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ENGLISH SUMMARY 

Emerging developments in electrified transportation and renewable energy storage 
promote large-scale applications of lithium-ion batteries. It is significant and 
practically demanded to model and monitor the states of batteries in battery 
management systems since internal states cannot be measured directly. Health states 
are of vital importance to ensure safe operations and guide optimal control and 
management. On the other hand, the rapid development of artificial intelligence brings 
new opportunities for data-driven health prognostics for batteries despite complex 
electrochemical modeling. However, most of the works rely heavily on large amounts 
of training datasets and have poor generalization abilities, which motivates this Ph.D. 
project to develop advanced transfer learning-based battery health prognostics with 
limited labels to improve model performances under various application scenarios.  

Aging experiments are conducted to test the degradation behaviors of different battery 
types with various loadings and temperature conditions including dynamic loading 
profiles and variable temperatures. Both fresh batteries and second-life batteries are 
used for testing and the aging behaviors under different conditions are analyzed. To 
consider practical application requirements, partial curves are used for feature 
extractions. Data cleaning strategy is investigated to ensure the features can be 
effectively extracted under different loading profiles. The fine-tuning strategy, which 
only uses sparsely labeled data from the testing batteries, helps improve estimated 
accuracy and reliability. This is valuable for industrial applications where only limited 
and sparse labeled data can be obtained during maintenance. In addition, by leveraging 
the pretext-learning only using unlabeled operating data, the downstream health 
estimation task obtains satisfactory results by fine-tuning the model with only a few 
sparse labeled samples.  

Regarding the unlabeled data, another strategy named domain adaptation is 
investigated for performance improvement. In this regard, labels from the target 
batteries are not necessarily required, while the model generalization can be improved 
by reducing the domain discrepancies based on aligning the learned domain invariant 
features. Another main problem of conventional machine learning is catastrophic 
forgetting, which is solved by the proposed domain adaptative continual learning. The 
model is improved continuously during applications under various working 
conditions by only using sparsely labeled data. The model can be interpreted by the 
post-hoc analysis of the domain invariant features under different current rates and 
temperature conditions. Therefore, only one model initiated from one condition is 
used for the generalization improvement to satisfy the estimation under various 
application scenarios.  

Health prediction with transfer learning is also investigated to be proven performance 
improvement. Reconstrued pseudo capacities support the fine-tuning of the 
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degradation trajectory prediction model. Therefore, the degradation of battery 
capacity can be predicted with sequential predictions without the requirement of 
continuous labeled capacities for modeling. In addition, domain adaptation is also 
integrated with a multi-task framework to predict the future trajectory with the 
extrapolation of features without capacity labels. Furthermore, a long-term 
regularization penalty is investigated to ensure stable predictions, solving the 
challenge of accumulated errors during recursive predictions. 

Finally, the predictive health assessment strategy is proposed to detect accelerating 
aging. Probabilistic point and sequence predictions collaborated to judge the 
accelerating aging stages that help guide predictive management. In addition, different 
prognostic tasks, such as lifetime prediction, knee prediction, as well as onboard 
health status and aging rate predictions are integrated by the multi-task learning. The 
model integration is improved while different prognostics can be obtained via one 
model to reduce the requirement of resources of storage and computation, thus 
promoting practical applications. The concept of cloud-edge is also adopted for the 
base model training using cloud and updating on the edge device.  

Overall, by investigating the roles of advanced transfer learning strategies in battery 
health prognostics, the accuracy, reliability, and generalization of machine learning 
models are improved while the requirement of labeled data is reduced. Therefore, the 
findings from this Ph.D. project will help promote the next generation of intelligent 
battery management.  
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DANSK RESUME 

Udviklingen inden for elektrificeret transport og lagring af vedvarende energi 
fremmer omfattende vedtagelse af lithium-ion-batterier. Det er betydningsfuldt og 
praktisk nødvendigt at modellere og overvåge batteriers tilstande i 
batteristyringssystemer, da interne tilstande ikke kan direkte måles. Tilstanden af 
batterier er af vital betydning for at sikre sikker drift samt optimal kontrol og styring. 
På den anden side bringer den hurtige udvikling af kunstig intelligens nye muligheder 
for data-drevne sundhedsprognoser for batterier på trods af kompleks elektrokemisk 
modellering. Dog baserer de fleste værker sig i høj grad på store mængder 
træningsdatasæt og har dårlige generaliseringsfærdigheder, hvilket motiverer dette 
ph.d.-projekt til at udvikle avancerede transfer learning-baserede 
batterisundhedsprognoser kun ved hjælp af begrænsede etiketter for at forbedre 
modelpræstationerne under forskellige anvendelsesscenarier. 

Aldringseksperimenter udføres for at teste nedbrydningsadfærdene af forskellige 
batterityper under forskellige belastninger og temperaturforhold, herunder dynamiske 
belastningsprofiler og variable temperaturer. Både nye batterier og batterier med andet 
liv anvendes til test, og aldrende adfærd under forskellige betingelser analyseres. For 
at tage hensyn til praktiske anvendelseskrav bruges delkurver til feature-ekstraktion. 
Der undersøges en strategi for datarensning for at sikre, at funktionerne kan 
ekstraheres effektivt under forskellige belastningsprofiler. Finjusteringsstrategien, der 
kun bruger sparsomt etiketterede data fra testbatterierne, hjælper med at forbedre den 
estimerede nøjagtighed og pålidelighed. Dette er værdifuldt for industrielle 
anvendelser, hvor kun begrænsede og sparsomt etiketterede data kan opnås under 
vedligeholdelse. Derudover opnår sundhedsestimeringsopgaven tilfredsstillende 
resultater ved at finjustere modellen med kun få sparsomt etiketterede prøver ved at 
udnytte for-læringsmetoden kun ved hjælp af ikke-etiketterede driftsdata. 

Hvad angår de ikke-etiketterede data, undersøges en anden strategi ved navn 
domæneadaptation for ydeevneforbedring. I denne henseende er etiketter fra 
målbatterierne ikke nødvendigvis påkrævet, mens modellens generalisering kan 
forbedres ved at reducere domæneforskelle baseret på at justere de indlærte 
domæneinvariante funktioner. Et andet hovedproblem ved konventionel 
maskinlæring er katastrofal glemsel, hvilket løses ved den foreslåede domæne af 
adaptiv kontinuerlig læring. Modellen forbedres kontinuert under anvendelser under 
forskellige arbejdsbetingelser ved kun at bruge sparsomt etiketterede data. Modellen 
kan fortolkes ved den post-hoc analyse af de domæneinvariante funktioner under 
forskellige strømniveauer og temperaturforhold. Derfor bruges kun én model, der er 
startet fra én betingelse, til at forbedre generaliseringen og opfylde estimatet under 
forskellige anvendelsesscenarier. 
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Sundhedsprediktion med transfer learning undersøges også for at bevise 
præstationsforbedring. Genopbyggede pseudokapaciteter understøtter finjustering af 
modellen til forudsigelse af nedbrydningsbanen. Derfor kan kapacitetens nedbrydning 
forudsiges med sekventielle forudsigelser uden krav om kontinuerligt etiketterede 
kapaciteter til modellering. Derudover integreres domæneadaptation også med en 
multitask ramme for at forudsige den fremtidige bane med ekstrapolering af 
funktioner uden kapacitetsetiketter. Desuden undersøges en langsigtet 
reguleringssanktion for at sikre stabile forudsigelser og løse udfordringen med 
akkumulerede fejl under rekursive forudsigelser. 

Endelig foreslås strategien for forudsigelig sundhedsvurdering for at registrere 
accelererende aldring. Sandsynlige punkt- og sekvensforudsigelser samarbejder om at 
bedømme de accelererende aldrende stadier, der hjælper med at guide forudsigelig 
ledelse. Derudover integreres forskellige prognostiske opgaver, såsom 
levetidsforudsigelse, knæforudsigelse samt prognose for on-board sundhedstilstand 
og aldringshastighed ved hjælp af multitask læring. Modelintegrationen forbedres, 
mens forskellige prognoser kan opnås via én model for at reducere kravet til lagring 
og beregning af ressourcer og dermed fremme praktiske anvendelser. Konceptet med 
cloud-edge anvendes også til grundmodeltræning ved hjælp af cloud og opdatering på 
kantenheden. Samlet set forbedres nøjagtigheden, pålideligheden og generaliseringen 
af maskinlæringsmodeller ved at undersøge rollerne af avancerede transfer learning-
strategier inden for batterisundhedsprognoser, mens kravet til etiketterede data 
reduceres. Derfor vil resultaterne fra dette ph.d.-projekt bidrage til at fremme næste 
generation af intelligent batteristyring. 
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CHAPTER 1. INTRODUCTION  

Publications J1 and J2 contribute to the background and state of the art in this chapter.  

1.1. BACKGROUND 

Lithium-ion batteries, being a primary energy storage source, have posed constraints 
on the progress of electric vehicles, electric ships, and electric aircraft [1], [2]. 
Electrification of transportation plays a pivotal role in reducing exhaust emissions, 
alleviating the concerns of overreliance on fossil fuels, energy scarcity, and 
environmental pollution [3], [4]. Furthermore, lithium-ion batteries find extensive 
application in commercial satellites, portable electric devices, smart grids, etc. [5]–
[8]. However, due to the dynamic, time-varying, and nonlinear characteristics of 
lithium-ion batteries, their internal electrochemical mechanism continues to be 
complex [9], [10]. Alongside the primary reactions for charging and discharging, side 
reactions associated with aging transpire simultaneously [11]. The battery capacity 
experiences gradual degradation, while internal resistance increases with storage and 
usage [12], [13]. Constrained battery lifespan stands as a pivotal obstacle that hinders 
the widespread commercial adoption across the aforementioned applications and 
battery aging may even trigger safety issues [14]. However, battery failures or end-
of-life (EOL) can be extended with optimal management as well as ensure safe 
operations [15]. Hence, the development of battery management systems (BMSs) 
aims to achieve accurate and reliable health estimation and prediction. Additionally, 
prognostics and health management (PHM) as one main function of BMSs seeks to 
diagnose and prognose the health of batteries and devise optimization strategies that 
effectively prolong the operational lifespan [16], [17]. 

Nonetheless, lithium-ion batteries remain somewhat enigmatic, often labeled as 
"black boxes" due to the challenge of directly measuring their internal aging states. 
Consequently, the internal states necessitate estimation through algorithms reliant on 
measured parameters. Battery health prognostics predominantly encompass 
estimations of State of Health (SOH) and predictions of lifetime or Remaining Useful 
Life (RUL). SOH generally refers to the ratio of the currently available capacity to the 
nominal or fresh capacity [18]. RUL or lifetime is determined by the remaining 
operational cycles prior to reaching EOL, which is commonly associated with the 
cycle at which SOH falls to 80% or 70% [19], [20]. In recent years, health prognostics 
for batteries have garnered wide interest and substantial significance. By thoroughly 
investigating degradation mechanisms and extracting valuable aging features, it 
becomes possible to develop real-time and non-destructive and health prognostic 
methods for lithium-ion batteries. For detailed aging mechanisms, please refer to the 
J1 and J2 published by the author. Accurate and reliable battery health prognostics 
offer effective means to establish timely maintenance strategies, which help ensure 
safe and reliable operations [21].  
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1.2. BATTERY HEALTH PROGNOSTICS 

Various methodologies exist for battery health prognostics, typically categorized as 
model-based, data-driven, or hybrid methods [22]. In this chapter, we first introduce 
different objectives, namely SOH estimation, EOL point prediction, and degradation 
trajectory predictions. The specific methods within each objective are described. The 
distinct aims of these three objectives, as depicted on one representative capacity 
curve, can be visualized in Fig. 1-1. At the current kth cycle, SOH estimation 
concentrates on estimating the current available capacity, performing as a short-term 
prognostic task. Conversely, EOL prediction pertains to the eventual cycle point when 
the battery reaches its EOL, encompassing a long-term point predictive goal. 
Degradation trajectory prediction is primarily concerned with forecasting future 
degradations until EOL, representing long-term sequence prediction.  

 
Figure 1-1 Illustration of three main battery health prognostic objectives. Source: [J1] 

The comprehensive categorization of battery health prognostics is visualized in Fig. 
1-2. Within SOH estimation, two method types are encompassed: model parameter 
optimization and machine learning (ML). For EOL prediction, the prevalent usage 
involves data-driven methods, which are subsequentially subdivided into feature-
based and deep learning (DL), differing based on the manual or automatic extraction 
of features. Lastly, degradation trajectory prediction is comprised of three distinct 
methods: curve fitting, model generation, and sequence prediction. Within this 
categorization framework, people could initially identify their prognostic objective 
and then consult the corresponding methods.  
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Figure 1-2 Battery health prognostic objectives and methodologies. Source: [J1] 

1.2.1. SOH ESTIMATION. 

Short-term capacity or resistance estimations are the main concern in SOH estimation. 
Estimating SOH accurately offers insights into the battery's health status at the present 
moment and updates critical parameters for other state estimations, such as state of 
charge (SOC), aiding in the design of optimal management strategies, and so on [23]. 
Model parameter optimization and ML are the two mainstream SOH estimation 
methods. The overall procedure of these two methods for battery SOH estimation is 
visualized in Fig. 1-3. SOH is defined as the ratio of the current available capacity 
(Ck) to the fresh capacity (C0) in this thesis [24], which is given below.  

SOH=Ck / C0    (1.1) 

1.2.1.1 Model parameter optimization  

Model parameter optimization method typically involves integrating a battery model 
with a parameter identification/estimation algorithm to assess the health status. 
Models employed for such estimation encompass the empirical model, equivalent 
circuit model (ECM), and electrochemical model (EM). An expression capturing 
quantifiable relationships between affecting factors and SOH is generally built by the 
empirical model, determined through experimental fitting [25]. ECM is constructed 
using representative electrical components to elucidate battery behavior [26], while 
EM is founded on fundamental principles, depicting dynamics of internal 
electrochemical reactions by partial differential equations [27], [28]. It is generally 
agreed upon that as one moves from the empirical model to ECM and then to EM, 
accuracy has improved gradually while complexity has increased. Within empirical 
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models, parameters to be estimated generally comprise fitting coefficients, whereas 
the other two involve specific physical/electrochemical parameters to be determined 
[29]. The most popular and well-developed methods for parameter 
identification/estimation are the Kalman filter (KF), particle filter (PF), and their 
respective derivatives [30]–[32]. Variants of KF encompass the extended, unscented, 
sigma point, cubic, and their amalgamation with adaptive frameworks. Improved 
performances are also observed with techniques like unscented PF and adaptive PF. 
Comparatively less frequently used but still, effective methods include least square 
(LS), sliding mode observer, genetic algorithm (GA), H-infinity filter, moving 
horizon estimation (MHE), particle swarm optimization (PSO), etc. [33]–[35]. 
Despite the diverse algorithm ranges, the common goal is to accurately 
estimate/identify the relevant parameters to facilitate precise SOH estimation. To 
conclude, the general procedure for SOH estimation with parameter optimization can 
be demonstrated in Fig. 1-3.  

1.2.1.2 Machine learning 

Nonetheless, striking a balance between model complexity and accuracy proves 
industrial application challenges of model-based methods. As a result, ML-based 
approaches, devoid of explicit models, have gained substantial traction in recent times 
[36]. These methods seek to establish nonlinear relationship mappings between the 
chosen inputs and desired SOH. However, the absence of a physical explanation 
stands out as a significant limitation. The typical procedure for battery SOH 
estimation with ML encompasses data preprocessing, model training, and validation 
[37], as depicted in Fig. 1-3. According to the inputs, existing methodologies can be 
categorized into feature-based and feature-free methods, as both aim to provide the 
SOH as output.  

Feature-based methods entail the manual extraction of features, also referred to as 
health indicators (HIs) [38]. HIs are features derived from measured or estimated 
parameters to represent battery aging [39]. HIs extraction can be categorized into 
direct extraction from measured parameters [40]–[42], and indirect calculated data 
[43]–[45]. In addition to time series HIs, histogram data-based HIs are also effective, 
especially for field data [46]. Correlation coefficient analysis is a prevalent method 
for selecting effective HIs for the input of ML-based SOH estimation model [47]. 
However, HIs selected solely based on correlation analysis can be highly redundant, 
necessitating the removal of some redundant HIs from the subset [37]. Methods 
involve employing optimal search approaches to select HIs, like the wrapper method. 
Linear regression (LR) and multi-linear regression (MLR) methods are appropriate 
choices for modeling, given that HIs generally exhibit high linear correlations with 
SOH [48]. Moreover, various nonlinear mapping algorithms perform better, including 
support vector regression (SVR), random forest (RF) regression, and various artificial 
neural networks (ANN). In addition, gaussian process regression (GPR) and relevant 
vector regression (RVR) are commonly utilized to provide probabilistic estimations 
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with Bayesian theories [49]–[52]. The constructed model is finally used to estimate 
SOH of the testing batteries for the evaluation of accuracy, reliability, and onboard 
application ability. 

 
Figure 1-3 Methods and general framework for battery SOH estimation. Source: [J1] 

Feature-free methods denote data-driven battery SOH estimations without involving 
manual HIs extraction and selection. HIs based on manual extraction methods are 
often sensitive to certain parameters and can struggle with generalization across 
various testing conditions. Furthermore, the variability of HIs from one condition to 
another can lead to poor generalization. Additionally, finding ideal HIs can be 
challenging. To mitigate these issues, researchers opt to employ measured data 
directly for ML, enabling the model to autonomously uncover relative features, which 
necessitate robust nonlinear capabilities, making DL methods the favored option [53]. 
Autoencoders and multi-layer decoders are prominent for this purpose. In addition, 
recurrent neural networks (RNN) and convolutional neural networks (CNN) have 
demonstrated satisfactory capabilities in this context [54]. In this approach, the model 
is trained directly using measured parameters to estimate SOH. However, the 
computational burden is generally higher than those of feature-based methods.  

1.2.2. END OF LIFE PREDICTION. 

In the context of long-term predictions, the first category is referred to EOL 
prediction, which aims at predicting the EOL/lifetime. Two kinds of ML methods 
including feature-based and DL, whose process diagrams are displayed in Fig. 1-4. 
Given that EOL prediction typically involves multiple batteries, the majority of 
methods employed fall under the data-driven category. The key distinction lies in 
whether manual feature engineering is conducted and the subsequent use of ML 
models.  
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Figure 1-4 Methods and general framework for battery EOL point prediction. Source: [J1] 

1.2.2.1 Feature-based 

The fundamental concept behind feature-based methods is to initially extract specific 
HIs. Subsequently, these extracted features are employed to model the mapping with 
battery lifetime using ML [55], [56]. The comprehensive framework for this approach 
is depicted in Fig. 1-4, encompassing five essential steps. Firstly, battery data 
collected is pre-processed to ensure quality and consistency. Then, diverse features 
are extracted, guided by aging correlation analysis of parameters. Common extraction 
methods extract features from voltages, currents, internal resistance, capacities, and 
temperatures. Nevertheless, the resulting feature matrix is often multi-dimensional, 
leading to some exhibiting weak correlations with battery lifetime and others 
demonstrating high redundancy [37]. Therefore, the third step is aiming at selecting 
an optimal subset of features. Four popular methods for feature selection include 
filter-based, wrapper-based, embedded-based, as well as fusion-based techniques 
[57]. Subsequently, selected features are used to construct a mapping with battery 
lifetime through various ML models, where the above SOH estimation techniques are 
also suitable [58]. Finally, the data-driven model is evaluated using testing datasets. 
Feature-based ML methods for EOL prediction and SOH estimation appear 
analogous. The key distinction lies in the source of the data for feature extraction. 
Features are extracted from data of one battery within each cycle in SOH estimation. 
In contrast, features are derived from numerous batteries in their early cycles under 
similar working conditions when considering EOL predictions. In essence, SOH 
estimation involves mapping the relationships between features and SOH across 
multiple cycles for an individual battery, while EOL prediction maps the connection 
between features and EOL for a particular battery type aging under comparable 
operational conditions.  
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1.2.2.2 Deep learning approaches 

EOL prediction with feature-based approaches necessitates specific feature extraction, 
which significantly influences accuracy and generalization. However, these extracted 
features are notably influenced by battery types and operational scenarios. Hence, 
prediction methods based on DL approaches aim to automatically derive features from 
measured parameters utilizing deep neural networks [59], [60]. The foundational 
structure for DL-enabled EOL prediction is depicted in Fig. 1-4. The steps resemble 
those of feature-based methods, with the exception of feature engineering and ML 
models. This approach can be conceptualized as an end-to-end prediction, wherein 
measured data is directly and autonomously learned for the prediction of the target 
outcomes. The distinction between deep-learning-enabled SOH and EOL predictions 
lies in the nature of the data sources: either one battery running multiple cycles or 
multiple batteries (each with a single value), along with the nature of the output.  

1.2.3. DEGRADATION TRAJECTORY PREDICTION.  

While EOL prediction yields promising outcomes for early predictions, the acquired 
insights remain somewhat limited, lacking specifics about the degradation process at 
distinct aging stages. To address this limitation, degradation predictions aim to 
forecast future trajectory curves, thereby furnishing more comprehensive information 
for predictive maintenance. The three principal methods can be categorized as curve 
fitting, model generation, and sequence predictions. The typical processes for each of 
them are illustrated in Fig. 1-5.  

1.2.3.1 Curve fitting of degradation trajectories 

Curve fitting offers a straightforward approach to predicting battery trajectory and 
lifetime [61]. Typically, key influential factors on battery aging including operating 
cycles, current rates, temperature, depts of discharge, mean SOC, etc. are quantitively 
analyzed with battery aging experiments [62]. The mapping linking operating cycles 
and capacity is constructed. Frequently employed equations include exponential, 
polynomial, logarithmic functions, etc. Fitting parameters within these expressions 
are updated using historical available data. Common methods for this parameter 
update involve the PF series, KF series, GA, PSO, GA, etc. [63], [64]. The constructed 
model is then extrapolated with the increasing number of operating cycles to predict 
future capacities or resistances until a predefined threshold. Trajectory prediction with 
curve-fitting bears resemblance to empirical model-based SOH estimation. The 
distinction lies in the requirement for an extrapolation process to forecast future 
degradations. As a result, the primary focus of the model is to establish the correlation 
between operating cycles and factors such as capacity or power fade. Conversely, in 
the context of SOH estimation, the model encompasses additional information that 
can be gathered in each cycle, extending beyond these simple measurements. 
Furthermore, in addition to mathematical expressions used to depict battery 
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degradation trajectories, data-driven techniques are also employed to establish the 
mappings between capacity or power degradation and the cycle number [65]. This 
mapped implicit model is subsequently extrapolated by incrementally increasing the 
number of cycles for the input, enabling the prediction of future capacity values within 
the context of degradation trajectory projection.  

 
Figure 1-5 Methods and general framework for battery degradation trajectory predictions. 

Source: [J1] 

1.2.3.2 Model generation-based methods 

The core concept behind trajectory predictions with model generation is the 
construction of an EM or ECM that effectively represents actual batteries, enabling 
the simulation of future aging [66]. Typical procedures are illustrated in Fig. 1-5. 
Calibration of the model parameters must be conducted beforehand, where the 
parameter optimization methods discussed above can also be applied here. After 
calibrating the parameters, the model can be simulated with running cycles to generate 
synthetic data for future degradations. Consequently, both capacity degradation and 
operating data can be available [67], [68]. It's important to note that the generated data 
may differ based on varying aging conditions. The accuracy of the calibration 
significantly influences the models' performance and predictive accuracy. In contrast 
to model parameter optimization-based SOH estimation where acquired data is 
employed to identify parameters, the model generation approach utilizes the model to 
generate data for future cycles. The parameter variations over operating cycles are 
presumed to be known by experts. This methodology is often employed to support 
battery aging simulation. The future capacity trajectory and operating data can be 
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simulated with the preset loading profiles, significantly reducing the labor and time 
consumption of real aging tests.  

1.2.3.3 Sequence prediction based on machine learning 

Battery degradation possesses a significant sequential relationship, which has paved 
the way based on sequence prediction techniques [69]. This approach can be further 
categorized into two sub-methods: recursive sequence-to-point (STP) prediction, and 
sequence-to-sequence (STS) prediction. The initial step involves reconstructing the 
original curve to create input and output sequences for both of the two methods. The 
fundamental procedure is depicted in Fig. 1-5. The underlying principle capitalizes on 
the inherent sequential variation properties of battery degradation [70]. ML or DL 
techniques are subsequently employed to establish the input-output relationships. For 
making future curve predictions, the recursive procedure is used in the STP prediction. 
In contrast, STS prediction framework utilizes one-shot prediction [71]. It's worth 
noting that the iterative method is also suitable for STS prediction when one prediction 
doesn’t cover the whole demanded cycle. Given the challenge of measuring capacity 
directly in the real world, SOH estimation is often integrated before the sequence 
predictions. All the previously introduced SOH estimation methods can be applied to 
meet the requirements.  

1.3. RESEARCH MOTIVATIONS 

The general processes for each kind of methodology in each health prognostic 
objective have been summarized above. More detailed representative works and 
comprehensive comparisons among these methods can be found in J1. Although 
existing works show satisfactory prognostic effectiveness, there are still many 
challenges remaining in data preprocessing, feature extraction, ML model 
construction, as well as model generalization and implementation. The detailed 
research questions that motivated this project are summarized below. 

Q1: Feature extraction is only specific for each kind of objective in the health 
prognostics while the general extraction method for all the three objectives is required. 
In addition, conventional feature extraction is not widely applicable with different 
loading profiles. Therefore, can we develop methods for general feature extraction for 
different battery types working with different loadings? 

Q2: ML usually requires a huge amount of data for model training. However, it is 
very challenging to obtain sufficient labeled data in the real world while most of them 
are without labels. Furthermore, the model transferability and generalization ability 
are low, especially for different battery types and working conditions. Therefore, the 
next question is that can we improve model generalization under different scenarios 
with limited labeled data for model construction? 
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Q3: How battery SOH estimation benefits long-term SOH trajectory prediction is 
worth investigating to build the relationship between the two objectives. Similarly, 
the unlabeled data make it difficult for the capacity extrapolation method for future 
trajectory predictions. Furthermore, the recursive prediction is hard to be stable which 
may cause ineffective trajectory predictions. Therefore, the third question is what can 
we do to develop advanced strategies to eliminate the high reliance on labeled 
capacities and ensure long-term prediction abilities? 

Q4: Predictive strategies are desired for guiding the early maintenance and health 
management of batteries that suffer from accelerating aging. However, the 
collaborative strategy for predictive health management considering both point and 
sequence predictions is still missing. That is, the implementation of battery health 
prognostics is not clear. Furthermore, ML model is supposed to be suitable for 
different health prognostics and contains various prediction tasks, which can be 
helpful for integrated algorithms implementation in BMSs. So, the last question is 
how to provide health assessment based on the SOH predictions?  

1.4. RESEARCH CONTRIBUTIONS AND LIMITATIONS 

1.4.1. RESEARCH OBJECTIVES 

Motivated by the above-analyzed research questions, this project aims to improve 
health prognostics under various scenarios via advanced transfer learning (TL) 
strategies and designing predictive health assessment strategies. The main objectives 
are summarized as follows.  

O1: General feature extraction methods are investigated for all three health prognostic 
objectives. The features can be extracted effectively with batteries having different 
types and working under different loading and temperature scenarios. To ensure 
practical applications, feature extraction is conducted using partial capacity-voltage 
(Q-V) curves. The data cleaning process is studied to ensure the features can be 
extracted using different charging policies. With this objective, the general feature 
extraction is supposed to develop for different batteries working under various 
conditions.  

O2: Model training and transferring using limited labeled data for fine-tuning and the 
unsupervised domain adaptation (DA) are comprehensively studied. The general idea 
and strategy of using different TL strategies under each kind of application scenario 
are proposed. The systematic experiments are conducted for the demonstration and 
verification of each kind of TL for battery health prognostics. With the comprehensive 
investigation, the general framework is supposed to be proposed which will be one 
guidance of TL-based battery health estimation and prediction in this field. 
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O3: The semi-supervised learning idea with the TL strategy is proposed for battery 
health prediction without heavy reliance on capacity labels. Only several checkpoints 
can support the accurate and reliable prediction of the whole degradation curve. In 
addition, to solve the ineffective prediction caused by the gradient vanishing and 
deterioration, long-term regularization is proposed to ensure effective prediction 
during the recursive process. The DA and feature extrapolation strategies are also 
proposed to predict future SOH without the requirement of capacity labels. This 
objective helps solve the problem of limited labeled data and unstable predictions to 
ensure more effective SOH predictions.  

O4: Predictive health assessment with accelerating aging detection is proposed. The 
collaboration of point and sequence predictions is investigated to guide the predictive 
maintenance with the aging stage deviation based on the probabilistic predictions. The 
integration of different prediction tasks is studied by multi-task learning (MTL) and 
the implementation strategies are prospected with the cloud-edge framework. Both 
point and sequence predictions are achieved by the same model structure, improving 
the model integration effectively. A new framework for the health assessment will be 
produced with this objective to guide the application of battery SOH predictions.  

1.4.2. RESEARCH LIMITATIONS 

Although comprehensive SOH estimations and predictions using TL techniques are 
investigated in this project. There are still some limitations such as the following two 
aspects.  

L1: The algorithm developments are still on personal computers, while the 
implementation of the prognostic algorithms will be facing more challenges. In 
addition, the proposed cloud-edge framework is still waiting for the implementation 
of the onboarding BMS system. The effectiveness of the proposed models is waiting 
for validation.  

L2: The proposed methods are evaluated using experimental data. Although the 
experiments are tried to emulate the practical situations, field data have more 
challenges. For example, the sampling frequency is generally lower, causing the data 
quality to be worse. The charging policies are not the same for field applications, 
making it difficult for feature extraction. Therefore, the implementation in field 
applications still requires investigations.  

L3: The features are extracted from the directly measured parameters and the pure 
data-driven models are used, which lack physical meaning and model interpretability. 
Physical features are supposed to be more robust under different scenarios and help 
interpret the aging mechanisms, which are still needing further investigation. 
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The above three limitations are also seen as the subsequent works for the author to 
conduct in his postdoc career.  

1.5. THESIS OUTLINE 

The outcome of this Ph.D. project is summarized by the article-based thesis, including 
a Report and a collection of Selected Publications. The thesis structure and the 
relationship between the Report and Selection Publications are illustrated in Fig. 1-6. 
The specific contents of each chapter are summarized as follows. 

 
Figure 1-6 Chapter organizations and corresponding publications. 

• Chapter 1: Introduction 
The research background and the state-of-the-art of battery health estimation and 
predictions are described first. Then, the main research gaps that motivate this 
Ph.D. project are analyzed. The objectives that contribute to solving the research 
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gaps are outlined thereafter and the limitations are also summarized. Finally, the 
thesis structure and the publications are outlined.  
 

• Chapter 2: SOH estimation with model fine-tuning 
In this chapter, methods for TL-based battery SOH estimation with limited 
labeled data are investigated. Two scenarios with/without labeled data available 
from the source battery are considered. The data preprocessing strategy is 
proposed to ensure effective feature extraction from partial Q-V sequences under 
different loading profiles.  
 

• Chapter 3: SOH estimation based on DA  
In the case of no labeled data available for model fine-tuning, this chapter 
investigates the role of DA in model improvement. Then, the combination of fine-
tuning and DA as well as continual learning (CL) ability are studied.  
 

• Chapter 4: SOH prediction with TL 
In this chapter, the extension of TL for battery SOH prediction for the whole 
degradation curve is presented. Both the fine-tuning with limited labeled data and 
DA without labeled data are explored. In addition, the problem with long-term 
prediction using recursive prediction is illustrated and solved by introducing 
long-term regularization, which ensures stable predictions for the whole 
degradation curve starting from the early aging stages. 
 

• Chapter 5: Predictive health assessment with accelerating aging detection 
To improve the model integration, a MTL strategy is proposed to combine 
different prognostic tasks, and the framework is suitable for both point prediction 
and sequence predictions. With the collaboration of probabilistic point and 
sequence predictions, battery aging is divided into different stages according to 
the aging rates. Finally, accelerating aging is detected for the guidance of 
predictive health management.  

• Chapter 6: Conclusion and outlook 
In the last chapter of this thesis, the main findings are summarized, and the future 
outlooks are presented.  

1.6. LIST OF PUBLICATIONS 

The research outcomes have been disseminated by publishing both journal and 
conference articles, which are listed below.  

Journal articles 

J1: Y. Che, X. Hu, X. Lin, J. Guo, and R. Teodorescu, “Health prognostics for lithium-
ion batteries: mechanisms, methods, and prospects,” Energy and Environmental 
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CHAPTER 2. STATE OF HEALTH 
ESTIMATION BASED ON TRANSFER 
LEARNING: FINE-TUNING  

SOH estimation is one main objective in battery health prognostics, which describes 
the current battery aging status. The main challenge is that only limited, or no labeled 
samples are available during practical applications and distinguished working 
conditions make it difficult to the accurate and reliable estimations. Therefore, TL 
strategies are proposed to deal with the SOH estimation under different scenarios to 
improve the accuracy and generalization.  

In this chapter, it assumed only sparsely limited labeled data from the testing batteries 
are available. It emulates real-world conditions where labeled capacity is only 
available during maintenance testing. To demonstrate how limited labeled data help 
improve model accuracy and reliability, the fine-tuning-based TL is investigated. 
General feature extraction methods are proposed for effective feature extraction using 
a partial Q-V curve. The data clean method is proposed to extend the feature extraction 
framework to pulse current. Then, both the conditions that source batteries have labels 
or do not contain labels are considered. The model performance has been improved 
via learning from limited labeled data. Based on the investigations in this chapter, the 
role of sparsely labeled data is demonstrated with TL. The general framework is 
illustrated for reference in this field.  

J3, J4, and C1 contribute to this chapter.  

2.1. SOH ESTIMATION BASED ON SPARSELY LABELED DATA 

2.1.1. EXPERIMENT AND DATA CLEANING  

In the initial section, the data used in this thesis is briefly introduced. To demonstrate 
and verify the performance of the strategies derived in this project, both public and 
experimental data are collected for verification. The pubic datasets include those from 
[55], [72]–[74]. More importantly, comprehensive aging experiments have been 
conducted to collect aging data from different battery types working under different 
loading and temperature conditions. As shown in Fig. 2-1, both constant currents, 
dynamic loadings, and pulse currents are conducted under different constant 
temperature and variable temperatures. In addition, both fresh and second-life 
batteries are used for aging. More than 50 batteries with both NCA, LFP, NCM, and 
polymer materials in pouch, prismatic, and cylindrical formats are used for aging. 
Therefore, the aging datasets collected in this project contain various scenarios that 
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make the verifications and evaluations of the advanced methodologies more 
comprehensive. The detailed use of the datasets for the verification is introduced in 
the following sections when applied for verifications. For more information, please 
also refer to the related published papers.  

 
Figure 2-1 Experimental aging datasets with various battery types, loading profiles, and 

temperature conditions. 

As discussed in Chapter 1, ample information from Q-V curve helps extract effective 
aging-related features for battery health estimation. The typical partial Q-V curve 
variations during aging are shown in Fig. 2-2(d), which show regular trends with 
battery aging, illustrating the characteristics of battery degradation that can be 
extracted. However, for the pulse charging or multi-stage constant current charging 
mode, voltage shows fluctuations during the transaction stages, which causes original 
Q-V to fluctuate. Hence, it's essential to initially apply a filtering process for curve 
smoothing. Rather than directly applying a filter to the original curve, which could 
potentially alter shapes and result in information loss, we opt to eliminate the rest 
periods, thus achieving a smoother charging curve. 

The concept and effectiveness of this data-cleaning technique are exemplified in Fig. 
2-2(a and b). As the capacity remains constant even as the voltage decreases during 
the rest periods, we can eliminate the data corresponding to these periods. This results 
in a steadily increasing capacity curve. When the current is reloaded after a rest period, 
the voltage increases, but it may not change rapidly enough to exceed the voltage 
value before the rest within the following few data points. Consequently, to ensure a 
monotonic change in the voltage curve, we also exclude the period during which the 
voltage remains lower than the pre-rest value. Finally, after cleaning the data, we 
obtain a monotonous Q-V curve, as depicted in Fig. 2-2 (d), which contrasts with the 
raw parameters showing significant fluctuations in Fig. 2-2 (c). Subsequently, we can 
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apply interpolation to prepare inputs for the machine-learning model. The proposed 
data-cleaning method offers several advantages. Firstly, it effectively retains the 
primary aging information while providing smoothed data. Moreover, this approach 
is adaptable to a wide range of pulse current scenarios with varying duty cycles and 
frequencies. Furthermore, this cleaning method can also be applied for multi-step 
constant current charging processes for the data smoothing during current switch 
stages. Hence, the data preparation is universally applicable across different charging. 

 
Figure 2-2 Effectiveness illustration of the data cleaning method. (a) Measured V, Q curves, 
and filtering period. (b) V and Q after cleaning. (c) Measured Q-V curves against aging. (d) 

Filtered Q-V curves against aging. Source: [J4] 

2.1.2. FEATURE EXTRACTION BASED ON PARTIAL Q-V CURVES 

The accuracy, reliability, and online applicability of battery health estimation and 
prediction algorithms are profoundly influenced by the derived HIs. We employ 
partial Q-V sequences for feature extraction, a strategy that aligns more closely with 
practical conditions where incomplete charge and discharge cycles are undergone by 
the batteries. The partial Q-V sequence can be mathematically expressed as follows 
with the lower limit m and upper limit n,  

� 𝑽𝑽𝑠𝑠 = [𝑉𝑉𝑚𝑚 ,𝑉𝑉𝑚𝑚+1, … ,𝑉𝑉𝑛𝑛−1,𝑉𝑉𝑛𝑛]
   𝑸𝑸𝑠𝑠 = [𝑄𝑄𝑚𝑚,𝑄𝑄𝑚𝑚+1, … ,𝑄𝑄𝑛𝑛−1,𝑄𝑄𝑛𝑛] (2.1) 

Note that the linear interpolation is applied to obtain uniform sequence lengths. To 
reveal the concealed insights regarding battery aging, we leverage the 𝑸𝑸𝑠𝑠 sequences 
as well as the differential 𝑫𝑫𝑸𝑸𝑠𝑠 sequences. This study employs the standard deviation 
(std), Shannon entropy (ShanEn), and the first element of the principal components 
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(fpc) derived from 𝑸𝑸𝑠𝑠 and to 𝑫𝑫𝑸𝑸𝑠𝑠 be HIs, as demonstrated below and the extraction 
process is summarized in Table 2-1, 

𝐇𝐇𝐇𝐇 = �
std(𝑸𝑸𝑸𝑸), ShanEn(𝑸𝑸𝑸𝑸), fpc(𝑸𝑸𝑸𝑸),

std(𝑫𝑫𝑸𝑸𝑸𝑸), ShanEn(𝑫𝑫𝑸𝑸𝑸𝑸2), fpc(𝑫𝑫𝑸𝑸𝑸𝑸)� (2.2) 

Table 2-1 Process for HIs extraction from partial Q-V curve 
for i =1,2,3,…, cycle number:  
    choose voltage range 𝑽𝑽𝑠𝑠𝑠𝑠𝑠𝑠 = [𝑉𝑉𝑚𝑚, … ,𝑉𝑉𝑛𝑛] (2.3) 
    calculate the charged capacity from a V range: 𝑸𝑸 = ∫ 𝐼𝐼𝐼𝐼𝐼𝐼 (2.4) 
    clean the voltage and capacity  
        while j <len(V) 
            if Vj<=Vj-1 or Qj<=Qj-1: 
                remove Vj and Qj 
            else: j=j+1 

 

    interpolate the Q-V curve: 
           𝑸𝑸𝑠𝑠𝑠𝑠𝑠𝑠 = Interp(𝑽𝑽,𝑸𝑸,𝑽𝑽𝑠𝑠𝑠𝑠𝑠𝑠) 

(2.5) 

    calculate feature values:  

        std_Q: std_𝑄𝑄𝑖𝑖 = �∑(𝑄𝑄𝑗𝑗−𝜇𝜇)2

𝑁𝑁
 

(2.6) 

        shen_Q: shen_𝑄𝑄𝑖𝑖 = −∑𝑝𝑝(𝑥𝑥)log2𝑝𝑝(𝑥𝑥) (2.7) 
        fpc_Q: fpc_𝑄𝑄𝑖𝑖 = PCA(𝑄𝑄) 
        other features: … 

(2.8) 

The normalization method by dividing the fresh capacity is used in this thesis. The 
described HIs extraction is implemented on the battery dataset introduced in [55] and 
the changes in HIs across cycles for the 124 batteries are depicted in Fig. 2-3(a), with 
every curve representing an individual cell. The variations in HIs exhibit comparable 
trends with the degradation curve of capacities, underscoring the effectiveness of the 
proposed HIs in accurately reflecting battery aging status. Additionally, correlation 
analysis between extracted HIs and battery SOH is conducted, with the heatmap 
visualized in Fig. 2-3(b). Pearson correlation coefficient (PCC) is popular for 
analyzing the effectiveness of the extracted HIs. The PCC between x and y can be 
expressed as follows [75], 

𝜌𝜌 =
∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑛𝑛
𝑖𝑖=1 �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2𝑛𝑛

𝑖𝑖=1
 (2.9) 

Remarkably, 99.9% of the PCC surpass 0.9, with a significant portion of them 
(80.24%) exceeding 0.95, indicating strong relationships between HIs and SOH. The 
correlations between life cycles and std(𝑫𝑫𝑸𝑸𝑠𝑠), ShanEn(𝑫𝑫𝑸𝑸𝑠𝑠2), and fpc(𝑫𝑫𝑸𝑸𝑠𝑠) are 
demonstrated in Fig. 2-3(c), where every battery is represented by one point. The 
results of the analysis reveal strong linear correlations between three distinct HIs and 
the number of cycles. The PCC values are 0.918, 0.907, and 0.902, respectively. 
Furthermore, Fig. 2-3(c) underscores that the mapping relationship between HIs and 
lifetime for the 124 cells is contingent on the chosen HI. This HI-dependent 
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characteristic presents an opportunity to enhance model performance by incorporating 
multiple HIs to help the recognition of aging patterns and identify related batteries for 
training. As a result, the proposition of employing multiple HIs in this context holds 
promise for enhancing the effectiveness of battery health prognostics due to the high 
correlations between both capacities and lifetime. The general HIs extraction 
framework is suitable for feature extraction for both SOH and EOL, indicating 
valuable practical significance.  

 
Figure 2-3 HIs evaluation, (a) HIs variations with running cycles, (b) PCC heatmaps between 

HIs and SOH, (c) PCC maps of the HIs against lifetime. Source: [J3] 

2.1.3. SOH ESTIMATION FRAMEWORK WITH LIMITED LABELS 

The overall framework for battery health estimation with fine-tuning using limited 
labeled data is shown in Fig. 2-4. The collected partial Q-V curves are firstly used for 
HIs extraction. Then the extracted HIs are employed across three key functions: 
degradation recognition, automatic reference battery selections, and base model 
training. Subsequently, the trained model serves as the foundational base model for 
the target battery, with an additional phase of fine-tuning aimed at adapting the 
degradation characteristics of target batteries. Finally, the adapted model is applied 
for target battery degradation reconstruction and health estimation through the 
obtained HIs. Under the proposed framework, upon reaching a checkpoint, the model 
undergoes a retraining process. Consequently, the model can be updated during usage.  
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Figure 2-4 Framework for battery selection and probabilistic health estimation. Source: [J3] 

The detailed steps for SOH estimation framework are introduced below. Firstly, a 
brief description of long-short-term-memory (LSTM) theory is provided, followed by 
a probabilistic regression. Thirdly, a method for automatic reference battery selection 
is proposed. Finally, the complete estimation framework is outlined. 

2.1.3.1 Neural network with probabilistic regression 

Battery SOH and RUL prediction have extensively adopted LSTM. The core concept 
of LSTM involves the integration of four gates to regulate information flow. This 
design effectively circumvents challenges related to gradient vanishing and 
exploding, facilitating the optimal utilization of historical data for enhanced prediction 
accuracy. A comprehensive exposition of the LSTM algorithm's intricacies can be 
found in [69], where the fundamental equations underpinning LSTM are as follows: 

 
Figure 2-5 Proposed machine learning model. Source: [J3] 

𝑓𝑓(𝐼𝐼) = 𝜎𝜎(𝑤𝑤𝑓𝑓1𝑥𝑥(𝐼𝐼) + 𝑤𝑤𝑓𝑓2ℎ(𝐼𝐼 − 1) + 𝑏𝑏𝑓𝑓) (2.10) 
𝑖𝑖(𝐼𝐼) = 𝜎𝜎(𝑤𝑤𝑖𝑖1𝑥𝑥(𝐼𝐼) + 𝑤𝑤𝑖𝑖2ℎ(𝐼𝐼 − 1) + 𝑏𝑏𝑖𝑖) (2.11) 

�̃�𝑆(𝐼𝐼) = 𝐼𝐼𝑡𝑡𝑡𝑡ℎ(𝑤𝑤𝑐𝑐1𝑥𝑥(𝐼𝐼) + 𝑤𝑤𝑐𝑐2ℎ(𝐼𝐼 − 1) + 𝑏𝑏𝑐𝑐) (2.12) 
𝑆𝑆(𝐼𝐼) = 𝑓𝑓(𝐼𝐼) ⊙𝑆𝑆(𝐼𝐼 − 1) + 𝑖𝑖(𝐼𝐼) ⊙ �̃�𝑆(𝐼𝐼) (2.13) 
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𝑜𝑜(𝐼𝐼) = 𝜎𝜎(𝑤𝑤𝑜𝑜1𝑥𝑥(𝐼𝐼) + 𝑤𝑤𝑜𝑜2ℎ(𝐼𝐼 − 1) + 𝑏𝑏𝑜𝑜) (2.14) 
ℎ(𝐼𝐼) = 𝑜𝑜(𝐼𝐼) ⊙ tanh (𝑆𝑆(𝐼𝐼)) (2.15) 

where 𝑥𝑥(𝐼𝐼) and ℎ(𝐼𝐼) represent the input and output, 𝑓𝑓(𝐼𝐼), 𝑖𝑖(𝐼𝐼), and 𝑜𝑜(𝐼𝐼) represent 
information updated by the forget, input, and output gate respectively, 𝑆𝑆(𝐼𝐼) refer to 
the state information, 𝑤𝑤 and 𝑏𝑏 represent the weights and biases, 𝜎𝜎 and tanh refer to 
the activation functions. Typically, following LSTM layer, fully connected layers are 
introduced to yield predictions. The computation procedure of neurons within these 
fully connected layers is elucidated as follows: 

𝑜𝑜 = �𝑤𝑤𝑖𝑖ℎ𝑖𝑖 +
𝑁𝑁

𝑖𝑖=1

𝑏𝑏𝑖𝑖  (2.16) 

where o represents the output while h stands for the input, and N is the neuron numbers 
within the previous layer responsible for conveying information to the current layer. 
Once the model parameters have been trained, the specific value of the output will be 
obtained. Nonetheless, specific values often lack the capacity to adequately convey 
the algorithm's reliability. To surmount this constraint, probabilistic neural networks 
emerge as promising options [76], [77]. These networks can potentially offer 
probabilistic predictions by defining probability distributions for the weights and 
biases. The model's training process could involve manipulating the parameter 
distributions. Hence, the trained network has the capability to generate both the 
anticipated mean and the associated uncertainty, as described by the confidence 
interval (CI). In this context, the 95% CI is chosen to encapsulate the prediction's 
uncertainty. The negative log-likelihood loss function is used in training [78], 

𝑙𝑙𝑜𝑜𝑠𝑠𝑠𝑠(𝑧𝑧, 𝑦𝑦) = −𝑦𝑦. log _𝑝𝑝𝑝𝑝𝑜𝑜𝑏𝑏(𝑧𝑧) (2.17) 

where y and z represent predicted distribution and demanded practical output 
respectively, 𝑦𝑦. log _𝑝𝑝𝑝𝑝𝑜𝑜𝑏𝑏(𝑧𝑧) pertains to the logarithmic probability (logprob) of 
an individual sample (z) within a distribution of (y). The proposed neural network 
architecture is illustrated in Fig. 2-5. The detailed parameter setting could refer to J3. 
Specifically, HIs are fed into the network while the predicted mean and standard 
deviation are outputted. The last two layers are set trainable for fine-tuning with 
sparsely labeled data from the testing batteries. This strategic adjustment facilitates 
the adaptation of the model to accommodate the degradation patterns observed in 
testing batteries. Moreover, it leverages the insights gleaned from the reference 
batteries, optimizing the model's performance and adaptability. 

2.1.3.2 Automatic training selection 

Given the distinct relationships between HIs and battery lifecycles, the more effective 
approach is to consider all HIs when choosing batteries for model training. An 



CHAPTER 2. STATE OF HEALTH ESTIMATION BASED ON TRANSFER LEARNING: FINE-TUNING 

26 
 

automated method for selecting reference batteries through a weighting approach is 
proposed. Firstly, three potential candidates are identified by assessing the 
similarities, computed using the differences in HIs between the target battery and 
other source batteries. Then, three candidates per HI are assigned weights based on 
their order of similarity to the testing battery within the testing battery. The candidate 
ranked first receives a weight of 3, the second candidate is weighted 2, and the last 
one is given a weight of 1. Subsequently, all nine candidates (three candidates from 
each HI) are evaluated using this weighting scheme. Duplicate candidates selected by 
different HIs are consolidated by summing their weights. In the end, two source 
batteries with the highest combined weights are automatically chosen for model 
training. The proposed method amplifies the identification of relevant candidates by 
leveraging three HIs, thus enhancing the efficacy of the base model trained for SOH 
estimations. 

2.1.4. RESULTS AND DISCUSSIONS 

The representative results are presented. Both public and experimental datasets are 
applied for evaluations. The root-mean-square error (RMSE) and mean absolute error 
(MAE) are used for performance evaluations, expressed as, 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �
1
𝑁𝑁
�(�̂�𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 (2.18) 

𝑅𝑅𝑀𝑀𝑅𝑅 =
1
𝑁𝑁
�|�̂�𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

 (2.19) 

where �̂�𝑧𝑖𝑖 and 𝑧𝑧𝑖𝑖 are the estimated and real values for the i-th sample, and N is samples. 

2.1.4.1 Results using MIT-Stanford dataset 

This subsection showcases results with the MIT-Stanford dataset [55]. In addition to 
the 10th and 100th cycle, two additional checkpoints (50% and 90% of the lifetime) 
are incorporated for the purpose of model fine-tuning. Note that the selection of 50% 
and 90% in this study just serves as a representative choice, aimed at capturing aging 
stages at different points. In practical scenarios, checkpoints might only be accessible 
during maintenance, occurring at various life stages.  

The evaluation process involves the sequential testing of all 124 batteries. For each 
iteration, one battery is designated as the testing battery. Simultaneously, the other 
batteries are collectively designated as source batteries, which serve as the reference 
pool for the automated selection of reference batteries. The red lines in Fig. 2-6(a) and 
2-6(b), respectively, represent the RMSE and MAE of the proposed method. Two 
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benchmarks only use the base model, and without any model retraining are compared. 
One employs every suggested HI, while the other only employs std-based HIs.  

 
Figure 2-6 Estimation results with MIT-Stanford dataset. (a)/(b) RMSE/MAE of all batteries, 
(c) absolute error reduction histogram, (d) relative error reduction histogram, (e) results of 

cell 90, (f) results of cell 84. Source: [J3] 

The mean, lowest, and highest RMSE and MAE values for all batteries using the 
suggested method as well as the two benchmarks are listed in Table 2-2. The results 
illustrate that using all HIs rather than just std-based HIs generally increases the 
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accuracy. The model transfer and retraining process has the potential to significantly 
improve prognostic accuracy. The proposed method's mean values of RMSE and 
MAE are reduced by 0.60% and 0.53%, respectively, compared to the base model 
using full HIs. The maximum error can be significantly reduced in comparison to the 
two base models. Compared with the base model with only std-based HI, the full HIs 
help improve the accuracy, whose RMSE and MAE show reductions of 0.15% and 
0.12% respectively.  

The proposed method's enhancement in accuracy is depicted through absolute and 
relative error reductions. These reductions are illustrated in Fig. 2-6(c) and Fig. 2-
6(d). Most cells exhibit improved accuracy. The most absolute error reduction exceeds 
4%, while the majority falls within the 1% to 2% range. Notably, the proposed method 
achieves relative error reductions surpassing 50%, indicating a significant 
enhancement in accuracy. While there are situations, where adopting the TL leads to 
slightly worse results since errors are already quite small. This highlights that the 
automated selection method effectively identifies relevant batteries for initial 
modeling. Statistical outcomes showcasing accuracy improvement are listed in Table 
2-3. The results reveal mean absolute reductions of 0.59% for RMSE and 0.53% for 
MAE (arRMSE and arMAE, respectively). Additionally, the mean relative error 
reductions for both RMSE and MAE (rrRMSE and rrMAE) are notable at 43.70% and 
45.33%, respectively. Fig. 2-6(e) and 2-6(f) demonstrate two representative cells, 
providing clear evidence of the proposed method's enhancement over the base model 
that is based on only four labeled checkpoints. The results indicate that the base model 
successfully anticipates the degradation trends, albeit with considerable deviation 
from the accurate values. In contrast, the proposed method accurately estimates SOH 
with a small number of checkpoints utilized for fine-tuning.  

Table 2-2 Errors of the proposed method and two benchmark methods. Source: [J3] 

 
Proposed model Base model 

RMSE MAE RMSE 
(full HIs) 

MAE 
(full HIs) 

RMSE 
(std HI) 

MAE 
(std HI) 

Mean 0.50% 0.38% 1.10% 0.91% 1.25% 1.03% 
Minimum 0.11% 0.08% 0.18% 0.13% 0.28% 0.18% 
Maximum 1.80% 1.33% 6.84% 5.82% 6.85% 5.83% 

 
Table 2-3 Error reduction by the proposed method. Source: [J3] 

 arRMSE arMAE rrRMSE rrMAE 
Mean 0.59% 0.53% 43.70% 45.33% 
Minimum -0.25% -0.16% -88.91% -84.32% 
Maximum 5.42% 4.80% 88.25% 91.74% 

To illustrate the effectiveness of reference battery selection, a comparative analysis of 
estimated errors was conducted. Specifically, two batteries with medium lifetimes 
from the source dataset were chosen as references for comparison with the proposed 
strategy. In Fig. 2-7, boxplots depict the prediction errors of 124 battery cells under 
different testing. "Case A" represents the mean model, where two medium lifetime 
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batteries serve as references, and “Case B” involves the "Case A" model, with fine-
tuning using the same checkpoints. “Case C” corresponds to the base model, as 
previously discussed, while “Case D” reflects the results using the proposed method. 
Fig. 2-7 distinctly demonstrates that reference battery selection based on proposed HIs 
yields significant improvements in accuracy when compared with methods using 
medium lifetime batteries as references. This holds true for both scenarios with and 
without TL. Moreover, TL amplifies the enhancement by reducing the mean and 
variance of errors. For more evaluations, readers can refer to J3. 

2.1.4.2 Extending applications with experimental datasets 

In practical applications, the use of various battery types further exacerbates the 
limitations of the base model's performance. Therefore, the lab datasets serve as 
testing batteries to demonstrate the model's effectiveness, leveraging the MIT-
Stanford dataset as the source domain, which has different battery types and working 
conditions. The specific parameters of the batteries can be found in J3. These batteries 
undergo aging across a spec trum of temperatures (ranging from 25 ℃ to 55 ℃) and 
current rates (ranging from 0.3 C to 1 C), resulting in diverse aging patterns. The 
capacity curves of all 13 batteries are depicted in Fig. 2-8.  

The estimations for three type-1 cells, aged at 55 ℃, 35 ℃ with a current of 1 C, and 
35 ℃ with a current of 0.3 C, are displayed in Fig. 2-9(a-c), respectively. Similarly, 
outcomes for three type-2 battery cells aged at 25 ℃, 35 ℃ with a current of 0.5 C, 
and 55 ℃ with a current of 0.5 C, are presented in Fig. 2-9(d-f), respectively. 
Evidently, the estimations closely align with the actual values throughout the battery 
lifecycles. The relatively narrow 95% CIs indicate accurate and reliable predictions. 
Notably, even in Fig. 2-9(c), where the degradation curve experiences a sudden shift, 
the estimations still closely track the real values.  

 
Figure 2-7 Capacities of experimental batteries. Source: [J3] 

The statistical errors of estimations for all the batteries are summarized in Table 2-4, 
with comparisons with two benchmark approaches. The first solely employs the base 
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model, while the second only employs the checkpoints for modeling, without 
transferring parameters from the initial base model (described as self-model). The- 

 
Figure 2-8 Results for lab datasets. Source: [J3] 

mean errors of the proposed method remain below 0.8%, a stark contrast to the other 
two methods with errors exceeding 20%. Remarkably, the proposed method exhibits 
maximum RMSE and MAE values of merely 1.16% and 0.93, respectively. In 
contrast, these values reach 29.26% and 22.88% for the base model, and 29.09% and 
19.94% for the self-model. These findings indicate that conventional ML methods 
falter in battery health estimation when datasets with limited known cycles are 
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available. However, the proposed method still manages to yield satisfactory 
estimation results. Consequently, the significance of the proposed method becomes 
evident in battery health management. Its capability to extend knowledge from one 
battery aging dataset to effectively estimate other battery types holds great promise.  

Table 2-4 Performance evaluations with lab datasets. Source: [J3] 

 RMSE MAE RMSE 
(base model) 

MAE 
(base model) 

RMSE 
(self model) 

MAE 
(self model) 

Mean 0.78% 0.625% 24.64% 19.85% 22.19% 14.37% 
Minimum 0.57% 0.43% 21.25% 16.21% 17.45% 9.82% 
Maximum 1.16% 0.93% 29.26% 22.88% 29.09% 19.94% 

 
2.1.5. SUMMARY 

This section introduces a novel battery health estimation approach employing a 
probabilistic neural network with partial Q-V curve extracted HIs. Multiple HIs are 
extracted from partial Q-V sequences, demonstrating a strong connection with battery 
lifespan and capacity. The data cleaning strategy is proposed to ensure effective 
feature extraction under different loading profiles. Furthermore, an automatic relevant 
battery selection procedure is suggested to pinpoint appropriate batteries for initial 
modeling. Additionally, a new structure involving LSTM and probabilistic regression 
is introduced for battery health prognostics. This framework not only provides 
predicted mean values but also quantifies uncertainty. Further enhancement of 
prediction accuracy and reliability is achieved through a model transfer and fine-
tuning process, utilizing only a small number of checkpoints. Validations using both 
public and experimental data indicate a significant improvement compared to 
conventional methods. The proposed method can be extended to estimations of 
batteries with different types and working conditions to the source batteries.  

2.2. SELF-SUPERVISED STRATEGY FOR SOH ESTIMATION 
PERFORMANCE BOOSTING UNDER VARIOUS LOADINGS. 

In the previous section, we assumed the presence of abundant labeled aging data from 
the source domain. However, practical scenarios often involve limited labeled 
samples for model training. As a result, incorporating unlabeled data into the 
modeling process becomes crucial to explore its efficacy in battery health prognostics. 
In this section, a novel self-supervised learning strategy that aims to enhance battery 
SOH estimation performance by leveraging learned characteristics from unlabeled 
data is proposed. Self-supervised learning is a contemporary learning strategy that has 
rapidly emerged. Its core objective is to enhance downstream tasks by capitalizing on 
the inherent supervision present within the input data itself [79]. This goal is achieved 
by typically employing a pretext task followed by a target task [80]. In the context of 
estimating battery SOH through self-supervised learning, the feature representation 
task and downstream SOH estimation task are supposed to be established.  
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2.2.1. BATTERY SOH ESTIMATION USING SELF-SUPERVISED 
LEARNING APPROACH 

The overall structure of the self-supervised learning approach designed to boost 
battery SOH estimation is demonstrated in Fig. 2-9. This framework encompasses 
four primary stages: data preprocessing, initial training through a pretext task, further 
refinement through a target task, and comprehensive validations across various 
scenarios. In the data preprocessing phase, diverse data originating from batteries with 
varying types, subjected to different load profiles and environmental temperatures, is 
carefully filtered and aligned using the data cleaning method introduced in the 
previous section. The dataset consists of both unlabeled data, as well as sparsely 
labeled data, catering to the needs of pretext and downstream target learning 
respectively. The pretext learning stage focuses on capturing the underlying aging 
patterns embedded within the partial Q-V curve, utilizing an unsupervised approach 
that employs feature extraction with an auto-encoder and decoder. Subsequently, the 
encoding part learned during pretext training is migrated to the downstream target 
network. Here, an additional output regression layer is appended to facilitate the 
mapping of the relationship between partial Q-V curves and battery SOH. Through 
fine-tuning with the sparsely labeled data, this relationship is effectively delineated. 
The trained model is finally employed for SOH estimation, with accuracy evaluations 
under various scenarios. The detailed process is described in detail below. 

2.2.1.1 Feature representative pretext learning 

Most data gathered in the real world lacks labels, rendering it incompatible with 
traditional data-driven techniques reliant on supervised learning. Yet, the concealed 
insights regarding aging within operational data, like Q-V curves, exhibit a substantial 
correlation with battery aging. This correlation presents an avenue for enhancing SOH 
estimation models. Hence, within the feature-representative pretext learning process, 
only unlabeled data is harnessed to unveil the latent relationships between measured 
data and battery aging with the unsupervised framework. To elaborate, the charged 
Q-V curves are put into an encoder-decoder architecture. Post encoding, the decoding 
stage reconstructs the charged Q-V profiles. By juxtaposing these reconstructed 
profiles against their originals, mean square error (MSE) emerges as the loss metric 
to be diminished, 

𝑅𝑅𝑆𝑆𝑅𝑅 =
1
𝑁𝑁
�(𝒚𝒚𝚤𝚤� − 𝒚𝒚𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 (2.20) 

where 𝒚𝒚𝑖𝑖 and 𝒚𝒚𝚤𝚤�  represent measured and estimated curves respectively. Enhancing the 
interpretability of the ML approach aims at deciphering the factors underpinning its 
performance. Generally, model-based and post hoc methods have been widely used 
for unraveling the inner workings of ML models [81]. We employ the latter one to 
leverage the correlations among hidden states post auto-encoding and SOH. 
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Figure 2-9 Framework of boosting battery SOH estimation based on self-supervised learning. 

Source: [J4] 

2.2.1.2 Downstream SOH estimation learning 

While obtaining a continuous stream of labeled data proves challenging, there is the 
possibility of acquiring sparsely labeled data during maintenance phases. Therefore, 
the encoding layers are adapted to incorporate a single output regression layer for 
SOH estimation, which is fine-tuned with sparsely labeled data. The input consists of 
partial Q-V curves from cycles with associated SOH labels, maintaining a constant as 
that used in pretext learning. The encoding layers retain the knowledge previously 
acquired from the unlabeled data, while the demanded mapping relationship between 
inputs and SOH is rapidly acquired through a slight retraining process. Consequently, 
the self-supervised learning approach facilitates the integration of learned aging-
related information, simultaneously expediting the convergence process during 
subsequent target SOH estimation tasks. In comparison to previous TL-based SOH 
estimations, the proposed technique migrates knowledge gained from unlabeled data 
in the source domain. This renders the proposed method notably more efficient, as it 
effectively leverages a limited labeled sample. It is noteworthy that pretext learning 
can be conducted using unlabeled data sourced from either the battery being tested or 
from other batteries. However, only sparse labeled data from the tested battery are 
requisite for the fine-tuning stage.  
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2.2.2. ESTIMATION RESULTS WITH SELF-SUPERVISED FRAMEWORK 

2.2.2.1 Pretext learning evaluation 

13 batteries with different types and working conditions are used for effective 
demonstration. The detailed information is listed in our published paper J4. The 
primary objective of the encoding is to uncover the aging-related insights concealed 
within the unlabeled operating data. PCC between the acquired features and battery 
SOH are assessed to gauge the effectiveness of the pretext learning phase. Fig. 2-10 
(a)-(e) illustrate the variations of the features (five neuron values) against SOH of 
B#1. The analysis delves into the correlations between every individual hidden feature 
(abbreviated as HS) and the respective SOH. The outcomes for all batteries are 
presented in Fig. 2-11(f). The results are quite compelling, revealing that all encoded 
hidden features display robust linear relationships with SOH. This finding signifies 
that the autoencoder successfully distills pivotal aging-related insights. Moreover, this 
observation lends credence to the explanation of the subsequent SOH estimation. It 
demonstrates that substantial correlations exist between these hidden features and the 
ultimate output (SOH).  

 
Figure 2-10  Correlations between the encoded features and battery SOH, (a-e) exemplary 

results for one battery, and (f) heatmaps for all batteries. Source: [J4] 
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The numeric outcomes across all 13 batteries demonstrate the applicability of pretext 
learning in extracting aging-related insights, effectively catering to batteries operating 
in diverse scenarios. A significant portion of the PCCs exceeds 0.99, underscoring the 
strong alignment between the learned features and actual aging traits. Interestingly, 
PCCs are slightly diminished under variable and high temperatures, relative to 
constant temperatures. This observation indicates temperature fluctuations indeed 
influence the pretext task's learning efficacy. Likewise, there is a marginal reduction 
in PCCs for pulse charging profiles. However, this reduction is not notably substantial, 
which substantiates that the data clean methodology proficiently retains core aging 
characteristics, aligning well with various application demands.  

2.2.2.2 Downstream SOH estimation  

The earlier demonstration of pretext learning underscores the acquisition of core aging 
characteristics through the utilization of unlabeled samples via auto-encoder. This 
section proceeds with the presentation and evaluation of downstream SOH estimation 
for batteries subjected to diverse aging conditions. For the target task, the parameters 
acquired through pretext learning in the neural network are employed and then fine-
tuned for SOH estimation, which is conducted using a small subset of labeled data. 
Specifically, the initial 20% data is allocated for pretext learning, and downstream 
fine-tuning relies on just three labeled samples: the first cycle, the sample at 10% 
point, and the sample at 20% point. In addition to RMSE and MAE, the coefficient of 
determination (R2) is also used for model evaluations. 

The outcomes of the model are visually depicted in Fig. 2-11, encompassing the 
estimation for every individual battery, as well as estimations and error distributions 
for all 13 batteries. Detailed numeric results are documented in Table 2-5. These 
findings collectively reveal that the estimations align satisfactorily with the ground 
truths across all the testing batteries, irrespective of battery types, and operational or 
environmental temperature conditions. This substantiates the method's aptitude for 
generalization and robustness. 

In the case of NCA battery estimations (i.e., B#1 to B#6 in the figure), the results 
exhibit a higher degree of accuracy, even when subjected to dynamic discharging 
current profiles. When considering the results for the two cells operating under 
variable temperature conditions, although the estimations show slightly larger 
deviations from actual SOH, they still converge satisfactorily. This indicates that 
estimations remain robust under variable temperature conditions and diverse aging 
profiles. Regarding second-life batteries, the estimations continue to exhibit accuracy 
although different aging patterns exist. Quantitatively, RMSE and MAE for these six 
batteries are both below 1.28% and 1.14%, respectively, and R2 exceeds 0.95.  
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Figure 2-11 SOH estimation results based on self-supervised learning. (a-m) estimations for 

individual B#1-B#13, (n) estimations for all the batteries, and (o) error distribution of the 
estimations for all the batteries. Source: [J4] 

Polymer batteries that operate at room temperature throughout their entire lifespan 
(until SOH drops below 0.4) exhibit promising outcomes, as indicated in Fig. 2-11(g 
and h). The depicted results also demonstrate favorable estimations with RMSE and 
MAE below 3% and 2.9% and R2 exceeding 0.96. The final category of batteries, 
namely NCM batteries, undergoes aging through both CC and pulse current charging. 
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The employed data clean techniques and estimation methodology effectively 
accommodate SOH estimations even when subjected to pulse charging profiles, 
thereby expanding the potential scope of application. The outcome of the estimation 
process reveals the presence of a few outliers, but most of the estimations closely align 
with actual values. Specifically, for the battery subjected to a charging frequency of 
0.2 Hz, RMSE, MAE, and R2 stand at 0.873%, 0.615%, and 0.987 respectively. 
Similarly, for the battery undergoing a frequency of 0.05 Hz, these metrics are 
0.645%, 0.425%, and 0.965 respectively.  

Table 2-5 Results for the self-supervised SOH estimations. Source: [J4] 

Battery RMSE (%) MAE (%) R2 Battery RMSE (%) MAE (%) R2 

B#1 0.712 0.658 0.977 B#8 2.968 2.673 0.967 
B#2 0.382 0.314 0.995 B#9 0.169 0.146 0.999 
B#3 1.272 1.134 0.956 B#10 0.282 0.227 0.998 
B#4 1.276 0.860 0.954 B#11 1.235 1.060 0.994 
B#5 1.141 0.930 0.957 B#12 0.873 0.615 0.987 
B#6 0.883 0.638 0.988 B#13 0.645 0.425 0.965 
B#7 2.067 1.762 0.984 All 1.139 0.762 0.989 

The estimation outcomes for all battery types are visually depicted in Fig. 2-12(n), 
while the error distribution is illustrated in Fig. 2-11(o). It is evident that the absolute 
errors remain within the range of 5%, with the majority falling below 2%. This 
observation underscores the robustness and precision of the SOH estimations across 
various application scenarios, encompassing distinct battery chemistries and 
configurations. This promising characteristic holds significance for real-world 
applications, given that the process only necessitates unlabeled data, along with a 
limited set of labeled data. 

Subsequent mutual verification was undertaken to further assess the efficacy of the 
proposed framework. In this process, batteries B#1 through B#3 were employed for 
unsupervised pretext learning. This initial learning phase was followed by 
downstream fine-tuning, which was carried out using a small set of early sparsely 
labeled samples. The outcomes of this mutual verification approach were showcased 
through results concerning batteries B#4 to B#7, as illustrated in Fig. 2-12(a-d) 
respectively. The evaluation scenarios depicted in Fig. 2-13(a) and (b) were designed 
to assess the impact of incorporating information from constant temperature 
conditions to boost performance under varying temperatures. The outcomes in Fig. 2-
12(c) aimed to validate the hypothesis that integrating aging insights garnered from 
new batteries contributes to the accuracy enhancement of second-life batteries. The 
concluding test scenario in Fig. 12(d) was devised to demonstrate that aging-related 
characteristics obtained from battery type prove valuable for accurately estimating the 
SOH of a different battery type. Importantly, these testing scenarios hold practical 
significance. Given the challenges associated with training models using an extensive 
volume of samples for onboard BMS, the approach of utilizing a pretext model trained 
on data from other batteries, followed by fine-tuning using sparsely labeled data, 
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presents great value in boosting performance. Hence, the proposed framework 
effectively supports mutual utilization scenarios.  

 
Figure 2-12 Verifications with unlabeled data from other batteries. (a)/(b)/(c)/(d) results for 

B#4/B#5/B#6/B#7. Source: [J4] 

2.2.2.3 Comparative evaluations 

For a further assessment, we present numerical comparisons with other ML models in 
Fig. 2-13, with detailed results provided in Table 2-6. In Fig. 2-13, each dot 
corresponds to the result achieved by one battery cell using the respective model, and 
the distribution signifies method's robustness and adaptability across diverse 
application scenarios. The outcomes listed in Table 2-6 are averaged indexes across 
all 13 batteries, offering insight into the overall performance of each model across 
various applications. Fig. 2-13 highlights that conventional models employing only 
supervised learning exhibit notable error spreads. Conversely, the proposed model 
showcases the smallest distribution, with all errors falling within lower ranges and R2 
attaining higher values. Referencing the indicators in Table 2-6, accuracy 
enhancement becomes more apparent. The average RMSE and MAE for the proposed 
NN_SS approach stand at only 1.07% and 0.88% respectively, whereas conventional 
methods surpass 2.27% and 1.73% respectively. This indicates that the proposed 
method mitigates errors by over 1 time on average. The average R2, at 0.978 for 
NN_SS, also outperforms other methods, signaling closer convergence to actual 
values. Further, the average value of maximum absolute error stands merely 3.336%, 
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reflecting a narrow error range and greater reliability in estimations compared to 
alternative techniques. Consequently, based on the comparative evaluations, the 
proposed self-supervised learning effectively boosts the accuracy and reliability of 
battery SOH estimation. More evaluations using public datasets are detailed in J4.  

 
Figure 2-13 Comparative evaluations with different estimation models. Source: [J4] 

Table 2-6 Mean values of each indicator with different models. Source: [J4] 

Method RMSE MAE R2 Max error 

NN 2.268 1.730 0.921 5.997 
GPR 3.928 2.961 0.779 8.645 
SVR 3.391 2.653 0.830 8.645 
Ridge 2.840 2.094 0.883 6.828 

LR 2.464 1.909 0.909 6.140 
NN_SS 1.070 0.880 0.978 3.336 

 

2.2.3. SUMMARY 

This section presents an innovative self-supervised strategy designed to enhance 
battery SOH estimation. This is achieved by a pretext feature learning phase utilizing 
unlabeled data, followed by a downstream target learning phase involving a limited 
set of labeled samples for model fine-tuning. For pretext learning and the extraction 
of latent features, an auto-encoder-decoder architecture is employed. Through PCC 
analysis, the learned hidden features exhibit substantial coefficients exceeding 0.96 
on average in relation to battery SOH. This attests to the effectiveness of the acquired 
aging characteristics. By utilizing only a small subset of labeled samples for learning 
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the downstream SOH estimation, the proposed method's accuracy and reliability are 
substantiated to surpass conventional ML techniques. Using merely three labels, the 
proposed model yields RMSE and mean MAE of 1.07% and 0.88% respectively, 
alongside a mean maximum absolute error of 3.336%. Notably, the R2 reaches 0.978. 
Furthermore, validations encompass diverse batteries, distinct loading profiles, and 
varying temperatures, underscoring method's robustness and potential for its 
continued enhancement throughout the aging process. 



CHAPTER 3. STATE OF HEALTH ESTIMATION BASED ON TRANSFER LEARNING: DOMAIN ADAPTATION 

41 
 

CHAPTER 3. STATE OF HEALTH 
ESTIMATION BASED ON TRANSFER 
LEARNING: DOMAIN ADAPTATION 

Fine-tuning-based TL strategy is studied in the above chapter. Nevertheless, it still 
requires labels for model re-training. There are some cases where no labels are 
available. How to transfer knowledge without labels is also worth investigating. 
Therefore, unsupervised DA is proposed to deal with estimations under no labeled 
data available from the target batteries. The effectiveness of both SOH point 
estimation and differential temperature (dT) curve estimation is proved. Then, the 
combination use of both sparsely labeled data and unlabeled data is used for SOH 
estimation improvement based on a novel domain adaptative CL framework. The 
catastrophic forgetting problem for ML model is addressed with memory-based CL. 
The model can be initially built with only one battery, and continual updating during 
usage under different scenarios that increase the generalization ability. In addition, the 
unbiased feature distributions help interpret the model performance. Both two sections 
are verified using comprehensive experimental datasets obtained with different types 
of batteries working under different loadings and temperatures. With works in this 
chapter and the previous chapter, comprehensive TL-based battery SOH estimations 
are studied for the selected reference in intelligent battery management.  

J5, J6, and C2 contribute to this chapter.  

3.1. SOH ESTIMATION BASED ON DOMAIN ADAPTATION 

The battery health prognostics framework for STS dT curve prediction and STP SOH 
estimation considering DA is depicted in Fig. 3-1. It begins with transforming Q-V 
sequence into a dQ-V sequence, which creates model inputs. The dT curve 
reconstruction model employs LSTM due to strong temporal relationships in time 
series data. Subsequently, a fully connected layer is appended to predict dT curve. To 
mitigate domain discrepancies existing between source and target batteries, maximum 
mean discrepancy (MMD) loss is applied after the second LSTM layer. The predicted 
dT and measured dQ sequences are consequently utilized to estimate battery SOH, 
where the MMD loss is again incorporated before the output layer to minimize domain 
discrepancies. Detailed frameworks for end-to-end battery health prognostics are 
described in next subsections, where the dT prediction and SOH estimation are 
presented in detail. 



CHAPTER 3. STATE OF HEALTH ESTIMATION BASED ON TRANSFER LEARNING: DOMAIN ADAPTATION 

42 
 

 
Figure 3-1 Flowchart for DA-based battery health prognostics containing dT prediction and 

SOH estimation. Source: [J5] 

3.1.1. END-TO-END ESTIMATION 

3.1.1.1 dT curve reconstruction 

Temperature variations are important indicators to be monitored especially during 
charging to ensure safe operation [82]. The dT curve is also important information for 
battery health estimation [83], [84]. Obtaining temperature variations for each cell in 
a battery pack is impractical due to the limited thermal sensors. Therefore, estimation 
of temperature variations is also a crucial task. The dT prediction is achieved by the 
STS structure in this section. STS prediction framework facilitates the reconstruction 
of dT curve with input of dQ sequence. The process to generate these sequences 
involves the following steps. Constructing the dQ sequence necessitates ensuring 
voltage passes through a specific voltage range. STS dT prediction based on the NN 
depicted in Fig. 3-2. Within this architecture, the LSTM layer is employed to extract 
time-series properties. An output layer is introduced after the second LSTM to 
generate the predicted dT sequence. These sequences are derived by segmenting 
corresponding curves using identical voltage sequences, resulting in an output length 
matching the input. Specific settings for the network structure can refer to J5. 

3.1.1.2 SOH estimation 

Following dT reconstruction, temperature information is integrated with the electric 
information (dQ) to estimate SOH with STP framework. To be specific, dQ is utilized 
as the first input dimension. Furthermore, incorporating temperature variation details 
is crucial, as it encompasses significant aging-related information and significantly 
enhances SOH estimation accuracy, which has been demonstrated in prior research 
[83]. Consequently, the predicted dT is incorporated as an additional input feature into 
the SOH estimation model. The model to estimate SOH with STP architecture is also 
illustrated in Fig. 3-2, which adheres to a similar overall design as the NN employed 
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in predicting dT curve. Initially, time-series dQ and dT are learned by two LSTM 
layers, followed by the output layer containing a single neuron to yield the ultimate 
SOH estimation. The hyperparameters remain consistent with those of the dT curve 
reconstruction model, except for the output neuron, which is set as 1 to output SOH. 

 
Figure 3-2 Model for domain adaptative dT prediction and SOH estimation. Source: [J5] 

3.1.2. TRANSFER LEARNING WITH DOMAIN ADAPTATION 

Conventional data-driven techniques often encounter difficulties in generalization. 
Models trained on a source battery might not perform well on testing batteries, 
especially when distinct dissimilarities exist in the application scenarios. These 
differences give rise to significant discrepancies between domains of source and 
testing batteries. In many existing techniques, a limited set of labeled data from the 
testing battery is utilized for model fine-tuning. However, obtaining labeled data is 
often impractical in real-world scenarios. As a result, leveraging unlabeled data 
becomes more valuable to enhance prognostic accuracy. In pursuit of this objective, 
this study employs MMD to alleviate domain incongruities present in the hidden 
features. The integration of MMD into the original model is illustrated in Fig. 3-2. 
This involves diminishing the domain discrepancies between the source and target 
battery in the outputs from the last time step of LSTM to enhance the model accuracy.  

The disparity between two probability distributions can be quantified by MMD by 
evaluating the difference in their mean embeddings of features [85]. The MMD 
between datasets 𝑋𝑋 = {𝑥𝑥𝑖𝑖}𝑖𝑖=1

𝑛𝑛1  and 𝑌𝑌 = {𝑦𝑦𝑖𝑖}𝑖𝑖=1
𝑛𝑛2  is expressed as [86],  
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𝑅𝑅𝑅𝑅𝑀𝑀ℋ(𝑋𝑋,𝑌𝑌) = 𝑠𝑠𝑠𝑠𝑝𝑝𝛷𝛷∈ℋ(𝑅𝑅𝑝𝑝[𝛷𝛷(𝑥𝑥)] − 𝑅𝑅𝑠𝑠[𝛷𝛷(𝑦𝑦)]) (3.1) 

where ℋ is a reproducing kernel Hilbert space (RKHS), Φ(∙) represents a nonlinear 
mapping function that transforms data from the original space to the RKHS space, and 
p and q are probability distributions that generate the two sets of data. MMD can be 
empirically approximated as [87], [88], 

𝑅𝑅𝑅𝑅𝑀𝑀ℋ2 (𝑋𝑋,𝑌𝑌) = �
1
𝑡𝑡1
�𝛷𝛷(𝑥𝑥𝑖𝑖)
𝑛𝑛1

𝑖𝑖=1

−
1
𝑡𝑡2
�𝛷𝛷�𝑦𝑦𝑗𝑗�
𝑛𝑛2

𝑗𝑗=1

�

ℋ

2

 (3.2) 

The expression can be obtained by kernel trick [88], 
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(3.3) 

where k(∙,∙) represents kernel function of RKHS, with specific usage of the Gaussian 
radial basis function (RBF) kernel [88], 

𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑗𝑗) = exp ((−||𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑗𝑗||2)/2𝛾𝛾2) (3.4) 

During the training phases for both dT prediction and SOH estimation, the MSE is 
employed to assess the regression quality. Simultaneously, MMD loss aims to gauge 
the divergence between the produced hidden features in different domains. As a result, 
the ultimate loss function encompasses both regression and transfer losses, forming a 
composite evaluation criterion denoted as, 

ℒ = ℒMSE + 𝜆𝜆ℒMMD (3.5) 

where 𝜆𝜆 serves as a weight, signifying the penalty coefficient that quantifies the extent 
to which DA should be taken into account.  

3.1.3. HEALTH PROGNOSTIC RESULTS AND DISCUSSION 

3.1.3.1 Results for dT prediction 

The outcomes include dT predictions for fresh and second-life batteries in this section. 
The detailed information on the used batteries can refer to J5. The results for fresh 
batteries (lab dataset#1) undergoing dynamic discharging are shown in Fig. 3-3. Fig. 
3-3 (a) - (c) showcase outcomes when utilizing cell 1 (UDDS) as source battery to 
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predict the dT curve of and target cell 2 (HWFET). Conversely, Fig. 3-3 (d) - (f) 
depicts results in the inverse situation. The results obtained by basic LSTM model are 
depicted in Fig. 3-3(a) and 3-3(d), while Fig. 3-3(b) and 3-3(e) demonstrate outcomes 
derived from the proposed model. Moreover, Fig. 3-3(c) and Fig. 3-3 (f) display peak 
values extracted from predicted dT curves as well as actual dT curves. Within the 
figures, "Real," "Base," and "DA" correspond to the actual curve, outcomes from 
conventional model, and proposed approach, respectively. The results highlight the 
LSTM-based STS model's ability for dT curve predictions using dQ as input even 
without relying on temperature sensors. However, the basic LSTM model's 
reconstructed curve occasionally exhibits noticeable anomalies, attributed to domain 
discrepancies between the training and testing batteries. The DA-based model, on the 
other hand, exhibits enhanced performance. The dT curve's peak value, a crucial 
indicator for battery health prognostics, holds a strong correlation with battery 
capacity [83], [89]. Furthermore, peaks derived from the predicted dT curves become 
closer to real values.  

 
Figure 3-3 The dT curve and peak value predictions for batteries aged under dynamic 

discharging loading profiles. Source: [J5] 

The performance for dT predictions of second-life batteries (lab dataset#2) under 
varying temperatures is also assessed. The outcome of these estimations is depicted 
in Fig. 3-4, with each subfigure's interpretation mirroring that of Fig. 3-3. In the 
context of fluctuating temperatures, dT curves also exhibit unstable variations from 
beginning to the end of cycling due to the influence of the relationship between 
capacity and environmental temperature on degradation curve shape. Within this 
testing condition, the predicted dT curves through the proposed model exhibit 
substantial enhancement compared to the conventional approach. While basic LSTM 
can estimate the dT curve trends, significant disparities persist between the 
reconstructed and actual curves. Furthermore, estimated peak values significantly 
deviate from actual values, potentially adversely affecting SOH estimation. In 
contrast, the dT curves and corresponding peak values predicted by the proposed 
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model closely align with actual values. This underscores the potential of extracting 
temperature information to enhance health prognostics. 

 
Figure 3-4 The dT curve and peak value predictions for second-life batteries aged under 

variable environmental temperature. Source: [J5] 

Numerical results are presented in Table 3-1 and Table 3-2, outlining the errors of 
predicted dT curves and peak values, respectively. Significant improvements are 
demonstrated in the proposed method compared to the conventional LSTM-based 
model. For conventional model predicted dT curves, mean RMSE and MAE across 
are 0.085 ℃/V and 0.063 ℃/V, respectively. In contrast, the proposed model yielded 
these two values of 0.066 ℃/V and 0.049 ℃/V, translating to a 22.6% error reduction. 
Additionally, the proposed method demonstrated error reductions of 51.5% and 54.4% 
in predicted peak values, as compared to the basic LSTM.  

Furthermore, the evaluation incorporates three commonly used ML algorithms –
feedforward NN (ANN), GPR, and RF – for STS dT estimation comparison. Results 
indicate that conventional LSTM, RF, and GPR exhibit close accuracy, surpassing the 
ANN. While one method may outperform others in specific battery cases, it may lag 
in different scenarios, highlighting the limited robustness of conventional data-driven 
techniques. However, the proposed model with DA enhances LSTM accuracy by 
addressing domain discrepancies and maintaining high accuracy across various 
working conditions. Table 3-3 provides the maximum absolute error (MaxAE) for the 
predicted dT, comparing basic LSTM and proposed domain adaptive LSTM. The 
mean MaxAE for using basic LSTM across four scenarios is 0.156 ℃/V, while the 
proposed method yields 0.100 ℃/V. For peak values, the MaxAE is 0.218 ℃/V with 
conventional LSTM and 0.117 ℃/V with the proposed DA-based LSTM. Both sets 
of results underline the improved accuracy brought about by the proposed model. The 
comparative outcomes underscore that the proposed approach outperforms 
conventional data-driven methods in terms of accuracy and robustness. 
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Table 3-1 Errors (℃/V) comparisons for the dT curve reconstruction. Source: [J5] 

 Error L#1_C1 
_to_C2 

L#1_C2 
_to_C1 

L#2_C1 
_to_C2 

L#2_C2 
_to_C1 Mean 

LSTM RMSE 0.109 0.106 0.083 0.044 0.085 
MAE 0.083 0.081 0.056 0.033 0.063 

LSTM_DA RMSE 0.084 0.088 0.050 0.042 0.066 
MAE 0.063 0.066 0.036 0.032 0.049 

ANN RMSE 0.113 0.172 0.086 0.064 0.109 
MAE 0.084 0.141 0.061 0.052 0.085 

RF RMSE 0.113 0.107 0.078 0.063 0.090 
MAE 0.094 0.080 0.050 0.048 0.068 

GPR RMSE 0.098 0.123 0.079 0.058 0.089 
MAE 0.075 0.094 0.058 0.043 0.067 

 
Table 3-2 Errors (℃/V) comparisons for the estimated peak values. Source: [J5] 

 Error L#1_C1 
_to_C2 

L#1_C2 
_to_C1 

L#2_C1 
_to_C2 

L#2_C2 
_to_C1 Mean 

LSTM RMSE 0.139 0.107 0.09 0.039 0.094 
MAE 0.127 0.092 0.077 0.03 0.082 

LSTM_DA RMSE 0.063 0.066 0.031 0.022 0.045 
MAE 0.051 0.055 0.024 0.018 0.037 

ANN RMSE 0.159 0.208 0.072 0.051 0.123 
MAE 0.157 0.198 0.059 0.033 0.112 

RF RMSE 0.126 0.116 0.062 0.069 0.093 
MAE 0.113 0.109 0.041 0.059 0.08 

GPR RMSE 0.08 0.167 0.062 0.067 0.094 
MAE 0.068 0.162 0.042 0.057 0.082 

 
Table 3-3 Maximum absolute errors (℃/V) for dT curve reconstruction. Source: [J5] 

Test LSTM LSTM_DA 
 Curve Peak value Curve Peak value 

L#1_C1_to_C2 0.125 0.279 0.111 0.157 
L#1_C2_to_C1 0.155 0.230 0.136 0.169 
L#2_C1_to_C2 0.233 0.261 0.090 0.090 
L#2_C2_to_C1 0.111 0.101 0.064 0.054 

Mean 0.156 0.218 0.100 0.117 
 
3.1.3.2 SOH estimation 

The outcomes of SOH estimations for fresh batteries undergoing dynamic discharging 
are displayed in Fig. 3-5(a)-(b) and Fig. 3-5 (c)-(d), respectively. These estimations 
are compared against results obtained using the conventional LSTM-predicted dT 
curve and the DA-based LSTM-predicted dT curve, while without DA applied to SOH 
estimation model. These two benchmark methods are respectively labeled as 
"Benchmark 1" and "Benchmark 2". Additionally, estimations obtained by the 
proposed approach are referred to as "Multi DA," which employs a two-stage DA. 

Observations reveal that employing a DA-based model to predict dT curve leads to 
more precise thermal characteristics. This, in turn, translates to a noticeable 
improvement in results from "Benchmark 1" to "Benchmark 2." The improved 
correlation between estimated and real SOH values is evident in Fig. 3-5, reflecting a 
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more linear relationship. Numeric results for SOH estimation errors are outlined in 
Table 3-4. Results indicate that RMSE and MAE values respectively decrease from 
2.241% and 1.828% to 1.756% and 1.573% for cell 1 when transitioning from 
"Benchmark 1" to "Benchmark 2", which are from 3.317% and 3.123% to 1.687% 
and 1.524% for cell 2. Incorporating DA in SOH estimation model results in further 
enhancements, reducing RMSE and MAE values respectively to 1.671% and 1.519% 
for cell 1, and 1.364% and 1.257% for cell 2. This evaluation underscores that 
employing multi-stage DA processes solely using unlabeled data significantly 
improves battery health prognostics when compared to conventional models. 

 
Figure 3-5 SOH estimations for batteries aged under dynamic discharging profiles. (a)/(b) 
results of L#1_C1_to_C2 situation, (c)/(d) results of L#1_C2_to_C1 situation. Source: [J5] 

SOH estimation results for second-life batteries undergoing varying environmental 
temperatures are also assessed, where the outcomes for cell 2 and cell 1 are depicted 
respectively in Fig. 3-6 (a)-(b) and Fig. 3-6 (c)-(d). The intermittent shifts in SOH 
curves result from temperature changes, given the different charged/discharged 
capacities associated with varying temperatures. Two benchmarks are employed for 
comparison, in a manner analogous to the previous discussions. Results in Fig. 3-6 (b) 
and Fig. 3-6 (d) clearly depict a convergence of real values from benchmarks towards 
the proposed "Multi-DA" approach. Conversely, estimation results reveal that while 
a linear correlation exists between estimated and real SOH for benchmarks, deviations 
from the perfect fitting line suggest disparities. On the contrary, estimated SOH values 
from the proposed model demonstrate less divergences from the real values. The 
colors of the dots do not show monotonic variations in Fig. 3-6 (a) and Fig. 3-6 (c), 
and gaps in the dots result from varying temperatures. Numerical outcomes presented 
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in Table 3-4 distinctly highlight the improved accuracy of the proposed model. 
"Benchmark 1" demonstrates larger estimation errors than "Benchmark 2", which 
suggests that DA-based dT curve prediction offers thermal characteristics for 
improving SOH estimation accuracy. The mean values of RMSE and MAE for 
"Benchmark 1" surpass 3.3%, which is larger than 2.7% for “Benchmark 2” and is 
substantially reduced to below 1.8% with the proposed model. The RMSE and MAE 
are respectively reduced by 17.763% and 18.302% by incorporating thermal 
characteristics in “Benchmark 2” with comparisons to “Benchmark 1”. The two 
indexes show significant reductions of 47.010% and 49.572% respectively with the 
proposed model, where MaxAE also drops from 7.340% remarkably to 4.689%.  

 
Figure 3-6 SOH estimations for second-life batteries aged under variable environmental 
temperatures. (a)/(b) results of L#1_C1_to_C2 situation, (c)/(d) results of L#1_C2_to_C1 

situation. Source: [J5] 

While existing publications have validated that dT curve information can improve 
SOH estimation performances, we further substantiate this assertion under varying 
temperature conditions. In order to showcase the role of thermal characteristics on 
SOH estimation, numerical results of the proposed model and approaches lacking 
predicted dT as input are demonstrated in Table 3-5. In the table, " without dT" refers 
to a model solely trained using dQ curves for SOH estimations. Outcomes indicate 
the inclusion of predicted dT curve result in improved accuracy, while DA benefit for 
future performance improvements. These findings underscore that dT curve-derived 
thermal characteristics contribute to improved SOH estimation. This improvement 
stems from temperature effects on battery capacity, which is essential as 
environmental temperatures fluctuate with changing seasons. Consequently, the 
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additional thermal depiction provided by the predicted dT curves through the proposed 
prognostic model serves a dual purpose: enabling thermal behavior monitoring and 
enhancing SOH estimation accuracy. More analysis and evaluations using public 
datasets can refer to J5.  

Table 3-4 Errors of SOH estimation results (%). Source: [J5] 

 Error L#1_C1 
_to_C2 

L#1_C2 
_to_C1 

L#2_C1 
_to_C2 

L#2_C2 
_to_C1 Mean 

Benchmark 1 
RMSE 3.317 2.241 3.717 4.102 3.344 
MAE 3.123 1.828 3.18 4.021 3.038 

MaxAE 4.807 5.687 11.33 7.534 7.340 

Benchmark 2 
RMSE 1.687 1.756 3.649 3.907 2.750 
MAE 1.524 1.573 3.011 3.819 2.482 

MaxAE 3.218 3.649 7.344 7.621 5.458 

Multi DA 
RMSE 1.364 1.671 2.091 1.961 1.772 
MAE 1.257 1.519 1.842 1.511 1.532 

MaxAE 2.816 3.525 5.896 6.519 4.689 
 
Table 3-5 SOH estimations with/without predicted dT as features. Source: [J5] 

Method L#2_C1_to_C2 L#2_C2_to_C1 
RMSE (%) MAE (%) RMSE (%) MAE (%) 

Benchmark without dT 3.738 3.478 3.984 3.919 
DA without dT 2.647 1.999 3.262 2.901 
Benchmark with dT 3.649 3.011 3.907 3.819 
Multi DA 2.091 1.842 1.961 1.511 

 
3.1.4. SUMMARY 

This section introduces an innovative end-to-end methodology, featuring multi-stage 
multi-DA, aimed at sensor-free dT prediction and SOH estimation utilizing partial Q-
V data. DA is integrated for accuracy and generalization improvement, which 
effectively mitigates domain discrepancies. The predicted dT curve is introduced as 
an additional feature, supplying thermal characteristics for SOH estimation 
improvement. An additional stage of DA is employed, further minimizing domain 
discrepancy in hidden features used for SOH estimation. This comprehensive 
approach effectively addresses the challenges of temperature-influenced battery 
behavior monitoring and accurate SOH estimation.  

The outcomes for dT curve predictions clearly demonstrate that the proposed model 
yields error reductions of over 20% in comparison to conventional methods lacking 
DA. Moreover, the accuracy of SOH estimation benefits from the predicted dT curve, 
leading to RMSE and MAE reductions of 17.763% and 18.302% respectively, as 
compared to a benchmark model utilizing only Q-V curve information. By 
incorporating DA into SOH estimation, these values can be further reduced by 
47.010% and 49.572%, respectively. Furthermore, the study's scope extends to 
verification using two public datasets, affirming the method's generalization 
capabilities. Remarkably, the proposed strategy utilizes only unlabeled data from 
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testing batteries, thereby expanding the repertoire of TL strategies to enhance 
prognostic performance. This promising strategy is adaptable to various applications, 
as proven by the satisfactory results across different scenarios.  

 
Figure 3-7 Framework to integrate both labeled and unlabeled data for TL-based battery 

SOH estimation. Source: [J6] 

3.2.  DOMAIN ADAPTATIVE CONTINUAL LEARNING STRATEGY 

3.2.1. FRAMEWORK  

In this section, based on both the fine-tuning and DA strategies invested above, the 
primary objective is to explore a method that maximizes the utility of both unlabeled 
and labeled data derived from batteries operating under diverse conditions. The aim 
is to enhance the accuracy, reliability, and generalization of data-driven battery health 
estimation models while avoiding catastrophic forgetting. The approach veers away 
from employing extensive source data for model training. Instead, the model is 
initialized using data from only a battery that has aged under CC conditions. This 
initial model is then refined across various applications, fostering continuous learning 
of aging information across a spectrum of scenarios. This allows the model to 
effectively cater to estimations in diverse scenarios. Memory-based CL updates are 
facilitated using only unlabeled data and sparsely labeled data. The model can be 
interpreted based on unbiased hidden state distributions across various scenarios. The 
overall framework is illustrated in Fig. 3-7, encapsulating the entire methodology. 
Specifically, the base model is initially trained on one source battery. The DA is then 
used to reduce the hidden feature domain discrepancies using the historical unlabeled 
data. The model is retrained using sparsely labeled data from the testing battery and 
sparsely stored data from the source battery. The final model is then employed to 
forecast target batteries' health under various scenarios. The detailed information can 
be referred to J6.  
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3.2.2. CONTINUAL LEARNING ABILITY 

A significant challenge in the application of data-driven models is "catastrophic 
forgetting.", which means the model forgets the previously learned characteristics 
after retraining. In contrast, our model has the ability to continuously learn new aging 
information while retaining the capability to accurately estimate SOH for batteries 
with similar aging conditions encountered previously. To illustrate and evaluate this 
capability, we utilize the batteries aging with different C-rates and temperatures 
described in Chapter 2 for demonstrations.  

 
Figure 3-8 CL abilities. (a) estimated SOH and errors with initial model trained using data 

from 1C/25℃ (b) updated results with data from 1C/35℃ (c) updated results with data from 
1C/55℃ (d) updated results with data from 0.3C/35℃. Source: [J6] 

Our demonstration involves several steps, showcased in Fig. 3-8. Firstly, an initial 
base model trained using one cell aged at 1C under 25℃ for training is used to 
estimate SOH for all batteries aged at 1C under 35℃ and 55℃, and 0.3C under 35℃, 
as shown in Fig. 3-8(a). Subsequently, sparse data from batteries aging at 35℃ with 
1C are used for model updating, incorporating DA with sparsely labeled and unlabeled 
data collected from an early stage. The updated model is then employed for SOH 
estimation of all batteries, as displayed in Fig. 3-8(b). Further, sparse data from a 
battery aged at 1C/55℃ and 0.3C/35℃ are used to continually update the model 
sequentially. The estimation performance on all batteries is shown in Fig. 3-8(c) and 
Fig. 3-8(d), respectively. This process demonstrates that our model continuously 
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acquires new aging information across diverse scenarios while retaining previously 
learned information. Comparative analysis reveals remarkable improvement from the 
initial base model to the final model. R2 increases from -1.669 to 0.969, and the 
primary error distribution narrows from [-0.152, 0.014] to [-0.019, 0.034]. RMSE and 
MAE progressively decrease across cases a to d (Fig. 3-8(a) to Fig. 3-8(d)), as 
indicated in Table 3-6. For instance, RMSE and MAE for the final model in estimating 
all batteries decrease to 0.959% and 0.629% from initial values of 8.957% and 
7.399%, respectively.  

 
Figure 3-9 Hidden state distributions of batteries under different scenarios using (a) initial 

model and (b) final updated model. Source: [J9] 

The model can be interpreted by the comparative results demonstrated in Fig. 3-9 (a) 
and Fig. 3-9 (b), where the hidden state distributions of batteries with different 
scenarios outputted by the initial model and the final updated model are presented. It 
clarifies the failure reason of the initial model for health estimations under different 
conditions and the reason for the generalization of our model is increased during 
usage. The feature distributions are almost overlapped, which enables the estimation 
model to have better accuracy and generalization under various working conditions. 

Table 3-6 Numerical evaluation of CL ability. Source: [J6] 
Case  RMSE  MAE  R2 Error range 
Case a 8.957% 7.399% -1.669 [-0.152, 0.014] 
Case b 1.782% 1.318% 0.894 [-0.030, 0.053] 
Case c 1.513% 1.003% 0.924 [-0.036, 0.080] 
Case d 0.959% 0.629% 0.969 [-0.019, 0.034] 

To underscore the advantages of our approach over previously introduced fine-tuning 
methods, results obtained by the fine-tuning-based approach are illustrated in Fig. 3-
10 (a-c). It becomes evident that while the fine-tuned model performs better for the 
target battery after updates, it suffers from catastrophic forgetting, leading to 
deteriorated performance in prior estimation scenarios. The distribution of hidden 
states, depicted in Fig. 3-10 (d), offers insight into this phenomenon post fine-tuning. 
It underscores that domain discrepancies persist between diverse scenarios, leading to 
poor model performance for previous tasks. 
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Figure 3-10 Model performance with fine-tuning strategy. (a) estimated SOH and errors with 
the initial model trained using data from 1C/25℃ (b) fine-tuned with data from 1C/35℃ (c) 

fine-tuned with data from 1C/55℃ (d) hidden state distributions. Source: [J6] 

3.2.3. COMPARISONS WITH OTHER MACHINE LEARNINGS.  

One of the major strengths of our model is its ability to sidestep catastrophic forgetting 
while absorbing new aging information. To assess accuracy and robustness across all 
estimation scenarios, we conduct a comparative analysis with other TL strategies, 
encompassing fine-tuning and basic DA. The RMSE for target and source batteries 
under different CC and temperature conditions (one battery serving as the source 
domain and others as testing batteries) is presented in Fig. 3-11(a) and Fig. 3-11(b), 
respectively. Notably, our model excels in scenarios involving diverse dynamic 
discharging profiles and variable temperatures, exhibiting a slender error distribution. 
This indicates superior accuracy and reliability compared to other models. For 
batteries in dynamic working currents and variable temperatures in their first and 
second-life states, RMSE and MAE outcomes are showcased in Fig. 3-11(c) and Fig. 
3-11(d). Here, target batteries exhibit differing current rates and temperatures from 
the source battery, resulting in the base model displaying poor accuracy on the target 
domain. However, the introduction of information from batteries through TL or CL 
substantially reduces errors. While pure unlabeled data-enabled DA enhances 
accuracy for the target domain, sparse limited data further bolsters target domain 
accuracy. In contrast, pure fine-tuning grapples with catastrophic forgetting. Notably, 
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our model consistently sustains strong performance across both target and source 
domains, with errors confined to a minimal range.  

 
Figure 3-11 Comparisons with other transfer learnings. RMSE for (a) target and (b) source 

batteries with different C rates and temperatures. RMSE for (c) target and (d) source 
batteries with dynamic currents and variable temperatures. Source: [J6] 

The comprehensive numerical statistical results for all batteries are presented in Table 
3-7 and Table 3-8, illustrating the performance on the target domains and previously 
seen conditions respectively. The proposed model exhibits minimal mean and 
maximum errors, as well as reduced standard deviation (std) of error distributions. 
These characteristics collectively indicate precise and reliable estimations across 
diverse domains encompassing varied aging profiles and temperature conditions. 
Specifically, the mean and maximum RMSE for the target domain are 1.312% and 
3.015% respectively, signifying an over threefold reduction from the initial base 
model. Notably, the std experiences a substantial decrease from 4.562 to a mere 0.682. 
Furthermore, the evaluation encompasses four widely employed ML methods for 
battery SOH estimation: LR, SVR, GPR, and RF. The outcomes, as demonstrated in 
Table 3-7 and Table 3-8, underscore that while these four methods perform well 
within their trained source domains, they fall short of delivering satisfactory 
estimations for target domains featuring diverse application conditions. It's also 
important to anticipate that these models would likely face challenges with 
catastrophic forgetting if solely updated using newly acquired data, similar to the fine-
tuning strategy. In contrast, the proposed framework demonstrates superiority in terms 
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of performance across both source and target domains when compared to conventional 
ML and TL methods.  

Table 3-7 Numerical evaluation for the target conditions. Source: [J6] 

Method RMSE (%) MAE (%) 
Mean Max Std Mean Max Std 

BASE 4.573 17.987 4.562 4.193 17.965 4.475 
FT 2.361 11.213 2.218 1.838 8.129 1.700 
DA 2.259 5.704 1.412 1.949 5.484 1.274 
DA_FT 2.361 11.213 2.218 1.838 8.129 1.700 
DA_CT 1.312 3.015 0.682 1.085 2.662 0.628 
GPR 3.952 17.959 3.999 3.497 17.938 3.719 
RF 3.930 17.834 3.462 3.549 17.722 3.372 
LR 14.758 185.806 35.519 10.784 147.825 27.389 
SVR 4.137 23.651 5.170 3.893 23.633 5.121 

 
Table 3-8 Numerical evaluation for the previously seen conditions. Source: [J6] 

Method RMSE (%) MAE (%) 
Mean Max Std Mean Max Std 

BASE 0.172 0.324 0.087 0.126 0.242 0.067 
FT 3.108 12.633 2.869 2.826 12.076 2.679 
DA 0.420 1.838 0.339 0.328 1.797 0.321 
DA_FT 3.108 12.633 2.869 2.826 12.076 2.679 
DA_CT 0.159 0.623 0.102 0.128 0.666 0.107 
GPR 0.077 0.199 0.056 0.056 0.147 0.042 
RF 0.039 0.074 0.021 0.026 0.046 0.013 
LR 0.129 0.297 0.089 0.095 0.221 0.067 
SVR 0.225 0.604 0.181 0.179 0.523 0.163 

 
3.2.4. SUMMARY  

In this section a data-driven battery health estimation model grounded in domain-
adaptive CL is proposed, addressing a spectrum of challenges including limited 
generalization and robustness, extensive labeled data requirements, catastrophic 
forgetting, and limited interpretability. The proposed model begins with data from a 
common aging test and extends to estimations under unknown conditions, harnessing 
solely unlabeled data and sparsely limited labeled data from early stages.  Crucially, 
our model is interpretable. By effectively reducing domain discrepancies between 
source and target batteries, our model interprets the notable estimation performances 
achieved. Furthermore, our model evolves continually, leveraging both unlabeled and 
labeled data from unknown conditions to enhance performance while retaining prior 
task proficiency, thereby mitigating catastrophic forgetting. In comparison to other 
TL approaches, our model excels in utilizing both unlabeled and labeled target battery 
data for model refinement. It outperforms in accuracy and robustness across diverse 
testing scenarios, yielding an average RMSE of merely 1.312% and even reaching an 
RMSE of just 3.015% in the most challenging testing scenario. Additionally, the 
proposed model showcases heightened resilience to variations in data learning ratios 
when compared to other TL methods. 
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CHAPTER 4. STATE OF HEALTH 
PREDICTION WITH TRANSFER 
LEARNING  

Prognostics of the battery health are significant to get an insight into the degradation 
in the future, which can help users know the health conditions in the future and guide 
the predictive maintenance for optimal use and lifetime extension. However, 
predicting the SOH in future cycles is more challenging than estimating SOH at 
current time. The domain discrepancy makes the degradation curves different from 
each other which deteriorates the prediction performance. Therefore, in this chapter, 
TL strategies are explored for the SOH prediction.  

The work in the previous chapter indicates only limited labeled samples could help 
reconstruct the historical degradation curve satisfactorily. Therefore, the investigation 
of using pseudo-labeled data for model updating with semi-supervised learning is 
conducted in this chapter. The feature extrapolation with DA is also investigated for 
the SOH prediction model without the necessary requirement of labeled data from the 
testing batteries. One key factor that causes the unstable future curve prediction is 
solved by introducing a long-term regularization strategy. Therefore, TL methods for 
SOH prediction introduced in this chapter can be adopted considering different 
application situations of the obtained data.  

J7 and J8 contribute to this chapter. 

4.1. SOH TRAJECTORY PREDICTION BASED ON SEMI-
SUPERVISED TRANSFER LEARNING 

As investigated in the previous chapters, only limited labeled capacity can ensure a 
very accurate reconstruction of the historical capacities. Therefore, future SOH 
prediction model is fine-tuned with the pseudo values from the reproduced historical 
capacities. The overall semi-supervised self-learning (SSSL) framework based future 
trajectory and lifetime predictions is illustrated in Fig. 4-1. The dataset is divided into 
two parts: the source domain (SD), and target domain (TD) with limited labels. Within 
SD, two models are trained: one for SOH estimation and the other for future SOH 
prediction. The two models undergo initial offline training using source-labeled data 
to ensure their effectiveness. Moving to TD, the SOH estimation model is first 
retrained by only using limited labels to reconstruct historical curves. The proposed 
HIs introduced in Chapter 2 are employed for the reconstruction of historical SOH 
using SOH estimation model. Subsequently, SOH prediction model is self-trained 
using the reproduced SOH as pseudo labels. Both retraining and self-training occur 
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online using available checkpoints, allowing for quick training due to the use of 
limited data and the acceleration by the base model. Consequently, both offline 
training and online fine-tuning are conducted, which aims at improving accuracy and 
generalization. Finally, future SOH is sequentially predicted until the battery reaches 
its EOL. 

 
Figure 4-1 Framework and network construction of semi-supervised battery trajectory 

prediction method. Source: [J7] 

4.1.1. HISTORICAL SOH RECONSTRUCTION 

Effective HIs extracted from partial Q-V curves (introduced in Chapter 2) enable the 
reconstruction of pseudo-historical SOH, using limited labels for model retraining. To 
begin, the SOH estimation model is pre-trained with labeled data from SD. In this pre-
training phase, the inputs consist of the extracted HIs, and the model's output is the 
battery SOH corresponding to each cycle. 

Subsequently, for reconstructing testing battery historical SOH, a limited number of 
checkpoints containing labels are necessary to fine-tune the last fully connected layer. 
These checkpoints can be collected in practical scenarios when undergoing 
maintenance activities. Afterward, the historical SOH between these checkpoints can 
be reconstructed with the updated model, which has been demonstrated in Chapter 2. 
These reconstructed SOH serve as pseudo labels for downstream SOH prediction 
model self-training, which will be detailed in the subsequent subsection. 

4.1.2. SEMI-SUPERVISED TRAJECTORY AND LIFETIME PREDICTION 

The extrapolation method, i.e., the SOH prediction model, employed for forecasting 
future SOH along with uncertainty, is introduced. The schematic representation of the 
proposed model is presented in Fig. 4-2, whose detailed construction and fine-tuning 
processes are described below.  
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4.1.2.1 Lifetime modeling 

When it comes to sequence-based capacity prediction, the initial step involves 
reconstructing the capacities to establish the inputs and outputs as described by 
Equation (4-1) and Equation (4-2), respectively. 

[𝐶𝐶𝑖𝑖−𝑚𝑚,𝐶𝐶𝑖𝑖−𝑚𝑚+1, … ,𝐶𝐶𝑖𝑖−1,𝐶𝐶𝑖𝑖] (4.1) 

[𝐶𝐶𝑖𝑖+1,𝐶𝐶𝑖𝑖+2, … ,𝐶𝐶𝑖𝑖+𝑛𝑛] (4.2) 

where 𝐶𝐶𝑖𝑖  represents SOH of ith cycle, m and n respectively denote the input and 
predicted length. 

The model architecture depicted in Fig. 4-1 is employed for model training. It begins 
with the inclusion of two LSTM layers. Subsequently, a probabilistic dense layer is 
incorporated. The fundamental role of the probabilistic dense layer mirrors that of a 
conventional dense layer but with a distinction—the weights and biases are defined 
as distributions rather than specific values, as described in the previous chapter. The 
procedure for training the lifetime model involves initially training it using data from 
three batteries in the SD. Subsequently, SSSL is employed for model fine-tuning to 
predict SOH of the testing batteries.  

4.1.2.2 Self-training for SOH prediction 

Degradation patterns exhibited by batteries in SD may differ from those observed in 
TDs. Using SOH prediction model trained solely with SD data for predicting the 
future SOH of testing batteries in TDs could lead to predictions deviating from the 
expected curves. The concept of SSSL is proposed to enhance the model's adaptability 
in making predictions under varied application scenarios. 

The first scenario involves predicting the battery SOH and lifetime, which belong to 
the same type but operate under different conditions compared to those in t SD. In this 
case, the first LSTM layer is kept frozen after initial training. This is done to preserve 
general characteristics specific to this battery type. The following LSTM, probabilistic 
fully connected, and distribution layers are made trainable, enabling them to acquire 
new information subscribed to the testing battery. The reconstructed pseudo-SOH 
labels are utilized for SSSL to enhance the SOH prediction model. Ultimately, SOH 
curve is predicted to obtain the future degradation curve and battery lifetime. 

The second scenario involves predicting battery SOH and lifetime with different 
battery types compared to those in SD. In this situation, one battery from TD is 
randomly selected, and its entire degradation curve is reconstructed using seven 
checkpoints: the first cycle, 10% cycle, 30% cycle, 50% cycle, 70% cycle, 90% cycle, 
and the last cycle. Subsequently, SOH prediction model is retrained to adapt 
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degradation patterns specific to the new battery type. The initial parameter values for 
training are provided by the corresponding model trained in SD. After retraining, the 
same SSSL approach mentioned above is employed for the SOH and lifetime 
predictions of other batteries within the TD. Consequently, two self-training processes 
are utilized to enhance the SOH prediction model in this scenario. 

4.1.3. RESULTS AND DISCUSSION 

Predictions under the two scenarios mentioned earlier are presented and evaluated. 
The assessment involves analyzing both SOH and lifetime prediction errors in 
comparison to expected real values. 

4.1.3.1 Predictions for batteries undergoing different loading profiles 

In this section, we present and evaluate predictions for batteries that belong to the 
same type while undergoing different working conditions. While batteries of the same 
type exhibit similar degradation patterns, variations of aging rates and curve shapes 
can still occur. To evaluate the proposed prediction approach, we first train the base 
model using data from three source batteries [55]. Subsequently, we implement the 
SSSL process in TD1 [72]. Fig. 4-2 illustrates RMSE and MAE values calculated for 
the complete capacity curves, encompassing both historically reconstructed segments 
and future predicted segments. The mean errors across all 45 cells are tabulated in 
Table 4-1. The term "checkpoints" refers to specific known points, such as those 
occurring at 10%, 30%, 50%, and 90% of the entire cycle life, which are representative 
of sparsely labeled data, often obtained during maintenance.  

Fig. 4-2 demonstrates a substantial reduction in prediction errors as the number of 
available checkpoints increases. With three checkpoints, absolute errors in lifetime 
prediction fluctuate within a range of 50 cycles. All RMSE values are below 3.15%, 
and all MAE values are below 1.4%. As the early stages of battery capacity 
degradation occur very slowly, the predictions exhibit low errors and strong 
generalization for all cells, even with only three checkpoints. Furthermore, the 
presence of an additional checkpoint during the later stages of battery usage, 
characterized by more rapid capacity degradation, leads to a rapid decline in predicted 
errors. All predicted lifetime absolute errors remain below 15 cycles, while SOH 
RMSE and MAE stay below 0.68% and 0.38%, respectively. 

Table 4-1 presents the average errors for lifetime predictions and future capacity 
predictions. It is evident that with just two early-stage checkpoints, the mean error of 
predicted lifetime stands at 96.4 cycles. However, this error quickly decreases to 22.68 
cycles upon inclusion of a third checkpoint. Meanwhile, the mean RMSE and MAE 
values have been reduced to 1.19% and 0.67%, respectively, indicating a close 
alignment between predicted and actual SOH. Furthermore, with the acquisition of 
another additional checkpoint in the fast-degrading phase, the mean error of the 
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predicted lifetime drops significantly to 7.27 cycles. The mean predicted RMSE and 
MAE values further decrease to 0.27% and 0.18%, respectively. These outcomes 
indicate that the proposed model effectively predicts future SOH and exhibits strong 
generalization capabilities across diverse loading profiles and ranges of lifetime for 
all batteries within TD1. 

 
Figure 4-2 Errors of the predicted lifetime, SOH RMSE and MAE. Source: [J7] 

Table 4-1 Predicted mean errors for TD1. Source: [J7] 
Checkpoints Mean absolute error of 

predicted lifetime 
Mean RMSE of predicted 

SOH curves 
Mean MAE of 

predicted SOH curves 
2 96.40 cycles 2.33% 1.24% 
3 22.68 cycles 1.19% 0.67% 
4 7.27 cycles 0.27% 0.18% 
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Figure 4-3 Predictions for cell 1 using (a)/(b) 3/4 checkpoints. Source [J7] 

 
Figure 4-4 Predictions for cell 9 using (a)/(b) 3/4 checkpoints. Source [J7] 

 
Figure 4-5 Predictions for cell 3 using (a)/(b) 3/4 checkpoints. Source [J7] 

The predictions for three batteries within TD1 are illustrated in Fig. 4-3 to Fig. 4-5, 
specifically showcasing the outcomes for cell 1, cell 9, and cell 3, detailed in J7. In 
each figure, (a) portrays predictions utilizing three labeled checkpoints, while (b) 
demonstrates predictions with four labeled checkpoints. Fig. 4-3 exemplifies a case 
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where the predicted lifetime closely aligns with the actual lifetime considering three 
checkpoints. As shown in Fig. 4-3(a), despite accurate lifetime prediction, additional 
accuracy is achieved in predicting future SOH upon including one label, as depicted 
in Fig. 4-3(b). This leads to a reduction in RMSE and MAE of predicted SOH from 
0.26% and 0.14% to 0.17% and 0.10%, respectively. In Fig. 4-4(a), a scenario unfolds 
where the predicted lifetime falls short of the actual lifetime, resulting in a 27-cycle 
error. Nonetheless, predicted future SOH still mirrors the pattern observed in real 
degradations. The predicted SOH RMSE and MAE stand at 1.06% and 0.56%, 
respectively. Furthermore, with the acquisition of an additional checkpoint situated in 
fast aging phase, the predicted SOH curve converges more closely to the expected real 
curve, as demonstrated in Fig. 4-4(b) Lifetime prediction error reduces to 9 cycles, 
and RMSE and MAE of the predicted SOH curve decrease to 0.27% and 0.17%, 
respectively. For cell 3, depicted in Fig. 4-5(a), predicted lifetime surpasses the actual 
value, resulting in a 35-cycle difference. Nevertheless, the predicted future SOH curve 
continues to align well with real values, yielding RMSE and MAE of merely 0.62% 
and 0.15%, respectively. With the introduction of a fourth label, as seen in Fig. 4-5(b), 
the prediction accuracy improves even further, with an error of merely 8 cycles, SOH 
RMSE and MAE stand at just 0.15% and 0.07%, respectively. The 95% CI 
encompasses real SOH, underscoring the reliability of predicted outcomes. 

 
Figure 4-6 Comparison with curve fitting methods. Source: [J7] 

Experimental results above underscore satisfactory performance of the proposed 
method in reconstructing historical degradation curves and predicting future 
trajectories using limited labels. To provide further evaluation, comparisons with 
curve-fitting methods are depicted in Fig. 4-6, which are the results derived from cell 
1. The solid lines represent actual values and predictions achieved with three 
checkpoints. Given that empirical models are supposed to have fewer unknown 
parameters than available labels, exponential and second-order polynomial functions 
are employed. The outcomes reveal that curve-fitting methods struggle to accurately 
predict SOH curves with too limited labels. Even with four labels available, curve-
fitting models (depicted by dot-dash lines) still exhibit huge errors. Among these 
models, the third-order polynomial function yields the most accurate prediction, yet 
its error of 52 cycles significantly surpasses the prediction achieved by the proposed 
model utilizing only three labeled checkpoints. Therefore, these comparative 
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evaluations strongly suggest the proposed model outperforms curve-fitting techniques 
in predicting future SOH curves and lifetime with very limited labels.  

 
Figure 4-7 Prediction performances of proposed model with comparisons to two benchmark 

methods. Source: [J7] 

To assess the prediction enhancement provided by the proposed SSSL approach, two 
benchmark methods are employed for comparative evaluations, as shown in Fig. 4-7. 
The model structure for SOH estimation and predictions of the benchmarks remains 
the same as the model used in our method. The distinction lies in whether SOH 
estimation model is retrained using sparse labels and whether SOH prediction model 
undergoes self-training utilizing reconstructed pseudo-historical SOH. Specifically, 
detailed conditions of the two benchmark methods are listed as follows. Benchmark 
1: In this scenario, SOH estimation model is utilized to estimate historical SOH, and 
SOH prediction model is employed to predict future degradation using the estimated 
SOH. Benchmark 2: In this case, SOH estimation model is retrained using sparse 
labels, and reconstructed SOH from this retrained model is used to predict the further 
SOH degradation curve without self-training SOH prediction model. Proposed SSSL 
method involves both retraining SOH estimation model using sparse labels and self-
training SOH prediction model using reconstructed pseudo-historical SOH. This 
approach aims to improve both SOH estimation and prediction. The results indicate 
the narrowest error distribution of the proposed model compared to these two 
benchmarks, representing more accurate and reliable health predictions. 
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Table 4-2 presents the absolute mean RMSE and MAE values for SOH predictions, 
as well as average error and relative error of lifetime predictions, along with the 
computational burden of the entire prediction procedure concerning all 45 batteries 
TD1. The outcomes illustrate the progression pattern from Benchmark 1 to 
Benchmark 2, and further to the newly introduced model. The suggested approach 
demonstrates a reduction of 59.39% and 65.10% in the mean RMSE and MAE, 
respectively with comparisons to conventional model (Benchmark 1). Similarly, 
errors and relative errors of lifetime prediction are respectively curtailed by 78.69% 
and 74.61%. 

The computation time encompasses the duration needed for the complete retraining 
of SOH estimation model, self-training of SOH prediction model, historical SOH 
reconstruction, and future SOH degradation predictions. The average time taken for 
computation across all 45 cells culminates in the ultimate computational time shown 
in Table 4-2. The findings indicate additional processes of retraining and self-training 
do not entail a substantial increase in computation, only extending by approximately 
17 seconds (less than 81%). Taking into account the commendable enhancement in 
accuracy and the manageable rise in computational load, the proposed method 
evidently presents significant progress in predicting future SOH degradation and 
lifetime, even with limited sparse labels. 

Table 4-2 Numerical comparisons with two benchmark methods. Source: [J7] 
Index Benchmark 1 Benchmark 2 SSSL 

RMSE (%) 2.93% 2.27% 1.19% 
MAE (%) 1.92% 1.18% 0.67% 

Lifetime error (cycles) 106.42 81.93 22.68 
Relative lifetime error (%) 25.09% 20.54% 6.37% 

Computational time (s) 21.28 28.06 38.49 
 

4.1.3.2 Predictions for different battery types 

Real-world applications frequently necessitate predictions for distinct battery types 
that exhibit varied degradation behaviors. Consequently, this section assesses the 
viability of the proposed method in predicting under such applicable scenarios. In this 
application, due to the notably distinct degradation patterns exhibited by batteries in 
the SD dataset, an initial step involves employing a single battery with seven reference 
points. This battery is used to reconstruct the SOH trajectory for self-training SOH 
prediction model. Subsequently, the updated model undergoes refinements following 
the procedures outlined in the prior section. These enhancements facilitate the 
prediction of future SOH and final lifetime for new-type batteries characterized by 
distinctive aging patterns.  
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Figure 4-8 Lifetime prediction results for batteries in TD2. Source: [J7] 

This section focuses on the predictions and evaluation pertaining to batteries in TD2 
(batteries aged under different current rates and environmental temperatures). The 
prediction results for battery cell 2 through cell 6 are depicted in Fig. 4-8. In this 
instance, three labels from early stages (100, 200, and 300 cycle) are employed. 
Notably, outcomes indicate accurate and reliable predictions for these testing 
batteries, despite variations in their lifetime ranges. The predicted future SOH 
trajectory aligns closely with actual values, while 95% CIs effectively converge with 
real degradation curves. These findings underscore the efficacy of the proposed model 
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in predicting battery SOH trajectories and lifetimes of diverse types with disparate 
aging patterns. To assess the impact of selecting the initial retrained battery, cell 6 
serves as the starting point for the complete neural network retraining. Subsequently, 
this retrained model is employed for predictions of cell 1, as shown in Fig. 4-8. 
Remarkably, the outcomes demonstrate accurate and reliable predictions. This 
underscores the strong generalization capability of the proposed method, wherein it 
can effectively adapt to different battery types and aging characteristics.  

Numerical outcomes of future SOH and lifetime predictions of batteries in TD2 are 
listed in Table 4-3. Notably, the lifespan of batteries subjected to 55 ℃ aging 
conditions is approximately 1000 cycles, whereas batteries exposed to 35 ℃ aging 
conditions exhibit remaining lifespans exceeding 2000 cycles. Results signify that 
predicted lifetime errors remain under 50 cycles. As a result, relative errors are 
confined to less than 4.1% for batteries undergoing 55 ℃ aging with approximately 
1000 cycles left, and less than 2.1% for conditions under 35 ℃ with over 2000 
remaining cycles. The early lifetime prognosticated errors are sufficiently modest. 
The errors for future SOH curves are uniformly minimal across all batteries. 
Specifically, RMSEs and MAEs are respectively under 0.81% and 0.70%.  

Table 4-3 Future SOH and lifetime prediction results for TD2 batteries. Source: [J7] 
Battery 

cell 
Real 

lifetime 
Predicted 
lifetime 

Absolute 
error  

Relative 
error 

RMSE of 
capacities 

MAE of 
capacities 

Cell 1 982 1029 47 cycles 4.08% 0.51% 0.41% 
Cell 2 931 893 -38 cycles -3.44% 0.81% 0.70% 
Cell 3 1034 1082 48 cycles 3.93% 0.53% 0.41% 
Cell 4 2131 2164 33 cycles 1.55% 0.54% 0.45% 
Cell 5 2013 1975 -38 cycles 1.78% 0.36% 0.30% 
Cell 6 2131 2088 -43 cycles 2.02% 0.44% 0.34% 

 
4.1.4. SUMMARY 

Predicting future degradation curves and corresponding lifetimes stands as crucial yet 
intricate endeavors in the realm of intelligent battery management. This section 
introduces an innovative SSSL prediction framework to address these challenges. The 
framework's foundation involves the initial training of base models for historical SOH 
reconstruction, future SOH and lifetime predictions. This is executed using three 
randomly selected source batteries. To facilitate SOH reconstruction, three HIs are 
extracted considering practical partial curve requirements. Subsequently, a self-
training strategy is introduced, harnessing the potential of pseudo values to enhance 
the prediction model's accuracy. An intriguing aspect is the minimal requirement for 
labeled checkpoints, aligning with real-world scenarios wherein an abundance of 
unlabeled data exists alongside limited labeled data. The efficacy of the proposed 
model is assessed across various scenarios. This evaluation encompasses instances 
where differing battery types and/or distinct degrading patterns are considered.  
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The findings through experimental validations underscore the efficacy of the proposed 
approach across diverse prediction scenarios. For predictions on batteries with same 
type but distinct current profiles, even utilizing just three labels, the mean prediction 
errors of the lifetimes remain below 23 cycles. Incorporating an additional checkpoint 
located in fast aging phases further reduces errors to under 8 cycles. When extending 
the framework for predictions of different battery types, which boasts a lifespan 
exceeding 2000 cycles, results reveal predicted errors below 50 cycles and relative 
errors below 4.1% using merely three labels within the first 300 cycles. Consequently, 
the proposed SSSL-based method aptly achieves early degradation curve prediction 
with commendable precision and reliability. 

4.2. LONG-TERM DEGRADATION TRAJECTORY PREDICTION 
WITH DOMAIN ADAPTATION AND LONG-TERM 
REGULARIZATION 

4.2.1. MULTI-TASK LEARNING-BASED FUTURE DEGRADATION 
TRAJECTORY PREDICTION WITH FEATURE EXTRAPOLATION 

Capacity is not readily accessible in real-world applications, making it impractical to 
use capacity extrapolation methods for predicting battery health. On the other hand, 
the features mentioned earlier can be obtained from operational data after simple 
preprocessing steps. As a result, extrapolating these features becomes a viable 
approach for practical applications. Moreover, battery SOH can also be predicted 
using these features through established relationships. Therefore, in this study, we 
employ MTL to predict future SOH by extrapolating the extracted features with DA 
and a long-term regularization, eliminating the need for labeled data from the target 
batteries. The model framework is shown in Fig. 4-9. 

More specifically, the model takes various historical features, as introduced in the 
previous section, as inputs, and it predicts the future values of these features as well 
as SOH. To meet practical needs, it is possible to define different prediction horizons 
within a single prediction step. Therefore, the general representations of the input 
matrix X and the output matrix Y for each sample can be formulated as follows, 
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(4.3) 

The model is composed of two components: a base section for learning shared 
information, and task-specific segments connected afterward for making individual 
predictions. Various types of networks can be employed for the base part, while, in 
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the task-specific sections, a multilayer perceptron (MLP) is utilized. In this study, we 
have opted for a base network based on a gated recurrent unit (GRU)-based recurrent 
neural network, augmented with a fully connected layer [69]. Many prior research 
papers have already conducted comparisons among various deep neural networks. 
Given the primary focus of this paper on enhancing performance through DA and 
achieving long-term prediction results, we have restricted our experiments to using 
the GRU network in this paper. However, it's worth noting that this methodology can 
be readily extended to incorporate other deep neural networks in future studies. In our 
chosen architecture, the base network part employs 128 neurons for the GRU layer 
and 64 neurons for the fully connected layer. In the task-specific sections, the MLPs 
are configured with 64, 32, and 1 neuron, respectively. It's important to note that this 
work utilizes three features that were previously introduced in our research as 
illustrative examples for future trajectory prediction. However, it's flexible and 
straightforward to incorporate or replace these features with more advanced ones 
tailored to specific applications. During the training process, the model minimizes the 
regression losses for all the features, as well as the SOH. To learn the mapping 
relationships effectively, we calculate the weighted mean value of the three losses for 
feature regression, which serves as the feature regression loss. Additionally, the loss 
associated with SOH prediction is regarded as the SOH regression loss for the source 
battery. To quantify these regression losses, we compute the mean square errors 
(MSE) between the model predictions and the actual ground truth values. 

 
Figure 4-9 MTL-based SOH prediction framework. Source: [J8] 

4.2.2. LONG-TERM REGULARIZATION AND DOMAIN ADAPTATION 

There is a notable domain discrepancy among various batteries due to differences in 
applications and inherent properties. To improve model's performance on testing 
batteries, fine-tuning can be carried out using freshly acquired labeled samples from 
the target domain, as presented and evaluated in the above section. However, in many 
practical scenarios, obtaining labeled SOH is challenging, and only operational 
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measurements are accessible. Consequently, it is imperative to explore unsupervised 
DA. The MMD loss, as introduced in the previous chapter, is included to describe 
hidden feature domain discrepancy between source and target batteries produced by 
the base network part. 

 
Figure 4-10 Commonly seen MSE variations with epochs for long-term prediction when 

training the STP model. Source: [J8] 

In the context of degradation trajectory prediction, especially in the case of long-term 
predictions using a recursive framework, a significant challenge arises from the fact 
that cumulative errors can lead to predictions deteriorating or flattening rapidly. Fig. 
4-10 illustrates four commonly observed MSEs associated with long-term trajectory 
prediction during the training of the STP model. In an ideal scenario, the MSE for 
long-term trajectory prediction, based on extrapolations made by the STP model, 
should exhibit a consistent decrease, as indicated by the solid blue lines. However, 
under various conditions, represented by the dashed lines, other scenarios are also 
likely to occur. These scenarios might involve the MSEs for long-term trajectory 
prediction becoming significantly large or exhibiting instability. Hence, ensuring 
reliable long-term prediction performance through the extrapolation of the STP model 
poses a considerable challenge. To address this issue, this section introduces a long-
term dependency regularization approach, which involves incorporating an additional 
recursive prediction loss for the source battery. In this approach, we perform recursive 
predictions on the source battery, aiming to forecast the entire degradation trajectory 
from its initial state. Subsequently, we calculate the loss between the predicted 
trajectory and the actual values to assess and constrain long-term prediction 
performance during training. Consequently, the final model becomes well-suited for 
both short-term and more challenging tasks of long-term recursive predictions.  

In summary, the comprehensive loss function includes several components: 
regression losses for the features of both the source and target batteries, regression 
loss for the SOH of the source battery, MMD loss to mitigate domain discrepancy, 
and long-term prediction losses for both the features and SOH of the source battery. 
The complete expression of the loss function is as follows, 
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where α, β, μ, λ are weighting coefficients.  

To mitigate the uncertainty arising from manual weight allocation, streamline the 
weight-tuning process, and enhance the model's adaptability across various 
applications, we employ an automatic weight allocation scheme. Specifically, we 
employ the homoscedastic uncertainty method introduced in [90] for task-specific 
weight allocation. This is achieved by maximizing the Gaussian likelihood. The model 
output can be defined as the following likelihood with weights W on input x, and an 
observation noise scalar σ ,  

( )( ) ( ) 2( , )W Wp y f x N f x σ=  (4.5) 

In negative minimum likelihood inference, the objective is to maximize the log-
likelihood of the model. This can be expressed as, 
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In the case of multi-task-based outputs, the likelihood can be expressed as, 
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Therefore, the negative log-likelihood of the multi-tasks model outputs is, 
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where the former k items represent the loss of the multiple outputs while the last 
objective learns the relative weight of these losses adaptively. Indeed, as the noise 
parameter kσ  increases, the weight assigned to the kth loss decreases, and conversely, 
as σ decreases, the weight increases. Moreover, the final objective can serve as a 
regularization mechanism, preventing the noise parameter from growing excessively, 
which could lead to disregarding the data itself. In this way, the weight for each task 
is allocated adaptively based on the data characteristics encountered during training. 
Additionally, the learning rate is initialized at 0.01 for the first 200 epochs. Afterward, 
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it is adjusted dynamically by multiplying it by 0.98 every 5 epochs until reaching 300 
epochs to enhance training in later stages and help fine-tune the model effectively. 

4.2.3. PREDICTION RESULTS 

To assess performance and compare it with several benchmark methods, we utilize 
the following metrics: RMSE, MAE, and MaxAE. Additionally, we include the R2 
and PCC to evaluate the prediction performance. We examine and discuss three 
distinct cases to illustrate the model's performance under various application 
scenarios. In these cases, long-term predictions commence from an early stage, 
typically at 100 cycles, and extend to forecast the entire trajectory. 

4.2.3.1 Predictions for different dynamic loadings 

In this case, we employ a battery aged under CC to predict the health of batteries 
subjected to dynamic loading profiles. This setup mimics a real-world scenario where 
an experimental battery is trained for predictions under real-world usage patterns.  
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Figure 4-11 Prediction results for dynamic loadings. (a) proposed model, (b) Benchmark 1, 

(c) Benchmark 2, (d) Benchmark 3. Source: [J8] 

The short-term and long-term predictions for all six batteries (B#2 to B#7) generated 
using our proposed method are displayed in Fig. 4.11(a). The predictions of three 
benchmarks are also presented in Fig. 4.11(b)-4.11(d) for comparative evaluations. 
These benchmarks are the MTL without DA or long-term regularization (Benchmark 
1), the model only with DA (Benchmark 2), and the model only with long-term 
regularization (Benchmark 3). The results suggest that there are no substantial 
differences in short-term predictions among the various methods, which is consistent 
with the findings presented in Table 4-4. These methods exhibit similar accuracy and 
fitting effectiveness, although our method demonstrates superior overall performance.  

Indeed, when it comes to long-term prediction, the differences between the proposed 
method and the benchmarks become more pronounced. In scenarios where no long-
term regularization is applied, as demonstrated in Fig. 4-11(b) and Fig. 4-11(c), 
predictions tend to flatten out over time, leading to a loss of predictive capability 
during extrapolation. For instance, when looking at the conventional method 
represented by Benchmark 1, the prediction errors are not excessively large, with 
RMSE and MAE at 2.171% and 1.654% respectively. However, as depicted in Fig. 4-
11(b), the predictions start to flatten out in the lower SOH range. This indicates that 
the predictions struggle to predict battery lifetimes, and the model fails to effectively 
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predict the entire trajectories. The predictions produced by Benchmark 2 also exhibit 
a decline in long-term prediction performance, characterized by substantial errors and 
low fitting coefficients. It's apparent that while some predictions may yield 
satisfactory results, others perform poorly under Benchmark 2. This inconsistency 
underscores the importance of incorporating long-term regularization to stabilize the 
model's long-term prediction ability. In contrast, when considering the results with 
long-term regularization, as depicted in Fig. 4-11(a) and Fig. 4-11(d), the predictions 
improve, particularly in the lower SOH range. This enhancement ensures that the 
predictions remain effective throughout the entire lifetime of the batteries. When DA 
is employed, the predictions generated by the proposed method exhibit improved 
accuracy and fitting effectiveness compared to the benchmarks that do not utilize DA. 
As summarized in Table 4-4, all indicators have significant improvements when using 
the proposed method in contrast to the benchmarks. Specifically, both RMSE and 
MAE are less than 1.83% for the entire predicted trajectory. Moreover, the R2 exceeds 
0.86, and the PCC between the predicted curve and the real curve is greater than 0.95.  

Table 4-4 Long/short-term prediction results. Source: [J8] 

Predictions  Bench- 
mark 1 

Bench- 
mark 2 

Bench- 
mark 3 Proposed 

Short-term prediction 

RMSE 2.586 2.569 2.593 2.554 
MAE 1.964 1.967 1.968 1.957 

MaxAE 6.855 6.946 6.852 6.934 
R2 0.781 0.781 0.780 0.784 

PCC 0.954 0.955 0.954 0.956 

Long-term prediction 

RMSE 2.171 2.501 2.303 1.822 
MAE 1.654 1.732 1.884 1.464 

MaxAE 5.490 9.157 5.120 4.225 
R2 0.791 0.614 0.750 0.862 

PCC 0.926 0.884 0.936 0.951 

Interestingly, the results reveal that long-term predictions exhibit fewer errors 
compared to short-term predictions. This phenomenon can be attributed to the fact 
that short-term predictions rely on features that are extracted at the current time, while 
long-term predictions are derived from extrapolated features. The features obtained 
under different operational conditions display noticeable discrepancies. These 
differences in features introduce variations in the regression relationship between the 
features and SOH, leading to larger errors in short-term predictions. On the other hand, 
in long-term predictions, the features themselves are predicted, and the future features 
may deviate from the actual extracted ones but align better with the SOH-feature 
relationship. Consequently, long-term predictions tend to have better accuracy. In 
summary, these results suggest that the proposed model is capable of effectively 
predicting the entire degradation trajectory even under unforeseen conditions, starting 
from the early stages of data acquisition. 
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Figure 4-12 Fig. 6 Long-term trajectory prediction for batteries aging under (a) UDDS 

profile, (b) HWFET profile, and (c) Hybrid profile. Source: [J8] 
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4.2.3.2 Predictions for similar loadings with different SOC ranges 

In the next set of experiments, a more moderate condition is examined. An additional 
cell that operates under similar loading conditions is introduced alongside the CC cell 
to serve as a source battery. This setup is designed to assess the prediction 
performance for another cell subjected to dynamic loadings at different SOC ranges. 
Similar to the previous experiments, the predictions begin from the same starting 
point, which is at 100 cycles. These experiments encompass three distinct loading 
profiles, each resulting in different lifetime ranges and degradation patterns. By 
evaluating performance across these diverse scenarios, we can gain a more 
comprehensive understanding of the model's predictive capabilities. The results for 
these three working profiles are presented in Fig. 4-12, and the corresponding 
numerical outcomes are detailed in Table 4-5. 

Table 4-5 Predictions of different dynamic loadings. Source: [J8] 

Working condition Index Bench- 
mark 1 

Bench- 
mark 2 

Bench- 
mark 3 Proposed 

UDDS 

RMSE 4.416 9.779 0.407 0.375 
MAE 3.785 8.881 0.328 0.314 

MaxAE 8.437 14.930 1.721 1.196 
R2 -2.677 -174.482 0.992 0.994 

PCC 0.914 0.674 0.996 0.997 

HWFET 

RMSE 5.943 7.905 1.513 0.764 
MAE 5.135 6.904 1.433 0.645 

MaxAE 9.308 12.091 2.353 1.595 
R2 -7.065 -32.915 0.884 0.974 

PCC 0.937 0.808 0.997 0.998 

Hybrid 

RMSE 5.437 9.352 1.087 0.992 
MAE 4.708 8.521 0.923 0.879 

MaxAE 10.290 15.050 2.059 1.818 
R2 -7.150 -199/316 0.947 0.950 

PCC 0.896 0.708 0.989 0.995 
 
The results indicate that long-term trajectory predictions are unsuccessful when long-
term regularization is not included. Both the two benchmarks, MTL (Benchmark 1) 
and MTL+DA (Benchmark 2), tend to flatten out several steps after the recursive 
process. Interestingly, the DA-based method experiences this flattening phenomenon 
even sooner than the basic MTL method. This observation may be attributed to the 
model's efforts to minimize MMD loss, potentially at the expense of its long-term 
prediction capabilities. Additionally, it's worth noting that when incorporating an 
additional battery for training, long-term predictions tend to exhibit this flattening 
behavior more readily compared to the results observed in the above prediction 
scenarios. Upon incorporating long-term regularization, the predictions become stable 
throughout the entire lifetime. With DA included during training, the proposed 
method (MTL+DALR) produces predictions that are closer to actual degradation 
curve when compared to MTL+LR (Benchmark 3), even though Benchmark 3 
addresses the primary issue of long-term trajectory prediction. Numerical results listed 
in Table 4-5 support these findings, demonstrating that the proposed model achieves 
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the highest accuracy and fitting effectiveness. Specifically, RMSE and MAE are less 
than 1% for all three dynamic loading profiles, accompanied by fitting coefficients 
exceeding 0.95. These results collectively indicate that the proposed method delivers 
satisfactory predictions throughout the entire trajectory, starting from the early stages 
of data acquisition. 

4.2.3.3 Predictions with variable temperature conditions 

In the third case, the objective is to use batteries that have aged under constant 
temperature conditions as source batteries to predict the degradation of batteries 
operating under variable temperature conditions. This scenario simulates real-world 
conditions where weather fluctuations can lead to varying degradation patterns that 
differ from those observed under constant temperature conditions.  

 
Figure 4-13 Short and long-term predictions for the three testing batteries aging under 

dynamic currents and variable temperatures. Source: [J8] 

Results presented in Fig. 4-13 demonstrate the real values alongside short-term and 
long-term predictions for three batteries undergoing degradation under dynamic 
loadings and variable environmental temperatures. The short-term predictions 
successfully capture the fluctuations in SOH caused by temperature variations, with 
RMSE and MAE of 1.190% and 0.999%, respectively. In terms of long-term 
predictive performance, the predictions starting from the early stages also align well 
with the overall degradation patterns, yielding RMSE and MAE values of 2.447% and 
2.051%, respectively. This suggests that the degradation trajectories can be effectively 
modeled and predicted. However, it's important to note that practical applications 
typically involve batteries operating under variable temperature conditions. 
Therefore, considering seasonal temperature variations as additional input 
information may further improve the accuracy of predicting overall degradation 
trajectories. Given the primary focus of this work on DA and long-term regularization, 
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the study of trajectory distribution predictions will be explored in future research, as 
proposed in J1. 

4.2.4. SUMMARY 

This paper introduces an innovative framework for degradation trajectory predictions 
of batteries operating under previously unobserved working conditions. MTL is 
designed to predict future SOH values through the recursive predictions of highly 
effective features, without requirements of prior SOH values. Furthermore, a DA 
strategy and long-term regularization techniques are proposed to enhance the model's 
ability to make stable predictions during the recursive process. To assist in the training 
process, automatic weight allocation and learning rate adjustment mechanisms are 
introduced. The effectiveness of this approach is evaluated through a series of 
experiments where batteries are aged under various loading profiles that closely 
resemble practical operating conditions. The results demonstrate the advancements 
achieved by the proposed method, which excels in delivering accurate predictions for 
both short-term and long-term trajectories compared to three benchmark models. The 
predicted RMSE and MAE are respectively within 1.822% and 1.464% for predictions 
that commence from the early stages. These predictions rely solely on one battery that 
has aged under constant current profiles, serving as the source battery, without 
utilizing any labels from the testing batteries operating under both urban and highway 
loadings. The RMSE and MAE are respectively less than 0.992% and 0.879% and the 
fitting coefficient is larger than 0.95. Furthermore, the model's predictive performance 
can be further enhanced by incorporating an additional source battery operating under 
the same loading conditions but at different SOC ranges. Under variable temperature 
conditions, the model's predictions effectively capture the overall degradation trends.  
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CHAPTER 5. PREDICTIVE HEALTH 
ASSESSMENT WITH ACCELERATING 
AGING DETECTION 

The SOH prediction methods introduced in the previous chapter provide future 
degradation information. In order to take advantage of the predictions for the guidance 
of predictive maintenance. The degradation regions of different aging stages are 
generally divided by the onset of knee point, where the aging rate is accelerated 
thereafter. Therefore, the detection of battery knee is critical in battery health 
prognostics and management. In addition, probabilistic detection is more valuable 
than point detection for management strategies design since one-point prediction is 
generally not so accurate and the time for management within one point is limited.  

To deal with this practical application requirement, this chapter proposed a general 
framework that makes use of the probabilistic predictions for both the point and 
sequence predictions for the accelerating aging region detection that help better guide 
the predictive maintenance. The same DL structure for the multi-task sequence 
predictions of battery SOH and aging rate is employed for the knee point prediction 
to provide the baseline for onboard detection. Based on the two predictions, a 
probabilistic aging rate deviation method is proposed for the different aging regions 
detection. Moreover, cloud-edge framework is adopted considering practical 
applications where TL can be implemented. With investigations in this chapter, the 
general framework for accelerating aging detection with integral use of both point 
prediction and sequence prediction is demonstrated. The maintenance, replacement, 
or optimal control can be conducted by the guidance of the detection to extend the 
lifetime of the battery packs during practical applications.  

J9 contributes to this chapter.  

5.1. KNEE POINT PREDICTION 

5.1.1. BATTERY KNEE DEFINITION AND BASIC MECHANISMS 

The presence of a knee point can be attributed to aging-related mechanisms, including 
but not limited to processes such as resistance growth, lithium plating, and electrode 
saturation, as visually illustrated in Fig. 5-1. For an in-depth exploration of these 
intricate mechanisms, please refer to the source provided in [91]. To provide a concise 
overview, lithium plating stands out as a major contributor to battery degradation and 
the emergence of a knee point. This phenomenon is particularly pronounced under 
high-charge currents and/or low-temperature situations. Metallic lithium in this 
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scenario is formed on the electrode surface with lithium ions, which generally are 
supposed to intercalate into the electrode [91], [92]. This process can result in the 
depletion of the electrolyte due to side reactions or gas generation, leading to active 
material loss and lithium plating, ultimately culminating in the appearance of a knee 
[93]. Moreover, the depletion of additives can exert an influence on knee onset 
through mechanisms like resistance growth and lithium plating. Mechanical 
deformation, driven by microscopic and macroscopic pressures, can hasten aging and 
contribute to the knee phenomenon [68], [94]. In cases where side reactions 
predominantly occur at the cathode, electrode saturation emerges as a significant 
factor. This saturation occurs when the loss rate of active material outpaces reduction 
in lithium inventory [91]. As batteries age, their internal resistance increases primarily 
due to SEI growth and byproducts of side reactions. Lastly, the percolation-limited 
connectivity driving knee stems from percolation theory and explains electrolyte dry-
out mechanisms [95] [91].  

 
Figure 5-1 Battery knee and main related mechanisms. Source: [J9] 

Methods for identifying knee points are diverse and extensively summarized in [91]. 
A majority of these methods necessitate the complete degradation curve for 
computation that is typically employed for offline identifications. The aging rate is 
described by curve slope, which can be determined by taking the difference between 
the predicted SOH, or directly predicted, thereby enabling online applications. To 
evaluate accelerated aging in real-time, Kneedle method is adopted. This method 
posits that slope value of knee is consistent with a line drawn from beginning to the 
EOL, as illustrated in Fig. 5-1. This approach provides a means to assess accelerating 
aging dynamics while being executed onboard [96]. In particular, our approach 
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involves calculating the knee slope by drawing a line from the 10th cycle (as adapted 
from [55]) to EOL point, which is symbolically represented as, 

EoL 10

EoL 10knee
SoH SoHk −

=
−

   (5.1) 

5.1.2. EARLY STAGE MTL-STP PROGNOSTICS 

Battery design and optimization significantly benefit from early predictions of 
lifetime and knee onset, particularly in endeavors like optimizing fast charging 
strategies [72], [97]. Recent studies have concentrated on single objectives within 
prediction realm or have employed multiple models for diverse prediction tasks. This 
approach escalates complexity and hinders algorithmic integration into BMS. To 
address this, MTL is introduced, aiming to consolidate different prediction tasks by 
facilitating shared information learning for related prognostics, whose general 
structure is illustrated in Fig. 5-2.  

 
Figure 5-2 General MTL structure for battery health prognostics. Source: [J9] 

In this architecture, input information comprises measured voltage, capacity, and 
temperature data. This data is processed into three sequences: a Q sequence, a dQ 
sequence, and a dT sequence. The model adopts a CNN-LSTM-BNN structure. The 
2D CNN layer serves for spatial information extraction from partial measurement 
sequences, capturing the correlation between voltage ranges and various features. 
Subsequently, LSTM layer captures sequential relationships through different running 
cycles, while BNN facilitates probabilistic predictions. This amalgamation culminates 
in a neural network output, expressed as follows, 

ˆ BNN(LSTM(CNN( ,d ,d )))y Q Q T= ,  (5.2) 

where the output is one point for STP prognostics and sequences in STS prognostics. 
During training, the overall loss is a combination of individual task losses, each 
weighted by a factor of λ, 

i i
N

L Lλ=∑ .   (5.3) 
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The negative log-likelihood loss function is employed, as described in Chapter 2 [78]. 
Specifically, STP model employs 4 loss functions, while the STS model employs 2 
loss functions. 

5.2. SEQUENTIAL SOH AND AGING RATE PREDICTIONS 

Capability of onboard prediction holds crucial importance in health prognostics for 
guiding proactive predictive management. Beyond merely predicting the future SOH, 
it's equally vital to assess the rates of degradation in the upcoming SOH curve, which 
is effectively described by slopes of the forecasted SOH curve. As previously 
introduced, STS framework offers distinct advantages for accurate future SOH 
prediction, eliminating the need for an iterative process that could lead to gradient 
vanishing or acceleration issues during prediction. To simultaneously predict 
degradation variations in forthcoming cycles, the MTL approach is also harnessed. To 
maintain consistency, the same model framework utilized for STP-based early 
prognostics is employed, except for output numbers. For point prediction, output 
length is set to 1, while for n of STS model-based future curve predictions. Input data 
selection involves employing a m cycle-based sliding window. Consequently, a 
comprehensive m-to-n STS model is established. For the STS prediction, default 
values for m and n are set to 30 and 50, respectively. Similar to STP model, input 
information comprises Q sequences, dQ sequences, and dT sequences. The output of 
this framework includes both SOH and aging rates.  

Slopes of SOH curve experience variations at each data point and can be overly 
responsive to local fluctuations, potentially leading to inaccurate alerts. Furthermore, 
as battery aging unfolds over an extended duration, the assessment of accelerating 
aging necessitates accounting for the overall degradation rate. Consequently, 
preprocessing the SOH curve data is essential before computing slopes during data 
preparation for training. Common techniques like filtering and empirical mode 
decomposition (EMD) are often utilized to produce SOH curve smoothing. However, 
despite these efforts, processed curves can still be affected by abrupt local variations. 
To address this challenge, empirical exponential model (EEM) is introduced to fit 
SOH curve, subsequently serving for slope calculation. The empirical model can be 
represented as, 

* *bx dxy a e c e= +   (5.4) 

where a, b, c, d are four fitting coefficients, and the cycle number and SOH are 
represented by x and y respectively. Upon this fitted curve, slope (k) at current cycle 
(i) is calculated by determining two adjacent SOH differences,  

1i i ik y y −= −    (5.5) 
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Figure 5-3 Effectiveness of different slope acquisition methods. Source: [J9] 

Fig. 5-3 presents a comparison of the slope variations obtained through different 
methods using data from an experimental battery. The filter-based approach utilizes a 
Savitzky-Golay filter using a cubic polynomial fitting function with a window length 
of 55. While the filter and EMD methods contribute to a smoother degradation curve, 
the resulting slope variations remain notably sharp. In contrast, EEM method 
preserves overall degradation characteristics and exhibits smoother slope variations. 
By leveraging EEM-derived slopes, MTL framework can more effectively capture 
degradation variation properties in conjunction with SOH predictions. The intricate 
architecture of the network is detailed in J9. 

5.3. PREDICTIVE HEALTH ASSESSMENT WITH PROBABILISTIC 
PREDICTIONS AND ACCELERATING AGING DETECTION 

Predictive health management, particularly for the identification of accelerating aging, 
is crucial in devising effective strategies to prolong battery life. By detecting the onset 
of the knee point, interventions can be implemented to delay this occurrence and 
extend the battery lifetime. Drawing inspiration from battery internal short circuit 
stages delineated in [82], our approach categorizes aging into three distinct regions. 
In the "green" region, the slope of degradation changes slowly. Subsequently, it 
transitions to the "yellow" region, where acceleration becomes apparent around the 
knee point. Finally, aging enters the "red" region characterized by rapid degradation. 
Predictive actions should be initiated before entering the "red" region, striking a 
balance between cost-saving and efficient battery management. As a result, accurately 
and timely identifying the "yellow" region is of paramount significance. Leveraging 
probabilistic predictions for both future degradations and knee slopes, our approach 
facilitates accelerating aging assessment. This enables stakeholders to take proactive 
measures before the battery's health declines rapidly, ensuring optimized battery 
performance and lifetime. 

In a more detailed breakdown, as depicted in Fig. 5-4, three aging regions are 
distinctly demarcated by two CIs: one for knee slope point predictions and the other 
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for future degradation prognostics. Here, the inverse value of slope is deployed to 
effectively represent acceleration. The lower boundary of the "yellow" region is 
established through the intersection of the upper CI limit for sequence prognostics and 
the lower CI limit for the knee slope prediction. Conversely, the upper boundary is 
determined by the CI intersection in the opposite scenario. As a result, when signaling 
the impending onset of accelerating aging, it's imperative to initiate predictive health 
management measures to extend battery lifetime. This approach ensures timely and 
effective interventions for optimizing battery health. 

 
Figure 5-4 Probabilistic prognostics driven accelerating aging detection. Source: [J9] 

In this study, our model is trained initially on cloud and then transmitted to the edge 
device. The edge device facilitates onboard prognostics by utilizing input information 
through a sliding window approach. Furthermore, TL emerges as a potent strategy to 
enhance accuracy and broaden applicability across diverse scenarios. To this end, a 
FT approach can be employed on edge. Specifically, this involves retraining the 
second LSTM and probabilistic layer, as depicted in Fig. 5-2. This design minimizes 
computational load while capitalizing on pre-learned mapping relationships. The 
outcome is an approach that effectively balances computational feasibility with 
accurate predictive capabilities for onboard applications. 

The overall framework is illustrated in Fig. 5-5. To begin, early aging prognostics are 
considered. This entails predicting key characteristics like knee slope and other 
lifetime-related parameters through the utilization of a probabilistic STP-MTL model. 
The prognosticated knee slope subsequently serves as a pivotal reference for 
downstream health assessment. Then, a probabilistic STS model for forecasting future 
SOH and degradation slopes acted. This prediction process leverages sliding windows 
to take information from partial Q-V and T-V curves. The model is trained offline on 
cloud and subsequently deployed on an edge device for real-time prognostics. The 
resulting online predictions are harnessed for health assessment, wherein historical 
information can be incorporated via TL. These outcomes hold significant implications 
for guiding health management strategies to extend battery lifetime.  
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Figure 5-5 Overall framework for predictive battery health assessment. Source: [J9] 

5.4. RESULTS AND DISCUSSION 

5.4.1. EARLY AGING DETECTION 

STP framework extends beyond conventional single-point prediction or classification 
approaches, offering predictions for a broader range of life-related parameters. 
Notably, it enables forecasts about the cycle and slope of battery knee, battery EOL, 
and lifetime classifications. Unlike conventional models that focus on one singular 
prognostic, STP-MTL model embraces a more holistic perspective, allowing for 
comprehensive prognostics. We maintain consistency with works in previous chapters 
utilizing partial Q, dQ, and dT curves as model inputs, ensuring alignment with 
previous methodologies and enhancing the overall coherence of the project.  

Fig. 5-6(a) presents early prognostics of knee slopes. For a more detailed analysis, 
numerical results are tabulated in Table 5-1. This comparison includes the utilization 
of a single model for various tasks, following the approach outlined in Severson et al. 
[55]. The results indicate a strong alignment with the ideal fitting line within the CIs, 
illustrating the reliability of most prognostics. Significantly, MTL model enhances 
accuracy while demanding fewer cycles for input. The mean absolute percentage error 
(MAPE) for slope prediction stands at 9.97%, which effectively meets the 
requirements for probabilistic warning boundary establishment, as demonstrated in 
Fig. 5-6(a). Furthermore, MTL model not only excels in single knee slope prognostics 
but also opens the door for other valuable lifetime-related predictions. Demonstrating 
this versatility, our model highlights knee cycle, EOL cycle predictions, and lifetime 
classification, as showcased in Fig. 5-6(b) to Fig. 5-6(d), respectively.  
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The introduction of two additional prognostic tasks, namely EOL and knee cycle 
prediction, also showcases improvements with MAPE of less than 10.25% and 
10.81% respectively. Furthermore, the incorporation of a classification task enhances 
the model's integration. Notably, our methodology employs partial Q and T curves 
instead of the entire discharge process employed in [55], also eliminating the need for 
manual feature engineering, rendering it more suitable and feasible for real 
applications. An advantage lies in the ease with which the regression and classification 
tasks can be combined via MTL. This streamlines the modeling process while 
enhancing algorithm integration within BMSs. Additionally, MTL model is adaptable 
for expansion with additional tasks of interest to researchers, thereby bolstering its 
versatility and potential applicability. 

Table 5-1 Model performance evaluations. Source: [J9] 
Prediction task MAE MAE [55]  MAPE MAPE [55] 
Slope of knee 2.37*10-5 3.11*10-5 9.97% 11.81% 

EoL cycle 90 (cycles) 94 (cycles) 10.25% 11.70% 
Cycle of knee 71 (cycles) 74 (cycles) 10.81% 12.71% 

Lifetime classification 3 items 4 items 6% 8% 

 
Figure 5-6 Early state prognostics with STP MTL model. Source: [J9] 

5.4.2. MULTI-STEP AHEAD SOH PREDICTION 

Both the SOH and the degradation slopes of 50 steps ahead are predicted, which 
roughly translates to an early warning of around two months. This prediction horizon 
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is highly practical, considering scenarios where batteries are recharged every one to 
two days. Fig. 5-7 illustrates the predictions for three batteries. The outcomes 
demonstrate that future degradation characteristics are accurately prognosticated. The 
STS model is flexibly adapted to accommodate various prediction horizons. As an 
illustration, SOH predictions with different horizons are presented in Table 5-2. These 
errors are computed across all testing batteries. This evaluation showcases the general 
performance across batteries undergoing distinct current profiles, each characterized 
by its unique aging pattern. The results reveal that the prediction accuracy remains 
remarkably consistent across different horizons, with only a marginal increase of 
approximately 0.2% in RMSE when transitioning from 25 cycles to 100 cycles. There 
is also a slight increase observed in CI. This demonstrates the robustness of the STS 
model, which yields highly accurate and reliable future degradation curve predictions 
across various demanded horizons.  

 
Figure 5-7 SOH and slope predictions for 50 steps of three batteries. Source: [J9] 

Table 5-2 Evaluations for SOH prediction with different horizons. Source: [J9] 
Prediction horizon 25 cycles 50 cycles 75 cycles 100 cycles 
RMSE (%) 1.202 1.334 1.351 1.405 
MAE (%) 0.856 0.912 0.949 0.951 
Mean CI range (%) 1.960 1.967 2.180 2.191 

The prediction offers insights into future degradation in the prediction horizons. In 
addition to assessing the accuracy of the predicted sequence as a whole, it's essential 
to evaluate predictions and errors at specific points within the predicted sequence. 
Specifically, evaluations for two distinct points on the predicted curve – the 1st point 
and the 50th point – are presented in Fig. 5-8(a). The results highlight that a significant 
portion of SOH predictions closely converge to actual values, whether considering the 
1st or 50th point. Notably, when comparing the predictions of the two points, the 
predicted slope variations exhibit relatively larger deviations from the actual values 
for the 50th point. To further quantify the accuracy, the absolute error and relative 
error distributions are depicted in Fig. 5-8(b). These distributions underscore that the 
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errors are predominantly below 5%, with a substantial concentration of errors around 
0. This reinforces the reliability of STS model for predicting all 50 batteries, each 
undergoing different aging trajectories.  

 
Figure 5-8 Evaluations of future predicted 1st point and 50th point. (a) prediction results, (b) 

errors and relative errors. Source: [J9] 

5.4.3. ONBOARD HEALTH ASSESSMENT 

Onboard health assessment plays a pivotal role in facilitating timely predictive 
maintenance strategies, ensuring that batteries vulnerable to accelerating aging are 
optimally managed to extend their operational lifetimes. By leveraging the 
probabilistic STP and STS predictions, it becomes possible to detect distinct working 
condition stages: the "green" health region, the "yellow" accelerating aging region, 
and the "red" fast aging region.  

To illustrate effectiveness of these assessments, health evaluations for three batteries, 
each possessing varying lifespans, are depicted in Fig. 5-9. In each figure, the left 
segment illustrates the predicted future 50th SOH point, while the right segment 
showcases slope trajectories for the same point. The outcomes underscore the 
capability of the proposed model and strategy to effectively track actual values and 
accurately identify accelerating aging region onsets. CI associated with predictions o- 
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Figure 5-9 Health assessments for three batteries with diverse life ranges. Source: [J9] 

-ffer valuable probabilistic boundaries. Notably, fluctuations in SOH predictions can 
lead to substantial fluctuations if utilized for slope calculations. As a result, relying 
solely on the calculated slopes of predicted SOH for assessment can yield wrong 
warnings about accelerating aging. Conversely, leveraging predicted slopes from 
MTL approach mitigates the potential for drastic changes across orders of magnitude, 
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even in the presence of fluctuations. As a consequence, the accelerating aging warning 
becomes more reliable, facilitating more precise and timely predictive health 
management strategies. This approach not only aids in avoiding premature 
maintenance but also optimizes resource utilization by targeting interventions where 
they are most needed.  

 
Figure 5-10 Figure 5-10 Model improvement through fine-tuning. (a), (c), and (e), predicted 

future 50th SOH point and the assessment based on base model. (b), (d), and (f) the 
corresponding results with fine-tuning using the first 10% of data. Source: [J9] 

Updating the model during cycling is a convenient approach to enhance the model's 
performance, particularly in scenarios where the initial model does not perfectly align 
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with testing battery. This process allows the model to adapt to specific battery 
behaviors that may not have been well captured by the initial model. In Fig. 5-10, two 
representative batteries demonstrate this concept. The initial predictions for these 
batteries are either larger-shifted or smaller-shifted relative to the true values, as 
depicted in Fig. 5-10(a) and Fig. 5-10(c), respectively. By performing fine-tuning with 
initial 10% data, significant improvements can be observed in both the accuracy of 
SOH predictions and the detection of accelerating aging, as shown in Fig. 5-10(b) and 
Fig. 5-10(d). Furthermore, Fig. 5-10(e) presents a scenario where the predicted SOH 
values are consistently underestimated, resulting in an early "yellow" region detection 
due to the predicted slope falling below the lower bound from the start. In such cases, 
the assessment loses its practical significance and effectiveness. However, with the 
application of FT, the predicted values come closer to reality, eliminating premature 
warnings of accelerating aging. By FT only the last few layers of the model, 
computational demands on onboard devices remain manageable, making it feasible 
for real-time applications. The RMSE and MAE metrics for the predicted SOH 
sequences across all testing batteries are notably reduced from 1.334% and 0.912% of 
the base model to 1.001% and 0.729%, respectively. This approach enhances the 
model's adaptability and robustness for onboard applications. 

 
Figure 5-11 Statistic analysis for mean value and ranges of battery knees. Source: [J9] 

5.4.4. EXTRAPOLATION TO OTHER BATTERIES 

The proposed framework can be extended to other battery types with different aging 
scenarios, allowing for adaptability to various real-world situations. However, when 
sufficient batteries for STP predictions are not available, determining the threshold 
value for the slope is crucial. In this context, a statistical assumption is made, 
assuming that the relationship between the mean and standard deviation remains 
consistent for a specific battery. The mean value and standard deviation of slope 
values within certain distribution ranges are assumed to follow the same overall 
pattern. The distribution of slope knees and ranges for the publicly available datasets 
is depicted in Figure 5-11. Notably, these distributions showcase properties of normal 
distribution. Thus, leveraging the mean values and slope ranges of training and testing 
batteries, along with their standard deviations, enables the calculation of the required 
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threshold for onboard health assessment. This approach ensures that the framework 
can be effectively applied to different batteries even when direct STP predictions are 
not feasible due to limited available data.  

( ) ( )1 1 2 2
1 2

1 1/ , / ,D m s D m sr r
      =   
   

  (5.6) 

 
Figure 5-12 Health assessment for second-life batteries (a)/(b) results for cell 2/cell 1 using 

initial model, (c)/(d) corresponding results after fine-tuning. Source: [J9] 

For the application and validation of the proposed framework, two commercial pouch 
batteries in their second-life are employed. These batteries exhibit an initial capacity 
that is approximately 73.75% of the nominal capacity, equating to around 5.9 Ah out 
of an 8 Ah nominal capacity. The two batteries have distinct dynamic working profiles 
during their first lives and undergo similar testing profiles during their second life. In 
terms of charging and discharging, a constant current of 2.5 C is applied to the 
batteries, with the transition to constant voltage charging occurring once the current 
diminishes to below 0.1 C. The SOH calculation remains consistent with the earlier 
methodology, involving the division by the 10th cycle, leading to a degradation curve 
from 1 to approximately 0.7. This data serves as the basis for implementing and 
validating the proposed approach on different types of batteries.  
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The outcomes for these two experimental batteries are depicted in Fig. 5-12. 
Specifically, the results utilizing the base model for predicting Cell 1 and Cell 2 are 
showcased in Fig. 5-12(a) and Fig. 5-12(b), respectively. Meanwhile, the outcomes 
employing FT with 30% of the data are exhibited in Fig. 5-12(c) and Fig. 5-12(d), 
respectively. From the figures, it is evident that the calculated bound for the slope 
threshold can encompass the actual threshold, considering CI derived from the 
statistical analysis. With the incorporation of 30% data for FT, the predictions closely 
converge to the actual degradation curves, exhibiting an RMSE of less than 0.76%, 
an MAE of less than 0.55%, and a MaxAE of less than 2.85%. The numerical results, 
as presented in Table 3, showcase significant improvement in prediction accuracy. 
The depicted trajectories of slope variation prior to FT exhibit early warnings for Cell 
2 and late warnings for Cell 1, which align with the overestimation and 
underestimation of SOH predictions. With the application of fine-tuning, the 
trajectories of the aging rate become more accurate, furnishing a precise and timely 
assessment of the anticipated aging rate in future cycles. This enhancement in 
accuracy will greatly facilitate the health management of BMSs.  

Table 5-3 Health assessment performances for the second-life batteries. Source: [J9] 

Testing cell Error (%) Initial model 10% data for 
TL 

30% data for 
TL 

50% data for 
TL 

Cell 1 
RMSE 3.356 2.267 0.623 0.565 
MAE 2.612 1.471 0.405 0.369 

MaxAE 7.942 6.771 2.842 2.531 

Cell 2 
RMSE 3.915 2.310 0.754 0.736 
MAE 3.024 1.661 0.541 0.511 

MaxAE 7.780 5.020 2.616 2.573 
 

5.5. SUMMARY 

This chapter introduces a novel strategy that addresses the crucial need for online 
health assessment, offering a viable solution for practical applications. The combined 
early prediction within the proposed framework showcases remarkable accuracy 
while also optimizing resource utilization by eliminating the need for separate model 
constructions. The synergistic information sharing across associated tasks yields 
benefits for each task, paving the way for an encouraging avenue in the integration of 
distinct yet interconnected prognostic tasks within future BMS. 

Furthermore, the incorporation of sequence predictions within the multi-task 
framework is a notable advancement. This includes the simultaneous prediction of 
future SOH and degradation rates. The obtained results illustrate the adaptability of 
the STS prediction for varying prediction horizons, aligning with practical 
requirements. The predictions are characterized by an RMSE of less than 1.41% and 
an MAE of less than 0.96%, with a majority of the prediction errors falling below 5%. 
The prediction of degradation rates, rather than calculating them from predicted SOH, 
aids in avoiding improper detection stemming from local variations. The provision of 
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probabilistic regression helps in establishing prediction boundaries that segregate 
regions of degradation, allowing the identification of periods most susceptible to 
accelerating aging. This approach holds promise for real-world applications, as it 
predicts probabilistic ranges of the accelerating aging process rather than focusing on 
single specific points that may exhibit large errors. 

Moreover, the integration of the cloud-edge concept, coupled with flexible TL, offers 
a robust approach for performance enhancement during battery cycling. The base 
model is trained on a powerful server and subsequently transferred to user-edge 
devices, where it can be fine-tuned to cater to diverse aging patterns. The online 
prediction effectively detects accelerating regions, with performance improvements 
demonstrated during the aging process through FT. The framework's applicability is 
further demonstrated through its application to two retired batteries, showcasing 
satisfactory assessment capabilities with maximum errors of less than 3% after 30% 
of the battery's lifetime.  
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CHAPTER 6. CONCLUSION AND 
OUTLOOK 

6.1. CONCLUSIONS 

Battery health prognostics are essential to guide safe operation and optimal control 
while challenging especially under diverse conditions and limited labels. This Ph.D. 
project focuses on TL-based SOH estimation and prediction using only sparsely 
labeled data to improve performance under various conditions. The key findings and 
main contributions are summarized as follows. 

• Various application scenarios cause diverse aging patterns. 
Battery aging patterns are influenced by coupling factors including battery types, 
loading profiles, and working temperatures, which are illustrated by the 
experimental results. Dynamic loadings and pulse currents have the potential to 
help extend the lifetime, while highway loadings and variable temperatures that 
correlate to different seasons accelerate the aging process.  

• Sequential features from partial Q-V curve enable aging characterization. 
HIs extracted from partial Q-V curve have high correlations with both battery 
SOH and EOL while enabling practical applications. Data cleaning by filtering 
the rest period ensures effective extraction under different charging profiles. 
These features can be used for all three main battery health prognostics including 
SOH estimation, EOL prediction, and future trajectory predictions.  

• Sparsely and limited data ensure accurate and reliable SOH estimation. 
Fine-tuning-based TL strategies are fast and effective for model improvement by 
updating the model from the source domain using only sparsely labeled data. 
Limited labels ensure the accurate and reliable estimation of SOH for the whole 
aging process. In addition, the reconstructed capacity curves by the sparsely 
labeled data can serve the pseudo values for the following SOH prediction model 
FT to improve the degradation trajectory predictions. Therefore, in practical 
applications, it is not essentially required to obtain continuous labeled data, which 
is also very challenging, while those sparse labels obtained from regular 
maintenance could help improve the SOH estimations.  

• Learning from unlabeled data improves SOH estimation and prediction. 
In real-world applications, the obtained data are most unlabeled. Although the 
expected capacity or lifetime labels are not directly available for modeling, aging 
information contained in the unlabeled data is valuable to boost the model 
performance. By constructing a self-supervised framework, where the unlabeled 
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data are used for the pre-text learning to learn the aging characteristics from the 
partial Q-V curves, the downstream SOH estimation model can be quickly 
converged by leveraging limited labels for FT the model learned from the 
unlabeled data, and the model performance is improved by comparing to pure 
labeled data trained models.  

• DA and CL increase generalization of the SOH estimation model.  
Aligning the hidden states of the neural network from the source batteries and 
testing batteries can help learn the domain adaptative features that reduce the 
domain discrepancies to improve the model accuracy on the target batteries. In 
addition, the CL is supposed to take into consideration to avoid catastrophic 
forgetting when upgrading the models using the labeled samples from the target 
domains. By the post-hoc analysis of the learned model, the model performance 
can be interpreted to understand the intrinsic reasons for the model working under 
different scenarios. By the DA and CL strategies, the model generalization can 
be continuously improved during usage without requirement of establishing 
several models for different battery types and working conditions.  

• MTL improves accuracy and integration by combining different related 
prognostic tasks. 
Different health prognostic tasks are demanded in different applications while 
constructing specific models for each task consumes huge amounts of resources. 
MTL integrates different related prognostic tasks that provide prognostics for 
different tasks via one model. The performance can be also improved by 
leveraging information among related tasks. The early predictions of battery 
lifetime, knee, and so on can be obtained together, and the online sequence 
predictions for future SOH and degradation rates can be also integrated. In 
addition, the feature extrapolation for recursive predictions is easy to combine 
with the SOH trajectory prediction task, which solves the problem with 
dependencies on the historical capacities for future SOH predictions.  

• Long-term prediction requires regularization to ensure stability. 
Long-term prediction of battery degradation trajectories is valuable while 
challenging. The long-term prediction performance needs to be regularized 
during the training of the prediction model since the long-term prediction via a 
recursive process is not stable. By adding an additional regularization penalty, the 
learned model remains stable during recursive predictions for the future 
degradation trajectory. Thus, the model can be used both for short-term and long-
term predictions of future SOH.  

• Predictive health assessment detects accelerating aging and guides better 
maintenance. 

Typical degradation curves experience a process from slow aging to fast aging, 
divided by the knee on the degradation curve. The detection of accelerating aging 
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is significant to the downstream predictive health management control strategies 
for the extension of battery lifetime. By leveraging the collaboration of 
probabilistic point prediction and sequence predictions, the accelerating aging 
progress can be detected early to provide key insights into future degradation to 
guide proper maintenance. The concept of could-edge collaboration can also be 
adapted for online applications.  

6.2. FUTURE WORK 

Comprehensive TL technologies for battery health prognostics have been investigated 
in this Ph.D. project and promising results have been obtained. However, it is still on 
the pure data level and running on the computer. Future works are mainly looking at 
the implementation of algorithms onboard and combining more with physical 
mechanisms. Several aspects are summarized as follows. 

• Onboard implementation with cloud-edge platform  
The developed algorithms for battery health prognostics and assessment are 
supposed to be implemented onboard BMS to play their roles in the PHMs of 
batteries. The base model can be trained on the cloud with powerful computing 
resources while the FT process can be conducted on the onboard BMSs. In 
addition, the data can also be stored on the cloud to reduce the storage burden of 
onboard BMSs. To come up with the idea, the edge devices will be used to 
implement the prognostic methods and verify the performance with the hardware 
in-loop device. Then the developed devices can be explored to be implemented 
in real energy storage systems. With the hardware support, the author will 
conduct this implementation in his future work.  

• Aging mode prognostics 
Battery capacity and power fade are the macroscopic behaviors of battery aging, 
while the internal aging modes are the key factors affecting the degradation 
patterns. Detecting the loss of active materials, loss of lithium inventory, and the 
increase of impedance are important and be more physically reliable to tell the 
aging of batteries. Therefore, the prognostics of aging modes via measurements 
are worth more investigations. Similarly, advanced TL strategies such as domain 
adaptative learning will also perform important roles in the prognostic 
performance improvements under various scenarios in which different aging 
modes exist due to different loadings and environmental conditions.  

• Physics-guided ML for battery health prognostics. 
Features from measured data are easy to extract while influenced hugely by the 
usage conditions and are hard to understand the physical meanings. Therefore, 
future works will focus more on the extraction of physical information-enabled 
features from EMs that characterize the exact internal aging mechanisms. For 
example, the average concentrations of solids and electrolytes can be used to 
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describe the degradations of batteries. By using those physical features for the 
ML model, the model performance can be better interpreted, and the prognostic 
results are more trusted.  

• Health management and control strategies 
Health prognostics tell the customers the aging status of their batteries and guide 
their maintenance and recycling behaviors. The more important role of battery 
health prognostics should be the guidance of downstream health management 
strategies. By considering the current aging status and future degradation trend, 
control strategies such as by-pass, balancing, circuit reconfiguration, and new 
charging profiles can be performed to help avoid accelerating aging to improve 
the battery lifetime. By taking into consideration the accurate and reliable health 
prognostic results, the downstream control strategies will be more reliable and 
play the most valuable roles in battery health management. 
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