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Optimal State Estimation for DNN Visual Servoing
Systems with Detection Loss

Christian Tranholm Novrup®!, Thomas Kjer Nowak®?2, Daniel Ortiz Arroyo®?3, Simon Lennart Sahlin®? and

Petar Durdevic

Abstract—The introduction of deep learning techniques, such
as object detection in visual servoing systems, has produced
more sophisticated robotic systems capable of working in
unknown environments. However, the interaction between the
object detection network and the controller, when detection loss
occurs, has received little attention. In this paper, we investigate
a way of mitigating the effect of detection loss in VSNN systems.
In our approach detection losses are modeled as a Bernoulli
random variable and integrated into the state space model of
the dynamic system. To mitigate the effect of detection loss,
we propose a variation of a Kalman filter, that artificially
inflates the measurement noise covariance when detection loss
occurs. The Kalman filter was implemented on a 6DOF robotic
manipulator with an eye-in-hand configuration with YOLOvS
as the object detection network. The results show, that the
proposed Kalman filter decreases the effects of detection losses
and significantly improves performance compared to having a
standard Kalman filter, and not having a state estimator at
all. The benefit of our approach is especially noticeable when
detection loss occurs frequently and for relatively long periods
of time.

Index Terms—Visual servoing Detection loss Convolutional
Neural Network YOLOVS Estimation Kalman filter

I. INTRODUCTION

Visual servoing (VS) is a method for controlling the
movements of a robotic system using visual input from a
camera. As described in [1], the goal of VS in robotic
manipulators is to minimize the error between the current
pose of the end effector and the desired pose of an object
with which the robotic arm is interacting with [2] [3]. Three
main types of visual servoing systems have been proposed:
1) image-based visual servoing (IBVS), where the error is
based on features extracted from a 2D image, 2) position-
based visual servoing (PBVS), where the error is based on
parameters in 3D space, and 3) hybrid visual servoing, which
is a combination of the two previous methods. There are two
commonly used configurations in VS, one where the camera
is mounted on the end effector of the robot (eye-in-hand) and
one where the camera is fixed in the workspace [1].

In VS applications the camera coupled with image process-
ing algorithms enables a robotic system to detect and identify
objects, providing the feedback signal needed to control the
movements of the robot.
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Classical methods for detecting objects in an image use
feature extraction algorithms to identify low level features
such as lines and points. However, it is well known that
these methods cannot adapt to slightly different variations
of objects with similar geometries and to the variety of
lighting and background conditions [2], [3] found in unknown
environments.

More recently several state-of-the-art methods for visual
servoing based on deep neural networks (DNN) have been
described in [3]. In these methods DNNs are trained to detect
and recognize complex objects in spite of variations on the
object size, geometry, orientation or position, and lighting
conditions.

An example of a popular object recognition DNN is
AlexNet [4]. A derivation of this architecture was retrained
in [5] to recognize a specific type of plant leaf that a 6DOF
robotic manipulator with an eye-in-hand camera configura-
tion could grab. This research found that convolutional neural
networks (CNNs) are capable of generalizing features of
objects with a high degree of randomness such as the ones
found in leaves to detect/classify these objects. The network
in [5] was able to detect the leaves, such that a robotic arm
could successfully grab/touch a leaf of a stationary plant,
but the system was not capable of handling lost detections
produced by the CNN.

Similarly as visual servoing, target tracking systems allow
a robotic system to keep a target object within the field of
vision of the camera. For instance, in [6], a mobile ground
robot with a rigidly mounted camera was developed with
the purpose of detecting, tracking, and following a moving
human in real-time. The experimental and simulation results
showed that the system could successfully track and follow
a human using the object detection CNN MobileNet [7].
However, this approach requires the generation of a con-
sistent bounding box for the tracked humans, and bounding
box errors are sometimes inferred by the CNN. When this
happens, the control system will ’blindly” follow the errors,
which leads to the robot moving in the wrong direction,
eventually losing sight of the human. Furthermore, when
object detection data is completely lost, the robot was made
to stop at the cost of reducing its tracking performance.

To solve some of the issues that target tracking appli-
cations have, Kalman filters are commonly used as state
estimators as is reported in [8], [9], [10]. For instance, [8]
uses the Interacting Multiple Models (IMM) algorithm to
fuse several linear models of a dynamic target object. For



this purpose, an extended Kalman filter is used, whose gain
is automatically adjusted. Similarly, in [9], a Kalman filter
for state estimation was used in object tracking, but in this
case, its noise covariance matrices were fine-tuned through
the Particle Swarm Optimization algorithm. In [10] a face-
tracking control system of a mobile robot that combines a
self-tuning Kalman filter and an echo state network self-
tuning algorithm was presented.

CNNs for object detection have clear advantages over tra-
ditional feature extraction methods as they tolerate variations
in object geometry and illumination conditions [3]. In [11]
the term detection loss was defined to identify events when no
output is produced by an object detection network. This may
happen due to several factors, such as the object being too
far or too close to the camera, poor lighting, when there are
temporary occlusions, or when the robot/target is moving fast.
In other research works, detection loss has been referred to
as image loss [12] [13], but the term detection loss describes
more accurately the failure of an object detection network to
produce an output.

The detection loss effect in VS systems based on CNNs
(VSNN) is similar in nature to packet loss, an event that
commonly happens in distributed networked control systems
(NCS) [11], which was investigated in [14]. The main dif-
ference is, that when detection loss occurs in a VSNN, the
data is lost forever, whereas in NCS the data may arrive
at a later time. To mitigate the effects of packet loss in
NCS [14] proposes different types of estimators based on
Kalman filters to determine their effect on packet losses and
delays. The similarity of packet loss in NCS and detection
loss in VSNN suggests looking into applying similar methods
for alleviating the effects detection loss. Particularly in [15]
a Kalman filter for intermittent measurements is proposed,
which makes the filter use an infinite sensor noise covariance
when a measurement has not arrived.

Another important problem identified in [11] is the delay
produced by the inference processing in the CNN (time
between input and output for the CNN), which may be
a computationally expensive task when complex DNN are
used. The delay issue in VSNN is similar to the delay
that happens in NCS due to network congestion. In NCS,
delays are commonly handled by using buffers. In the case
of VSNN delays can be reduced using faster GPUs, but
this will increase the cost of the system. Similarly, as it
happens in NCS, when inference delays are introduced into
a feedback control system, they may cause system instability
[16] since the controller will act on delayed data. This
will cause the controller to overcompensate and potentially
become unstable. One simple method to compensate for these
delays is to design a controller with lower bandwidth, but this
is not a desirable solution in many applications.

The effect of detection loss due to target object occlusion
in VS is discussed in [12]. In this work, a dynamic model of
a robotic system is created to compute missing image data in
cases, where a landmark image is momentarily unavailable.
The authors use standard feature extraction techniques to
detect color, surface, bounding box of the landmark, etc.

The use of Kalman filters for state estimation in VS
systems has been investigated in [17]. In this work, an
extended Kalman filter (EKF) was utilized in a VS setup for a
5DOF robotic manipulator with an eye-in-hand configuration.
The EKF estimated feature points in the image, extracted
using classical feature extraction algorithms.

A more recent work [18] uses an EKF on a VS system
for a 6DOF manipulator. The main goal of the paper was to
estimate, with the help of the EKF, the movement of a target
object, they wanted to track. The target was an AprilTag, and
feature extraction was done through the ViSP detector. In this
work, the low data rate from the camera and the delay due to
the feature extraction algorithm were identified as the main
bottlenecks of the dynamic VS system. The authors found
that the EKF improved the data rate and reduced the effects
of delay along with providing an accurate velocity estimate.
Moreover [18] showed that an EKF can help to alleviate the
effect of delays by providing accurate state estimation.

Despite its relevance, detection loss in VSNN systems has
received relatively little attention in the literature [11]. Fur-
thermore, research that has studied methods to handle the loss
of visual feedback is mostly based on classical methods for
feature extraction that have limited object detection accuracy.
Additionally, the few works on VS systems that use DNNs
for object detection, implement a simple policy that stops
the robot’s movement, until object detection data is produced
again [6] [5]. Clearly, better methods of handling detection
loss and delays are needed to allow a robotic system to
continue working despite of these effects, hereby increasing
the VSNN system’s stability.

This paper investigates the effect of optimal state es-
timators on VSNN systems for making them capable of
handling detection loss and time delays effectively. The main
contribution of this paper is:

e A variation of the optimal state estimator Kalman filter
is proposed that artificially inflates the measurement
covariance when detection loss occurs. This filter is
capable of improving the robotic manipulator’s perfor-
mance and stability by reducing the effect that detection
loss and delays have on a VSNN.

To our knowledge, no previous research work has studied
these issues and used a similar approach to reduce the effects
that detection loss and delay have on VSNN-based systems
for robotic manipulators.

This paper is organized as follows, section II describes
the VSNN system, section III presents a model of our sys-
tem, section IV discusses state estimators for detection loss,
section V briefly describes the controller structure chosen
for the experimental work, in section VI, the proposed state
estimator is implemented and tested, and section VII and
section VIII present our conclusions and future work.

II. SYSTEM DESCRIPTION

The experimental setup used in this paper is a 6DOF
Kinova Gen3 Lite robot manipulator with an RGB-D camera
(Intel RealSense L515) [19] mounted on the end effec-
tor/gripper (eye in hand). The computing system is a Nvidia



Jetson Nano, controlling the camera via the Kortex API [20]
in Python.

For object detection, a pre-trained CNN YOLOv5 (YOLO)
[21] was used to detect a bottle. Upon successful detection,
YOLO returns the label of the detected object [, the con-
fidence c, top-left pixel coordinates of the bounding box
[©min, Ymin] and the lower-right pixel coordinates of the
bounding box [Zymaz, Ymaz)- A position error vector between
the gripper and the object detected by YOLO was calculated.

First, the bounding box corner coordinates are used to
calculate its center coordinates (u,v):

Tmax — Tmin
u= 5 1
Ymaz — Ymin
= 5 : 2
With the center of the bounding box as the target for the
gripper, the homogeneous vector €q (the tilde indicates that
the vector is homogenous), which describes the direction
between the gripper and the desired object/target, is given
by:

v

u
€g=M" |v]|, 3)
1

where M is the pseudoinverse of M, where M is defined
as:
M=K [R —Rt]. (4)

K is the intrinsic camera matrix [22], R is the rotation
matrix, between the gripper and camera reference frame, and
t is the translational vector between the gripper origin and
the camera origin. €q is only a direction vector since it is
not possible to reconstruct a 3D point from a 2D image using
inverse projection. Therefore a line parametrization is defined
from the camera origin in the direction of €g, where A is the
parameter of the line parametrization:

es(\) =t +A(eo — t). )

€p is the error vector between the gripper origin and the
target, and €g is €g in Cartesian coordinates. The distance
to the target object is measured using the LiDAR. To make
sure that the length of the line from the camera origin to the
target must be equal to the length measured using the LiDAR
we have:

d = [[A(eo = )5 - (6)

When (6) is solved for A, and the value of A is substituted
in (5), the error vector €, can be obtained. The vector
describes the error between the gripper and the object to
be manipulated. This error vector is minimized, by moving
the manipulator’s gripper using visual servoing to reach the
target. These relationships, between the different vectors, can
be seen in fig. 1. In the figure, O., Oy, and O; denote the
origin of the camera’s reference frame, the gripper’s reference
frame, and the image plane, respectively. The black vectors

from the origin are used to indicate the basis vectors of that
frame. €. is the vector to the world point in the reference
frame of the camera.

III. MODEL

The model of the DNN VS system, introduced in [11], is
as follows: a discrete-time linear and stochastic plant can be
described by (7) [11], [23]:

Try1 = Az + Buy + wy,

7
Y = Yr(Cxp + vy). @

z, = [ey(k+1) eb(k)}Tis the state vector at sample k,
vi ~ N(0, R) is the sensor noise with covariance matrix R,
wy, ~ N(0, Q) is the process noise with covariance matrix Q,
and vy, is a Bernoulli random variable that describes detection
loss in the system, and is defined in (8) [11]:

Yi = .
k 0 otherwise.

' {1 if detection data arrives before or at time t,t < k.

®)
This essentially means that the output is either zero, or equal
to the output equation in the state space model, depending

on if a target object was detected by the DNN or not:

)

(Cxy, + vi) if object is detected.
Yk = .
0 otherwise.

The A, B and C matrix shown in (7) describes the dy-
namics of the system/plant, which in case of this paper is
explained in the beginning of section II. To find suitable
values for these matrices the following basic relationship is

assumed:
. 1. K,
€x = ——€x — — Uy,
T T

(10)
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(Xp, Yy, Zb)
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Fig. 1: Visualisation of the camera projection model



which is a basic motion model. €, indicates the = component
of the error vector (position), v, is the velocity command
given to the gripper, and K, T are model parameters, which
can be seen in table I for x,y and z direction (found by
identification):

The continuous time model was discretized using the
Tustin approximation [16] and a sample time of 0.22 seconds,
as it was the fastest sampling time the system could provide.

IV. STATE ESTIMATION WITH DETECTION LOSS

To estimate the system’s state, a Kalman filter was used
together with the model described in section III. The Kalman
filter is a modified version of the original Kalman filter,
designed to handle detection loss, as was proposed in [15]:

Tp1)k = AZpp + Bug
Priy1p = APy A"+ Q
S =CPC' + Ry + (1 —vy)o’I
K=pPC'S™!
Epp1|k+1 = Trprp + K(ye — CZpyapi)
Prjie1 = (I - KC)P,

where A,B,C, and 'y were defined in (7). The filter in (11)
will be denoted as Kalman Filter with v (KF w. ) for the
remainder of the paper. The standard Kalman Filter will be
denoted as Kalman Filter without v (KF w/o. ). o is chosen
as 10* as this was found to be a value where the filter
effectively ignores the measurement. From the Kalman filter
definition, it can be seen that if v = 1 the object is detected
and the measurement noise covariance matrix is R. In case
v = 0 there is no detection and the noise covariance matrix
will be o2, which will cause the state estimate to reduce
trust in the measurement practically entirely. This means, that
provided that the covariance matrices R and () are correct,
that the artificially inflated covariance o1 is large enough,
and that the filter neglects the measurement, the Kalman filter
will give the optimal estimate in both modes of operation, i.e.
when an object is detected or not. The measurement noise
covariance matrix R was experimentally determined to be:

an

0.1009 —0.0198 —0.0220
R=10"°%]-0.0198 0.1913  0.0028 (12)
—0.0220 0.0028  0.2913
V. CONTROL
In (11) and (7), the input to the system is given by
U = —Kp Ty, (13)

where K, is a matrix of proportional gains, such that the
controller feeds back the error vector €,(k), and converts
these to a velocity input for the gripper. The values in K,
were ad-hoc tuned.

TABLE I: Model parameters

[ = [y [= |
122 | 1.013 | 1.176
T |[03 | 016 | 0.16

VI. CLOSED LOOP EXPERIMENT WITH THE ESTIMATOR

To test the system including the estimator and controller,
an experiment was set up with an object to detect right in
front of the manipulator. The gripper was given an initial
starting position below the object and an initial constant
velocity of 0.05 m/s in the z-direction was given, such that it
would sweep past the object. The control objective was then
to move the gripper in the y-direction, such that it would
center the object in the camera frame. The experiment is
shown in fig. 2 and a video can be found in [24].

In the top left of fig. 2 the manipulator is in its initial
position with the gripper far to the right and below the object,
which is not yet in view. In the second stage, on the top
right, the manipulator has moved slightly to the left and has
detected the target object (a bottle). The gripper will now
start moving up in the y-direction to make the center of the
bottle align with the red line on the camera view. In the third
stage, bottom left, the gripper has succeeded in centering
the red line on the camera with the center of the bottle, so
the camera and bottle are at the same height. The gripper is
still moving to the left with a constant velocity. In the final
stage of the experiment, in the bottom right, the bottle is
still centered on the y-axis of the image but is now far to the
right of the manipulator. At this stage, the manipulator cannot
move further to the left, so the experiment ends. In all the
experiments detection losses were simulated in software, as
the successful detections and their losses were not consistent.
To produce comparable, consistent, and replicable results, the
detection losses were induced periodically according to (14)

1nT <t<nT+DT, n=4{0,1,2,...}
Yalt) =
0 else
(14)

where 7y, denotes the artificial detection loss (analogous to
v in (11) but not a random variable), D is the detection loss
ratio between 0-1 (determines detection loss duration), T is
the switching period, and ¢ is time. n is incremented every
time t = nT + DT. v, (t) will be a square wave with duty
ratio D. Inducing detection loss artificially and periodically is
not an accurate representation of the real detection losses that
occur randomly, where the system may never regain detecting
of target objects after it is lost. However, this approach was

Fig. 2: Four stages of the experiment



assessed to be suitable for investigating the effectiveness of
the filter, compared to the case of KF w/o. vy and not using
a KF.

Two tests were carried out with different detection loss
ratios (0.25 and 0.5) and the results can be seen in fig. 3.

The P controller adjusted the y-position (vertical) of the
manipulator to place the object in the middle of the frame,
minimizing the y component of the error vector. At both
detection loss ratios, three different experiments were carried
out. One experiment without the KF, then with a KF w/o. v,
and finally with a KF w. .

Looking at the experiment with a detection loss ratio of
0.25 (fig. 3a), it can be seen, that without KF, the y-position
of the gripper does not reach a steady state within the ex-
periment duration. The gripper only moves in the y-direction
whenever a detection is successful (green background), and
it stops the y-direction movement whenever there is no
successful detection. The KF w/o. v experiment shows, that
the controller reaches a steady state within the experiment
duration after around 11 seconds. The y-position of the
gripper moves the fastest when the detection is successful
and slows down when a measurement is lost. This is because
when a detection is lost, the estimate of the y-position of
the gripper from the KF w/o. vy goes to zero. Comparing
the system without KF and KF w/o. v, the gripper moves
a little during detection loss for KF w/o y, which causes
a faster settling time than the system without KF. The KF
w. Y moves regardless if detection occurs or not, which
makes the y-position of the gripper settle at around 4 seconds,
making it the fastest of the experiments. When the detection
is successful, at around 2 seconds, the system corrects the
estimated position (blue line) to meet the measured value
(red line). In the experiment with a detection loss ratio of
0.5 (fig. 3b), the detections are successful for twice as long
as the previous experiment. It can also be seen, that in

the 0.5 detection loss experiments then the system settles
considerably faster than the experiment with a detection loss
ratio of 0.25 for the No KF and KF w/o y. This is because
most of the control action in the system happens when
detection is successful. This means, that the settling times
of these methods are dependent on the time when detections
are successful. With the KF w. v however, the settling time
is very similar for both detection loss rates, showing that the
KF w. v decreases the effects of detection loss effectively. It
can also be seen, that the KF w/o 7y is oscillating between the
measured signal and zero, the reason for this comes from (9).
The KF w/o vy has a constant measurement noise covariance
matrix, meaning it has no way of differentiating a successful
detection, versus when detection loss happens, which will
always return a zero.

VII. DISCUSSION

The proposed Kalman filter was shown to reduce the
effects of detection loss significantly in comparison to a
standard Kalman filter and to the system without Kalman
filter as is summarized in table II. This table shows a decrease
in the settling time t; by using KF w. vy, of roughly 50%
for both detection loss rates, compared to not using a KF.
Comparing KF w. and w/o vy, a decreased settling time of
about 40% (0.25) and 23% (0.5) can be achieved using KF
w. vy depending on the detection loss rate. The results show
that the filter is effective, especially at higher detection loss
rates, where there are only few detections. These experi-
mental results furthermore match results and expectations
from simulations of the proposed Kalman filter. In these
experiments, the detection loss was artificially induced. This
allowed showing, that the filter performs well even in the
case of having a small number of successful detections.
Similar behavior is expected when the filter is tested in real
conditions. The filter used a fixed noise covariance, that was
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Fig. 3: Test of the estimator, with the manipulator moving with a constant velocity of 0.05 m/s in the x- direction, and a

P-controller adjusting the - position.



artificially inflated during detection loss. However, there are
other ways to do this to get a more accurate noise covariance
during detection loss and to avoid filter divergence due to the
use of incorrect noise covariances [25].

TABLE II: Settling time for true movements of fig. 3 being
within £0.01 meter

Detection loss ratio 0.5
ts [s] [ Decrease [%)]

Detection loss ratio 0.25
ts [s] [ Decrease [%]

No KF 14.15 | O 79 0
KF w/o. y 10.73 | 24.17 5.32 32.66
KF w. vy 6.42 54.63 4.08 48.35

VIII. CONCLUSION

Detection loss is the event that happens when an object
detection DNN misses detecting an object due to several
causes. This phenomenon has thus far received little attention.
In this paper the effect that detection loss has on VSNN sys-
tems was investigated. We propose a variation of a Kalman
filter, that artificially inflates the measurement covariance,
when detection loss occurs, causing the filter to disregard the
measurement and estimate the states of the system based on
the linear system model. The method was tested on a visual
servoing system consisting of a Kinova 6DOF manipulator
with an Intel RealSense LiDAR camera in an eye-in-hand
configuration. The experiment showed, that the proposed
Kalman filter decreases the effect that detection loss has
on the controller to achieve a significantly faster settling
time, compared to the use of a conventional Kalman filter
and to a system without Kalman filter. In our experiments,
detection losses were induced periodically to compare the
results of the different system configurations, but in the real
world, detection loss occurs randomly. The control system
used was an ad-hoc tuned P-controller and the measurement
covariance matrix was a static matrix, artificially inflated
during detection loss. For future work, we plan to test our
system with real random detection losses, implement an
adaptive control to handle the delay from the detection loss,
and perform online covariance estimation.
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