Digital Twins in Architecture

An ecology of practices and understandings

Horvath, Anca-Simona; Pouliou, Panagiota

Published in:
Handbook of Digital Twins

DOI (link to publication from Publisher):
10.1201/9781003425724-46

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
https://doi.org/10.1201/9781003425724-46

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 12, 2024
Handbook of Digital Twins

Over the last two decades, Digital Twins (DTs) have become the intelligent representation of future development in industrial production and daily life. Consisting of over 50 chapters by more than 100 contributors, this comprehensive handbook explains the concept, architecture, design specification and application scenarios of DTs.

As a virtual model of a process, product or service to pair the virtual and physical worlds, DTs allow data analysis and system monitoring by using simulations. The fast-growing technology has been widely studied and developed in recent years. Featured with centralization, integrity and dynamics, it is cost-effective to drive innovation and performance. Many fields saw the adaptation and implementation across industrial production, healthcare, smart city, transportation and logistics. World-famous enterprises such as Siemens, Tesla, ANSYS and General Electric have built smart factories and pioneered digital production, heading towards Industry 4.0.

This book aims to provide an in-depth understanding and reference of DTs to technical personnel in the field, students and scholars of related majors, and general readers interested in intelligent industrial manufacturing.

Dr Zhihan Lyu is an Associate Professor at the Department of Game Design, Uppsala University, Sweden. He is also IEEE Senior Member, British Computer Society Fellow, ACM Distinguished Speaker, Career-Long Scientific Influence Rankings of Stanford’s Top 2% Scientists, Marie Skłodowska-Curie Fellow, Clarivate Highly Cited Researcher and Elsevier Highly Cited Chinese Researcher. He has contributed 300 papers including more than 90 papers on IEEE/ACM Transactions. He is the Editor-in-Chief of Internet of Things and Cyber-Physical Systems (KeAi), an Associate Editor of a few journals including ACM TOMM, IEEE TITS, IEEE TNSM, IEEE TCSS, IEEE TNSE and IEEE CEM. He has reviewed 400 papers. He has received more than 20 awards from China, Europe and IEEE. He has given more than 80 invited talks for universities and companies in Europe and China. He has given 20 keynote speeches at international conferences.
Contents

Contributors

Part 1 Introduction

1. Overview of Digital Twins
 Zhihan Lyu and Xiaocheng Liu

Part 2 Thinking about Digital Twins

2. What Is Digital and What Are We Twinning?: A Conceptual Model to Make Sense of Digital Twins
 Ashwin Agrawal and Martin Fischer

3. When Digital Twin Meets Network Engineering and Operations
 Pedro Henrique Diniz, Christian Esteve Rothenberg, and José Ferreira de Rezende

4. Cognitive Digital Twins
 Xiaochen Zheng, Jinzhi Lu, Rebeca Arista, Jože Martin Rožanec, Stavros Lounis, Kostas Kalaboukas, and Dimitris Kiritsis

5. Structural Integrity Preservation of Built Cultural Heritage: How Can Digital Twins Help?
 Annalaura Vuoto, Marco Francesco Funari, and Paulo B. Lourenço

Part 3 Digital Twins Technology

6. Key Technologies of Digital Twins: A Model-Based Perspective
 Serge P. Kovalyov

7. A Generic Deployment Methodology for Digital Twins – First Building Blocks
 Mohammed Adel Hamzaoui and Nathalie Julien

8. Automated Inference of Simulators in Digital Twins
 Istvan David and Eugene Syriani
9. Digital Twin for Federated Analytics Applications 149
 Dan Wang, Dawei Chen, Yifei Zhu, and Zhu Han

10. Blockchain-Based Digital Twin Design ... 167
 Esra Kumaş, Hamide Özyürek, Serdar Çelik, and Zeynep Baysal

11. Physics-Based Digital Twins Leveraging Competitive Edge
 in Novel Markets .. 185
 Emil Kurvinen, Antero Kutvonen, Päivi Aaltonen, Jussi Salakka,
 and Behnam Ghalamchi

Part 4 Digital Twins Design and Standard

 Yevgeniya Sulema, Andreas Pester, Ivan Dychka, and Olga Sulema

13. Layering Abstractions for Design-Integrated Engineering of
 Cyber-Physical Systems ... 221
 Thomas Ernst Jost, Richard Heininger, and Christian Stary

 Vivek Kant and Jayasurya Salem Sudakaran

 Multiverse .. 256
 Chiara Cimino, Gianni Ferretti, and Alberto Leva

16. A Service Design and Systems Thinking Approach to Enabling
 New Value Propositions in Digital Twins with AI Technologies274
 Shaun West, Cecilia Lee, Utpal Mangla, and Atul Gupta

17. Tokenized Digital Twins for Society 5.0 291
 Abdeljalil Bentiche and Martin Maier

18. Urban Digital Twin as a Socio-Technical Construct308
 Timo Ruohomäki, Heli Ponto, Ville Santala, and Juho-Pekka Virtanen

19. Design and Operationalization of Digital Twins in Robotized
 Applications: Architecture and Opportunities 321
 Tobias Osterloh, Eric Guiffo Kaigom, and Jürgen Roßmann
Part 5 Digital Twins in Management

20. Management of Digital Twins Complex System Based on Interaction ... 337
 Vladimir Shvedenko, Valeria Shvedenko, Oleg Schekochikhin, and Andrey Mozokhin

 Gozde Basak Ozturk and Busra Ozen

 Frits van Rooij and Philip Scarf

23. Organizational Barriers and Enablers in Reaching Maturity in Digital Twin Technology ... 386
 Päivi Aaltonen, Lawanya Ramaul, Emil Kurvinen, Antero Kutvonen, and Andre Nemeh

 Petra Müller-Csernetzky, Shaun West, and Oliver Stoll

25. Digital Twins for Lifecycle Management: The Digital Thread from Design to Operation in the AECO Sector 420
 Sofia Agostinelli

Part 6 Digital Twins in Industry

26. Digital Twins for Process Industries ... 441
 Seppo Sierla

27. Digital Twins in the Manufacturing Industry 456
 Dayalan R. Gunasegaram

 Jože Martin Rožanec, Pavlos Eirinakis, George Arampatzis, Nenad Stojanović, Kostas Kalaboukas, Jinzhi Lu, Xiaochen Zheng, and Dimitris Kiritsis

 Ning Gou, Shangkuan Liu, David Christopher, and Kai Cheng
 Giuseppe Aiello, Islam Asem Salah Abusohyn, Salvatore Quaranta, and Giulia Marcon

31. Digital Twin Applications in Electrical Machines Diagnostics 531
 Georgios Falekas, Ilias Palaiologou, Zafeiris Kolidakis, and Athanasios Karlis

 Jyrki Savolainen and Ahsan Muneer

33. Experiments as DTs... 563
 Jascha Grübel

34. Digital Twins–Enabled Smart Control Engineering and Smart Predictive Maintenance ... 584
 Jairo Viola, Furkan Guc, and YangQuan Chen

Part 7 Digital Twins in Building

35. 3D City Models in Planning Activities: From a Theoretical Study to an Innovative Practical Application.. 603
 Gabriele Garnero and Gloria Tarantino

36. Exploiting Virtual Reality to Dynamically Assess Sustainability of Buildings through Digital Twin ... 617
 Muhammad Shoaib, Lavinia Chiara Tagliabue, and Stefano Rinaldi

37. Riding the Waves of Digital Transformation in Construction – Chances and Challenges Using Digital Twins........ 632
 Bianca Weber‑Lewerenz

38. A Framework for the Definition of Built Heritage Digital Twins.... 647
 Marianna Crognale, Melissa De Iuliis, and Vincenzo Gattulli

 Anca-Simona Horvath and Panagiota Poulou
40. Developing a Construction Digital Twin for Bridges: A Case Study of Construction Control of Long-Span Rigid Skeleton Arch Bridge
Chunli Ying, Long Chen, Daguang Han, Kaixin Hu, Yu Zhang, Guoqian Ren, Yanhui Liu, Yongquan Dong, and Yatong Yuan

41. Urban-Scale Digital Twins and Sustainable Environmental Design: Mobility Justice and Big Data
Marianna Charitonidou

Part 8 Digital Twins in Transportation

42. Digital Twins in Transportation and Logistics
Mariusz Kostrzewski

43. Digital Twin–Driven Damage Diagnosis and Prognosis of Complex Aircraft Structures
Xuan Zhou and Leiting Dong

44. Digital Twins and Path Planning for Aerial Inspections
Antonio Bono, Luigi D’Alfonso, Giuseppe Fedele, and Anselmo Filice

Part 9 Digital Twins in Energy

45. Digital Twin Security of the Cyber-Physical Water Supply System
Nikolai Fomin and Roman V. Meshcheryakov

46. Digital Twin in Smart Grid
Hui Cai, Xinya Song, and Dirk Westermann

47. Digital Twins in Graphene Technology
Elena F. Sheka

48. Applications of Triboelectric Nanogenerator in Digital Twin Technology
Jiayue Zhang and Jie Wang
Part 10 Digital Twins in Medicine and Life

49. Digital Twins in the Pharmaceutical Industry...857
 João Afonso Ménagé Santos, João Miguel da Costa Sousa,
 Susana Margarida da Silva Vieira, and André Filipe Simões Ferreira

50. Human Body Digital Twins: Technologies and Applications........... 872
 Chenyu Tang, Yanning Dai, Jiaqi Wang, and Shuo Gao

51. Digital Twins for Proactive and Personalized Healthcare –
 Challenges and Opportunities...888
 Sai Phanindra Venkatapurapu, Marianne T. DeWitt, Marcelo Behar,
 and Paul M. D’Alessandro
Contributors

Päivi Aaltonen
MORE SIM Research Platform,
LUT School of Business and Administration
LUT University
Lappeenranta, Finland

Islam Asem Salah Abusohyon
Università degli studi di Palermo
Palermo, Italy

Sofia Agostinelli
CITERA Research Centre
Sapienza University of Rome
Rome, Italy

Ashwin Agrawal
Civil and Environmental Engineering
Stanford University
Stanford, CA

Giuseppe Aiello
Università degli studi di Palermo
Palermo, Italy

George Arampatzis
School of Production Engineering and Management
Technical University of Crete
Chania, Greece

Rebeca Arista
Industrial System Digital Continuity Specialist at Airbus SAS
Leiden, the Netherlands

Zeynep Baysal
Ostim Technical University
OSTIM, Turkey

Marcelo Behar
PricewaterhouseCoopers LLP
New York, New York

Abdeljalil Beniiche
Optical Zeitgeist Laboratory
Institut national de la recherche scientifique
Quebec, Canada

Antonio Bono
Department of Computer Science, Modeling, Electronics and Systems Engineering
University of Calabria
Rende, Italy

Hui Cai
Department of Electrical Engineering and Information Technology
Ilmenau University of Technology
Ilmenau, Germany

Serdar Çelik
Ostim Technical University
Ostim, Turkey

Marianna Charitonidou
Faculty of Art Theory and History
Athens School of Fine Arts
Athens, Greece

Dawei Chen
InfoTech Labs
Toyota Motor North America
Plano, Texas
Contributors

Long Chen
School of Architecture, Building and Civil Engineering
Loughborough University
Loughborough, England

YangQuan Chen
University of California Merced
Merced, California

Kai Cheng
Brunel University London
Uxbridge, England

David Christopher
Brunel University London
Uxbridge, England

Chiara Cimino
Associate Professor at University of Turin
Department of Management, Economics, and Industrial Engineering
Politecnico di Milano
Milan, Lombardia, Italy

Marianna Crognale
Department of Structural and Geotechnical Engineering
Sapienza University of Rome
Rome, Italy

Paul M D’Alessandro
Customer Transformation
PricewaterhouseCoopers LLP
New York, New York

Luigi D’Alfonso
Department of Computer Science, Modeling, Electronics and Systems Engineering (DIMES)
University of Calabria
Rende, Italy

João Miguel da Costa Sousa
IDMEC, Instituto Superior Técnico
Universidade de Lisboa
Lisbon, Portugal

Susana Margarida da Silva Vieira
IDMEC, Instituto Superior Técnico
Universidade de Lisboa
Lisbon, Portugal

Yanning Dai
School of Instrumentation and Optoelectronic Engineering
Beihang University
Beijing, China

Istvan David
Université de Montréal
Montreal, Canada

Melissa De Iuliis
Department of Structural and Geotechnical Engineering
Sapienza University of Rome
Rome, Italy

José Ferreira de Rezende
Federal University of Rio de Janeiro (UFRJ)
Rio de Janeiro, Brazil

Marianne T DeWitt
Customer Transformation
PricewaterhouseCoopers LLP
New York, New York

Pedro Henrique Diniz
Federal University of Rio de Janeiro (UFRJ)
Rio de Janeiro, Brazil
Leiting Dong
School of Aeronautic Science and Engineering
Beihang University
Beijing, China

Yongquan Dong
Chongqing Jiaotong University
Chongqing, China

Ivan Dychka
Faculty of Applied Mathematics
National Technical University of Ukraine
Kyiv, Ukraine

Pavlos Eirinakis
Department of Industrial Management and Technology
University of Piraeus
Piraeus, Greece

Georgios Falekas
Department of Electrical and Computer Engineering
Democritus University of Thrace
Komotini, Greece

Giuseppe Fedele
Department of Informatics, Modeling, Electronics and Systems Engineering (DIMES)
University of Calabria
Rende, Italy

André Filipe Simões Ferreira
Hovione Farmaciência S.A.
Loures, Portugal

Gianni Ferretti
Automatic Control
Cremona campus of the Politecnico di Milano
Cremona, Italy

Anselmo Filice
Department of Environmental Engineering, Afferece to Department of Informatics, Modeling, Electronics and Systems Engineering (DIMES)
University of Calabria
Rende, Italy

Martin Fischer
Civil and Environmental Engineering
Stanford University
Stanford, California

Nikolai Fomin
V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
Moscow, Russia

Marco Francesco Funari
Department of Civil and Environmental Engineering
University of Surrey
Guildford, England

Shuo Gao
School of Instrumentation and Optoelectronic Engineering
Beihang University
Beijing, China

Gabriele Garnero
Interuniversity Department of Regional and Urban Studies and Planning
Università degli Studi di Torino
Turin, Italy

Vincenzo Gattulli
Department of Structural and Geotechnical Engineering
Sapienza University of Rome
Rome, Italy
Contributors

Behnam Ghalamchi
Mechanical Engineering
California Polytechnique State University
San Luis Obispo, California

Richard Heininger
Business Informatics-Communications Engineering
Johannes Kepler University
Linz, Austria

Ning Gou
Brunel University London
Uxbridge, England

Anca-Simona Horvath
Research Laboratory for Art and Technology
Aalborg University
Aalborg, Denmark

Jascha Grübel
Cognitive Science
ETH Zurich
Zurich, Switzerland

Kaixin Hu
Smart City and Sustainable Development Academy
Chongqing Jiaotong University
Chongqing, China

Furkan Guc
University of California Merced
Merced, California

Thomas Ernst Jost
Business Informatics-Communications Engineering
Johannes Kepler University
Linz, Austria

Dayalan R. Gunasegaram
CSIRO Manufacturing
Geelong, Australia

Nathalie Julien
Lab-STICC
Université Bretagne Sud Lorient
Lorient, France

Atul Gupta
Merative
Ann Arbor, Michigan

Eric Guiffo Kaigom
Computer Science and Engineering
Frankfurt University of Applied Sciences
Frankfurt, Germany

Mohammed Adel Hamzaoui
Lab-STICC
Université Bretagne Sud Lorient
Lorient, France

Kostas Kalaboukas
Gruppo Maggioli
Santarcangelo di Romagna, Greece

Daguang Han
School of Civil Engineering
Southeast University
Nanjing, China

Zhu Han
Department of Electrical and Computer Engineering
University of Houston
Houston, Texas
Contributors

Vivek Kant
Human Factors and Sociotechnical Systems Studios
IDC School of Design
Indian Institute of Technology Bombay
Mumbai, India

Athanasios Karlis
Department of Electrical and Computer Engineering
Democritus University of Thrace
Komotini, Greece

Dimitris Kiritsis
Sustainable Manufacturing
Ecole Polytechnique Federale de Lausanne (EPFL)
Lausanne, Switzerland

Zafeirios Kolidakis
Department of Electrical and Computer Engineering
Democritus University of Thrace
Komotini, Greece

Mariusz Kostrzewski
Warsaw University of Technology
Faculty of Transport
Warszawa, Poland

Serge P. Kovalyov
Institute of Control Sciences of Russian Academy of Sciences
Moscow, Russia

Esra Kumaş
Ostim Technical University
Ostim, Turkey

Emil Kurvinen
Materials and Mechanical Engineering Research Unit,
Machine and Vehicle Design
University of Oulu
Oulu, Finland

Antero Kuttonen
LUT School of Engineering Science
LUT University
Lappeenranta, Finland

Cecilia Lee
Royal College of Art
London, United Kingdom

Alberto Leva
Automatic Control at Politecnico di Milano
Milan, Italy

Shangkuan Liu
Brunel University London
Uxbridge, England

Xiaocheng Liu
School of Computer Science and Technology
Qingdao University
Qingdao, China

Yanhui Liu
Southwest Jiaotong University
Chengdu, China

Stavros Lounis
ELTRUN E-Business Research Center, Department of Management Science and Technology
Athens University of Economics and Business
Athens, Greece
Paulo B. Lourenço
Department of Civil Engineering
University of Minho
Minho, Portugal

Jinzhi Lu
Ecole Polytechnique Federale de Lausanne (EPFL)
Lausanne, Switzerland

Zhihan Lyu
Department of Game Design
Uppsala University
Uppsala, Sweden

Martin Maier
Optical Zeitgeist Laboratory
Institut national de la recherche scientifique
Quebec, Canada

Utpal Mangla
Telco Industry & EDGE Clouds
IBM
Toronto, Canada

Giulia Marcon
University of Palermo
Palermo, Italy

Roman V. Meshcheryakov
V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
Moscow, Russia

Andrey Mozokhin
Department of Automated Systems of Process Control of SMGMA Group
Moscow, Russia

Petra Müller-Cserszetzky
Design Management and Innovation
Lucerne School of Engineering and Architecture
Lucerne, Switzerland

Ahsan Muneer
School of Business and Management
LUT University
Lappeenranta, Finland

Andre Nemeh
Strategy and Innovation
Rennes School of Business
Rennes, France

Tobias Osterloh
RWTH Aachen University
Aachen, Germany

Busra Ozen
Department of Civil Engineering
Aydin Adnan Menderes University
Aydi n, Turkey

Gozde Basak Ozturk
Department of Civil Engineering
Aydin Adnan Menderes University
Aydi n, Turkey

Hamide Özyürek
Department of Business Administration
Ostim Technical University
Ostim, Turkey

Ilias Palaiologou
Department of Electrical and Computer Engineering
Democritus University of Thrace
Komotini, Greece
Andreas Pester
Faculty of Informatics and
Computer Science
The British University in Egypt
Cairo, Egypt

Heli Ponto
Forum Virium Helsinki Oy
Helsinki, Finland

Panagiota Pouliou
CITA – Center of Information
Technology and Architecture
KADK
Copenhagen, Denmark

Salvatore Quaranta
Università degli studi di Palermo
Palermo, Italy

Laavanya Ramaul
School of Business and Management
LUT University
Lappeenranta, Finland

Guoqian Ren
College of Architecture and Urban Planning
Tongji University
Shangai, China

Stefano Rinaldi
Department of Information Engineering
University of Brescia
Brescia, Italy

Jürgen Roßmann
Electrical Engineering
RWTH Aachen University
Aachen, Germany

Christian Esteve Rothenberg
University of Campinas
Campinas, Brazil

Jože Martin Rožanec
Information and Communication Technologies
Jožef Stefan International Postgraduate School
Ljubljana, Slovenia

Timo Ruohomäki
Forum Virium Helsinki Oy
Helsinki, Finland

Jussi Salakka
Mechanical Engineering
Oulu University
Oulu, Finland

Ville Santala
Forum Virium Helsinki Oy
Helsinki, Finland

João Afonso Ménagé Santos
Hovione Farmaciência S.A.; IDME, Instituto Superior Técnico
Universidade de Lisboa
Lisbon, Portugal

Jyrki Savolainen
School of Business and Management
LUT University
Lappeenranta, Finland

Philip Scarf
Cardiff Business School
Cardiff University
Cardiff, Wales

Oleg Schekochikhin
Department of Information Security
Kostroma State University
Kostroma, Russia
Contributors

Elena F. Sheka
Institute of Physical Researches and Technology of the Peoples’ Friendship University of Russia
Moscow, Russia

Muhammad Shoaib
Information Systems Department, King Saud University
Politecnico di Milano
Milan, Italy

Valeria Shvedenko
LLC T-Innovatic
St. Petersburg, Russia

Vladimir Shvedenko
Federal Agency for Technical Regulation and Metrology
The Russian Institute of Scientific and Technical Information of the Russian Academy of Sciences (VINITI RAS)
Moscow, Russia

Seppo Sierla
Aalto University
Espoo, Finland

Xinya Song
Department of Electrical Engineering and Information Technology
Ilmenau University of Technology
Ilmenau, Germany

Christian Stary
Business Informatics-Communications Engineering
Johannes Kepler University
Linz, Austria

Nenad Stojanović
Nissatech Innovation Centre
Germany

Oliver Stoll
Lucerne School of Engineering and Architecture
Lucerne, Switzerland

Jayasurya Salem Sudakaran
Human Factors and Sociotechnical Systems Studios, IDC School of Design
Indian Institute of Technology Bombay
Mumbai, India

Olga Sulema
Computer Systems Software Department
National Technical University of Ukraine
Kyiv, Ukraine

Yevgeniya Sulema
Computer Systems Software Department
National Technical University of Ukraine
Kyiv, Ukraine

Eugene Syriani
Department of Computer Science and Operations Research
Université de Montréal
Montreal, Canada

Lavinia Tagliabue
University of Turin
Turin, Italy
Contributors

Chenyu Tang
Department of Engineering
University of Cambridge
Cambridge, England

Gloria Tarantino
Università degli Studi di Torino | UNITO · Dipartimento Interateneo di Scienze, Progetto e Politiche Del Territorio
Politecnico di Torino
Turin, Italy

Frits van Rooij
IDE Americas Inc.
Carlsbad, California
Salford Business School
University of Salford
Salford, England

Sai Phanindra Venkatapurapu
Customer Transformation
PricewaterhouseCoopers LLP
New York, New York

Jairo Viola
University of California Merced
Merced, California

Juho-Pekka Virtanen
Forum Virium Helsinki Oy
Helsinki, Finland

Annalaura Vuoto
Department of Civil Engineering
University of Minho
Minho, Portugal

Dan Wang
Department of Computing
The Hong Kong Polytechnic University
Hong Kong, China

Jiaqi Wang
School of Instrumentation and Optoelectronic Engineering
Beihang University
Beijing, China

Jie Wang
Beijing Institute of Nanoenergy and Nanosystems
Chinese Academy of Sciences
Beijing, China
School of Nanoscience and Technology
University of Chinese Academy of Sciences
China

Bianca Weber-Lewerenz
Faculty of Civil Engineering
RWTH Aachen University
Aachen, Germany

Shaun West
Lucerne School of Engineering and Architecture
Lucerne University of Applied Sciences and Arts
Lucerne, Switzerland

Dirk Westermann
Department of Electrical Engineering and Information Technology
Ilmenau University of Technology
Ilmenau, Germany

Chunli Ying
School of Architecture, Building and Civil Engineering
Loughborough University
Loughborough, England
Yatong Yuan
China Construction Fifth Engineering Bureau
Guangdong, China

Jiayue Zhang
Department of Mechanical Engineering
State Key Laboratory of Tribology
Tsinghua University
Shenyang Architectural and Civil Engineering Institute
Tsinghua University
Beijing, China

Xiaochen Zheng
Sustainable Manufacturing (ICT4SM)
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne, Switzerland

Yu Zhang
Shenyang Jianzhu University
Shenyang, China

Xuan Zhou
School of Aeronautic Science and Engineering
Beihang University
Beijing, China

Yifei Zhu
Shanghai Jiao Tong University
Shanghai, China
Part 1

Introduction
1

Outline of Digital Twins

Zhihan Lyu
Uppsala University

Xiaocheng Liu
Qingdao University

1.1 Introduction

This book consists of 50 chapters contributed by 129 authors. This chapter is a general introduction to each chapter of the book. From the second chapter, the concept of digital twinning, architecture description, design specification, and application scenarios are introduced. Section 2 introduces the concept and development of digital twins. Section 3 introduces the key technologies to promote the development of digital twins. Section 4 introduces some general frameworks and construction methods of digital twins. Section 5 introduces the application of digital twins in management and operation. Section 6 introduces the application of digital twins in industry. Section 7 introduces the application of digital twins in building construction. Section 8 introduces the application of digital twins in transportation. Section 9 introduces the application of digital twins in the energy industry. Section 10 introduces the application of digital twins in health and life.

1.2 Thinking about Digital Twins

Ashwin Agrawal and Martin Fischer designed a framework to enable users to find suitable Digital Twins applications, to help practitioners systematically think about the basic factors that affect successful Digital Twins deployment in Chapter 2. Realizing these factors in practice can improve the probability of success and accelerate the application of Digital Twins in the industry.

Pedro Henrique Diniz examines the application of the Digital Twins paradigm to the field of computer networks in Chapter 3. At present,
only industrial tools that deal with life-cycle network management through intention-based network automation and closed-loop automation can be effectively classified as Network Digital Twins, mainly because they maintain two-way communication between physical and virtual environments.

Xiaochen Zheng et al. introduced the concept of cognitive Digital Twins, which reveals a promising development of the current twins paradigm toward a more intelligent, comprehensive, and full life-cycle representation of complex systems in Chapter 4. Compared with the current Digital Twins concept, cognitive Digital Twins enhances cognitive ability and autonomy. This chapter first introduces the evolution process of cognitive Digital Twins concept.

Marco Francesco Funari et al. outline the concept of Digital Twins in the Architecture, Engineering, Construction, and Operation domain in Chapter 5. Then, some applications in the integrity protection of architectural heritage structures are critically discussed. The Digital Twins concept prototype of heritage building structural integrity protection is proposed.

1.3 Digital Twins Technology

Serge P. Kovalyov provides an overview of Digital Twins model–specific technology in Chapter 6. Integrated physical models and simulations, statistical machine learning models, and knowledge-based models play a central role.

Mohammed Hamzaoui and Nathalie Julien aim to introduce the general deployment method of Digital Twins in Chapter 7. Considering the position that Digital Twins may occupy in various fields as key technologies of digital transformation, we emphasized the key requirements of this method.

Istvan David and Eugene Syriani outlined how to use machine learning to automatically build simulators in Digital Twins in Chapter 8. The methods discussed in this chapter are particularly useful in systems that are difficult to model because of their complexity.

Dan Wang et al. introduced how to apply the Digital Twins technology to simulate physical/end side with limited resources and use rich resources on virtual/computing side in Chapter 9. The concept of Digital Twins is applied to the federal distribution analysis problem, and the global data distribution is obtained by aggregating partial observation data of different users.

Esra Kumɑş et al. proposed a model that combines blockchain technology with Digital Twins in Chapter 10, because it provides benefits for decentralized data storage, data invariance, and data security. The integration of Digital Twins and blockchain ensures the security and integrity of data accumulation generated by the Internet of Things from relevant stakeholders of the system by verifying transactions in the blockchain ledger.

Emil Kurvinen et al. believe that real-time physics can accurately study the machine operated by humans in Chapter 11, so that human actions can be
better integrated into the machine. For high-tech products, the use of physical-based Digital Twins can explore design options and their impact on the overall performance, such as the dynamic behavior of machines.

1.4 Digital Twins Design and Standard

Andreas Pester et al. provide the classification and analysis of Digital Twins types based on recent research in this scientific area in Chapter 12.

Richard Heininger et al. designed and ran the abstraction layer required by Digital Twins as part of the Cyber-Physics System in Chapter 13. A layered Digital Twins modeling method is proposed, which promotes the use of coarse granularity abstraction in the composition of Cyber-Physics System, while retaining the controllability of Cyber-Physics System for operational purposes.

In Chapter 14, Vivek Kant and Jayasurya Salem Sudakaran believe that the human-centered design of Digital Twins and their interfaces is crucial to ensure the effective use of this technology and provide the highest possible benefits for human users. It solves all kinds of problems, from the larger theme designed for human beings to the specific details of Human Machine Interaction design, to achieve interactivity and visualization.

Chiara Cimino et al. propose the specification of a tool that can help ensure consistency among such a heterogeneous set of Digital Twins in Chapter 15, making consistent the set of models and data that are processed during the design phase. The aim is to create a knowledge base of the system, which will serve the design and be useful to analyze the system throughout its life cycle.

Shaun West et al. introduced a human-centered approach to developing Digital Twins in Chapter 16, which can create new value propositions in intelligent service systems. When creating and designing Digital Twins, a people-centered, system-based design lens can support value co-creation and gain multiple perspectives of value within the system.

In Chapter 17, Abdeljalil Beniiche and Martin Maier first introduced the evolution of mobile networks and the Internet, then briefly discussed 6G vision, and elaborated various blockchain technologies. They borrow ideas from the biological superorganism with brain-like cognitive abilities observed in colonies of social insects for realizing internal communications via feedback loops, whose integrity is essential to the welfare of Society 5.0, the next evolutionary step of Industry 4.0.

Timo Ruohomäki and others distinguish urban Digital Twins from industrial Digital Twins in Chapter 18. Urban Digital Twins should be based on complex and scalable information models to maintain the key artifacts of social structure. The urban Digital Twins is about a large organism of a city, a complex urban system.
In Chapter 19, Tobias Osterloh et al. believe that the combination of Digital Twins and modern simulation technology provides significant benefits for the development and operation of robot systems in challenging environments. In the future, integrating big data into concepts will provide new possibilities for predictive maintenance and further match simulation data with available operational data.

1.5 Digital Twins in Management

Vladimir Shvedenko et al. considered managing complex systems through interactive Digital Twins, and described the realization of the principle of process function management of multi-structure system elements in Chapter 20. The main advantage of the proposed method is that the management system is built as open to its improvement, function expansion, and interaction with other systems.

In Chapter 21, Gozde Basak OZTURK and Busra OZEN introduce the integration of artificial intelligence and building information modeling to create a Digital Twins that improves the knowledge management process in the architectural, engineering, operation, and facility management. The progress of information and communication technologies and AI technology has improved the ability of building information modeling to transform static BIM model into dynamic Digital Twins.

Frits van Rooij and Phil Scarf discussed the application of Digital Twins in the context of engineering asset management in Chapter 22. Special attention is paid to the design principles of the maintenance plan Digital Twins. These principles are introduced as a framework, and a real case is used to illustrate how to use this framework to design Digital Twins.

In Chapter 23, Päivi Aaltonen et al. believe that the organizational barriers and facilitation factors to achieve Digital Twins maturity have not been widely discussed, but they are similar to the barriers and facilitation factors to achieve AI maturity. The author discusses the concept of AI and Digital Twins maturity and their relationship.

Petra Müller-Csernetzky and others described the innovation process, prototype stages, and relevant business models of five selected intelligent service projects and tried to apply Digital Twins to these links in Chapter 24. It can be learned from practice that when designing Digital Twins, it is important to be able to scale up and down in the time dimension, because doing so will outline the system dynamics and the main inputs and outputs.

Sofia Agostinelli summarizes the existing definition and specific use, complexity level, and system architecture of Digital Twins in Chapter 25. Lessons can be learned and applied to architecture, engineering, construction, and operation.
1.6 Digital Twins in Industry

Seppo Sierla analyzed recent work on Digital Twins in the process industry in Chapter 26. It shows different types of processes and different use cases of Digital Twins.

In Chapter 27, Dayalan R. Gunasegaram points out that Digital Twins offers an ideal method by which operations can be autonomously controlled and optimized in the highly connected smart factories of the Industry 4.0 era. Digital Twins can also optimize the various operations within factories for improved profitability, sustainability, and safety.

Jože Martin Rožanec et al. shared their experience in the methods we followed when implementing and deploying cognitive Digital Twins in Chapter 28. This concludes by describing how specific components address specific challenges involving three use cases that correspond to crude oil distillation, metal forming processes, and the textile industry.

In Chapter 29, Ning Gou et al. ‘s innovative concept of ultra-precision machining based on digital twin and its realization and application prospects are proposed. It may provide new insights for the future development of ultraprecision machining tools or processing systems in the Industry 4.0 era.

Giulia Marcon and Giuseppe Aiello research and solve the conceptualization, design and development of the Digital Twins of the logistics system in the shipbuilding industry in Chapter 30, in which the material handling operation is planned and managed in the space of the virtual shipyard, and the autonomous mobile robot and cooperative robot technology are used to improve the safety and efficiency of the operation.

George Falekas et al. introduce the concept of Digital Twins under the scope of electrical machine diagnostics and provide a Digital Twins framework of electrical machine predictive maintenance in Chapter 31.

In Chapter 32, Ahsan Muneer and Jyrki Savolainen discuss the applicability of Digital Twins in the board industry, and identified several practical problems in model building, data availability, and the use of unstructured data. The key issues of building and implementing Digital Twins are related to data availability and how to effectively use data, especially in the case of unstructured datasets that are traditionally utilized only by the human operators for high-level decisions.

Jascha Grübel believes that Digital Twins have a lot of untapped potential in Chapter 33, especially when they are combined with rigorous practices from experiments. The author shows the possibility of the combination of Digital Twins and disease algorithm codes.

Jairo Viola et al. proposed a new development framework in Chapter 34, which uses Digital Twins to make control and predictive maintenance intelligent. The case shows the ability of Digital Twins in the intelligent control of temperature uniformity control system and intelligent predictive maintenance of mechatronics test bench system.
1.7 Digital Twins in Building

In Chapter 35, Gabriele Garnero and Gloria Tarantino give a general overview of the current application fields of 3D urban models, to classify 3D data requirements into specific applications and clarify which types of 3D models with specific characteristics are suitable for this purpose. Then, a practical application example is shown in the Swedish environment, and a 3D building model was developed for Vaxholm City, Stockholm County.

Muhammad Shoaib et al. proposed a green Digital Twins framework based on case studies in Chapter 36. It can be concluded that the process of sustainability assessment through Digital Twins is highly dependent on building information modeling and other input data. The sustainability parameters assessment is quite efficient, fast, and transparent through Digital Twins.

Bianca Weber Lewerenz believes that Digital Twins is the most effective method in Chapter 37, which can start to ride the waves in the wave of digital transformation of the construction industry, take advantage of various opportunities, master unique challenges, and set new standards in the digital era.

Marianna Crognale et al. implemented a general data platform for vibration data visualization in Chapter 38. The work develops an approach that integrates a 3D information model and IoT systems to generate a detailed BIM, which is then used for structural simulation via finite element analysis.

Anca-Simona Horvath and Panagiota Pouliou drew and summarized the current situation of Digital Twins art in architecture in Chapter 39. Digital Twins should take the data they use seriously and consider the need for data storage and processing infrastructure in their entire life cycle, because this ultimately constitutes a sustainability issue.

Chunli Ying et al. proposed a method based on Digital Twins in Chapter 40, which is used to control the processing accuracy and installation quality of structural steel rigid frame (SSRS) bridges. It can provide accurate three-dimensional dimensions, eliminate human interference to the measured data, and use more flexible and systematic data processing algorithms to greatly improve the speed and quality of data.

Marianna Charitonidou introduced how the digital twin of city size can promote the sustainable development goals in Chapter 41. In the context of the current data-driven society, urban digital twins are often used to test scenarios related to sustainable environmental design.

1.8 Digital Twins in Transportation

Mariusz Kostrzewski briefly summarized the application of most Digital Twins in the transportation branch in Chapter 42.
In Chapter 43, Yuan Zhou and Leiting Dong established a Digital Twins drive framework to realize damage diagnosis and predict fatigue crack growth. In the example of a cyclic helicopter component, the uncertainty of the Digital Twins is significantly reduced, and the evolution of structural damage can be well predicted. The proposed method, using the ability of Digital Twins, will help to achieve condition-based maintenance.

Antonio Bono et al. proposed an integrated strategy for managing and checking infrastructure using drones and Digital Twins in Chapter 44. This strategy can provide the real-time status of buildings and perfectly process location information.

1.9 Digital Twins in Energy

Nikolai Fomin and Roman V. Meshcheryakov discuss the Digital Twins security of network physical water supply systems in Chapter 45. By using the safety assessment method based on Digital Twins, the safety system of the water supply company is improved.

In Chapter 46, Dirk Westermann understands Digital Twins as a real-time digital representation of physical components based on measurement data and analysis knowledge. It enables power suppliers to transform their operations through actionable insight to achieve better business decisions. In other words, grid operators can improve operations, reduce unplanned outages, and manage fluctuations in market conditions, fuel costs, and weather conditions.

In Chapter 47, Elena F. Sheka believes that with the increasing amount of modeling data, it is inevitable that the concept of Digital Twins will change from ordinary modeling. This chapter takes the material science of high-tech graphene materials as an example to introduce an example of this concept reflection.

Triboelectric nanogenerator (TENG) is a technology that transforms the changes of the physical world into electrical signals. Jiayue Zhang and Jie Wang introduce the mechanism of common TENG, common self-powered sensors based on TENG, and various scenarios of TENG in Digital Twins applications in Chapter 48. In addition, this section also discusses the future application potential of TENG in Digital Twins.

1.10 Digital Twins in Medicine and Life

In Chapter 49, João A. M. Santos et al. introduced the current paradigm of Digital Twins applied in the pharmaceutical industry, studied the Digital
Twins applied in the pharmaceutical supply chain and pharmaceutical management more deeply, and proposed the future research direction.

Chenyu Tang et al. introduced the development status of human Digital Twins in Chapter 50. The success of Digital Twins technology in industrial application makes people more confident in building human Digital Twins models.

In Chapter 51, Sai Phanindra Venkatapurapu et al. describe the opportunities and challenges of Digital Twins for Proactive and Personalized Healthcare.
What Is Digital and What Are We Twinning?

When Digital Twin Meets Network Engineering and Operations

Cognitive Digital Twins

Structural Integrity Preservation of Built Cultural Heritage

Key Technologies of Digital Twins

A Generic Deployment Methodology for Digital Twins — First Building Blocks

Romania: Springer.

Automated Inference of Simulators in Digital Twins

Digital Twin for Federated Analytics Applications

Yu Zheng, Sen Yang, and Huanchong Cheng. An application framework of digital twin and its case study. Journal of Ambient Intelligence and Humanized Computing, 10(3):1141–1153,
Blockchain-Based Digital Twin Design

Developments and the Information Age”. Ankara: The Turkish General Staff Directorate of Military History, Strategic Studies and Inspection Publications.

Physics-Based Digital Twins Leveraging Competitive Edge in Novel Markets

Digital Twin Model Formal Specification and Software Design

Open GL. https://www.opengl.org/.

DICOM. https://www.dicomstandard.org/.

Layering Abstractions for Design-Integrated Engineering of Cyber-Physical Systems

2020.

Issues in Human-Centric HMI Design for Digital Twins

Toward a New Generation of Design Tools for the Digital Multiverse

A Service Design and Systems Thinking Approach to Enabling New Value Propositions in Digital Twins with AI Technologies

https://doi.org/10.1007/s12525-017-0270-5.

Tokenized Digital Twins for Society 5.0

Urban Digital Twin as a Socio-Technical Construct

Barachini, F. , & Stary, C. 2022. From Digital Twins to Digital Selves and Beyond. Cham: Springer.

DEPARTMENT OF COMPUTER SCIENCES UNIVERSITY OF TAMPERE TAMPERE 2005.

Design and Operationalization of Digital Twins in Robotized Applications

Management of Digital Twins Complex System Based on Interaction

Artificial Intelligence Enhanced Cognitive Digital Twins for Dynamic Building Knowledge Management

On the Design of a Digital Twin for Maintenance Planning

Organizational Barriers and Enablers in Reaching Maturity in Digital Twin Technology

Dora Horvath and Roland Zs. Szabo. Driving forces and barriers of industry 4.0: Do multinational and small and medium-sized companies have equal opportunities? Technological Forecasting and Social Change, 146:119–132, 2019.

Digital Twins for Lifecycle Management

Digital Twins for Process Industries

Digital Twins in the Manufacturing Industry

Cognitive Digital Twins in the Process Industries

Arp, Robert, Barry Smith, and Andrew D Spear. 2015. Building ontologies with basic formal ontology. Mit Press.

Development of the Digital Twin for the Ultraprecision Diamond Turning System and Its Application Perspectives

34593–34602.

Conceptualization and Design of a Digital Twin for Industrial Logistic Systems

Digital Twin Applications in Electrical Machines Diagnostics

Building a Digital Twin – Features for Veneer Production Lines – Observations on the Discrepancies between Theory and Practice

Experiments as DTs

Jascha Grübel and Michal Gath-Morad. Fused twin base (github), March 2022.

Jascha Grübel, Tyler Thrash, Didier Hélal, Robert W. Sumner, Christoph Hölscher, and Victor R. Schinazi. LoRaWAN DISN Transmission Meta Data, January 2021. The accompanying research is presented at IEEE International Conference on Pervasive Computing and Communications 2021 (PerCom’21). The research that produced this data set is funded by ETH Zürich under the grant ETH-15 16-2. We thank Michal Gath-Morad for the BIM used for distance computations.

Mistler S. Planning your analyses: Advice for avoiding analysis problems in your research. Psychological Science Agenda, 26(11), 2012.

Digital Twins–Enabled Smart Control Engineering and Smart Predictive Maintenance

NSF. Smart and Autonomous Systems (S&AS), 2018.
Dingyü Xue, YanQuan Chen, and Derek Atherton. Linear Feedback Control, Analysis and design with MATLAB - Advances in Design and Control. Society for Industrial and Applied Mathematics, 3600 University City Science Center Philadelphia, PA, United States, 2007.

3D City Models in Planning Activities

Exploiting Virtual Reality to Dynamically Assess Sustainability of Buildings through Digital Twin

https://doi.org/10.1016/j.rser.2017.06.001.

Riding the Waves of Digital Transformation in Construction – Chances and Challenges Using Digital Twins

Wolber, J. and Steuer, D. 2022. AI in Construction. Online-Presentation of the Research Project Group SDaC for the 17th meeting of the Regional Working Group Karlsruhe as of March 30, 2022, German Lean Construction Institute - GLCI e.V.

A Framework for the Definition of Built Heritage Digital Twins

Lauria, M., Mussinelli, E., and Tucci, F. (2022). “Producing Project.” Published by Maggioli Editore in Open Access with Creative Commons License Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).

Digital Twins in Architecture

2022.

Mostapha Sadeghipour Roudsari and Michelle Pak. Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design, 2013.

Developing a Construction Digital Twin for Bridges

Digital Twins in Transportation and Logistics

Digital Twin–Driven Damage Diagnosis and Prognosis of Complex Aircraft Structures

Digital Twins and Path Planning for Aerial Inspections

Kamel, M. ; Burri, M. ; Siegwart, R. Linear vs nonlinear mpc for trajectory tracking applied to rotary wing micro aerial vehicles. IFAC PapersOnline. 2017, 50, 3463–3469.

Bono, A. ; D’Alfonso, L. ; Fedele, G. ; Filice, A. ; Natalizio, E. Path planning and control of a UAV fleet in bridge management systems. Remote Sensing. 2022, 14(8), 1858.

Digital Twin Security of the Cyber-Physical Water Supply System

Digital Twin in Smart Grid

Digital Twins in Graphene Technology

Prepare for the Impact of Digital Twins by Gartner.

Digital Twin and Big Data towards Smart Manufacturing.

Industry 4.0 and the Digital Twin by Deloitte.

Sheka, E. F. Digital Twins solve the mystery of Raman spectra of parental and reduced graphene oxides. Nanomaterials 2022, 12, 4209.

Sheka, E. F., Popova, N.A. Virtual vibrational spectrometer for sp2 carbon clusters and dimers of fullerene C60. FNCN 2022, 30, 777–786.

Applications of Triboelectric Nanogenerator in Digital Twin Technology

pressure detection and tactile imaging.” ACS Nano 7 (9):8266–8274.

Digital Twins in the Pharmaceutical Industry
Heribert Helgers , Alina Hengelbrock , Axel Schmidt , Florian Lukas Vetter , Alex Juckers , and Jochen Strube . Digital twins for scFv production in Escherichia coli. Processes, 10(5):809,
2022.

Human Body Digital Twins

Z. Yang, Y. Pang, X. Han, Y. Yang, J. Ling, M. Jian, Y. Zhang, Y. Yang, T. Ren. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano. 2018, 12, 9134.

Digital Twins for Proactive and Personalized Healthcare – Challenges and Opportunities

2021. “Creating Digital Twins at Scale.”