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Abstract—In this paper, our aim is to design a decentralized
control scheme for pumping stations in a water distribution
network that supplies drinking water. The considered water
distribution network consists only of pumping stations, piping
networks, and consumers (since the inclusion of storage tanks
poses the risk of contamination of drinking water). The pumping
stations supply water to consumers and their objective is to
ensure the supply of water to the consumers in an optimal way
such that the consumer demand is satisfied with minimum energy
consumption by the pumping station itself. This gives rise to a
non-zero-sum game as the pumping stations have a common
objective of satisfying consumer demand and a selfish objective
of minimizing their own energy consumption. A real-life water
distribution network with two pumping stations was emulated in
a lab and the proposed control scheme was tested on this setup.
The consumer demand follows a periodic trend that mimics real-
life consumption and has some stochastic noise added to it so
as to emulate uncertainty in consumer demand. The proposed
control scheme was able to track the reference signal while each
pumping station was minimizing its own energy consumption.

Index Terms—Decentralized and distributed control, Game
theory, Minimax strategies, Linear Programming, Optimization
and control of large-scale network systems

A Water Distribution Network (WDN) consists of pumping
stations whose aim is to supply water to the consumers which
are connected via a piping network. If the pressure on the
consumer side is too high then pipe bursts and subsequent
leakages may occur in the WDN and if it is too low then
the consumption demand will not be fulfilled. Consumer
demands are stochastic but they follow a periodic trend (for
example, the average consumption of water is relatively low
at night i.e. between 22h and 06h). Therefore, the aim of
the pumping stations is to ensure the maintenance of pressure
on the consumer side despite fluctuating consumer demands.
Furthermore, each of the pumping stations would also like
to independently minimize its own energy consumption while
satisfying consumption demand (see [1] and [2]). Optimal
control of a real-life WDN is a challenging problem from
a control perspective as it is a complex multi-input and
multi-output system spread over large geographic distances.
Nevertheless, a lot of research has been done in this field. The
book [3] provides a good overview of the existing state-of-art
in the field of optimal control, fault identification, and fault-
tolerant control for WDN. The paper [4] focuses on the control
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of water quality in a WDN. Application of model predictive
control on WDNs is discussed in [3] and [5]. In this work, we
consider WDN which provides drinking water and therefore,
we do not include storage tanks as they are being phased out
due to the risk of contamination [6].
Game theory has emerged as a suitable paradigm for dis-
tributed control of multi-agent systems as discussed in [7], [8]
and [9]. We will specifically focus on the theory of Repeated
games and an introduction to it can be found in the book
[10]. Game theory has also been applied on WDN in the
papers [11] and [12]. Our approach differs from the former
in the sense that the pumping stations have a selfish objective
of minimizing their own energy consumption and are not
concerned about the energy consumption of other pumping
stations which results in a non-zero-sum game formulation and
therefore potential function approach of [11] cannot be applied
in this case. In the latter paper, the authors have considered
a stochastic differential equations-based model of WDN and
discretized it in space and time which can be computationally
prohibitive for a large-scale WDN.
In [13], a simplified model of WDN based on solving static
equations at each time instant is presented. It is essentially
a mapping between control and pressure reading from the
consumer side under some mild assumptions on pressure drop
and consumer demands. The costs incurred by the controller
serve as the feedback signal. An implicit equation needs to
be solved in order to use the aforementioned mapping and
we have used Newton’s method [14] for solving the same.
Thereafter, we have used this model to derive local supervisory
control schemes for each of the pumping stations which gives
set points to their individual local controllers. This approach
is tested in the Smart Water Lab at Aalborg University (see
[15] for more information on the laboratory). To the best of
the author’s knowledge, this is the first work, where static
equations are used to provide decentralized control of WDN
using game theory and that forms the primary contribution of
this paper.
The rest of the paper is organized as follows. We introduce
some standard notation used throughout this paper in the next
subsection. Thereafter, we introduce the model of WDN in
section 2. The control design and algorithm are presented in
section 3. The control algorithm designed in section 3 was



DN13 mm
Length: 20m

DN25 mm
Length: 5m

P

q

Pumping
station 1

Reservoir
DN25 mm
Length: 10m

DN13 mm
Length: 5m

P

q

Pressure
Zone 1

DN20 mm
Length: 10m

DN20mm 
Length: 20m

q

Pumping
station 2

Reservoir

P

DN25mm 
Length: 20m

To another 
water network 

Pressure
Zone 2

DN13 mm
Length: 15m

DN25 mm
Length: 25m

P

q Flow
sensor

Pressure
sensor
Control
valve

Fig. 1. Process and Instrumentation Diagram of the considered WDN.

Fig. 2. Graph of the WDN in fig. 1.

applied on the Smart Water Lab and the results are presented
in section 4. Finally, we conclude this paper and highlight
future research topics.

Notation: Let superscript k ∈ {1, · · · , N} denote a generic
player (or controller) in an N player game and −k =
{1, · · · , k − 1, k + 1, · · · , N} denote all other players except
player k. ∆(n) denotes the probability simplex over Rn. The
notation M(n,m;R) denotes an n×m matrix (hence M ) with
entries belonging to the set of R. The superscript T denotes
the transpose operator and the superscript −T indicates the
inverse for a transposed matrix. 1n denotes an n dimensional
vector of 1’s. The subscript T denotes the spanning tree
and subscript C denotes the chords of the associated graph.
Gaussian distribution is denoted by N

(
µ, σ2

)
with mean µ

and variance σ2.

I. DESCRIBING WDN USING STATIC EQUATIONS

This section introduces the model for WDN and is based
on [13]. We have extended the work of [13] by presenting
Newton’s algorithm for solving implicit equations in subsec-
tion B. Consider a WDN as shown in fig. 1. Such a network
can be modeled as a directed graph as shown in fig. 2.
The edges represent piping networks and vertices represent

pressure nodes where water can either flow in the system
(if a pumping station is connected to it) or can flow out of
the system (if a consumer is connected to it). Consider a
network with graph G = {V, E}, where V represents the set
of n vertices and E represents the set of m edges. We begin
by defining how to construct the incidence matrix H which
encodes the interconnections between different components of
the WDN in fig. 1

Hi,j =


−1, if the jth edge is entering ith vertex,
0, if the jth edge is not connected to the

ith vertex,
1, if the jth edge is leaving ith vertex,

(1)
and how to construct the cycle matrix B which encodes the
information about the edges which belong to cycles (or loops)
and their orientation for a generic WDN.

Bi,j =



−1, if the jth edge belongs to the ith cycle
and their directions disagree,

0, if the jth edge does not belong to the ,
ith cycle,

1, if the jth belongs to the ith cycle
and their directions agree.

(2)
Let p represent the vector of pressure values at all the vertices,
∆p represent the differential pressure across all the edges,
and q represent the vector of flows in the edges. Then by
Ohm’s law, there exists a resistance equation that describes
the relationship between the pressures across the edges and
the flows through the edges

∆p = HT (p+ z) = f(q), (3)

where f ∈ Rm is a vector of the flow-dependent resistance-
related pressure drops and z ∈ Rn is the geodetic eleva-
tion of the vertices. f has the following structure f(q) =
(f1 (q1) , · · · , fm (qm))

T as per [16]. All networks follow
Kirchoff’s vertex law (or node law) and this can be expressed
by the following equation

Hq = d, (4)

where d ∈ Rn is the demand vector holding the demand for
each of the n vertices. Since the WDN is a closed network,
there can be only n − 1 independent nodal demands which
imply

∑n
i=1 di = 0 due to mass conservation law (equivalent

to Kirchoff’s vertex law in this case). Note that from [17],
the kernel of HT is spanned by 1 meaning that 1TH = 0.
Therefore, 1THq = 0 = 1T d, which indirectly impose the
constraint

∑n
i=1 di = 0.

Equations (3) and (4) are sufficient to represent a WDN as
they together represent a mapping between consumer demand
and pressure at vertices. We can control the pressure at some
of the vertices directly (as a pumping station is connected
to them) and indirectly at other vertices (as no pumping
station is connected to them). This makes it necessary for
us to partition the WDN into vertices, where pressure can
be directly controlled (henceforth referred to as controlled



vertices) and vertices, where pressure can be measured but
only be controlled indirectly (henceforth referred to as non-
controlled vertices or measured vertices). In the sequel, we
shall present a partitioning of the WDN model into controlled
vertices and non-controlled vertices. To that end, we put the
following assumptions on the model considered so far.

Assumption 1.1: The resistance related pressure drop of the
ith edge is given by fi (qi) = ri |qi| qi, where ri > 0.

Assumption 1.2: The demands related to non-pressure con-
trolled vertices d̄ are given by d̄ = v̄D + e, where D =
−
∑n−c

i=1 d̄i is the total water demand from the WDN (-ve sign
represents water being taken out of the system by consumers),
v̄ is a constant vector with

∑n−c
i=1 v̄i = 1 representing the dis-

tribution of water demand among vertices, and e ∼ N
(
0, σ2

)
.

A. Partitioning of Model

We will now partition the model of WDN by collecting
vertices into two sets. One set denoted by p̄, z̄, d̄ ∈ Rn−c

where a subset of the pressures p̄ are measured, and another
set of vertices denoted p̂, ẑ, d̂ ∈ Rc, where the pressures p̂ are
controlled, thus pumping stations are controlling the c vertex
pressures p̂ and deliver the flows d̂. Hence n − c represents
the uncontrolled nodes. This partitioning allows us to model
the relationship between measured pressures on output water
flow and controlled input pressures.

Without loss of generality we sort the vertices such that p =(
p̄T p̂T

)T
, z =

(
z̄T ẑT

)T
, and d =

(
dT d̂T

)T
.

Also, we sort the edge flows q into two sets, such that
q =

(
qTT qTC

)T
. From [13] a partitioning always exists

where qT ∈ Rn−c is chosen such that H̄T ∈ Rn−c×n−c is
invertible. With this definition of the flow and pressure vectors,
the incidence matrix is partitioned into

H =

(
H̄T H̄C
ĤT ĤC

)
. (5)

The following Lemma makes it possible to partition the
incidence matrix H while ensuring the existence of its inverse.
This is required for solving for non-controlled node pressures
in (8).

Lemma 1.1: ( [13]) Let G = {V, E} be a connected and di-
rected graph with incidence matrix H ∈M(n,m; {−1, 0, 1}).
Furthermore, let V = {V, V̂} be a partitioning such that
V̂ = {v̂1, · · · , v̂c} is non-empty and E = {ET , EC} be a
partitioning such that the corresponding sub-matrix H̄T of H
is square and invertible. Then the following is true

−H̄−T
T ĤT

T 1c = 1n−c (6)

The following Lemma allows partitioning of the matrix B and
writing B in terms of the partitioned incidence matrix H given
by (5).

Lemma 1.2: ( [13]) The matrix B can be rewritten in terms
of partitioned incidence matrix (5) as B = ĤT

C −H̄T
C H̄

−T
T ĤT

T .
Then, B ∈ M(m − n + c, c;R) has a non-trivial kernel, and
ker(B) = span {1c}.

With the partitioning of H as per (5) the network model
described by (3) and (4) can be rewritten as

fT (qT ) = H̄T
T (p̄+ z̄) + ĤT

T (p̂+ ẑ), (7a)

fC (qC) = H̄T
C (p̄+ z̄) + ĤT

C (p̂+ ẑ), (7b)
H̄T qT + H̄CqC = d̄, (7c)

ĤT qT + ĤCqC = d̂. (7d)

Rewriting (7) the following expression describes the non-
controlled vertex pressures of the network p̄

p̄ = H̄−T
T fT

(
−H̄−1

T H̄CqC + H̄−1
T d̄

)
−

H̄−T
T ĤT

T (p̂+ ẑ)− z̄, (8)

and the flow due to the controlled vertices d̂ are given by

d̂ =
(
ĤC − ĤT H̄

−1
T H̄C

)
qC + ĤT H̄

−1
T d̄ (9)

Since the value of p̄, can be measured using a pressure sensor
for the vertex (which we are interested in controlling), d̄ is
measured as consumer demand and p̂ is control input due
to pumping stations (with d̂ being the corresponding water
flow from the pumping station), the only unknowns in (8) and
(9) are the chord flows in qC . We shall now derive implicit
equations from which these unknown chord flows can be
obtained. Rearranging the terms in (7c), we can obtain the
tree flows in spanning tree qT as

qT = −H̄−1
T H̄CqC + H̄−1

T d̄. (10)

Using (10), (7a) and (7b), we can derive the following implicit
expression which allows us to calculate the necessary chord
flows.

fC (qC)− H̄T
C H̄

−T
T fT

(
−H̄−1

T H̄CqC + H̄−1
T d̄

)
=(

ĤT
C − H̄T

C H̄
−T
T ĤT

T

)
(p̂+ ẑ). (11)

Equations (11), (8) and (9) summarize the partitioned model
which will be used for our reference controller.

B. Solving implicit equation using Newton method

It is necessary to solve (11) for obtaining necessary edge
flows which in turn solve (8) and (9). This is done using
Newton’s method. We begin by describing the error term ϵ
by rearranging (11) to obtain

ϵ(qC) = fC (qC)− H̄T
C H̄

−T
T fT

(
−H̄−1

T H̄CqC + H̄−1
T d̄

)
−

(
ĤT

C − H̄T
C H̄

−T
T ĤT

T

)
(p̂+ ẑ). (12)

ϵ(qC) ≈ 0 implies (11) is approximately solved. Let R(qC) ∈
M(m − n + c,m − n + c,R) denote a diagonal matrix with
diagonal entry being 0.5rC |qC | and similarly let R(qT ) ∈
M(n − c, n − c,R) denote a diagonal matrix with diagonal
entry being 0.5rT |qT | . We further define G = H̄T

C H̄
−T
T .

The derivative of error ϵ(qC) with respect to qC is given as

dϵ(qC)

dqC
= R(qC) +GTR(−H̄−1

T H̄CqC + H̄−1
T d̄)G. (13)



The cost V (qC) = 1
2ϵ

2(qC) with ∇V (qC) = dϵ(qC)
dqC

T
ϵ(qC) is

minimized using the following algorithm. In Algorithm 1, α
is the step-size, β is a regularizing term used for ensuring
positive-definiteness of the Hessian, Im×m is an identity
matrix of size m×m and γ is error tolerance.

Algorithm 1 Implicit equation solver
1: Input: α, β, γ
2: Initialize qC ← 1
3: while ||Vt − Vt−1||2 > γ do
4: qtT ← −H̄

−1
T H̄Cq

t
C + H̄−1

T d̄
5: Update ϵt using (12)
6: Update cost Vt ← ϵ2t
7: Newton step qt+1

C ← qtC − αt
∇Vt(q

t
C)

(∇V 2
t (qtC)+βIm×m)

8: Update step size αt ← 1
2αt

9: t← t+ 1
10: end while

II. CONTROL DESIGN AND ALGORITHM

In this section, we shall design a decentralized control
scheme for the pumping stations. The control objectives (de-
fined in the subsection II-B) lead to a non-zero-sum game that
is computationally intractable in general (see [9]). However,
a conservative solution to the aforementioned game can be
found by using Minimax or Security strategies (see [8] and
[9]). The information structure of the game is summarized in
the following assumption.

Assumption 2.1: A player only knows the possible finite
control actions that can be taken by the other players.

A. Decentralized control by solving Repeated game

The control design is based on solving a static game at
each time instant (hence a Repeated game since the same
static game is repeated at each time instant). Formally a
static game Γ with N players can be defined as a tuple
Γ = {N, (U1 × · · ·UN ), (C1, · · · , CN )}, where Uk is the
finite control space of player k, Ck is the cost operator
(matrix in 2-player case) for player k. The finite control space
Uk is obtained by discretizing the continuous control space
into finite control actions. For the considered WDN, these
represent the operating power of pumping stations (for ex.
uk = 1 implies that the pumping station k is operating at
10% of its maximum capacity). The cost operator for player k
playing the game Γ can be defined as Ck = [ck(u1, · · · , uN )],
where the entry ck(u1, · · · , uN ) represents the instantaneous
cost for player k if player 1 plays action u1, player 2
plays action u2 and so on i.e. the joint action profile is
u1, · · · , uN . The cost operator for the next time-step (defined
in the subsection II-B) is constructed using the model (8),
(9), and (11). The cost operator serves as the controller’s
feedback signal as it considers real-time consumer demand
and ensures fulfillment of the same. Any non-zero-sum game
Γ = {N, (U1 × · · ·UN ), (C1, · · · , CN )} can be solved using
Minimax strategies if each player k solves the corresponding

zero-sum game Γ′ = {N, (U1 × · · ·UN ), (Ck,−Ck)} to
obtain their worst-case costs.

Let V k
t denote the minimax value of the game Γ at time t

for a player k and let πk
t ∈ ∆(uk) denote the mixed strategy

of player k at time t. Then the following Linear program can
be solved by player k for finding the minimax strategy πk

t .

min
πk
t

V k
t (14a)

s.t.
∑
uk∈U

ckt (u
k, u−k)πk

t (u
k) ≤ V k

t ,∀u−k ∈ U, (14b)∑
uk

πk
t (u

k) = 1, (14c)

πk
t (u

k) ≥ 0, ∀uk ∈ U, (14d)

In linear program (14), the constraints (14b) ensures the best
response by player k to all possible control actions by the
player(s) −k. Note that, there will be a constraint (14b) for
every possible control action by the player(s) −k. Constraints
(14c) and (14d) ensure that πk

t ∈ ∆(uk) while we search for
optimal πk

t .

B. Formulation of cost function
The control objective for both players consists of a common

goal of tracking reference pressure and both players simul-
taneously have an individual objective of minimizing their
energy consumption. The following cost function for player
k implements these objectives,

ck = W1 |p̄− p0|+(p̄−p0)
TW2(p̄−p0)+W3

∣∣∣d̂kuk
∣∣∣ , (15)

where p̄ is the pressure as per (8), p0 is the reference pressure
which we want to maintain, uk represents the controlled
pressure input from kth controller, d̂k is the flow from kth

controller as per (9), |·| represents the standard 1-norm, W1,
W2 and W3 are normalized weights. The first term in (15)
represents the absolute mean of pressure difference at the
consumer vertex, the second term represents the variance of
pressure difference at the consumer vertex and the third term
represents the absolute energy consumption (Unit: W ) for a
pumping station k. We will now state an online algorithm
(Algorithm 2) for solving repeated games based on linear
program (14). Note that (11) is used for constructing Ck

t in

Algorithm 2 Online Model-based Repeated games solver
1: Input: p̄, p0, dc
2: Calculate d̄c by averaging dc since last decision epoch
3: for t = 1, · · · , T do
4: for All possible control actions of all players do
5: Construct Ck

t using (8), (9), (11) and (15)
6: end for
7: Solve the game Γ′ using (14) for πk

t

8: Sample uk
t ∼ πk

t

9: Apply uk
t as control input

10: t← t+ 1
11: end for

Algorithm 2 and (11) is solved using Algorithm 1.



III. LAB RESULTS

Algorithm 2 was applied on Smart Water Lab at Aalborg
University (see fig. 3). The lab has a modular design and we
have used 2 pumping station modules, 1 consumer station
module, and 2 piping modules for emulating WDN given
in fig. 1. The lab modules communicate with the SCADA
(Supervisory Control and Data Acquisition) using MODBUS
and further details on lab modules can be found in the
paper [15]. In this study, each pumping station independently

Fig. 3. Smart water Lab at Aalborg University with SCADA computer at right,
pumping and consumer modules visible in the center, and Piping module at
left.

used Algorithm 2 as a supervisory controller which provided
optimal pressure setpoints to the local controllers within the
pumping station (which implemented the optimal setpoint)
similar to an economic model predictive control. For a 2 player
game as per considered WDN in fig. 1, the cost operator for
each player will be a matrix and for the rest of the paper,
we will focus on the 2 player case without loss of generality
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Fig. 4. The simulated periodic demand trend using (16).

(Note that Minimax strategies exist for an N -player game [8],
[9]). As the demand curve (explained in (16) and shown in
fig. 4) changes slowly, Algorithm 2 was executed once every
300 seconds and we consider that as the decision epoch. The
reference pressure p0 was chosen to be 0.5 bar. For Algorithm
1, we chose α0 = 100, β = 10−4 and γ = 10−7. The weights
W1, W2 and W3 in (15) were set to the same values for
both the pumps and their values are as follows; W1 = 106,
W2 = 106, and W3 = 1. These weights were manually tuned
to obtain good performance. The consumer demand has been
simulated to match the periodic trend discussed in [15] and
references therein. The consumer demand is maximum during
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Fig. 5. The reference is tracked up to a certain error (maximum error
being approximately 0.0256 bar) despite changing consumer demands. The
consumer demand is shown in the bottom subplot.

the morning hours (around 07h) and falls during midday
(around lunchtime 12h) and rises again in the evening (around
17h) before falling to the minimum during the night (around
24h) and the pattern repeats itself. The following Fourier series
equation (presented in [18]) was used to simulate the demand
curve dc,

dc = a0 + a1 cosωth + b1 sinωth + a2 cosωth + b2 sinωth,
(16)

where a0 = 1, a1 = −0.155, b1 = 0.044, a2 = −0.217,
b2 = −0.005, ω = 0.261 and th is the time instant. The
simulated demand trend can be seen in fig. 4. Fig. 5 shows the
reference tracking despite disturbances due to consumption by
consumers. The pressure at node 3 does not perfectly coincide
with the reference pressure due to the aforementioned flow
disturbances due to consumption at node 3 by the consumer.
The demand curve as shown in fig. 5 is a scaled version of fig.
4 and Gaussian noise was added to it in order to reflect the real-
life consumption. Fig. 6 shows the control inputs applied by



0 2000 4000 6000 8000 10000 12000
0.48

0.485

0.49

0.495

0.5

0.505

0.51
Control Inputs by pump 1

Pressure applied by pump 1

0 2000 4000 6000 8000 10000 12000
0.48

0.485

0.49

0.495

0.5

0.505

0.51
Control Inputs by pump 2

Pressure applied by pump 2

Fig. 6. The pressure control signal applied by both the pumping stations.
Pumping Station 1 applies more pressure when the consumer demand is higher
(see fig. 4) as more water is being taken out of the system by consumers
leading to a higher pressure drop. Pumping Station 2 has an almost constant
control input on average.

pump 1 and 2. It can be observed that pump 1 is compensating
for the disturbance shown in fig. 5 and pump 2 is supplying
almost constant pressure with a magnitude similar to pump 1.
Fig. 7 shows the costs incurred by pump 1 and 2. Decision
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Fig. 7. The value of the game for each player is almost identical. The red
markers indicate the time epochs at which decisions are taken by players.

epochs represent the time when Algorithm 2 was used to
update setpoints for the local controllers. It can be observed
that both pumps incur almost similar costs.

IV. CONCLUSION

We have presented an Algorithm for Decentralized control
of a practical WDN. Game theory and in particular the theory
of repeated games is useful for decentralized control of large
and complex systems and is sometimes called engineering
agenda [7]. This work follows the same direction and we
hope it inspires more researchers and engineers to use simple
control-oriented models for efficient control of large-scale
industrial systems. It should be noted that in this work, we
calculate minimax optimality which is inefficient for both the
players compared to correlated equilibrium and future research
should focus on introducing coordination mechanisms such
that both the players converge to a more efficient correlated
equilibrium.
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