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Age of Information in Multi-Hop Connections with
Tributary Traffic and no Preemption

Federico Chiariotti, Member, IEEE, Olga Vikhrova, Member, IEEE, Beatriz Soret, Member, IEEE,
and Petar Popovski, Fellow, IEEE

Abstract—Age of Information (AoI) has gained significant
attention from the research community because of its applications
to Internet of Things (IoT) monitoring and control. In this
work, we treat multihop connections over queuing networks with
tributary flows and non-preemptive service: packets cannot be
discarded because they are utilized for other system objectives,
such as data analytics. Without preemption, the key tool for
optimizing AoI is then the scheduling policy between the different
data flows at each intermediate node. This is the subject of our
analysis, along with the impact of packet erasure on the age. We
derive upper and lower bounds for the average AoI considering
several queuing policies in arbitrary network topologies, and
present the results in different scenarios. Network topology,
tributary traffic load, and link characteristics such as packet
erasure generate complex trade-offs, which affect the optimal
operation point and the age performance. The scheduling strategy
at each node can also affect performance and fairness among
users, particularly at critical bottleneck links, which have a
significant impact on the overall performance of the whole
network.

I. INTRODUCTION

Age of Information (AoI) [1] is a metric that has recently
attracted significant attention in Internet of Things (IoT)
systems, particularly with respect to monitoring and remote
control applications [2]. It is a process that measures the time
elapsed since the generation of the last received update, i.e.,
the freshness of the information available to the receiver at any
given time. By measuring the time since the generation of the
last received packet at any given time, instead of the latency
for each individual packet, it can provide some additional
nuance, allowing system designers to calibrate the activation
rate and duty cycle of sensors.

While latency is minimized in a scenario in which the
traffic load on the network is very low, as communication
buffers are almost always empty and there are no medium
access issues, such a scenario will have a high AoI due to the
longer interarrival time between packets. On the other hand,
a high traffic load leads to a high transmission latency, which
becomes the dominant component of the age. If we plot the
AoI as a function of the update frequency, and consequently
of the generated load, we often see a U-shaped curve, where
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the optimal update frequency is the value that strikes the best
balance between update frequency and network congestion.

Most of the early works analyzing AoI dealt with single
queuing systems. In this paper, we consider a less studied sce-
nario of queuing networks, with multihop connections as well
as tributary data flows at intermediate nodes. Two examples
from Fig. 1 illustrate why this scenario is of interest in IoT
systems. The first example, which is rapidly gaining traction
in the real world, is given by Low Earth Orbit (LEO) satellite
constellations [3], which form an ad hoc network such as the
one shown in Fig. 1a. Each satellite is connected to the ground
through an uplink (UL) and downlink (DL), and satellites have
Inter-Satellite Links (ISLs) between each other [4]. The second
example involves a terrestrial IoT network, and is shown in
Fig. 1b. Multiple gateways can gather data from sensors, with
independent wireless access, and then share a backhaul link to
a server, which is often the bottleneck [5]. In both cases, the
complex interactions between different flows of information,
such as the light blue and dark blue ones in the figure, can
give rise to interesting patterns in the AoI and change the
optimization considerations in the system design.

A widely used tool in relation to AoI is service preemp-
tion [6], where some packets are dropped from the queues if
such an action contributes to the AoI minimization. However,
in many cases preemption is not desirable due to other system
objectives. A recent work [7] has proven that there is an
unavoidable trade-off between AoI and reliability, and that
preemptive systems are optimal for AoI, but cause significant
packet loss due to the dropping policy. This can become an
issue in any case in which the AoI is not the only objective, but
older packets still need to be delivered: one example would be
a live monitoring and logging system, which requires data to
be fresh, but also aims at reconstructing the historical trajec-
tory of the system to train a machine learning model or analyze
long-term patterns. This dual objective is common to many IoT
scenarios, such as underwater networks [8]. While there have
been some works in the literature analyzing arbitrary queuing
networks [9]–[11], non-preemptive, continuous-time networks
are still mostly unexamined. We will give more details on
the differences between our work and the ones mentioned in
Sec. II. In absence of preemption, the tributary flows provide
a new flavor to the problem of AoI minimization, as now
the intermediate nodes can make scheduling decisions that are
affecting multiple data flows. In fact, it is important to note
that, although we analyze a single multihop connection, the
results are applicable to all involved connections of the tribu-
tary flows, as we explicitly address their interactions through
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backhaul.

Fig. 1: Examples of multihop networks with tributary traffic flows.

the scheduling policy. Tandem structures with different rates
and intersecting flows are one of the most general and complex
models in queuing theory, and the additional degree of freedom
in the queuing policy makes the AoI computation even more
complex. We consider the Oldest Packet First (OPF) [12] and
Maximum Age First (MAF) [13] policies and show that they
can lead to non-trivial changes in the behavior of AoI. Finally,
our model also includes unreliable wireless links, which are
modeled as factors in the stochastic service time for each
queue that works as a relay for the received data packets.

Our analysis derives tight upper and lower bounds of
the average AoI for this model, which is useful in many
applications. The main contributions of the paper are:

• We model a queuing network as a connected graph, with
an arbitrary number of nodes and flows that can have any
pair of nodes as their source and destination. The nodes
have Markovian service and non-preemptive queuing, and
all flows have Poisson arrivals.

• We compute tight upper and lower bounds to the average
AoI for any flow in the network with non-preemptive,
First Come First Serve (FCFS) queuing, which corre-
sponds to a Jackson network [14] model. The bounds
are derived for each individual flow, aggregating others
as a single tributary traffic flow. However, the tributary
traffic on each link depends on the topology and routing
scheme, and the bounds depend on the routing and data
rate of all other flows in the network.

• We show the performance of the system and the tightness
of the bounds in two case studies, which are simulated
with a Monte Carlo approach. The first is a line network
in which the tributary traffic all has the same destination,
and the second is a classic dumbbell topology with a
single shared bottleneck link.

• We go beyond Jackson networks, which require the FCFS
queuing policy to be applied at all nodes, and examine
two other policies: OPF and MAF. Both policies rely
on packet timestamps to schedule packets: OPF selects
the packet with the lowest timestamp, i.e., the one that
was generated first, independently of the arrival time

at the node, while MAF maintains a measure of the
AoI at the following node, transmitting packets from
the source with the highest age first. These policies can
reduce the average AoI and the unfairness between flows
with different paths by considering the whole connection
instead of each individual link.

• We consider the impact of packet erasures due to fluc-
tuations of the wireless channel on the AoI. Naturally,
losing packets has a negative impact on the reliability,
but it can counterintuitively reduce the AoI: in high load
scenarios, removing some packets from later links can
help ease congestion, having a positive impact on the
overall age. This trade-off is yet another instance of the
dilemma “how often should one update?” [1], although
the answer in a network with multiple flows is far from
trivial.

A simplified version of our model was presented in [15], which
analyzed a simple line network with no cross-traffic, or a
case with 2 sources sharing a bottleneck in a tandem network
with 2 links. A preliminary version of this work computed a
looser upper bound for the AoI under the same conditions and
was uploaded as a preprint in [16]: while the system model
was similar, this version has an extended analysis, using more
advanced mathematical tools to find a tighter upper bound and
represent a more general scenario. Furthermore, the analysis
of the results and of their potential application to AoI-oriented
optimization is more complete in this work. Overall, this paper
expands significantly on both previous versions, with a more
complete analysis and improved results.

The rest of this paper has the following organization: first,
an analysis of the relevant literature and the gaps in the state of
the art is presented in Sec. II. Secondly, the system model and
analytical tools to compute the AoI bounds are presented in
Sec. III. The actual calculation of the upper and lower bounds
is described in detail in Sec. IV, and numerical results are
presented in Sec. V. Finally, Sec. VI concludes the paper,
along with a discussion of potential future directions of this
work.
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II. RELATED WORK

While less than a decade old, AoI has been the subject of
intense study: the first paper to define it [1] characterized it in
G/G/1 queues, focusing on the two special cases with expo-
nential and deterministic service, which are more analytically
tractable. Several works have then considered different queu-
ing models, attempting to characterize real wireless scenarios
by including packet erasures [17] and retransmissions [18], or
verifying the realism of existing models with experiments over
live connections [19].

Another widely studied problem is represented by the
optimization of the senders and relays when multiple sources
share a link or connection, with the goal of maintaining a low
age for all flows [20]. If we consider non-trivial networks,
optimizing all the senders has been shown to be NP-hard [21],
but near-optimal heuristics can be defined [22]. In particular,
source optimization is crucial for uncoordinated systems such
as slotted and unslotted ALOHA: the average AoI for such
systems has been derived in [23] and [24]. Another recent
work [25] combines slotted ALOHA and source control poli-
cies, optimizing transmission patterns to reduce the average
AoI.

The scheduled case is a different problem: if a link is shared
by multiple flows, and a coordinator (e.g., a base station)
can decide which packets to prioritize, the scheduling policy
becomes a major factor. The performance of this kind of
system has been compared with uncoordinated systems in [26].
Finding the optimal scheduling policy [20] is a complex
problem, but there are some valid heuristics: one such example
is represented by the MAF policy [27], which selects the
packet from the source with the highest age. If nodes are
allowed to discard packets, considering a limited transmission
period for packets, after which they are dropped, can also be
beneficial for the overall performance of the system [28].

However, while most of the AoI literature concentrates
on single queuing systems, more complex networks with
multiple hops have recently drawn significant attention. In
particular, the M/M/1 case with 2 queues in tandem has
been studied extensively due to its analytical tractability: the
average Peak Age of Information (PAoI) with multiple sources
was derived in [29], and other works have tried to derive the
full distribution of the age, either analytically [30] or using
the Chernoff bound [31]

More general queuing networks, with multiple hops and
multiple sources of traffic, are harder to analyze, and most
works in the literature assume that each node applies service
preemption, i.e., discards queued packets to make room for
fresher updates. In fact, preemption is optimal in any tandem
of M/M/1 queuing systems [6]: as queuing can cause a
significant additional delay and AoI optimization does not
require updates to be reliable, it is better to drop the packet
in service and try to send the new one. A similar result holds
for M/M/k queues [9] and different arrival processes [32].
The effect of preemption on the AoI in tandem queues is
analyzed in [10], which characterizes the moment generation
function of the aging process. If service is not Markovian, the
decision over whether to preempt becomes tougher, as time

already spent in service reduces the remaining delay [33].
Queue replacement, in which only the freshest update from
each source is kept in the queue, but the packet already in
service is not dropped, can avoid the issue altogether, reducing
the queue size without affecting time in service and leading
to a G/G/1/2 queuing model for each node. These systems
are analyzed in [34]–[36], which give results for single and
multiple sources. Finally, a transport protocol to control the
generation rate of status updates to minimize the AoI over the
Internet is presented in [37].

In our work, we consider non-preemptive systems, which
have a higher age but enable other data analytics tasks by
presenting a more accurate picture of the process evolution,
as packet losses are only due to the wireless channel and not
due to the queuing policy.

More extensive results can be obtained in discrete-time
models, in which each hop takes 1 unit of time and there
is some limitation on how often the nodes can transmit,
usually due to interference or energy constraints. In [38], the
problem of multihop networks with many source-destination
pairs and interference constraints is addressed, and the optimal
policy is reduced to solving the equivalent problem in which
all source-destination pairs are just a single hop away. A
recent extension [39] also considers the question of routing,
which can be optimized together with scheduling at each
node. The contention case was examined in [11], which gave
upper and lower bounds for the average AoI and PAoI in a
multi-source multihop wireless network with explicit channel
contention. Like our work and [10], these works also consider
arbitrary network topologies, but with a strong assumption
of slotted time and universal synchronization: to the best of
our knowledge, the scenario we consider in this work is still
unexplored.

III. SYSTEM MODEL

In the following, we will indicate vectors with bold letters
(e.g., x), random variables with capital letters (e.g., X), and
sets with cursive capitals (e.g., E). Additionally, E[X] stands
for the expected value of the random variable X , pX(x)
denotes its Probability Density Function (PDF), and PX(x)
its Cumulative Density Function (CDF).

Let us consider a multihop communication system with
multiple sources of packets and erasure channels between the
nodes. Two simple examples of such networks are shown in
Fig. 2. The system can be modeled as a connected directed
graph G = (V, E ,F) defined by its set of nodes V , set of
edges E , and set of flows F . The probability of packet erasure
at link e = (u, v) ∈ E is given by εe ∈ [0, 1), and the packet
transmission delay over link e is an exponentially distributed
random variable with parameter µe. In turn, each flow f ∈ F
is defined by a tuple f = (sf , df , λf ), with sf , df ∈ V and
λf > 0. Update packets of flow f are generated at the source
node sf according to a Poisson process with intensity λf , and
the packets need to be delivered to node df . All packets then
traverse the system following the routing path Pf :

Pf =
{

(u,v) ∈ EKf , u1 = sf , vKf = df , vi−1 = ui,

ui 6= uj , ∀i, j ∈ {1, . . . ,Kf} : i 6= j
}
,

(1)
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(a) Line network.
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(b) Dumbbell network.

Fig. 2: Examples of networks supported by our model defini-
tion.

where Kf denotes the number of links in the routing path,
f ∈ {1, . . . , |F|}. We can consider a line network in Fig. 2a
as a first example. The queueing network has three nodes,
K = 3, and the destination is denoted as d. We have three
flows, represented with three different colors, with P1 =
{(1, 2), (2, 3), (3, d)} in red, P2 = {(2, 3), (3, d)} in green,
and P3 = {(3, d)} in blue. In the dumbbell network in Fig. 2b,
the path from source i is Pi = {(si, b1), (b1, b2), (b2, di)},
where the link (b1, b2) is the shared bottleneck. Note that we
imposed a condition that there are no loops in the route. We
denote the k-th link in Pf as Pf (k). Let us also define the
partial path over the first k links for flow f as follows:

Pf (1, . . . , k) =
{

(u,v) ∈ Ek, u1 = sf , vi−1 = ui,

ui 6= uj ,∀i, j ∈ {1, . . . ,Kf} : i 6= j
}
.

(2)
In the following, we consider one flow f and its communi-
cation path as a queuing network with Kf nodes in tandem,
where each communication link is modeled by an M/M/1
system, as shown in Fig. 3. The choice of the M/M/1 queue
as a model for each link is motivated by analytical tractability,
as introducing complexity in tandem queues often creates
limits to the mathematical solution. While the model is theo-
retical, it has been used successfully in wireless networks [40],
[41], and can approximate resource-constrained satellites with
multiple tasks and applications [42] or an ALOHA system with
a sufficiently large number of users and exponential backoff,
as argued in [30]. These two scenarios correspond to the
examples presented in Fig. 1.

As other flows may share some links with flow f , their
packets will compete for resources at the nodes of the given
queuing network. Such flows are treated as sources of cross
traffic in the queuing network for flow f . By repeating the
analysis for all flows in the communication system, we can
get the AoI and latency for the whole set of sources. In the
line network, all flows share the same destination, which is
at the end of the line, but they have different sources, and
they all share the last communication link. On the other hand,

the flows in the dumbbell network act as cross-traffic for other
flows only at the central link shared by all flows. Let Lfk define
a set of flows, whose routes include link Pf (k):

Lfk =
{
f ′ ∈ F \ {f} : Pf (k) ∈ Pf ′

}
. (3)

We can then consider a scenario in which the k-th link in path
Pf is shared with flow f ′. We define the index x(f, f ′, k) as
the index of that specific link on path Pf ′ , i.e., the number of
links in Pf ′ that flow f ′ traverses before the one shared with
path Pf :

x(f, f ′, k) =
{
` ∈ {1, . . . ,Kf ′} : Pf ′(`) = Pf (k)

}
. (4)

In the case of the line network, flow 1 shares its second link
with flow 2 (that same second link would be the first one in
flow 2’s path). On the other hand, in the dumbbell network,
the index of the shared link is the same for all flows. The rate
of the tributary traffic θfk that arrives at node k of the queuing
network can be defined as

θfk =
∑
f ′∈Lfk

λf ′
∏

i∈Pf′ (1,...,x(f,f ′,k)−1)

(1− εi). (5)

In the line network case, this corresponds to the sum of the
rates of all sources that contribute to the node, thinned out
by the packet erasures at each link, while in the dumbbell
network, there is no tributary traffic except at the bottleneck,
where all the traffic (excepting the packets generated by the
considered source) is tributary traffic. Note that the arriving
tributary traffic is Poisson, as it is a simple sum of several
thinned Poisson flows, and thus follows Burke’s theorem [43].
The rate of the tributary traffic πk that leaves node k yields

πfk =
∑
f ′∈Lfk

θf
′

k εk +
∑

f ′∈Lfk\L
f
k+1

θf
′

k (1− εk). (6)

As all sources in the line network share the same destination
d, this value is 0 in all the nodes of the line network. On
the other hand, in the dumbbell network all tributary traffic
leaves immediately after the bottleneck. We can also compute
the rate ψfk of the new tributary traffic enters at node k, i.e.,
traffic from flows that did not share the k − 1-th link:

ψfk =
∑

f ′∈Lk\Lk−1\{f}

λf ′
∏

i∈Pf′ (1,...,x(f,f ′,k)−1)

(1− εi). (7)

In the line network, this corresponds to the source entering the
system at node k, i.e., the one for which the link is the first one
in the line. In the dumbbell network, this value is 0 for all links
except the bottleneck. If the error rate ε is 0 for all the links in
the network, and all nodes apply the FCFS queuing policy, our
formulation is equivalent to the well-known Jackson network
model [14]. The line and dumbbell networks are two simple
examples of this class of network, but it can be extremely wide,
with flows going from arbitrary points to arbitrary points in
complex network topologies.

We will later analyze a slightly different network class, in
which nodes apply the OPF and MAF queuing policies:

1) OPF [12] is a version of FCFS which sorts packets by
their generation time (which can be read from a times-
tamp included in the header) instead of the time of their
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π1 π1 πK−1
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Fig. 3: General multihop queuing system. The considered
source has rate λ, while other sources in the network (po-
tentially at each node) are modeled as tributary traffic.

arrival at the node. In a way, OPF is FCFS from a system
perspective, considering the whole network instead of a
single link. It enhances fairness between different flows,
as packets that have already gone through longer paths
can traverse later links faster, at the expense of fresher
packets from sources closer to their destination.

2) MAF [13] is explicitly aimed at reducing the AoI,
and is more complex, as each node needs to keep
track of the age of each source (at the node itself,
not at the destination, as the node cannot know if and
when packets reach their destination). Packets are then
prioritized based on the current age of the source, with
the source with the highest age being served first.

These policies can help control the competition for resources
among different flows: while FCFS privileges flows with
shorter paths, a distributed monitoring application might care
equally about sensors that are close to it and ones farther away,
and OPF and MAF can partially counterbalance the difference
in their paths, as well as improving overall AoI.

As the tributary traffic rates and network parameters are all
defined considering flow f , we omit the index f for the sake
of brevity in what follows. Fig. 3 illustrates a general case
of the reference queuing network, while Fig. 2a and Fig. 2b
are special cases of the general model. In the line network
example in Fig. 2a, all flows have the same destination. Some
of the sources are farther away than others, so they have to
traverse more links. Each node receives all traffic from its
predecessor in the chain and from additional sources. In this
kind of network, the bottleneck is often the last link, as it needs
to deal with the traffic generated by all sources. Fig. 2b shows
a classic dumbbell topology, in which flows follow separate
paths that share one single link and then diverge again. It is
easy to see how the model in Fig. 3 can represent both systems,
as seen from the perspective of a single flow between source
and destination, and how the analysis can be repeated for any
of the flows in the network.

Finally, we do not consider the retransmission of packets,
but rather a pure erasure channel. Considering retransmissions
over a single link would change the analysis slightly, introduc-
ing a correlation between packet erasure and longer service
times. Additionally, retransmissions might not be useful to
reduce the AoI, as long as λ is not too small. End-to-end
retransmission is also not modeled, as in most practical cases
it would have a negative effect on AoI: if a new packet from
the same source has already been sent, the retransmitted packet
does not reduce the age, and in fact can even contribute to
congestion, increasing the overall age for all sources.

A. System delay

The probability of delivering a packet through the first k
links correctly is given by

ps(k) =

k∏
j=1

(1− εj) . (8)

The total arrival rate at each node k is given by the surviving
packets from the source and the tributary traffic, and it is
ps(k − 1)λ + θk. We then define the response rate at node
k as:

αk = µk − (ps(k − 1)λf + θk). (9)

We can just consider αk instead of taking ψk and πk separately
by applying the Poisson Arrivals See Time Averages (PASTA)
property [44] of open M/M/1 networks. If all systems apply
the FCFS queuing policy, the total system time in the k-th node
in steady-state is a Poisson process with rate αk, according to
Little’s law. The overall service time and waiting time of the
connection then follow a Hypoexponential distribution [45].
The vector α, containing the response rates for the K links,
has N unique elements. The multiplicity of the i-th element
is denoted as ni. If N = 1 and n1 = K, all rates are the same
and the Hypoexponential distribution is reduced to the Erlang
distribution. In fact, the Hypoexponential distribution is the
convolution of several Erlang distributions. The connection as
a whole can be considered as a single M/PH/1 queue [46]
with errors. The PDF pT (t) of the total network time is given
in [47] as:

pT (t) =

N∑
i=1

ni∑
j=1

γij
tj−1

(j − 1)!
e−αit, (10)

where γij is a coefficient defined as:

γij =

N∏
`=1

∑
m∈Mij

N∏
`=1, 6̀=i

(
n` +m` − 1

m`

)
(αn`` ) (−1)ni−j

(α` − αi)n`+m`
,

(11)

where Mij is the set defined as:

Mij =

{
m : mi = 0,

N∑
`=1

m` = ni − j

}
. (12)

The average system delay is then T̄ =
∑N
j=1

nj

α
nj
j

.

B. Modeling the age

In order to model the AoI, we consider communication flow
f and its associated line network as discussed above. Due to
the exponential service time at each node, the rate of departure
for flow f from node k is a thinned Poisson process with rate
λf (1 − εk). If θk denotes the total tributary traffic arriving
at node k, therefore, the departure rate of the tributary traffic
from node k equals to θk − πk. For the reader’s convenience,
the complete notation is given in Table I.

We follow standard practice and define the AoI ∆(t) as
the difference between the current time t and the generation
time of the last received packet. Without loss of generality, the
system is first observed at t = 0 when the queue is empty with
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TABLE I: Relevant notation

Notation Definition Notation Definition
G Network graph V Set of nodes
E Set of links P Set of paths in G
R(s, d) Routing function F Set of communication flows
K Number of links in a route Wi Packet i total waiting time
λ Packets generation rate at source Wi,j Packet i waiting time at node j
Si Packet i total service time θk tributary traffic rate at node k
Si,j Packet service time at node j ∆(t) Aging process
θ Vector of tributary traffic rates N(T ) Number of arrivals from source by time T
ψ Vector of new tributary traffic ∆T Time average AoI over T
π Vector of thinning rates ∆̄ Average AoI
ps(k) Packet delivery success probability over k links ρk Traffic load at node k
pe(n; k) Probability of n consecutive errors over k links ρ Error-free load
εk Channel error probability for the k-th link Sk Average service time at node k
ε Vector of channel error probabilities α Vector of response rates
µk Packet service rate at node k αk Response rate at node k
µ Vector of service rates pc Uplink collision probability
δij Hypoexponential distribution coefficient of packet service

time
γij Hypoexponential distribution coefficient of packet total net-

work time
ri Status update i time at destination gi Status update i generation time
Yi Packet interarrival time Qi Area under the ∆(t) AoI process
Zi Packet interdeparture time Q′i Additional area below the ∆(t) process after a
Ti Packet i network time missed packet
Ti,j Packet i system time at node j Q

(n)
i Total area around ∆(t) process after n missed packets

Ωj Time difference between arrival and departure time of two
consecutive packets at node j

νij Hypoexponential distribution coefficient of packet service
time (excluding the last link)

age ∆(0) ≥ 0 as illustrated in Fig. 4. The status update i is
generated at time gi and is received at the destination at time
ri. We define Yi as the interarrival time Yi = gi−gi−1 between
two packets, Zi as the interdeparture time Zi = ri−ri−1, and
Ti as the total network time in the system Ti = ri − gi. The
latter includes the time spent in all the nodes (queuing and
service time) until departure from the system at node K. The
AoI at time t is then formally defined as:

∆(t) = t− max
i∈N:ri≤t

(gi). (13)

Our definitions follow the work in [48], which considered
a single queuing system, but in our case, the connection is
modeled as a tandem of M/M/1 systems, each of which
has to deal with tributary traffic. We remind the reader that,
while other sources are abstracted as tributary traffic, the same
analysis can be performed for any source in the network.

C. Derivation of the average age

Following the method from [48], we can now evaluate the
average AoI by calculating the area under ∆(t) over a period
T . Other recent works on AoI, such as [32] and [49], use
he Stochastic Hybrid Systems (SHS) method to derive the
average AoI in simpler context with good results, but its high
computational complexity makes it hard to apply in a general
case with no preemption and potentially very large networks
with arbitrary traffic. The evolution of the AoI exhibits the
saw-tooth pattern plotted in Fig. 4, and we can then divide
the area under the curve in a number of non-overlapping
trapezoids Qi. The average AoI ∆T is then given by the
sum of the areas of the trapezoids, divided by the observation
period T :

∆T =
1

T

Qini +Qlast +

N(T )∑
i=2

Qi

 , (14)

where N(T ) is the number of arrivals from the source by time
T . The average AoI ∆̄ is given by the limit ∆̄ = limT→∞∆T .

g1 g2r1g3 r2 g4r3 r4 gn−1 gnrn−1rn
//

Qini Q2

Q′2

Q3 Q4 Qn

Qlast

Network time: Ti = ri − gi
Interarr. time: Yi = gi − gi−1

Interdep. time: Zi = ri − ri−1

t

∆
(t

)

Fig. 4: Evolution of the AoI in a queue network with K nodes
and errors. The network times Ti are defined as the total time
spent in the system, since arrival in node 1 until departure in
node K. The additional area Q′2, highlighted in red, shows the
increase in the AoI in case a packet is lost.

Let us consider an error-free transmission, i.e., εk = 0 ∀k.
Each Q

(0)
i (with i > 1) is a trapezoid whose area can

be calculated as the difference between two isosceles right
triangles, the larger of which has a cathetus Ti+Yi, while the
smaller has a cathetus Ti. Applying the Pythagorean theorem,
the area of trapezoid Q(0)

i is given by:

Q
(0)
i =

1

2
(Ti + Yi)

2 − 1

2
T 2
i = YiTi +

Y 2
i

2
. (15)

We remark that the geometric analysis with error-free trans-
mission is not in itself new, while to the best of our knowl-
edge, the analysis with errors in the following is an original
contribution. If there is an error and a packet is lost, the AoI
computation changes slightly. As Fig. 4 shows, if packet 2 is
lost, the additional area Q′2, highlighted in red in the figure,
needs to be included in the computation. If we consider the
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Q
(1)
i = Q

(0)
i +Q

(0)
i−1 +Q′i−1 trapezoid resulting from a single

lost packet, its area is given by:

Q
(1)
i =

1

2
(Ti + Yi + Yi−1)

2 − 1

2
T 2
i

= YiTi + Yi−1Ti + YiYi−1 +
Y 2
i

2
+
Y 2
i−1

2
.

(16)

The trapezoid is the sum of the red and yellow areas in
the figure. We can generalize this result to the case with n
consecutive errors, denoting the trapezoid that ends as the i-th
packet arrives after n lost packets as Q(n)

i :

Q
(n)
i =

n∑
j=0

[
Yi−jTi +

1

2
Y 2
i−j

]
+

n∑
j=0

n∑
`=0, 6̀=j

Yi−jYi−`
2

.

(17)

We note here that, since each node is an M/M/1 queue, the
interarrival times Yi and Yi−j are independent for any 0 <
j ≤ i. We can then compute the average area of the trapezoid,
Q̄

(n)
i :

Q̄
(n)
i = E

[
Q

(n)
i

]
=

n∑
j=0

[Yi−jTi] +
(n+ 1)2

λ2
. (18)

The average AoI in the case of n consecutive errors can then be
computed using the well-known geometric method, computing
the average area of the trapezoid and dividing it by its side,
i.e., by its extension on the x-axis:

∆
(n)
i =

Q̄
(n)
i∑n

j=0 Yi−j
ξi =

(
λ
∑n
j=0 [Yi−jTi]

n+ 1
+

(n+ 1)

λ

)
ξi,

(19)
where ξi is an indicator variable that is equal to 1 if the
transmission of packet i was successful and 0 otherwise.
When the system reaches a steady state, the system times are
stochastically identical, i.e., T =st Ti =st Ti−1, and the same
holds for the interarrival times. The probability of having n
consecutive lost packets from the considered source after k
links follows the geometric distribution with parameter ps(k):

pe(n; k) = ps(k)(1− ps(k))n. (20)

In the following, we denote ps(k) simply as ps to increase
readability. We can then apply the law of total probability
to (19) to compute the average age, assuming that packet i
finds the system in steady state:

∆̄ =

∞∑
n=0

pe(n;K)∆
(n)
i

=

∞∑
n=0

pe(n;K)

(
λ
∑n
j=0 [Yi−jTi]

n+ 1
+

(n+ 1)

λ

)
ξi.

(21)

The sum converges for ps ∈ (0, 1], due to the properties
of the geometric sum. The E [Yi−jTi] term cannot be easily
computed, as the sequence of arrival times affects the queue
at each link, leading to a complex effect on the system time.
Deriving the AoI analytically is too cumbersome for non-
trivial networks, but we can find relatively compact upper and
lower bounds on the average AoI for each flow. The tributary
traffic is considered in the α vector, which represents the

response rate of each node given the total load. In the case
of more complex erasure models, such as the Gilbert-Elliott
channel, the exponential series becomes a more complex
summation, affecting the following results. However, the basic
principles we use in the following to compute the upper and
lower bounds remain the same, and the derivation can be
adapted to these cases with some computational effort.

Intuitively, Yi and Ti have a negative correlation: if packet
i from a given source arrives a long time after packet i− 1, it
will often find fewer packets in the queue, as all older packets
from the same source will be already delivered, and it will
only have to deal with the tributary traffic. On the other hand,
a packet arriving right after its predecessor from the same
source will often find a longer queue, and thus, experience a
longer waiting time. We would like to highlight again that the
geometric analysis is not in and of itself novel, but to the best
of our knowledge, it has never been applied for error-prone
networks with multiple flows. The following derivations are
then the main novel element of this work, as we will derive
bounds on the average AoI in networks of arbitrary size, which
has only been done for preemptive queues.

IV. AGE OF INFORMATION BOUNDS

In this section, we analyze the average AoI by finding upper
and lower bounds to the value of the series in (21). Naturally,
these bounds will depend on the queuing policy applied in the
network.

First, we try to expand the first term in the summation
in (21). The correlation between the arrival process and the
system times makes the series complicated to solve:

∞∑
n=0

λpe(n;K)

n+ 1

n∑
j=0

E [Yi−jTi] =

∞∑
j=0

∞∑
n=j

λpe(n;K)

n+ 1
E [Yi−jTi]

=

∞∑
j=0

ps(1− ps)jΦ(1− ps, 1, j + 1)λE [Yi−jTi] ,

(22)
where Φ(z, s, a) is the Hurwitz-Lerch transcendent func-
tion [50], [51]. We can then get the expression of the average
AoI as the series:

∆̄ =

∞∑
j=0

λps(1− ps)jΦ(1− ps, 1, j + 1)E [YiTi] +
1

λps
.

(23)
If ps = 1, i.e., the connection is error-free, this simplifies to:

∆̄ =λE [Yi−jTi] +
1

λ
. (24)

The E [TiYi] term in (23) is the most complicated part. We
first decompose the system time Ti by considering each of
the K nodes in the connection separately, and decompose it
further by dividing the system time Ti,k into the waiting time
Wi,k and the service time Si,k:

Ti = Wi,1 + Si,1 +Wi,2 + Si,2 + . . .+Wi,K + Si,K . (25)
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As commonly done in the literature, we rewrite this term to
get:

E [TiYi−j ] = E [(Wi + Si)Yi−j ] = E [WiYi−j ] + E [Si]E [Yi]

= E [WiYi−j ] +

K∑
k=1

E [Si,k]

λ
.

(26)
As the service times Si,k are independent from each other,
the distribution pS(t) of the service time

∑N ′

j=1 Si,j is another
Hypoexponential, defined as in (10) but with parameter µi
instead of αi:

pS(t) =

N ′∑
i=1

n′i∑
j=1

δij
tj−1

(j − 1)!
e−µit, (27)

In order to distinguish the coefficients of the distribution,
which can be computed as in (11) by using the service rate
vector µ instead of α, we denote them as δij . N ′ and n′i
are the equivalents of N and ni for the vector µ, indicating
the number of distinct elements and the multiplicity of each
element, respectively. We then give the average service time,
S̄:

S̄ =

N ′∑
j=1

n′j

µ
n′j
j

. (28)

The service and arrival process are independent, so the second
term in (26) can be simplified, but the correlation between
Wi and Yi−j makes the first term complex to calculate.
Maintaining E [Yi−jWi] as an unknown variable, the average
AoI then becomes:

∆̄ =

∞∑
j=0

(1− ps)jpsΦ(1− ps, 1, j + 1)
(
λE [Yi−jWi] + S̄

)
+

1

λps
.

(29)

A. Upper bound on the average AoI

We can first give an upper bound on the average AoI. It
is easy to prove that Wi,k ≤ Ti−1,k, as packet i arrives
to the k-th queuing system after packet i − 1, and enters
service immediately after packet i − 1 is served. Moreover,
Yi is independent from Ti−1 by definition, so we have
E [Ti−1Yi] = E [Ti−1]E [Yi]. We can then exploit the fact that
E [Ti−1Yi] ≥ E [WiYi−j ]∀j:

E [WiYi−j ] ≤E [Ti−1]E [Yi] =
T̄

λ
. (30)

We also know that the Hurwitz-Lerch transcendent is upper-
bounded by the exponential sum:

Φ(1− ps, 1, j + 1) =

∞∑
n=0

(1− ps)n

n+ 1
≤
∞∑
n=0

(1− ps)n ≤
1

ps
.

(31)
We can then substitute the transcendent and E [WiYi−j ] with
their upper bounds into (23):

∆̄ ≤
∞∑
j=0

(1− ps)j T̄ +
1

λps
=
λT̄ + 1

λps
. (32)

Interestingly, the upper bound is equivalent to the average AoI
assuming that Yi−j and Ti are independent. In fact, this upper
bound was presented as an approximation of the AoI in our
preliminary work [16], while the derivation above proves that
it is actually a tight upper bound in all cases. As finding T̄
involves the calculation of the response rate αk for each link
in the path, which depends on the cross-traffic, the worst-case
complexity for the upper bound calculation is O(K|V||F|),
but it will be much lower in most practical cases.

B. Lower bound on the average AoI

In order to give a lower bound on the average age, we can
divide the waiting time Wi into K components by considering
each node in the connection separately, getting Wi = Wi,1 +
. . .+Wi,K . Each Wi,k depends on the time elapsed from the
arrival of packet i to system k to the departure of packet i−1
from it. As packet i might arrive after packet i−1 has left the
system, this time difference, which we denote as Ωi,k, can be
negative:

Ωi,k =

{
Ti−1,1 − Yi if k = 1;

Ti−1,k −Wi,k−1 − Si,k−1 if k > 1.
(33)

If Ωi,k < 0, the waiting time Wi,k is 0, i.e., Wi,k = (Ωi,k)+,
where (x)+ = max(x, 0) is the positive part function. The
total waiting time is then simply given by:

Wi =

K∑
k=1

(Ωi,k)+

= (Ti−1,1 − Yi)+
+

K∑
k=2

(Ti−1,k −Wi,k−1 − Si,k−1)
+
.

(34)
It is trivial to prove that the sum of positive parts is larger
than the positive part of the sum:

n∑
i=1

(xi)
+ ≥

(
n∑
i=1

xi

)+

∀x ∈ Rn,∀n ∈ N. (35)

Thus, we can write a lower bound on the total waiting time
of packet i as:

Wi ≥

(
K∑
k=1

Ωi,k

)+

=

(
Ti−1 − Yi −

K−1∑
k=1

Si,k

)+

=
(
Ti−1 − Yi − S\K

)+
,

(36)

where S\K =
∑K−1
k=1 Si,k. The bound becomes exact if and

only if packet i is queued at each node, i.e., Ωi,k > 0 ∀k. If
packet i finds an empty queue on the k-th system, the actual
waiting time is longer than the bound in (36) by |Ωi,k|. We
can now derive E[WiYi−1] by taking (36) and decomposing it
further:

E [WiYi−1] ≥E
[
Yi−1

(
Ti−1 − Yi − S\K

)+]
=E

[(
Yi−1Ti−1 − Yi−1Yi − Yi−1S\K

)+]
≥E [WiYi] +

1

λµK
− 2

λ2
.

(37)
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We then apply the same procedure iteratively to get
E[WiYi−j ]:

E [WiYi−j ] ≥ E [WiYi] + j

(
1

λµK
− 2

λ2

)
. (38)

We can now go back to (21) and use the values we have
derived in the summation:

∆̄ =

∞∑
n=0

λpe(n;K)

E
[
Y 2
i

]
(n+ 1)

2
+

n∑
j=0

E [Yi−jTi]

n+ 1


≥ 1

λps
+ S̄ + λE [WiYi] +

∞∑
n=1

nps(1− ps)n

n+ 1

(
1

µK
− 2

λ

)
.

(39)
Because of the stability condition, we know that µK > λ, so
the term in the sum is always negative. To compute the lower
bound on the AoI, we then need to find an upper bound to
the sum. We can then simply use the fact that n + 1 > n to
simplify the sum and get a closed-form lower bound, which
holds for all three considered policies:

∆̄ ≥ 1

λps
+ S̄ + λE [WiYi] + (1− ps)

(
1

µK
− 2

λ

)
. (40)

C. Lower bound for the FCFS policy

The bound in (40) still depends on the unknown term
E [WiYi]. We now compute the lower bound for it in the FCFS
case. In order to do so, we condition the expectation on Yi and
S\K :

E
[
Wi|Yi = y, S\K = s

]
≥ E

[
(Ti − y − s)+

]
. (41)

We can exploit the fact that the departure process from
any node k is a Poisson process [43] to analyze each node
separately [14] and apply the network decomposition method.
First, we derive the lower bound on E

[
WiYi|S\K = s

]
by

applying the law of total probability:

E
[
WiYi|S\K = s

]
≥
∞∫

0

yE
[
Wi|Yi = y, S\K = s

]
pYi(y)dy

=

∞∫
0

y

∞∫
y+s

(t− y − s)pT (t)pYi(y)dtdy

≥
∞∫

0

N∑
i=1

ni∑
j=1

j∑
`=0

yλe−λyγije
−αi(y+s)(y + s)` (j − `)
(`!)αj−`+1

i

dy

≥
N∑
i=1

ni∑
j=1

j∑
`=0

γijλ (j − `)
(`!)αj−`+1

i

e−αis
∫ ∞

0

y(y + s)`e−(αi+λ)ydy

≥
N∑
i=1

ni∑
j=1

j∑
`=0

`+1∑
m=0

λγij(j − `)(`−m+ 1)sme−αis

(m!)αj−`+1
i (αi + λ)

`−m+2
.

(42)
We now define vector µ\K = (µ1, . . . , µK−1), denoting the
Hypoexponential coefficients linked to it, which can be derived
as we did above, by νij . As before, to avoid confusion, we
define N ′′ as the number of unique elements of the vector

and n′′i as the multiplicity of the i-th such unique element.
We then remove the condition on S\K :

E [WiYi] ≥
∞∫

0

E
[
WiYi|S\K = s

]
pS\K (s)ds

≥
N∑
i=1

ni∑
j=1

j∑
`=0

`+1∑
m=0

N ′′∑
o=1

n′′∑̀
p=1

γijν`mλ (j − `) (`−m+ 1)

αj−`+1
i (αi + λ)

`−m+2

× 1

m!(p− 1)!

∞∫
0

sm+p−1e−(αi+µo)sds

≥
N∑
i=1

ni∑
j=1

j∑
`=0

`+1∑
m=0

N ′′∑
o=1

n′′∑̀
p=1

γijν`mλ (j − `) (`−m+ 1)

αj−`+1
i (αi + λ)

`−m+2

× (αi + µo)
−(m+p)

(
m+ p− 1

m

)
,

(43)
We can then obtain the lower bound on ∆̄ by substituting the
value of (43) into (40). The overall worst-case complexity for
the bound calculation is O(K5|V||F|), which is considerably
higher than the upper bound complexity, but still polynomial
in nature. However, if the response rates for different links in a
flow’s path are all different, as would be common in practical
networks, the complexity is reduced to O(K|V||F|). We note
that the difference between the two bounds, which we denote
as ηFCFS, is also computable:

ηFCFS =T̄ − S̄ − (1− ps)
(

1

µK
− 2

λ

)

−
N∑
i=1

ni∑
j=1

j∑
`=0

`+1∑
m=0

N ′′∑
o=1

n′′∑̀
p=1

(
m+ p− 1

m

)
× γijν`mλ

2 (j − `) (`−m+ 1)

αj−`+1
i (αi + λ)

`−m+2
(αi + µo)

m+p
.

(44)

D. Lower bound for the OPF and MAF policies

If we consider the OPF policy, FCFS is not applied at each
separate node, but rather to the whole connection: packets that
were generated first at their source are served first at each
node, regardless of the order in which packets arrived at that
specific node. The MAF policy [27] takes this one step further
by considering age directly.

The lower bound in (40) is still valid for these policies,
but the value of E [WiYi] is different due to the different
scheduling. The lower bound on it for OPF and MAF relies
on two bounds, which remove some possible cases from the
calculation. First, as we did for FCFS, we consider the case
in which packet i is queued at each link, i.e., Ωi,k > 0∀k.
In this case, the transmission of a packet begins immediately
after the previous packet was sent. Secondly, we only consider
the case in which all packets that arrive at the node after
packet i also have a higher timestamp, i.e., are “younger”:
in this case, the packet is only queued behind the packets that
had already arrived when it got to system k. In reality, cross
traffic might have a longer path to traverse, and later packets
might well be older: as we do not consider this case in the
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bound calculation, this makes the bound looser, particularly
if the connection is congested. As we show in the following
sections, these assumptions still result in a very tight bound if
the network is not too congested, which is the same for both
OPF and MAF, as they behave in the same way in those cases.

The steady-state distribution Πk(n) of the number of wait-
ing packets at node k is given by (1 − ρk)ρnk , with ρk =
ps(k)λ+θk

µk
. This is true for all nodes, as the overall output

of an M/M/1 queuing system is always a Poisson process,
independently of the queuing policy. If we denote the number
of packets in the queue as Lk, we can give the conditional
expectation of Wi,k:

E [Wi,k|Yi = y, Si,k−1 = s]

≥
∞∑
n=0

ΠkE [Wi,k|Yi = y, Si,k−1 = s, Lk = n]

≥
∞∑
n=0

(1− ρk) ρnk

∫ ∞
s

µnk t(t− s)n−1e−µk(t−s)

(n− 1)!
dt

≥ (1− ρk)ρkse
−αks.

(45)

We now apply the law of total probability for k > 1, i.e., the
nodes past the first one:

E [Wi,k|Yi = y] ≥
∞∫

0

PSk−1
(s)E [Wi,k|Yi = y, Si,k−1 = s] ds

=

∞∫
0

µk−1e
−(µk−1+αk)s(1− ρk)ρksds

≥ (1− ρk)ρkµk−1

αk + µk−1
.

(46)
We now remove the condition over Yi in the same way:

E [Wi,kYi] ≥
(1− ρk)ρkµk−1

(ps(k)λ+ θk) (αk + µk−1)
. (47)

As OPF and MAF are equivalent to FCFS for the first node in
the connection, the value of the expected queuing time E[Wi,1]
is:

E [Wi,1|Yi = y] =

∫ ∞
0

λye−(α1+λ)y

α1
dy =

λ

α1µ2
1

. (48)

The lower bound on E [WiYi] is then given by the sum of (47)
and (48):

E [WiYi] ≥
λ

α1µ2
1

+

K∑
k=2

(1− ρk)ρkµk−1

(ps(k)λ+ θk) (αk + µk−1)
. (49)

We then get the lower bound on the age by substituting (49)
into (40):

∆̄ ≥ 1

λps
+ S̄ +

λ2

α1µ2
1

+ (1− ps)
(

1

µK
− 2

λ

)
+

K∑
k=2

λ(1− ρk)ρkµk−1

(ps(k)λ+ θk) (αk + µk−1)
.

(50)

TABLE II: Simulation parameters.

Parameter Value Description

Kline {2, 6, 10} Number of relay nodes (line)
µ1,...,K−1 1 Service rate of the first K − 1 links

µK 0.8 Service rate of the last link (line)
µK 1 Service rate of the last link (dumbbell)
ψ 0 Cross traffic rate (line)
ε 0.02 Error probability for all links
Npkt 100000 Total number of packets for each source
Kdb 4 Number of links (dumbbell)
Ndb {2, 6, 10} Number of cross traffic sources (dumbbell)

In this case, the worst-case complexity for the bound calcu-
lation is O(K|V||F|), exactly the same as the upper bound
complexity. The difference ηOPF between the two bounds is:

ηOPF =
T̄

ps
− S̄ − (1− ps)

(
1

µK
− 2

λ

)
− λ

α1µ2
1

−
K∑
k=2

(1− ρk)ρkµk−1

(ps(k)λ+ θk) (αk + µk−1)
.

(51)

V. NUMERICAL EVALUATION

We now present two case studied, which were simulated1

using a Monte Carlo approach. In each simulation, we dis-
carded the first 1000 packets from each source, which repre-
sented the initial transition to the steady state, and the final
1000 packets, to ensure that the results reflected the steady
state behavior of the system. Excluding these initial and final
transitory periods, we simulated Npkt = 105 packets for each
source. The full list of parameters we used is in Table II. The
scenarios we considered correspond to the line network in
Fig. 2a and the dumbbell network Fig. 2b. Both scenarios are
special cases of the general system model depicted in Fig. 3,
and they represent two common network configurations.
• Line network (Fig. 2a): this is an extension of the tandem,

as this scenario involves a sequence of K links one after
the other. The destination for all flows is placed at the end
of the line, and there is a source placed before each link,
with rate θi. As all sources share the common destination,
ψi = 0∀i ≤ K. Naturally, the last link is the bottleneck,
as packets from all sources converge on it. This kind of
model can represent a satellite network in which ground
nodes placed in remote areas report to a ground station
through a chain of K satellites.

• Dumbbell network (Fig. 2b): this topology represents a
case with a shared backhaul like the one we discussed in
the introduction, with several gateways with independent
wireless access using the same link to connect to the
server. The N sources have N different destinations, but
they share the k-th link in their path, which becomes the
bottleneck: we have θj = 0 ∀j 6= k and ψk = 1.

These two scenarios represent two extremes among the
networks that the general model can represent: in the former,
tributary traffic accumulates all the way to the final link, while
in the other, it is concentrated in a single link in the middle,

1The Matlab code for the simulations and bounds is available at https:
//github.com/AAU-CNT/network_aoi.
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Fig. 5: Average AoI as a function of the maximum load for the line network scenario using the FCFS policy.

while all other links are less loaded. However, the graph
model is flexible and can represent any topology, with multiple
sources and destinations. Jackson networks are a subclass of
the possible networks that can be represented, as they require
no channel errors and the use of the FCFS queuing policy.

A. Line network

We first consider the line network scenario. We consider
a single source for each link, so that we have K sources,
each with rate λk. In the following, we consider all sources
to have the same packet generation rate λ, plotting the AoI as
a function of the maximum load ρ:

ρ =
λ1 +

∑K
j=2 θj

µK
. (52)

We analyzed the error-free and error-prone case, considering
the same erasure probability ε for all links. We do not consider
packet errors in our computation of ρ to provide a meaningful
comparison between the error-free and error-prone cases. In
the line network, there is one source per node, and the error-
free load is the same for all sources, as all connections share
the bottleneck (placed in the downlink).

We first consider the FCFS policy, whose performance is
shown in Fig. 5. The average AoI is computed over all sources
in the network, and the bounds are averaged for each source,
as they are computed separately. We can easily see that AoI
follows a U-shaped curve: if the traffic load is very low, the
average AoI is mostly given by the long interarrival times,
while if the traffic increases too much, network congestion
becomes the dominant factor in the age. For instance, when
ρ = 0.05 and K = 10, the arrival rate λk for each source
is just 0.004, as µK = 0.8. This means that the average
interarrival time is 250. On the other hand, a load above
0.9 can cause significant queuing delays, and AoI tends to
infinity as ρ approaches 1. Moreover, the effect of packet
erasures can be easily seen by comparing the results in the
error-free scenario in Fig. 5a and in the error-prone scenario
in Fig. 5b. While channel errors have a negligible negative
effect if the traffic load is low, the reduced congestion can
actually have a positive impact on AoI if the load is very

high: since packets are frequent, one loss does not significantly
increase the AoI, and the reduced load on the downlink can
improve the congestion and decrease queuing delays. This
effect is particularly noticeable for ρ > 0.8, with a significant
difference in the AoI.

The bounds we derived for the average AoI are very tight
for low values of ρ, as the approximation on the queuing time
has a limited effect on the overall AoI. The upper bound
is particularly tight, both in the error-free and error-prone
scenarios. We can see that the lower bound becomes looser
for longer line networks, but the upper bound remains tight in
all cases.

We can also consider the impact of the scheduling policy,
comparing the three policies in the error-prone scenario. In this
case, we only consider K = 10, the setting with the largest
performance differences. Fig. 6a shows the performance of
the three policies in this scenario: OPF performs slightly better
than FCFS on average, while the difference between them and
MAF is more significant. As discussed above, the lower bound
is looser for OPF and MAF, while the upper bound is the same
for all policies and is tighter overall.

Interestingly, as Fig. 6b shows, FCFS actually outperforms
the other policies if we only consider source 10, i.e., the one
closest to the destination: on the other hand, the farthest source
performs significantly worse. For all policies, the first source
is the one with the highest AoI, as it has to traverse more links,
but prioritizing older packets reduces this effect, allowing the
packets from sources farther away to jump to the front of the
line if they have already suffered significant delays.

The difference between FCFS and OPF is then not in the av-
erage performance, but in their fairness: while OPF considers
the accumulated delay for packets from farther sources, giving
them a higher priority, FCFS considers each link individually,
leading to a lower fairness. However, MAF can combine the
best aspects of the two policies, as it performs as well as
the best of the two for the first, sixth and tenth source, i.e.,
across the whole chain of links. Furthermore, MAF can easily
prevent a single source with a bad connection from increasing
the age for all others, maintaining age fairness because it uses
age directly as a scheduling metric. This might be useful for
several IoT applications, which monitor a process over a wide
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Fig. 6: Average AoI as a function of the maximum load for the FCFS, OPF, and MAF policies in a line network with K = 10
and ε = 0.02.
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Fig. 7: Optimal ρ∗ as a function of ε for the three policies in
a line network, K = 6.

geographical area and require a measure of fairness among
different sensors: to benefit the application, the freshness of the
information from a sensor should not depend on its location,
as all sensors have equal importance.

We can also examine the effect of increasing the error
probability on the links on the optimal value of ρ, i.e., the
one that minimizes the average AoI, which we denote as ρ∗.
As Fig. 7 shows, the three policies are very similar, with OPF
and MAF having a slightly higher optimal load at which the
average AoI is minimized. As the error probability increases,
so does the optimal load for all policies. This is intuitively
correct, as the packets that are erased by the errors on earlier
queues reduce the actual load on the last link. We remind the
reader that ε is the error rate for each link, and the source
farthest from the destination will have to go through all K
links, which means that only a fraction (1 − ε)K−1 of its
packets will reach the last link. We can also use the upper
bound in (32) to determine the optimal value ρ∗ directly:
while the result is a K-th degree polynomial, the minimum is
easy to evaluate numerically, and extremely close to the actual
optimum for the FCFS policy. The optimization problem to
find the minimum in the case in which all sources have the

same λ is:

ρ∗ = arg min
ρ

K + ρ
∑N
j=1

nj

α
nj
j

ρps
. (53)

Finally, we can take a deeper look at the fairness by using
a well-known fairness measure, the Jain Fairness Index (JFI)
J (x):

J (x) =
(
∑n
i=1 xi)

2

n
∑n
i=1 x

2
i

, (54)

where n is the length of vector x. In this case, the metric
on which we compute the JFI is the average age for each
source. Fig. 8 shows the JFI as a function of the load, varying
the number of links and error probability. Interestingly, the
JFI highly depends on the load, and values of ρ closer to
the optimum have a lower fairness. However, there is a stark
difference between the three policies, particularly in longer
line network, as shown in Fig. 8a: using MAF can significantly
improve the performance over OPF, which in turn is better
than FCFS. The packet error rate also plays an important role
in fairness, with an even stronger effect than the length of the
line network. However, the effect of the different policies is
still clear in Fig. 8b.

B. Dumbbell topology

We now look at the dumbbell network scenario. We have N
sources, each of which has to go through K = 5 links to reach
the destination. The third link in each connection is the shared
bottleneck, i.e., θ3 > 0 and θ4 = 0. As for the line network, we
consider the packet generation rate for each source to be λ, so
that the total error-free load on the bottleneck is ρ = Nλ. The
system is symmetric for all sources, so its expected fairness
is always perfect for all policies.

As above, we first consider the FCFS policy, considering
the error-prone network. Fig. 9a shows the average AoI,
considering three different values of N . In this case, the actual
performance of the system is farther from the upper bound,
but the two bounds taken together can give system designers
a reliable indication of expected performance. Interestingly,
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(a) FCFS policy, N ∈ {2, 4, 6} sources.
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Fig. 9: Average AoI as a function of the maximum load in a dumbbell network with errors, K = 5.

networks with more sources have a higher optimal operating
load, as the traffic is split among more sources: if we set
ρ = 0.6, λ = 0.3 when N = 2, but λ = 0.1 for N = 6.
Interestingly, if there are more sources, the other links in each
connection almost never experience queuing, while queuing
before the bottleneck can happen for high values of ρ if
N = 2. This leads us to draw an interesting conclusion on
the optimal routing strategy: in order to minimize the average
AoI, the bottleneck should be placed as early as possible in
the connection, as the links before the bottleneck might also
get congested, but packets exiting the bottleneck are already
spread by the slower link, and there is almost no queuing
for the links after the bottleneck even with a very high load.
The line network example we presented above, with gradually
increasing load until the bottleneck in the downlink, is the
worst possible scenario for AoI.

As the flows all have similar connections, the benefits of
OPF are negligible in this scenario, as Fig. 9b shows. On
the other hand, MAF can slightly reduce the average AoI,
particularly for higher loads. As we mentioned above, fairness
is not a consideration in this case, as the symmetry of the
scenario makes it perfectly fair with all three policies.

We can also introduce an element of asymmetry by chang-
ing the rate of the two sources if we consider N = 2: in

this case, the source with the most frequent updates has an
advantage. In the following, we consider the first source to
have a fraction φ of the total load. This means that λ1 = φρµ
and λ2 = (1−φ)ρµ, where µ is the bottleneck rate (µ = 1 in
our simulations).

Fig. 10 shows the results and the bounds for three different
values of φ for the FCFS and MAF policies. While the
difference between the two policies is small, MAF has a slight
advantage, but the lower bound is tighter for FCFS. We also
note that the source with φ = 3/4 has a lower AoI for small
values of ρ, but actually a higher one if the load on the system
is high. This is because, while the less active source only has
queuing at the bottleneck, packets from the source generating
more traffic might also be queued at the other links, as it
generates enough traffic to cause delays. On the other hand, if
ρ is low, the more active source can reduce interarrival times,
which are the main component in the AoI.

Interestingly, the MAF policy’s optimal operating load is
higher, as Fig. 11 shows: as the number of sources grows, the
traffic that each source generates shrinks, and the critical task
of the scheduler is to choose the correct source to minimize
the AoI. If the rate increases, the scheduler almost always
has packets from all sources, and it can then choose the one
with the highest age, optimizing the overall performance and
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Fig. 10: Average AoI as a function of the total load for different values of the relative traffic φ in a dumbbell network with
errors for N = 2 and K = 5.
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Fig. 11: Optimal ρ∗ as a function of the number of sources for
the three policies in a dumbbell network with errors, K = 4.

increasing fairness. On the other hand, FCFS can be more
vulnerable to surges of packets from a subset of sources, as
it does not prioritize sources with a high AoI. As for the line
network, the upper bound in (32) can be used to compute
ρ∗, as the figure shows. Although the value computed with
the bound tends to be slightly pessimistic, sending less traffic
than the optimum, the difference in the AoI between the setting
obtained with the bound and the actual setting is minimal.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have modeled AoI for multihop con-
nections in queuing networks with tributary flows and non-
preemptive queuing service, deriving tight upper and lower
bounds. We consider fairness among different flows and sev-
eral queuing policies, and present some general considerations
for system design. The bounds we found are also computation-
ally efficient, and can be used to find the optimal load of a
system or to quickly dimension the design: while the resulting
AoI would be a range between the two bounds, whose width is
given by the value η we give in (44) and (51) for the different
policies, the calculation is orders of magnitude faster than a
Monte Carlo simulation. Interestingly, our results have also
shown that the MAF policy only improves the average AoI by
5% over simple FCFS in both considered scenarios. However,

this might partly be due to the sources having the same rate λ,
and the gains might be more significant in the case of highly
unbalanced systems in which some sources transmit often and
others only sporadically.

Future research on the subject might involve link and source
models that are not Markovian, complicating the analysis
by making each link a G/G/1 queuing system. Another
possibility is the derivation of tight bounds on the tail of
the AoI distribution, which would be extremely useful for
reliability purposes, as it can model worst-case scenarios for
the IoT application. More advanced control mechanisms, both
in terms of scheduling and packet dropping at relay nodes
and of congestion control at the sources, are the final goal of
all these studies, which passively characterize AoI to enable
further optimization.
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