
Securing PUFs against ML Modeling Attacks via
an Efficient Challenge-Response Approach

Mieszko Ferens
Dept. of Electronic Systems

Aalborg University
Copenhagen, Denmark

mjfm@es.aau.dk

Edlira Dushku
Dept. of Electronic Systems

Aalborg University
Copenhagen, Denmark

edu@es.aau.dk

Sokol Kosta
Dept. of Electronic Systems

Aalborg University
Copenhagen, Denmark

sok@es.aau.dk

Abstract—Physical Unclonable Functions (PUFs) are
lightweight security primitives capable of providing
functionalities such as device authentication and identification.
Such lightweight solutions are particularly important for small
resource-constrained devices that cannot support many of the
standard security mechanisms like e.g., TPMs. Even though
PUFs are constructed to be unpredictable and unclonable, they
have been susceptible to Machine Learning (ML) modeling
attacks. Mitigation of these attacks typically requires additional
hardware, causing potential deviation from the lightweight
nature of low-end embedded devices. In this paper, we analyze
the technical details that lead to the success of the previous
ML modeling attacks, and utilize these findings to devise
a novel challenge-response approach that improves PUF’s
security, more specifically the 4-XOR and 5-XOR PUFs, without
additional hardware requirements. Our experimental results
show that the proposed approach reduces modeling accuracies
of state-of-the-art ML attacks by 10-15%, lowering the success
rate of attacks significantly while remaining practical in the
implementation.

Index Terms—Arbiter PUF, XOR PUF, modeling attacks, CRP,
hardware security, IoT

I. INTRODUCTION

Resource-constrained devices are integral to critical in-
frastructures such as healthcare, transportation, or industrial
systems, and protecting their communications is of utmost
importance for preventing major consequences of cyberattacks.
In the majority of PCs, laptops, and servers, the basic security-
related functions can be provided by a trusted computing base,
e.g., a standardized hardware module called Trusted Platform
Module (TPM) [1]. However, in low-end embedded devices
with limited resources, the presence of such a hardware
component is often infeasible [2].

Aimed at providing lightweight security features, Physi-
cal Unclonable Functions (PUFs) have been proposed as a
promising solution with low hardware overhead [3]. A PUF
is a physical circuit that takes an input called challenge and
gives an output called response. By exploiting the unavoidable
manufacturing variations of Integrated Circuits (ICs), different
PUFs can give different outputs to the same input. The first
design proposed in 2002 was the Arbiter PUF (APUF) [2],

This work is supported by the IoTalentum project, funded by the European
Union Horizon 2020 research and innovation program within the framework
of Marie Skłodowska-Curie Actions ITN-ETN with grant number 953442.

which made use of the variations in wire delays and could be
employed for applications such as lightweight device authen-
tication [3]. Since then, many other PUF designs have been
proposed, like the Feed-Forward PUF [3], the XOR PUF [4],
and the Interpose PUF [5], among many others (not necessarily
based on wire delays). All these designs are part of a PUF
class called Strong PUFs that provide a large number of unique
challenges, as opposed to Weak PUFs, which are more limited
in amount [6].

In a standard paradigm, PUFs communicate with a server
that possesses a dataset of Challenge-Response Pairs (CRPs),
collected only once after manufacturing and used to authenti-
cate the PUFs. Since CRPs are never reused, and physical
invasive attacks are impossible due to physical operational
characteristics being changed in such event, impersonating a
PUF is supposedly not possible.

Nevertheless, many papers have shown that PUFs are vul-
nerable to Machine Learning (ML) modeling attacks [7]–
[13]. By collecting previously used CRPs it is possible to
create a PUF clone which can then impersonate the original.
To mitigate this, additional security hardware is required,
which contradicts the minimal lightweight design of resource-
constraint devices.

Contributions. In this paper, we investigate the technical
details that lead to the success of state-of-the-art ML modeling
attacks against PUFs. To the best of our knowledge, all
previous works on PUFs assume that, after manufacturing,
CRPs are randomly selected without repetition. We question
this critical assumption and investigate whether selectively
choosing challenges can lead to more resilient systems. Our
findings show that the successful modeling attacks seen in
literature on current PUFs are not only due to how PUFs are
designed, but also to how the CRPs are selected. Even though
this paper focuses on state-of-the-art XOR PUFs, the proposed
method is agnostic from the underlying implementation details
of any APUF-based design. To this end, our main contributions
can be summarized as follows:

• We propose a novel approach that enhances and improves
PUFs’ security by relying on selective CRPs. To achieve
this, we present three methods that aim to prevent ML
modeling attacks without requiring additional hardware
overhead.

• Our experimental results demonstrate that the proposed
technique prevents modeling attacks from being success-
ful. In particular, we show that the state-of-the-art ML
modeling attacks are less effective when selective CRPs
are used.

Outline. The rest of this paper is organized as follows. In
Section II, we provide an analytical explanation of how an
Arbiter PUF and its derivatives (specifically the XOR PUF)
work, and how they can be modeled by ML. Section III
shows an overview of the related work for attack models and
defense methods that are applied to APUFs and derivatives. In
Section IV, we describe our tested methods to prevent mod-
eling attacks. Sections V and VI show the experimental setup
and empirical data to support our claims. In Section VII, we
discuss the applicability of our methods. Finally, Section VIII
concludes the paper.

II. BACKGROUND

A. Arbiter-based PUFs

By far the most popular PUF design in recent years has
been the Arbiter PUF (APUF), mostly used as a basic building
block on which many other PUF implementations are based
on. An APUF, as shown in Fig. 1, is a circuit comprised of a
sequence of n stages (n-bits) with an arbiter block at the end.

Each stage controls whether the inputs are passed to the
outputs straight or crossed, creating a pair of paths. The
random manufacturing variations of the IC randomize the
delays of the wires approximating a Gaussian distribution [3].
By sending a signal and comparing the two unique path delays
with the arbiter block, either 0 or 1 is given as the output1:

r = sign(∆) = sign(w⃗T Φ⃗) (1)

This is referred to as the additive linear delay model, origi-
nally defined in [3] and later adopted for further research [6].
The vector w⃗ defines the delay parameters of each stage
accounting for all previous stages. Thus for n stages it has
n+ 1 elements.

w⃗ = (w1, ..., wn+1) (2)

where w1 =
δ01−δ11

2 , wn+1 =
δ0n+δ1n

2 , and

wi =
δ0i−1 + δ1i−1 + δ0i − δ1i

2
;∀i ∈ [2, n] (3)

with δ0,1n denoting the sum of delays of both the straight (0)
and crossed (1) paths up to and including stage n.

The vector Φ⃗ is a function of the challenge C⃗ that is applied
to the APUF.

Φ⃗(C⃗) = (Φ1(C⃗), ...,Φn(C⃗), 1) (4)

where Φi(C⃗) =
∏n

i=1(1−2bi), with bi being the i-th selector
bit of challenge C⃗.

1Note that the output is remapped from (0, 1) to (1,−1) for convenience

𝑛 𝑏𝑖𝑡𝑠

Arbiter

0 1 0 0

𝑟

𝛿1
0

𝛿1
1

𝛿2
0

𝛿2
1

𝛿3
0

𝛿3
1

𝛿𝑛
0

𝛿𝑛
1

…

Ԧ𝐶 = 010…0

…

Fig. 1. Schematic view of an Arbiter PUF.

The additive linear delay model can be extended to PUF
designs that include multiple independent APUFs, like the k-
XOR PUF:

r′ = sign(

k∏
l=1

∆l) = sign(

k∏
l=1

w⃗T
l Φ⃗l) (5)

which involves k vectors w⃗1, ..., w⃗k and Φ⃗1, ..., Φ⃗k.

B. Modeling Attacks

The models shown in (1) and (5) posses a separating
hyperplane at w⃗T Φ⃗ = 0 and

∏k
l=1 w⃗

T
l Φ⃗l = 0, respectively.

The side of the hyperplane on which a specific challenge is
located (through Φ⃗(C⃗)) determines the response. By feeding
ML algorithms with CRPs they can obtain a function that
approximates a decision boundary f = w⃗T Φ⃗′. If Φ⃗′ is
close enough to the real PUF’s Φ⃗, then the algorithm can
successfully replicate it. Next we describe the algorithms used
in this paper, motivated by the state-of-the-art (see Section III).

a) Logistic Regression: Logistic Regression (LR), in its
application to PUF modeling, sees each challenge C⃗ having
an assigned probability p(C⃗, r | w⃗) to generate an output r of
−1 or 1, defined as

p(C⃗, r | w⃗) = σ(rf) = (1 + e−rf)−1 (6)

where f(w⃗) = 0 determines a decision boundary of equal
output probabilities. We refer the reader to [13] for the exact
details of the implementation used in this paper.

b) Multi-Layer Perceptron: This algorithm is based on
the use of a set of layers of neurons. The first layer is called
the input layer, where the outputs of the neurons simply
take the values of the inputs. Following the input layer, the
hidden layers process the information by applying a certain
operation to the input values. This is performed by each
neuron individually by having its output for a single input be
determined by a weight factor w, a bias b, and an activation
function g(x). Since in an MLP the neural network is densely
connected, i.e., the output of a neuron in one layer is passed to
all neurons in the next, the n-th neuron’s output is determined
by the sum of all its inputs Xn:

on =

Xn∑
i=1

g(wn
i x

n
i + bn) (7)

The final layer in a PUF modeling problem is a single neuron
with the same processing shown in (7), but possibly with a

TABLE I
ML TECHNIQUES APPLICABLE TO CLONING XOR PUFS

Paper Year Perspective Method Overhead Result

Ruhmair et al. [7], [8] 2010 Attack LR and ES - 64-bit 6-XOR PUF broken
Paral et al. [14] 2011 Defense PMKG Low Challenges partially unavailable to attackers
Majzoobi et al. [15] 2012 Defense Slender PUF protocol Medium Challenges fully unavailable to attackers
Becker et al. [9] 2015 Attack Reliability CMA-ES - 128-bit 16-XOR PUF broken
Yu et al. [16] 2016 Defense Lockdown protocol Medium Attackers unable to directly query the PUF
Alkatheiri et al. [10] 2017 Attack MLP - Feed-Forward PUF broken
Aseeri et al. [11] 2018 Attack MLP - 64-bit 8-XOR PUF broken
Nguyen et al. [5] 2019 Defense Interpose PUF Low Prevents reliability CMA-ES attack
Mursi et al. [12] 2020 Attack Improved MLP - 64-bit 9-XOR PUF broken
Wisiol et al. [13] 2022 Attack ECP-TRN, Improved LR and MLP - Optimized LR attack
Wu et al. [17] 2022 Defense FLAM-PUF Very low Obfuscates challenges using a Galois LFSR
This work 2023 Defense Selective CRPs None Prevents the success of LR and MLP attacks

different activation function. We refer the reader to [12] for
the exact details of the implementation used in this paper.

III. RELATED WORK

In this section, we summarize the related work on i) ML
modeling attacks that deal with XOR PUFs, and ii) defense
methods that aim to improve PUFs’ security.

The first extensive analysis for the security of APUFs
and derivatives was performed by Ruhmair et al. [7]. It
showed that APUFs and many of their derivatives are clonable
with ML algorithms, including Logistic Regression (LR) and
Evolutionary Strategies (ES). Later, the work in [8] extended
this research to real PUFs and not just simulated ones. In [9],
Becker uncovered that the reliability of PUFs can be exploited
to more efficiently train a ML algorithm like the Covariance
Matrix Adaptation (CMA) ES. Additionally, in recent years,
the use of Artificial Neural Networks (ANN) with the Multi-
Layer Perceptron (MLP) algorithm has proven to be a useful
tool to model more complex PUFs than ever before (Alkatheiri
et al. [10] and Aseeri et al. [11]). Following this, Mursi
et al. [12] improved the configuration of the MLP. Finally,
Wisiol et al. [13] used the improved MLP and compared its
performance with a new improved LR attack. The last two
attacks mark the current best performing ML algorithms for
modeling XOR PUFs, each better than the other depending on
the size of the PUF.

In parallel, to improve the security of PUFs, Paral et al. [14]
devised a Pattern Matching Key Generation (PMKG) scheme,
where challenges are not sent in the clear when server-PUF
communication is taking place via some additional control
logic. Similarly, Majzoobi et al. [15] proposed the Slender PUF
protocol, which uses a PRNG and TRNG to have both server
and PUF agree on challenges without the need to send them
in the clear. Finally, Yu et al. [16] proposed the Lockdown
protocol designed to keep a PUF from answering queries from
non-authentic servers by means of a PRNG. While not dealing
with improved designs in this paper, we choose to mention the
works by Nguyen et al. [5], since the Interpose PUF prevents
the reliability CMA-ES attack that we do not test in this
paper, and Wu et al. [17], due to the FLAM-PUF focusing

on lightweight implementation with an APUF at its core. The
key differentiating factor of our work from the latter ones is
that our technique does not incur in any additional overhead.
Moreover, our proposal is compatible with the others, as well
as applicable to any APUF-based design (like the Interpose
PUF).

Table I gives an overview of the aforementioned works used
to model XOR PUFs and the defense methods in chronological
order.

IV. OUR PROPOSAL: SELECTIVE CRPS

Our proposal for improving PUFs’ security against ML
modeling attacks is based on induced data scarcity. To achieve
this, we carefully select and craft a CRP set where challenges
do not use all their bits simultaneously, i.e., many bits are
set to a default value of either 0 or 1, and only begin to
be used after a large number of CRPs. In this way, many
of the delay parameters of the underlying PUF model, as
described in (3), are hidden and impossible to learn unless
a very numerous subset of CRPs is collected. By gradually
introducing the unused bits in the CRP set, an attacker will
have to keep collecting data for their model to learn the new
bits that are suddenly used for the first time. Based on this,
we propose three methods of creating a selective CRP dataset.
Fig. 2 shows these methods with all actively used bits in each
challenge marked.

A. Binary-coded with Padding CRPs (BP)

The first method we propose, called BP, is based on using
a binary table for generating challenges, where the challenges
are taken from the table in order. This introduces new values
for previously unused bits at a rate of 2c challenges, where
c is the most significant bit in the challenge that has been
flipped once. Since this becomes too slow for large values of
c, we only use 16 out of the 64 bits of the challenge, filling
between them with 0s (as shown in Fig. 2(a)). After that, a
circular shift is applied three times to generate more CRPs and
use all bits. The main issue is the low number of generated
unique CRPs available to the server to operate the PUF for its
whole lifespan.

10000000…00000000
00001000…00000000

10001000…10001000

…

𝐶𝑅𝑃1

𝐶𝑅𝑃2

𝐶𝑅𝑃65535

…

01000000…00000000
00000100…00000000

00010001…00010001
…

𝐶𝑅𝑃65536

𝐶𝑅𝑃65537

𝐶𝑅𝑃262533

…
00000000…00000000𝐶𝑅𝑃0

First sh
ift

(a) BP

10110000…00000000
01011000…00000000

00000000…00001011

…

𝐶𝑅𝑃1

𝐶𝑅𝑃2

𝐶𝑅𝑃61

…

01010000…00000000
00101000…00000000

00000000…00001001

…

𝐶𝑅𝑃62

𝐶𝑅𝑃63

𝐶𝑅𝑃976

…

00000000…00000000𝐶𝑅𝑃0

Pattern
 1

Pattern
 2

(b) RSP (p = 4)

10000000…00000000
01000000…00000000

00000000…00001000

…

𝐶𝑅𝑃1

𝐶𝑅𝑃2

𝐶𝑅𝑃61

…

01000000…00000000
00100000…00000000

00000000…00001111

…

𝐶𝑅𝑃62

𝐶𝑅𝑃63

𝐶𝑅𝑃976

…

00000000…00000000𝐶𝑅𝑃0
Pattern

 1
Pattern

 2

(c) BSP (p = 4)

Fig. 2. Challenge sets without elimination of repeats.

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
Pattern length (p)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
od

el
in

g
ac

cu
ra

cy

RSP
BSP

Fig. 3. Effect of pattern length (p) on modeling accuracies of improved LR attacks on 4-XOR PUFs with 80000 CRPs of RSP and BSP. For RSP a value
of p = 20 is the highest that significantly improves security, while for BSP a higher value is possible.

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
Pattern length (p)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
od

el
in

g
ac

cu
ra

cy

RSP
BSP

Fig. 4. Effect of pattern length (p) on modeling accuracies of improved MLP attacks on 5-XOR PUFs with 160000 CRPs of RSP and BSP. For RSP a value
of p = 16 is the highest that significantly improves security, while for BSP a higher value is possible.

B. Random Shifted Pattern CRPs (RSP)

For our second method, called RSP, we propose a selective
CRP dataset based on a random sequence of bits similar to
the traditional challenges. The idea is to generate random
patterns of p-bits that are then shifted through all bits of the
full challenge, leaving all unused bits at a value of 0 (as shown
in Fig. 2(b)). As a final step, all repeated challenges must be
removed. The main advantage of this method is that as long
as p is large enough, we can generate an exponentially large
number of unique CRPs for the server to use. However, the
use of randomly selected bits can lead to lower data scarcity.

C. Binary-coded Shifted Pattern CRPs (BSP)

Our final proposed method, called BSP, combines the previ-
ous two methods to address their shortcomings. This method
is very similar to RSP, with the difference that it uses a binary
table instead of generating random patterns. Fig. 2(c) depicts

an example of the generated CRP dataset. Once again, the
final step is to remove all repeated challenges. Similarly to
RSP, if p is large enough, we can guarantee that the server
will be provided with enough unique CRPs, but since we are
not using random patterns we stipulate that data scarcity will
be increased.

V. EXPERIMENTAL SETUP

To evaluate the effectiveness of our approach against ML
modeling attacks without introducing additional hardware as-
sumptions, we conduct experiments on 20 simulated instances
of 64-bit 4-XOR and 5-XOR PUFs with reliable responses (no
noise). Our choice of PUFs is motivated by the observation
that the improved LR attack is the most efficient state-of-the-
art attack (i.e., least number of CRPs required) for k-XOR
PUFs when k ≤ 4 [13]. However, when k ≥ 5, the improved
MLP performs better. Since our primary goal is to prove that
PUFs can remain lightweight and secure against ML modeling

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
of training CRPs

0.5

0.6

0.7

0.8

0.9

1.0

M
od

el
in

g
ac

cu
ra

cy

Traditional
BP
RSP (p=16)
BSP (p=25)

Fig. 5. Modeling accuracy of the improved LR attack on 4-XOR PUFs using traditional and selective CRPs. It can be seen as BP creates a drop in the
modeling accuracy when the first of the three circular shifts occurs, while RSP and BSP provide lower modeling accuracies consistently.

100000 120000 140000 160000 180000 200000 220000 240000
of training CRPs

0.5

0.6

0.7

0.8

0.9

1.0

M
od

el
in

g
ac

cu
ra

cy

Traditional
BP
RSP (p=16)
BSP (p=25)

Fig. 6. Modeling accuracy of the improved MLP attack on 5-XOR PUFs using traditional and selective CRPs. It can be seen as BP creates drops in the
modeling accuracy when the second and third of the three circular shifts occur, while RSP and BSP provide lower modeling accuracies consistently.

attacks, increasing k is not in our interest, although it is a way
to add security if the hardware overhead can be tolerated.

For our experimental setup, we use Python 3.8 on a laptop
with single thread processing. To simulate the XOR PUF
instances, we use the pypuf library [18] with random seeds
from 0 to 19. The attacks studied in this paper are integrated
in the pypuf library, implemented with Keras over Tensorflow
2.4. We review, tested, and validated the code for these attacks
before performing our experiments. For the generation of
CRPs, since pypuf does not guarantee that random generated
challenges are not repeated, we add this feature on our own.
To test the modeling accuracies, the CRP dataset in each
experiment is extended with 10000 CRPs not used for training.
For replicability, the code used to generate our results is made
available2.

VI. RESULTS

We first need to pick a value of the pattern length p for
both our RSP and BSP methods. Fig. 3 and Fig. 4 show how
different values affect the modeling accuracies of the improved
LR and MLP attacks when enough CRPs are available for
these attacks to yield accurate models if traditional CRPs are
used. When traditional CRPs are used, our results differ from
the ones reported in [13] as can be seen in Fig. 5 and Fig. 6.

2https://github.com/AAU-Edge-Computing-and-Networking/
PUF-Selective-CRPs

We find that the CRPs required for a 100% success rate of the
improved LR attack on a 4-XOR PUF is 80000, as opposed to
30000. Similarly, the improved MLP attack requires 160000
CRPs, not 200000, to consistently model a 5-XOR PUF. Note
that this does not change the fact that the LR attack is better
than the MLP attack for k ≤ 4, and viceversa. As depicted in
Fig. 3 and Fig. 4, lower values for p are better for modeling
complexity, but they come at the cost of total number of unique
CRPs that can be generated. Therefore, for RSP we pick the
highest possible value (p = 16) that retains a median modeling
accuracy for attacks under 90% in both scenarios. For BSP,
however, we can choose a higher value of p = 25. Since it
provides more that enough unique CRPs (see Section VII)
going higher is counterproductive.

Fig. 5 and Fig. 6 illustrate the results of using our proposed
methods compared to the traditional CRPs considered in
previous works. Regarding our proposed methods, we observe
a significant change in the modeling accuracies across all our
experiments. Starting with BP, it is clear that since 16 out
of the 64 bits of the challenge are used at a time, the CRPs
required to model the PUF are lower than normal. However,
when the shifts occur, the modeling accuracy drops severely
(30 − 40% lower), making attacks unsuccessful until more
training data is added. For RSP, a pattern length of p = 16
consistently increases the training data that is required to
successfully attack the PUFs. However, p = 16 only generates

https://github.com/AAU-Edge-Computing-and-Networking/PUF-Selective-CRPs
https://github.com/AAU-Edge-Computing-and-Networking/PUF-Selective-CRPs

2p(64− (p+1)) < 3211264 CRPs. Combining the ideas from
the previous two methods, BSP gives us the best results. It
makes attacks require considerably more training data, but
without limiting the available unique CRPs as much.

VII. DISCUSSION OF VIABILITY

In this section, we argue why our final method (BSP) is
realistic and practical when real-world PUFs are involved. As
discussed in [2], [3], [19], given a system of up to millions
of devices, the number of CRPs required to perform a single
authentication query does not exceed 400. Assuming that each
device communicates with the server every 5 − 6 minutes, it
burns through around 100000 CRPs per day. This means that
if we can generate at least a billion unique CRPs, the system
could operate for over 30 years. Taking our proposed BSP,
using p = 25 is enough as we can generate up to 2p(64−(p+
1)) ≈ 1.3 billion CRPs.

On a separate note, most papers consider the attacker to be
able to either directly query the PUF for CRPs or listen to
the PUF-server CRP exchange. It is also considered that an
attacker can obtain the training data very quickly (e.g., 350000
CRPs per minute [9]) given no control mechanism to prevent
it. However, if the attacker is limited to the CRPs used by the
server, then it would take around a day to get 100000 CRPs as
per our previous discussion. We believe the former method of
obtaining CRPs can be unviable for a system like PUF-based
RFID tags [9] that, if stolen, get reported and purged from the
system. Only if the RFID tags can be queried physically by a
reader setup by the attacker without raising suspicion, the long
data collection time could be avoided. Seemingly the passive
collection scheme is far more likely, and any security measures
against man-in-the-middle attacks would simply need to detect
the intrusion before the attacker collects enough data.

VIII. CONCLUSION

This paper presents three methods that can effectively
improve the security of XOR PUFs against ML modeling
attacks. In particular, the proposed methods enable the selec-
tive creation of challenges for CRPs, leaking less information
about the PUFs underlying model. Our results show that PUF
instances that are known to be vulnerable to improved LR
and MLP attacks are actually more resilient that previously
reported if traditional (random) CRPs are not used.

The three methods provide certain advantages regarding the
modeling complexity due to induced data scarcity. While they
pose the challenge of limiting unique CRPs, we argue that
our third method (BSP) can provide sufficient CRPs to be
practical in real-world applications. Additionally, our proposed
methods are compatible with other techniques and APUF-
based designs. As such, the main conclusion to this paper is
that known to be broken PUF designs should be re-evaluated
with selective CRPs to investigate whether they are actually
insecure. To this end, our future work will focus on expanding
our experiments to unreliable and silicon generated CRPs, as
well as, other types of attacks (e.g., reliability-based attack [9])
and other PUF designs (e.g., Interpose PUF [5]).

REFERENCES

[1] W. Arthur and D. Challener, A Practical Guide to TPM 2.0: Using the
Trusted Platform Module in the New Age of Security, 1st ed. USA:
Apress, 2015.

[2] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, ser. CCS ’02. New York,
NY, USA: Association for Computing Machinery, 2002, p. 148–160.

[3] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas, “Iden-
tification and authentication of integrated circuits,” Concurrency and
Computation: Practice and Experience, vol. 16, no. 11, pp. 1077–1098,
2004.

[4] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in 2007 44th ACM/IEEE
Design Automation Conference, 2007, pp. 9–14.

[5] P. H. Nguyen, D. P. Sahoo, C. Jin, K. Mahmood, U. Rührmair, and
M. van Dijk, “The interpose puf: Secure puf design against state-of-
the-art machine learning attacks,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2019, no. 4, p. 243–290, 2019.

[6] U. Rührmair and J. Sölter, “Puf modeling attacks: An introduction and
overview,” in 2014 Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2014, pp. 1–6.

[7] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhu-
ber, “Modeling attacks on physical unclonable functions,” in Proceed-
ings of the 17th ACM Conference on Computer and Communications
Security, ser. CCS ’10. New York, NY, USA: Association for
Computing Machinery, 2010, p. 237–249.

[8] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, “Puf modeling
attacks on simulated and silicon data,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 8, no. 11, pp. 1876–1891, 2013.

[9] G. T. Becker, “The gap between promise and reality: On the insecurity
of xor arbiter pufs,” in Cryptographic Hardware and Embedded Systems
– CHES 2015, T. Güneysu and H. Handschuh, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 535–555.

[10] M. S. Alkatheiri and Y. Zhuang, “Towards fast and accurate machine
learning attacks of feed-forward arbiter pufs,” in 2017 IEEE Conference
on Dependable and Secure Computing, 2017, pp. 181–187.

[11] A. O. Aseeri, Y. Zhuang, and M. S. Alkatheiri, “A machine learning-
based security vulnerability study on xor pufs for resource-constraint
internet of things,” in 2018 IEEE International Congress on Internet of
Things (ICIOT), 2018, pp. 49–56.

[12] K. T. Mursi, B. Thapaliya, Y. Zhuang, A. O. Aseeri, and M. S. Alkatheiri,
“A fast deep learning method for security vulnerability study of xor
pufs,” Electronics, vol. 9, no. 10, 2020.

[13] N. Wisiol, B. Thapaliya, K. T. Mursi, J.-P. Seifert, and Y. Zhuang,
“Neural network modeling attacks on arbiter-puf-based designs,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp. 2719–
2731, 2022.

[14] Z. Paral and S. Devadas, “Reliable and efficient puf-based key generation
using pattern matching,” in 2011 IEEE International Symposium on
Hardware-Oriented Security and Trust, 2011, pp. 128–133.

[15] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas,
“Slender puf protocol: A lightweight, robust, and secure authentication
by substring matching,” in 2012 IEEE Symposium on Security and
Privacy Workshops, 2012, pp. 33–44.

[16] M.-D. Yu, M. Hiller, J. Delvaux, R. Sowell, S. Devadas, and I. Ver-
bauwhede, “A lockdown technique to prevent machine learning on
pufs for lightweight authentication,” IEEE Transactions on Multi-Scale
Computing Systems, vol. 2, no. 3, pp. 146–159, 2016.

[17] L. Wu, Y. Hu, K. Zhang, W. Li, X. Xu, and W. Chang, “Flam-puf: A
response–feedback-based lightweight anti-machine-learning-attack puf,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 11, pp. 4433–4444, 2022.

[18] N. Wisiol, C. Gräbnitz, C. Mühl, B. Zengin, T. Soroceanu, N. Pirnay,
K. T. Mursi, and A. Baliuka, “pypuf: Cryptanalysis of Physically
Unclonable Functions,” 2021.

[19] D. Lim, J. Lee, B. Gassend, G. Suh, M. van Dijk, and S. Devadas,
“Extracting secret keys from integrated circuits,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 13, no. 10, pp. 1200–
1205, 2005.

	Introduction
	Background
	Arbiter-based PUFs
	Modeling Attacks

	Related Work
	Our Proposal: Selective CRPs
	Binary-coded with Padding CRPs (BP)
	Random Shifted Pattern CRPs (RSP)
	Binary-coded Shifted Pattern CRPs (BSP)

	Experimental Setup
	Results
	Discussion of viability
	Conclusion
	References

