

Aalborg Universitet

Towards Accelerating the Network Performance on DPUs by optimising the P4 runtime

Iliadis-Apostolidis, Dimosthenis; Manaa, Khalid; Kadosh, Matty; Ioannou, Iacovos; Vassiliou,
Vasos; Kosta, Sokol; Olmos, Juan Jose Vegas
Published in:
2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)

DOI (link to publication from Publisher):
10.1109/PDP62718.2024.00040

Publication date:
2024

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Iliadis-Apostolidis, D., Manaa, K., Kadosh, M., Ioannou, I., Vassiliou, V., Kosta, S., & Olmos, J. J. V. (2024).
Towards Accelerating the Network Performance on DPUs by optimising the P4 runtime. In A. E. Chis, & H.
Gonzalez-Velez (Eds.), 2024 32nd Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP) (pp. 238-244). Article 10495559 IEEE. https://doi.org/10.1109/PDP62718.2024.00040

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 27, 2024

https://doi.org/10.1109/PDP62718.2024.00040
https://vbn.aau.dk/en/publications/db8dba43-e2a3-4930-adc0-9268a6cd377c
https://doi.org/10.1109/PDP62718.2024.00040

Towards Accelerating the Network Performance on
DPUs by optimising the P4 runtime

Dimosthenis Iliadis-Apostolidis
Department of Electronic Systems

Aalborg University and NVIDIA Corporation Ltd.
Copenhagen, Denmark

dia@es.aau.dk

Khalid Manaa
NVIDIA Corporation Ltd.

Hermon Building,
Yokneam, Israel

khalidm@nvidia.com

Matty Kadosh
NVIDIA Corporation Ltd.

Hermon Building,
Yokneam, Israel

mattyk@nvidia.com

Iacovos Ioannou
University of Cyprus
University Avenue 1

Nicosia, Cyprus
ioannou.iakovos@ucy.ac.cy

Vasos Vassiliou
University of Cyprus
University Avenue 1

Nicosia, Cyprus
vasosv@ucy.ac.cy

Sokol Kosta
Department of Electronic Systems

Aalborg University
Copenhagen, Denmark

sok@es.aau.dk

Juan Jose Vegas Olmos
NVIDIA Corporation Ltd.

Hermon Building,
Yokneam, Israel
juanj@nvidia.com

Abstract—Data Processing Units (DPUs) are becoming increas-
ingly popular, especially for use in conjunction with Warehouse-
Scale Computers (WSCs) due to their ability to handle network-
ing functions and data-centric workloads. Cost-performance,
energy efficiency, network I/O, and batch processing workloads
are important design factors for WSCs. Recent developments in
AI and the never-ending increase in demand for data processing,
cloud computing, and HPC set the optimisation of all those
design factors as a high priority. DPUs can be utilised to achieve
significant improvements in all those areas. This includes in-line
network processing and upcoming enhanced security paradigms
such as post-quantum cryptography (PQC) for quantum re-
silient communications or software-defined perimeters (SDP) for
confidential computing implementations. Being P4-enabled and
dRMT-based, DPUs allow for the reconfigurability of the network
traffic without the need to change the hardware. However, the
network performance on such devices is only sometimes deter-
ministic since the actual traffic and the rules, both of which have
to do with packet processing, are not known during compile time.
In this paper, we envision how the network performance on DPUs
can be accelerated. We describe the challenges that negatively
impact the bandwidth and latency: the complex steering pipeline
and the massive runtime needed to optimise. These challenges
arise from the lack of information during compile time that is
only known during runtime. Thus, we envision optimising during
runtime by leveraging DPUs’ reconfigurability on the network
I/O. For this, we discuss the significant factors that must be
considered to accelerate the network performance on such devices
and we propose a solution for them.

Index Terms—Networks, Programmable Networks, SDN, Data
Plane Control Devices, DPUs, SmartNICs, WSCs, HPC

I. INTRODUCTION

The never-ending increase in demand for big data process-
ing, cloud computing, and HPC among others, results in partic-
ular interest for optimising the performance and efficiency of
Warehouse-Scale Computers (WSCs). Cost-performance, en-
ergy efficiency, network I/O, and batch processing workloads
are important design factors for systems of this scale. Data
Processing Units (DPUs) are becoming increasingly popular

due to the many advantages and improvements they can pro-
vide in all those areas. DPUs are SmartNIC devices with ARM
cores and accelerators on board, enabling efficient handling
of data-centric workloads. By offloading those workloads to
DPUs, the central servers’ utilisation can be reduced. An
architecture of this setup can be seen in Figure 1, where
hosts can offload workloads to the DPUs to improve their
performance and energy efficiency while also utilising the
DPUs for high-speed connection within the WSC.

Much research is being done that focuses on offloading
intensive tasks onto DPUs. In [1], [2], [3], [4], many use cases
are described and implemented on DPUs and SmartNICs.
Some of the main directions of the research work are either
focusing on application-specific designs or proposing the au-
tomation of offloading onto such devices, the computational
performance benefits, the avoidance of overloading the central
server and making the systems more energy efficient. In such a
way, cloud computing and many intensive data-processing and
high-performance computing applications can find acceleration
benefits by utilising DPUs. With ARM cores and flexible
and programmable accelerators on board, those tasks can also
increase the performance by leveraging the concurrency such
hardware can provide on the computational level. At the same
time, a significant advantage of ARM-based devices that DPUs
are, is energy efficiency since using these devices, on a WSC
level, can lead to lower power consumption than having similar
tasks run on x86-based devices or hosts [5], [6], [7], [8]. That
means that in general, a task will consume less power when
offloaded onto a DPU compared to being executed on a x86
host, as this is one of the main benefits of having DPUs on
WSCs. The main limitation of this though, has to do with
the task itself i.e., the level of parallelism it allows as an
application, the utilisation it requires, the Dataflow etc.

A primary factor distinguishing DPUs is that they can also
be used as data plane control devices. This means that they can
take on the task of processing and forwarding the packets for

Host1 Host2 Hostn

DPU1 DPUn

...

...

Switch

DPU2

Data Center

100GbE Connection

PCIe
Offload

Workloads
and

Improve
Performance

Connection between all the DPUs
to utilize more resources and

to further improve performance

Optional Direct 100GbE
Connection between

sequential DPUs

Fig. 1. Example of a WSC scenario. On a high level, each host has a DPU.
Depending on how the system is orchestrated (Master-Servant, etc.), data-
centric and computational heavy tasks can be offloaded onto the DPU. Note
that optionally, there can be a connection between the DPUs by using a switch
or a direct connection between adjacent DPUs so that the performance can
be increased further by utilising more available resources, i.e., more DPUs
concurrently.

the Network I/O. To do this, current state-of-the-art hardware
uses P4 [9], a programming language that specifies how a
data plane control device will process packets. DPUs are
based on hardware and software architectures that enable the
reconfigurability of the network without the need to change the
hardware. Other SmartNICs might have different capabilities
or be based on different architectures, but the challenges
remain the same. The main focus of our work though will
be Nvidia’s DPUs.

Depending on the device that P4 targets and the features that
need to be supported, there are several software architectures
that P4 incorporates such as i) the Portable NIC Architecture
(PNA)1, which is used for programming the packet processing
that takes place on DPUs, SmartNICs, and NICs and ii) the
Portable Switch Architecture (PSA)2, which is mainly used
for programmable switches, thus having differences in the
programming components compared to PNA. The main reason
for using the PNA architecture has to do with the fact that
physical interfaces found on DPUs are different from the
ones found on switches. Also, PNA extends the software
capabilities to support features often found on such devices
but rarely on programmable controllers, such as Remote Direct
Memory Access Offload (RDMA) and IPSec encrypt/decrypt,
among others3.

ASICs found on DPUs are responsible for handling the
packet processing. They are based on the Disaggregated Re-
configurable Match+Action Table (dRMT) architecture, which
was implemented to tackle some key challenges that occurred
by using the RMT architecture. RMT uses sequentially-wired
pipeline stages, meaning that the order in which the operations

1https://p4.org/p4-spec/docs/PNA.html
2https://p4.org/p4-spec/docs/PSA.html
3https://opennetworking.org/wp-content/uploads/2021/05/

2021-P4-WS-Andy-Fingerhut-Slides.pdf

are executed is fixed. On the other hand, dRMT increases the
inter-packet concurrency for the packet processing task. This
is achieved by having a multiprocessor design and each one
of those processors processes a packet to completion. Each
processor can perform MA operations on more than one packet
at a time. To achieve this, shared memory clusters, which are
available to the processors through a crossbar, are used. This
expands the capabilities of packet processing and introduces
several challenges that must be addressed to optimise the
performance of P4-enabled, dRMT-based devices on packet
processing and Network I/O.

This paper explores how to accelerate the network perfor-
mance by optimising the P4 runtime on Disaggregated Re-
configurable Match+Action Table (dRMT)-based Data Plane
Control Devices, such as DPUs are. We describe the chal-
lenges, i.e., the complex steering pipeline and the massive
runtime to optimise. We also discuss the parts that should
be considered to be optimised during runtime to accelerate
the network performance. Those parts are the table entries,
which are unknown at compile time, their dependencies and
the actual paths that will be used (traffic). We also discuss the
need to implement tools to benchmark the performance and
test the validity of the optimisations.

II. BACKGROUND AND MOTIVATION

Packet processing on DPUs with the dRMT architecture.
DPUs are based on the dRMT architecture [10], which uses a
multiprocessor design for packet processing and shared mem-
ory clusters available to each processor through a crossbar.
Every Match+Action Table (MAT) gets passed into a processor
and runs to completion. RMT [11] is an architecture that
has sequentially hardcoded pipeline stages. One significant
advantage of dRMT is the flexibility and adaptability that it
can provide during runtime. This can overcome an essential
pipeline restriction used for packet processing on traditional
switch ASICs. The execution is sequential for each MAT:
match, then action on one stage, the same on the second
stage, etc. This wastes cycles if, for example, the action is to
drop a packet since it will happen at the end of the pipeline.
DPUs with reconfigurable dRMT-based ASIC processing cores
dropped packets can be discarded by halting the execution
and then fetching the next packet, not wasting any cycles or
resources. The other issue that has to do with RMT is that
unused memory is unavailable from stage to stage. This is a
significant advantage of dRMT, where the memory clusters are
shared, meaning that every processor can access them through
a crossbar, meaning that otherwise unused memory can be
utilised by the processors.

Scheduling on dRMT-based devices. Nondeterminism in
network processors’ performance has to do with several chal-
lenges. Cache misses and contention in the processor-memory
interconnect are factors that must be considered. This is why
dRMT offers a static scheduling algorithm at compile time-
based on the P4 program’s dependencies and the capabilities of
the available hardware resources. This scheduling mechanism
solves the problem of contention and minimises cache misses.

https://p4.org/p4-spec/docs/PNA.html
https://p4.org/p4-spec/docs/PSA.html
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Andy-Fingerhut-Slides.pdf
https://opennetworking.org/wp-content/uploads/2021/05/2021-P4-WS-Andy-Fingerhut-Slides.pdf

During runtime though, networking bottlenecks come into
play, requiring different optimisations to resolve and increase
the network performance. Even so, this contribution is signif-
icant to packet processing, especially regarding the hardware
architecture for data plane control devices.

Challenges of packet processing on DPUs. Since DPUs
are devices that can also handle the task of packet processing,
several challenges arise regarding the network performance.
P4 is used to enable the programmability of the network
while also benefiting from the flexibility that it can provide. In
essence, the network handling can be programmed on software
without changing the hardware. One great challenge though,
occurs when defining a complex steering pipeline. Information
such as the MAT entries are unknown at compile time and
volatile during runtime. This can result in an increase of the
number of hops at the steering stage, having a negative impact
on the network performance and needing massive runtime to
optimise.

The need for optimisations during runtime. Network
performance, i.e., the bandwidth and the latency, depends on
the table entries and the traffic. This kind of information
is unknown at compile time. That is why it is essential to
take a deep dive into optimisations that can take place during
runtime. In order to optimise the Network I/O, there is a need
for optimising the P4 runtime.

III. RELATED WORK

Enabling Network Programmability. With the advent of
Software-Defined-Networks (SDNs) [12], many capabilities
were added in networking, while SDN also described a way
for programmable networks to become a reality. That is, by
implementing the control plane functions as a different service,
separating it from the data plane. In today’s networks, where
the I/O is higher than ever in an upward trend, state-of-
the-art SDN-based solutions are also implemented in real-
life scenarios. There is an adaption to this notion on both
hardware and software to provide the quality and quantity
needed for today’s systems and their users. Although SDNs
are implemented in software, the hardware architecture also
adapts to deliver better performance and service the increasing
I/O.

OpenFlow SDN [13] was the first enabler for the pro-
grammability of the control plane. This allowed for adaption
to any changes needed on packet processing without changing
or upgrading the hardware. One of the main issues was that
by having different hardware data path designs, each vendor
had to offer hardware-specific code. Also, programming new
protocols was not an easy task, time-wise. That is why Pro-
gramming Protocol-Independent Packet Processors (P4) [9] is
considered a next-gen SDN-based programming language that
tackles many of the challenges that occurred with OpenFlow.

P4 is a state-of-the-art programming language that enables
programming of the control plane and there is a great adap-
tation of it throughout the industry. The necessary software
components to accommodate a specific protocol can be im-
plemented by a programmer and they have to be based on a

particular software architecture that P4 encompasses, depend-
ing on the target. By providing a flexible and programmable
parsing, control, and deparsing stage, P4 can modify the packet
processing procedure without needing a hardware change.
This can result in more performance and efficiency gains and
adaptability to the volatile needs that occur on the network
level. A significant advantage of P4, compared with OpenFlow,
is that it describes the behaviour of the forwarding plane. By
offering more specialised software architectures, P4 enables
the re-programmability of data plane control devices on more
familiar ground among different vendors.

Other work that contributes to enabling re-programmability
during runtime is [14] and [15]. These papers emphasise the
importance of making changes to network functions during
runtime. Moreover, in [15], the ability of partial reconfigura-
tion of switch data planes at runtime is described while also
solving many challenges that arise with it.

Packet processing optimisations on RMT-based devices.
Previous work such as [16], [17], [18], has focused on optimis-
ing RMT-based devices. To achieve this, all the optimisations
that have been proposed have to do with optimising the
procedure that involves the Match-Action Tables. This is done
by reducing table dependencies based on policies, merging
multiple tables with similar behaviour into one, or reducing
match operations. More specifically, P5 [16] proposes a system
based on information from application deployment, which
can be used to simplify and reduce mutually exclusive or
unused features from applications, thus decreasing the table
dependencies and resource utilisation. B-Cache [17] proposes
a caching framework for the Programmable Data Plane. One
of the contributions is keeping track of packet processing
behaviours, which are dispersed into multiple tables and
enabling them to be compiled into one table. To deal with
the increase in the pipeline size and the complexity of the P4
runtime, the authors propose exploiting behavior-level caching
while maintaining the cache coherence during runtime. At
the same time, they show increased network performance by
using these optimisations. The solution presented by MATRe-
duce [18] is to reduce the duplicate match operations between
Match+Action Tables (MATs). The proposed system achieves
this by using a preprocessor and a runtime manager, where
the former merges duplicate match operations of the pipeline
while the latter maintains policy consistency. The authors show
that an increase in performance is obtained by merging the
duplicate match searches, reducing the number of operations
needed for packet processing.

All of the above accelerate the performance of the P4 run-
time. They are not designed for dRMT devices though, but for
RMT instead, with which every packet goes through specific
paths, passing through all the stages. Still, methodologies have
been proposed that can positively impact the performance of
the P4 runtime.

IV. PACKET PROCESSING WITH P4

In this section, we explain how MATs work at the control
stage and how to work towards optimising the P4 runtime.

A. Match+Action Tables

Match+Action Tables (MATs) are an essential component
of packet processing and, more specifically, of the con-
trol/steering stage of the P4 flow. With these tables, the
procedure is to match on packet header fields or metadata
and then perform actions on the packet (e.g., forward, modify,
drop, etc.). MATs are a significant part of the P4 program.
Their main characteristics are known at compile time and other
software components that are associated with them, such as the
match algorithms, which are (pre-)defined inside the software
architecture.

Those tables must contain the type of data to match on,
i.e., which header fields to match on (key), as well as possible
actions and action data for the packets. Optionally, they can
contain table properties, such as size, default action, etc. An
entry of such a table includes the content of the key to match
(e.g., the content of the destination IP of the packet header)
and a specific action to be executed if there is a match. In the
Alg. 1, we clearly show the inner workings of MATs.

Algorithm 1 Process of MATs in P4 for Packet Processing
1: Initialization:
2: Define MATs with keys and actions.
3: Set table properties.
4: At Runtime:
5: for each incoming packet do
6: Identify packet type from header.
7: Select appropriate MAT based on packet type.
8: Perform matching operation.
9: if match is found then

10: Execute the corresponding action.
11: else
12: Execute default action.
13: end if
14: end for
15: Handling Different Packet Types:
16: Ethernet-type: Use exact match for MAC address.
17: IPV4-type: Use partial match algorithms.
18: Optimising Runtime:
19: Update MAT entries.
20: Maintain network functionality.
21: Optimise operations based on runtime data.

The biggest challenge is that the entries, i.e., the data to
match on, are unknown during compile time. That means that
based on the content of the key, the selection of a specific
match operation (where the entry will be added) as well as
the selection of the action to be performed if there is a match
(what action will be inserted in the entry), is done during
runtime. Exact Match, Longest Prefix Match (LPM), and
Ternary Memory Lookups are match operations/algorithms
that can be selected. Details on the parameters of the match
can be given through the entries. To select a specific match
operation on specific bits, a variable must be (pre-)defined
inside the tables and the value should be passed through the

Assets

Key Action ID Action Data

10.0.0.24 forward port=2

192.168.107.242 forward port=1

...

Match+Action Table: IPV4_lpm_forwarding_table

Assets

Default Action Default Action
Data

drop N/A

... ...

...

dstIP

...

IPV4 Header

Key Match?
No

Action

Yes

LPM Match

Fig. 2. Example of an IPV4 forwarding MAT. Note that the matching
algorithm (Longest Prefix Match) that will be executed is MAT-specific and
defined in the P4 program. The content of the key is extracted from the header
at the parsing stage and it will be matched against the entries of the MAT at
the control stage on the fields of that key during runtime. The entries of the
MAT are unknown during compile time, i.e., the MAT can be empty when
the program is initialised.

entries. Figure 2 gives an example of a MAT and an overview
of the entire procedure.

When a packet is received, what happens next depends
on the packet type, which is information that can be found
inside the packet header. With P4, the programmer can select
to implement different tables with different algorithms and
flexible header parsers. In general, though, we describe com-
mon scenarios in which the process followed differs depending
on the header type of the packet. If this packet has a header
type of Ethernet which needs to be sent to a MAC address,
the exact match is the operation that will be executed. How
the packet will be processed depends entirely on the MATs
implemented inside the P4 program and their entries, which
are added/removed/modified during runtime. If the P4 program
supports the processing of Ethernet-type headers, they will be
parsed and there will be a search on the entries of the MATs to
find the same key, which in this case is the destination MAC
address. If there was a match, the action of the MAT rule that
had this same key will be executed. A default (predefined)
action, such as drop, will be performed if there is no match.

On the other hand, when a packet with a header type of
IPV4 is received, a successful partial match can be enough
to perform the corresponding action. Some actions, such as
forwarding, might need more parameters to be specified for
execution, such as the interface from which it will be sent.
To make this decision, the operation that has to take place
is to look for a match. It is helpful to describe two crucial
partial match algorithms to demonstrate the main issues and
challenges. LPM is an algorithm in which the longest prefix,
i.e., the most specific prefix in the table, is selected. A bit-by-
bit comparison on the entry field of the destination IP address
is made and the prefix with the most matching bits is the prefix
that is eventually the match.

In Ternary Memory Lookups, a mask bit is added, a ”care”
or ”don’t care” bit. In P4, the ”don’t care” value is reserved
on the (underscore character). The entry for such a match

operation is compared with the contents of the MATs. Then, it
is determined which is the longest match to return as the match
result and move to the action. The ternary match is given by
the mask together with the value, as well as the priority, to
resolve overlapping issues.

Although we mention those specific match algorithms, P4
enables the programmability of the network, allowing for
those operations to be used on various header fields and for
different situations. A P4 programmer cannot add more match
algorithms. This can only be implemented inside the model
description files, i.e., inside the various software architectures
that P4 provides. Maintaining the correctness of the network
functionality is essential and it is one of the factors that must
be considered to optimise during runtime.

The above significantly impacts the P4 runtime and the
complex steering pipeline that can be defined. That is since
the selection of the match algorithms that will be executed and
the table entries are given and changed during runtime and are
unknown at compile time. An essential part of the steering
pipeline is processing the packets that will take place on the
control data plane. The entries of MATs are an indispensable
component of the P4 runtime. Thus, it is crucial to tackle this
challenge by optimising the P4 runtime.

B. The P4 runtime

P4 is a programming language that defines how the packets
are processed on a data plane control device. In essence, it
enables the definition of the behaviour of such devices’ data
plane. The main benefit that P4 offers is that operators can
change the network behaviour, i.e., they can reprogram how
a DPU will handle the traffic without the need to change
the hardware. P4 has many tools that come with it, which
can be used to simplify the implementation procedure. A
P4 program defines a pipeline for packet processing. All the
objects incorporated within this program are used and modified
during runtime.

A P4 program defines the parsing, the control/steering,
and the deparsing stages of packet processing, as shown in
Figure 3. The way that the packets have to be processed is
broken down into three stages, so that:

• The information that is extracted from the header is
defined at the parsing stage.

• The matching algorithm that will be used and the defini-
tion of the action that will occur if there is a match or
by default, is described at the control stage.

• The packet header is reassembled at the deparsing stage.
Each stage is critical for having a complete implementation

for processing the packets. The parsing and the deparsing steps
are pretty straightforward. In the beginning, the header of the
packet is processed so that important information is extracted,
such as the type of the header (e.g., Ethernet or IPV4),
the destination address (MAC or IP), and other information,
accordingly (time-to-live, etc.). At the end of the procedure,
the header is reassembled as computed by the pipeline and
the outgoing packet is constructed. It is also important to note
that the parser is flexible. Since P4 is protocol-independent,

Parser Control Deparser

Extract info
from the
header

MATs and
Steering
Pipeline

Reassemble
the packet

header

Table1

Table2

Tablen

...

Steering stage of the Pipeline

DPU

P4 Architecture

Table3

Table4

...

Fig. 3. A more detailed look into the pipeline. In RMT, the pipeline is
implemented into stages sequentially. In dRMT, the pipeline is implemented
on each processor. The packets cannot move between different processors.
The packets are passed into each processor in a round-robin fashion and they
are Run-To-Completion (RTC). The path that each packet will follow, though,
can be different since it is dependent on the entries and the actual traffic that
will go through the steering stage.

the programmer can code the necessary software components
to support any protocol needed at the parsing stage. The
headers’ formats, types, and fields are implemented inside the
P4 program. This is a significant advantage of P4 since it
makes it future-proof and, at the same time, adaptable for any
use case that needs to be implemented.

Between the parsing and the deparsing stages lies an im-
portant one, the control/steering stage. The MATs are defined
in this part of the P4 program. For this purpose, the match
algorithms are selected for each table and the appropriate
action to be executed if a match is defined. Optionally, a
default action is also determined to occur if there is no match.
The significance of this stage, though, doesn’t arise from the
implementation itself but rather from the entries of the tables
that will be inserted, modified or deleted, which will be used
during the P4 runtime.

P4 runtime is a control plane specification for controlling
the data plane elements of a device defined or described by
a P4 program. The pipeline is created during compile time
and it might be insufficient in terms of performance because
information that can have a negative impact on its performance
is unknown at compile time. The definition of the pipeline
is mainly connected to the description of the Match+Action
tables, their dependencies and optional fields and parameters.
The performance of the pipeline, though, is dependent on the
entries of the MATs and the actual traffic.

As described above, the entries of the MATs, also known
as rules, are not known at compile time. Thus, depending on
how the user will add, remove, or modify those entries during
runtime, it can negatively impact the network performance.
By network performance, we refer to the overall traffic,
latency, and bandwidth patterns. Thus, there is an excellent
need for optimising the P4 runtime to accelerate the network
performance on dRMT-based devices so that line-rate packet
processing can be achieved.

V. TOWARDS OPTIMISING THE P4 RUNTIME

Many avenues can be explored to optimise the P4 runtime.
This paper focuses on specific factors that must be considered
to accelerate the network performance on DPUs and dRMT-
based devices. It is general knowledge that not every Smart-
NIC has ARM cores and accelerators on board (other vendors
use different solutions) and that the ASICs of the SmartNICs
can be based on different architectures. P4 is an important
common block, as an open-source aspect of this research topic,
that enables reconfigurability and adaptability when it comes
down to e.g., how packets will be processed, across different
solutions. The main challenges i.e., i) the complex steering
pipeline and ii) the massive runtime required to optimise the
network performance, remain the same.

This pipeline has to be able to adapt to the changes that
have to do with the entries and how they will result in a
path that might be costly for the system and the network
performance. For this to be possible, a mechanism has to be
in place that will be able to make optimisations on the tables
during runtime with the use of an implementation that will
be able to also make changes on the control plane. Many
algorithms can be implemented to efficiently manipulate the
tables and their entries, resulting in better performance.

Thus, our approach provides the Alg. 2 that enhances the
pipeline. Each packet must go through a specific path, i.e.,
several specific tables, to be processed. One of the main chal-
lenges of the complex steering pipeline is this traffic, which,
in essence, encompasses the actual paths that will be used and
it plays a significant role in network performance. As such,
traffic is another critical factor to be taken into consideration
when optimising the P4 runtime. During runtime, when the
table entries will be added, removed or modified, it is crucial to
monitor the paths that will be needed so that the optimisations
that will take place onto the tables will also be concerning
the traffic that is expected to happen when executed. The
importance of this is the table dependencies that can occur
when multiple packets have to go through overlapping nodes
in the path.

There is also a need for an algorithm that resolves the
table dependencies during runtime. dRMT-based devices have
a scheduling algorithm that can deal with data races on the
universally accessible memory through the crossbar, but this
is not enough to increase performance. Although there might
not be any (unresolved) data dependencies during runtime,
the memory’s availability has to be considered for the optimal

Algorithm 2 Enhanced P4 Runtime Processing with Path De-
termination, Dependency Resolution, and Performance Tools

1: Initialization:
2: Define MATs with keys and actions.
3: Set table properties.
4: Path Determination and Processing:
5: for each incoming packet do
6: Identify packet type and determine the specific path.
7: for each MAT in the path do
8: Perform matching operation.
9: if match is found then

10: Execute the corresponding action.
11: else
12: Execute default action.
13: end if
14: end for
15: end for
16: Monitoring and Optimisation:
17: Monitor paths and optimize MAT entries based on traffic.
18: Resolving Table Dependencies:
19: Implement algorithm for runtime dependency resolution.
20: Consider dynamic resource allocation in dRMT-based

devices.
21: Performance Tools Implementation:
22: Develop tools for measurement, validation, and bench-

marking.
23: Extend tools for complex pipeline testing.
24: Runtime Table Management:
25: Dynamically manage MAT entries considering dependen-

cies.

pipeline version, exploiting the benefits of dynamic resource
allocation on dRMT-based devices.

Last but not least, there is a need for implementing tools
that will be able to i) measure the performance, ii) validate
the execution and iii) benchmark against unoptimized versions
are crucial. Another part of those tools has to do with the
complexity of the testing scenarios, meaning not only adding,
removing or modifying entries but also creating complex
steering pipelines to be resolved. In this way, testing can be
automated by implementing new tools or by extending the
capabilities of current ones.

VI. CONCLUSION

To further contribute to accelerated computing, there is a
need for network performance optimisations on state-of-the-
art hardware with such capabilities. Network performance on
DPUs, based on the dRMT architecture, is not deterministic. It
depends on many factors, but the main issue is that information
such as table entries (rules) are unknown during compile
time. Since those rules are added/removed/modified during
runtime, a result of a complex steering pipeline can have a
negative impact on the performance. Additionally, a massive
amount of time will be needed to optimise since the number
of hops will increase. In this work, we envision how the P4

runtime can be optimised. We make a detailed assessment of
the challenges while discussing essential factors to consider
to achieve line-rate packet processing on DPUs. Such line-
rate packet processing enables hyper-distributed computing
paradigms that seamlessly interconnect and support abstracting
the storage and computing capacity of the cloud and the data
processing and low latency features of the edge. DPUs enable
the management of such complex fabrics while guaranteeing
network security, data privacy, and confidentiality in such a
cloud-edge continuum.

VII. ACKNOWLEDGEMENTS

This work was partly funded by the QUARC project by
the European Union Horizon Europe research and innovation
program within the framework of Marie Skłodowska-Curie
Actions with Grant Agreement No 101073355.

ADROIT6G project has received funding from the Smart
Networks and Services Joint Undertaking (SNS JU) under the
European Union’s Horizon Europe research and innovation
programme under Grant Agreement No 101095363.

REFERENCES

[1] T. Cui, W. Zhang, K. Zhang, and A. Krishnamurthy, “Offloading load
balancers onto smartnics,” APSys ’21, (New York, NY, USA), p. 56–62,
Association for Computing Machinery, 2021.

[2] Y. Gao, Z. Wang, and S.-B. Tsai, “A review of p4 programmable data
planes for network security,” Mob. Inf. Syst., vol. 2021, jan 2021.

[3] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta,
“Offloading distributed applications onto smartnics using ipipe,” in Pro-
ceedings of the ACM Special Interest Group on Data Communication,
SIGCOMM ’19, (New York, NY, USA), p. 318–333, Association for
Computing Machinery, 2019.

[4] Y. Qiu, J. Xing, K.-F. Hsu, Q. Kang, M. Liu, S. Narayana, and A. Chen,
“Automated smartnic offloading insights for network functions,” in
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, (New York, NY, USA), p. 772–787, Association
for Computing Machinery, 2021.

[5] K. Gupta and T. Sharma, “Changing trends in computer architecture
: A comprehensive analysis of arm and x86 processors,” International
Journal of Scientific Research in Computer Science, Engineering and
Information Technology, pp. 619–631, 06 2021.

[6] D. Yokoyama, B. Schulze, F. Borges, and G. Mc Evoy, “The survey on
arm processors for hpc,” J. Supercomput., vol. 75, p. 7003–7036, oct
2019.

[7] E. Blem, J. Menon, and K. Sankaralingam, “Power struggles: Revisiting
the risc vs. cisc debate on contemporary arm and x86 architectures,”
in 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), pp. 1–12, 2013.

[8] E. Blem, J. Menon, and K. Sankaralingam, “A detailed analysis of
contemporary arm and x86 architectures,” 01 2013.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, p. 87–95, jul 2014.

[10] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and
T. Edsall, “Drmt: Disaggregated programmable switching,” in Proceed-
ings of the Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’17, (New York, NY, USA), p. 1–14,
Association for Computing Machinery, 2017.

[11] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for sdn,” SIGCOMM
Comput. Commun. Rev., vol. 43, p. 99–110, aug 2013.

[12] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
p. 69–74, mar 2008.

[14] J. Xing, Y. Qiu, K.-F. Hsu, H. Liu, M. Kadosh, A. Lo, A. Akella,
T. Anderson, A. Krishnamurthy, T. S. E. Ng, and A. Chen, “A vision
for runtime programmable networks,” in Proceedings of the Twentieth
ACM Workshop on Hot Topics in Networks, HotNets ’21, (New York,
NY, USA), p. 91–98, Association for Computing Machinery, 2021.

[15] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krishnamurthy,
and A. Chen, “Runtime programmable switches,” in 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
22), (Renton, WA), pp. 651–665, USENIX Association, Apr. 2022.

[16] A. Abhashkumar, J. Lee, J. Tourrilhes, S. Banerjee, W. Wu, J.-M.
Kang, and A. Akella, “P5: Policy-driven optimization of p4 pipeline,”
in Proceedings of the Symposium on SDN Research, SOSR ’17, (New
York, NY, USA), p. 136–142, Association for Computing Machinery,
2017.

[17] C. Zhang, J. Bi, Y. Zhou, K. Zhang, and Z. Ma, “B-cache: A
behavior-level caching framework for the programmable data plane,”
in 2018 IEEE Symposium on Computers and Communications (ISCC),
pp. 00084–00090, June 2018.

[18] X. Chen, D. Zhang, and H. Zhou, “Matreduce: Towards high-
performance p4 pipeline by reducing duplicate match operations,” in
2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–
7, Dec 2018.

	Introduction
	Background and Motivation
	Related Work
	Packet Processing with P4
	Match+Action Tables
	The P4 runtime

	Towards optimising the P4 runtime
	Conclusion
	Acknowledgements
	References

