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Article

Increasing generalization capability of battery
health estimation using continual learning

Yunhong Che,1,2 Yusheng Zheng,1,4 Simona Onori,2,* Xiaosong Hu,3,5,* and Remus Teodorescu1

SUMMARY

Accurate and reliable estimation of battery health is crucial for pre-
dictive health management. We report a strategy to strengthen the
accuracy and generalization of battery health estimation. Themodel
can be initially built based on one battery and then continuously up-
dated using unlabeled data and sparse limited labeled data
collected in early stages of testing batteries in different scenarios,
satisfying incremental improvement in practical applications. We
generate our datasets from 55 commercial pouch and prismatic bat-
teries aged for more than 116,000 cycles under various scenarios.
Our model achieves a root mean-square error of 1.312% for the esti-
mation of different dynamic current modes and rates and variable
temperature conditions over the entire lifespan using partial
charging data. Our model is interpreted by the post hoc strategy
with unbiased hidden features, prevents catastrophic forgetting,
and supports estimation using data collected in 3 min during ultra-
fast charging with errors of less than 2.8%.

INTRODUCTION

Lithium-ion batteries occupy main roles in energy storage systems for electric vehicles,

portable electronics, smart grids, and other electrified devices.1,2 However, battery

degradation is unavoidable during storage and usage due to numerous aging-related

side reactions that occur during charging, discharging, and storage, resulting in irrevers-

ible capacity and power decades.3–5 State of health (SOH), which is generally defined as

a ratio of current capacity to the initial capacity, is one key indicator to represent the

health state of batteries.6,7 It helps release the anxiety of cruise concern, fear of failure,

and over-usage from consumers, and guides proper maintenance and retirement for

second-life applications.8–10 Therefore, one critical and urgent challenge that must be

addressed is indirect and accurate SOH estimation for commercial lithium-ion batteries.

A wealth of literature has been published on this topic. Model-based approaches

aim to build physical models for the characterization of the microscopic electro-

chemical reactions, including the growth of solid electrolyte interphase films, loss

of active material, cathode oxidation, lithium plating, etc.,11–13 to estimate the

health of batteries through the estimation of aging-related parameters. The physical

interpretation of the parameters is the most advantageous aspect, whereas the high

computational burden and complex solving work prevent the practical deployment

in a battery management system.14 As a result, recent research focuses more on

data-driven methods for battery health prognostics, which benefit from good flexi-

bility, transferability, extrapolation capability, etc.

The general idea behind the data-driven methods is to use machine learning models

to directly map the relationship between the available parameters/features and the
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SOH.15–17 Zhang et al.,18 Gasper et al.,19 and Jones et al.20 investigated the physical

relationship between the electrochemical impedance spectroscopy (EIS) curve and

battery aging and used machine learning to achieve accurate estimations of battery

SOH. However, acquiring EIS data online necessitates the use of specialized mea-

surement equipment, which is costly and difficult to implement onboard. The infor-

mation extracted from online measured data can also meet the requirement for bat-

tery health estimation. Zhu et al.21 investigated the voltage relaxation after fully

charging to extract several features. Previous works22–24 have also found high corre-

lations between the capacities and the information extracted from the discharge

curve. However, the long time required for the voltage relaxation followed by the

full charging and the random discharging profiles due to the load and environment

in the real world presents challenges for rapid and effective estimations. The

charging procedure, on the other hand, is more predictable and controllable

throughout the life cycle. Information from charging curves is widely extracted for

battery health estimation.9,25–28 For example, Roman et al.17 extracted several fea-

tures from the voltage and current curves during the charging process. In practical

applications, batteries are generally undergoing partial charging and partial dis-

charging. Features extracted from partial charging curves are becoming hot topics

to make themachine learning-based battery health estimationmethodsmore robust

and practical.25,29,30 In feature-free deep learning, partial charging curves also

become the research objectives. Tian and co-workers31,32 used partial constant cur-

rent curves and short pulse curves to achieve accurate and reliable EIS prediction for

batteries over their entire their lifetime via deep learning. Therefore, the estimation

effectiveness needs evaluation under different and shallow charging stages to verify

the generalization regarding practical applications when developing the battery

health prognostics methods.

Regarding the machine learning models, various algorithms have been used such as

linear/multi-linear regression (LR),33,34 Gaussian process regression (GPR),27,28,35

support vector regression (SVR),22,36 XGboost regression,20,21 artificial neural net-

works,37–39 etc. Although it has been demonstrated that these algorithms achieve

accurate estimations, conventional data-driven models struggle to handle estima-

tions in a variety of scenarios because of domain discrepancies existing between

different batteries. Transfer learning is a promising method for improving estimation

performance on testing batteries by leveraging knowledge from source batteries. It

has been summarized in Liu et al.40 that transfer learning has promoted the develop-

ment of smarter battery management in modeling, state estimation, and aging

prognostics, especially in recent years. Both the domain adaptation41–43 and model

parameter fine-tuning strategies23,24,44–47 have been proven to have satisfactory

performance. However, the available data from the tested batteries are most unla-

beled while only very limited data can be recorded in practical industrial applica-

tions.48,49 Conventional machine learning methods mostly ignore the effectiveness

of taking advantage of unlabeled data for model improvement. Recent works50,51

have proven that, by leveraging the information from the unlabeled data, the accu-

racy of the target tasks, i.e., battery SOH estimation, can be improved by either

reducing the feature domain discrepancies or setting up a pre-trained model. This

is significant for industrial applications since most available data are unlabeled.

Therefore, the optimal use of both unlabeled data and sparsely labeled data from

batteries to incrementally improve the model accuracy and generalization is worth

investigating to promote industrial implementations. Conventional machine

learning-based methods suffer from catastrophic forgetting,52,53 which means

that, after transfer learning, the performance of the data-driven model on the target

domain improves while the estimation on source domains degrades. For the battery
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health model, the model generalization on the different working conditions be-

comes one of themost concerned issues but such a problem cannot be tackled prop-

erly by simply updating the model using newly obtained information. The capability

to estimate battery health under different scenarios with only one model is lacking.

Continual learning or lifelong learning, which focuses on learning sequentially as

biological systems do and maintaining the ability learned before, provides great op-

portunities in battery health prognostics.54,55 The memory-based framework is easy

to understand and implement while the important information that represents the

learned characteristics needs investigating to alleviate the storage challenge. Poor

interpretability is another major disadvantage of conventional machine learning-

based methods. The interpretability of machine learning is valuable to help under-

stand models by explaining or presenting their behaviors in some understandable

terms.56 A good explanation will improve the trust of users to adopt the machine

learning model and help researchers to know why the system fails and seek safety

improvement. Generally, methods for machine learning interpretability can be

divided into model based and post hoc based.57 Regarding machine learning for

battery health prognostics, the model-based method can be realized by analyzing

the dependencies between the physical features and the output battery health met-

rics.58 It helps understand the mechanisms better while physical modeling and

feature extraction are required. For the post-hoc-based method, it is significant to

analyze the learned characteristics of machine learning to help interpret and under-

stand the reason for the model behaviors, which can be applied for pure data-driven

methods but is still ignored by most existing works.

In this work, we seek to investigate the way to make full use of both unlabeled data and

labeled data from batteries operating under various unseen conditions to improve the

accuracy and generalization of the data-driven battery health estimationmodels without

catastrophic forgetting. Instead of using large amounts of source data for model

training, we first built an initial machine learning model using data from a commonly

aged battery and then improved it during different applications, making it continuously

learn the aging information that covers various scenarios to satisfy the estimations under

various scenarios.Only unlabeleddata and limited sparsely labeled data are required for

memory-based continual learning updating. As shown in Figure 1, the unlabeled data,

which can be obtained fromeach operating cycle, are used for the unsupervised domain

adaptation, while the sparsely labeled data from the testing battery (limited in practical

applications) and the stored sparse data from previous scenarios are adopted for

continual updating. The detailed framework introduction and model updating process

are described in Note S1, methods, and Note S4. The machine learning model can be

interpreted based on the unbiased hidden state distributions under different scenarios.

The comparisons between existing methods are provided to explain the advantage of

the proposed method regarding the performance metrics and learned characteristics

interpretation. The generalization of our model is also evaluated using shallow charging

processes for the different practical requirements in different implementation scenarios.

Comprehensive aging datasets covering different battery chemistries, formats (pouch

and prismatic), different environmental conditions, and different current modes and

types are generated to verify the generalization of the proposedmethod under different

application scenarios.

RESULTS

Data generation

Experimental data on different kinds of commercial battery cells are generated in

this study. The batteries are cycled in the thermal chamber or room environment
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with different current profiles and rates using the platform shown in Figure S1. These

batteries are from different formats and chemistry and are aged under primary appli-

cation scenarios and secondary application scenarios. The summary of the gener-

ated dataset is listed in Table S1. The detailed experimental procedure to generate

these datasets is listed in Table S2 and Note S2. Different from most of the datasets

in the published works,2,18,20,21,33,48 where the small cylindrical or coin batteries

were used for cycling, this paper focuses on the data generation based on pouch

cells and prismatic cells. These two types of batteries are widely used in energy stor-

age systems (e.g., EVs and grid stations), where limited source data are available at

the current time. In addition, we also test batteries using dynamic discharging pro-

files and under variable temperatures and continue aging some of them in their sec-

ondary lifespan to make our dataset cover more aging scenarios and applications.

The dynamic loadings and variable temperature conditions help emulate battery ag-

ing under practical usage with seasonal variations,59,60 which cause the degradation

curves in Figures 2B and 2C to fluctuate with the variation of environmental temper-

atures. A total of 55 pouch and prismatic batteries were tested with 116,681 cycles in

total, which are publicly available to be used for further research on battery health

prognostics. The considered information in the cycling test is shown in Figure 2A.

The degradation curves of batteries in dataset 1 to dataset 5 are shown in

Figures 2B–2F.

Health estimation

We first demonstrate the effectiveness of the estimations for the batteries working

under different dynamic profiles and variable temperatures. The SOH is outputted

by the machine learning model by inputting the partial charging capacity-voltage

(Q-V) sequence. The detailed model construction and training are described in

methods and Notes S1–S4. This application scenario is close to practical

Figure 1. Workflow

The basic experiment is first conducted to collect data on one commonly aged battery. Then, the collected data is used for base model training and

some spare labeled data containing full aging information is stored for later training. When the data from batteries tested with different operating

profiles and environmental conditions are collected, the continuous unlabeled data, along with the stored sparsely labeled data from the source

domain, is used to retrain the base model with the domain adaptation strategy. When discontinuous labeled data from the tested battery are obtained,

the model is further trained on top of the domain-adapted model. Finally, online estimations are performed using the updated model.
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applications where the constant current condition (which is generally experimented

in the lab) is used for the estimations under dynamic current conditions with variable

temperatures (close to field data), and only three sparsely labeled samples from the

first 10% data of the test batteries are used. The results in Figure 3A show that the

initial model can be used to estimate the SOH of batteries aging under different dy-

namic working profiles through a domain adaptative continual learning process.

Estimation errors show that most entries fall in the range of [�0.04, 0.01]. When

the model is applied for the SOH estimation of batteries operating under dynamic

working profiles and/or variable temperatures (the results in Figure 3B), estimations

are still stable and converged to the real values although more outliers appear. The

estimation errors are mostly within [�0.04, 0.02], and more than half fell in [�0.01,

0.01]. The R square (R2) between the estimated SOH and the real SOH is larger

than 0.87. Both estimations show significant improvement in the accuracy and

convergency to the results obtained by the initial base model (the results shown in

Figure S2), which indicates that our model can quickly suit different application sce-

narios through only unlabeled and very few labeled data for continual learning.

The estimations for the batteries in the second lifespan under constant temperature and

variable temperatures are shown in Figures 3C and 3D, indicating that our model also

meets the accuracy and reliability requirements. The R2 between the estimations and

Figure 2. Cycling test for data generation and normalized capacity curves of the tested batteries

(A) The main influence factors affecting battery health estimation that are considered in the aging test, where different battery chemistry and formats,

different temperature conditions, and different current modes and rates are included in the generated dataset.

(B) The normalized capacities versus aging cycles in dataset 1 with different discharging profiles and variable temperatures (cause the degradation

trajectories to fluctuate with temperature variations).

(C) The normalized capacities versus aging cycles of second-life batteries in dataset 2 under constant temperature and variable temperatures.

(D) The capacities versus aging cycles in dataset 3 with different current rates and temperatures.

(E) The capacities versus aging cycles in dataset 4 with different current rates and temperatures.

(F) The capacities versus aging cycles in dataset 5 under room temperature with 1/3C current in the whole lifespan.
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Figure 3. Results of SOH estimations for batteries aged under various conditions

(A) Estimated SOH and estimated errors for batteries in dataset 1 aged under constant temperature with dynamic discharge profiles.

(B) Estimated SOH and estimated errors for batteries in dataset 1 aging under variable temperatures with dynamic discharge profiles.

(C) Estimated SOH and estimated errors for secondary life batteries in dataset 2 aged under constant temperature.

(D) Estimated SOH and estimated errors for secondary life batteries in dataset 2 aging under variable temperatures.

(E) Estimated SOH and estimated errors for batteries in dataset 3 aged under different current rates and temperature conditions using only cell 2 (1C/

25�C) for base model training.

(F) Estimated SOH and estimated errors for batteries in dataset 3 aged under different current rates and temperature conditions using only cell 6 (1C/

35�C) for base model training. Our model trained by one battery aged under constant temperature and constant current can be used to estimate the

SOH under various conditions with most errors less than 0.04 (99.75% for 114,741 entries in total), which shows great improvement to the base model

(Figure S2) using a few early data for continual learning.
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the real values is larger than 0.95, and the estimated errors are mostly within [�0.03,

0.02]. The estimation results using the initial base model are shown in Figure S2, which

have larger errors than our model. In short, the estimations meet the accuracy and reli-

ability requirement satisfactorily under both dynamic discharge current and constant

discharge current, both the constant temperature and dynamic temperatures, and in

both primary life batteries and secondary life batteries.

The batteries in the third dataset are aged under different constant temperatures us-

ing constant currents with different rates. Batteries aged in dataset 3 have a large ca-

pacity (100 Ah), which makes them suitable for heavy duty EVs and grid storage sta-

tions. We evaluate our model using one battery aged under one specific current rate

and temperature to estimate the SOH of other batteries aged with other current

rates and temperatures. Batteries using a common aging scenario with 1 C current

under 25�C (cell 2 in dataset 3) and 1 C current under 35�C (cell 6 in dataset 3) are

used to build the initial base model to estimate other batteries through continual

learning using early information, and the results are shown in Figures 3E and 3F,

respectively. The estimated values converge to the real values satisfactorily with

R2 of 0.924 and 0.936, respectively. Similarly, most errors are less than 0.04, indi-

cating accurate and robust estimations across a wide temperature range (25�C–
55�C) and different current rates. The estimations based on the base model are

shown in Figures S2E and S2F, where the results show that only a few estimated

values converge to the real values while the majority diverge, indicating the poor

generalization of conventional data-driven models.

Feature distribution interpretation

Lack of interpretation in most data-driven methods such as ‘‘black boxes’’ causes dif-

ficulties in understanding themechanisms behind their performance. In contrast, our

method tried to interpret the model performance by looking inside the developed

data-driven model using the post hoc analysis strategy. The hidden states are critical

information for the final output, i.e., the estimations of the neural network model.

Therefore, we demonstrate the distribution of the hidden states, referring to the

node values, in the same layer for both source and target batteries in our work to

explain the model performance. The output distribution of the domain adaptative

layer for the batteries in the target domain and source domain are shown in Figures 4

A–4C for datasets 1, 2, and 3, respectively. The output distributions of the same layer

in the initial base model and the updated model using the fine-tuning strategy with

newly obtained labeled data from the target battery45–47 are shown in Figures 4D–4F

and 4G–4I, respectively. The comparison in Figure 4 demonstrates that the distribu-

tion of the hidden states has nearly perfect overlaps in our model, which gives an

interpretation of why the model performs satisfactorily in both source and target do-

mains. The hidden state’s distribution of the base model shows domain discrep-

ancies between the target and source batteries, which makes the model fail to

have high accuracy and reliability on the target batteries. As for fine-tuning strat-

egy-based models, the distributions also show discrepancies, which improve the

model performance on the target battery but deteriorate the performance on the

source battery (further discussed in the following section). As a result, our model

can be regarded as a ‘‘gray box,’’ where the hidden state distributions help interpret

the model performance properly despite the unknown physical meaning of these

hidden states.

Continual learning ability

A major limitation to the generalization of data-driven models used is the ‘‘cata-

strophic forgetting.’’ On the contrary, our model can continually learn new aging
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information while maintaining the ability to estimate the health of batteries that have

similar aging conditions to the learned information before. We use dataset 3 for the

demonstration and evaluation since different temperatures cause obviously

different degradation patterns, as shown in Figure 2. The estimation results are

shown in Figure 5. First, the initial base model trained by cell 2 (aged with 1C under

25�C) is used to estimate the SOH of all batteries aged with 1C under 35�C and 55�C,
and 0.3C under 35�C, the results could be seen from Figure 5A. Then, the sparse

data of this battery are stored in the data storage buffer to continually train the

model with domain adaptation using sparsely labeled data and unlabeled data

collected from early stages from one battery aging under 35�C. Then the updated

model is again used for the estimation of all batteries, as shown in Figure 5B. After

that, sparse data from one battery aging under 1C/55�C and 0.3C/35�C are

Figure 4. Hidden state distributions interpretation

(A–C) The distribution of the hidden states outputted by the domain adaptative layer for the source batteries and target batteries based on our model in

datasets 1, 2, and 3, respectively.

(D–F) The distribution of the hidden states outputted by the same layer for the source batteries and target batteries based on the base model in

datasets 1, 2, and 3, respectively.

(G–I) The distribution of the hidden states outputted by the same layer for the source batteries and target batteries based on the purely fine-tuned

model in datasets 1, 2, and 3, respectively. The state distribution of the target domain overlaps better in our model, which enables satisfactory

estimations of the target batteries while maintaining the performance of the source batteries.
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Figure 5. Continual learning evaluations

(A and B) (A) Estimated SOH and estimated error of batteries in dataset 2 with the initial base model trained using data from 1C/25�C. (B) Estimated SOH

and estimated errors of batteries in dataset 2 with continual learning using data from a battery aging under 1C/35�C based on the model from (A).

(C) Estimated SOH and estimated errors of batteries in dataset 2 with continual learning using data from a battery aging under 1C/55�C based on the

model from (B).

(D) Estimated SOH and estimated errors of batteries in dataset 2 with continual learning using data from a battery aging under 0.3C/35�C based on the

model from (C).

ll
OPEN ACCESS

Cell Reports Physical Science 4, 101743, December 20, 2023 9

Article



continually used to update our model, whose estimation performances on all batte-

ries are shown in Figures 5C and 5D, respectively. Our model continually learned

new aging information under different scenarios while maintaining the previously

learned information successfully, so that the accuracy and generalization are incre-

mentally improved. The R2 increased from �1.669 to 0.969 from the initial base

model to the final model. The main error distribution decreases from [�0.152,

0.014] to [�0.019, 0.034]. The root mean-square error (RMSE) andmean absolute er-

ror (MAE) also decrease continually from case A to case D in Figures 5A–5D, as listed

in Table S3, where the RMSE and MAE for the final model on the estimation of all the

batteries are reduced to 0.959% and 0.629%, respectively, from 8.957% to 7.399%.

The comparative results shown in Figures 5E and 5F, which show the hidden state

distributions of batteries for various scenarios generated by the initial model and

the final updated model, can be used to interpret the model. This explains why

the initial model failed for health estimation under various application scenarios

and why our model’s generalization grew. The feature distributions are almost over-

lapping, which improves the estimationmodel’s generalization and accuracy under a

variety of working conditions. To demonstrate the advantage of our method

compared with the existing fine-tuning-based method, which purely uses newly ob-

tained labeled data from the target domain to update the model, the performances

of the fine-tuning-based method under the same updating scenarios are shown in

Figures S3A–S3C. It demonstrates that, although the fine-tuned model performs

better in the target battery after updating the model, it forgets the historically

learned characteristics and causes a worse performance in previous estimation sce-

narios. Therefore, when purely applying the fine-tuning strategy, catastrophic

forgetting happens, making the model fail to satisfy the estimations under different

scenarios. The hidden states distribution shown in Figure S3D also interprets the

reason for this phenomenon after fine-tuning. That is the domain discrepancies be-

tween different scenarios still exist, causing poor model performance on the previ-

ous tasks. The results are of great value to industrial applications, where the initial

model can be built with some experiments in the lab before implementations and

be incrementally improved during applications in various unseen working scenarios

such as loading profiles and environment temperatures.

Different battery manufacturers

The other two datasets (datasets 4 and 5) are used to evaluate the generalization of

our method. The estimation results are shown in Figures S4 and S5. Our model

meets the requirement for the estimations under different scenarios with R2 greater

than 0.978 and errors within 0.03 with dataset 4. Dataset 5 contains aging data in a

standard current mode under room temperature for the whole lifespan (SOH re-

duces to less than 0.4). The estimation results shown in Figure S5 indicate accurate

and reliable estimations with R2 larger than 0.996 and errors within 0.05. Therefore,

combined with the estimation on all five datasets, our model has satisfactory gener-

alization ability on the application under different battery chemistry and formats,

different working profiles, and environmental temperatures.

Comparisons with other transfer learnings

The avoidance of catastrophic forgetting while learning new aging information is

one major advantage of our model. We compare our method with other transfer

Figure 5. Continued

(E) Hidden states distribution of batteries aging under different scenarios from the model in (A).

(F) Hidden states distribution of batteries aging under different scenarios from the model in (D). Our model has a good ability to learn the aging

information with the availability of limited data from different scenarios while maintaining satisfactory performance on the previously learned scenarios,

which enables our model to cover more estimation requirements and ensure the feature distributions converge to similar distributions.
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learning strategies to evaluate the accuracy in all estimation scenarios. Fine-tuning

and basic domain adaptation are included, where four models in total are included

for the comparisons. The meaning of each model is described in Note S3. The RMSE

of the target and source batteries in datasets 1 and 2 (results contain the two data-

sets) are shown in Figures 6A and 6B while the corresponding MAE are shown in

Figures S6A and S6B, respectively. It shows that our model has the best performance

for the batteries working under different dynamic discharging profiles and variable

temperatures with a narrow error distribution, indicating the best accuracy and reli-

ability compared with other models. The RMSE and MAE results for batteries con-

tained in datasets 3 and 4 (results containing the two datasets) are shown in

Figures 6C, 6D, S6C, and S6D respectively. In this case, the target batteries have

different current rates and different temperatures to the source battery, which

causes the base model to have poor accuracy on the target domain. When the infor-

mation from the batteries is obtained for transfer learning or continual learning, er-

rors are reduced significantly. This indicates from the results that unlabeled data

used for reducing domain discrepancies between the source battery and target bat-

tery are also beneficial for accuracy improvement. This is because the mapping re-

lationships between the input measurements and output SOH are more adaptable

for the testing battery by minimizing the domain discrepancies. Compared with

the pure unlabeled data-enabled domain adaptation, sparse limited data help

improve the accuracy of the target domain, while pure fine-tuning suffers from cata-

strophic forgetting. Our model, on the contrary, maintains good performance on

Figure 6. Comparative results with other transfer learnings

(A and B) The estimated RMSE for the target batteries and source batteries for datasets 1 and 2.

(C and D) The estimated RMSE for the target batteries and source batteries for datasets 3 and 4. Compared with the base model and models with other

transfer learning strategies, our model shows better accuracy and reliability.
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both the target domain and source domain with the errors located in the smallest

range, indicating satisfactory accuracy and reliability. Refer to Figures S7–S11 and

Tables S4–S8 for the estimation results of each testing battery cell and the compar-

isons between different models.

The numerical statistical results for all the batteries are listed in Table 1. Our model

has minimal mean andmaximum errors, andminimal standard deviation (SD) of error

distributions, indicating accurate and reliable estimations on all domains with

different aging profiles and temperature conditions. The mean and maximum

RMSE for the target domain are 1.312% and 3.015%, respectively, reducing more

than three times from the initial base model, while the SD reduced significantly

from 4.562 to only 0.682. The improvement of our model compared with other trans-

fer learning strategies is also reflected in Table 1. In addition, four widely used ma-

chine learning methods for battery SOH estimation are also included for evaluation,

which are LR, SVR, GPR, and random forest regression. As shown in Table 1, like the

basic neural network-based method, these four machine learning methods all have

good performances on the trained source domain but fail to provide satisfactory es-

timations for target domains with various application conditions. It is also foresee-

able that these models will also suffer from catastrophic forgetting when they are

simply updated with newly acquired data such as the fine-tuning strategy. The

results with other advanced deep learning models including LSTM, CNN, and

CNN-LSTM for the base model construction are also listed in Table 1. The results

indicate that CNN-LSTM has better accuracy compared with feedforward NN,

LSTM, and CNN for the SOH estimations. While the basemodel also has poor gener-

alization ability under different working scenarios, reflected by the large maximum

values of the RMSE and MAE, from the battery that has diverse degradation pat-

terns. Therefore, the model is still required to be updated during applications, espe-

cially under different working conditions to improve the model’s accuracy and

generalization, which can be achieved by the proposed framework. Therefore, the

proposed framework shows priority regarding the performance on both source

and target domains compared with conventional machine learning and transfer

learning methods. The main objective is to update the model incrementally so

that the feedforward NN is applied for the demonstrations. In real applications,

the base network can be constructed with different networks. For example, the

CNN-LSTM can be used for the base network part under condition data showing

poor quality than experimental data, while the proposed framework is generally

applicable for the model continually updating during applications.

Table 1. Comparative evaluation of our model and other transfer learnings (%)

Case

RMSE for target domain MAE for target domain RMSE for source domain MAE for source domain

Mean Max. SD Mean Max. SD Mean Max. SD Mean Max. SD

BASE 4.573 17.987 4.562 4.193 17.965 4.475 0.172 0.324 0.087 0.126 0.242 0.067

FT 2.361 11.213 2.218 1.838 8.129 1.700 3.108 12.633 2.869 2.826 12.076 2.679

DA 2.259 5.704 1.412 1.949 5.484 1.274 0.420 1.838 0.339 0.328 1.797 0.321

DA_FT 2.361 11.213 2.218 1.838 8.129 1.700 3.108 12.633 2.869 2.826 12.076 2.679

DA_CT 1.312 3.015 0.682 1.085 2.662 0.628 0.159 0.623 0.102 0.128 0.666 0.107

GPR 3.952 17.959 3.999 3.497 17.938 3.719 0.077 0.199 0.056 0.056 0.147 0.042

RFR 3.930 17.834 3.462 3.549 17.722 3.372 0.039 0.074 0.021 0.026 0.046 0.013

LR 14.758 185.806 35.519 10.784 147.825 27.389 0.129 0.297 0.089 0.095 0.221 0.067

SVR 4.137 23.651 5.170 3.893 23.633 5.121 0.225 0.604 0.181 0.179 0.523 0.163

CNN 6.2151 25.3715 6.4348 5.7801 25.2623 6.3335 0.1894 0.4955 0.1488 0.1390 0.3739 0.1143

LSTM 4.4001 26.9428 5.4930 3.8836 20.7222 4.9787 0.4001 0.5633 0.1475 0.2930 0.4101 0.1125

CNN-LSTM 3.4643 16.3019 3.3709 3.1271 16.2852 3.1825 0.2458 0.4566 0.1345 0.1828 0.3384 0.0996
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Different voltage ranges and data ratios for model updating

Practical applications usually have a partial charging process and the usually used

voltage ranges vary with the real requirement such as in EVs and smart grids. There-

fore, it is also significant to evaluate our model under different partial charging con-

ditions for the generalization assessment. We select three batteries aged under

three different dynamic profiles to evaluate our model by changing the voltage

range from 3.6 to 4.2 V in the first stage charging process. The mean results of the

three testing batteries are shown in Figure 7A. It shows that, when the lower voltage

is below 3.8 V and the upper voltage is larger than 3.9 V, our model realizes RMSE

and MAE less than 2.78% and the fitting R2 is larger than 0.8. When the upper

voltage is larger than 4.0 V, the errors are reduced to less than 1.67% while the R2

is larger than 0.9. Considering the charging process of the battery in dataset 1, as

shown in Figure S12, the charging time between 3.8 and 3.9 V in the first charging

stage is less than 3 min and the charging time between 3.8 and 4.0 V is less than

4 min, which enables our model to be used in practical applications using short-

term charging data.

We evaluate our model and other transfer learning models with the increase of ratio

for model updating, and the mean values are shown in Figure 7B. The results on the

source batteries are shown in Figure S13. The results indicate that our model quickly

reduces the errors to less than 0.942% and increase the R2 to larger than 0.966 even

Figure 7. Generalization with a different voltage range for model input and different ratios for continual learning

(A) The estimated mean RMSE, MAE, and fitted R2 of the three batteries with three kinds of dynamic working profiles with different voltage ranges (Vi and

Vj represent the lower voltage and upper voltage in the partial voltage sequence). The results indicate that our model can meet the estimation

requirement using data from a voltage range less than 0.1 V in 3 min charging with an error less than 2.78% and fitted R2 larger than 0.8.

(B) The estimated mean RMSE, MAE, and fitted R2 for the three batteries in dataset 1 aging under three kinds of dynamic profiles with different ratios of

data for model updating. Our model has errors less than 0.94% and fitted R2 larger than 0.96 with only 5% data for continual learning and maintaining

high accuracy with different ratios.
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with only 5% ratio of data for model updating, where only two sparsely labeled sam-

ples are used. Compared with other transfer learning strategies that may have poor

performance under some scenarios, our model maintains high performance in all

cases. Therefore, from the evaluations of different voltage ranges and available

data rations, the model has promising industrial application abilities under random

depths of discharges during their whole lives. The batter health estimation model

can still be incrementally improved based on the proposed framework.

Full life estimation

Finally, we evaluate our model on the estimation for the full lifespan. In the above

sections, the estimation results of dataset 5 indicate that our model provides accu-

rate estimations for the whole lifespan. Here, we use the battery in dataset 1 to es-

timate the second-life battery application in dataset 2, which is the same battery but

with a different aging profile retired from dataset 1. The results shown in Figure S14

indicate that our model has better accuracy than other models, meeting the estima-

tion requirement for the second-life battery by taking advantage of information

gathered from the primary-life battery. This is significant for practical applications

since it is assumed that many batteries are retired from EVs to be implemented in

smart grids, etc., and the model developed in our method shows great application

potential to continually learn the aging information to meet the health estimation for

health estimation of second-life batteries.

DISCUSSION

We developed a data-driven model for battery health estimation based on domain

adaptative continual learning to solve the natural challenges of low generalization,

the large requirement of labeled data, catastrophic forgetting, and poor interpreta-

tion. Our model is initially built using the data collected from one common aging test

and can be adopted for the estimation under unknown conditions with only unla-

beled data and sparsely limited labeled data at early stages, where the RMSE is

less than 0.95 and the R2 is larger than 0.96 under the case with only two sparsely

labeled samples from the first 5% aging data, indicating data efficient for the

modeling. With three sparsely labeled samples collected from the first 10% aging

data, our model achieves the most absolute errors of less than 5% despite different

battery chemistry and formats, different aging profiles and current rates, and

different environmental temperatures, with only one battery used for initial

modeling. The proposed method is valuable for industrial applications, where the

initial model can be constructed via some lab data and be continually improved

with unlabeled data and sparsely labeled data obtained during usage to incremen-

tally improve the model generalization.

Our model is interpreted by post hoc analysis, and succeeds in reducing the domain

discrepancy between the source domain and target domain that interprets the satis-

factory estimation performances. Our model is continuously improved with the avail-

ability of both unlabeled and labeled data from unknown conditions while maintain-

ing the performance on previous tasks, which avoids catastrophic forgetting.

Compared with other transfer learning strategies, both the unlabeled data and

labeled data from the target batteries are well used for model improvement. Our

model has better accuracy and generalization under different testing scenarios,

with a mean RMSE of only 1.312%, and even the worst testing achieves an RMSE

of only 3.015%. Our model is also more reliable to the different ratios of data

used for learning compared with other transfer learnings. Finally, our model also

supports estimations using shallow partially charged data within 3 min for a mean
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RMSE of less than 2.78% under three typical dynamic discharging scenarios and

achieves a mean RMSE of 1.67% with data collected within 4 min. Our model is a

general framework that can be easily extended to modeling with other neural net-

works and with a feature-based method. Therefore, our model is promising for im-

plementation in onboard applications.

The proposedmethod shows satisfactory performance on the health estimations un-

der different application scenarios. However, there are still some limitations that

need to be addressed in future work. Firstly, there are some local large errors exist-

ing in the estimations due to the quality of measured data and the quick change of

environmental situations. In future work, the physics information from the electro-

chemical model is supposed to be integrated to reduce these errors and further

improve the generalization and interpretability by explaining with physical aging

mechanism. Secondly, the preset manually tailed transfer weight is used in this pa-

per for domain adaptation, and the overall performance considering all the testing

scenarios has been significantly improved. One specific value for all testing sce-

narios also tells the strategy is general and avoids biased results with carefully

selected weight for each specific testing scenario. However, it cannot be optimal

for all the specific conditions, indicating a more intelligent optimization method is

worth investigating to adapt the best choice of transfer weight under different sce-

narios during training the model with optimization methods. Finally, the extrapola-

tion to other types of batteries such as all solid batteries, and Li-sulfur batteries, and

the implementation in battery packs are valuable to evaluate the effectiveness of the

proposed framework.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and materials should be directed to

and will be fulfilled by the lead contact, Xiaosong Hu (xiaosonghu@ieee.org).

Materials availability

This study did not generate any unique materials.

Data and code availability

The data generated in this study can be found at https://data.mendeley.com/

datasets/n3b54nsw8m/2. Additional raw data may be available upon reasonable

request.

Battery cycling and data preparation

Experiments for the aging of several commercial batteries are conducted in this pa-

per for the verification of the proposed method. The first is ultra-fast charging fol-

lowed by a dynamic discharging profiles-based battery dataset. To the best knowl-

edge of the authors, this is the first public dataset with different dynamic discharging

profiles to age the batteries until end of life. Different dynamic profiles are included,

which are urban dynamic profile, highway profile, and hybrid profile. The current

load of each profile and the corresponding voltage are shown in Figure S15. Two cy-

cles of the dynamic current lasting 24 min are used. The mean current is set to ensure

that the three dynamic loadings have similar throughput during this period. Two

different time periods are considered to load the dynamic currents, which makes

the dynamic loading conducted at two different state of charge (SOC) stages.

One battery aging under the constant current is used as the benchmark to illustrate

the types of current on the aging influence of batteries. To make the experiment
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closer to the practical applications, another batch is conducted on the periodically

changed temperatures varied from 25�C–35�C to 25�C–15�C, which emulates the in-

fluence of seasonal variations on battery aging.60 Again, this is the first dataset con-

ducted on the changeable environmental temperatures to the best knowledge of

the authors, where the degradation trajectories are varied with environmental tem-

peratures during aging. The normalization is conducted by calculating the ratio of

the current available capacity to the fresh capacity (starting from 25�C), which makes

the demanded estimation of current capacity to be easily obtained by multiplying

the estimated SOHwith the fresh capacity. There are 15 batteries in total in this data-

set, whose capacity curves are shown in Figure 2. The second dataset is the same

batteries from the first dataset, which are used for the constant current discharging

after the batteries retired from dataset 1. These batteries are now considered sec-

ond-life batteries. The CC-CV charging and CC discharging are conducted to

continually age the batteries. Similarly, constant environment temperature and

changeable temperatures are considered. The first two datasets are collected

from the pouch batteries. The third and fourth dataset is collected from the aging

experiment conducted on the prismatic cells with 100 Ah. Most of the public data-

sets are aging on cylindrical batteries, while prismatic batteries are also popular in

real applications for both electric transportation and energy storage stations. We

aged these batteries with different current rates and environmental temperatures

to generate data seen in different application scenarios. The last battery dataset is

collected by aging the small polymer batteries from fresh to SOH less than 0.4 for

the study of SOH estimation over the entire lifetime.

The feature-free method is adopted in our model, where the partially charged Q-V

curve is selected as input information. Note that the incomplete charging/discharg-

ing process when starting the test from reset is deleted. The abnormal data such as a

larger difference between the sample from previous and later data are filtered with a

moving average. The raw measured data changed with battery aging, which caused

theQ-V curve to be unaligned. Therefore, the interpolationmethod is used to obtain

the Q-V curve in a certain voltage range, where linear interpolation is adopted. To

ensure the online application, the partial voltage range is used, where [3.6, 4.2] is

selected as the initial voltage range for NCA and polymer batteries while [3.3, 3.5]

is used for LFP batteries with a voltage interval of 5 and 2 mV for interpolation to

ensure the same input length. The voltage ranges can also be reduced considering

the specific applications and are evaluated in the results.

Machine learning model

For the end-to-end health estimation, the measured data of partial chargingQ-V se-

quences are needed for the input while the SOH is the output. For the purpose of us-

ing a simple model to demonstrate the proposedmodel while also guaranteeing the

estimation performance, a feedforward neural network with backward propagation is

adopted,where two hidden layers and anoutput layer are included. Thedesign of the

framework is described in Figure S16. The source labeled data from one battery,

stored sparse data in previous tasks, and sparsely labeled data from the target bat-

tery are used to train the model by minimizing the mean square error loss of the

output layer and themaximummean discrepancy (MMD) loss of the domain adaptive

layer simultaneously. To interpret the model performance based on the post hoc

analysis, the distribution of hidden states of the domain adaptative layer is also illus-

trated. Domain discrepancies would cause divergent distributions of hidden states in

the source domain and target domain, leading to the poor generalization ability of

conventional machine learning models. By analyzing the distributions of hidden

states in both the source and target domain, we find the interpretations for the
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high performance of our model under different scenarios. It should be noted that the

bottleneck layer can be changed to other machine learning models such as CNN,

LSTM, CNN-LSTM, etc., which are widely used networks in battery health prognos-

tics, and the implementations of these machine learning models are also provided

for reference. The hyperparameters and settings of the neural network are listed in

Note S4. The basic calculation of a neuron in fully connected layers by the weight

w, bias b, and states h from the former layer is denoted as,

y =
XN
i = 1

wihi +bi (Equation 1)

The first hidden layer is set as a sharing layer while the second hidden layer is set as a

domain adaptative layer, where the MMD is calculated between the hidden states of

the source battery and target battery as a loss that needs to be reduced. TheMMD is

a measure of the difference between two probability distributions in the mean

embedding of the features.61 Given two samples in two datasets X = fxign1i = 1 and

Y = fyign2i = 1, the MMD between the X and Y could be expressed as,62

MMDHðX ;Y Þ = supF˛H

�
Ep½FðxÞ� � Eq½FðyÞ�

�
(Equation 2)

where H represents a reproducing kernel Hilbert space (RKHS), Fð $Þ is a nonlinear

mapping function from raw data space to the RKHS space, and p and q are the prob-

ability distributions of generating the two datasets. The empirical approximation to

the MMD can be denoted as follows,42,63

MMD2
HðX; Y Þ =

�����
1

n1

Xn1
i = 1

FðxiÞ � 1

n2

Xn2
j = 1

F
�
yj
������

2

H

(Equation 3)

The kernel trick is then used to get the expression,42

MMD2
HðX ;Y Þ =

1

n2
1

Xn1
i = 1

Xn2
j = 1

k
�
xi; xj

� � 2

n1n2

Xn1
i = 1

Xn2
j = 1

k
�
xi ; yj

�
+
1

n2
2

Xn1
i = 1

Xn2
j = 1

k
�
yi; yj

�

(Equation 4)

where kð$; $Þ is the kernel function of the RKHS. In this paper, the Gaussian radial ba-

sis function is used,42

k
�
xi; yj

�
= e

ð�kxi � yjk2Þ
2g2 (Equation 5)

The final loss function during continual learning is constructed as follows

L=
X

LMSE + lLMMD (Equation 6)

During the initial base training and fine-tuning using labeled data, the MMD loss is

set as 0 and only the MSE loss is considered to train the neural network. In the

domain adaptation process, the MSE loss of the source battery, and the MMD loss

of the domain discrepancy between the source battery and target battery of the

domain adaptative layer are reduced during training. The weight factor of MMD

loss is set as 0.01 for all the testing cases for the generalization of our model. The

Adam optimization method is used to train the model and the early stopping strat-

egy is adopted to avoid overfitting. The RMSE, MAE, and R2 are used for the accu-

racy evaluations of the estimation results, which are defined as follows.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i = 1

ðyi � ziÞ2
vuut ; (Equation 7)
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MAE =
1

N

XN
i = 1

jyi � zij; (Equation 8)

R2 = 1�
P
i
ðyi � ziÞ2

P
i
ðyi � yiÞ2

; (Equation 9)

where y represents the true value and z is the estimated valuewhile y is themean value of

all the true values. During model training, one source battery is firstly used for the initial

model training, then the unlabeled data and limited labeled data from the target batte-

ries are used for the domain adaptative continual learning to update the model to

improve the generalization under different scenarios. Therefore, the model is incremen-

tally updated from the beginning to the various applications. Note that the cross-valida-

tion is used during the initial model training and is not applied during subsequentmodel

updating, since only very limited labeled data is available in the testing scenarios. Be-

sides, early stooping is also adopted to help avoid overfitting. The specific cell that

serves as the source battery is listed in Tables S4–S8 in each test.
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