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Abstract
We review how to simulate continuous determinantal point processes (DPPs) and improve the current simulation algorithms
in several important special cases as well as detail how certain types of conditional simulation can be carried out. Importantly
we show how to speed up the simulation of the widely used Fourier based projection DPPs, which arise as approximations of
more general DPPs. The algorithms are implemented and published as open source software.

Keywords Spatial point process · Condition simulation · Ginibre process · Mercer decomposition · Prolate spheroidal
functions

1 Introduction

Since the seminal work by Kulesza and Taskar (2012), dis-
crete DPPs defined on a finite set {1, . . . , N } have become
popular objects in the machine learning community to gen-
erate diverse random subsets, the main application being for
recommandation systems.DiscreteDPPs are defined through
a kernel matrix of size N × N , which is often assumed to be
Hermitian. The default algorithm to make perfect simulation
of discrete DPPs, the so-called spectral algorithm of Hough
et al. (2006), starts from an orthonormal eigendecomposi-
tion of this matrix. Since this decomposition may be costly
to obtain, and even unfeasible for large N , other options have
been developed, from approximate algorithms (Affandi et al.
2013b; Li et al. 2016) to alternative perfect simulation strate-
gies (Gillenwater et al. 2019; Derezinski et al. 2019; Poulson
2020; Launay et al. 2020).

On the other side, continuous DPPs generally refer to
DPPs defined on the Euclidean space R

d . They constitute
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the initial setting of (Macchi 1975) who introduced these
processes in their current form to model the distribution of
a fermion system in statistical physics. Continuous DPPs
find applications in machine learning (Affandi et al. 2013a),
spatial statistics (Lavancier et al. 2015), telecommunications
(Deng et al. 2014;Miyoshi and Shirai 2014) andMonte Carlo
approximations (Bardenet and Hardy 2020; Belhadji et al.
2019; Coeurjolly et al. 2021). They are defined through a ker-
nel K which in this setting is a function K (x, y), x, y ∈ R

d ,
that must satisfy some properties to ensure existence of the
continuous DPP as detailed in Sect. 2. The spectral algorithm
ofHough et al. (2006) to simulate continuousDPPs on a com-
pact set S ⊂ R

d is in general feasible only if we know the
spectral representation (also calledMercer representation) of
K on S. While this representation always exists in theory, it
is in general intractable. Unfortunately, the aforementioned
alternative perfect simulation strategies developed in the dis-
crete case do not apply to the continuous case, and their
extension to this setting is a difficult open challenge. For
these reasons, there is still an avenue to improve simula-
tion of continuous DPPs. This paper addresses this question
for projection DPPs and other important classes of DPPs,
including the β-Ginibre process, the Gaussian-type DPP and
the Bessel-type DPP.

A projection DPP on a bounded subset S ⊂ R
d corre-

sponds to the special case where K satisfies the identity∫
S K (x, z)K (z, y)dz = K (x, y). This class of DPPs is of
particular interest for several reasons. First, unlike general
DPPs, projection DPPs generate a fixed number of points in
S, equal to n = ∫

S K (x, x)dx . Second, they correspond to
themost repulsive DPPs, since their (non null) eigenvalues in
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their spectral representation are all identically equal to 1, the
maximal possible value. Third, the simulation algorithm of
Hough et al. (2006) for a general DPP, provided its spectral
representation is known, boils down to the simulation of an
associated projection DPP. A first contribution of this paper,
carried out in Sect. 3, is to review and improve the simulation
algorithms of projection DPPs. An important particularity of
these processes is that they canbe perfectly simulatedwithout
knowing the spectral representation of their kernel; see Algo-
rithm 1. Nonetheless, if we have access to this representation,
then thewell-known spectral algorithm (Algorithm2) ismore
efficient. As a special case, we give a particular account of
the case when the eigenfunctions of the spectral decomposi-
tion are the Fourier basis functions on S. This case plays an
important role both because it gives rise to an homogeneous
projection DPP on S and because it is at the heart of the
spectral approximation of general invariant-translation ker-
nels in Lavancier et al. (2015). For this basis, we refine the
spectral algorithm to decrease the computation time by up
to 45% in dimension d = 1 and up to 25% in d = 2; see
Algorithm 3. Finally, we show how Algorithm 1 and Algo-
rithm 2 can be combined to perform conditional simulation
of a projection DPP given a subset of points on S, including
in-painting conditional simulation.

For general (non projection) DPPs, the standard sim-
ulation procedure consists in approximating the spectral
representation of their kernel in order to apply the algorithm
of Hough et al. (2006); see Lavancier et al. (2015); Affandi
et al. (2013a).Wedonot discuss these kinds of approximation
here, but as a second contribution, we rather focus on impor-
tant classes of DPPs for which the spectral representation
can be obtained explicitly on some subset S. In particular, we
investigate in details in Sect. 4 the β-Ginibre process (Gold-
man 2010; Deng et al. 2014), a generalisation of the famous
standard Ginibre process (Ginibre 1965). For this model, we
provide a simulation algorithm based on the exact spectral
representation of the kernel, and we compare it to the simula-
tion based on the eigenvalues of a randommatrix (sometimes
referred to as the truncated β-Ginibre approximation).More-
over, we also derive in Sect. 5 the spectral representation of
Gaussian kernels and Bessel-type kernels, two widely used
parametric models in spatial statistics, opening the way of
perfect simulation for these models.

All algorithms presented in Sects. 3 and 4 are available
in an R-package (R Core Team 2022) currently available
on https://github.com/rubak/dppsim and planned for submis-
sion to the Comprehensive RArchive Network (CRAN). The
package includes functions for simulation and conditional
simulation of any projection DPP, and simulation of the β-
Ginibre process by the spectral algorithm and the truncated
β-Ginibre approximation.

2 Preliminaries

Throughout the manuscript the notation |.| has different
meanings: for a complex number z ∈ C, |z| denotes its mod-
ulus; for a vector x , |x | is its infinite norm; if J is a finite set,
then |J | stands for its cardinality; if S is an infinite set, then
|S| is its volume. On the other hand, ‖.‖will either refer to the
vectorial �2 norm, or to the functional L2 norm, depending
on the context. For two vectors x and y, x · y denotes their
inner product. For a matrix A, we denote by A′ its transpose
and by A∗ its conjugate transpose.

2.1 DPPs and basic properties

Let X be a point process on R
d (we refer to Møller and

Waagepetersen (2004) for background material on spatial
point processes). If there exists a non-negative function ρn :
(Rd)n → R such that

E

�=∑

x1,...,xn∈X
f (x1, . . . , xn) =

∫

(Rd )n
f (x1, . . . , xn)

ρn(x1, . . . , xn)dx1 · · · dxn,

for all locally integrable functions f : (Rd)n → R, where
the symbol �= means that the sum is done for distinct xi ,
then ρn is called the n-th order joint intensity function of
X . Intuitively, ρn(x1, . . . , xn) is the infinitesimal probability
that X contains points (among others) located at x1, . . . , xn .

We say that X is a DPP on S ⊆ R
d with kernel K :

S × S → C if for all n ≥ 1, the joint intensity ρn of X exists
and is of the form

ρn(x1, . . . , xn) = det[K (xk, xl)]1≤k,l≤n (1)

for all {x1, . . . , xn} ⊂ S, where [K (xk, xl)]1≤k,l≤n denotes
the matrix with entries K (xk, xl).

Some conditions on K are necessary to ensure the exis-
tence of X , which depend on whether X is defined on all of
R
d or a compact subset S ⊂ R

d . First, assume that S is a
compact set and that K is Hermitian and continuous on S×S,
then by Mercer’s Theorem it admits the spectral representa-
tion

K (x, y) =
∑

k≥1

λk�k(x)��k(y), x, y ∈ S, (2)

for some eigenvalues λk and orthonormal eigenfunctions �k

on S, for k = 1, 2, . . . . (In typical applications k ∈ Z
d , but

for convenience we use a natural number index here.) A nec-
essary and sufficient condition for existence of a DPP X on
S with kernel K is that λk ∈ [0, 1] for all k = 1, 2, . . . . We
refer the reader to Hough et al. (2006) for details and more
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results. Second, assume that K is invariant under translation
on R

d , i.e. K (x, y) = K0(x − y) for some function K0, then
a sufficient condition for existence of the DPP with kernel K
on R

d (and then on any subset S ⊂ R
d ) is that K0 is a con-

tinuous covariance function on R
d whose Fourier transform

is less than 1; see Lavancier et al. (2015). Note that to check
the latter condition it is not necessary to know the spectral
representation (2) of K on any subset S. In the following, we
will assume that the considered DPPs exist (conditions will
be recalled for each specific example).

Let us recall some important properties ofDPPs (Lavancier
et al. 2015).

(i) The (first order) intensity of a DPP X on S is by def-
inition ρ(x) = K (x, x), x ∈ S. We say that X is
homogeneous if ρ(x) is constant.

(ii) Its pair correlation function, defined by g(x, y) =
ρ2(x, y)/(ρ(x)ρ(y)), reads

g(x, y) = 1 − |K (x, y)|2
K (x, x)K (y, y)

, x, y ∈ S,

whenever K is Hermitian, which we assume hence-
forth. The fact that g(x, y) ≤ 1 reflects that DPPs are
models for repulsiveness in a point pattern.

(iii) Suppose we apply an independent thinning of X with
retention probabilities p(x), x ∈ S, then the resulting
process is still a DPP with kernel K (x, y)

√
p(x)p(y).

In particular, the restriction of X to any subset S′ ⊂ S
is the DPP with kernel K (x, y)1x∈S′1y∈S′ .

(iv) Any smooth transformation of X remains a DPP. For
example, let T (x) = Ax + b, x ∈ R

d , be an affine
transformation on R

d with det(A) �= 0, then T (X) is
the DPP on T (S) with kernel K (A−1(x −b), A−1(y−
b))/| det(A)|.

As mentioned in the introduction, an important special
class of DPPs is the class of projection DPPs on bounded
S ⊂ R

d . Their kernel K satisfies
∫
S K (x, z)K (z, y)dz =

K (x, y) and they generate a fixed number of n points in S,
where n = ∫

S K (x, x)dx . Their eigenvalues in (2) take only
two possible values, 0 or 1, exactly n of them being 1, the
others being 0.

Assume now that all eigenvalues of K in (2) are strictly
less than 1. Then, the probability density that X has n points
located at x1, . . . , xn (sometimes called likelihood or Janossy
density of X ) is proportional to det[L(xk, xl)]1≤k,l≤n , where
L is the kernel defined by

L(x, y) =
∑

k≥1

λk

1 − λk
�k(x)��k(y), x, y ∈ S.

It is common in the machine learning community to define X
from this L-kernel, instead of its K -kernel, meaning that X is
defined through its Janossy densities instead of its joint inten-
sitiesρn . Ifλk < 1 for all k, both point of views are equivalent
and the spectral representation of K can be deduced from that
of L , and vice-versa. On one hand, the advantage of defining
X from L is that the eigenvalues of L are not restricted to be
less than 1 for X to bewell defined and the likelihood function
is easier to understand.On the other hand, defining X through
L implies that the moments of X become unknown, contrary
to (i) and (ii) above. Moreover some DPPs, including projec-
tion DPPs for which λk ∈ {0, 1}, cannot be defined through
a L-kernel. Note however that in Tremblay et al. (2023),
extended L-ensembles are introduced and fill this gap (the
main setting of that paper concerns discrete DPPs but it is
is argued in conclusion that the extension to the continuous
setting is straightforward). In this paper we start from the
K -kernel and we consider the simulation of X given K .

2.2 Overview of simulation methods

2.2.1 Projection DPPs

For projection DPPs on a compact set S ⊂ R
d , perfect

simulation algorithms are available, whatever the spectral
representation of the kernel is known or not. We detail these
algorithms in Sect. 3.1. The idea is to generate the first point
of the DPP with respect to the unnormalised density K (x, x)
on S, then to generate the second point given the first one
with respect to the associated conditional density on S, and
so on. The difficulty in this procedure is to be able to simulate,
at each step, a point with respect to the conditional density
given the previous points. Figure1 shows examples of such
conditional densities at intermediate steps of the algorithm
when simulating a homogeneous projection DPP having 121
points on the unit square with K (x, y) = ∑

| j |≤5 e
i j ·(x−y)

for x, y ∈ [0, 1]2 and j ∈ Z
2 (where i = √−1 and the unit

square in R
2 is identified with the unit square in C). The top

left hand plot is the density of the 20th point given the 19 first
points while the top right hand plot shows the density of the
last (121st) point given the first 120 points. The bottom row
plots are the same plots on log scale. The simulation with
respect to these conditional densities is commonly achieved
by rejection samplingwhere the proposal is the unnormalised
density K (x, x). This procedure can be extremely costly in
the last steps of the algorithm where many rejections may
occur due to the complicated shape of the conditional den-
sity.

Currently there seems to be no general way to avoid the
costly rejection sampling step, but in Sect. 3.2 we show how
to significantly accelerate it in the important particular case
where the eigenfunctions of K correspond to theFourier basis
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Fig. 1 Conditional density pi at intermediate steps of Algorithms 1
and 2, for the Fourier basis and n = 121 on the unit square. Top row is
untransformed values while the bottom row is in log scale. Left: density

of the 20th point given the 19 first ones (superimposed as white circles);
right: density of the last point given the preceding 120 points

functions. Moreover, the fact that it is possible to simulate a
projection DPP without knowing its spectral representation
opens the way to perform conditional simulation, including
in-painting, as we discuss it in Sect. 3.3.

2.2.2 Non-projection DPPs

If theDPP is not a projectionDPP, then the standard algorithm
to generate it on S, due to Hough et al. (2006), starts from the
spectral representation (2) of K on S. It consists in first, gen-
erating a sequence of Bernoulli variables Bk with respective
rates λk (note that only a finite number of Bk’s are non-zero
since

∑
k≥1 λk < ∞), and second, given (Bk)k≥1, generating

the projection DPP with kernel
∑

k≥1 Bk�k(x)��k(y).
In Sects. 4 and 5, we show that the exact spectral represen-

tation (2) of the β-Ginibre kernel, the Gaussian kernel, and
the Bessel-type kernel is available on some sets S, opening
the possibility of perfect simulation for the associated DPPs
on these sets (and any subset thereof).We in particular treat in

detail the β-Ginibre process, for which we provide efficient
simulation algorithms in Sect. 4.

However, for most kernels and sets S, the expansion (2)
is not known. To overcome this issue we may:

• Consider an approximation of (2). For any translation
invariant kernel on a rectangular set S, a Fourier series
approximation is proposed in Lavancier et al. (2015), and
when the DPP is defined through the L-kernel, a Nys-
tröm based approximation is suggested in Affandi et al.
(2013a).

• Using property (iv) of the previous section, consider
a smooth transformation Y = T (X), where the spec-
tral representation of Y on T (S) is known or can be
approximated, then generate Y on T (S) and deduce
X = T−1(Y ). In particular, by this property, the sim-
ulation of a DPP on any rectangular (resp. any ellipsoid)
set S boils down to the simulation on the unit square (resp.
on the unit disc).
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• Using property (iii), view X as an independent thinning
of someDPPY whose spectral representation is knownor
can be approximated, then generate Y and get X by thin-
ning. This includes in particular the simulation of X on
any subset S′ of S, provided we know how to generate X
on S. This strategy is also possible for any non-stationary
DPP X whose kernel reads K0(x − y)

√
ρ(x)ρ(y) with

K0(0) = 1, provided ρ(x) is uniformly bounded on S.

If X is defined through its L-kernel, the simulation chal-
lenge is similar: one needs to know or approximate the
spectral representation of L in order to deduce K and use
the procedure above. Let us however mention an alternative
solution that does not require the spectral representation of
L: knowing L on S allows one to have access to the Papan-
gelou intensity of X on S. This opens the possibility to use
a CFTP algorithm to simulate perfectly X on S, provided∫
S L(x, x)dx < ∞, as considered in (Decreusefond et al.
2016, Section 5.2). Unfortunately this procedure can be very
slow.

3 Simulation of a projection DPP

3.1 Basic algorithms

Assume that X ∼ DPP(K ) is a projection DPP with cardi-
nality n on a compact set S ⊂ R

d . Then we can simulate X
on S with Algorithm 1 below. This algorithm is justified in
Hough et al. (2006); see also (Lyons 2014, Section 3.5) and
“Appendix A.1”. Note that explicit knowledge of the spec-
tral representation (2) of K is not required. This is useful in
some situations where we know that DPP(K ) exists but no
spectral representation, and even no accurate approximation
of it, is available for K . This will be the case for the kernel K
involved in the inpainting conditional simulation of Sect. 3.3.

Algorithm 1 Projection DPP without using the spectral rep-
resentation

sample Xn from the distribution with density pn(x) = K (x, x)/n,
x ∈ S
for i = (n − 1) to 1 do

set k∗
i (x) = (K (x, Xn), . . . , K (x, Xi+1)) and Ki =

(K (X j , Xl ))n≥ j,l≥i+1
sample Xi from the distribution with density

pi (x) = 1

i

[
K (x, x) − k∗

i (x)K
−1
i ki (x)

]
, x ∈ S (3)

end for
return {X1, . . . , Xn}

On the other hand, if we have access to the spectral repre-
sentation of K , the conditional density pi in (3) can be recast

to get the more efficient Algorithm 2. Some justification for
this is given in “AppendixA.1” andmore details can be found
in Lavancier et al. (2015). Here, we assume without loss of
generality that the spectral representation of K reads

K (x, y) =
n∑

k=1

�k(x)�̄k(y), x, y ∈ S, (4)

and we set v(x) = (�1(x), . . . , �n(x))′.

Algorithm 2 Projection DPP using the spectral representa-
tion (4)

sample Xn from the distribution with density pn(x) = ‖v(x)‖2/n,
x ∈ S
set e1 = v(Xn)/‖v(Xn)‖
for i = (n − 1) to 1 do

sample Xi from the distribution with density

pi (x) = 1

i

⎡

⎣‖v(x)‖2 −
n−i∑

j=1

|e∗
jv(x)|2

⎤

⎦ , x ∈ S (5)

set wi = v(Xi ) − ∑n−i
j=1

(
e∗
jv(Xi )

)
e j , en−i+1 = wi/‖wi‖

end for
return {X1, . . . , Xn}

To appreciate why the computation of pi is faster with
Algorithm 2 than with Algorithm 1, take for instance the
evaluation of the second term in (3). For each proposed x it
requires the computation of ki (x) that itself requires n − i
evaluations of the vector v(x) along with the n − i vectors
v(X j ) for i + 1 ≤ j ≤ n. In contrast, only one evaluation of
v(x) is required for the same term in Algorithm 2 since the
e j ’s are stored from the previous step.

From a practical point of view, we need to be able to
generate a point with respect to pi , whether we use Algo-
rithm 1 or 2. This is in fact the bottleneck of these simulation
methods. The standard procedure consists in rejection sam-
pling, where the proposal can be deduced from the bound
i pi (x) ≤ K (x, x). Two strategies are then possible:

• Strategy 1: If we know how to simulate with respect to
the distribution on S with density K (x, x)/n, then this
distribution can be chosen as the proposal. Specifically, if
Z is a point generated by this proposal andU ∼ U([0, 1])
independent of Z , we accept Z if i pi (Z)/K (x, x) > U .
The probability of acceptance is i/n.

• Strategy 2: If we only know an upper-bound for K (x, x),
i.e. K (x, x) ≤ M for all x ∈ S, then pi (x) ≤ M/i and
rejection sampling can be applied where the proposal is
the uniform distribution on S. Specifically, if Z is gen-
erated uniformly on S and U ∼ U([0, 1]) independent
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of Z , we accept Z if i pi (Z)/M > U . The probability of
acceptance is i/(M |S|).

The second strategy is always an option in practice, provided
we initially approximate the upper-bound M numerically.
Note that given S and K , this bound can be found offline and
once for all.

Remark 3.1 A natural and commonly used idea in spatial
statistics consists in leveraging the local contribution of
a point process to generate a new point given the other
ones. Unfortunately, the conditional density pi is not well
localised, especially in presence of many conditional points,
which corresponds to the smallest values of i or equivalently
to the last (most time consuming) steps of the simulation
algorithms, ruling out the idea of localisation. This is clearly
illustrated in Fig. 1: While in the first steps of the algorithm
(left hand plots) pi seems to be localised around the con-
ditional points, the picture looks different in the right hand
plots, where some “empty” regions are associated to very
small values of the density pi , whereas other seemingly sim-
ilar regions are associated with a high density. This effect
is particularly evident in the bottom right hand plot on log
scale, that shows quite stunning long range dependencies in
pi . This demonstrates that not only the neighbour points of
these regions impact the values of pi , but really the whole
point pattern.

3.2 Refinement for the Fourier basis

The Fourier basis plays an important special role in con-
tinuous DPPs for its simplicity, the homogeneity and the
repulsiveness it yields (Coeurjolly et al. 2021), and the fact
that it is at the heart of the spectral approximationof invariant-
translation kernels in Lavancier et al. (2015). Let us assume
for simplicity that S = [0, 1]d (remember that the simula-
tion on any rectangular windows boils down to this case).
The kernel of a projection DPP on S based on the Fourier
basis reads

K (x, y) =
∑

j∈J

e2iπ j ·(x−y),

where J ⊂ Z
d is some finite subset of Z

d with cardinality
|J | = n.

In this case, the more efficient Algorithm 2 is feasible and
the two aforementioned strategies for the simulation with
respect to pi are similar since K (x, x) = n (then M = n
in Strategy 2). The Algorithm builds on rejection sampling
with the uniform distribution as a proposal. The costly part
in this procedure is the evaluation of pi (Z) for any proposed
point Z generated from the uniform distribution on S, which
becomes all the more problematic in the last steps of the i-

loop in Algorithm 2 when many rejections are expected, the
probability of acceptance then being of order 1/n.

To accelerate the procedure, we suggest to exploit the fol-
lowing bound; see “Appendix B”:

i pi (x)/n ≤ min
i+1≤k≤n

(1, P(x − Xk)/n) , (6)

where

P(x) = 4π2
∑

j∈J

( j · x)2 − 4π2

n

⎛

⎝
∑

j∈J

j · x
⎞

⎠

2

is a second-order polynomial depending on d-variables. Note
that the coefficients of P only depend on the index set J and
can thus be computed offline before running Algorithm 2.
The inequality (6) provides a simple first bound to test against
in the rejecting sampling procedure, avoiding themore costly
evaluation of pi for many proposed points. The refined rejec-
tion sampling procedure is detailed in Algorithm 3.

Algorithm 3 Refined rejection sampling for pi with the
Fourier basis

repeat
sample Z from the uniform distribution on S
generate U ∼ U([0, 1]) independent of Z
if mini+1≤k≤n P(Z − Xk)/n < U then

reject Z
else if i pi (Z)/n > U then

accept Z
else

reject Z
end if

until Z is accepted

We tested the performance of this refinement by simula-
tion. Table 1 reports the fraction of time needed to generate
different point patterns in dimension d = 2 by using Algo-
rithm 3 compared to using simple rejection sampling. The
entries are averaged over 500 replications. The tested mod-
els are first, the projection DPP with kernel K (x, y) =∑

| j |≤� e
i j ·(x−y), that leads to a cardinality of n = (2� + 1)2

points, which we call “most repulsive” kernel with intensity
ρ = n in Table 1, and second, the Gaussian-type DPP (see
Sect. 5.1) with a comparable intensity ρ = n and an interac-
tion parameter α = αmax (strong repulsion) and α = αmax/2
(mild repulsion). Here αmax = 1/

√
ρπ is the maximal pos-

sible value of α for a Gaussian-type DPP with intensity ρ,
and the simulation exploits the Fourier approximation of (2)
as introduced in Lavancier et al. (2015), making the use of
Algorithm 3 relevant. Table 1 also reports the “bound rate”
which summarises how often the bound (6) was used on aver-
age. This ratewas empirically quite stable across the different
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Table 1 For three DPP models
(detailed in the text), generated
500 times on S = [0, 1]2:
fraction of rejections due to (6)
when using Algorithm 3 (Bound
rate) and fraction of time needed
for the simulation using the
refinement of Algorithm 3
compared with not using it, for
different values of the intensity
ρ of the DPP models

DPP model Bound rate Intensity (ρ)

25 81 289 625 1089

Most repulsive 0.41 1.10 1.00 0.96 0.77 0.72

Gauss (α = αmax) 0.24 0.99 0.93 0.93 0.85 0.85

Gauss (α = αmax/2) 0.06 1.02 0.97 0.99 0.99 0.96

values of ρ that we implemented and this is why only a sin-
gle number is given. Specifically, a bound rate of 0.40 means
that 40% of the rejections in the algorithm was done directly
thanks to the bound (6). This rate can be viewed as the max-
imal theoretical gain we can expect thanks to Algorithm 3,
if the only computation time was due to this rejection step in
Algorithm 2.

From Table 1, we conclude that using Algorithm 3 in
dimension d = 2 may lead to a speed improvement up to
almost 30% (for the most repulsive kernel and about 1000
points), and never really slows down the simulation even
when no clear improvement can be expected (as for the mild
repulsiveGaussian-typeDPP forwhich the bound rate is only
0.06). We have carried out similar simulations in dimension
d = 1, not detailed here, where we observed a bound rate of
65% and a gain up to 45% for the most repulsive kernel with
1000 points. In dimension d = 3, comparable simulations
showed a bound rate of 25% and a speed improvement up
to 16% for the most repulsive kernel with 1000 points. We
expect the improvements to be smaller in higher dimensions,
making the use of Algorithm 3 superfluous in this case.

Finally, let us mention an additional possible refinement
in dimension d = 1. In this case, the bound (6) can bemanip-
ulated to provide a more efficient proposal than the uniform
distribution, that can be easily simulated by the inversion
method. The details are given in “Appendix B.1”. With this
new proposal, the acceptance probability in the rejection
sampling for the last step of Algorithm 2, i.e. for the sim-
ulation of the last point given the n − 1 first ones, can be
3 times higher than one associated to a uniform proposal;
see “Appendix B.1”. Unfortunately, this procedure does not
generalise easily to higher dimensions, in the sense that it
seems difficult to derive a similar efficient proposal from (6)
in dimension d > 1.

3.3 Conditional simulation

Let again X be a projection DPP on S ⊂ R
d with cardinality

n.
By construction, the last i steps of Algorithms 1 and 2

provide an exact simulation of X � {Xn, . . . , Xi+1} given
that {Xn, . . . , Xi+1} ⊂ X . This conditional simulation may

be useful in practice if we observe a point pattern in S with
missing points and we wish to generate some realisations of
the full point pattern in S. This is possible if we agree that
the complete unobserved point pattern can be modelled by
a projection DPP, to be chosen, and that the missing points
are due to an independent thinning with known retention
probability q(x), x ∈ S.

As an example, assume that X is a projection DPP on
S = [0, 1]2 with kernel K (x, y) = ∑

| j |≤� e
i j ·(x−y), so

cardinality n = (2� + 1)2, where we need to choose �

(or equivalently n), and we observe only m points of X ,
m ≤ n, coming from an independent thinning of X with
known retention probability q(x), x ∈ S. Using the relation
E(m) = ∫

S q(x)K (x, x)dx = n
∫
S q(x)dx , we deduce a

plausible value of n by replacingE(m) by the observed value
of m. Then we can use Algorithm 2 to generate the n − m
remaining points given the m observed ones. This example
is illustrated in the leftmost plot of Fig. 2 where the red trian-
gles represent a possible realisation of the unobserved points
in S = [0, 1]2 given the observed point pattern formed by
the black circles. Here we assumed that q(x) = 1/2, so that
n is twice the number of observed black points.

We chose in the above example a specific form of K , up to
n, that may not be relevant for other applications. A general
procedure to select a projection DPP X that fits well with the
observed conditional points is discussed in “Appendix A.3”.

Alternatively, we may consider in-painting conditional
simulation, that is the simulation of X∩A given that X∩Ac =
{X1, . . . , Xm},m ≤ n, where A and Ac constitute a partition
of S (Here we agree that if m = 0, X ∩ Ac = ∅.) Since X is
a projection DPP, it is easily verified (see “Appendix A.2”)
that the latter conditional point process is a projection DPP
with cardinality n − m and kernel, when m > 0:

KX1,...,Xm (x, y)=K (x, y) − k∗
m(x)K−1

m km(y), x, y∈ A,

(7)

where k∗
m(x) = (K (x, X1), . . . , K (x, Xm)) and Km =

(K (X j , Xl))1≤ j,l≤m . If m = 0, K∅(x, y) = K (x, y)1A(x)
1A(y). The spectral representation of the conditional kernel
(7) is unlikely to be known, even if the spectral representation
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Fig. 2 Conditional simulation
of the red points (shown as
triangles) given the black points,
assuming that the full point
pattern formed by the union of
the black and red points is a
projection DPP. Left: simulation
in the whole domain. Right:
simulation in the inner square
(in-painting)

of K on S is explicitly given. Nonetheless the simulation can
be done by Algorithm 1.

As an illustration, we have generated in the rightmost plot
of Fig. 2 the red triangles in the inner square [1/4, 3/4]2
given the point pattern in black circles outside this square.
The full point pattern was assumed to be the same DPP as
before, where n was fixed to the number of observed black
circles times 4/3 (that is the ratio of the volume of the full
region to the volume of the observed region). A more adap-
tive choice of K based on the observed points is discussed in
“Appendix A.3”.

4 ˇ-Ginibre process

The β-Ginibre process, for β > 0, is the DPP in the complex
plane C with kernel

K (x, y) = ρ exp

(
x ȳ

β
− |x |2 + |y|2

2β

)

, x, y ∈ C. (8)

Note that we could equivalently consider this process in R
2

but it is commonly defined in C, a point of view which we
will respect in the following. The β-Ginibre process is a sta-
tionary and isotropic point process with intensity ρ > 0, that
exists if and only if ρβπ ≤ 1. The standard Ginibre process
introduced in Ginibre (1965) corresponds to the particular
case ρ = 1/π and β = 1. The β-Ginibre process, initially
considered in Goldman (2010) and Deng et al. (2014), can
be viewed as an independent thinning of the Ginibre process
with retention probability ρβπ , followed by the homothety
with ratio

√
β. Given ρ > 0, the β-Ginibre process includes

the Poisson point process with intensity ρ as a limiting case
when β → 0, and when β = 1/(ρπ), it is one of the most
repulsive stationary DPPs with intensity ρ in the sense of
Møller and O’Reilly (2018).

We discuss and compare in this section two strategies to
generate the β-Ginibre process on the ball BR = {|x | < R}

in C, for any R > 0. Remember that the simulation on any
compact set S ⊂ BR can then be performed by removing the
points in BR �S. The first strategy is a standard procedure
that takes advantage of the representation of the Ginibre pro-
cess as the distribution of certain eigenvalues of an infinite
matrix. The second strategy exploits the (unusual) fact that
the spectral decomposition (2) of K is explicitly known on
BR , and so the spectral algorithm of Hough et al. (2006) can
be employed.

Remark 4.1 The second order properties of the Ginibre pro-
cess, i.e. the intensity and the pair correlation function, are
similar to those of the Gaussian-type DPP with parameters
ρ and α (see Sect. 5.1) with the correspondence β = α2/2.
Note however that the Ginibre process can reach more repul-
siveness in view of the existence condition β ≤ 1/(ρπ),
while α2/2 ≤ 1/(2ρπ) is required for existence of the
Gaussian-type DPP.

4.1 Approximation by the truncated ˇ-Ginibre
process

The Ginibre process can be viewed as the distribution
of the eigenvalues of an infinite matrix with i.i.d. stan-
dard complex Gaussian entries (Ginibre 1965). To simulate
(approximately) the Ginibre process on BR , the standard
procedure consists of generating a finite n × n matrix of
i.i.d. standard complex Gaussians, where n has to be chosen
according to R, and then computing its n complex eigen-
values. The simulation of the β-Ginibre process is easily
deduced by the thinning and rescaling steps explained in the
beginning of this section. Given the importance of this pro-
cedure, we provide some details below and we discuss the
choice of n.

The distribution of the n eigenvalues above (followed by
the thinning and scaling steps) corresponds to the distribution
of the truncated β-Ginibre process, which is the DPP on C

whose kernel is the truncation at k = n − 1 of (11) defined
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in Sect. 4.2 below, that is

Kn(x, y) =
n−1∑

k=0

ρβπ�k(x)��k(y), x, y ∈ C. (9)

We refer to Decreusefond et al. (2015) for some discussion
of this process and on other modified versions of the Ginibre
process. As already noticed inGinibre (1965), this DPP is not
stationary and is mostly concentrated on the disc with radius√
nβ. Inside this disc the truncatedβ-Ginibre process and the

genuine β-Ginibre process are very similar, their differences
arising mostly close to the border. In particular the intensity
of the truncated β-Ginibre process reads

ρ(x) = Kn(x, x) = ρe−|x |2/β
n−1∑

k=0

(|x |2/β)k

k! , x ∈ C.

This intensity is always less than ρ (the intensity of the β-
Ginibre process) andwehave for any |x | ≤ √

nβ (seeGinibre
(1965)):

0 ≤ ρ − ρ(x)

ρ
≤ e−|x |2/β (|x |2/β)n

n!
n + 1

n + 1 − |x |2/β
:= Mβ(|x |, n). (10)

To simulate approximately the β-Ginibre process on BR , the
standard procedure consists in simulating the truncated β-
Ginibre process for n large enough so that R ≤ √

nβ and so
that the approximation is satisfying. To our knowledge, there
is no clear recommendation for the choice of n. Choosing
n = �R2/β�would lead to a poor approximation close to the
border of the disc. We instead suggest to choose n so that the
upper bound in (10) is uniformly less than a prescribed error
ε on BR . Specifically, we choose n = �nε� where nε is such
thatMβ(R, nε) = ε. In the simulations presented in Sect. 4.3,
we fixed ε = 10−10. The full procedure is summarised in
Algorithm 4.

Algorithm 4 β-Ginibre process on BR by the eigenvalues
method

set n = �nε� where nε solves Mβ(R, nε) = ε; see (10)
sample thematrixM = [(Ak,l+ι̇Bk,l)

√
β/2]1≤k,l≤n where ι̇ = √−1

and Ak,l and Bk,l are all independent N (0, 1) random variables
compute the eigenvalues {Z1, . . . , Zn} of M
set X = {∅}
for i = 1 to n do

generate U ∼ U([0, 1])
if U < ρβπ and |Zi | < R then

X ← X ∪ {Zi }
end if

end for
return X

4.2 Spectral algorithm

Starting from
∑

k≥0(x ȳ/β)k/k! = exp(x ȳ/β), it is not diffi-
cult to verify that the spectral representation of the β-Ginibre
kernel (8) on C reads

K (x, y) =
∑

k≥0

ρβπ�k(x)��k(y), x, y ∈ C, (11)

where

�k(x) = xk
√

πk!βk+1
e−|x |2/(2β), x ∈ C.

As noticed in Decreusefond et al. (2015), the functions �k

satisfy the unusual property to remain orthogonal on the ball
BR for any R > 0. So the spectral representation of K on
BR is simply the restriction of (11) to BR :

K (x, y) =
∑

k≥0

ρβπ‖�k‖2R
�k(x)

‖�k‖R

��k(y)

‖�k‖R
, x, y ∈ BR,

where ‖�k‖2R = ∫
BR

|�k(x)|2dx is introduced to normalise

the eigenfunctions on BR . Some algebra yields ‖�k‖2R =
γ (k + 1, R2/β)/k! where γ (a, z) = ∫ z

0 ta−1e−t dt is the
incomplete gamma function. Finally the spectral representa-
tion of K on BR is

K (x, y) =
∑

k≥0

λk�̃k(x)
�̃
�k(y), x, y ∈ BR, (12)

where

λk = ρβπγ (k + 1, R2/β)/k! (13)

and

�̃k(x) = xk
√

πβk+1γ (k + 1, R2/β)
e−|x |2/(2β), x ∈ BR .

(14)

To apply the spectral algorithm of Hough et al. (2006), we
need to first simulate a sequence of Bernoulli random vari-
ables Bk , with respective parameters λk , k ≥ 0. We know
that M = maxk≥0{Bk �= 0} is finite because ∑

λk < ∞, but
the simulation of M is not straightforward; see (Lavancier
et al. 2014, Appendix D). A simple solution consists in set-
ting a maximal number kmax of Bernoulli variables that we
generate. This amounts to truncate the representation (12) to
kmax − 1, which gives exactly the same kernel as in (9) but
restricted to BR . A clever choice of kmax can then be carried
out as for the choice of n in (9), that is kmax = �kε� where
kε is the solution of Mβ(R, kε) = ε. Here ε is a prescribed
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error (ε = 10−10 in Sect. 4.3) that guarantees through (10)
that the choice of kmax has a little impact on the expected
number of points. The details of this spectral approach are
given Algorithm 5.

Algorithm 5β-Ginibre process onBR by the spectralmethod
set kmax = �kε� where kε solves Mβ(R, kε) = ε; see (10)
sample independently B0 ∼ B(λ0), . . . , Bkmax−1 ∼ B(λkmax−1)

where the λk ’s are given by (13)
if Bk = 0 for all k = 0, . . . , kmax − 1 then

return the empty point configuration {∅}
else

Given B0, . . . , Bkmax−1, generate the projection DPP with kernel

kmax−1∑

k=0

Bk�̃k(x)
�̃
�k(y), x, y ∈ BR,

using Algorithm 2, where the �̃k ’s are given by (14)
end if

4.3 Simulation study

In order to compare Algorithms 4 and 5, we have performed
several simulations of the β-Ginibre process, for different
values of the parameters ρ and β, on the ball BR of area 1
where R = 1/

√
π , so that the expected number of points

coincide with the intensity ρ. An example using each algo-
rithm is shown in Fig. 3, where the gray points on the left
correspond to the deleted points in the process of Algo-
rithm 4, while the black points represent the final simulated
point pattern.

Table 2 displays the average computation time (over 500
replications) of each algorithm. The picture is quite clear: the
spectral algorithm 5 is more efficient to generate a moderate
number of points, while Algorithm 4 becomes preferable for
a high number of points. On the other hand, the effect of β

is mild for the spectral algorithm, whereas it has a strong
impact on the efficiency of Algorithm 4 (the smaller β is,
the less efficient it is), which is consistent with the fact that
when β is small, many points are generated to be afterwards
deleted by the thinning step of Algorithm 4, slowing down
the process.

5 Exact spectral expansion for other kernels

This section aims at paving the way to (nearly) perfect sim-
ulation of the Gaussian-type DPP and the Bessel-type DPP,
two widely used DPPs in spatial statistics. In both cases we
provide the explicit spectral representation of the kernel on
the unit ball, which opens theway to perfect simulation by the
spectral algorithm. The numerical evaluation of the detailed

spectral representations may pose some separate numerical
challenges which are left for future research.

5.1 Gaussian-type kernels

5.1.1 Inhomogeneous kernel

Wecall theDPPwith the following kernel an inhomogeneous
Gaussian-type DPP:

Kσ (x, y) = ρ e−‖y−x‖2/α2√
pσ (x)pσ (y), x, y ∈ R

d , (15)

where ρ > 0 is the intensity parameter, α > 0 is the range
parameter, and pσ denotes the density of a standard normal
distribution in R

d with standard deviation σ > 0, i.e.

pσ (x) = 1

(σ
√
2π)d

e−‖x‖2/(2σ 2), x ∈ R
d .

As verified in “Appendix C”, this DPP exists if and only if

2ρ1/d ≤ 1 +
√
1 + 8σ 2/α2, (16)

or equivalently 2σ 2/α2 ≥ ρ2/d − ρ1/d .
Since the intensity is Kσ (x, x) = ρ pσ (x), x ∈ R

d ,
this DPP is an inhomogeneous finite point process on R

d

with expected cardinality ρ. Accordingly, realised point
patterns are concentrated near the origin. Specifically, let
χ2
d (p) denote the quantile of the chi-squared distribution

with d degrees of freedom, then for any 0 ≤ ε ≤ 1, the
expected number of points in the centered ball with radius

σ

√
χ2
d (1 − ε) is (1− ε)ρ. For instance in dimension d = 2,

about 99% of the points are in the centered ball with radius
3σ .

A special property of the inhomogeneous Gaussian-type
DPP is that the spectral representationof its kernel is perfectly
known onR

d , as explained below [see for instance (Williams
and Rasmussen 2006, Section 4.3.1)]. This decomposition
specifically reads

Kσ (x, y) =
∑

j∈Nd

λ j� j (x)� j (y), x, y ∈ R
d , (17)

where, setting a = σ−2/4, b = α−2, c = √
a2 + 2ab, A =

a + b + c and B = b/A, for j = ( j1, . . . , jd) ∈ N
d and

x = (x1, . . . , xd) ∈ R
d ,

λ j = ρ

(
2a

A

)d/2

B
∑d

k=1 jk (18)
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Fig. 3 Realisations of two
β-Ginibre processes generated
with Algorithms 4 (left) and 5
(right). In all cases ρ = 200. In
the top row β = βmax and in the
bottom row β = βmax/2. For
Algorithm 4 on the left the gray
points represent the points
deleted by the algorithm
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Table 2 Average computation
time (in seconds) for a single
realization of a β-Ginibre
process on BR , R = 1/

√
π ,

with the given parameters,
where βmax = 1/(ρπ), using
Algorithms 4 (left value) and 5
(right value)

Algorithm 4/5 ρ = 100 ρ = 200 ρ = 400 ρ = 800

β = βmax/3 0.58/0.09 2.99/0.36 19.21/6.63 130.14/96.44

β = βmax/2 0.17/0.07 0.59/0.27 3.11/4.58 18.43/68.83

β = βmax 0.09/0.07 0.28/0.23 1.32/3.43 6.45/50.09

The fastest method is boldfaced

and � j (x) = ∏d
k=1 ϕ jk (xk) with

ϕk(x) =
( √

2c

2kk!√π

)1/2

e−cx2Hk(
√
2c x),

Hk being the (physicists’) Hermite polynomial of order
k. The spectral decomposition (17) is a tensorial product
and is deduced from the decomposition when d = 1. The
latter is easily verified since when d = 1, the identity∫

R
Kσ (x, y)ϕk(x)dx = ρ

√
2a/A Bkϕk(y) is a consequence

of equation 7.374-8 in Gradshteyn and Ryzhik (2014), that
is
∫

R

e−(x−y)2Hk(t x)dx = √
π(1 − t2)k/2Hk(t y/

√
1 − t2),

|t | < 1, y ∈ R.

The orthonormality of the eigenfunctions is in turn a conse-
quence of the relation

∫
R
Hk1(x)Hk2(x)e

−x2dx = √
π2kk!

if k1 = k2 and 0 otherwise.
Based on (17), the spectral algorithm is in theory feasi-

ble to simulate the inhomogeneous Gaussian-type DPP on
R
d . Two approximations are however needed in practice.

The first one is the truncation of (17) to | j | ≤ �, for some �

such that the expected number of generated points
∑

| j |≤� λ j

is sufficiently close to ρ. In fact, we know in theory the
exact distribution of the index � of the maximal non-null
eigenvalue, and perfect simulation of � could in principle
be considered, see “Appendix D” in Lavancier et al. (2014).
But this distribution is in practice impossible to generate and
manual truncation is mandatory. This truncation allows us
to generate the (2� + 1)d Bernoulli variables Bj that are
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needed in the first step of the spectral algorithm. Then, given
the Bj ’s, the simulation boils down to generating the projec-
tion DPP with kernel Kproj (x, y) = ∑

| j |≤� Bj� j (x)� j (y)
using Algorithm 2. But in this algorithm, the simulation with
respect to pi given by (5) cannot easily be performed by
Strategy 1 in Sect. 3.1 because the simulation with respect to
the unnormalised density Kproj (x, x) is not straightforward.
Instead we need to apply Strategy 2, where the proposal in
the rejection sampling is the uniform distribution. To do so,
we need a second approximation which is the choice of a
compact set S that contains with high probability the gener-
ated point pattern. The natural choice for S is the centered

ball with radius σ

√
χ2
d (1 − ε) for a prescribed error ε.

5.1.2 Homogeneous Gaussian-type kernel

The homogeneous Gaussian-type kernel is defined for any
x, y ∈ R

d by

K (x, y) = ρ e−‖y−x‖2/α2
, x, y ∈ R

d . (19)

The DPP with this kernel exists on R
d if and only if

ραdπd/2 ≤ 1 Lavancier et al. (2015), and it is stationary
with intensity ρ.

Note that the homogeneous Gaussian-type DPP is the
limit in distribution, when σ → ∞, of the inhomogeneous
Gaussian-type DPP with intensity parameter ρσ d(2π)d/2.
This comes from the fact that the convergence of the asso-
ciated kernel holds uniformly on all compact sets, which
implies that the Laplace transforms of the two DPPs asymp-
totically coincide; see (Shirai and Takahashi 2003, Proposi-
tion 3.10). Despite this property, the spectral representation
of (19) is not known, neither on R

d or on any subset. For this
reason, the standard approach to simulate the homogeneous
Gaussian-type DPP is to resort to the spectral approximation
by a Fourier series.

We explain below an alternative simulation procedure,
that is arguably much more accurate than the Fourier series
approximation, although more time demanding. The idea is
to first generate an inhomogeneousGaussian-typeDPP using
the exact spectral representation (17), then apply an indepen-
dent thinning procedure to get the final point pattern.

Assume that we wish to simulate the homogeneous
Gaussian-type DPP with parameter ρ and α on the unit ball
B (the procedure extends straightforwardly to any compact
set). Let

ρ̃σ = ρ sup
x∈B

p−1
σ (x) = ρσ d(2π)d/2e1/(2σ

2).

Themain steps of the simulation algorithm are the following:

(i) Choose σ0 = argmin
σ>0

ρ̃σ subject to σ 2 ≥ α2(ρ2/d −
ρ1/d)/2.

(ii) Generate the inhomogeneous Gaussian-type DPP with
intensity parameter ρ̃σ0 , range parameter α and stan-
dard deviation σ0, on R

d , using the spectral algorithm
(see Sect. 5.1.1).

(iii) Apply an independent thinning procedure with reten-
tion probability

q(x) = p−1
σ0

(x)

(σ0
√
2π)de1/(2σ

2
0 )
1B(x), x ∈ R

d .

The first step aims at choosing the value of σ that min-
imises the intensity of the inhomogeneous Gaussian-type
DPP, thus optimising the computational cost, while ensuring
the existence of the process through (16). It is easily verified
that the final point pattern is a DPP on R

d with kernel

ρ̃σ0 e
−‖y−x‖2/α2√

pσ0(x)pσ0(y) × √
q(x)q(y)

= ρ e−‖y−x‖2/α2
1B(x)1B(y),

that is a homogeneous Gaussian-type DPP on B. This pro-
cedure provides a nearly perfect simulation algorithm of
this DPP, up to the two mild approximations discussed in
Sect. 5.1.1 used for the second step. It can however be very
time consuming, and we think that it is to be considered
instead of the Fourier series approximation only if distribu-
tional accuracy is of main concern.

5.2 Bessel-type kernel

The Bessel-type kernel is defined for any x, y ∈ R
d by

K (x, y) = ρ � (1 + d/2)
Jd/2 (2‖x − y‖/α)

(‖x − y‖/α)d/2 , (20)

whereρ > 0 is the intensity,α > 0 is the range parameter and
Jd/2 is theBessel functionof thefirst kind.This kernel defines
aDPP inR

d whenever ρ αdπd/2� (1 + d/2) ≤ 1; see Biscio
and Lavancier (2016). Given ρ > 0, the maximal possible
value of α corresponds to the most repulsive stationary DPP
in R

d with intensity ρ, while α → 0 corresponds to the
Poisson point process with intensity ρ.

As explained below, the spectral representation of this ker-
nel is explicit on the unit ball B and involves the so-called
generalized prolate spheroidal functions introduced and stud-
ied in (Slepian 1964). This representation opens the way to
perfect simulation, by the spectral algorithm, of the Bessel-
type DPP on any ball, and therefore on any bounded set (by
first simulating on an outer ball and then taking the restriction
to the desired set).
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The generalized prolate spheroidal functions are the
orthogonal eigenfunctions of the truncated Fourier trans-
form, which means that given an arbitrary c ∈ R, each such
function ψ satisfies for a certain γ ∈ C

∫

‖y‖≤1
ψ(y)ecix ·ydy = γψ(x), x ∈ R

d . (21)

The eigenvalues γ and the eigenfunctionsψ depend of course
on c. These functions are proved to be real-valued, so iterating
the latter equality and its transpose we obtain that

|γ |2ψ(x) =
∫

‖z‖≤1
γ̄ ψ(z)ecix ·zdz

=
∫

‖z‖≤1

(∫

‖y‖≤1
ψ(y)e−ci z·ydy

)

ecix ·zdz.

If we let Kc denote the Fourier transform of the unit ball, i.e.
(see Grafakos 2008)

Kc(x − y) =
∫

‖z‖≤1
eciz·(x−y)dz

= (2π)d/2
Jd
2
(c‖x − y‖)

(c‖x − y‖)d/2 ,

this means that
∫

‖y‖≤1
Kc(x − y)ψ(y)dy = |γ |2ψ(x).

By choosing c = 2/α, we deduce that ψ is an eigenfunction
of the Bessel-type kernel (20) associated with the eigenvalue
ρ� (1 + d/2) |γ |2/πd/2.

The generalized prolate spheroidal functions ψ and the
eigenvalues γ have rather complicated expressions. In the
one dimensional case (d = 1), these expressions are obtained
in Slepian and Pollak (1961) and detailed inMoore and Cada
(2004), where the eigenvalues form a sequence γn associ-
ated to the eigenfunctions ψn . To make the connection with
our setting, note that λn(c) in Moore and Cada (2004) cor-
responds to c|γn|2/(2π), and the associated eigenfunction
ψn(c, x) corresponds to ψn(x). Note finally that the norm of
ψn(c, x) on the unit ball is

√
λn(c) (see (9) in Moore and

Cada (2004)) so that in dimension d = 1, the spectral expan-
sion of the Bessel-type kernel on the unit ball is

K (x, y) = ρα π
2

∑
n≥0 λ2n(2/α)

ψn(2/α,x)√
λn(2/α)

ψn(2/α,y)√
λn(2/α)

,

∀x, y ∈ [−1, 1],

using the notation of Moore and Cada (2004). Several algo-
rithms are available to evaluate λn and ψn ; see for instance

Moore and Cada (2004), Osipov et al. (2013), Bremer (2022)
and the references therein.

In dimension d ≥ 2, following (Slepian 1964), the
sequence of eigenvalues can be written {γN ,n, N ≥ 0, n ≥
0}, where the eigenvalues γ0,n are simple while the eigen-
values γN ,n for N ≥ 1 have multiplicity h(N , d) =
(2N + d − 2)(N + d − 3)!/((d − 2)!N !). Accordingly,
their associated eigenfunctions forma sequenceψN ,n,l where
l = 1, . . . , h(N , d). All formulas are given in Slepian (1964)
and we do not reproduce them in the general case. We only
provide some details in “Appendix D” for the case d = 2; see
also Shkolnisky (2007) for this particular case. This results
in the following spectral representation, for any x, y ∈ B,

K (x, y) = 2πρα
∑

n≥0

λ20,n(2/α)ψ0,n(x)ψ0,n(y)

+2πρα
∑

N≥1

∑

n≥0

λ2N ,n(2/α)(ψN ,n,1(x)ψN ,n,1(y)

+ψN ,n,2(x)ψN ,n,2(y)), (22)

where the specific formofλ0,n ,ψ0,n ,λN ,n ,ψN ,n,1 andψN ,n,2

are given in “Appendix D”. Contrary to d = 1, numerical
algorithms to compute these eigenvalues and eigenfunctions
in dimension d = 2 are not mature yet, but they are the
subject of an active current research and software is becom-
ing available online (Shkolnisky 2007; Greengard and Serkh
2018; Lederman 2017). This will hopefully make the com-
putation of the above spectral representation straightforward
in the near future.
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A Conditional distributions

A.1 Palm distribution and Algorithms 1 and 2

Let X be a DPP on S with kernel K and let y1, . . . , ym ∈
S. Remember that the conditional distribution of X �

{y1, . . . , ym} given that {y1, . . . , ym} ∈ X is formally called
the reduced Palm distribution of X given y1, . . . , ym . The
intensity function of order n of the reduced Palm distribution
is

ρ(n)
y1,...,ym (x1, . . . , xn) = ρ(n+m)(x1, . . . , xn, y1, . . . , ym)

ρ(m)(y1, . . . , ym)

(23)

if ρ(m)(y1, . . . , ym) > 0, and 0 otherwise; see Coeurjolly
and Lavancier (2019). Since X is a DPP, wemay simplify the
expression of ρ(n+m) thanks to (1) and the standard formula

det

(
A B
C D

)

= det(A) det(D − CA−1B), (24)

where det(A) = ρ(m)(y1, . . . , ym), whereby we deduce that
the reduced Palm distribution of X given y1, . . . , ym is still
a DPP with kernel

Ky1,...,ym (x, y) = K (x, y) − k∗
m(x)K−1

m km(y), x, y ∈ S,

(25)

where k∗
m(x) = (K (x, y1), . . . , K (x, ym)) and Km =

(K (y j , yl))1≤ j,l≤m .
This result is not enough to simulate a general DPP,

because it says nothing about its cardinality. But if X is
a projection DPP on S, then we know its cardinality n =∫
S K (x, x)dx and ρ(n) becomes the unnormalised density of
the n-tuple set of points of X , with respect to the Lebesgue
measure on Sn . In this case, for any i = n−1, . . . , 1, by (23)
where (m, n) is (n−i, i), ρ(i)

yi+1,...,yn is the unnormalised den-
sity of X�{yi+1, . . . , yn} given that {yi+1, . . . , yn} ∈ X . We
can thus apply a sequential conditional simulation: gener-
ate the first point yn of X , the marginal density of which is
K (x, x)/n, then the second point yn−1 given the first one,
according to Kyn (x, x)/(n − 1), then the third one given the
first two points, according to Kyn ,yn−1(x, x)/(n − 2), and so
on. This procedure leads to Algorithm 1.

To accelerate this algorithm, the expression of Kyi+1,...,yn
(x, x) or equivalently of i pi (x) in (3) can be rewritten
to get (5) in Algorithm 2, provided we know the spec-
tral representation of K given by (4). Then it is possible
to calculate the matrix of the projection onto the orthog-
onal complement of span{v(Xn), . . . , v(Xi+1)} which is

Pi = In − V(V∗V)−1V∗ = In − V K
−1
i V∗, where V is

the (n, n − i) matrix with entries �i (X j ), i = 1, . . . , n,

j = n, . . . , i +1. Then, starting from (3), it is not difficult to
verify that i pi (x) = ‖Piv(x)‖2. This means that i pi may be
obtained by successive orthogonalisation, which is exploited
in Algorithm 2 [see Lavancier et al. (2015) for more details].

A.2 Conditional distribution given an outside set

Let A and Ac be a partition of S, i.e. S = A ∪ Ac and
A ∩ Ac = ∅. If X is a projection DPP on S with cardinality
n, then the density of X∩A given that X∩Ac = {y1, . . . , ym},
m < n, is

f A|Ac (X ∩ A = {x1, . . . , xn−m}|X ∩ Ac = {y1, . . . , ym})
= fS(X = {x1, . . . , xn−m, y1, . . . , ym})

f Ac (X ∩ Ac = {y1, . . . , ym})
if {x1, . . . , xn−m} ⊂ A and 0 otherwise. We have excluded
the trivial case m = n since X ∩ A is simply the empty set in
this case. Since X is a projection DPP on S, the numerator
above is (up to a multiplicative constant) the determinant of
the 2 × 2 block matrix

( [K (yi , y j )]1≤i, j≤m [K (yi , x j )]1≤i≤m,1≤ j≤n−m

[K (xi , y j )]1≤i≤n−m,1≤ j≤m [K (xi , x j )]1≤i, j≤n−m

)

.

By (24) and using the same notation as in (25), we deduce
that

f A|Ac (X ∩ A = {x1, . . . , xn−m}|X ∩ Ac = {y1, . . . , ym}) ∝
det[Ky1,...,ym (xi , x j )]1≤i, j≤n−m,

where the constant of proportionality does not depend
on {x1, . . . , xn−m}. This proves that given X ∩ Ac =
{y1, . . . , ym}, X ∩ A is a projection DPP with cardinality
n − m and kernel Ky1,...,ym (x, y)1A(x)1A(y).

A.3 How to choose a projection DPP for conditional
simulation?

Westart by a simple setting.Assume thatweobservem points
of a point process Y that is an independent thinning of a
homogeneous point process X on S = [0, 1]d with constant
thinning probability τ ∈ [0, 1]. Assume moreover that we
know the value of τ . Then a way to model X as a projection
DPP on S that fits with the observed thinned point process Y
is as follows.

Choose for X a parametric stationary model of DPP with
kernel K (x, y) = ρKα(x − y) with Kα(0) = 1, for which
we know the Fourier transform ϕα of Kα , for instance the
Gaussian-type DPP model (Lavancier et al. 2015). Here ρ is
the intensity of X and α stands for the remaining parameters
of the model, typically α is a univariate range parameter.
Under this model, Y is a DPP with kernel Kthin(x, y) =
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τK (x, y) and so its intensity is τρ while its pair correlation
function is 1 − K 2

α(x − y). Consequently we can estimate
from Y the intensity of X by ρ̂ = m/τ and the remaining
parameter α by a contrast estimation method based on the
pcf or the Ripley’s K function of Y to get α̂ (see Lavancier
et al. 2015; Biscio and Lavancier 2017). Using the Fourier
approximation of Lavancier et al. (2015), we thus have

K (x, y) ≈ ρ̂
∑

k≥0

ϕα̂(k)eik·(x−y), x, y ∈ S.

Following the simulation procedure to generate a DPP with
such kernel, a projection DPP kernel that can be used to
approximate the distribution of X is a realisation of

Kproj (x, y) =
∑

k≥0

Bke
ik·(x−y),

conditional on ρ̂, α̂ and
∑

k≥0 Bk ≥ m, where the Bk’s are
independent Bernoulli variables with respective rate ρ̂ϕα̂(k).

The above setting can be generalized to the case where
the thinning probability is a known function q(x), x ∈ S.
For instance we may have q(x) = τa(x)/(supx∈S a(x))
where τ ∈ [0, 1] is known and a(x) is an observed aux-
iliary variable. Note that inpainting conditional simulation
in A given a point pattern in Ac corresponds to the partic-
ular case where q(x) = 1Ac (x). Then Y becomes a DPP
with kernel Kthin(x, y) = ρ

√
q(x)Kα(x − y)

√
q(y) and we

can deduce ρ̂ = m/(
∫
S q(x)dx) and α̂ by minimum contrast

estimation. The approximation of X by a projection DPP can
then be carried out as above.

A further generalization is possible in the case where
X is inhomogeneous with intensity ρθ (x), where θ is an
unknown parameter. As before, we assume to observe m
points of Y , which is a thinning of X with thinning prob-
ability q(x) = τa(x)/(supx∈S a(x)) where τ ∈ [0, 1]
is known and a(x) is an observed auxiliary variable. We
can then start with a parametric DPP model for X with
kernel K (x, y) = √

ρθ (x)Kα(x − y)
√

ρθ (y) from which
we deduce that Y is an inhomogeneous DPP with kernel√
q(x)ρθ (x)Kα(x − y)

√
ρθ (y)q(y). Based on the observa-

tion of Y , we may deduce the estimations θ̂ and α̂ by a
two-step estimation method as in Lavancier et al. (2021).
Remember that X can be seen as a thinning of a homoge-
neous DPP X+ with kernel K+(x, y) = ρ+Kα(x − y) and
thinning probability ρθ (x)/ρ+, where ρ+ is an upper bound
of ρθ (x) on S. Following the same scheme as before, wemay
approximate X+ by a projection DPP with random kernel

Kproj (x, y) =
∑

k≥0

Bke
ik·(x−y),

conditional on ρ̂+, α̂ and
∑

k≥0 Bk ≥ m, where the Bk’s
are independent Bernoulli variables with respective rate
ρ̂+ϕα̂(k). A conditional simulation of X+ given Y is then
possible. To finally get a realisation of X given Y , it suffices
to thin the realisation of X+

�Y with thinning probability
ρ

θ̂
(x)/ρ̂+.

B A bound on the conditional probability
density function for the Fourier basis

From Lavancier et al. (2015), we know that the conditional
density pi , given the n− i first points Xi+1, . . . , Xn satisfies

pi (x) ≤ 1

i
min

i+1≤k≤n

(

K (x, x) − |K (x, Xk)|2
K (Xk, Xk)

)

. (26)

When using the Fourier basis on the unit square of R
d , the

projection kernel reads

K (x, y) =
∑

j∈J

e2iπ j ·(x−y)

where J ⊂ Z
d with cardinality |J | = n. The inequality (26)

becomes in this case

pi (x) ≤ 1

i

(

n − max
i+1≤k≤n

|K (x, Xk)|2
n

)

.

But for any x, y we have

|K (x, y)|2 =
⎛

⎝
∑

j∈J

cos(2π j · (x − y))

⎞

⎠

2

+
⎛

⎝
∑

j∈J

sin(2π j · (x − y))

⎞

⎠

2

=
∑

j,k∈J

cos(2π j · (x − y)) cos(2πk · (x − y))

+ sin(2π j · (x − y)) sin(2πk · (x − y))

=
∑

j,k∈J

cos(2π( j − k) · (x − y))

=
∑

p≥0

(−1)p(2π)2p

(2p)!
∑

j,k∈J

[( j − k) · (x − y)]2p

≥ n2 − 2π2
∑

j,k∈J

[( j − k) · (x − y)]2,

where the last inequality uses the fact that |K (x, y)|2 is
expanded into an alternating series. Since

∑
j,k∈J [( j − k) ·

(x− y)]2 = 2n
∑

j∈J [ j ·(x− y)]2−2
(∑

j∈J j · (x − y)
)2
,
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we obtain

i pi (x) ≤ n − max
i+1≤k≤n

⎛

⎝n − 4π2
∑

j∈J

[ j · (x − Xk)]2

+4π2

n

⎛

⎝
∑

j∈J

j · (x − Xk)

⎞

⎠

2
⎞

⎟
⎠

+

.

= min
i+1≤k≤n

⎛

⎝n, 4π2
∑

j∈J

[ j · (x − Xk)]2

−4π2

n

⎛

⎝
∑

j∈J

j · (x − Xk)

⎞

⎠

2
⎞

⎟
⎠ ,

which is (6).

B.1 A new proposal in dimension d = 1

When d = 1, we have S = [0, 1] and the inequality (6)
simplifies to give

i pi (x) ≤ min
i+1≤k≤n

(
n, a2(x − Xk)

2
)

where a2 = 4π2(
∑

j∈J j2 − (
∑

j∈J j)2/n).

Note that a2(x − Xk)
2 ≤ n iff |x − Xk | ≤ √

n/a.
The minimum above thus simplifies greatly if all intervals
|x − Xk | ≤ √

n/a, for k = i + 1, . . . , n, are disjoint. This
motivates us to consider a thinning of {Xi+1, . . . , Xn} such
that all points are at a distance greater than 2

√
n/a from each

other and also at a distance larger than
√
n/a from the borders

0 and 1. This can be achieved by first removing the points
too close to the borders, followed by a hardcore Matern II
thinning procedure (Baddeley et al. 2015). We denote by
{x̃1, . . . , x̃ p} the retained points and we assume that they are
ordered (x̃1 < · · · < x̃ p). We then have

i pi (x) ≤ min
1≤k≤p

(
n, a2(x − x̃k )

2
)

=
p∑

k=1

a2(x − x̃k )
21B(x̃k ,

√
n/a)(x) + n1[0,1]�⋃

B(x̃k ,
√
n/a)(x)

=
{
a2(x − x̃k )

2 if |x − x̃k | <
√
n/a for some k ∈ {1, . . . , p}

n otherwise.

Let us denote by f (x) this upper-bound and by F(x) its prim-
itive. In order to generate a sample from pi (x) on [0, 1], we
can use rejection sampling where the proposal has density
f (x)/F(1) and the rate of acceptance is i/F(1). Simulation
from the proposal can be done by the inversion method: if
U ∼ U([0, 1]), F−1(F(1)U ) is distributed from the pro-
posal.

To complete this procedure, it remains to provide the for-
mulas for F(1) and F−1(x). Note that for all k,

∫ x̃k+√
n/a

x̃k−√
n/a

a2(x − x̃k)
2dx = 2

3a
n3/2.

By construction of {x̃1, . . . , x̃ p}, we deduce that

F(1) = p
2

3a
n3/2 + n

(

1 − 2p

√
n

a

)

= n − 4p

3a
n3/2. (27)

For k = 1, . . . , p, we denote y−
k = F(x̃k − √

n/a), yk =
F(x̃k) and y+

k = F(x̃k + √
n/a) and we have

y−
k = (k − 1)

2

3a
n3/2 + n

(

x̃k −
√
n

a
− (k − 1)2

√
n

a

)

= nx̃k − 4k − 1

3a
n3/2,

yk = y−
k + 1

3a
n3/2 = nx̃k − 4k − 2

3a
n3/2,

y+
k = yk + 1

3a
n3/2 = nx̃k − 4k − 3

3a
n3/2.

For x̃k − √
n/a ≤ x ≤ x̃k ,

F(x) = y−
k +

∫ x

x̃k−√
n/a

a2(t − x̃k)
2dt = nx̃k

−4k − 2

3a
n3/2 + a2

3
(x − x̃k)

3.

The same results holds true when x̃k ≤ x ≤ x̃k + √
n/a. We

deduce that for y−
k ≤ y ≤ y+

k ,

F−1(y) = x̃k +
(

3

a2

(
y − nx̃k + (4k − 2)n3/2/a

))1/3

.

Finally, if x̃k + √
n/a ≤ x ≤ x̃k+1 − √

n/a, then

F(x) = y+
k + n(x − (x̃k + √

n/a)) = nx − 4k

3a
n3/2,

so that for y+
k ≤ y ≤ y−

k+1,

F−1(y) = 1

n

(

y + 4k

3a
n3/2

)

.

With this new proposal, the acceptance rate in the rejection
sampling for the last step of Algorithm 2, i.e. for the simu-
lation of the last point given the n − 1 first ones, becomes
1/F(1) instead of 1/n for a uniform proposal. For the most
repulsive kernel (i.e. J = {−�, . . . , �} implying n = 2�+1),
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we obtain a2 ≤ π2n(n2 − 1)/3, so that this new rate can be
3 times more effective, since by (27)

1/F(1)

1/n
≥

(

1 − 4p

π
√
3(n2 − 1)

)−1

,

which is greater than 3 if p = n − 1 and n > 10.

C Existence of the inhomogeneous
Gaussian-type DPP

The existence is equivalent to 0 ≤ λi ≤ 1 for any i ∈ N
d ,

where λi is given by (18). By this formula, since B ≤ 1, we
have that for any i , λi ≤ λ0 and the condition is verified if
only if ρ(2a/A)d/2 ≤ 1. Since A = a + b + √

a2 + 2ab,
this is equivalent to a(2ρ2/d − 1) − b ≤ √

a2 + 2ab, which
is (16).

D Generalised prolate spheroidal wave
functions in dimension d = 2

We provide in this appendix some details on the spectral
representation (22) of the Bessel type kernel when d = 2.
As explained in Sect. 5.2, this amounts to describing the
eigenvalues and the associated generalized prolate spheroidal
eigenfunctions in (21),where c = 2/α. The following formu-
las come from Slepian (1964) and Shkolnisky (2007). When
d = 2, the sequence of eigenvalues in (21) is {γN ,n, N ≥
0, n ≥ 0} where the eigenvalues γ0,n , n ≥ 0, are simple, and
the eigenvalues γN ,n for N ≥ 1 and n ≥ 0 are associated to
h(N , 2) = 2 eigenfunctions. Turning to polar coordinates by
setting x = (r cos θ, r sin θ)with r ∈ [0, 1] and θ ∈ [0, 2π ],
the eigenfunctions read for any n ≥ 0,

ψ0,n(x) = 1√
2π

R0,n(r), ∀x = (r cos θ, r sin θ) ∈ B,

and for any N ≥ 1 and n ≥ 0, for all x = (r cos θ, r sin θ) ∈
B,

ψN ,n,1(x) = 1√
π
RN ,n(r) cos(Nθ),

ψN ,n,2(x) = 1√
π
RN ,n(r) sin(Nθ).

In these expressions RN ,n(r) is given in terms of a series of
Zernike polynomials:

√
r RN ,n(r) =

∑

k≥0

dN ,n
k TN ,k(r), ∀r ∈ [0, 1]. (28)

In our notation the Zernike polynomials are defined for any
r ∈ [0, 1] by

TN ,k(r) = √
2(2k + N + 1)r N+1/2PN ,0

k (1 − 2r2), (29)

where PN ,0
k are Jacobi polynomials, and they satisfy <

TN ,k, TN ,l >= δk,l . (Note that the Zernike polynomials
in Slepian (1964) are not normalised, unlike in Shkolnisky
(2007) and in our case, explaining a slight difference in the
definition). Concerning the coefficients (dN ,n

k )k≥0 in (28),
they satisfy the recurrence relation

bNk,k−1d
N ,n
k−1 + bNk,kd

N ,n
k + bNk,k+1d

N ,n
k+1 = χN ,ndN ,n

k ,

whereχN ,n ∈ R is an unknownquantity that does not depend
on k and where the coefficients bNi, j , the expression of which

is given below, are symmetric (bNi, j = bNj,i ) and do not depend

on n. Thismeans that given N , the (infinite) vector (dN ,n
k )k≥0

is the n-th eigenvector associated to the eigenvalue χN ,n of
the symmetric tridiagonal (infinite) matrix BN with entries
bi, j :

BN =

⎛

⎜
⎜
⎜
⎝

bN0,0 bN0,1
bN1,0 bN1,1 bN1,2

bN2,1 bN2,2 bN2,3
. . .

. . .
. . .

⎞

⎟
⎟
⎟
⎠

.

Here, for any k ≥ 0,

bNk,k−1 = c2
k(k + N )

(2k + N )
√
2k + N + 1

√
2k + N − 1

,

bNk,k = −c2

2
(1 + N 2

(2k + N )(2k + N + 2)
)

− (2k + N + 1/2)(2k + N + 3/2),

bNk,k+1 = c2
(k + 1)(N + k + 1)

(2k + N + 2)
√
2k + N + 1

√
2k + N + 3

,

and we recall that we have set c = 2/α.
For the numerical computation of (28), one needs for each

N to truncate the matrix BN at some size kmax, depending on
the expected accuracy,which allows to deduce all coefficients
dN ,n
k for k ≤ kmax−1 and n ≤ kmax−1. The choice of kmax is
discussed in Greengard and Serkh (2018). Note that in view
of the orthonormal property of the Zernike polynomials, i.e.
< TN ,k, TN ,l >= δk,l , the eigenfunctions ψ0,n , ψN ,n,1 and
ψN ,n,2 are orthonormal whenever the coefficients (dN ,n

k )k≥0

are normalised, i.e.
∑

k≥0(d
N ,n
k )2 = 1, which is numerically

achieved by normalising the eigenvectors of the (truncated)
matrix BN .

Concerning the eigenvalues in (22), they are equal to
2πραλ2N ,n(2/α) where λN ,n(c), c = 2/α, satisfies (see (12)
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in Shkolnisky (2007)):

λN ,n(c)
√
r RN ,n(r) =

∫ 1

0
JN (crr ′)

√
crr ′√r ′RN ,n(r

′)dr ′.

(30)

Using (28) and (29), we have for the left hand side

λN ,n(c)

√
r RN ,n(r)

r N+1/2 = λN ,n(c)
∑

k≥0

dN ,n
k

√
2(2k + N + 1)PN ,0

k (1 − 2r2)

∼
r→0

λN ,n(c)
∑

k≥0

dN ,n
k

√
2(2k + N + 1)

(
N + k

k

)

, (31)

where the equivalence comes from the fact that for a Jacobi
polynomial, PN ,0

k (1) = (N+k
k

)
. For the right hand side in

(30), we have at r = 0

JN (crr ′)
r N+1/2

√
crr ′√r ′RN ,n(r

′) ∼ (cr ′)N+1/2

2N N !
√
r ′RN ,n(r

′),

so that using (28) again

∫ 1

0
JN (crr ′)

√
crr ′√r ′RN ,n(r

′)dr ′ ∼ cN+1/2

2N N !
∑

k≥0

dN ,n
k

∫ 1

0
r ′N+1/2TN ,k(r

′)dr ′.

Since TN ,0(r) = √
2(N + 1)r N+1/2 and using the fact that

< TN ,0, TN ,k >= δ0,k , we obtain

∫ 1

0
JN (crr ′)

√
crr ′√r ′RN ,n(r

′)dr ′ ∼ cN+1/2dN ,n
0

2N N !√2(N + 1)
.

(32)

In view of (30), the two right hand side expressions in (31)
and (32) are equal, which gives

λN ,n(c) = cN+1/2dN ,n
0

2N+1N !√N + 1
∑

k≥0 d
N ,n
k

√
N + 2k + 1

(N+k
k

) .

(33)

For the numerical aspects, formula (33) may be implemented
directly, or only for λN ,0 and then a recursive relation can be
used to get λN ,n for n ≥ 1, as advised in dimension d = 1 in
Osipov et al. (2013) through their relation (7.13), an approach
generalised in d ≥ 2 in Lederman (2017); Greengard and
Serkh (2018).
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