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Abstract
Early identification of patients at risk of hospital-acquired urinary tract infections (HA-UTI) enables
the initiation of timely targeted preventive and therapeutic strategies. Machine learning (ML) models
have shown great potential for this purpose. However, existing ML models in infection control have
demonstrated poor ability to support explainability, which challenges the interpretation of the
result in clinical practice, limiting the adaption of the ML models into a daily clinical routine. In this
study, we developed Bayesian Network (BN) models to enable explainable assessment within 24 h
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of admission for risk of HA-UTI. Our dataset contained 138,250 unique hospital admissions. We
included data on admission details, demographics, lifestyle factors, comorbidities, vital parameters,
laboratory results, and urinary catheter. Models developed from a reduced set of five features were
characterized by transparency compared to models developed from a full set of 50 features. The
expert-based clinical BN model over the reduced feature space showed the highest performance
(area under the curve = 0.746) compared to the naı̈ve- and tree-augmented-naı̈ve BN models.
Moreover, models developed from expert-based knowledge were characterized by enhanced
explainability.

Keywords
artificial intelligence, Bayesian classifiers, explainability, hospital-acquired urinary tract infection,
machine learning

Introduction

Hospital-acquired urinary tract infection (HA-UTI) is the most common type of nosocomial
infection,1,2 accounting for approximately 40%,3 and is associated with increased morbidity,
mortality, prolonged length of stay (LOS), as well as additional hospitalization expenditures.1,4

Management of HA-UTI relies on preventive hygienic measures5 in the context of, e.g., urinary
catheter care bundles,3 which includes a careful clinical indication for use and instrumentation of the
device,5,6 as well as rational use of antibiotics.7

Recently, automated surveillance systems for HA-UTI, such as the Danish Hospital-Acquired
Infections Database (HAIBA),8 have been developed and implemented to monitor the incidence
rates and enable benchmarking between Danish hospitals.9 Additionally, studies mapping risk
factors for HA-UTI have been widely conducted to create awareness of patterns leading up to HA-
UTI.10–13 Notably, potential complex patterns of mutual risk factors may be used at admission to
identify patients at risk of acquiring HA-UTI.14 Machine learning (ML) may potentially be suitable
for identifying such patterns.15–18 However, existing ML models in infection control – and
healthcare in general –often demonstrate a lack of explainability and interpretability.15 If the
clinicians are challenged in interpreting the output of a given ML model, this may hamper the
implementation of the ML model in daily clinical routines.15,16,18–25

Explainability of ML models for healthcare can be classified as being either model-specific or
model-agnostic.26 For instance, ML models, such as logistic regression or decision trees, are said to
be explainable by nature as they allow direct insight into the inner mechanics of the model. We refer
to such ML models as model-specific explainability.26 On the other hand, ML models, such as
neural networks or random forests, do not allow for immediate insights into the inner mechanics of
the models, which is why they are often referred to as black-box models. For explainability, black-
box models may benefit from a surrogate model, e.g., feature importance in the context of local
prediction. We refer to such expression as model-agnostic explainability.26 Examples of methods
providing model-agnostic explanations of predictions include SHap Additive exPlanations
(SHAP)27 and Local Interpretable Model explanation (LIME).21

A recent study by Rudin28 advocates for ML models that enhance interpretability by
promoting transparency and, e.g., using only the most meaningful features as predictors for the
event of interest. A suitable ML model class that supports these design desiderata may be found
within probabilistic graphical models, exemplified by Bayesian Network (BN) models.22,29–31
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BN models support reasoning under uncertainty,22,32 relying on a transparent model specifi-
cation that enables the clinician to inspect model assumptions in the form of probabilistic
independencies and possibly causal statements, in addition to explanations of evidence.22,30 BN
models also support the integration of expert knowledge in both data preprocessing and model
development, which can be decisive for the successful adoption of ML models in daily clinical
routines.23,24

In this study, the aim is to:

(1) Capture probabilistic dependencies and independencies in BN models for stratification of
patients within 24 h of admission for risk of HA-UTI.

(2) Support BN model specification by combining clinical expert knowledge and clinical data
to decide on relevant HA-UTI risk factors and guide model structure development.

(3) Compare performance and discuss the explainability/interpretability of different types of
BN models: 1. Models based on clinical expert-based knowledge, 2. naı̈ve Bayes models,
and 3. Tree-augmented-naı̈ve (TAN) models.

Literature review

Studies on early identification of HA-UTI using explainable ML models are sparse.
Møller et al.14 developed predictive models for HA-UTI based on data from admission time

and within the first 48h of admission, respectively, reaching an Area Under the Curve (AUC)
between 0.709 and 0.770. However, the study did not explore the meaning of explainability for
their models. Zhu et al.33 investigated ML models in the prediction of poststroke urinary tract
infection (UTI) risk in immobilized patients, using SHAP for model-agnostic explainability, but
without addressing model-specific explainability and only targeting a subgroup of HA-UTI.
Jeng et al.34 examined ML for predicting recurrent UTIs caused by Escherichia coli, dem-
onstrating model-specific explainability through decision tree splits. However, the decision tree
model achieved an AUC of 0.654 without the inclusion of, e.g., clinical expert knowledge in the
model development. Taylor et al.35 compared predictive performance between seven ML al-
gorithms for community-acquired UTI, and Yelin et al.36 used logistic regression and gradient
boosting modeling to identify antibiotic resistance. However, they did not target HA-UTI nor
discuss model-specific explainability of their models and predictions. Jakobsen et al.37 explored
model-agnostic explainability for early identification of HA-UTI but without delving into the
model-specific explainability.

A few studies have applied BN models for infectious diseases.32,38,39 To our knowledge, no
study has investigated early stratification for the risk of HA-UTI and addressed model-specific
explainability in this context. Recently, Gupta et al.32 applied a naı̈ve BN and a TAN BN to
assess the risk of sepsis by capturing dynamics between biomarkers, challenging the perfor-
mance of existing scoring systems for sepsis. Ward et al.38 developed a clinical decision support
system (CDSS) named SepsisFinder, demonstrating how structures constructed by expert-based
knowledge may effectively capture accurate dependencies; SepsisFinder is considered an
extension of TREAT, a CDSS for guided antibiotic therapy in Denmark.32,40 Schrurink et al.41

developed a BN to assist in diagnosing and treating nosocomial infectious diseases. They
concluded that clinical experience with CDSS is still limited. Lastly, Visscher et al.39 developed
a BN model from expert-based knowledge for predicting pathogens causing ventilator-
associated pneumonia, reaching an AUC between 0.51 and 0.77 for different pathogen
groups when only relying on admission duration and ventilation, which significantly improved
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when including information on culture results. However, this study neither targeted HA-UTI nor
addressed explainability. To our knowledge, BN models have never been applied for early risk-
stratification of HA-UTI, nor have explainability been addressed in this context.

Materials and methods

Source of data and participants

Danish legislation requires no approval from an ethics committee or consent from participants for
registry-based studies.

Information on 50 features from 138,250 admissions is included in this study. We include
data on adults between 18 and 100 years of age with a LOS between 0.1 and 365°days(s) at
North Denmark Regional Hospital or Aalborg University Hospital in Denmark from 1 January
2017 to 31 December 2018. Data are linked using the unique civil personal registration (CPR)
number issued to all Danish citizens together with the timestamps for the hospital admissions. A
patient can appear more than once in the dataset if the patient has experienced multiple ad-
missions at different time points during the 2-year study period. Statistical Analysis Software
Enterprise Guide 8.1 is used for data management. Hugin Expert 8.9 is used for BN model
development and model analysis.

Definition of Hospital-acquired urinary tract infection outcome

HA-UTI is included as a binary feature in the dataset. HAIBA registers new laboratory-diagnosed
cases of HA-UTI if at least one urine culture is positive, including ≤2 microorganisms with at least
104 colony-forming units (CFU)/mL and at least one microorganism above 104 CFU/mL urine,
measured between 48 h after hospital admission and 48 h after hospital discharge.Moreover, no case
of UTI must be registered <14 days prior to a new case of HA-UTI.

Data preprocessing

Figure 1 Illustrates the data landscape.
In Denmark, the medical condition leading to hospital admission is registered as an A-diagnosis,

and for each additional condition, a B-diagnosis is added. Since 1994, diagnoses have been
registered in accordance with the International Classification of Diseases, Tenth Revision (ICD-10).
Diagnoses registered before 1994 are registered in accordance with the ICD-8. We choose a level of
three digits in ICD-10 for A-diagnosis for the Admission cause-feature, resulting in a nominal
feature of 19 categories. The ICD-10-codes used for admission cause are presented in Appendix A
(supplementary).

The Charlson Comorbidity Index (CCI)42 is used to assess comorbidities. Moreover, we add a
feature of history of UTI because we consider patients to be more prone to acquiring a new incidence
of HA-UTI if they have a past history of UTI.35 The study does not include the CCI-score or the 10-
years survival chance. Once again, we choose a level of three digits in the ICD-10- and ICD-8-
structure (some comorbidities were also registered before 1994) for Comorbidities, as presented in
Appendix B (supplementary).
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Feature selection

The expert-based knowledge incorporated into this study is provided by a consultant in infectious diseases
and a consultant in clinical microbiology, both ofwhomhave vital insight into clinical routines. In addition,
findings from previous studies on risk factors for HA-UTI10–14 were also taken into account.

Initially, we use expert-based knowledge for the primary feature selection. We refer to the
resulting set of features as the full feature space, which includes features on admission details,
demographics, lifestyle factors, comorbidities, vital parameters, laboratory results, and urinary
catheters. Moreover, we performed tests of marginal independence43 between the HA-UTI target
and the features. If the null hypothesis of marginal independence is not rejected with a p-value of
0.005 and if the feature is deemed important by the clinical experts, then the feature is included in a
so-called reduced feature space. Otherwise, it is only included in the full feature space. The features
included in the study are presented in Table 1.

We randomly split the data into a training set containing 110,870 unique hospital admissions and
a test set containing 27,380 unique hospital admissions.

Discretization

All features in the dataset are discretized from levels 0-6 according to the considered contribution for
prediction of HA-UTI (Appendix C, Table C), based on clinical expert knowledge and previous
literature, e.g., existing scoring systems used in the intensive care unit.44 Feature values in intervals
corresponding to the discrete level 6 are considered more associated with higher HA-UTI risk than
the discrete level 0. If multiple values for the same feature are present within 24h of admission, only
the value that is categorized in the highest discrete level is considered for our model. Values outside
the discrete levels are deemed outliers and are omitted.

Figure 1. Illustration of the data landscape. Note: A combined code for patient ID, date, time, and the place
was used as a unique primary key for each admission.HA-UTI (Hospital-acquired urinary tract infection).
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Table 1. Feature selection.

Feature
Associated organ
system Data type

Full-
feature
space

Reduced-
feature
space

Expert-based
knowledge

p-value
(Hugin)

Admission cause NA Admission
detail

0.0014

Triage NA Admission
detail

0.0010

Season NA Admission
detail

0.0002

Age NA Demographic 0.0028
Gender NA Demographic 0.0002
BMI NA Lifestyle factor 0.0008
Smoking NA Lifestyle factor 0.0009
Alcohol NA Lifestyle factor 0.0003
Exercise NA Lifestyle factor 0.0009
Acute myocardial
infarction

Cardiovascular Comorbidity <0.0001

Congestive heart
failure

Cardiovascular Comorbidity <0.0001

Peripheral vascular
disease

Cardiovascular Comorbidity <0.0001

Cerebral vascular
accident

Central nervous Comorbidity 0.0001

Dementia Central nervous Comorbidity <0.0001
Pulmonary disease Respiratory Comorbidity <0.0001
Connective tissue
disorder

Connective
tissue

Comorbidity <0.0001

Peptic ulcer Digestive Comorbidity <0.0001
Liver disease Digestive Comorbidity <0.0001
Diabetes Endocrine Comorbidity <0.0001
Diabetes
complications

Endocrine Comorbidity <0.0001

Paraplegia Central nervous Comorbidity <0.0001
Renal disease Urinary Comorbidity <0.0001
Cancer Various Comorbidity <0.0001
Metastatic cancer Various Comorbidity <0.0001
Leukemia Hematology Comorbidity <0.0001
Lymphoma Hematology Comorbidity <0.0001
Severe liver disease Digestive Comorbidity <0.0001
History of UTI Urinary Comorbidity <0.0001
Temperature NA Vital

parameter
0.0002

Glasgow Coma
Scale

Central nervous Vital
parameter

0.0012

Respiration rate Respiratory Vital
parameter

0.0004

(continued)
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Bayesian network models

A BN model consists of a qualitative and a quantitative part and provides a compact representation
of a joint probability distribution. The qualitative part of a BN model is represented by a directed
acyclic graph (DAG), where the nodes correspond to random variables, and the directed edges
specify dependence/independence relations between the variables. Note that we will use the terms

Table 1. (continued)

Feature
Associated organ
system Data type

Full-
feature
space

Reduced-
feature
space

Expert-based
knowledge

p-value
(Hugin)

Pulse rate Cardiovascular Vital
parameter

0.0003

Systolic blood
pressure

Cardiovascular Vital
parameter

0.0002

Diastolic blood
pressure

Cardiovascular Vital
parameter

0.0001

Saturation Respiratory Vital
parameter

0.0008

B-thrombocytes Hematology Laboratory
result

0.0007

B-erythrocytes Hematology Laboratory
result

0.0008

P-PO2 Respiratory Laboratory
result

0.0010

P-CRP Digestive (liver) Laboratory
result

0.0007

B-haemoglobin Hematology Laboratory
result

0.0011

P-albumin Digestive (liver) Laboratory
result

0.0013

P-creatinine Renal Laboratory
result

0.0009

P-bilirubin Digestive (liver) Laboratory
result

0.0004

P-blood glucose Endocrine Laboratory
result

0.0008

P-pH Various Laboratory
result

0.0007

P-lactate Various Laboratory
result

0.0003

B-leucocytes Hematology Laboratory
result

0.0005

B-neutrofilocytes Hematology Laboratory
result

0.0004

B-monocytes Hematology Laboratory
result

0.0007

Urinary catheter Urinary Procedure 0.0006

Jakobsen et al. 7



variable and node interchangeably in the remainder of this paper. The quantitative part of the model
captures the strengths of the dependence relations through a collection of conditional probability
tables (CPT), one for each variable in the model. Together, these CPTs define a joint probability
distribution over all the variables in the model.45

We construct and evaluate eight BNmodels with different model structures. Specifically, we consider a
model structure specified in collaboration with domain experts, referred to as a clinical model, as well as
three model structures learned from data with varying levels of complexity expressed in terms of allowed
conditional dependencies. The four modeling approaches are applied to both the full- and the reduced
feature space, respectively,with allmodel parameters, i.e., conditional probabilities, being learned using the
expectation-maximization (EM) algorithm.46 The EM algorithm finds a local maximum likelihood es-
timate of the model parameters by iteratively alternating between an expectation step (involving inference
in the underlying model), and a maximization step, where intermediate maximum likelihood parameter
estimates are found based on fractional counts derived from the expectation step.45

All BN models focus on performing stratification within 24 h of admission for the risk of
experiencing HA-UTI, as illustrated in Figure 2. We will therefore refer to HA-UTI as the target
variable in the following sections to distinguish it from the other model variables. Also, in the
remainder of this paper, we will refer to a model defined over the reduced feature space as a reduced
model and a model defined over the full features space as a full model.

Figure 2. Illustration of how our Bayesian networks perform risk-stratification within 24h of admission for HA-UTI.
Note: Within 24h of hospital admission of a new patient (represented in the test set), the model uses all available
patient data on relevant features to calculate the probability of acquiring HA-UTI. The red dashed timeline indicate the
period outside the timeframes for HAIBA’s HA-UTI definitions, whereas the black timeline indicates the period inside.
From a probabilistic decision boundary, a threshold, the BN classifies the patient as either ‘at risk patient’or ‘not at risk
patient’. The decision boundaries can be altered, e.g., due to preference. In all, this makes up our risk stratification. In the
test of performance, we demonstrate how well the model classifies the patients. We also discuss the model-specific
explainability related to our eight Bayesian Network models in our work. HA-UTI (hospital-acquired urinary tract
infection), TP (true positive), TN (true negative), FP (false positive), and FN (false negative).
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Expert-based clinical model structure

The expert-based clinical BN models were constructed using expert-based knowledge in a three-step
approach. In the first step, we asked clinicians to decide on distinct dependencies between feature variables
while excluding the HA-UTI target node and respecting the DAG properties. This resulted in, e.g., de-
mographics and lifestyle factors being defined as parents to the comorbidities, which in turn is associated
with parents to vital parameters and laboratory results. For instance, in the full feature space, we have body
mass index (BMI) as parent of diabetes, alcohol status as parent of liverdisease, diabetes as parent to level of
blood glucose, and renal disease as parent to level of creatinine. In step two, we inspect the edges in the
structure from step one and evaluate the suggested dependencies. In general, an edge between two nodes is
altered if the implied dependency does not align with the clinical expectations. For example, the de-
pendencies conveyed by edges between triage level and the use of urinary catheters to monitor urine output
may be better described by an underlying disease or condition (meaning it is not a worsening in the triage
that directly leads to the use of a urinary catheter). On the other hand, if an edge between two nodes reflects
the expected clinical dependency, such as theGlasgowComaScale (GCS) affecting the triage level, the edge
remains in the structure. We repeat this step for all edges in the model (in random order). In step three, we
naively assume conditional independence between all the features and theHA-UTI target node by setting the
HA-UTI node as the parent of all features. This ensures a tractable model structure, although we also
recognize that the resulting edges incident to HA-UTI does not reflect causality and may violate expected
clinical (in)dependencies. For the full feature space, we subsequently also remove the edges between
comorbidities and HA-UTI, as preliminary experiments showed an improvement in AUC for this refined
model structure. Figure 3 illustrates the process of developing the expert-based clinical model structures.

Figure 3. Illustration of the three steps in developing our expert-based clinical Bayesian networkmodel. Note: In step
1, we used expert-based knowledge to decide on oriented dependencies for all nodes while holding out the HA-UTI
node and respecting the DAG properties. In step 2, we inspected all edges from step one for a potential underlying
condition that may have resulted in an improper edge. In step 3, we naively set the target HA-UTI node as parents to all
predictors, except comorbidities in the full feature space. HA-UTI (hospital-acquired urinary tract infection) and GCS
(Glasgow Coma Scale).
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Structure learning from data

We consider three approaches for learning BN models from data using both the reduced and full
feature space. The underlying algorithms allow increasing levels of complexity in the model
structures and cover naı̈ve Bayes models,32,45,47 TAN models,31 as well as models learned using the
PC algorithm.48

Given the target variable HA-UTI, the naı̈ve BN model assumes conditional independence
between all features. This assumption implies a model structure where all edges are directed from
HA-UTI to the other variables in the model.32,45 The expert-based clinical-, naı̈ve- and TAN model
structure implies a naı̈ve assumption to the HA-UTI target node. However, given the HA-UTI target
node, they distinguish by the edges between the remaining features in the structure.

The TAN BN augments the naı̈ve Bayes model by defining a tree structure over the feature
variables (thus, not including the target HA-UTI), such that each node (except the root and target
node) has two parents.32 The first step of the TAN algorithm is to construct a weighted, fully
connected, undirected graph over the features (excluding the target HA-UTI), where the edge
weights correspond to the mutual information between the corresponding variables conditioned on
the target variable HA-UTI. Next, a maximum weighted spanning tree is constructed, retaining the
edges with the highest conditional mutual information between variables, such as the edge con-
necting the age node and admission cause node (Figure 5). We (somewhat arbitrarily) select the Age
node as root node and direct all edges in the spanning tree away from age, thereby obtaining a
directed tree structure. Finally, HA-UTI is included in the model as parent to all other nodes.31

The PC algorithm45 is a constraint-based algorithm relying on local conditional independence
tests between variables.48 The initial step of the PC algorithm is to construct a fully undirected
network. An iterative second step performs conditional independence tests for all pairs of features,
removing edges between nodes deemed (conditionally) independent. In step three, so-called
v-structures in the model are identified based on the independence test performed during the
previous step. Finally, in step four, any remaining undirected edges are oriented while respecting the
DAG properties and avoiding new v-structures.45,48,49 Figure 4 llustrates the process of developing
both the TAN- and the constraint-based PC model for early risk stratification of HA-UTI.

Evaluating the models

We report on model performance using the Reciever-operating-Curve (ROC) with an associated
AUC and confusion matrix. We also discuss the model-specific explainability of the BN models
concerning the degree to which the dependency structure of the models accurately represents the
domain of HA-UTI.

Results and discussion

Of the 138,250 admissions included in this study, 1,889 (1.37 %) admissions include at least one
HA-UTI. Percentage frequency distributions and missingness for gender, smoking-, alcohol-, and
exercise status, comorbidities, and presence of urinary catheter, are presented for cases with and
without HA-UTI for both the training- and the test datasets. In addition, the median and IQR for age,
BMI, vital parameters, and laboratory test results in training- and test set, respectively (Appendix D,
supplemental).
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Figure 4. Illustration of the four steps in the development of our tree-augmented-naı̈ve- and PC Bayesian
Network model. Note: In step 1 of the TAN, we construct a fully undirected network, where the target
node was left out for this part of the learning process. In step 2, weights were set for all edges depending on
the conditional mutual information score (conditional to target). From here, the maximum spanning tree was
constructed. In step 3, we decided on age as the root node because it has the highest p-value for HA-UTI
(Table 1) and set the HA-UTI node as the target node. Directions in our remaining edges were decided by
using the root node and directing all other nodes away from the root, which resulted in a so-called Chow Liu
tree, hence ‘tree augmented’. In step 4, the algorithm assumes conditional dependence between the target
node and all other nodes, making the HA-UTI-node a parent to all other nodes in the structure, hence naı̈ve. In
step 1 of the PC, we constructed a fully undirected graph. In step 2, we iteratively performed a conditional
independence test for all pairs of features, resulting in a skeleton of an undirected network. In step 3, which
happened within the iterating loop in step two, an iterative search for V-structures (e.g., a child with two
parents) was used to capture as many directions as possible. In step 4, if some edges remained undirected, they
were now directed randomly without violating the directed acyclic graph properties. HA-UTI (hospital-
acquired urinary tract infection) and GCS (Glasgow Coma Scale).
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Model performance

Figure 5 demonstrates the overall performance of the models using ROC curves. The figure and the
subsequent discussions do not include the results of the model learned using the PC algorithm over
the full feature space, as the learned model exhibits complex dependency structures for which
parameter learning is not feasible with the available data. We expect that this is due to the dataset not
covering all relevant variables, including a representation of the underlying admission cause, but a
more rigorous analysis of this issue is outside the scope of the present paper.

Given the prevalence of HA-UTIs in this study (1.37%), a patient whose predicted risk of HA-
UTI is above this level (i.e., above 0.0137) is considered at elevated risk. Table 2 summarizes the
confusion matrix for the models using a decision threshold of 0.0137 for all models.

The best-performing model in terms of AUC is the reduced expert-based clinical BN model with
an AUC of 0.746. The full naı̈ve BN- and the reduced TAN BNmodels performed second-best with
AUCs of 0.735. The reduced expert-based clinical- and the full TAN BN models also demonstrate
the lowest error rates of 32.29% and 29.70% for the decision threshold, respectively (Table 2). Note
that a model that never classifies a patient at risk of HA-UTI will have a low error rate of only 1.37%,
as it will correctly identify all non-HA-UTI cases. However, this model will also be of no clinical
value.

For the given decision threshold, the reduced naı̈ve BNmodel reaches the highest number of true
positives (TP) with 284 patients correctly identified as developing HA-UTI (of 402 HA-UTI cases in
the test set). However, this model also has the second-highest number of false positives (FP),
meaning the model tends to be more aggressive in classifying a patient as being at risk of HA-UTI,
which also describes the high error rate of 43.55% (second highest number of FP of all BN models).
The full expert-based clinical model reaches the second-highest number of TP but without the high

Figure 5. Illustration of the ROC for our models. Note: The left ROC curves represent the performance of
the Bayesian network models developed over the reduced feature space. On the contrary, the right ROC
curves represent the performance of the BN developed over the full feature space. The blue curves are the
expert-based models, the yellow curves are the naı̈ve models, the black curves are the TAN models, and the
red curves are the PC model.
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error rate caused by a high number of FP (Table 2). The reduced expert-based clinical- and full TAN
BNmodels reach the highest number of true negatives (TN) of 18,294 and 19,012 and the lowest FP
of 8,694 and 8,007. The reduced naı̈ve BNmodel demonstrates the lowest number of false positives
(FP) of 77, followed by the full expert-based clinical BNmodel with a number of FP of 93. Note that
an FN (i.e., not initiating preventive strategies for a patient at risk of HA-UTI) is considered more
critical than an FP, where an unnecessary preventive strategy is initiated. The reduced PC BNmodel
has a performance with an AUC of 0.720 (Table 2), which is the second-worst AUC of the BN
models.

Bayesian networks and explainable network structures

In this study, we suggest risk-stratifying patients within 24h of admission (Figure 2) using a
strong case definition of the target HA-UTI that combines multiple high-quality administrative
and clinical data sources.8,9 The nodes in the reduced feature space are identified using expert-
based knowledge in addition to feature selection based on tests of marginal independence.
Using expert-based knowledge in both feature selection and model development may be de-
cisive for applications of ML models in a daily clinical routine.23,24 We use BN models in this
study as these types of models naturally support certain types of explanations/interpretability
through analysis of the assumed dependencies within the models as well as principled reasoning
mechanisms .22,50 In what follows, we discuss potential insights and explanations derived from
the learned model structures, particularly to what extent the models reflect the HA-UTI domain
in terms of the existence and orientation of the directed arcs that define the model structures.
Appendix E (supplementary) illustrates the four BN models defined over the reduced feature
space.

For the expert-based clinical BN, a trade-off is made between capturing correct conditional
dependencies (i.e., supporting model-specific explainability) and potentially pursuing higher
performance in terms of AUC. For instance, we expect the age-, triage-, and urinary catheter nodes
to be parents of the HA-UTI target node because higher age can be associated with a weakening of
the immune system at both cellular and humoral levels, and adverse triage reveals an ailing severity
of the acute condition of the patient. In addition, the use of a urinary catheter is associated with intra-
luminal transmission of bacteria as well as forming of biofilm, which together cause a higher risk of
acquiring HA-UTI. However, by reversing the edge between the features and HA-UTI in the expert-
based clinical model, which conforms to the relationships expected in the underlying domain, the
AUC in the performance test reduces to 0.697 from 0.746. Note that the reduced PC BN models
have a higher number of conditional dependencies similar to those from the reduced clinical expert
BNmodel (Appendix E, supplemental). Appendix F (supplementary) illustrates the four BNmodels
developed over the full feature space.

The naı̈ve BN models do not capture the correct clinical conditional dependencies, which is an
immediate consequence of the conditional independence assumption between the feature variables
given the target HA-UTI variable. Despite the TAN BNmodel capturing edges from the age node to
the admission cause node, and from the admission cause node to the triage node, these edges’
orientation results from orientating all edges away from the root node in the tree structure (Figure 4).
The PC algorithm over the reduced feature space (Appendix E, supplemental) captures the ad-
mission cause-,GCS- and urinary catheter node as parents to theHA-UTI target node, which may be
explained by admission causes such as neurological- or renal diseases can be associated with
decreased bladder function (increase in the risk of recurrent urine), that may increase the risk of HA-
UTI. Thus, severe admissions may be associated with adverse GCS and an increased likelihood of
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using a urinary catheter to monitor the urine output, which may also cause a higher risk of acquiring
an HA-UTI.

Limitations and strengths

Predicting events occurring >48 h after admission within 24 h of admission may be challenging
because the outcome is likely to be affected by many confounders, such as an underlying disease
or given intervention, in a potentially large timeframe between prediction time and the adverse
event (Figure 2). However, we see significant clinical potential in the ability to identify risk
patients at early onset, because this may allow for initiation of preventive hygienic measures,
such as decreasing the duration of potential catheterization, or for supporting suspicion of HA-
UTI during the course of admission, e.g., if the patient experiences a fever at a later onset.

Unfortunately, we did not have access to information on antibiotic therapy, a well-established
risk factor for HA-UTI.11 This knowledge may significantly impact the HA-UTI risk, leading to
better conditions for identifying risk patients for the BN models, potentially resulting in
improved performance in terms of higher AUC. Future BN models might be extended with
information about antibiotic therapy, motivated by Leibovici et al.,51 who included information
on antibiotic therapy as a parent node to a node representing a positive bacterial culture result in
a BN model. Such an extension could also easily be accommodated by the models in the present
study.

Conclusion

This study evaluates the use of BN models for risk stratification within 24 h of admission for HA-
UTI to enable timely targeted preventive and therapeutic strategies. We present how risk strati-
fication within 24 h of admission may be performed by BN-based ML models having transparent
model structures that can provide a degree of model-specific explainability for the clinical per-
sonnel. We considered two feature spaces as the basis for model construction: 1. A full feature space
including data on admission detail, demographics, lifestyle factors, comorbidities, vital parameters,
laboratory results, and procedures. 2. A reduced feature space (selected based on expert-based
knowledge and the tests of marginal independence), which indicates that admission cause, age,
GCS, triage level, and urinary catheter are the most essential features of model construction for risk
stratifying HA-UTI. In all, seven out of eight BN models with model structures either fixed a priori
(a naı̈ve Bayes model), learned from data (using the TAN and PC algorithms), or derived from
expert knowledge, reached AUC scores between 0.746 and 0.720. This work’s reduced clinical BN
model reached the highest AUC of 0.746. Notable, the reduced feature space only has five predictive
features. For comparison, Møller et al.14 performed risk stratification after 48h of admission for HA-
UTI using >20 variables, reaching an AUC of 0.735 and 0.701 for their logistic regression and
decision tree, which are model classes also considered explainable.26 Their black-box neural
network reached an AUC of 0.770, but this model class does not directly support model-specific
explainability.

The findings are in line with studies suggesting a trade-off between performance and
explainability52,53 in contrast to studies suggesting that a trade-off is not necessary at all22,54,55 – at
least for model-specific explainability for risk stratification within 24 h of admission for acquiring
HA-UTI. Moreover, the study may serve as proof of concept for how BN models might constitute a
promising choice for improving both performance and explainability in future ML applications for
infection control.
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