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Abstract
Introduction Alzheimer’s Disease (AD) is complex and novel approaches are urgently needed to aid in diagnosis. Blood 
is frequently used as a source for biomarkers; however, its complexity prevents proper detection. The analytical power of 
metabolomics, coupled with statistical tools, can assist in reducing this complexity.
Objectives Thus, we sought to validate a previously proposed panel of metabolic blood-based biomarkers for AD and expand 
our understanding of the pathological mechanisms involved in AD that are reflected in the blood.
Methods In the validation cohort serum and plasma were collected from 25 AD patients and 25 healthy controls. Serum 
was analysed for metabolites using nuclear magnetic resonance (NMR) spectroscopy, while plasma was tested for markers 
of neuronal damage and AD hallmark proteins using single molecule array (SIMOA).
Results The diagnostic performance of the metabolite biomarker panel was confirmed using sparse-partial least squares 
discriminant analysis (sPLS-DA) with an area under the curve (AUC) of 0.73 (95% confidence interval: 0.59–0.87). Pyruvic 
acid and valine were consistently reduced in the discovery and validation cohorts. Pathway analysis of significantly altered 
metabolites in the validation set revealed that they are involved in branched-chain amino acids (BCAAs) and energy metabo-
lism (glycolysis and gluconeogenesis). Additionally, strong positive correlations were observed for valine and isoleucine 
between cerebrospinal fluid p-tau and t-tau.
Conclusions Our proposed panel of metabolites was successfully validated using a combined approach of NMR and 
sPLS-DA. It was discovered that cognitive-impairment-related metabolites belong to BCAAs and are involved in energy 
metabolism.
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1  Background

Neurodegenerative diseases, such as Alzheimer’s Disease 
(AD), account for a significant proportion of mortality, 
morbidity, and healthcare cost globally (Mattsson-Carl-
gren et al. 2020). Clinical examination alone is inadequate 
for guiding diagnosis, prognosis, and monitoring progress 
in research, clinical practice, and drug development. Imag-
ing and biomarkers can aid diagnostics by providing an 
objective indicator of the underlying pathology. In the case 
of AD, this includes structural, functional, and molecular 
imaging, as well as measurements of signature proteins in 
the cerebrospinal fluid (CSF), i.e. amyloid-β (Aβ) and tau 
isoforms (Livingston et al. 2017; G. M. McKhann et al. 
2011). In certain clinical situations, CSF levels of neuro-
filament light (Nf-L) protein, a marker for neuronal injury, 
have been used to diagnose neurodegenerative disorders 
(Khalil et al. 2018). However, with these current diag-
nostic methods, several drawbacks have to be accounted 
for, limiting their applicability as first-line screening tools. 
Although technological advances could increase the preci-
sion of these methods, their expense and lack of patient 
compliance prevent this from occurring. In addition, 
advanced scanning methods, including positron emission 
tomography, are expensive and less accessible for general 
practitioners (O’Brien and Herholz 2015), while CSF col-
lection through a lumbar puncture is invasive (De Almeida 
et al. 2011). A blood sample may provide a matrix that 
could outweigh the drawbacks of the currently used bio-
markers to diagnose patients with AD. With the benefits 
of blood being a biofluid in close contact with every organ 
in the body, its composition could reflect the potential 
state of the surrounding organ (Jacobs et al. 2005). The 
blood-brain barrier (BBB) separates the central nervous 
system (CNS) from the periphery, allowing only gase-
ous exchange, together with small ions, water- and small 
liposoluble-molecules to pass (Zlokovic 2011). However, 
during AD pathogenesis, the BBB becomes permeable 
(Baird et al. 2015), potentially enabling the identification 
of neuronal metabolites in blood samples.

Even though blood provides a non-invasive biological 
matrix for investigating disease pathology, its complex-
ity impedes the findings of potential new biomarkers. 
The omics-era has aided in the realisation of the need 
to explore such complex samples, with metabolomics 
being one of the more recent members of the omics fam-
ily (Hampel et al. 2016). Metabolomics covers the study 
of all metabolites in a cell, organ, or organism. Metabo-
lites are small molecules < 1,500 Da and comprise amino 
acids, lipids, peptides, vitamins, etc. (Lamichhane et al. 
2018), and are endpoints of the regulations at the genetic, 
transcript, and protein levels. Thus, small alterations of 

upstream molecules could substantially affect the concen-
tration of a metabolite (J. Nielsen and Oliver 2005). Not 
only can disease progression cause metabolic perturba-
tions, but environmental factors, treatments, and nutrition 
also play a role (Stringer et al. 2016). As for clinical appli-
cations, metabolic pathways have been shown to be evolu-
tionarily conserved across species, thus bridging the gap 
between animal studies and human clinical trials (Wilkins 
and Trushina 2018). Nuclear magnetic resonance (NMR) 
spectroscopy is among the most informative techniques for 
studying metabolomics (Wishart 2008), and is able to effi-
ciently analyse and detect hundreds of small molecules in 
a single measurement in human samples, including plasma 
and serum (Wang et al. 2013). Essentially, all metabolites 
present their own unique and reproducible NMR signature 
and thus can be used to explore metabolic processes and 
screen for the presence of known metabolites (Song et al. 
2019). In addition, NMR is also non-destructive and more 
informative than other techniques, such as mass spectrom-
etry; however, it lacks sensitivity and requires a larger 
quantity of sample material (Stringer et al. 2016; Wilkins 
and Trushina 2018).

Although biomarker studies contribute to the global 
search for a solution to the growing problem of the aging 
population, the literature demonstrates that replication 
efforts for many promising biomarker findings have failed 
(Voyle et al. 2015). Thus, the present study aimed to validate 
suggested metabolite biomarkers presented in our previous 
discovery study (J. E. Nielsen et al. 2021) and to provide 
additional information on metabolic perturbations associ-
ated with cognitive impairment. Using NMR-based metabo-
lomics, the serum metabolic signatures from patients with 
mild to moderate AD were compared to those of cognitively 
healthy individuals. Furthermore, we validated our initial 
model using a larger validation cohort by incorporating the 
commonly identified metabolites and supplementing our 
findings with additional metabolic perturbations.

2  Methods

2.1  Study demographics

In our previous discovery study, 20 participants were 
enrolled, with 10 healthy controls and 10 patients with mild 
to modate AD. For this validation study, we increased the 
number of participants to 50, with 25 in each group either 
diagnosed with mild to moderate AD or as healthy controls. 
All subjects were Caucasian. The patients were recruited 
from the Department of Neurology, Aalborg University Hos-
pital. Recruitment was performed consecutively at the time 
of diagnosis for the patients and prior to starting their treat-
ment regimen. The diagnosis was based on the following 
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criteria; the International Classification of Diseases and 
Related Health Problems 10th Edition  (ICD10) (WHO n.d.), 
and the National Institute of Neurological and Communi-
cative Disorders and Stroke and the Alzheimer’s Disease 
and Related Disorders Association (NINCDS-ADRDA) (G. 
McKhann et al. 1984). Paraclinical measurements comprised 
of Mini-Mental State Examination (MMSE), Addenbrooke’s 
Cognitive Examination (ACE), Functional Activities Ques-
tionnaire (FAQ), as well as Aβ, phospho-tau (p-tau), and 
total-tau (t-tau) measured in CSF. The paraclinical meas-
urements were included when deemed necessary due to 
diagnostic uncertainty. Age- and sex-related donors were 
recruited from the blood bank at Aalborg University Hospi-
tal to serve as a comparison group for AD patients. In Den-
mark, blood donors are healthy unpaid volunteers without 
any apparent illnesses. Inclusion criteria for blood donors 
were an age > 65 years old and completion of a standard 
blood donor questionnaire describing physical and mental 
health, such as experiencing memory impairment, fatigue, 
or chest pain. Prior to inclusion in the study, all participants 
signed a written consent form. The study was approved by 
the local North Denmark Region Committee on Health 
Research Ethics (N-20150010) and conducted according to 
the Declaration of Helsinki.

2.2  Sample collection and processing

Blood samples were drawn from study participants and pro-
cessed as described in a previous study (Ellegaard Nielsen 
et al. 2020). Briefly, blood was collected from the median 
cubital vein using a 21-gauge needle in 10 mL clot activator 
tubes (BD Vacutainer, UK) and also 4 mL Ethylenediamine-
tetraacetic acid (EDTA) tubes (Vacuette, Greiner Bio-One, 
Austria). After sample collection, the blood was centrifuged 
twice at 2500 × g for 15 min at room temperature to obtain 
serum and plasma. After each centrifugation step, serum and 
plasma samples were aspirated to approximately 1 cm above 
the buffy coat or pellet. Finally, serum and plasma samples 
were aliquoted, snap-frozen using liquid nitrogen, and stored 
at − 80 °C until further analyses.

2.3  Routine analyses

Organ markers were routinely measured in serum samples 
to ensure that none of the study participants had co-mor-
bidities. The clinical biochemistry markers measured were 
alanine transaminase, albumin, carbamide, cholesterol, cre-
atinine, C-reactive protein, glucose, high and low-density 
lipoprotein (HDL and LDL, respectively), lactate dehydro-
genase (LDH), and triglycerides using the Alinity ci-series 
(Abbott, Chicago, IL, USA) and haemoglobin using either 
XN-9000 (Sysmex Europe SE, Germany) or Hb 201 DM 
(Hemocue AB, Sweden).

2.4  Single Molecule Array

Aβ40, Aβ42, glial fibrillary acidic protein (GFAP), Nf-L, and 
p-tau181 were measured in EDTA plasma using the respec-
tive commercially available kits; Neurology 4-Plex E and 
P-Tau181 (Quanterix©, Billerica, MA, USA) by Single 
Molecule Array (SIMOA®) HD-X Analyzer. The analyses 
were performed according to the manufacturer’s instruc-
tions. In addition, the manufacturer’s commercial controls 
were applied for quality control.

2.5  Nuclear magnetic resonance spectroscopy

Serum samples were initially thawed for one hour and then 
carefully diluted 1:1 dilution with sodium phosphate buffer 
(0.075 M, pH 7.4, 20%  D2O in  H2O, 6 mM  NaN3, 4.6 mM 
3-(trimethylsilyl)-2,2,3,3-tetradeuteropropanoic acid (TSP-
d4)) and aliquoted into 5 mm NMR tubes. NMR spectra 
were recorded using a Bruker Avance Neo 600 MHz spec-
trometer attached to a BBI probe (Bruker Biospin GmbH, 
Rheinstetten, Germany). IconNMR (Topspin 4.1.1, Bruker 
Biospin GmbH, Rheinstetten, Germany) and Samplejet 
autosampler (Bruker Biospin GmbH, Rheinstetten, Ger-
many) were used for sample handling and data acquisition. 
One-dimensional nuclear Overhauser effect (1D-NOESY) 
spectra, together with Carr-Purcell-Meiboom-Gill (CPMG), 
were recorded at 310 K using parameters for acquisition 
from Dona et al. (Dona et al. 2014). For the 1D-NOESY 
spectra, 96k data points were recorded, with 30 ppm spectral 
width. In contrast, CPMG spectra were recorded with 72k 
data points and a spectral width of 20 ppm. For both experi-
ments, 32 scans with water suppression (25 Hz) during 
relaxation delay (4 s) and mixing time (NOESY, 10 ms) were 
used for recording. Free induction decays were Fourier trans-
formed after artificial zero fillings up to 128k data points 
and 0.3 Hz line broadening. The spectra were automatically 
zero-order phase corrected. In accordance with the manu-
facturer, B.I.Methods (Bruker Biospin GmbH, Rheinstetten, 
Germany), reference samples were routinely measured and 
processed in automation for temperature calibration, water 
suppression determination, and external quantitative refer-
encing. B.I.Quant-PS™ 2.0 (Bruker Biospin GmbH, Rhein-
stetten, Germany) was used to automatically quantify metab-
olites. A labeled spectrum with expanded regions for peak 
intensity comparison can be found in Supplementary file 1.

2.6  Data analysis

For the validation cohort, 40 metabolites were identified 
using NMR. Information from the discovery cohort can 
be found in the discovery study (J. E. Nielsen et al. 2021). 
Metabolites were filtered for ≥ 70% valid values in at least 
one group before statistical analyses were conducted. Prior 
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to statistical analysis, metabolites from the discovery- and 
validation-cohorts were adjusted for age and sex using a 
linear model. Also, prior to validation of the initial meta-
bolic signature using multivariate data analysis, data were 
auto-scaled and mean-centered for metabolites common in 
both the discovery and validation cohorts.

Three models; Random Forest, Extreme Gradient 
Boosting (XGBoost), and sparse-partial least squared dis-
criminant analysis (sPLS-DA), were tested and estimated 
by their performance using the following parameters; Area 
under the curve (AUC) and 95% confidence interval (CI) 
were reported to indicate the sensitivity and specificity 
of the model, together with the accuracy, positive predic-
tive value (PPV), negative predictive value (NPV), and 
selected number of important metabolites. The Random 
Forest model performance was estimated by the out-of-
bag error rate and optimal number of features was selected 
using the randomForest v4.7-1.1 and Boruta v8.0.0 R 
packages. XGBoosting was performed using the R pack-
age xgboost v1.7.5.1, with performance estimated by root 
mean squared error (RMSE). Optimal number of features 
were ranked according to importance score, and selected 
if importance score was > 0.1. As previously described (J. 
E. Nielsen et al. 2021), the sPLS-DA model was build with 
a 5-fold cross-validation (CV) repeated 100 times using 
the mixOmics v6.20.0 R package. The optimal number of 
selected features was estimated using the classification 
error rate. For visual purpose scores plot for sample group-
ings, loadings plot for weighted importance of selected 
metabolites, and receiver operating characteristic (ROC) 
curve are presented for the most optimal model.

Data were assessed for normality by Shapiro-Wilk test 
and histograms, and compared between the groups using 
a Student’s t-test, presented as mean ± standard deviations 
(SD). Correction for multiple comparison was also provided 
using the Benjamini-Hochberg false-discovery rate (FDR) 
corrected p-value. Nf-L and GFAP were corrected for age 
using a linear model (Vågberg et al. 2015). A significance 
level of p < 0.05 was chosen. Fold changes (FC) between 
groups were also calculated for the metabolites, using FC 
=  (MetaboliteAD –  MetaboliteCon) /  MetaboliteCon. Correla-
tions between important metabolites, selected by multivari-
ate data analysis, and clinical data were investigated using 
Pearson’s ρ, with only the significant correlations presented. 
Data analysis and graphical representations were conducted 
using R version 4.2.2.

Network analysis was performed using the MetScape 
(version 3.1.3) App in CytoScape (version 3.9.1). The net-
work was based on KEGG IDs from significantly altered 
metabolites between AD patients and healthy individuals. 
Raw NMR data for the validation cohort, clinical data, and 
input data for the network analysis can be found in Supple-
mentary files 2, 3, and 4, respectively.

3  Results

3.1  Characteristics of study participants

The biochemical parameters, clinical test results for cog-
nitive performances, corresponding clinical parameters, 
and SIMOA measurements for both study groups have 
been summarised in Table 1. Briefly, the majority of the 
biochemical measurements were within the standard refer-
ence intervals. A few, but significant differences were also 
observed between the AD patients and cognitively healthy 
individuals, including a slightly higher age (p = 0.00001), 
higher LDH levels (p = 0.03), and lower glucose levels in 
the AD patient group (p = 0.01). Patients who required 
additional cognitive testing and paraclinical measure-
ments were identified, where AD patients presented with 
low MMSE (20.0 ± 4.5) and ACE (58.0 ± 16.5) scores 
and a high FAQ (11.8 ± 6.2) score, whereas paraclini-
cal tests demonstrated elevated levels of CSF tau, p-tau 
(81.7 ± 25.0 ng/L) and t-tau (520.4 ± 102.4 ng/L), and 
decreased levels of CSF Aβ (682.8 ± 216.3 ng/L) for some 
of the patients, indicating extracellular tau accumulation 
and intracellular Aβ build-up. Plasma measurements of 
markers for neuronal injury and AD hallmark proteins 
were included as additional clinical information. Gener-
ally, AD patients had significantly higher plasma levels of 
Aβ40 (p = 0.002), GFAP (p = 0.01), Nf–L (p = 0.04), and 
p-tau181 (p = 0.00005) than healthy individuals; however, 
Aβ42 and Aβ42/Aβ40 ratio did not differ between the two 
groups (p = 0.5) and (p = 0.06), respectively. For GFAP 
and Nf-L unadjusted values for mean and SD are shown 
in Table 1.

Demographics data of study participants together with 
biochemical measurements, cognitive test results, paraclin-
ical measurements, and SIMOA measurements. Abbrevia-
tions; Aβ – Amyloid-β, ACE – Addenbrooke’s Cognitive 
Examination, AD – Alzheimer’s Disease, ALAT – Alanine 
transaminase, p-tau – Phosphorylated tau, CRP – C-reac-
tive protein, CSF – Cerebrospinal fluid, FAQ – Functional 
Activities Questionnaire, GFAP – Glial fibrillary acidic 
protein, HDL – High-density lipoprotein, LDH – Lac-
tate dehydrogenase, LDL – Low-density protein, MMSE 
– Mini-Mental State Examination, Nf-L – Neurofilament 
light, SD – Standard deviation, SIMOA – Single molecule 
array, t-tau – Total tau.

3.2  Validation of metabolic signatures 
for Alzheimer’s Disease diagnostics

To validate the metabolic signature identified in our dis-
covery study, NMR spectroscopy was applied to measure 
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the concentration of serum metabolites in our valida-
tion study cohort. Three prediction models were tested 
for their performance based on AUC, accuracy, PPV, and 
NPV. These models included sPLS-DA, random forest, 
and XGBoost (Supplementary file 5). Based on these cri-
teria, sPLS-DA showed the highest performance with five 
selected metabolites building the model (pyruvic acid, 
valine, histidine, isoleucine, and creatine), while ran-
dom forest performed the second best with four selected 
metabolites (histidine, valine, pyruvic acid, and creatine), 
and lastly the XGBoost with four metabolites (histidine, 
pyruvic acid, valine, and tyrosine). Thus, sPLS-DA was 
selected as our data's most optimal validation model.

The validation model showed a small overlap between 
the patient and control groups, as seen in the scores plot 
of the measured serum samples (Fig. 1a). Based on the 
validated model, five metabolites significantly contribute to 

sample grouping, accounting for 39% of the group variation 
(Fig. 1b). Consequently, the model had an AUC performance 
of 0.73 (95% CI = 0.59–0.87) for discriminating AD patients 
from cognitively healthy individuals (Fig. 1c). Further-
more, the model had an accuracy = 0.70, PPV = 0.68, and 
NPV = 0.73, indicating its diagnostic value. Interestingly, 
when adding the significantly altered proteins (Aβ40, GFAP, 
Nf-L, and p-tau181) to the validation model, improved its 
diagnostic performance, resulting in an AUC of 0.89 (95% 
CI = 0.80–1.00) with an accuracy of 0.84, PPV of 0.87, and 
NPV of 0.81 (Fig. 1d).

Furthermore, the selected panel of five metabolites was 
correlated against the clinical data and markers of neuronal 
damage to determine their possible association with neu-
rodegenerative diseases (Fig. 2). Especially isoleucine and 
valine exhibited a strong significant positive correlation with 
CSF levels of p-tau and t-tau with a Pearson’s correlation of 

Table 1  Characteristics of study 
participants

Units Con (n = 25) AD (n = 25) p-value Reference interval
Mean ± SD Mean ± SD

Demographics
Age Years 66.6 ± 1.3 75.7 ± 8.2 0.00001 –
Male/female n 16 / 9 15 / 10 – –
Ethnicity – Caucasian Caucasian – –
Biochemical measurements
ALAT U/L 26.3 ± 8.6 22.3 ± 11.6 0.17 10.0–50.0
Albumin g/L 41.0 ± 1.9 41.5 ± 1.9 0.37 34–45
Carbamide mmol/L 5.8 ± 1.3 5.7 ± 1.5 0.77 3.1–8.1
Cholesterol mmol/L 5.4 ± 0.9 5.5 ± 1.1 0.88 4.2–8.5
Creatinine µmol/L 79.0 ± 10.2 83.4 ± 14.5 0.22 45–105
CRP mg/L 1.9 ± 1.4 2.2 ± 2.9 0.57 < 8
Glucose mmol/L 6.4 ± 1.7 5.4 ± 0.9 0.01 4.2–7.8
Haemoglobin mmol/L 8.8 ± 0.7 8.5 ± 1.0 (n = 15) 0.45 7.3–10.5
HDL mmol/L 1.5 ± 0.3 1.6 ± 0.4 0.35 0.7–1.9
LDL mmol/L 3.2 ± 0.8 3.3 ± 0.9 0.71 2.2–5.7
LDH U/L 170.2 ± 31.2 192.1 ± 38.7 0.03 105–255
Triglycerides mmol/L 1.5 ± 0.8 1.3 ± 0.8 0.34 0.6–3.9
Clinical parameters
MMSE – – 20.0 ± 4.5 – –
ACE – – 58.0 ± 16.5 (n = 21) – –
FAQ – – 11.8 ± 6.2 (n = 21) – –
CSF Aβ ng/L – 682.8 ± 216.3 (n = 9) – > 500
CSF p-tau ng/L - 81.7 ± 25.0 (n = 9) – < 61
CSF t-tau ng/L – 520.4 ± 102.4 (n = 9) – < 450
SIMOA
Aβ40 pg/mL 95.1 ± 10.2 108.7 ± 17.4 0.002 –
Aβ42 pg/mL 5.3 ± 1.0 5.6 ± 1.3 0.5 –
Aβ42/Aβ40 – 0.06 ± 0.009 0.05 ± 0.009 0.06 –
GFAP pg/mL 88.6 ± 32.8 247.1 ± 277.9 0.01 –
Nf-L pg/mL 12.5 ± 4.4 36.9 ± 24.5 0.04 –
p-tau181 pg/mL 1.8 ± 0.8 3.1 ± 1.3 0.00005 –
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Fig. 1  Validation of metabolic signature for cognitive impairment. 
a  Scores plot for sparse-partial least squared discriminant analy-
sis (sPLS-DA), with each score representing a sample. b  Loadings 
plot for selected metabolites representing their mean importance 
for sample grouping reflected in the scores plot. The colour-coding 
of the bars indicates their importance for the corresponding group. 
c Receiver operating characteristics (ROC) curve indicates the ability 
of the model to distinguish the groups. Together with the ROC curve 

is the area under the curve (AUC) with the presented 95% CI, accu-
racy, PPV, and NPV. d ROC curve of selected metabolites combined 
with significantly altered markers of neurodegeneration (Aβ40, GFAP, 
Nf-L, p-tau181) showing an improved diagnostic efficacy, also pre-
sented with AUC and the 95% CI, accuracy, PPV, and NPV. Abbre-
viations; AD – Alzheimer’s Disease, AUC – Area under the curve, CI 
– Confidence interval, Con – Healthy controls, LV – Latent variable, 
NPV – Negative predictive value, PPV – Positive predictive value.

Fig. 2  Correlogram of metabo-
lites of interest and clinical 
parameters. Only correlations 
shown to be significant are 
included. The colour of the 
square indicates if the correla-
tion is positive (red) or negative 
(blue), and the intensity of the 
colour corresponds to the level 
of the correlation. Abbrevia-
tions; ACE – Addenbrooke’s 
cognitive examination, CSF 
– Cerebrospinal fluid, FAQ – 
Functional activities question-
naire, GFAP – Glial fibrillary 
acidic protein, MMSE – Mini-
mental state examination, Nf-L 
– Neurofilament light, p-tau – 
Phospho-tau, t-tau – Total-tau.
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0.74 and 0.71 for isoleucine and 0.72 and 0.81 for valine, 
respectively. Pyruvic acid showed a moderate negative cor-
relation with cognitive scoring test FAQ (ρ = − 0.44), while 
isoleucine showed moderate positive correlations with cog-
nitive scoring tests MMSE (ρ = 0.41) and ACE (ρ = 0.43).

Two of the metabolites measured in both the discovery 
and validation data sets were significantly altered when com-
paring healthy and diseased individuals (Table 2). These two 
metabolites exhibited similar changes in both the discovery 
and validation studies. Furthermore, tyrosine and leucine 
also presented as significantly changed in the validation 
cohort, however, not in the discovery cohort, while histi-
dine presented as significantly changed only in the discov-
ery cohort. The unadjusted mean ± SD values are shown in 
Table 2.

3.3  Metabolic alterations in the validation cohort

To extrapolate novel metabolic information, serum sam-
ples from the validation study were examined for sig-
nificantly altered metabolites between the groups. This 
brought the total number of significantly different metabo-
lites between the groups to five. Four of these metabolites 
were previously identified as significant in the discovery 
cohort, only valine was previously reported as signifi-
cantly altered (Table 3). The unadjusted mean ± SD values 
are shown in Table 3. Significance testing of unadjusted 
metabolites can be found in Supplementary file 6. Poten-
tial significant differences due to age could be removed by 
adjustment, however, this difference could also be due to 
the AD patients on average being older or having different 
metabolite concentrations due to the disease state, thereby 
eliminating this relevant difference.

Significantly altered metabolites measured in serum 
samples comparing cognitively affected with healthy indi-
viduals, sorted according to the p-value. Abbreviations; 

AD – Alzheimer’s Disease, Con – Healthy controls, FC 
– Fold change, FDR – False-discovery rate, SD – Standard 
deviation.

A network analysis was performed to investigate biologi-
cal pathways for the significantly altered metabolites related 
to cognitive impairment (Fig. 3). Pyruvate involved in glyco-
lysis and gluconeogenesis  (log2 FC = − 0.33, p-value = 0.02) 
was the most reduced metabolite in relation to AD. In 
addition, the metabolic pathways of Lysine, Tyrosine, and 
branch-chained amino acids (BCAAs); valine and leucine, 
were also modified. This validation study identified and con-
firmed changes to BCAA metabolism previously found in 
the discovery study; leucine  (log2 FC = 0.3, p-value = 0.02) 
and valine  (log2 FC = − 0.2, p-value = 0.01).

4  Discussion

In this study, we examined serum-derived metabolites asso-
ciated with cognitive impairment in patients with mild to 
moderate AD compared to healthy individuals. The pri-
mary objective was to validate the significance of a panel of 
metabolites previously identified in the discovery study (J. 
E. Nielsen et al. 2021). The secondary objective was to add 
novel information not previously identified.

As previously mentioned, reproducibility is one of the 
more significant obstacles in biomarker studies (Mattsson-
Carlgren et al. 2020). The authors of the referred study 
raised several crucial points to improve the reproducibility 
of future biomarker studies for neurodegenerative disease. 
These aspects range from cohort-related factors to independ-
ent validation. In the presented study, we have sought to 
comply with these recommendations, including; 1) consecu-
tively recruitment of study participants to enroll more het-
erogenous groups, such that multiple factors attenuating the 
effect of the biomarker to avoid overestimation, 2) avoiding 

Table 2  Common significantly 
altered metabolites

Two metabolites were dysregulated in serum samples between cognitively affected and healthy individuals 
in both the discovery and validation studies, sorted according to p-value. Abbreviations; AD – Alzheimer’s 
Disease, Con – Healthy controls, FC – Fold change, SD – Standard deviation

Metabolite
[mmol/L]

Con AD FC p-value FDR

Mean SD Mean SD

Discovery study
 Valine 0.118 0.019 0.092 0.011 − 0.2 0.007 0.07
 Histidine 0.037 0.002 0.032 0.002 − 0.1 0.009 0.07
 Pyruvic acid 0.032 0.007 0.026 0.004 − 0.2 0.03 0.19

Validation study
 Tyrosine 0.071 0.016 0.051 0.011 − 0.3 0.006 0.09
 Valine 0.275 0.052 0.214 0.040 − 0.2 0.01 0.09
 Pyruvic acid 0.118 0.031 0.079 0.027 − 0.3 0.02 0.09
 Leucine 0.111 0.035 0.078 0.017 − 0.3 0.02 0.09
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confounding factors, such as the presence of co-morbidities 
affecting measured biomarker levels, 3) performing vali-
dation in a separate validation cohort, as internal CV, i.e. 
when splitting a single cohort, has shown to fail when rep-
licating the models in independent cohorts (Burnham et al. 
2014; Voyle et al. 2015), possibly due to systematic bias 
between the groups, 4) reporting not only the overall meas-
ure of performance, such as the AUC but also including the 

parameters PPV, NPV, etc., and lastly 5) metabolomics was 
performed in a different lab in the validation study compared 
to the discovery study, thereby also accounting for between-
lab variability. (Mattsson-Carlgren et al. 2020)

We examined the serum metabolome of our study par-
ticipants through NMR spectroscopy in combination with 
multivariate data analysis. Three models were tested using 
the discovery and validation data sets. Overall, these models 

Table 3  Significantly altered 
metabolites in the validation 
cohort

Metabolite (ppm, multiplicity)
[mmol/L]

Con AD FC p-value FDR

Mean SD Mean SD

Tyrosine (7.19, app. d) 0.071 0.016 0.051 0.011 − 0.3 0.006 0.13
Valine (1.02, d) 0.275 0.052 0.214 0.040 − 0.2 0.01 0.13
Lysine (3.03, t) 0.220 0.043 0.175 0.036 − 0.2 0.02 0.13
Pyruvic acid (2.36 s) 0.118 0.031 0.079 0.027 − 0.3 0.02 0.13
Leucine (0.94(s) & 0.96(d)) 0.111 0.035 0.078 0.017 − 0.3 0.02 0.14

Fig. 3  Network analysis of 
dysregulated pathways related 
to cognitive impairment. 
Square nodes represent altered  
metabolites identified in the 
validation study, and circular 
nodes represent metabolites as 
part of the pathways not  identi-
fied in the study. Colour of the 
square nodes represents the  log2 
FC value of the correspond-
ing metabolite, according  to 
alterations between the groups, 
with blue indicating a down-
regulation, and red indicating 
an upregulation. Metabolites  
are mapped according to their 
KEGG IDs
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primarily selected the same metabolites, indicating the rel-
evance of these metabolites for distinguishing cognitively 
impaired persons from healthy individuals. The commonly 
selected metabolites included pyruvic acid, valine, and histi-
dine. Pyruvic acid, or pyruvate, is the end-product of glyco-
lysis and the substrate for mitochondrial adenosine triphos-
phate (ATP) synthesis. The nervous system is vulnerable 
to alterations in pyruvate metabolism due to the high ATP 
demand (Gray et al. 2014), which is used to maintain neu-
ronal activity and homeostasis of the extracellular space and 
to defend against oxidative stress (Bak et al. 2006; Garcı́a-
Nogales et al. 2003). In contrast, to our findings, increased 
levels of pyruvate have been observed in CSF of AD patients 
(Parnetti et al. 1995), but similar alterations were identi-
fied in blood samples from patients with Parkinson’s disease 
(Ahmed et al. 2009). As stated in the discovery study, valine 
and histidine are well-studied amino acids with respect to 
AD pathology (J. E. Nielsen et al. 2021). Consequently, the 
results of the present study further validate their importance 
related to AD. In accordance with previous findings identify-
ing decreased levels of valine in serum (Xiong et al. 2022) 
and CSF and positive correlations between CSF-valine and 
MMSE score, researchers have continued investigating this 
particular amino acid in relation to AD (Vignoli et al. 2020). 
Valine was identified as a potential marker for predicting the 
transition from mild cognitive impairment to AD (Xiong 
et al. 2022). Histidine is an essential amino acid (Kim and 
Kim 2020), and a known scavenger of hydroxyl radicals, part 
of the reactive oxygen species (Cai et al. 1995). Using a cell 
model for anti-aging effects, increased proliferation and neu-
rogenesis, as well as up-regulation of anti-oxidant enzymes, 
have been demonstrated as positive effects of histidine (Kim 
and Kim 2020). As mentioned earlier, BBB breakdown 
occurs during AD pathogenesis with the potential presence 
of neuronal metabolites in the circulatory system. Thus, the 
metabolic shift between healthy and diseased individuals 
observed in this study could also be due to the presence of 
neuronal-derived metabolites entering the bloodstream in 
AD subjects, while not being present in healthy individuals 
due to an intact BBB.

As an additional clinical characteristic parameter, we 
included measurements of established non-disease specific 
markers of neurological damage (GFAP and Nf-L), as well 
as hallmark targets of AD (Aβ40, Aβ42, Aβ42/ Aβ40, and 
p-tau181) measured in blood, as the literature strongly impli-
cates their diagnostic performance and significance in rela-
tion to neurological disease. (Chatterjee et al. 2022; Smirnov 
et al. 2022). Overall, the present study confirms previous 
findings; however, we found significantly elevated levels of 
Aβ40 and no difference in Aβ42 concentrations and Aβ42/
Aβ40 ratios. This may be due to underlying cardiovascular 
conditions, such as hypertension, ischemic heart disease, 
and cardio-protective medications, which have been shown 

to influence plasma concentrations of Aβ. (Janelidze et al. 
2016). However, this indifference could also be associated to 
the cohort size of the study needing more power to confirm 
a significant difference. In the biochemical measurements, 
glucose and LDH levels were significantly different between 
the control group and the patients, but both groups had levels 
within the normal range. Interestingly, reduced glucose uti-
lization has been shown in AD brains (Kumar et al. 2022), 
and this could also explain the observed significantly lower 
pyruvate concentration. Although, blood donors are encour-
aged to have eaten prior to blood donation, which also could 
be the reason for the significance in blood glucose levels.

Even though our results confirmed important findings and 
contributed to the search for valid blood-based biomarkers 
to aid in diagnosing AD, it is essential to note the limitations 
of our study. First, although the patient group was clinically 
confirmed to have AD, not all patients underwent neuropsy-
chological testing or had CSF proteins measured because 
their physician deemed it unnecessary for the patient's diag-
nosis. Secondly, to thoroughly verify our metabolite panel 
as a diagnostic tool for AD, it would be necessary to test 
its accuracy against other neurodegenerative diseases and 
different stages of AD. Thirdly, we discovered a significant 
age difference between our study groups, with AD patients 
being, on average, older than the control group. Unfor-
tunately, it is not possible to recruit older blood donors, 
however, adjustment for age was performed on metabolite 
values prior to statistical analsysis. Fourthly, adding CSF 
samples to a study of the metabolome in relation to cognitive 
impairment can strengthen biomarker panels identified in the 
peripheral system. Lastly, both p-value and FDR corrected 
values were reported to minimize type II errors, however, 
multivariate statistics were also applied to encompass the 
overall information in the data, including covariance and 
correlation between metabolites.

Our findings validated the significance of the identified 
metabolite biomarker panel from the discovery study in dis-
tinguishing cognitively healthy individuals from patients 
with cognitive impairment. In addition, we evaluated vari-
ous models to validate the performance of our panel, finding 
sPLS-DA to be the best fit. Lastly, new insights into disrup-
tions in energy metabolism were uncovered.

5  Conclusions

In the current study, we validated our blood-based bio-
marker model derived from a discovery study consisting of 
five metabolites; pyruvic acid, valine, histidine, isoleucine, 
and creatine. The novel information provided by the vali-
dation cohort confirmed the involvement of significantly 
altered metabolites in the BCAAs metabolism. Moreover, 
metabolic changes in the energy metabolism were observed. 
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Combining the proposed metabolite biomarker panel with 
neurodegenerative markers in plasma increased the diagnos-
tic value. Although our validation yielded very intriguing 
results, the diagnostic performance of this panel of meta-
bolic markers must also be assessed against other types 
of neurodegenerative diseases and various stages of AD 
progression.
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