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Abstract—As IoT devices become increasingly advanced and
equipped with sensors such as cameras and microphones, the col-
lection of massive data streams, produced in real-time, becomes
challenging. In many cases only a small fraction of the collected
data might be relevant, e.g., if cameras are used to search for a
specific object. In this paper, we introduce and analyze a set of
random access protocols in which the transmitting IoT devices
are activated by semantic queries. This can be seen as a semantic
data sourcing random access: each device computes a matching
score that characterizes the relevance of its current observation
and, if the matching score exceeds a threshold, the device
transmits its observation over a random access collision channel
to an edge node. We study two random access transmission
policies. The first is the classical slotted ALOHA policy, while
the other is able to exploit semantic correlation between the
device observations. Furthermore, we show how the protocol can
be integrated with machine learning-based query and matching
score functions to capture the semantic content of, say, images.
The numerical results show that the proposed protocol is able
to effectively filter the device observations, such that mostly
relevant data is received. Overall, the protocol is promising for
collecting data in real-time from massive IoT networks based on
the semantic content of sensor observations.

I. INTRODUCTION

Wireless Internet of Things (IoT) devices are becoming
increasingly advanced and equipped with a multitude of sen-
sors, allowing them to monitor complex and often multi-modal
signals, such as images, video, and audio/speech. Combined
with advanced processing in the cloud or on an edge server,
usually relying on machine learning techniques, a fleet of IoT
devices can be used for a wide range of applications, such as
taking control decisions, surveillance, detection of accidents,
fault detection in smart grids and water networks, and others.
However, due to the limited capacity of the wireless channel
as well as possible power constraints, collecting the massive,
continuous stream of data that the sensors produce in real-time
necessitate that the data are carefully filtered [1], [2].

Recently, the problem of collecting real-time data has mo-
tivated the definition of the Age of Information (AoI) metric,
which characterizes the average freshness of information at the
destination subject to the communication constraints [3], [4].
Subsequently, the AoI of numerous communication schemes
has been analyzed, and a multitude of protocols that aim
to minimize the AoI have been proposed, see e.g., [4] and
references therein. An inherent assumption in AoI is that all
data are relevant as long as they are fresh. While this may be

the case in some monitoring scenarios, such as when the data
are collected for recording purposes, many applications have
other relevance criteria. For this reason, the concept of AoI has
been generalized to various variants that consider more general
relevance metrics, such as Age of Incorrect Information [5],
Urgency of Information [6], Semantics of Information [7], and
Query AoI [8].

Regardless of the specific AoI variant, the metric is designed
for proactive communication, which is the typical paradigm
for IoT. In proactive communication, the monitored data are
collected before they are requested by an application, and the
application has access only to the data that have been collected
prior to the request. Alternatively, data can be collected
reactively (or pull-based), i.e., collected after they have been
requested by an application [2]. Reactive communication has
been considered in e.g., in-network query processing [9], [10],
and in content-based wake-up radios [11].

The examples mentioned above study the case where data
are requested based on declarative queries, such as data that
fall within a given range. However, these requests are not
particularly useful for complex signals such as images, in
which the content is more challenging to extract. Instead,
such signals require semantic queries, which can query, e.g.,
objects in an image. This problem was addressed in [12] under
the framework semantic data sourcing (SEMDAS), which
leverages machine learning to reactively request data that are
relevant for a given task, such as classification. SEMDAS can
thus be seen as an instance of semantic communications [13],
[14] in which the edge server broadcasts a semantic query
in the downlink. Based on the query and their current ob-
servations, the devices compute matching scores, which are
sent back to the edge server. Based on the received matching
scores, the edge server schedules a subset of the devices to
transmit their full observations in the uplink. Compared to
proactive communication, this approach has the advantage that
only relevant data are collected, but it comes at the cost of
increased latency. Nevertheless, it is an attractive scheme when
only a small fraction of the generated sensor data are relevant
and/or the relevance is hard to predict.

As a concrete example where the reactive strategy is ben-
eficial, consider an IoT network comprising a large number
of cameras deployed within a city. Suppose there have been
reportings of a wild boar, and we would like to track the boar
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Fig. 1. The proposed protocol: (1) The edge server broadcasts a semantic
query, q, in the first slot based on the query observation xq ; (2) Each
device computes a matching score χm characterizing how well its observation
xm matches the query; (3) The devices whose matching score exceeds a
threshold transmit their observations in the remaining slots using a random
access protocol, and the edge server performs inference based on the received
observations.

with the cameras. In the proactive case, we would have to
hope that the boar has been captured and transmitted by some
of the cameras, which is unlikely if, for instance, we collect
an image from each camera every 60 seconds. On the other
hand, if we can request images only from the cameras that
currently observe a wild boar, as in the reactive case, then
we would not only be much more likely to receive images
of the boar, but also to receive the most fresh observations
that will allow us to estimate its location with high accuracy.
Furthermore, the sensors can operate in a low-power mode
between queries. Under the SEMDAS framework, the query
could be an image of a wild boar obtained from some
existing database. After receiving the relevant observations,
the edge server could perform classification to identify the
specific boar, assess the risks and determine an appropriate
action. Nevertheless, SEMDAS requires the edge server to
collect matching scores from all devices in order to determine
which ones to be scheduled for transmission. This results in
a significant overhead, especially if the number of devices
is large and only a small fraction of their observations are
relevant.

To address this issue, in this paper we propose a novel
semantically activated random access protocol inspired by
SEMDAS: the devices determine independently, based on
their matching scores, whether their data are relevant and

subsequently transmit them over a shared random access
channel, see Fig. 1. We study two threshold-based random
access policies under the slotted collision model: (1) classical
slotted ALOHA policy and (2) protocol that exploits the
semantic correlation between the device observations. We
evaluate their performance through both a toy scenario and
a more realistic scenario that rely on machine learning to
compute the matching scores as in SEMDAS. It is seen that the
proposed protocol is able to retrieve a large number of relevant
observations while filtering out the irrelevant ones, making it a
promising strategy for semantic queries in IoT. Furthermore,
the random access policy that exploits correlation generally
performs better than the classical slotted ALOHA policy.

The remainder of the paper is organized as follows. Sec-
tion II introduces the system model and the overall problem
definition. We present the two random access policies for
SEMDAS in Section III, and demonstrate how they can be
integrated with a machine learning-based SEMDAS model in
Section IV. Numerical results are presented in Section V, and
finally the paper is concluded in Section VI.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. Observation Model

We consider a scenario with M IoT devices and a single
edge server. Each IoT device, indexed by m = 1, 2, . . . ,M , is
equipped with a sensor, such as a camera, which generates
an observation feature vector xm ∈ Rd of some object
zm ∈ Z = {1, 2, . . . , |Z|} in the environment according
to the distribution p(xm|zm). The observations are assumed
to be semantically correlated due to, e.g., spatial proximity,
for instance caused by having multiple cameras observing
overlapping views from different angles (this is often referred
to as a multi-view scenario [15]). We model the correlation
by grouping the devices into G disjoint clusters, so that the
devices that belong to the same cluster produce observations of
the same object. Denoting the IoT devices that belong to each
cluster by C1, C2, . . . , CG, where

⋃G
i=1 Ci = {1, 2, . . . ,M}, we

have zm = zi∀m ∈ Ci, i = 1, . . . , G. Using the clusters, the
joint distribution of the observations can be factorized as

p(x1, . . . ,xM ) =

G∏
i=1

∑
zi∈Z

( ∏
m∈Ci

p(xm|zi)p(zi)

)
. (1)

In this initial work, we will make the simplifying assumption
that the number of devices in each cluster is the same, i.e.,
|C1| = |C2| = · · · = |CG|

d
= C. While we will assume that at

least the expected fraction of devices that observe the query
object is known, the full cluster structure may or may not be
known a priori. Out of the two random access policies that
we will introduce in Section III, only one requires knowledge
of the cluster structure. However, as we will show in the
numerical results, the one that actively exploits the cluster
structure performs significantly better than the one that does
not, suggesting that such knowledge can be highly beneficial.



B. Channel Model

The IoT devices and the edge server are connected through
a shared wireless link. The wireless interface is divided into
frames comprising one downlink slot followed by L uplink
slots, in which the devices can transmit their observations. We
consider a collision channel, so that the only sources of error
are collisions between multiple transmissions in the uplink,
i.e., a transmission is correctly received whenever it is the
only transmission in a given slot. Under this assumption, the
received transmissions can be characterized by the distribution
p(X̂ |X ), where X ⊆ {x1,x2, . . . ,xM} denotes the set of
transmitted observations and X̂ ⊆ X is the set of received
observations.

C. Semantic Data Sourcing

As illustrated in Fig. 1 and in line with SEMDAS [12],
we assume that the edge server broadcasts a semantic query
q ∈ Rl to the IoT devices in the first slot of each frame.
The semantic query requests observations similar to some
query observation xq of a (possibly unknown) query object
zq . The dimension l of the query is assumed to be much
smaller than that of the observed features, i.e., l ≪ d.
Using the received query, each device computes a matching
score χm = χ(xm,q) ∈ [0, 1] that aims to quantify the
relevance of its current observation xm given the query. For
instance, the matching score could be designed to approximate
the likelihood that xm represents the query object zq , i.e.,
χ(xm,q) ≈ Pr(zm = zq|xm,q), or some other semantic
similarity metric. We return to the problem of designing
χ(xm,q) in Section IV. Based on the matching score, each
device independently determines whether to transmit or not,
according to some predefined transmission policy. In this
initial work, we limit our focus to threshold policies, so that
a device transmits its full feature vector whenever χm ≥ τ
for some threshold τ ∈ [0, 1]. Note that both zm and zq are
random quantities from the perspective of the device, since zm
must be inferred from xm and zq from q. Hence, q can be seen
as a compressed representation of xq suitable for determining
whether an observation xm is similar to xq . We will refer to
observations of the query object as positives and observations
of different objects as negatives.

Our end goal is to perform joint classification of the received
observations. Specifically, given a set of received observations
X̂ we aim to classify the observations into one of the |Z|
object classes. To this end, we define the classifier F(X̂ ) that
takes a list of received observation features X̂ and outputs the
most likely observed class ẑ from the set Z = {1, 2, . . . , |Ẑ|}.

III. RANDOM ACCESS BASED ON SEMANTIC MATCHING

We present two general random access strategies. To keep
the optimization of the policies tractable, we will assume
that the matching scores are conditionally independent across
the devices given whether they observe the query object or
not, and that we have access to (estimates of) the probability

distributions of these conditional matching scores. We define
the true positive (TP) and false positive (FP) probabilities as

Pr(TP|τ) = Pr(χm ≥ τ |zm = zq), (2)
Pr(FP|τ) = Pr(χm ≥ τ |zm ̸= zq). (3)

These distributions can be obtained analytically or empirically
(e.g. via training of a machine learning-based matching func-
tion).

Using the derived TP and FP probabilities, we can obtain
the distribution of the number of transmitting devices |X |
under the assumption that one of the clusters observe the
query object. To simplify the notation, let us denote by
P = C the number of devices that observe the query object
(positives) and by N = M − C the number of devices that
do not observe the query object (negatives). The expected
number of transmitting positive and negative devices are then
E[|XTP| | τ ] = P Pr(TP|τ) and E[|XFP| | τ ] = N Pr(FP|τ),
respectively, and E[|X | | τ ] = E[|XTP| | τ ] + E[|XFP| | τ ].

A. Slotted ALOHA (SA)

We start by considering the classical slotted ALOHA (SA)
policy, in which each device with a matching score that ex-
ceeds the threshold τ transmits in a slot selected independently
and uniformly at random among the L uplink slots. This policy
makes no use of the assumed cluster structure, and therefore
can be applied when the structure is unknown (although P
and N must be known, at least approximately). Because the
dependency between the number of transmissions in each slot
makes the analysis hard, we will refrain from performing
exact analysis of the channel distribution p(X̂ |X ). Instead,
we apply the Poisson approximation by assuming that the
number transmissions in each slot is independent and Poisson
distributed with mean λ = (1/L)E[|X | | τ ]. Under this
assumption, the probability that a slot contains a successful
transmission is given as

psucc =
E[|X | | τ ]

L
e−E[|X ||τ ]/L, (4)

which is maximized when E[|X | | τ ] = L, resulting in a
success probability of psucc = 1/e.

However, instead of maximizing the overall success prob-
ability, a more reasonable strategy is to pick the threshold τ
so that the number of received true positive observations is
maximized, which is equivalent to maximizing the probability
of receiving a true positive in a given slot. Since collisions
cause uniform erasures, the probability that a true positive is
received is simply the fraction of transmitted true positives
multiplied by the probability of success,

pTP = E
[
|XTP|
|X |

∣∣∣∣τ] psucc (5)

= E
[
|XTP|
L

e−|X̂ |/L
∣∣∣∣τ] (6)

≈ E[|XTP| | τ ]
L

e−E[|X ||τ ]/L, (7)



where the approximation comes from assuming that |XTP|
and |X | are independent and then performing a first-order
Taylor approximation of E[e−|X|/L | τ ] around E[|X | | τ ].
The value of τ that maximizes this expression can be obtained
numerically. Note that the optimal value is in general different
from the one that maximizes psucc.

B. Correlation-Aided Slot-Assigned ALOHA (SAA)

We now consider an alternative policy, termed slot-assigned
ALOHA (SAA), which exploits the semantic correlation aris-
ing from having multiple views of each object, as captured
by the cluster model. In this policy, the devices are pre-
assigned to slots in such a way that the number of devices
assigned to the same slot within the same cluster is minimized.
This approach has previously shown to be efficient in random
access scenarios with strong correlation [16]. The resulting
allocation depends on the ratio between the number of slots,
L, and the number of devices in each cluster, C. Specifically,
if L ≤ C, then each device is assigned to exactly one slot, and
each slot is shared by an average of C/L devices. On the other
hand, if L > C, then each device is assigned to an average
of L/C slots, and selects one for transmission uniformly at
random. To keep the assignment simple, we assign the slots
in a round-robin manner until all devices have been assigned
at least one slot and all slots have been assigned to at least
one device. For instance, if L = 7 and C = 10, then 4 slots
will be assigned to exactly one device within a given cluster,
and 3 slots will be assigned to two devices within the cluster.
The order of the round-robin sequence is randomized for each
cluster to ensure a fair allocation.

In addition to the slots, the policy also requires a threshold
τ . However, the expression for the number of received true
positives depends on the relation between L and C, which
makes it complicated to apply in practice. Instead, noticing
that the average number of transmitting devices per slot is
again λ = (1/L)E[|X | | τ ] as in the previous policy, we can
again obtain a reasonable threshold by maximizing Eq. (7).
This threshold is approximately optimal unless L ≫ C, since
is does not take into account that at most C devices observe the
query object. However, in our case we are primarily concerned
about the case in which L and C are relatively close, since
this regime has the highest efficiency.

IV. MACHINE LEARNING-AIDED SEMANTIC MATCHING

In practice, extracting the semantic content from the sensor
data, e.g., in the case of image data, is often complex, making
the design of the query vector and the computation of matching
scores difficult. An attractive alternative solution is to instead
learn the query and the matching score function using machine
learning.

Since our ultimate goal is to perform classification of the
objects that match the query object, the matching score should
ideally capture both how similar an observation is to the
query object, and how likely it is to contribute to classifying
the object. To achieve this goal, we use a deep multi-view

attention-based mechanism similar to the one in SEMDAS [12]
and inspired by the approach in When2com [17]. Attention
mechanisms work by fusing a set of feature vectors using a
weighted sum, whose weights depend on the importance of
each feature vector. In this paper, we will focus on the dot
product attention, in which the weight of a feature vector xm

is computed as the inner product between the query vector q
and a local observation-dependent key vector km ∈ Rl:

wm = qTkm. (8)

Using the weights, a set of vectors can be fused into a single
feature vector x̄ as

x̄ =

M∑
m=1

xm

(
ewm∑M
n=1 e

wn

)
, (9)

where the weights are normalized using the softmax function.
The fused feature vector x̄ can then be used as input to a
predictor, such as a classifier.

Usually, both the query q and the keys km are generated
using neural networks, and learned as part of the predictor. In
our case, since we are interested in classification, we do so
by decomposing the classifier F(X ) into three feed-forward
neural networks, namely query and key encoders

q = Q(xq), (10)
km = K(xm), (11)

as well as a classifier F̃(x̄) that outputs the predicted class
based on the fused feature vector. Using these functions, F(X )
can be written

F(X ) = F̃

(
M∑

m=1

xm

(
eQ(xq)

TK(xm)∑M
n=1 e

Q(xq)TK(xm)

))
. (12)

Due to the feed-forward structure of F(X ), the three neural
networks can be trained jointly using backpropagation in an
end-to-end manner. Note that this classifier ignores the effects
of the channel, which will only be considered during the
inference phase.

The feature weights in Eq. (8) quantify how important a
given feature vector is in predicting the class, and can be
computed using only the query vector q and the observation
itself xm (through the key km). Therefore, the weight is a
natural choice as the matching score, i.e.,

χ(xm,q) =
eq

TK(xm)

eqTK(xm) + 1
(13)

d
= σ

(
qTK(xm)

)
, (14)

where q = Q(xq) and σ(x) = ex/(ex + 1) is the sigmoid
function. Note that we use the sigmoid function for normal-
ization instead of softmax as in Eq. (9), since softmax requires
access to the weights of all devices in order to be computed.
Note also that all devices use the same key encoder function.
Using the computed matching scores, the devices can apply
the transmission policies presented in the previous section.
The set of received observations X̂ (after passing through the
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Fig. 2. Schematic illustration of the classifier, including the matching score computation and the wireless channel. Here, σ(x) = ex/(ex +1) is the sigmoid
function.

channel) will then be used as input to the model in Eq. (12),
which re-computes the weights and normalizes them using
softmax before fusing the features and passing them to the
classifier F̃(x̄), which then outputs the predicted class. An
illustration of the proposed model in the inference phase is
shown in Fig. 2.

Finally, we note that empirical estimates of the conditional
matching score probability distributions required to optimize
the threshold τ can be obtained during training/validation of
the neural networks.

V. NUMERICAL RESULTS

A. Gaussian Matching Scores

To gain insight into the problem, we first study a Gaussian
setting, in which the matching scores of positive examples
(zm = zq) are independently distributed as χm = σ(Xpos),
where Xpos ∼ N ( δ2 , 1), and the matching scores of neg-
ative examples (zm ̸= zq) are independently distributed as
χm = σ(Xneg) with Xneg ∼ N (− δ

2 , 1). Here, the parameter
δ controls the classification margin: the larger the value of
δ, the more polarized the matching scores become, making it
possible to better discriminate between positive and negative
examples. In the considered SEMDAS scenario, δ would
depend on both the classification margin of the considered
classification task and on the size of the query l. The true
positive and false positive probabilities are then

Pr(TP|τ) = Q

(
ln

(
τ

1− τ

)
− δ

2

)
, (15)

Pr(FP|τ) = Q

(
ln

(
τ

1− τ

)
+

δ

2

)
, (16)

where Q(x) = 1√
2π

∫∞
x

e−u2/2 du. The probability distribu-
tions for the two matching score distributions are illustrated
in Fig. 3 for various choices of δ.
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Fig. 3. Conditional distributions of the matching scores conditioned on being
a positive or negative example in the Gaussian model.

We consider a scenario with G = 10 clusters, each con-
taining C = 10 devices, so that the total number of devices is
M = 100. The query object is assumed to be observed by one
of the clusters, while the remaining clusters observe different
objects. We start by studying the average precision and recall
of the two random access policies described in Section III,
defined as

precision = E

[
|X̂TP|

|X̂TP|+ |X̂FP|

]
, (17)

recall = E

[
|X̂TP|
P

]
, (18)

where |X̂TP| and |X̂FP| refer to the received number of
true/false positives, i.e., the ones that remain after the ran-
dom access channel, and P = C is the total number of
query object observations (positives) in the scenario. Thus,
precision quantifies the fraction of the received observations
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that are relevant, and recall quantifies the fraction of relevant
observations that are received. The results are shown in Fig. 4
for L ∈ {5, 10, 20} transmission slots. In general, increasing
the classification margin δ increases both precision and recall,
and the same is true when the number of transmission slots
is increased. The precision can reach a value of 1 with both
policies, but due to collisions the SA policy attains a maximum
recall that is bounded from 1. On the other hand, the SAA
policy can approach a recall of 1 as long as the number of
slots is at least equal to the number of devices within a cluster.
This demonstrates the main benefit of SAA, namely its ability
to exploit knowledge about the observation and activation
correlation to avoid collisions.

The number of received true positive and false positive
observations is shown in Fig. 5. As can be seen, the fact that
the number of potential false positives is much larger than the
number of potential true positives has a significant influence
when d is small (only C = 10 out of M = 100 devices observe
the query object). In particular, false positive observations
dominate the received observations in both random access
policies. If the observations were to be used for inference,
this is likely to lead to significant performance degradation,
suggesting that achieving a sufficiently large classification
margin is crucial to the performance of the system.

B. Edge Classification with Machine Learning-Aided Match-
ing

We now turn our attention to machine learning-aided se-
mantic matching. We consider the case in which observations
are drawn from the multi-view ModelNet40 dataset [18], and
we will assume that the edge server performs classification of
the |Z| = 40 categories in the dataset. A sample of the dataset
is shown in Fig. 6, where each row contains observations
of a given object, assumed to be observed from different
angles. The observation feature vectors xm are generated
using the feature extraction layers of the VGG11 model [19],
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Fig. 6. Samples from the ModelNet40 dataset. Each row shows a specific
object and each column is a view, corresponding to an observation of the
object.

which results in d = 25088 features. Q(xq) and K(xm) are
both neural networks of a single hidden layer with ReLU
activations, and the classifier F(x̄) is constructed using the
classifier layers of the VGG11 model. Both the VGG11 feature
extraction layers and the classifier layers are pre-trained on the
ImageNet dataset, and then fine-tuned along with the query
and key encoder networks on the ModelNet40 dataset with
the cross-entropy loss function. The fine-tuning is performed
in two stages. First, the classifier network F̃(x) is trained in
isolation using single ModelNet40 observations. Then, in the
second stage, the classifier network is plugged into the full
neural network F(X ), comprising in addition to the classifier
also the query and key encoder neural networks. The full
neural network is then trained in an end-to-end fashion on
samples X containing 2 positive observations and 10 negative
observations, but without considering the random access chan-
nel. Finally, after training the network, empirical distributions
of the matching scores for positive and negative examples
are obtained using the training data. We then evaluate its
performance in a scenario with G = 10 clusters of C = 10
devices as before, and include the random access policies and



TABLE I
PERFORMANCE OF THE MACHINE LEARNING-AIDED SEMANTIC MATCHING RANDOM ACCESS POLICY

l = 16 l = 32 l = 64 l = 128

|X̂TP| |X̂FP| Prec. Acc. |X̂TP| |X̂FP| Prec. Acc. |X̂TP| |X̂FP| Prec. Acc. |X̂TP| |X̂FP| Prec. Acc.

L = 5
SA 0.482 0.130 0.276 0.272 0.826 0.158 0.472 0.447 0.902 0.213 0.502 0.475 1.043 0.177 0.568 0.534
SAA 0.455 0.110 0.229 0.220 0.779 0.132 0.395 0.372 0.918 0.193 0.458 0.429 1.107 0.170 0.523 0.478

L = 10
SA 1.309 0.581 0.416 0.422 1.941 0.660 0.630 0.619 2.044 0.778 0.650 0.631 2.286 0.642 0.712 0.690
SAA 2.288 0.460 0.438 0.425 3.356 0.582 0.659 0.624 3.522 0.752 0.683 0.649 3.971 0.618 0.736 0.695

L = 20
SA 2.616 2.130 0.489 0.515 3.347 2.119 0.637 0.647 3.482 2.143 0.647 0.651 3.746 1.951 0.688 0.680
SAA 3.499 2.327 0.513 0.537 4.422 2.245 0.664 0.673 4.746 2.705 0.641 0.652 5.059 2.212 0.706 0.707
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Fig. 7. Conditional distributions of the matching scores conditioned on being a
positive or negative example in the machine learning-aided matching scenario.

the channel as well.
The matching score distributions are shown in Fig. 7 for

query dimensions l ∈ {32, 64, 128}. In general, the figure
shows that the learned model is able to discriminate between
positive and negative observations. However, there is a sig-
nificant number of positive observations that produce a low
matching score. This can either be because the query and
matching neural networks fail to match the observations, or
because some observations are of bad quality and unlikely to
contribute significantly to the classification task. In general,
although there is some variation between the distributions for
different query dimensions l, there is no clear tendency.

The average number of true positives, false positives, the
precision, and classification accuracy of various configurations
are provided in Table I. Here it can be seen that despite
no tendency in the matching score distributions, increasing
l consistently leads to an increase in the number of received
true positives, which suggests that the query gets better at
matching the relevant observations. This is clearly reflected
in the classification accuracy, which also increases with l.
As expected, increasing the number of slots L also leads to
improved accuracy. However, since it also results in a lower τ
and thereby increases the number of received false positives,
it does not always result in higher precision. The fact that the
precision is reduced or unchanged but the accuracy increases

suggests that the attention mechanism at the edge server is
able to efficiently filter out the false positives. Nevertheless,
filtering out false positives at the individual devices is crucial
to avoid congestion in the channel, which would prevent the
true positives from being delivered to the edge server.

The results in Table I also show that the SAA protocol
generally outperforms the SA protocol, except in the case
with L = 5. This is a direct consequence of having fewer
collisions in the channel as long as L ≥ C, which can be
seen by comparing the total number of received observations
between the two random access policies. On the other hand,
when L < C the randomness in the SA policy can lead
to higher performance. For instance, if all devices within a
cluster activate in the case with L = 5, then all packets will
collide with SAA and no observations will be delivered. On
the other hand, although there will also be many collisions
in the SA policy, there is still a small probability that some
observations will be delivered. The results suggest that more
work is required in order to design efficient policies for this
regime.

VI. CONCLUSION

In this paper, we have considered the problem of collecting
relevant semantic data from correlated IoT devices. Com-
pared to traditional IoT communication, where the devices
transmit their observations periodically or sporadically, in the
considered framework the devices transmit reactively, and
only if their observations are relevant for the destination.
We have proposed a two-step semantic data sourcing random
access protocol, in which an edge server first broadcasts a
semantic query. Then, each device computes a matching score
characterizing how relevant its current observation is for the
edge server, and transmits its observation over a random
access channel only if the matching score exceeds a threshold.
We have considered two random access policies, namely
a classical slotted ALOHA (SA) policy and a correlation-
aided slot-assigned ALOHA (SAA) policy that exploits spatial
correlation in the observations between devices. Furthermore,
we have demonstrated how the policies can be integrated
with a machine learning-based query design. The performance
of the proposed protocol has been studied both in a toy
example, using a Gaussian observation model, and using the
machine learning-based query design. The results show that



the protocol effectively collects relevant observations under
both the SA and the SAA policies while filtering out irrelevant
observations. While the SAA policy generally performs better
when the number of transmission slots is comparable to the
number of relevant observations, the SA policy is best when
only a small number of slots are available. In conclusion, the
proposed protocol presents a promising direction for collecting
data in real-time from massive IoT networks based on the
semantic content of sensor observations.
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