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Multichannel Speech Enhancement with Own
Voice-Based Interfering Speech Suppression for

Hearing Assistive Devices
Poul Hoang, Student member, IEEE, Jan Mark de Haan, Zheng-Hua Tan, Senior Member, IEEE, and Jesper Jensen

Abstract—Enhancement of a desired speech signal in the
presence of competing or interfering speech remains an unsolved
problem, as it can be hard to determine which of the speech
signals is the one of interest. In this paper, we propose a
multichannel noise reduction algorithm which uses the presence
of the user’s own voice signal, e.g. during conversations with the
target speaker, as an asset to efficiently identify interfering speech
and noise. Specifically, following the typical speech pattern in
natural conversations, the presence of an own voice may indicate
the absence of the target speech, hence undesired speech and
noise can be identified and estimated during own voice presence.

In contrast to conventional noise reduction systems, the pro-
posed noise reduction systems use the user’s own voice to identify
interfering speech that otherwise could be confused with the
target speech. We demonstrate the performance of the proposed
noise reduction systems in a comparison against state-of-the-art
noise reduction systems in terms of beamforming performance
for hearing assistive devices. The results show that the proposed
beamforming scheme in particular outperforms state-of-the-art
methods in terms of ESTOI and PESQ in situations with a target
speaker and a strong interfering speaker.

Index Terms—Speech Enhancement, beamforming, maximum
likelihood, turn-taking, speech behavior.

I. INTRODUCTION

Spoken language is for most people their primary way of
communicating in many social situations. Speech, however,
may become challenging to understand, when the acoustic
environment becomes increasingly noisy. Especially, when the
acoustic environment is contaminated with many competing
speakers or interferers, speech intelligibility is often poor.

One of the purposes of hearing assistive devices (HADs),
e.g. hearing aids (HAs), is to increase speech intelligibility and
quality by reducing the background noise. This is commonly
achieved with the use of noise reduction algorithms such as
beamformers, when multiple microphones are accessible [1]–
[3]. Examples of well-known beamformers are the minimum-
variance distortion-less response (MVDR), the multichannel
Wiener filter (MWF) and the linear constrained minimum vari-
ance (LCMV) beamformers [2]–[4]. Implementation of these
beamformers is often done in the time-frequency (TF) domain
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and the parameters required are typically noise statistics, e.g.
the noise cross power spectral density (CPSD) matrix [3] and
the relative acoustic transfer function (RATF) vector of the
target source [4]. These parameters are, however, rarely known
in real-world situations and therefore have to be estimated.

One approach to estimate the noise CPSD matrix is to use
noise dominant TF tiles to update the noise CPSD matrix, and
use the resulting estimate during speech presence, e.g. [5].
Detecting noise dominant TF tiles requires a voice activity
detector (VAD) or, more generally, speech presence proba-
bilities (SPPs) estimated from the noisy microphone signals.
Multichannel methods for estimating the speech presence
probability have been proposed in [6]–[11]. These methods
update the noise CPSD matrix in a soft-decision manner using
a multichannel extension of the minima controlled recursive
average procedure in [12,13]. These methods may perform less
well if only few noise dominant TF tiles can be identified or
if the noise is highly non-stationary during speech dominated
TF tiles. To overcome this issue, several methods have been
proposed to update the noise statistics using speech dominant
TF tiles as well. For example, methods presented in [14]–
[21] are maximum likelihood estimators (MLEs) of the noise
CPSD matrix under the assumption that the spatial coherence
of the noise field remains fixed during speech presence. As
a consequence, these methods may perform less well when
the spatial properties of the noise field change during speech
presence. An example where this occurs, is when a non-
stationary interfering source, e.g. a competing speaker emerges
in the noise field. In [22], an MLE of the interference-plus-
noise CPSD matrix was proposed to handle situations with
strong interfering speech and noise. However, the method
requires that the target RATF vector is known in advance.

Accurate target localization and target RATF vector estima-
tion are crucial for beamformers to steer the acoustic beam
towards the target speaker [4]. In acoustic scenarios with
interfering speakers, target RATF vector estimation can be par-
ticularly difficult. The problem of identifying a target speaker
amongst a set of interfering speakers and background noise is
essentially ill-posed: without any additional information, it is
very difficult to single out the target speaker from the set of
active speakers. Hence, in order to identify the target speaker,
existing methods have applied various prior knowledge. For
example, the widely used steered-response methods [3, ch.
8] implicitly rely on the assumption that the target source
is closer in distance, and hence more powerful, than other
sound sources. These methods identify the target source by
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(a) Target speech in noise. (b) Target speech and interfering speech in noise.

(c) Target speech and own voice in an environment with an interferer
and noise.

(d) The proposed systems identify the interferer during own voice
presence and identify the target speech during target presence.

Fig. 1: Fig. 1a depicts a simple acoustic situation with a target speaker in background noise but without interfering speakers.
Fig. 1b extends the acoustic situation to include an interferer, in addition to the target speech and noise. In Fig. 1c, an own
voice is conversing with the target speech in an acoustic environment with an interferer and noise. Fig. 1d shows the basic idea
of the proposed noise reduction systems. During own voice presence, the interferer is identified and during target presence the
target is identified.

directing beamformers to all possible directions, and selecting
the beamformer with the highest output power. However, in
many practical situations the target speech need not to be
loudest, and systems based on this assumption will fail. Other
methods rely on prior assumptions of the target location e.g.
the methods presented in [23]–[25]. In HAD applications, the
target location is often assumed frontal relative to the user
[15,25,26]. This assumption is motivated by the observation
that for face-to-face conversation, where the HAD-user uses
eye-contact and lip-reading, the target source is often located
in the frontal half-plane with respect to the user. However,
also this assumption is not always valid, e.g., in situations,
where the HAD user is unable to look at the target (e.g., when
driving a car). Finally, other RATF vector estimation methods,
e.g. [10,27,28], can perform well in simple situations where
the target source is present in background noise, but where no
interfering speakers are present, cf. Fig. 1a1.

Unfortunately, in more complex acoustic situations, where
one or more interfering speakers are simultaneously present,
cf. Fig. 1b, estimation of the noise CPSD matrix and the
target RATF vector can be difficult tasks. The presence of

1Speech signals used in the figures are from the speech database in [29]

interferers can make it difficult to determine the target speaker,
particularly when the interferer is voice-like. A voice-like
interferer can make voice activity detection difficult as it is
hard to distinguish between desired and interfering speech.
This can result in interference and noise statistics being
captured poorly and degrade the noise reduction performance
significantly. Recent proposed methods can potentially help
identifying the target speaker by decoding the direction of the
user’s auditory attention [30] or the user’s eye-gaze direction
[31,32] with the use of EEG signals or eye-trackers. However,
these methods require the use of additional sensors which may
not be available for the speech enhancement system. Other
situations that can be particularly difficult for existing noise
reduction systems to handle are conversations between the user
and a target speaker. The situation is further complicated, if an
interfering speaker is present during the conversation between
the user and a target speaker, cf. Fig. 1c. The presence of the
own voice signal will leave few instances of noise dominant
TF tiles making the SPP-based methods ineffective.

In this paper, we propose a method which solves these
problems by using the presence of the user’s own voice signal
as an asset. Specifically, we use the fact that the presence
of own voice signal often indicates the absence of the target
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signal due to the avoidance of speech overlap between the user
and the target speaker [33]–[35]. Additionally, the absence of
own voice may indicate the presence of a target signals.

The proposed method relies on the assumption that any
sound source during own voice presence is of no interest to
the user, and can hence be regarded as interfering signals.
Therefore, statistics related to the interference and noise can
be updated during own voice activity as shown in Fig. 1d.
To demonstrate the idea, we consider the situation where
only a single interfering speech source may be present. This
problem is already very challenging to solve with state-of-
the-art methods, as it is difficult to decide which of sound
sources is target and which is the interfering speaker. However,
the proposed method can in principle be extended to handle
multiple interfering speakers such that any speaker during own
voice presence is considered undesired. The acoustic situation,
we specifically seek to solve in this paper, is the presence of a
target speaker, the user’s own voice, an interfering speaker, and
noise. Such a situation can be regarded as particularly difficult
to solve with the current state-of-the-art methods due to the
interfering speaker and the very few instances, where noise
dominates the noisy signal. As shown in Fig. 1d, the proposed
systems identify the interferer during own voice, i.e. estimate
the interferer RATF vector and use this estimate to support
the implementation of a beamforming system during target
speech presence. Specifically, the estimated interferer RATF
vector from own voice presence is used during own voice
absence (presumably target presence) to support the estimation
of the interference-plus-noise CPSD matrix and target RATF
vector. The estimated interference-plus-noise CPSD matrix
and target RATF vector are then used in an MWF beamformer
to suppress the interferer and noise.

The paper is structured as follows. In Sec. II, the signal
model of the microphone signals is presented. In Sec. III, the
MLEs of the interference and noise PSDs, and interference and
target RATFs, are presented respectively. Sec. IV presents the
simulation setup and evaluates the proposed noise reduction
algorithm in simulation experiments. Finally, in Sec. V, a
conclusion of the results is given.

II. MULTI-MICROPHONE SIGNAL MODEL

We consider a HAD with M microphones placed in an
arbitrary array geometry. The considered acoustic situation is
depicted in Fig. 2. Each microphone picks up sound from the
acoustic environment, and the signals are then sampled into a
discrete-time sequence xm(n) for m = 1, ..,M . The acoustic
scene consists of an own voice signal, s′o(n), a target signal,
s′t(n), interfering speech signal s′q(n), and noise denoted as
v(n). We assume, for simplicity, the presence of a single
interferer per TF tile.

Let ho,m(n), ht,m(n), and hq,m(n) denote the acoustic
impulse response (AIR) from the own voice, target, and
interferer respectively to the m’th microphone. The signal
model of the observed noisy signal is then

xm(n) =
∑

j∈{t,o,q}

s′j(n) ∗ hj,m(n) + vm(n), (1)

Fig. 2: Example of an acoustic scene with an own voice s′o(n),
target s′t(n), interference s′q(n), and noise v(n) where the
microphones are mounted on the user’s head. The acoustic
impulse response from the j’th source (j ∈ {t, o, q}) to the
m’th microphone is denoted as hj,m(n).

where ∗ denotes the linear convolution operator. The proposed
noise reduction algorithm is derived and implemented in the
TF domain using the short-time Fourier transform (STFT) with
window function ψ(n), window size Nwin, and overlap Nov.
The STFT of the noisy signal is [1,36]

xm(k, l) =

Nwin−1∑
n=0

xm(n+ lNov)ψ(n)e
−2πik n

Nwin , (2)

where i=
√
−1, k and l denote the frequency bin and frame in-

dex, respectively. We define x(k, l) = [x1(k, l), ..., xM (k, l)]T

as an M × 1 complex vector containing the noisy TF obser-
vations for all M microphones. In the TF domain, the signal
model becomes

x(k, l)=
∑

j∈{t,o,q}

s′j(k, l)hj(k, l)+v(k, l), (3)

where hj(k, l) and v(k, l) are the stacked acoustic transfer
functions (ATFs) and noise, respectively. We assume that the
AIRs are shorter than the STFT analysis window ψ(n) [37].
The signals s′j(k, l) for j ∈ {t, o, q} denote the speech signals
of the target, own voice, and interferer at their respective
locations. Let m∗ denote a pre-selected reference microphone,
then we may normalize the ATFs with respect to the reference
microphone such that

x(k, l)=
∑

j∈{t,o,q}

sj(k, l)dj(k, l)+v(k, l), (4)

where

dj(k, l) =

[
h1,j(k, l)

hm∗,j(k, l)
, ...,

hM,j(k, l)

hm∗,j(k, l)

]T
, (5)

is the RATF vector [38] and sj(k, l) is the j’th signal as
captured at the reference microphone. We assume that the pres-
ence of the own voice signal and the target signal are mutually
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Fig. 3: Overview of the proposed noise reduction systems, where the interferer is identified during own voice presence, and
the target is identified during own voice absence.

exclusive. This assumption is based on the conversational
model in [34], where interlocutors in conversations avoid
speech overlaps and pauses. This assumption is supported
by results found in human experiments in [33,35,39]. These
results suggest that interlocutors during conversations avoid
speech overlap and pauses in noisy environment. Hence, the
signal model may be divided to reflect two situations, namely,
1) when own voice is present and target is absent,

x(k, l)=so(k, l)do(k, l)+sq(k, l)dq(k, l)+v(k, l), (6)

and 2) when the target is present, but own voice is absent

x(k, l)=st(k, l)dt(k, l)+sq(k, l)dq(k, l)+v(k, l). (7)

In the sequel, we omit the frequency bin and frame index, e.g.
x , x(k, l), for brevity.

A. Multichannel Wiener filter beamforming
The task of the beamformer is to retrieve the target speech

st, while suppressing the interference and noise. The output
of a linear beamformer is given by [3]

y = wH x, (8)

where w is the vector of beamformer weights. The multi-
channel Wiener filter (MWF) is the linear minimum mean
square error (LMMSE) estimator of the target signal with
beamformer weights wMWF which are found by solving the
following optimization problem [3]:

wMWF = arg min
w

E
[
|st − wHx|2

]
, (9)

where H is the Hermitian transpose. Assuming that st, sq and
v are uncorrelated random variables, the MWF can be shown
[3] to be dependent on the target RATF dt, the target power
spectral density (PSD) λt = E

[
|st|2

]
, and the interference-

plus-noise CPSD matrix, Cqv . The interference-plus-noise
CPSD matrix is defined to be

Cqv = E
[
(sqdq + v)(sqdq + v)H

]
= λqdqdHq + Cv,

(10)

where λq = E
[
|sq|2

]
is the interference PSD and Cv =

E
[
vvH

]
is the noise CPSD matrix. Then the MWF beam-

former can be expressed as [3]

wMWF =
C−1
qv dt

dHt C−1
qv dt

· λt

λt + (dHt C−1
qv dt)−1

, (11)

where the first factor is known as the minimum variance
distortion-less response (MVDR) beamformer and the second
factor is known as the single-channel post Wiener filter. We
see that the MWF beamformer in the form of (11) requires
dt, dq , λt, λq , and Cv to be known and in the following, we
propose methods to estimate these parameters for each time-
frequency tile by exploiting the own voice of the user. For
simplification, we assume that the noise, v, is a time-varying
random process and that its CPSD matrix can be expressed as
Cv = λvΓv . Here, Γv is a known noise CPSD matrix which
is normalized with respect to the reference microphone and
obtained from the most recent noise-only observation [14].

B. Target and interference identification

During own voice presence, we estimate dq . Following (6),
the noisy CPSD matrix during own voice is modeled as

Cx = λododHo + λqdqdHq + λvΓv, (12)

and likewise, during own voice absence, we assume that target
is present cf. (7), such that the noisy CPSD matrix is modeled
as

Cx = λtdtdHt + λqdqdHq + λvΓv. (13)

In applications such as HADs, the microphone array is
commonly mounted in a fixed position on the user’s head.
Therefore, the acoustic transfer function, do, from the user’s
mouth to the microphones can be considered approximately
time-invariant. This allows offline estimation of the own
voice RATF vector do, which can be used during online
deployment of the noise reduction algorithm. Additionally,
the microphones are placed close to the user’s mouth hence
the own voice signal can be considerably louder than the
target and interference speech signals, especially at lower
frequencies, when the own voice is active [40, p. 251]. For
these reasons, we consider the own voice RATF vector, do,
as known and assume that an own voice activity detector
(OVAD) is available. The estimated dq is then used during own
voice absence (but target presence) to estimate the remaining
parameters dt, λt, λq , and λv per TF tile and the resulting
MWF beamformer can then be applied.

In practice, it may occur that the signal models in (12)
or (13) are violated, for example due to speech overlap and
gaps. A worst case example is speech overlap between the user
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Algorithm 1: MWF beamformer with proposed target and
interference identification.

Input: do.
1: if own voice is present then
2: Estimate dq .
3: else if own voice is absent then
4: Estimate dt, λt, λq , and λv given dq .
5: Form the interference-plus-noise CPSD matrix

Cqv = λqdqdHq + λvΓv .
6: Compute the MWF beamformer weights wMWF in (11).
7: Apply the beamformer y = wHMWF x.
8: end if

and the target speaker. Such situations can potentially lead to
suppression of the target, as the target might be identified as
the interfering speaker. One potential solution is to use several
seconds of noisy observations during own voice presence.
Since speech overlaps between the user and the target are
often short and brief (e.g. 250 ms) [33,34,41], increasing the
number of observations from own voice presence can reduce
the likelihood of the target being identified as interference.

Furthermore, the use of own voice to identify an interfering
speaker can be generalized to multiple interfering speakers.
Specifically, any speakers that are present for minimum dura-
tion during own voice presence can be considered undesired.
A potential procedure could for example involve a model-
order selection algorithm e.g. minimum description length,
Akaike or Bayesian information criterion to first determine the
number of interfering speakers [42,43]. This is then followed
by an estimation procedure of the RATF vectors for all the
interfering speakers and finally estimation of the interference-
plus-noise CPSD matrix.

The proposed noise reduction scheme is summarized in Fig.
3 and as pseudo-code in Algorithm 1.

III. MAXIMUM LIKELIHOOD ESTIMATION

In order to implement MWF beamformers for the consid-
ered acoustic situation, the parameters dq , dt, λt, λq , and λv
must be estimated. In the following, we present several MLE-
based schemes for estimation of the parameters of interest.

It is widely known that MLEs of the RATF vectors and
PSDs perform well when used in a beamforming context e.g.
in [10,14,18,22]. Comparative and theoretical performance of
these estimators, e.g. in terms of Cramer-Rao bounds, have
been derived and presented in [15,17,18,44]. Let us first note
that the signal model in (12), where do and Γv are assumed
known, and the signal model in (13) where dq and Γv are
assumed known, both can be written in the following general
form

C , C(λ1, λ2, φ, d1) = λ1d1dH1 + λ2d2dH2 + φΓ. (14)

Hence, finding estimates of the parameters of interest for both
(12) and (13), corresponds to finding MLEs of λ1, λ2, φ,
and d1 in (14). In particular, let λ̂1, λ̂2, φ̂, and d̂1 denote the

MLEs of these parameters. Then for (12), we estimate the
interference RATF vector as d̂q = d̂1, (the MLEs λ̂q = λ̂1,
λ̂o = λ̂2, and λ̂v = φ̂ are nuisance parameters and, hence, not
used in the subsequent steps). Similarly, when own voice is
absent, the parameters of (13) are given by d̂t = d̂1, λ̂t = λ̂1,
λ̂q = λ̂2, and λ̂v = φ̂.

We assume that the noisy observations, x, are complex
Gaussian distributed [10,16,18] such that the likelihood for
N observations of x, X = [x1, ..., xN ], is

f(X;λ1, λ2, φ, d1) =
exp

(
−N tr(C−1R)

)
πNM |C|N

, (15)

where R = 1
N XXH , | · | is the determinant operator, and

tr(·) denotes the trace operator. Furthermore, we assume
that d1 is an element of a pre-defined dictionary D =
{d(1), d(2), ..., d(ND)}, where ND is the dictionary size [10].
The MLEs can be found by solving the optimization problem

arg max
λ1,λ2,φ,d1∈D

log f(X;λ1, λ2, φ, d1). (16)

Closed-form solutions for this optimization problem seem not
to exist [44]. Instead, we use a numerical approach to solve
(16) in Sec. III-A which involves a two-dimensional search. In
Secs. III-B and III-C, we adapt MLEs from [22] and [19] to
estimate λ1, λ2, φ, and d1. The estimators in [22] and [19] are
not strictly MLEs of the problem posed in (16). However, they
are computationally much less expensive as they only involve
a one-dimensional search and – as we show – to perform
essentially on par with the true computational comples MLEs
of (16) in terms of speech enhancement performance.

A. Joint ML using grid search
Let us rewrite equation (14) as

C = λ1d1dH1 + φ

(
λ2

φ
d2dH2 + Γ

)
,

= λ1d1dH1 + φΦ(ψ(φ)),

(17)

where ψ(φ) = λ2

φ , and Φ (ψ) , ψd2dH2 + Γ. For notational
convenience, we define ψ , ψ(φ). For a given value of
ψ, closed-form MLEs of λ1 and φ exist, while conditioned
on d1 and d2 [15,19]. Hence, conditioned on d1 and d2,
estimating the remaining parameters λ1, φ, and ψ involves
a one-dimensional search procedure over ψ or implicitly
λ2. In principle any numerical solver, e.g. a grid-search or
gradient ascent method, can be used to solve the optimization
problem. However, as a proof of concept, we use a grid-search
based solver as the grid is only over ψ and d1. The grid-
search procedure can be simplified to be over the dictionary,
Ψ = {ψ(1), ..., ψ(Nψ)}, where Nψ denotes the cardinality of
Ψ. Obviously, for a sufficiently fine grid, Ψ, the proposed
approach will return estimates arbitrarily close to the true
MLE.

The first step in the procedure is to obtain an MLE for
φ for a particular grid point, ψ ∈ Ψ, while conditioned on
d1 and d2. To do so, we define the MVDR beamformer with
distortion-less constraint on d1,

w(ψ, d1) = Φ−1(ψ)d1

(
dH1 Φ−1(ψ)d1

)−1

. (18)
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Furthermore, let

Q(ψ, d1) = I− d1wH(ψ, d1), (19)

where I is the identity matrix. The MLE of φ is then given
by [19]

φ̂(ψ, d1) =
1

M − 1
tr
(
Q(ψ, d1)RΦ−1(ψ)

)
, (20)

where R = 1
N XXH is the sample noisy CPSD matrix, and the

MLE of λ1 is [19]

λ̂1(ψ, d1) = w(ψ, d1)H
(

R− φ̂(ψ, d1)Φ(ψ)
)

w(ψ, d1). (21)

The MLEs, φ̂ and λ̂1, are then used to concentrate the log-
likelihood in (16), such that the optimization problem is
reduced to

ψ̂, d̂1 = arg max
ψ∈Ψ,d1∈D

log f(X, φ̂, λ̂1;ψ, d1). (22)

Given the MLE ψ̂, the MLE of λ2 can be found as

λ̂2(ψ̂, d̂1) = φ̂(ψ̂, d̂1) · ψ̂. (23)

The whole procedure is summarized in Algorithm 2.

Algorithm 2: Joint ML using grid search

Input: Ψ = {ψ(1), ..., ψ(Nψ)}, D = {d(1)
1 , ..., d(ND)

1 }, d2, Γ.
1: for i = 1, 2, ..., ND do
2: for j = 1, 2, ..., Nψ do
3: Compute w(ψ(j), d(i)

1 ) using (18).
4: Compute Q(ψ(j), d(i)

1 ) using (19).
5: Estimate φ̂(ψ(j), d(i)

1 ) using (20).
6: Estimate λ̂1(ψ(j), d(i)

1 ) using (21).
7: Evaluate log f(X, φ̂, λ̂1;ψ(j), d(i)

1 ) using (22) and
(15).

8: Compute λ̂2(ψ(j), d(i)
1 ) = ψ(j) · φ̂(ψ(j), d(i)

1 ).
9: end for

10: end for
11: Find i∗ and j∗ that maximize log f(X, φ̂, λ̂1;ψ(j), d(i)

1 ).
12: The joint MLEs are then φ̂(ψ(j∗), d(i∗)

1 ), λ̂1(ψ(j∗), d(i∗)
1 ),

λ̂2(ψ(j∗), d(i∗)
1 ), and d̂1 := d(i∗)

1 .

B. ML in the blocked domain

As an alternative to the joint ML method, which requires
a two-dimensional dictionary search, we propose in the fol-
lowing a simpler ML estimation procedure in the blocked
domain [16,44]. Specifically, the MLEs are not guaranteed
to be ML optimal for the problem posed in (16), but have
been demonstrated to perform well in terms of beamforming
performance in [22]. The ML estimation of the parameters in
(14), i.e. λ1, λ2, φ, and d1, in the blocked domain is adapted
from [22] and consists of two stages. The first stage is ML
estimation of λ1 and φ conditioned on d1 in the blocked
domain of d2dH2 , i.e. the null-space of d2dH2 . The second
stage is ML estimation of λ2 where the MLEs of λ1 and φ

conditioned on d1 are used to concentrate the log-likelihood in
(16). The rationale behind this ML estimation in the blocked
domain, is to simplify the estimation problem by canceling
one of the speech components with a blocking matrix B.
Specifically, the speech components λ2 and d2 are eliminated
in the first stage by projecting x to the null-space of d2dH2 . In
the second stage, only λ1, φ, and d1 remain and are estimated
using the MLEs in [19].

1) ML estimation of λ1 and φ: To map the noisy observa-
tions into the blocked domain, we form a blocking matrix,
which cancels the λ2d2dH2 term from (14). The blocking
matrix, B, is given as [22]

B =

(
IM×M −

d2dH2
dH2 d2

)
IM×M−1. (24)

where IM×M is an M × M identity matrix and IM×M−1

is the first M − 1 column vectors of IM×M . Applying the
blocking matrix to the input vector BHx, the CPSD matrix in
the blocked domain is

C̃ = BHCB = λ̃1d̃1d̃
H

1 + φ̃Γ̃, (25)

where C is the CPSD matrix from (14), Γ̃ = BHΓB, and
d̃1 = BHd1. The parameters to estimate in (25) are the
blocked domain PSDs λ̃1 and φ̃, and the RATF vector d̃1. The
CPSD matrix in (25) has a form that is identical to the CPSD
matrix in (17). Therefore, estimating λ̃1, φ̃, and d̃1 follows a
similar procedure as found in Sec. III-A. In the first stage, the
likelihood function in the blocked domain is

f(X̃; λ̃1, φ̃|d̃1) =
exp

(
−N tr(C̃

−1
R̃)
)

πNM |C̃|N
, (26)

while conditioned on d̃1, and X̃ = BHX and R̃ = BHRB. The
optimization problem is

arg max
λ̃1,φ̃

log f(X̃; λ̃1, φ̃|d̃1). (27)

In the following, the MLEs of λ̃1 and φ̃ are adaptations of the
MLEs derived in [19]. The ML estimate of φ̃ can be shown to
be a function of an MVDR beamformer in the blocked domain
with a distortion-less constraint on d̃1 [19] i.e.

w̃1(d̃1) = Γ̃
−1

d̃1

(
d̃1
H

Γ̃
−1

d̃1

)−1

, (28)

and

Q̃1(d̃1) = IM−1×M−1 − d̃1w̃H1 (d̃1), (29)

where IM−1×M−1 is an M − 1×M − 1 identity matrix. The
MLE of φ in the blocked domain is [19]

ˆ̃
φ(d̃1) =

1

M − 2
tr
(

Q̃1(d̃1)R̃Γ̃
−1
)
, (30)

where R̃ = BHRB and the MLE of λ1 is [19,22]

ˆ̃
λ1(d̃1) = w̃H1 (d̃1)

(
R̃− ˆ̃

φ(d̃1)Γ̃
)

w̃1(d̃1). (31)
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Algorithm 3: ML in the blocked domain

Input: D = {d(1)
1 , ..., d(ND)

1 }, d2, Γ.
1: Obtain the blocking matrix B from (24)
2: Compute blocked domain Γ as Γ̃ = BHΓB
3: for i = 1, 2, ..., ND do
4: d̃

(i)

1 = BHd(i)
1

5: Compute w̃1(d̃1
(i)

) in (28).
6: Compute Q̃1(d̃1

(i)
) in (29).

7: Estimate φ̂(d̃1
(i)

) using (30).
8: Estimate λ̂1(d̃1

(i)
) using (31).

9: Set Φ̂(d(i)
1 ) := λ̂1d(i)

1 (d(i)
1 )H + φ̂Γ

10: Compute w2(d(i)
1 ) in (35).

11: Compute Q2(d(i)
1 ) in (36).

12: Estimate γ̂(d(i)
1 ) using (37).

13: Estimate λ̂2(d(i)
1 ) using (38).

14: Evaluate log f(X, λ̂1, λ̂2, φ̂; d(i)
1 ) in (41) using (15)

15: end for
16: Find i∗ = arg max

i
log f(X, λ̂1, λ̂2, φ̂; d(i)

1 )

17: The joint MLEs are then φ̂(d(i∗)
1 ), λ̂1(d(i∗)

1 ), λ̂2(d(i∗)
1 ),

d̂1 := d(i∗)
1 .

2) ML estimation of λ2: Given ˆ̃
λ1(d̃1) and ˆ̃

φ(d̃1), these
may be inserted into the noisy CPSD matrix in (14) such that
it becomes

C(λ2, d1) = λ2d2dH2 +
(

ˆ̃
λ1d1dH1 +

ˆ̃
φΓ
)

= λ2d2dH2 + Φ̂(d1),
(32)

where Φ̂(d1) =
ˆ̃
λ1d1dH1 +

ˆ̃
φΓ. For ML estimation of the

remaining parameter, λ2, we introduce the parameter γ such
that the noisy CPSD matrix is

C(λ2, d1, γ) = λ2d2dH2 + γΦ̂(d1), (33)

which ensures that (33) has a form identical to (25), and,
hence, the MLEs of γ and λ2 can be found similarly. The
optimization problem is

arg max
λ2,γ

log f(X;λ2, γ|Φ̂(d1)), (34)

where the likelihood function is conditioned on Φ̂(d1), and
has the form as in (15). To estimate λ2 and γ, first we form
the MVDR beamformer with distortion-less constraint on d2

w2(d1) = Φ̂(d1)−1d2

(
d2
HΦ̂(d1)−1d2

)−1

, (35)

such that

Q2(d1) = IM×M − d2wH2 (d1). (36)

Then the MLE of γ is [19]

γ̂(d1) =
1

M − 1
tr
(

Q2(d1)RΦ̂(d1)−1
)
, (37)

and the MLE of λ2 is [19]

λ̂2(d1) = wH2 (d1)
(

R− γ̂(d1)Φ̂(d1)
)

w2(d1). (38)

The introduction of the variable γ̂(d1), means that the MLE
of λ1 and φ becomes

λ̂1(d1) =
ˆ̃
λ1(d1) · γ̂(d1), (39)

and

φ̂(d1) =
ˆ̃
φ(d1) · γ̂(d1). (40)

Finally, the MLE of d1 is found by evaluating the log-
likelihood for each d1 ∈ D, and choose the one that maximizes
the log-likelihood i.e.

d̂1 = arg max
d1∈D

log f(X, λ̂1, λ̂2, φ̂; d1). (41)

The ML procedure in the blocked domain is summarized in
Algorithm 3.

C. Unconstrained Joint ML

Let D , [d1 d2] and Λ(λ1, λ2) = diag(λ1, λ2). Then the
CPSD matrix in (14) can be written as

C(d1,Λ) = DΛDH + φΓ. (42)

Note that the signal model is only identical to the one in
(14) if Λ is a diagonal matrix. For known matrices D and
Γ, MLEs of Λ and φ were derived in [19]. However, the
MLEs presented in [19] do not guarantee that the estimate of
Λ is a diagonal matrix. The MLEs in [19], therefore, are not
necessary maximum likelihood for the problem posed in (16).
Nevertheless, as demonstrated in the simulation experiment in
Appendix A, using the diagonal elements of the MLE of [19]
works essentially as good as the joint ML method from Sec.
III-A.

In [19], the MLE for φ is derived by first defining the
linearly constrained minimum variance (LCMV) beamformer
with distortion-less constraints on d1 and d2,

W(d1) = Γ−1D
(
DHΓ−1D

)−1
, (43)

where W(d1) ∈ CM×2 and

Q(d1) = I− DWH(d1). (44)

Then the MLE of the noise PSD is given as [19]

φ̂(d1) =
1

M − 2
tr
(
Q(d1)RΓ−1

)
, (45)

and the ML estimate of Λ is then [19]

Λ̂(d1) = WH(d1)
(

R− φ̂(d1)Γ
)

W(d1). (46)

We propose to find, the estimates of λ1 and λ2 as the main
diagonal of Λ̂(d1), i.e. λ̂1 = Λ̂1,1 and λ̂2 = Λ̂2,2. Finally, in
order to estimate d1, we concentrate the log-likelihood with
the MLEs of Λ(d1) and φ(d1), and search over the dictionary
D until the element that returns the highest log-likelihood is
found i.e.

d̂1 = arg max
d1∈D

log f(X, Λ̂, φ̂; d1). (47)
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The unconstrained ML procedure is summarized in Algorithm
4. We have compared the three proposed algorithms in terms
of speech enhancement performance in Appendix A. Our ex-
periments demonstrate that the proposed algorithms essentially
perform on par in terms of ESTOI and PESQ. 3 and Algorithm
4 perform marginally better than Algorithm 2 in terms of
PESQ score, however slightly worse in terms of ESTOI score.
This is possibly due to a slightly more aggressive noise
reduction for Algorithm 3 and Algorithm 4 than Algorithm
2. This leads to higher PESQ scores but at the cost of more
speech distortion and lower ESTOI scores. For this reason,
we choose to leave Algorithm 2 out of the evaluation in Sec.
IV-D, although Algorithm 3 and 4 do not solve the initial
problem posed in (16). However, since Algorithm 2 requires
a two-dimensional search, Algorithm 2 is likely much more
computationally complex compared to Algorithm 3 and 4. The
experiments in Sec. IV-D furthermore reveal that the real-
time factor of Algorithm 4 is 9.46, Algorithm 3 is 4.98, and
Algorithm 2 is 153.46. Although, we did not perform code
optimization, the real-time factors give an indication of the
computation complexity of the proposed methods and favors
Algorithm 4 and 3 over Algorithm 2.

D. Robust wideband estimation of the RATF vector

The proposed MLEs estimate the interferer and target RATF
vectors independently over frequency bins. This approach
allow multiple target and interferers in the acoustic scene, as
long as a maximum of one target and interferer is present
for a given TF tile. However, for acoustic sound sources,
it is plausible to assume that the location of the target is
identical across frequency. Therefore, in order to improve
performance, estimation of the RATF vector can be done
jointly over frequency hence made more robust [10,25]. The
joint MLE of d1 is

arg max
i∈{1,2,...,|D|}

K∑
k=1

log f(X(k), λ̂1(k), λ̂2(k), φ̂(k); d(i)
1 (k)),

(48)

where |D| is the cardinality of D. Hence, the concentrated log-
likelihood for a particular dictionary index i is added across
frequency, where i corresponds to a location of the sound
source.

IV. PERFORMANCE EVALUATION OF PROPOSED
BEAMFORMING SYSTEMS

The proposed MLEs in Sec. III are evaluated in terms
of beamforming performance when implemented into noise
reduction systems. The beamforming performance of the pro-
posed systems is found through simulation experiments where
the task is to retrieve a target speech signal contaminated
with interfering speech and noise. We compare the proposed
methods against state-of-the-art methods which solve similar
problems but do not explicitly model the presence of the own
voice and interferer. The parameter estimation of the PSDs and
RATF vectors used in the proposed noise reduction systems
are based on Algorithm 3 and Algorithm 4 in Sec. III and used

Algorithm 4: Unconstrained joint ML

Input: D = {d(1)
1 , ..., d(ND)

1 }, d2, Γ.
1: for i = 1, 2, ..., ND do
2: Define Di , [d(i)

1 d2]

3: Compute W(d(i)
1 ) in (43).

4: Compute Q(d(i)
1 ) in (44).

5: Estimate φ̂(d(i)
1 ) using (45).

6: Estimate Λ̂(d(i)
1 ) using (46).

7: Evaluate log f(X, Λ̂, φ̂; d(i)
1 ) in (47)

8: end for
9: Find i∗ = arg max

i
log f(X, Λ̂, φ̂; d(i)

1 )

10: The joint MLEs are then λ̂1 = Λ̂1,1(d(i∗)
1 ), φ̂(d(i∗)

1 ), λ̂2 =

Λ̂2,2(d(i∗)
1 ), d̂1 := d(i∗)

1 .

in an MWF beamformer, Algorithm 1, as shown in Fig. 3. We
refer to the noise reduction systems based on Algorithm 3 as
ML-BD and Algorithm 4 as UML.

A. Acoustic impulse response and sound databases

1) Acoustic impulse response database: Acoustic impulse
functions (AIRs) are used to simulate the sound waves propa-
gating from sound sources to the HA microphones. The AIRs
were measured in an acoustic setup consisting of a circular
loudspeaker array with a radius of 1.9 meters placed in an
acoustically damped room [45]. A human HA user was seated
in the center of the array during the measurements wearing
two behind-the-ear (BTE) HAs; one placed on each ear. Each
HA has a front and rear microphone separated by 1.3 cm. The
AIRs mostly depend on the head and torso acoustics while
reverberation has been removed by truncating the AIRs.

All M=4 microphones are used in a binaural HA configu-
ration for the simulations. A direct implementation - as used in
our simulations - of the MWF beamformers for a binaural HA
configuration will result in a ”noise collapse” [46]. In other
words, all noise sources will sound as if they were originating
from the target location. This is obviously important for a
binaural HA application. However, several methods have been
developed to mask or avoid this unwanted perceptual effect,
e.g., [46]–[48]. Such methods are outside the scope of the
present paper.

We assume instantaneous and error-free signal exchange
between the left and right HAs. The AIRs were sampled at
a horizontal resolution of 7.5 degrees with 0◦ defined as the
frontal direction from the HA user’s point of view, and the
azimuth is counterclockwise rotating. Hence, the dictionary
of AIRs contains AIRs from 48 different directions. The
own voice AIRs were measured using a mouth reference
microphone placed in front of the HA user’s mouth. The HA
user was asked to read a text up loud, and the AIRs from
the own voice reference point to the HA microphones were
measured [45].

In Sec. IV-E, AIR mismatches are simulated by using two
different sets of AIR dictionaries measured on two different
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human heads. One dictionary is used to simulate the acoustic
scene, while the other is used as a dictionary in the noise
reduction systems.

The RATF dictionary used for the proposed algorithms is
obtained by transforming the AIR dictionary using (5). The
frontal microphone of the left ear HA is used as the reference
microphone.

2) Speech and noise databases: Speech signals used for
the own voice, target, and interference, are obtained from the
TIMIT database [49]. Speech pauses are removed with an
energy-based VAD to minimize the influence of speech gaps
in the evaluation. We do not simulate speech gaps caused by
conversation pauses. However, the acoustic scene still include
situations where neither the own voice nor the target speech
are present in a TF tile due to speech being sparse in the TF
domain. Hence, there are TF-tiles where own voice or target
speech is absent even if they are detected present.

The noise database used in the simulation is recordings of
noise found in realistic acoustic environments (e.g. a busy
canteen and car cabin). The recordings of the noise are made
with a spherical microphone array to accurately capture the
noise field as measured at a reference point of the spherical
microphone array. The captured noise is then transformed and
convolved with the AIRs, such that the resulting noise field at
the HA microphones in the simulation is identical to the one
measured with the spherical microphone array [50].

B. Simulation of acoustic scenes

1) Target and noise levels: We define the input signal-
to-interference-plus-noise ratio (SINR) as the ratio between
the average target speech power and the average interference-
plus-noise power. The target speech and interference-plus-
noise power are computed prior to convolving the signals
with the AIRs. The interference-to-noise ratio (INR) is defined
similarly as the ratio between the average interfering speech
power and the average noise power prior to convolving with
the AIRs. The own voice and target speech are set to have
equal power prior to convolving with the AIRs.

2) Target and interferer locations: The target RATF vector
is randomly drawn from the dictionary of RATF vectors. Each
RATF vector is associated with a direction and the RATF
vectors are drawn from a uniform distribution where the set of
possible outcomes is {-90◦, -82.5◦, ..., 90◦}. Hence, the target
is located in the frontal half-plane as the HA user in realistic
situations is likely to be facing the target speaker [15,26]. The
RATF vector for the interfering speech is randomly selected
to be from the directions 75◦ or 225◦ and with this choice, the
target speech and interfering speech are allowed to overlap in
direction, when both the target speaker and interfering speaker
are arriving from 75◦.

3) Simulation settings: The sampling frequency of the
simulation is 16 kHz. We used (1) to simulate the noisy
microphone signals. The STFT and inverse STFT are used
to transform the microphone signals into the time-frequency
domain. A square-root Hanning window with a window size
of 256 samples is used as analysis and synthesis windows.
The window overlap is 128 samples. All algorithms in the

evaluation have access to an oracle generic VAD that is able
to perfectly detect regions with speech absence (i.e. frames
with neither own voice, target, nor interfering speech). Since
the generic VAD does not require to distinguish between
own voice, target, nor interfering speech, this significantly
simplifies the task of designing a robust VAD. The generic
VAD is used to initialize Γv from noise-only region before any
speech activity. Furthermore, an oracle OVAD is used in the
evaluation for the proposed algorithms. The OVAD can detect
the presence of own voice per frame but not per TF-tile. When
own voice is detected absent, the proposed algorithms assume
the presence of target speech. The duration of an acoustic
scene is 5 seconds and Γv is initialized in a no-speech region
before the beginning of the acoustic scene. The own voice
is active in the first 2.5 seconds, followed by 2.5 seconds
of own voice absence where the target is active to simulate
a conversation. The interfering speaker is active during the
whole 5 second simulation. Each reported performance score
is an average over 40 acoustic scenes.

The HA user may occasionally rotate the head during
conversations [33]. However, such head rotation were not
implemented in our simulations. In practice, one might use
other sensors e.g. accelerometers on board the HAD to detect
or measure head rotations. After such detection, the noise
reduction system may then compensate for the head-rotations
or resort to a simpler baseline algorithm such as the one
presented in [14] to increase robustness. Moreover, the target
and interferer locations are fixed during the simulations. The
proposed algorithms can in principle handle situations with
moving targets, since the target RATF vectors are estimated for
each TF-tile independently. Similarly, the proposed algorithms
can handle moving interferers, but only during own voice
regions. Moving interferers during own voice absence can
potentially cause issues, but robustness against such situations
can be increased by hypothesis testing. Specifically, if the
noisy observations during own voice absence poorly match
the interference-plus-noise CPSD matrix estimated from own
voice presence (due to a moving interferer), hypothesis testing
can help detecting these and resort to a simpler signal model
to increase robustness e.g. (49).

A summary of the different acoustic settings for the experi-
ments is given in Table I with references to the figures where
the results are reported.

Number of mics 4 4 4
Noise type Canteen Car noise Canteen
AIR mismatch No No Yes
Figure Fig. 5 Fig. 6 Fig. 7

TABLE I: Simulation settings used in the evaluation.

C. Baseline noise reduction systems

We compare the proposed system variants to recent state-
of-the-art methods used for beamforming in HADs. These
methods solve the problem of enhancing a single-target in
noise using an MWF beamformer [10,14]. More advanced
techniques presented in [23,51] can handle multiple speakers
but require additional information about the target location or
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target speech activity. We do not assume that the noise reduc-
tion systems have access to such information and therefore
these methods were not included in the evaluation. The state-
of-the-art methods we have included in the evaluation are:

1) MWF beamformer with ML PSD estimation assuming
frontal target: In the context of HADs, the target speaker is
often assumed to be frontal with respect to the HA user [15,
26]. The MWF beamforming scheme presented in [14,15] is
used as a baseline method for MWF beamformers that assume
frontal targets. For this particular method, the noisy CPSD
matrix is modeled as

Cx = λtdtdHt + λvΓv, (49)

where dt is the RATF vector associated with the frontal
direction. The PSDs λt and λv are replaced by ML estimates
and used to implement an MWF beamformer as in Fig. 3
during the remaining 2.5 seconds of an acoustic scene with
target presence. The method is referred to as ML-FRONTAL.

2) MWF beamformer with ML PSD and target RATF
estimation: The method proposed in [10] generalizes the
method in [14,15] by including ML estimation of the tar-
get RATF vector. The noisy CPSD matrix is modeled as
in (49), but the frontal RATF vector dt is replaced by an
estimated RATF vector. The log-likelihood function is denoted
as log f(X;λt, λv, dt) and is parameterized by λt, λv , and dt.
These parameters are estimated by solving:

arg max
λt,λv,dt∈D

log f(X;λt, λv, dt). (50)

The estimated λt, λv , dt are similarly used to implement an
MWF beamformer. We refer to this method to as ML-DOA.
The baseline methods have access to a generic VAD to detect
speech absence where neither own voice, interfering, nor target
speech are present. The generic VAD is used to initialize Γv .
In contrast to the propose methods, the baseline methods do
not exploit the own voice to assume the target absence during
own voice presence.

As a reference for upper bound performance, an ”oracle”
MWF beamformer, where all parameters for the MWF beam-
former are known, is included.

D. Simulation results for canteen and car noise

Beamforming performance is evaluated in terms of esti-
mated speech intelligibility using ESTOI [52] and in terms of
speech quality using PESQ [53]. Performance is reported as a
function of SINR to compare the robustness towards different
noise level and as a function of INR to compare the robustness
against the presence of interfering speech. When evaluating the
performance as a function of INR, the SINR is fixed to 0 dB
to simulate a reasonable noisy acoustic scene. Similarly, when
evaluating the performance as a function of SINR, the INR is
chosen to be fixed at 6 dB to maintain the presence of a fairly
strong interfering speaker.

The beamforming performance in canteen noise is shown
in Fig. 5 and performance for car noise is shown in Fig. 6. By
visual inspection, we see that the proposed methods i.e. ML-
BD and UML perform well in the presence of an interfering
speaker. At high INRs, the proposed methods outperform both

ML-FRONTAL and ML-DOA significantly. This observation
indicates that the proposed methods are more efficient at
identifying and suppressing interfering speech due to the use of
the user’s own voice. Sample spectrograms of the beamformer
outputs are also shown in Fig. 4 for a visual comparison
between ML-FRONTAL and UML. We only show the baseline
method ML-FRONTAL as the target is located at 0◦ which
is the best case scenario for ML-FRONTAL. ML-BD is also
omitted from Fig. 4 as it shows very similar patterns to
UML. The spectrograms show that the proposed algorithms
suppress the interfering speaker more efficiently than the
baseline methods while preserving the target speech. This can
be seen in Fig. 4e and Fig. 4f where a comparison reveals that
the interfering speaker is almost completely canceled using
UML in contrast to ML-FRONTAL.

Another notable observation in Fig. 5 and Fig. 6 is that,
the ML-DOA method return a very poor ESTOI and PESQ
score when the INR is high. This is due to large amounts of
target speech distortion as a consequence of the interfering
speech mistakenly being identified as the target speech. In
severe situations, e.g. when the INR is 12 dB, the performance
of ML-DOA approaches the performance of the noisy signal.

ESTOI and PESQ scores of the proposed methods and the
state-of-the-art methods, ML-DOA, are close at low INRs (see
left panels in Fig. 5 and Fig. 6). To analyze these performance
differences, we conduct pairwise t-tests [54] with Bonferroni
corrected significance levels. The null-hypothesis is that the
mean ESTOI score between two selected methods is identical
for a given INR. We choose a significance level of α = 0.05
before Bonferroni correction.

For canteen noise in Fig. 5, we compare ML-DOA with
ML-BD and UML. The pairwise t-tests reveal no significant
difference at -12 dB and -6 dB INR for ESTOI and -12 dB dB
INR for PESQ. For car noise in Fig. 6, no significant difference
is observed at -12 dB INR for ESTOI when comparing
ML-DOA with ML-BD and UML. In terms of PESQ, the
comparisons reveal that all pairwise comparisons for ML-
DOA with ML-BD and UML are significant. The results
for car noise, suggest that the proposed methods perform
much better in comparison to the state-of-the-art methods,
when the noise is approximately isotropic and stationary. A
possible explanation is that detection and suppression of weak
interferers at low INRs, is substantially easier in these noise
fields for the proposed noise reduction systems.

We also examined the performance in situation where the
target location is fixed to the front of the user (0◦) and
known to the beamforming systems. These situations may
occur when the user steers the beamformer by rotating the
head. However, we did not include these results as they lead
to similar conclusions to the experiments with unknown target
locations. This is due to the proposed algorithms being able to
identify and suppress the interfering speaker more efficiently
than the baseline methods.

In summary, the evaluation and statistical tests suggest that
both proposed noise reduction systems, i.e. ML-BD and UML,
have a significantly advantage over state-of-the-art methods in
situations where a strong interferer is present. Additionally,
we may conclude that the proposed systems, also perform on
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(d) Clean target speech
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Fig. 4: Spectrograms of the noisy, clean target, and processed signals from a single realization of the experiment in Sec. IV-D.
The interferer is a competing speaker and the background noise is canteen noise. The INR is set to 12 dB, and the SINR is 0
dB. The target location is in the front (0◦), and the interfering speaker is located at 75◦. The figures show the spectrograms of
the last 2.5 seconds of an acoustic scene with target presence. Fig. 4a and Fig. 4d show the noisy and clean target signals at the
reference microphone, respectively. Fig. 4b and Fig. 4e show the output of the MWF beamformer using ML-FRONTAL, where
Fig. 4b shows the processed signal and Fig. 4e shows the processed interference-plus-noise components only (i.e. without the
target). Fig. 4c and Fig. 4f show the output of the MWF beamformer using UML, where Fig. 4c shows processed signal and
Fig. 4f shows the processed interference-plus-noise components only.
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Fig. 5: Beamforming performance in canteen noise.

pair with state-of-the art in situations with weak interferers.

E. Simulation results with AIR mismatch and reverberation

In real-world scenarios, the AIRs of the RATF dictionary
may not match the actual AIRs, and the microphone signals
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Fig. 6: Beamforming performance in car noise.

may be contaminated by reverberation in addition to noise.
Both phenomena can potentially have a degrading impact on
the beamforming performance of the proposed algorithms.
To examine the robustness of the proposed algorithms, we
therefore evaluate them against AIR mismatch and reverbera-
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Fig. 7: Performance in canteen noise and AIR mismatch.
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Fig. 8: Performance in car noise and AIR mismatch.

tion. We perform two experiments where the first experiment
examines the robustness against AIR mismatch, and the second
experiment examines the robustness against reverberation.

1) Simulation with AIR mismatch: In the first experiment,
AIR mismatches can arise due to non-personalized RATF
dictionaries. For example, the RATF dictionary may be mea-
sured on a different head than the HA user. To simulate such
AIR mismatch, we use two sets of AIR databases fitted and
measured on two arbitrarily chosen human heads. One is used
to simulate the acoustic scene, and the other is used as a non-
personalized RATF dictionary for the parameter estimation and
MWF beamformer in the noise reduction systems.

Fig. 7 and Fig. 8 show the results for canteen noise and
car noise, respectively. As expected, mismatches in the RATF
dictionary cause performance degradations for all methods.
Generally, the difference in mean ESTOI score between meth-
ods is smaller than the experiments in Sec. IV-D.

As in Sec. IV-D, we perform pairwise t-tests with Bonfer-
roni corrected significance levels. We compare the proposed
algorithms with ML-FRONTAL and ML-DOA. Statistically
significant differences are primarily observed at high INRs,
where ML-BD performs better than any of the baseline meth-
ods. At lower INRs, there are no strong indications that any of
the noise reduction systems perform differently than the other.

2) Simulation with reverberation: In the second experi-
ment, we use reverberant AIRs to simulate reverberation on
the target and interference sources. The AIRs are measured
in a listening room with physical dimensions L x W x H =
7.9 m x 6.0 m x 3.5 m. The reverberation time in the room
is approximately T60 = 150 ms. The clean target and clean
interference signals are convolved with reverberant AIRs to
simulate the room reverberation. The canteen and car noise al-
ready contain natural reverberation from the environment they
were measured in, hence we did not convolve the reverberant
AIRs with the noise. We did not have access to a reverberant
own voice transfer function, and therefore used the dry own
voice transfer function in the simulation. We used an RATF
dictionary obtained from the dry AIRs for the noise reduction
systems.

Figs. 9 and 10 show performance results for canteen noise
and car noise, respectively. Generally, all noise reduction
systems suffer substantial performance degradation when the
target and interference signals are reverberant. In canteen
noise, we measure no strong statistical difference between the
noise reduction systems except for ML-BD which performs
better than ML-FRONTAL and ML-DOA at 12 dB INR.
In terms of PESQ, the results are more decisive and seem
to favor ML-BD which is statistically significant better than
the baseline methods for INRs between 0 to 12 dB. In car
noise, ML-BD performs significantly better than the baseline
methods between -6 dB to 12 dB INR both in terms of
ESTOI and PESQ. However, UML did not perform statistically
significantly differently than any of the baseline methods.

Our evaluations with AIR mismatch and reverberation seem
to favor ML-BD over UML and the baseline methods. How-
ever, despite reduced performance in these situations compared
to the results in Sec. IV-D, it is worth pointing out that the
overall conclusion remains: The proposed methods, in par-
ticular ML-BD, perform significantly better than the baseline
methods in situations with a prominent interfering speaker and
perform on par with the baseline methods in the absence of
an interfering speaker.

V. CONCLUSION

In this paper, we propose multichannel noise reduction
systems for hearing assistive devices (HADs). The proposed
noise reduction systems can solve the problem of enhancing
a target speech contaminated by noise and strong interfering
speech, which is often considered difficult to solve for existing
systems. We rely on the HAD user’s own voice to identify
interfering speech during own voice presence, but target ab-
sence. Furthermore, the multichannel Wiener filter (MWF)
is used to retrieve the target speech and we propose three
maximum likelihood estimation methods to estimate the target,
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Fig. 9: Beamforming performance in canteen noise and reverb.
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Fig. 10: Beamforming performance in car noise and reverb.

interfering speech, and noise statistics needed for the MWF
beamformer.

The proposed noise reduction systems are compared to
state-of-the-art methods in terms ESTOI and PESQ to examine
estimated speech intelligibility and speech quality. Simulation
results indicate that the proposed noise reduction systems are
able to outperform the state-of-the-art methods particularly in
situations with a prominent interfering speaker.

APPENDIX A
SPEECH ENHANCEMENT PERFORMANCE EVALUATION OF

THE MAXIMUM LIKELIHOOD ESTIMATORS

In this appendix, we evaluate the speech enhancement
performance of the MLEs presented in Sec. III. The purpose
of this evaluation is to show that the performances of ML-BD
(Algorithm 3, and UML (Algorithm 4, see Sec. III-B) are close
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Fig. 11: Beamforming performance in situations with target,
interferer, and noise with known target RATF vector.

to identical to the joint MLEs in III-A (J-ML). This result is
of particular interest as the MLEs for ML-BD and UML only
require a one-dimensional search over d1 and hence potentially
a much lower computational complexity.

For simplicity, the target RATF vectors are assumed known
and the evaluation is focused on speech enhancement perfor-
mance. Although the target RATF vectors are assumed known
for this evaluation, results can still give a sufficient indication
on how ML-BD, UML, and J-ML compares. The comparison
is made in terms of ESTOI and PESQ as a function of signal-
to-interference-plus-noise ratio (SINR).

For this experiment, the setup is similar to the one presented
in Sec. IV but with the target and interferer RATF vector
known to the noise reduction systems.

Fig. 11 shows performance in terms of for ESTOI and
PESQ as a function of SINR with the INR fixed to 6 dB. The
unprocessed signal and the output of an oracle MWF with
known target and noise statistics are also evaluated to indicate
lower and upper performance bounds. Each performance score
per SINR is averaged over 50 realization of acoustic scenes.

From Fig. 11, we see that J-ML, ML-BD, and UML perform
almost identically without large differences. Furthermore, they
perform close to the oracle MWF. We observe that J-ML
performs slightly better than UML and ML-BD in terms of
ESTOI but slightly worse in terms of PESQ. This is possibly
due to UML and ML-BD having a slightly more aggressive
noise suppression than J-ML which translates to marginally
higher PESQ score at the cost of speech distortion and lower
ESTOI score.

An evaluation of the runtime of the algorithms, showed that
the real-time factors were 9.46 for UML, 4.98 for ML-BD,
and 153.46 for J-ML. We see that J-ML has a significantly
higher real-time factor compared to UML and ML-BD. This
is partly due to the choice of the grid resolution used in J-ML
as a high grid resolution will increase the real-time factor.
Lowering the grid resolution will decrease the real-time factor
but can result in performance degradation. It should also be
noted that the implementation of the algorithms are not code
optimized, but the real-time factors can still give a rough
indication of computational complexity when comparing the
proposed methods.

Because of the insignificant difference between J-ML, ML-
BD and UML, we omit J-ML in the evaluation in Sec. IV due
to its high computational complexity. However, if J-ML was
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chosen to be included in the evaluation in Sec. IV, similar
performance to ML-BD and UML would be expected.
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