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Abstract— This paper explores the transformative potential of 

artificial intelligence (AI) techniques in optimizing the phase 

distributions of a lens antenna to significantly enhance the gain 

bandwidth and stabilize the sidelobe levels at the millimeter-wave 

band. Through an AI-driven antenna design method 

(self-adaptive Bayesian neural network surrogate-model-assisted 

differential evolution for antenna optimization (SB-SADEA), 

specifically), this work obtains a phase distribution that provides 

a wide gain bandwidth and stable sidelobe levels from 24 to 33 

GHz. A lens antenna with 20 × 20 unit cells is implemented based 

on the phase distribution. Results show a 1-dB bandwidth of 

28.2% and the sidelobe levels have also been lowered compared to 

the reference design. The optimized lens antenna shows a stable 

gain with a range of 20.13 dB to 22.16 dB from 24 to 33 GHz, in 

comparison to the reference design that has a gain range of 16.70 

dB to 26.43 dB over the same frequency spectrum. The measured 

results align well with the simulated results, verifying the 

effectiveness of the AI-driven antenna design optimization 

technique in enhancing the performance of a lens antenna. 

 

Index Terms — Directive lens antenna, phase distribution, 1-dB 

gain bandwidth, sidelobe level, artificial intelligence, SB-SADEA. 

I. INTRODUCTION 

With the advent of 5G and beyond networks, antennas are 

expected to deliver not only high data rates but also low latency 

and reliable connections in countless scenarios, from densely 

populated urban centers to remote rural areas. To meet these 

escalating demands, antennas should be designed to operate 

over a wide range of frequencies, making bandwidth a crucial 

performance metric [1], [2]. Lens antennas have gained 

popularity due to their immense flexibility in their deployment 

across applications ranging from satellite communication to 

radar systems and wireless networks. However, a primary 

challenge associated with metasurface-based lens antennas lies 

in their inherently narrow-band behavior [3]. As these antennas 

generally consist of resonant elements, often microscale in 
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nature, their bandwidths are rather limited. 

A significant body of research has focused on enhancing the 

bandwidth of lens antennas [4]-[9]. In [5], a lens antenna was 

constructed by placing a circularly polarized patch antenna at 

the focal point of the metasurface with enhanced 6% 1-dB gain 

bandwidth through varying the rotation angle to compensate for 

the phase delay. [6] utilizes the drilling of numerous variable 

square holes to a dielectric host material of the lens antenna 

technique, to enhance 1-dB gain bandwidth by 13.8%. A simple 

single-layer metasurface lens with negative refractive index 

behavior to improve the focusing characteristics of the lens is 

proposed in [7] to attain a 17% 1-dB gain bandwidth. Moreover, 

a double-layer metallic pattern etched on both sides Huygens 

metasurface was designed for meta-lens to enhance the gain 

bandwidth by ensuring the nearly complete available 

transmission phase coverage through induced magnetism for 

Huygen’s resonance [8], [9].  

Considering all the methods above, techniques involve 

either adding structures or shapes to improve the 1-dB gain 

bandwidth which increases design complexity; Hence, their 

performance might not be optimal. With the growing use of 

artificial intelligence (AI) techniques in contemporary antenna 

design, it is possible to deduce optimal design parameters 

automatically via AI-driven antenna design optimization 

algorithms, reducing the design complexity and exploring the 

full potential of antenna structures [10]. Some works have 

utilized pure evolutionary computation techniques such as 

genetic algorithms to provide ultra bandwidth at lower 

frequencies for lens antennas [11].  

This paper adds to the body of knowledge by utilizing a 

machine learning-assisted global optimization method for 

antenna design to optimize the phase distribution of a lens 

antenna for 1-dB gain bandwidth enhancement and stable 

sidelobe levels from 24 to 33 GHz. The motivation is rooted in 

the necessitated capability of antennas to support the high 

bandwidth demands of 5G networks, Internet of Things (IoT) 

devices, and beyond by considering the optimal phase 

distribution for a lens antenna. The implications of the work are 

positioning lens antennas as pivotal components in the 

evolution of wideband communication systems. 

II. PROBLEM FORMULATION WITH A LENS ANTENNA 

Fig. 1 presents the configuration of the lens antenna, which 
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consists of a feed source and a lens metasurface. The lens 

metasurface is properly configured to convert the spherical 

waves from the feed source to the plane waves for a high gain. 

It should be noted here that the performance of the lens antenna 

is closely related to the spatial relation between the lens 

metasurface and feed source as well as the phase 

compensations of the lens metasurface. Generally, the phase of 

each unit cell of the lens metasurface should be provided and 

calculated according to Eq. (1):  

( ) ( ) ( )
2 2 22( , , )i i i i s i s i s ix y z x x y y z z


= −  − + − + −     (1)  

where (xi, yi, zi) is the location of the unit cell i, (xs, ys, zs) is the 

phase center of the feed source and λ is the wavelength of 

interest. Eq. (1) is frequency-dependent, which potentially 

limits the gain bandwidth of the corresponding lens antenna.  

    To increase the bandwidth and augment other performance 

(i.e., stable sidelobe levels within a wide bandwidth) of a lens 

antenna, an efficient method of AI-driven optimization is 

proposed here and elaborated in Section Ⅲ. By properly 

defining the objective functions, the proposed optimization 

scheme can achieve gain enhancement and stable sidelobe 

levels within a wide bandwidth by simultaneously optimizing 

the amplitude and phase distributions of a lens antenna.   

The verification of the proposed method is done by 

configuring the lens metasurface with and without the proposed 

optimization scheme, where the latter is used as the reference 

design. For brevity, the unit cell with a periodicity of W to build 

the lens metasurface is based on a dielectric rod (depicted in Fig. 

1(b)) that has been widely adopted to implement lens antenna in 

the literature. Here, acrylonitrile butadiene styrene (ABS) with 

a relative permittivity of 2.55, a relative permeability of 1, and a 

loss tangent of 0.01 was selected because this material has a 

combined effect of heat resistance and low capability of being 

affected by galvanic corrosion. Air voids are drilled into the 

bottom and top layer to improve transmission efficiency of the 

unit cell. A full phase-cycle coverage (2π) is achieved by tuning 

the height of the unit cell (hi) from 5.13 mm to 24.97 mm. The 

planar lens metasurface composed of 20  20 unit cells was 

initially positioned at a distance d = 42 mm from the feed 

source (horn antenna) and was illuminated by spherical waves 

radiated from the feed source.   

 
(a)                                           (b) 

Fig. 1. a) Implementation of the lens antenna and its simulation setup. b) Unit 

cell structure. (Ws = 100 mm, W = 5 mm, Wc = 3.5 mm, Lc = 2.5 mm) 

III. AI-DRIVEN OPTIMIZATION USING SB-SADEA 

The lens antenna with 20 × 20 unit cells presented in this 

work presents an atypical antenna design optimization problem. 

This stems from the number of critical design parameters that 

influence its frequency responses and the performance 

specifications that it must fulfill to make it suitable for the 

desired mm-Wave application (see Tables I and II). With 101 

critical design parameters (due to the high symmetrical 

structure of the lens antenna, the total 401 critical design 

parameters (20×20 + d) is reduced to 101) and 70 performance 

specifications as reported in Table I and Table II, respectively, 

the optimization of the amplitude and phase distributions of the 

lens antenna is exceedingly difficult by manual optimization. 

Off-the-shelf optimization techniques, such as genetic 

algorithms, are also difficult to use because several tens of 

thousands of electromagnetic (EM) simulations are needed, 

costing prohibitive time. Hence, self-adaptive Bayesian neural 

network surrogate model-assisted differential evolution for 

antenna optimization (SB-SADEA), a purpose-built method for 

the machine-learning-assisted global optimization of high- 

dimensional antenna structures [12] is employed.  
 

TABLE I: SEARCH RANGES OF THE DESIGN PARAMETERS AND 

THE OPTIMAL DESIGN BY SB-SADEA FOR THE LENS ANTENNA 

(ALL DIMENSIONS ARE IN mm) 

Design 

Variables 

Lower 

Bound 

Upper 

Bound 

SB-SADEA-Optimized Design 

Lens Metasurface Geometry 

hjϵ [1, 2, …,100] 5.00 25.00 hopt 

d 40.00 120.00 40.43 

Where:    

hopt = [14.69,14.79,14.61,24.63,20.96,24.11,18.53,15.55,6.34,17.95,13.24, … 

          22.40,16.30,19.97,18.08,18.05,15.61,22.72,12.64,9.68,11.73,8.99, …   

          14.69,7.71,10.59,7.12,7.14,8.73,5.13,16.02,12.23,10.35,20.62,13.59… 

          8.90,8.82,5.52,7.06,12.06,24.05,16.61,14.18,8.22,10.32,15.73,7.38, … 

          11.41,2027,17.89,23.93,22.73,6.53,22.95,14.12,6.81,15.89,18.31, … 

          18.24,18.87,9.66,21.80,5.71,11.79,9.24,17.43,11.49,21.85,20.04, … 

          22.80,17.23,21.16,17.25,14.10,15.63,5.74,21.78,11.18,24.97,18.60, … 

          8.29,20.89,21.23,7.67,7.73,14.00,22.79,22.59,23.95,24.70,14.85, … 

          8.74,12.58,9.61,17.77,19.27,16.36,23.20,21.94,24.29] 

 

 
Fig. 2. Flow diagram of the SB-SADEA method. 

The essential steps in the SB-SADEA workflow are shown in 

Fig. 2 and discussed as follows for the targeted antenna, and 

additional information about the SB-SADEA method is 

available in [12]:  

1) Step 1: Initialization by sampling the lens antenna's design 

Ws 

 Lens Metasurface  

 
 

 

 metausrface 

Metasurface 

Feed 
Source 

d 

Unit Cell (xi,yi,zi) 

Wc

i 

Lc

i 

W

c 

hi 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

3 

space and the execution of full-wave EM simulations. 

According to [12], 4×d (d is the number of design variables) 

candidate designs generated using the Latin hypercube 

sampling method [13] are used to form the initial database. 

SB-SADEA is an online machine learning-assisted global 

optimization technique, for which, the surrogate model keeps 

updating in the optimization process. Hence, the number of 

the initial samples is small [12],[14].   

2) Step 2: Creation of the initial database comprising the 

sample designs from Step 1 and their simulation results.  

3) Step 3: Extraction of the current population, which is 

composed of the current top n optimal candidate designs (i.e., 

the candidate designs with the top n objective function values) 

from the database. If the computing budget is exhausted, 

output the current best design and terminate.  

4) Step 4: Creation of new offspring solutions via differential 

evolution (DE) mutation and crossover operations, which are 

applied to the population in Step 3. 

5) Step 5: Obtaining samples from each offspring solution 

that is closest (based on the Euclidean distance) to use as 

training data points, and the construction of a surrogate 

model based on a Bayesian neural network (BNN) [12]. The 

BNN model is used for predicting the performance of 

candidate designs in Step 4.  

6) Step 6: Self-adaptive lower confidence bound-based 

prescreening of the offspring solutions using the predicted 

performance and prediction uncertainty from Step 5 [12]. 

7) Step 7: Selection and simulation of the predicted best 

offspring solution and adding the solution and its simulation 

results to the database. Go back to Step 3.  

For the SB-SADEA-driven optimization of the lens antenna, 

the design parameters described in Fig. 2 and their search 

ranges in Table I have been considered. A population size of 

410 is used and all other algorithmic parameters have the 

default settings in [12]. The optimization goal is to make the 

specifications listed in Table II better than those of the 

reference design through the minimization of the fitness 

function P. Specifically, for specifications (1) to (7) in Table II, 

the thresholds to surpass are their values derived from the 

performance of the reference design, and for specifications (8) 

to (10) in Table II, the goal is to have the sum of the mean 

absolute deviations of the simulated gains to be close to zero (as 

much as possible) to ensure a smooth and ripple-free descent of 

the gain pattern from 𝜃 =0° to 𝜃 =140. It should be noted that the 

selection of 𝜃 =140 is a compromise for examining the radiation 

patterns of the reference lens antenna at different frequencies, 

and different 𝜃 may lead to distinct computations in the 

AI-driven design optimization process. 

 . 24 ,25 ,26 ,27 ,28 ,29 ,30Freq GHz GHz GHz GHz GHz GHz GHz=

(2) 

For (θ =0 °and ϕ=0°): 

( )1 1 _

.

max ,0
k

k k

bore ref bore

k Freq

P w G G




 
 =  −  

 


                     (3) 

For 

Ang1. = [(𝜃= [0° to 14°] and ϕ=0°), (𝜃= [0° to 14°] and ϕ=45°), 

(𝜃= [0° to 14°] and ϕ=90°)]                   (4) 

( )
1.

2 1

1. 1. .

max ,0
ref

Cond k
k k

norm norm

Cond Ang k Freq

P w G G
 

  

   =  −   
  

        (5) 

( )1

1.

3 2

1. 1. .

m m

Cond k
k k

simulated simulated

Cond Ang k Freq

P w abs G G+

 

  

  
 =  −   

  
         (6) 

For  

Ang2. = [(𝜃= [>14° to 180°] and ϕ=0°), (𝜃= [>14° to 180°] and 

ϕ=45°), (𝜃= [>14° to 180°] and ϕ=90°)]                   (7) 
 

( )
2.

4 1 _

2. 2. .

max ,0
Cond k

k k

norm norm ref

Cond Ang k Freq

P w G G
 

  

  
 =  −   

  
         (8) 

1 3 2 4P P P P P= + + +                            (9) 

where km is the m-th element in Freq., km+1 is the next element 

after the m-th element in the same set, and w1=500 and 

w2=5000 are used to allow the optimization process 

preferentially ensure that the gain patterns for each simulated 

frequency (i.e., k) considered are smooth and ripple-free in their 

descent from θ =0° to θ =14°,  before focusing on making the 

boresight gain and side-lobe levels better than those of the 

reference design. 
TABLE II 

PERFORMANCE SPECIFICATIONS (FREQUENCIES: 24 GHz, 25 

GHz, 26 GHz, 27 GHz, 28 GHz, 29 GHz, and 30 GHz) 

Item Specification corresponding to each frequency 

1. Boresight gain ( [24 ,25 ,...,30 ]k GHz GHz GHz

boreG  ) 

(θ = 00 and ϕ = 00) 

2. Minimum normalized gain ( [24 ,25 ,...,30 ]k GHz GHz GHz

normG   ) 

(θ = [00 to 140] and ϕ = 00) 

3. Minimum normalized gain ( [24 ,25 ,...,30 ]k GHz GHz GHz

normG   ) 

(θ = [00 to 140] and ϕ = 450) 

4. Minimum normalized gain ( [24 ,25 ,...,30 ]k GHz GHz GHz

normG   ) 

(θ = [00 to 140] and ϕ = 900) 

5. Maximum normalized gain ( [24 ,25 ,...,30 ]k GHz GHz GHz

normG   ) 

(θ = [ > 140 to 180o] and ϕ = 00) 

6. Maximum normalized gain ( [24 ,25 ,...,30 ]k GHz GHz GHz

normG   ) 

(θ = [ > 140 to 180o] and ϕ = 450) 

7. Maximum normalized gain ( [24 ,25 ,...,30 ]k GHz GHz GHz

normG   ) 

(θ = [ > 140 to 180o] and ϕ = 900) 

8. Sum of the absolute deviation of the simulated gain 

( [24 ,25 ,...,30 ]k GHz GHz GHz

simulatedG   ) (θ = [00 to 140] and ϕ = 00) 

9. Sum of the absolute deviation of the simulated gain 

( [24 ,25 ,...,30 ]k GHz GHz GHz

simulatedG   ) (θ = [00 to 140] and ϕ = 450) 

10. Sum of the absolute deviation of the simulated gain 

( [24 ,25 ,...,30 ]k GHz GHz GHz

simulatedG   ) (θ = [00 to 140] and ϕ = 900) 

Note:  

Items (1) to (7) constitute a total of 49 specifications (i.e., seven 

specifications for each frequency considered).  

Items (8) to (10) constitute a total of 21 specifications (i.e., seven 

specifications for each frequency considered). 

 

Overall, the lens antenna has been modeled and discretized 

in the Computer Simulation Technology – Studio Suite using a 

mesh density of 15 cells per wavelength to have about 5, 500, 

000 hexahedral mesh cells in total. It is then analyzed using the 

finite integration technique with a time-domain solver having 
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an accuracy of -40 dB. Each EM simulation costs about 10 

minutes on average (from a wall clock) on a workstation with 

Intel 6-core i9-990K 3.60 GHz CPU and 64.0 GB RAM. After 

3,880 EM simulations, SB-SADEA obtained a satisfactory 

design with P = 1.16e+04. This design is reported in Table I and 

its characterization and physical implementation are discussed 

in the subsequent sections. 

IV. SIMULATION AND MEASUREMENT 

According to the optimized heights of all the unit cells listed 

in Table. I, the phase distribution on the lens metasurface is 

therefore plotted as illustrated in Fig. 3 (a). To demonstrate the 

improved performance of the optimized lens metasurface, the 

phase distribution of the reference lens antenna is shown in Fig. 

3(b), where the phase distribution is calculated with Eq. (1) at 

28 GHz with d = 40. 43 mm. Then, both lens metasurfaces are 

implemented with the unit cells illustrated in Fig. 1(b), and their 

performance is simulated and compared.  

   
                           (a)                                                          (b) 

Fig. 3. Phase distributions at 28 GHz. (a). Optimized lens antenna. (b). 

Reference lens antenna. 

     
                         (a)                                                              (b)  

Fig. 4. (a) Reference and optimized  prototypes (b) Experimental setup   

Prototypes of the optimized and reference lens antennas 

were manufactured using 3D printing technology and were also 

measured in the anechoic chamber. To align the distance 

between the feed horn and the lens, a fixture is also printed to 

permit the distance as illustrated in Fig. 4. Although the 

optimization band in Section III is from 24 to 30 GHz, we 

measure 24 to 33 GHz to check the gains and sidelobe levels to 

demonstrate the robust of the optimization. From Fig. 5(a), it is 

seen that the measured and simulated realized gains of the 

reference lens antenna range from 16.70 dB to 26.43 dB and 

17.50 dB to 26.32 dB from 24 GHz to 33 GHz, respectively. In 

contrast, the optimized lens antenna realizes low gain 

fluctuation with its peaks observed to be 22.37 dB and 22.15 dB 

for simulated and measured results respectively with their 

range difference around 2 dB for the chosen frequency range. In 

addition to wide gain bandwidth, stable sidelobe levels in the 

optimized design are observed, which is illustrated in Fig. 5(b). 

While SLLs range from -17.18 dB to -20.05 dB and -16.70 dB 

to -20.80 dB for measured and simulated optimized designs, 

respectively. In contrast, the reference design SLLs' fluctuation 

is higher than 10 dB for the entire frequency band, with their 

peaks at -9.98 dB and -11.0 dB for measured and simulated 

results, respectively. The comparison is also done by 

considering the radiation patterns at different operating 

frequencies as shown in Fig. 6. The measured results are 

consistent with the simulated results. The little discrepancy can 

be ascribed to fabrication and measurement tolerances. 

 
                               (a)                                                          (b) 

Fig. 5. Comparison of simulated and measured results of the reference and 

optimized lens antennas. (a) Realized gain from 24 GHz to 33 GHz. (b). 

sidelobe levels from 24 GHz to 33 GHz. 

 
                           (a)                                                          (b) 

 
                                 (c)                                                          (d) 

Fig. 6. Comparison of gain pattern between measured and simulated results at 

different operating frequencies (a) 24 GHz (b) 26 GHz (c) 28 GHz (d) 30 GHz  

V. CONCLUSION 

In summary, this work has presented the use of AI-driven 

antenna design techniques (particularly, the SB-SADEA 

method) to optimize the phase distribution of a lens antenna to 

attain a wide 1-dB gain bandwidth and stable sidelobe levels. 

Measurements show a 1-dB gain bandwidth of 28.2% and 

stable sidelobe levels around -18 dB from 24 to 33 GHz for the 

optimized lens antenna. The results of this work are important 

in modern communication systems as they offer a 

transformative approach by utilizing artificial intelligence to 

overcome narrowband limitations and harness the full potential 

of lens antennas for wideband applications. 
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