential negative effects on detection accuracy, a 

common approach is to apply the three-sigma rule of thumb to 

identify and correct the erroneous values. This involves setting 

a threshold of three standard deviations from the mean to define 

the range of normal values, with outliers falling outside this 

range. This approach is widely used in practice and can be 

easily implemented in various applications. The following 

formula can be used to implement this approach: 
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where X  represents the mean value; and σX represents the 

standard deviation. 

Data normalization is a critical step in preparing data for 

model training. Without normalization, the input data may have 

widely varying scales and ranges, which can lead to slower 

convergence during training and make it difficult for the model 

to learn the underlying patterns in the data [14]. Normalization 

techniques, such as min-max scaling, can help standardize the 

data and make it more suitable for training. The following 

formula can be used to implement this approach: 

  min

max min

i

i

X X
F X

X X





 (3) 

where Xmax represents the maximum value; and Xmin represents 

the minimum value. 

B. Data Analysis 

Table I provides a comprehensive overview of the widely 

used and solely publicly available State Grid Corporation of 

China (SGCC) dataset in [14], which contains electricity 

consumption data for 42372 household users from January 1, 

2014 to October 31, 2016. Of these users, 3615 are labeled as 

fraudulent, and 38757 are labeled as benign. The percentage of 

fraudulent users is 8.53%. There are approximately 25.63% 

missing values in the raw dataset. Data points are recorded 

daily, resulting in a time resolution of 1 day and a time series 

length of 1035 points for each sample. 
TABLE I 

THE DETAIL OF THE ACTUAL SGCC DATASET 

Property Description 

Time duration January 1, 2014-October 31, 2016 
Total sample count 42372 

Benign sample count 38757 

Fraudulent sample count 3615 
Fraudulence proportion 8.53% 

Sample form 1×1035 

Time resolution 1 day 
Unit kWh 

 

After preprocessing the raw dataset, two benign samples and 

two fraudulent samples are randomly selected for visual 

analysis, as shown in Fig. 1. Note that the data presented has 

been normalized. 

The plot reveals a significant fluctuation in the electricity 

consumption readings, making it difficult to identify key 

features to distinguish between benign and fraudulent cases. 

Moreover, both benign and fraudulent consumption readings 

(e.g., benign sample 1 and fraudulent sample 1) may exhibit a 

valley, which could be attributed to various factors, such as 

electricity theft, changes in consumption patterns, and missing 

data. These findings underscore the need for expert knowledge 

and manual inspection in the annotation process, which can be 

extremely time-consuming and labor-intensive. 

Therefore, the conventional approach of annotating a 

massive number of users to improve model performance is a 

high-cost strategy that can be prohibitive for electricity theft 

detection tasks. Alternatively, annotating a small set of the most 

valuable and representative samples is a promising way to 

maximize model performance with a limited annotation budget 

[18]. 

 
Fig. 1.  The benign and fraudulent samples after data pre-processing. 

III. EFFICIENT SAMPLE ANNOTATION STRATEGIES 

A. A General Framework 

The previous data analysis has shown that electricity theft 

detection usually relies on expert knowledge and manual 

inspection, as it is difficult to distinguish benign samples from 

fraudulent ones. With limited budgets, the practical application 

usually selects a set of the most valuable and representative 

samples, rather than all of them, for annotation. Fig. 2 

illustrates a general sample annotation framework. 

First, an efficient sample selection strategy is used to select a 

set of the most valuable or representative samples, which will 

be annotated by experts. Second, these samples are added to the 

annotated dataset for updating model performance. The 

machine learning model (e.g., MLP, CNN, XGBoost, etc.) will 

guide the selection of unlabeled samples. Then, the above steps 

repeat until the preset annotation budget or performance 

requirement is reached. Finally, the machine learning model 

will be used to detect fraudulent users. In summary, the main 

idea is to continuously select the most valuable samples for 



annotation and update the machine learning model, so as to 

maximize model performance with a limited annotation budget. 

In the following subsections, three new sample annotation 

strategies are proposed to select the most valuable and 

representative samples for annotation from different 

perspectives, including uncertainty, class imbalance, and 

diversity of samples. 

Unlabelled data Selection strategy

Experts

Labelled data

Machine Learning Theft Detection

Guide the 

selection

 
Fig. 2.  A general sample annotation framework. 

B. Strategy 1: Uncertainty-Based Sample Annotation 

There is a highly effective and targeted learning method 

called error collection learning. It identifies knowledge gaps 

from incorrectly answered questions, and then provides 

targeted supplementation to improve learning performance. 

Inspired by the error collection learning, this paper proposes 

an uncertainty-based sample (UBS) annotation method whose 

basic idea is to collect the most likely misclassified samples for 

annotation, so as to improve the model performance. As is well 

known, the machine learning model (e.g., MLP, CNN, 

XGBoost, etc.) could easily confuse the unlabeled samples near 

the decision boundary, as shown in Fig. 3(a). Therefore, the 

first strategy aims to prioritize the annotation of these 

hard-to-differentiate samples, from an uncertainty-oriented 

perspective (i.e., annotate samples with large uncertainty). 

Specifically, for the binary task of electricity theft detection, 

an output of the machine learning model closer to 1 indicates a 

higher probability of the sample being fraudulent, whereas an 

output closer to 0 indicates a higher probability of the sample 

being benign. An output of the model closer to 0.5 suggests that 

the model is unable to accurately classify the sample. Therefore, 

the machine learning model can be employed to obtain output 

values for unlabeled samples, and then select samples with 

output values closest to 0.5 for annotation. The following 

formula can be used to implement the strategy 1: 

   U 0.5 0.5S X G X    (4) 

where SU(X) represents the uncertainty score of the sample X; 

and G(X) represents the probability that the sample is identified 

as fraudulent by the machine learning model (i.e., the output of 

the machine learning model). To further clarify, G(X) is an 

indicator of the model's confidence or likelihood that a given 

sample X is classified as fraudulent. Specifically, after being 

trained, the model calculates a numerical value for G(X) based 

on the features and contextual information of the sample X. A 

higher value of G(X) indicates that the model is more inclined 

to classify the sample as fraudulent, while a lower value 

suggests a higher likelihood of a normal user. Normally, G(X) 

ranges from 0 to 1. The higher the uncertainty score SU(X) of 

the sample, the more valuable it is to annotate the sample. 

C. Strategy 2: Fraud Class-Based Sample Annotation 

The actual electricity theft dataset often suffers from highly 

class imbalanced problems, which severely affects the model 

performance. The reason is that the number of fraudulent 

samples is often much smaller than that of benign samples in 

highly class imbalanced datasets. This results in machine 

learning models that are biased toward predicting benign 

samples. Therefore, this section proposes a new method named 

fraudulent class-based sample (FBS) annotation, from a class 

imbalance-oriented perspective, to alleviate the class 

imbalanced problem and improve model performance by 

annotating samples that are predicted to be fraudulent, as 

shown in Fig. 3(b).  

The light blue and light green circles indicate unlabeled 

samples. Furthermore, the light blue circles indicate samples 

that are judged as fraudulent by the machine learning model, 

and the light green circles indicate samples that are judged as 

benign by the machine learning model. The core idea of 

strategy 2 is to prioritize the annotation of the light blue circles, 

i.e., the samples that are judged as fraudulent by the machine 

learning model. 

Specifically, for the binary task of electricity theft detection, 

the machine learning model can be employed to obtain 

predicted values of unlabeled samples, and then select samples 

with predicted values closest to 1 for annotation. The following 

formula can be used to implement the strategy 2: 

   PS X G X  (5) 

where SP(X) represents the fraudulent score. The higher the 

fraudulent score of the sample, the more valuable it is to 

annotate. 

D. Strategy 3: Distance-Based Sample Annotation 

The previous strategies are conducted based on uncertainty 

or class imbalance of samples, while this section presents a way 

named distance-based sample (DBS) annotation, from a 

diversity-oriented perspective, to select unlabeled samples. Its 

principle is to compute the distance between unlabeled samples 

and all labeled samples, and then select unlabeled samples with 

a large distance for annotation. The reason is that annotating 

samples that are far from the training samples can enrich the 

diversity of the training set and thus improve the generalization 

of machine learning models. As shown in Fig. 3(c), unlabeled 

samples inside the ellipse are preferred to be annotated, as they 

are farther away from labeled samples compared to unlabeled 

samples outside the ellipse. Specifically, the DBS involves two 

steps: 

First, the auto-encoder model, consisting of an encoder and a 

decoder, is trained to reduce the computational overhead and 

noise by extracting the low-dimensional latent features from 

high-dimensional samples with the following equation: 

   Encoder , DecoderX X XE X D E   (6) 

EX represents the low-dimensional latent feature; DX represents 

the reconstructed sample; Encoder(·) represents the encoder; 

and Decoder(·) represents the decoder. 

Both the encoder and the decoder consist of multiple dense 

layers. Normally, a suitable dimensionality of latent features 

should not be too large or too small. The dimensionality of 

latent features and other parameters can be determined by the 



hyper-parameter optimization [19]. For example, for the SGCC 

dataset, the auto-encoder consists of 5 dense layers, and their 

numbers of neurons are 1035, 256, 64, 256, and 1035, 

respectively. The activation function for the first four layers is 

the rectified linear unit function, and the activation function for 

the last layer is the sigmoid function. The optimizer is the 

Adam algorithm with a learning rate of 0.001. The training 

epoch is set to 200, and the loss function used is mean squared 

error. 

Second, the distances between the unlabeled sample and all 

labeled samples are calculated by using their low-dimensional 

latent features: 

 
2

2
Dist, ( ) ( )

1

m

i X i X k

k

S X E E

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where SDist,i(X) represents the distance between the i
th

 unlabeled 

sample and all labeled samples; EX(i) represents the 

low-dimensional latent feature of the i
th

 unlabeled sample; and 

m represents the number of labeled samples. Unlabeled samples 

with large distances are prioritized for annotation. 
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Fig. 3. A conceptual visualization of different strategies. 
 

E. Implementation Steps 

The proposed approach to annotate unlabeled samples 

consists of six steps. The pseudo-code is shown in Algorithm 1. 

 
Algorithm 1: Sample Annotation 

1 Input N: initial the number of labeled samples per round 
2 Input M: initial the number of rounds  
5 t ← 0 (Initialize the round) 
6 for t=1,2,…, M do 
7      Train a classifier G and an encoder by using the training set 
8      Calculate SU, SP, SDist of unlabeled samples 
9      Training set  labeled samples 
10 end for 
11 Return M×N labeled samples 

 

Step 1: The parameters are initialized. For example, when 

the budget can support M×N annotations, the number of labeled 

samples N per round and the number of rounds M should be 

initialized. If the budget can only support a prime number of 

annotations, it is advisable to first transform it into a composite 

number before applying the proposed strategies. For example, 

if the budget allows for 53 annotations, one can transform it 

into 54, and then apply a strategy by annotating 6 samples per 

round for a total of 9 rounds, dropping the last sample. 

Normally, a small parameter N is beneficial to improve the 

model performance, because the newly annotated samples 

improve the performance of the model, which makes it easier to 

find the most valuable and representative samples. However, a 

parameter N that is too small means that the model will be 

trained repeatedly, which may lead to a longer training time. 

Therefore, the choice of parameter N requires a combination of 

computational resources and model performance. A 

compromise parameter that balances model performance and 

computational resources is generally suitable. 

Step 2: An auto-encoder and a classifier (i.e., machine 

learning model) are trained by using the labeled training set. 

Step 3: A strategy is selected to annotate the unlabeled 

samples. For the first strategy, the pre-trained classifier is used 

to obtain the predicted values of the unlabeled samples, which 

are used to calculate the uncertainty score SU(X) in equation (4). 

Other strategies can be treated in a similar manner. To reduce 

overfitting, the models (i.e., classifier and auto-encoder) are 

typically trained multiple times to obtain the mean values (e.g., 

the mean uncertainty score). In other words, the widely used 

trick called ensemble learning (also called query-by-committee) 

[20] is used in step 3. 

Step 4: If one of the first two strategies is selected, the N 

unlabeled samples with the highest scores are selected for 

annotation. If strategy 3 is selected, the N unlabeled samples 

with the largest distances are selected for annotation. 

Step 5: The labeled samples are added to the training set. If 

the M rounds have not been reached, the process returns to Step 

2. Otherwise, go to step 6. 

Step 6: Steps 2 to 5 are repeated M times until a certain 

annotation budget is reached. At this point, M×N unlabeled 

samples have been annotated. 

In this paper, three strategies are proposed to annotate 

samples from different perspectives. These strategies may 

perform differently on different datasets. In practice, two ways 

can be considered to determine the most appropriate strategy 

for a given dataset: The first way is to use each of the three 

strategies to annotate a small and equal number of unknown 

samples. Then, the strategy that yields the most significant 

improvement in model performance is selected. The second 

way is to remove a portion of the samples from the training set 

and then use the three strategies to select an equivalent number 

of samples from the removed set. The selected samples are 



reinserted into the training set. Again, the strategy that provides 

the greatest improvement in model performance is selected. 

These two methods help determine which strategy is best for a 

given scenario. 

IV. CASE STUDY 

A. Introduction to Datasets 

The SGCC dataset has been introduced in Section II [14]. To 

evaluate the performance of the proposed strategies on datasets 

with different sizes, samples are randomly selected to form 

three new datasets, as shown in Table II. 

For example, in Dataset 2, 20% of the samples are randomly 

selected as the training set, 20% as the testing set, and the 

remaining 60% are considered as unlabeled samples. 

Moreover, Dataset 1 is a small dataset, because it includes a 

small number of training samples. Dataset 3 is a large dataset, 

since it includes a large number of training samples. Dataset 2 

is a medium-sized dataset. 
TABLE II 

THE CONSTRUCTION OF THREE DATASETS 

Datasets 
The percentage of samples 

Training samples Unlabeled samples Test samples 

Dataset 1 5% 75% 20% 

Dataset 2 20% 60% 20% 

Dataset 3 40% 40% 20% 

B. Baselines and Evaluation Metrics 

To demonstrate the performance of the proposed new 

strategies, the widely used sample selection strategies, 

including random sampling (RS) in [16], clustering-based 

sampling (CS) in [17], and density estimation-based sampling 

(DES) in [21], will be used as baselines for comparative 

analysis. 

 RS: Unlabeled samples are randomly selected for 

annotation [16]. 

 CS: The clustering method (e.g., K-means) is utilized to 

divide unlabeled samples into multiple clusters, and then 

the samples closest to the cluster center in each cluster are 

selected for annotation [17]. 

 DES: Density estimation (e.g., Gaussian kernel density 

estimator) is performed on unlabeled samples, and then 

samples with high-density scores are selected for 

annotation [21]. 

Further, these sample selection strategies will be tested on 

the following popular classifiers, including MLP in [13], CNN 

in [14], XGBoost in [22], light gradient boosting machine 

(LightGBM) in [23], and random forest (RF) in [24]. 

The above strategies and classifiers are implemented by 

using the Python language with machine learning libraries, 

such as Tensorflow 2.0. and scikit-learn 1.2. The 

hyper-parameters are determined through a process of trial and 

error, aided by techniques, such as cross-validation and 

hyper-parameter optimization in [19]. 

To comprehensively evaluate the performance of the 

proposed strategies on class imbalanced electricity theft 

datasets, three widely adopted evaluation metrics, namely the 

area under curve (AUC), mean average precision (MAP), and 

F1 score are employed.  

Specifically, AUC measures the area under the receiver 

operating characteristic (ROC) curve, which plots the true 

positive rate (TPR) against the false positive rate (FPR) for 

different threshold values. The AUC ranges from 0 to 1, with a 

higher AUC indicating a better performance against electricity 

theft. In the case of electricity theft detection, the set of benign 

samples B  is regarded as the negative class, while the set of 

fraudulent samples F  is regarded as the positive class. The 

AUC represents the probability that a classifier will rank a 

randomly chosen fraud sample higher than a randomly chosen 

benign sample [10], [14]: 

 0.5 1
AUC

ii
rank


 




 F
F F

F B
 (8) 

where F  and B  are the numbers of fraudulent and benign 

samples, respectively.  

MAP is the average precision calculated at various recall 

levels, evaluating the model's ability to rank fraudulent samples 

higher than benign. The precision of the top k electricity thieves 

is denoted as P@k=Yk/k, where Yk represents the number of 

fraudulent samples that rank in the top k. The MAP can be 

calculated as the average value of P@k for a given number D . 

In other words, MAP@D  is computed by taking the mean of 

the precision values P@k for k=1 to k  D . 

1

1
MAP@ @

r

i

i

P k
r 

 D  (9) 

where r represents the number of fraudulent samples that 

belong to the top N; and ki represents the position of the i
th

 

individual within the group of fraudulent samples.  

As in related work [10], [14], MAP@100 and MAP@200 are 

used to evaluate model performance on the SGCC dataset. 

MAP@100 is a variant of MAP, measuring precision at the top 

100 retrieved samples, respectively. Higher MAP@100 and 

MAP@200 indicate better model performance, showcasing the 

model's enhanced capability to accurately identify electricity 

theft instances among top predictions. 

F1 score is a metric used to evaluate the performance of a 

binary classification model, which combines the Precision and 

Recall of the model: 

TP
Precision

TP+ FP
  (10) 

TP
Recall

TP+ FN
  (11) 

2 Precision Recall
F1 score

Precision Recall

 



 (12) 

where TP represents the proportion of actual fraudulent 

samples that are correctly classified as fraudulent by the 

classifier. FP represents the proportion of actual benign 

samples but is incorrectly classified as fraudulent by the 

classifier. FN represents the proportion of actual fraudulent 

samples but is incorrectly classified as benign by the classifier. 

The F1 score ranges from 0 to 1, with a higher F1 score 

indicating a better performance against electricity theft. 

The stochasticity inherent in classifiers, particularly neural 

networks, results in single trial detection results that may not 

accurately represent the true performance of the model [25], 

[26]. To mitigate the effects of stochasticity and increase 

stability, all experiments in this paper are replicated 100 times, 



after which the mean value is computed. 

The remaining sections present simulation and analysis, with 

the following specific arrangements. Section C compares the 

performance of different strategies by using MLP as a classifier. 

Section D tests the sensitivity of proposed strategies to different 

dataset sizes. Section E explores the sensitivity of the proposed 

strategies to different fraudulent ratios. Finally, Section F 

analyzes the generalization of proposed strategies for different 

classifiers. 

C. Performance Comparison with Baselines 

To compare the performance of proposed strategies with 

baselines, MLPs are treated as classifiers, and then simulations 

are run on dataset 2 to obtain the average metrics as shown in 

Table III. 

Comparing the metrics in the first row with those in the other 

rows, it is found that additional samples annotation can help to 

increase AUC, MAP@100, MAP@200, and F1 score, because 

these samples help the model learn rich features and prior 

knowledge, thus improving the generalization and model 

performance. 

For different numbers of sample annotations, the proposed 

strategies (i.e., UBS, FBS, and DBS) significantly outperform 

the baselines (i.e., RS, CS, and DES). For example, when the 

number of sample annotations is 500, the MAP@100 of RS is 

0.839, which is the highest among the traditional methods. 

Compared to the traditional RS, UBS, FBS, and DBS have 

increased their MAP@100 by approximately 3.10%, 9.06%, 

and 2.74%, respectively. Similarly, the MAP@200 of UBS, 

FBS, and DBS improved by roughly 2.12%, 8.20%, and 1.16%, 

respectively, compared to the maximum value of the traditional 

method. 

Moreover, comparing the performance of the proposed three 

proposed strategies (e.g., UBS, FBS, and DBS), most metrics of 

the FBS are the highest for different numbers of annotated 

samples, indicating that FBS outperforms the other three 

strategies for medium-sized datasets in most cases. 

D. Sensitivity Analysis on Different Dataset Sizes 

In the context of practical scenarios, the effectiveness of 

electricity detection methods can be affected by the variance in 

data set size encountered [27], [28]. Such variance can lead to 

differences in detection accuracy and stability, and ultimately 

affect the reliability of detection results. 

To test the sensitivity of proposed strategies and baselines to 

different dataset sizes, MLP is still treated as a classifier, and 

then simulations are run on dataset 1 (i.e., a small dataset) and 

dataset 3 (i.e., a large dataset) to obtain the average metrics as 

shown in Table IV and Table V. The number of annotations 

ranges from 500 to 4500. In other words, we test the model 

performance under conditions with few annotations and under 

conditions with a large number of annotations. 
TABLE III 

THE SIMULATION RESULTS ON DATASET 2 

Strategies 

500 annotations 1500 annotations 3000 annotations 4500 annotations 

AUC 
MAP 

@100 

MAP 

@200 
F1 score AUC 

MAP 

@100 

MAP 

@200 
F1 score AUC 

MAP 

@100 

MAP 

@200 
F1 score AUC 

MAP 

@100 

MAP 

@200 
F1 score 

Without adding 
annotations 

0.736  0.829  0.794  0.880  0.736  0.829  0.794  0.880  0.736  0.829  0.794  0.880  0.736  0.829  0.794  0.880  

RS 0.738  0.839  0.802  0.882  0.742  0.845  0.809  0.884  0.747  0.860  0.825  0.888  0.750  0.889  0.847  0.893  
CS 0.739  0.839  0.805  0.882  0.737  0.827  0.794  0.880  0.743  0.866  0.827  0.888  0.746  0.873  0.834  0.890  

DES 0.736  0.830  0.794  0.880  0.734  0.825  0.788  0.879  0.739  0.827  0.793  0.881  0.738  0.803  0.776  0.876  
UBS 0.743  0.865  0.822  0.888  0.745  0.890  0.845  0.893  0.752  0.915  0.874  0.899  0.751  0.922  0.883  0.900  
FBS 0.742  0.915  0.871  0.897  0.748  0.923  0.881  0.899  0.753  0.936  0.895  0.903  0.753  0.934  0.892  0.902  
DBS 0.740 0.862  0.818  0.887  0.744  0.921  0.869  0.898  0.750  0.939  0.892  0.903  0.754  0.943  0.897  0.904  

 
TABLE IV 

THE SIMULATION RESULTS ON DATASET 1 

Strategies 

500 annotations 1500 annotations 3000 annotations 4500 annotations 

AUC 
MAP 

@100 

MAP 

@200 
F1 score AUC 

MAP 

@100 

MAP 

@200 
F1 score AUC 

MAP 

@100 

MAP 

@200 
F1 score AUC 

MAP 

@100 

MAP 

@200 
F1 score 

Without adding 

annotations 
0.704  0.681  0.661  0.875  0.704  0.681  0.661  0.875  0.704  0.681  0.661  0.875  0.704  0.681  0.661  0.875  

RS 0.717  0.734  0.710  0.881  0.722  0.783  0.752  0.886  0.727  0.813  0.784  0.889  0.726  0.852  0.784  0.893  
CS 0.714  0.694  0.683  0.877  0.721  0.757  0.738  0.884  0.727  0.780  0.754  0.886  0.726  0.789  0.754  0.887  

DES 0.702  0.661  0.644  0.873  0.699  0.651  0.637  0.872  0.693  0.624  0.615  0.869  0.714  0.672  0.615  0.875  
UBS 0.724  0.761  0.743  0.884  0.724  0.816  0.779  0.889  0.730  0.883  0.839  0.896  0.735  0.892  0.839  0.897  
FBS 0.728  0.870  0.787  0.895  0.727  0.877  0.835  0.895  0.735  0.930  0.888  0.901  0.739  0.927  0.888  0.901  
DBS 0.720  0.828  0.775  0.890  0.731  0.914  0.867  0.899  0.734  0.931  0.888  0.901  0.742  0.946  0.888  0.903  

 
TABLE V 

THE SIMULATION RESULTS ON DATASET 3 

Strategies 

500 annotations 1500 annotations 3000 annotations 4500 annotations 

AUC 
MAP 
@100 

MAP 
@200 

F1 score AUC 
MAP 
@100 

MAP 
@200 

F1 score AUC 
MAP 
@100 

MAP 
@200 

F1 score AUC 
MAP 
@100 

MAP 
@200 

F1 score 

Without adding 

annotations 
0.750  0.905  0.862  0.875  0.750  0.905  0.862  0.876  0.751  0.903  0.862  0.874  0.750  0.906  0.864  0.876  

RS 0.750  0.906  0.863  0.875  0.752  0.907  0.865  0.877  0.756  0.908  0.868  0.880  0.757  0.923  0.883  0.889  
CS 0.752  0.907  0.864  0.877  0.753  0.912  0.870  0.881  0.757  0.916  0.874  0.885  0.757  0.918  0.877  0.886  

DES 0.750  0.906  0.863  0.876  0.749  0.904  0.860  0.874  0.753  0.896  0.857  0.872  0.755  0.915  0.872  0.883  
UBS 0.752  0.914  0.871  0.881  0.756  0.922  0.880  0.887  0.761  0.930  0.888  0.895  0.761  0.928  0.888  0.894  
FBS 0.754  0.943  0.898  0.899  0.758  0.939  0.897  0.898  0.759  0.944  0.901  0.902  0.760  0.941  0.899  0.901  
DBS 0.752  0.914  0.867  0.881  0.755  0.926  0.879  0.890  0.758  0.939  0.895  0.899  0.761  0.943  0.900  0.903  



After using the traditional DES to annotate samples, most 

metrics of the model are smaller than those with adding 

annotations. This indicates that DES degrades the mode 

performance. Two reasons could explain this: Firstly, the 

unlabeled sample set may have a high density of outliers or an 

uneven density distribution, which can cause the selected 

samples to be unrepresentative and thus affect model 

performance. Secondly, there may be complex correlations 

between samples during sample selection, which can lead to 

insufficient diversity in the selected samples, further negatively 

affecting model performance. 

The proposed three strategies, namely UBS, FBS, and DBS, 

outperform the baselines (i.e., RS, CS, and DES) for datasets of 

varying sizes, as demonstrated by the performance metrics 

shown in Table IV and Table V. This result indicates the 

superior efficacy of the proposed strategies for electricity theft 

detection tasks, regardless of dataset sizes. 

Furthermore, the performance of the proposed strategies is 

affected by the number of annotated samples. In particular, the 

FBS strategy yields the best performance when the number of 

annotated samples is small, such as 500 annotations, as 

observed on Dataset 1 and Dataset 3. On the other hand, when 

the number of annotated samples is large, the DBS may 

outperform the FBS, as shown by the maximum performance 

improvement achieved by DBS with 4500 annotations on 

Dataset 1 and Dataset 3. 

E. Sensitivity Analysis on Different Fraudulent Ratios 

In real-world scenarios, the accuracy and stability of 

electricity detection methods vary significantly due to the wide 

range of fraudulent ratios encountered in real-world conditions. 

As a result, the effectiveness of detection also varies. 

To test the sensitivity of proposed strategies and baselines to 

different fraudulent ratios, MLP and dataset 2 are still 

considered as examples. Note that the fraudulent ratio of 

dataset 2 is set to a value between 2% and 14% in the training 

and test sets. Then, simulations are run to obtain the average 

metrics, as shown in Table VI. 

Regardless of whether the fraudulent ratio is high or low, the 

performance of the proposed strategy is superior to that of the 

traditional strategy, which can be verified by comparing their 

metrics. For example, when the fraudulent ratio is 2%, the 

MAP@100 of RS is the highest among the baselines, with a 

value of 0.651. The proposed UBS, FBS, and DBS strategies 

increase the MAP@100 by approximately 20.05%, 19.83%, 

and 19.36%, respectively, when compared to RS. Similarly, 

when the fraudulent ratio is 14%, the MAP@200 of RS is the 

highest among the baselines, with a value of 0.877. The 

proposed strategies, namely UBS, FBS, and DBS, achieve 

approximately 1.56%, 1.86%, and 3.10% improvement in 

MAP@200, respectively, over the RS. 

Furthermore, when the fraudulent ratio is low, the 

performance of the three proposed strategies is relatively 

similar. However, as the fraudulent ratio increases, the 

performance of FBS gradually outperforms the other strategies. 

For example, FBS achieves the highest AUC, MAP@100, 

MAP@200, and F1 score values, when the fraudulent ratio 

ranges from 6% to 14%. These results indicate that FBS should 

be given priority in annotating unlabeled samples for datasets 

with a high fraudulent ratio. 

F. Sensitivity Analysis on Different Classifiers 

The previous sections evaluate the effectiveness of the 

proposed strategies by using MLP as a classifier over different 

dataset sizes and fraudulent ratios. This section aims to test the 

generalizability of the proposed strategies across other popular 

classifiers, including CNN [14], RF [24], XGBoost [22], and 

LightGBM [23]. 

Dataset 2 is still considered as an example. Suppose the 

number of annotated samples is 1500. Then, simulations are run 

on dataset 2 to obtain the average metrics as shown in Table 

VII. 
 

TABLE VI 
THE MODEL PERFORMANCE AT DIFFERENT FRAUDULENT RATIOS 

Strategies 

The fraudulent ratio is 2% The fraudulent ratio is 6% The fraudulent ratio is 10% The fraudulent ratio is 14% 

AUC 
MAP 

@100 

MAP 

@200 
F1 score AUC 

MAP 

@100 

MAP 

@200 
F1 score AUC 

MAP 

@100 

MAP 

@200 
F1 score AUC 

MAP 

@100 

MAP 

@200 
F1 score 

Without adding 
annotations 

0.718  0.608  0.585  0.970  0.741  0.746  0.723  0.911  0.727  0.823  0.796  0.858  0.735  0.886  0.863  0.811  

RS 0.742  0.651  0.631  0.972  0.741  0.762  0.737  0.913  0.730  0.836  0.808  0.862  0.738  0.902  0.877  0.819  
CS 0.738  0.649  0.628  0.972  0.746  0.777  0.748  0.915  0.733  0.835  0.811  0.862  0.738  0.894  0.873  0.815  

DES 0.707  0.595  0.578  0.970  0.740  0.744  0.718  0.911  0.725  0.805  0.782  0.853  0.736  0.881  0.858  0.809  
UBS 0.754  0.781  0.744  0.975  0.751  0.827  0.792  0.921  0.734  0.865  0.830  0.870  0.738  0.916  0.891  0.825  
FBS 0.751  0.779  0.734  0.975  0.753  0.905  0.858  0.929  0.738  0.918  0.878  0.884  0.743  0.958  0.927  0.845  
DBS 0.747  0.777  0.730  0.975  0.753  0.898  0.851  0.928  0.736  0.893  0.855  0.877  0.739  0.937  0.904  0.834  

 
TABLE VII 

THE SIMULATION RESULTS OF DIFFERENT MODELS 

Strategies 

CNN RF XGBoost LightGBM 

AUC 
MAP 

@100 

MAP 

@200 
F1 score AUC 

MAP 

@100 

MAP 

@200 
F1 score AUC 

MAP 

@100 

MAP 

@200 
F1 score AUC 

MAP 

@100 

MAP 

@200 
F1 score 

Without adding 

annotations 
0.736  0.803  0.768  0.802  0.731  0.767  0.752  0.781  0.772  0.904  0.870  0.871  0.767  0.878  0.851  0.855  

RS 0.742  0.855  0.816  0.831  0.743  0.851  0.815  0.830  0.766  0.910  0.883  0.871  0.770  0.910  0.875  0.873  

CS 0.741  0.817  0.782  0.811  0.742  0.804  0.791  0.805  0.770  0.914  0.893  0.875  0.757  0.905  0.882  0.864  
DES 0.736  0.826  0.786  0.813  0.725  0.767  0.746  0.778  0.769  0.899  0.871  0.867  0.765  0.900  0.866  0.865  

UBS 0.744  0.877  0.843  0.843  0.746  0.901  0.863  0.856  0.777  0.957  0.928  0.900  0.771  0.958  0.923  0.898  

FBS 0.745  0.932  0.895  0.872  0.748  0.903  0.863  0.858  0.778  0.959  0.930  0.902  0.774  0.959  0.926  0.900  
DBS 0.744  0.856  0.817  0.833  0.743  0.870  0.850  0.839  0.772  0.937  0.903  0.888  0.772  0.925  0.895  0.882  

 



No matter which classifier is used, the performance of the 

proposed strategy is superior to that of the traditional strategy, 

which can be demonstrated by comparing their metrics. For 

example, when CNN is used as the classifier, the MAP@100 of 

RS is the highest among the baselines, with a value of 0.855. 

The proposed UBS, FBS, and DBS strategies increase the 

MAP@100 by approximately 2.57%, 9.01%, and 0.12%, 

respectively, when compared to RS. In a similar way, the AUC, 

MAP@200, and F1 score of the proposed strategies are also 

higher than those of the baselines. 

These findings suggest that the proposed strategies are 

effective in improving the detection performance across a range 

of classifiers. In particular, the FBS strategy achieves the 

largest improvement in AUC, MAP, and F1 score, indicating 

that it is highly effective in capturing fraudulent behaviors. 

V. DISCUSSION 

In this paper, three strategies are proposed to annotate 

samples from different perspectives. From the simulation 

results, FBS outperforms UBS and DBS in most scenarios, but 

this does not mean that the proposed UBS and DBS can be 

discarded. Normally, these strategies may perform differently 

on different datasets and cases. For example, UBS slightly 

outperforms FBS when the fraudulent ratio is 2%, as previously 

discussed in Table VI. In practice, the two ways mentioned in 

Section III(E) can be used to determine the most appropriate 

strategy for a given dataset. 

VI. CONCLUSION 

To reduce the annotation effort in electricity theft detection 

through optimal sample selection, a general framework and 

three new strategies are proposed to select the most valuable 

and representative samples from different perspectives. After 

conducting simulations on the real SGCC dataset, four key 

conclusions have been drawn. 

1) With respect to the hyper-parameters of the proposed 

strategy (e.g., the number of labeled samples per round and the 

number of rounds), these two parameters are inversely 

proportional, when the total number of annotated samples is 

fixed. Typically, a smaller value of the former parameter 

facilitates the improvement of the model performance, but it 

also leads to an increase in the number of training iterations. 

Therefore, the choice of parameter requires a combination of 

computational resources and model performance. A 

compromise parameter that balances model performance and 

computational resources is generally suitable. 

2) In terms of optimal sample selection for annotation, the 

proposed three strategies (i.e., UBS, FBS, and DBS) 

significantly outperform the baselines (i.e., RS, CS, and DES) 

on datasets of different sizes. In particular, FBS is the best 

choice for annotation on medium-sized datasets. 

3) Regardless of whether the fraudulent ratio of the dataset is 

high or low, the performance of the proposed strategies is 

superior to those of traditional strategies, which can be verified 

by comparing their metrics. This is an indication that the 

proposed strategies are adaptable to complex real-world 

application conditions with a wide range of fraudulent ratios. 

4) In comparison to traditional strategies, the proposed 

strategies demonstrate superior performance, no matter which 

classifier (e.g., CNN, RF, XGBoost, and LightGBM) is used. 

These findings suggest that the proposed strategies are effective 

in improving the detection performance across a range of 

classifiers. 

This paper only discusses optimal unlabeled sample 

selection by using a single strategy. The extension work can 

combine different strategies to select unlabeled samples. 
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