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A B S T R A C T

In this study, we present CON-SST-RAIN, a novel stochastic space–time rainfall generator specialized for
model-based urban drainage design and planning. CON-SST-RAIN is based on Markov Chains for sequences of
dry/rainy days and uses stochastic storm transposition (SST) to generate realistic rainfall fields from weather
radar data. CON-SST-RAIN generates continuous areal rainfall time series at arbitrary lengths. We propose a
method for updating the Markov Chains by each passing year to better incorporate low-frequency variation
in inter-annual rainfall values. The performance of CON-SST-RAIN is tested against multi-year records from
rain gauges at both point and catchment scales. We find that updating the Markov Chains has a significant
impact on the inter-annual variation of rainfall, but has little effect on mean annual/seasonal precipitation
and dry/wet spell lengths. CON-SST-RAIN shows good preservation of extreme rain rates (including sub-hourly
values) compared to observed rain gauge data and the original SST framework.

1. Introduction

Rainfall time series is a crucial aspect in design and planning of
hydrological structures and water infrastructure. Historical time series
used for model-based design purposes can be lacking temporal infor-
mation (gaps in time or insufficient periods of observation to estimate
relevant return levels), or spatial information (e.g. point rainfall with
inadequate spatial representation of rainfall fields) (Cristiano et al.,
2017; Ochoa-Rodriguez et al., 2015). Traditionally, historical long time
series of point rainfall are used for assessing point rainfall statistics
to create design storms (Madsen et al., 2017; Gregersen et al., 2013)
or applied directly in hydrological model simulations to estimate re-
turn levels of hydrological system response (Thorndahl, 2009). The
application of point rainfall works well if the hydrological catchment
in question is small, and the impact of spatial rainfall variability is
insignificant. However, if a catchment is subject to uneven hydrological
loading due to the movement and dynamics of rainfall, the spatial
component cannot be neglected without compromising the accuracy
of the estimated system response (Ochoa-Rodriguez et al., 2015; Tuyls
et al., 2018; Cristiano et al., 2019). If applied directly in hydrological
modelling, dense rain gauge networks or weather radar observations
that have a representation of the spatial variability might resolve
these challenges, but these are rarely available over sufficient periods
and with consistent data quality to estimate return levels of e.g. 10
or more years. To support, or even circumvent, these issues several

∗ Corresponding author at: Aalborg University, Department of the Built Environment, Aalborg, Denmark.
E-mail address: cband@build.aau.dk (C.B. Andersen).

stochastic rainfall generators have been developed to model key aspects
of rainfall fields and thus enable filling of missing information in time
or space or to generate arbitrary long chains of continuous rainfall
that exceed the length of observed records (Wilks and Wilby, 1999;
Sharma and Mehrotra, 2010). These types of rainfall models only serve
to simulate statistical properties of rainfall and rainfall fields and are
therefore not chronologically comparable to rainfall observations nor
to numerical weather or climate models. Unlike observational data, the
rainfall generators do have the possibility to be customized for specific
hydrological applications and with length and space–time resolution to
resolve the challenges of the case in question.

In the literature, rainfall generators are often categorized as either:
parametric (Brissette et al., 2007) or non-parametric (Rajagopalan and
Lall, 1999). Parametric models involve choosing distribution functions
to model both spatio-temporal occurrences (e.g. Markov Chains for
sequences of dry and rainy days) of rainfall (both at single and multi-
site models) and precipitation amounts (e.g exponential model of daily
rainfall amounts). Some parametric models generate exclusively syn-
thetic rainfall space–time series based on stochastic-statistical processes
and therefore have to be evaluated against observations (e.g. Fowler
et al., 2005 and Burton et al., 2008). Other types of parametric rain-
fall generators combine physical dynamics of climatological variables
with stochastic realizations to generate spatiotemporal rainfall fields
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(e.g. Peleg et al., 2017). Non-parametric models attempt to avoid the
subjective decision of a statistical distributions by instead resample a
given time series stochastically.

As stated earlier a rainfall generator is a supportive tool in the field
of hydrology and can thus have a broad field of application. Thorndahl
et al. (2017a) and Thorndahl and Andersen (2021) developed a single-
site hybrid generator (CLIMACS) that resamples observed rain gauge
observation at event scale. CLIMACS can recreate the same statisti-
cal metrics (annual and seasonal precipitation, number of extreme
days, and drought periods) as observed historically. It is furthermore
used to downscale regional climate models to create rainfall time
series representative for future climate scenarios for application in
urban drainage models. Multi-site generators, such as the mulGETS
model (Brissette et al., 2007), have been developed for impact studies
of daily rainfall. Zhou et al. (2019) expanded on the idea of multi-
site generation and handled a common weakness/criticism of rainfall
generator’s inability of retaining low-frequency variation (Sharma and
Mehrotra, 2010). More recently Peleg et al. (2017) presented a method-
ology to produce sub-daily and gridded rainfall/weather products for
climatological uncertainty analysis (Peleg et al., 2019). Each of the
mentioned rainfall generators are developed with a specific interest
in mind. This study aims to investigate how to develop a framework
that is suitable for hydrological modelling of dense urban areas thus
outputting high-resolution rainfall products.

Rainfall input for urban hydrological design and planning has been
shown to require high resolution in both the temporal and spatial do-
main (Einfalt et al., 2004; Thorndahl et al., 2017b). The advancement
in weather radar observation technology over the past decades has
increased temporal and spatial resolution of radar data. The recency
of the technology, however, hinders long-term statistical assessment
due to short time series compared to traditional rain gauge time se-
ries. Furthermore, radar rainfall data quality can be challenged by
attenuation, clutter, bias-adjustment, etc. which leads to rejection or
filtering of data in space or time and complicates direct hydrological
applications (Thorndahl et al., 2017b; Einfalt et al., 2004; Villarini and
Krajewski, 2010; Nielsen et al., 2024).

Stochastic Storm Transposition (SST) is a technique that involves
resampling of observed rainfall, in both time and space, to generate
a hypothetical yet realistic representation of rainfall events (Wright
et al., 2020). Wright et al. (2013) presented a framework, for the SST
method, where rain events, at user-specified durations are aggregated
in a storm catalog. These events are randomly selected and transposed
to virtually extend observation periods for the applied radar data and
thus enabling more detailed frequency analysis. It has been applied
for flood frequency analysis in Wright et al. (2014) and utilized as an
exploratory tool in Zhou et al. (2021) to investigate runoff sensitivity
in an urban watershed. The framework is further explored in Andersen
et al. (2022) in a different climatology than in the previously men-
tioned studies and with a different radar dataset that also includes
sub-hourly rainfall estimates. The SST framework shows great promise
in recreating extreme rainfall statistics similar to other ground-based
measurements with significantly longer periods of observation.

In the present study we introduce the novel framework CON-SST-
RAIN (phonetically: constrain) to combine radar data into a CONtinuous
Stochastic Space-Time RAIN series specialized for urban applications,
by a hybrid approach of using Markov Chains for wet/dry sequence
modelling and time/space resampling of observed radar rainfall, similar
to the SST framework. Current weather radars offers extremely high
resolution in the spatio-temporal domain (down to 100 × 100 meter
at 1 min (Ochoa-Rodriguez et al., 2015; Nielsen et al., 2014; Schleiss
et al., 2020)) which is a desirable trait in the planning and design of
urban drainage systems. This high resolution is however often severely
limited either by observation period or data availability and therefore
not directly applicable as input for long-term hydrological modelling.
Consequently, CON-SST-RAIN aims towards virtually stitching together
a section of observed (matching a specified urban catchment) radar

rainfall into an arbitrary long continuous series. We investigate how
well CON-SST-RAIN maintains crucial statistical features: mean an-
nual and seasonal precipitation, year-to-year variation of seasonal
precipitation (low-frequent variability), extreme rain rates, and spatial
correlation at multiple rainfall sites. CON-SST-RAIN is also able to
produce ensembles of multi-year records of areal rainfall allowing for
the inherent uncertainty to be investigated. We test different types
of Markov Chains and how they affect the aforementioned statistical
metrics and we suggest an approach to update Markov Chains for
each simulated year to better represent the low-frequency variation of
rainfall values.

The paper is structured as follows: A presentation of applied data
sets is given in Section 2. Section 3 presents all the applied methods:
Overall structure of CON-SST-RAIN (Section 3.1), Markov Chains (Sec-
tion 3.2), SST methodology 3.3, and evaluation metrics of CON-SST-
RAIN (Section 3.4). Section 4 presents and discusses CON-SST-RAIN’s
ability to generate continuous space–time series and recreate rainfall
statistics. Concluding remarks are made in Section 5.

2. Data

2.1. Study area

We identify the Island of Zealand, Denmark as our primary study
domain (Fig. 1). We focus specifically on generating areal rainfall time
series for the greater Copenhagen area (red area in Fig. 1). The domain
covers approx. 8000 km2 and is covered well by rain gauge stations and
radar data as described in the following sections. The greater Copen-
hagen area (approx. 150 km2) is densely populated and consists of
urban and sub-urban areas in which stormwater is discharged through
both combined and separate sewer systems.

2.2. Rainfall data

2.2.1. Rain gauge data
The collection of rain gauges scattered around the study area

(Fig. 1), is part of a larger network of rain gauges managed by the
Water Pollution Committee in Denmark (WPC, 2007). All of the rain
gauges are of the tipping-bucket type and record rainfall with a bucket
size of 0.2 mm. The registrations are processed into time series with
a 1-minute resolution. For post-processing in this particular study the
gauge rainfall series are aggregated to 10 min resolution to match the
radar rainfall dataset. All of the recorded rainfall intensities are grouped
into singular events. An event is defined by the triggering of the first
tip of a bucket and ended with 60 consecutive minutes with no tips. If
only one tip is registered the event is discarded.

We utilize the rain gauge data series as our ground truth in the
validation of CON-SST-RAIN. The dataset is split into two subsets: long-
term data and short-term data. The long-term data consists of gauges
with the longest common period of observation (1979–2021, 42 full
years) and will be used for validating temporal-dependent variables
(i.e. mean annual precipitation and low-frequent variability). The short-
term gauges (note that data from the long-term dataset is also included
here) present a decent spatial representation of rainfall over the area
of interest and allow us to investigate CON-SST-RAIN’s ability to create
spatial structures as observed by the rain gauge network.

2.2.2. Weather radar data
The applied radar dataset originates from a single C-band radar,

located approximately 50 km south of the area of interest (Fig. 1). The
radar is managed and operated by the Danish Meteorological Institute
(DMI) and has been in operation since 2002.

The complete processing of the radar-rainfall data has been detailed
in Thorndahl et al. (2014a) and a brief resumé of the process chain will
be presented in the following.
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Fig. 1. Overall study area and area of interest (red) for areal rainfall generation. Shaded area denotes the transposition domain that relates to the SST framework Section 3.3. The
two sets of rain gauge data: Long-term and short-term rain gauge sites and the radar (star) are shown and the observation period denoted. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Mean field bias, Root mean square error (RMSE) and Mean absolute error (MAE) for
rainfall durations ranging from 10 min to 24 h.

Rainfall duration [min] 10 30 60 180 360 720 1440

Bias [–] 1.56 1.27 1.19 1.11 1.06 1.03 1.00
RMSE [mm/h] 8.71 4.43 3.09 1.42 0.83 0.47 0.25
MAE [mm/h] 4.49 2.28 1.46 0.69 0.41 0.23 0.12

For this study, a reflectivity product, from 2002 to 2019, is gen-
erated. The scannings are made at a pseudo constant altitude of 1
km, 10-minute resolution, and processed from a polar grid with an
azimuth resolution of 1◦ to Cartesian grid with a 500 m × 500 m
resolution. The reflectivity is transformed into rain rates by applying
a standard Marshall-Palmer Z-R relationship (A=200, B=1.8). A daily
mean-field bias approach (Smith and Krajewski, 1991; Thorndahl et al.,
2014b), utilizing up to 100 rain gauges (not shown in this study)
within the radar domain (Fig. 1), is applied to derive valid quantitative
precipitation estimates.

The original 10-minute temporal resolution based on single snap-
shots is downscaled to a 1-minute resolution by advective interpolation
as presented in Nielsen et al. (2014). This has been shown to further
improve the quantitative precipitation estimates of the radar-rainfall
product when applied prior to the mean-field bias adjustment (Thorn-
dahl et al., 2014a). In this study, we choose to convert the radar-rainfall
back to a 10-minute resolution for computational purposes and thereby
maintain the improved rainfall estimates that derive from the advection
interpolation.

Table 1 shows duration-specific biases after the radar dataset has
been daily mean-field bias adjusted. As detailed in Thomassen et al.
(2022), Schleiss et al. (2020), Thorndahl et al. (2019), Andersen et al.
(2022) there is a tendency, for rainfall intensities as a function of
shorter rainfall durations, to be underestimated by the radar in com-
parison to rain gauge data. The reason for this is primarily a spatial
scaling issue which is constituted by the difference between point and
pixel as an artifact of the implemented daily mean-field bias adjustment
of radar data against rain gauges (Thorndahl et al., 2014a).

The radar dataset is applied and tested in other studies, e.g. in
extreme value statistics (Schleiss et al., 2020; Andersen et al., 2022)

and in spatial correlation studies (Thomassen et al., 2022; Thorndahl
et al., 2019).

Defining single independent rain events is challenging for spatially
distributed rainfall unlike for point rain gauge data as described earlier.
We, therefore, choose to group the radar-rainfall dataset into full-
day observations running from midnight to midnight (00 UTC). These
diurnal datasets will consist of both dry and wet periods. A total of 1104
rainfall days over the period of 17 full years is included in the study.
The rainfall days are selected by a threshold of a minimum 3 mm of
rain in at least one rain gauge within the radar domain to ensure a valid
bias adjustment. Furthermore, some days are discarded due to clutter,
noise, or poor bias adjustment, leaving the dataset abrupt in time. A
drizzle threshold of 0.1 mm/hr is implemented based on the premise
in Thomassen et al. (2022). Rain intensities below this threshold are
thus considered as no rain. This helps to distinguish single events and
improves the assessment of the binary distribution between dry and wet
periods in the dataset.

2.2.3. Regional extreme rain rate model
Besides statistics derived directly from the rain gauges presented

in Fig. 1 we utilize a regional partial duration series (PDS) model
(formally known as the Danish regional rainfall model of the Danish
Water pollution Committee, hereafter referred to as the WPC model).
This model is based on a large collection of rain gauges (83 gauges
with a total of 1881 station years) (Madsen et al., 2017). The gauges
utilized in this study are likewise part of the regional model. The output
of the WPC model is extreme value rain rates for specified rainfall
durations (ranging from 1 min to 48 h) and user-specified return levels.
The model’s conceptualization and development are detailed in Madsen
et al. (2017) and Gregersen et al. (2013) and shortly presented here.
A Generalized Pareto Distribution is fitted to rain intensities above a
threshold value for multiple durations. The regional variability is im-
plemented by correlating the Pareto distribution function parameters to
different climatological dependent variables (e.g. mean annual precip-
itation or the maximum daily rainfall depth). This allows for regional
differences in extreme rainfall intensities to be modelled consistently
and reduces the effect any potential outliers may have on the final
extreme value analysis (Madsen et al., 2017).
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Fig. 2. Schematic diagram of CON-SST-RAIN. (1) A Markov Chain that governs the day-to-day state of whether rainfall should occur over the specified area of interest or not. (2)
Rain events (storms) are stochastically transposed over the area of interest (marked by red contouring line), (3) Spatio-temporal dynamics of the rainfall field are retained (black
lines indicate individual pixel values, red line pixel with largest rainfall depth over the duration of the storm). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

3. Methods

3.1. Stochastic time-area rainfall generation by CON-SST-RAIN

CON-SST-RAIN combines a traditional approach of simulating se-
quences of days with and without rain using Markov Chains and
Stochastic Storm Transposition to resample observed rainfall in the
spatio-temporal domain. The overall structure of CON-SST-RAIN is
presented in Fig. 2.

The Markov Chain simulates day-to-day states of either rainfall or
no rainfall. The Markov Chain is directly derived from the long-term
rain gauges highlighted in Fig. 1. This process is further detailed in
Section 3.2.

For each simulated day with rainfall (wet-state) a random day is
sampled from the catalogue of daily storms and stochastically trans-
posed in space, in order to be substituted into the generated contin-
uous space–time series. This part is a modification of the SST frame-
work (Wright et al., 2017) with some additions as detailed in Sec-
tion 3.3.

Due to the inherent variance from both the Markov Chains and
the SST framework we use CON-SST-RAIN to simulate an ensem-
ble of 100 realizations of multi-year areal rainfall. The evaluation of
CON-SST-RAIN is detailed in Section 3.4.

3.2. Sequence modelling of rainfall days

A Markov Chain is a stochastic model that simulates a sequence of
outcomes from a predefined state space. A simple first order Markov
Chain can be described by the two conditional probabilities (1) and (2)
(visual representation in Fig. 2).

𝑝00 = 𝑃 (dry day ∣ prior day is dry) (1)

𝑝01 = 𝑃 (wet day ∣ prior day is dry) (2)

Markov Chains are a basis for many stochastic rainfall genera-
tors (Wilks and Wilby, 1999; Brissette et al., 2007; Sharma and Mehro-
tra, 2010; Zhou et al., 2019). The examples above (Eqs. (1) and (2)) of
a Markov Chain show its very basic level. The concept can further be
expanded upon either by increasing the order, i.e. second-order Markov
Chain where the state of the present day is conditioned on the states of
the two prior days (i.e. the probability that it will rain today given the
two prior days are dry).

Seasonality of rainfall occurrence can also be simulated by using
non homogeneous Markov Chains (NHMC) (Sharma and Mehrotra,
2010), by removing the stationarity of the chain and allowing it to
change over time (i.e. the chain used in winter season is different from
the one used in spring season, as presented in Fig. 3).

The transition probabilities for this study is derived directly from
the rain gauge data set presented in Section 2.2. The entire observed
rain gauge time series is aggregated to a time series of daily rainfall.
A day is considered to be in the dry state if the accumulated rain
depth is less than 0.2 mm and wet otherwise. The 0.2 mm matches the
resolution of the tipping gauge bucket and is similar to other studies of
stochastic rainfall generators (Brissette et al., 2007; Zhou et al., 2019).

A general flaw, and common criticism, of Markov Chains, is that
they end up as year-long averages of rainfall occurrences, which can
lead to underestimation of natural low frequent variability (year-to-
year variation of critical values such as mean annual and seasonal
precipitation) (Sharma and Mehrotra, 2010). To avoid this we suggest
to stochastically update the Markov Chains from year to year in order
to allow greater inter-annual variability. Using the aforementioned
approach of deriving the transition probabilities for the Markov Chains,
we derive separate Markov Chains for each of the observed years
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Fig. 3. Representation of a first-order, two-state, non-homogeneous Markov Chain (NHMC) that is updated stochastically for each passing year. The states 0/1 represent dry/wet
conditions respectively. Transition probabilities are noted above each arrow and the thickness of the arrows is proportional to the transition probability.

and pool them. When simulating sequences of dry and wet days a
Markov Chain is randomly chosen from the pool of historically derived
chains for each simulated year. This concept is presented in Fig. 3.
We choose to investigate a first- and second-order non-homogeneous
Markov Chain using the traditional method applying one chain for all
simulated years (in the following referred to as configurations: (a) 1st
order NHMC and (b) 2nd order NHMC), as well as the proposed method
of choosing stochastically updated chains for all simulated years (in the
following referred to as configurations: (c) 1st order updated NHMC
and (d) 2nd order updated NHMC).

We assume that the applied Markov Chain is valid for the entire area
of interest (Fig. 1). As a consequence we are not able to distinguish be-
tween days with rain only at parts of the area of interest and total rain
cover, as would be the case with multi-site Markov Chains such as the
mulGETS model presented in Brissette et al. (2007). This assumption is
necessary because of the natural spatial randomness of rainfall in the
sampled days which follows the stochastic spatio-temporal resampling
of the SST framework.

3.3. Stochastic Storm Transposition

Stochastic Storm Transposition (SST) is a probabilistic framework
where synthetic yet realistic rainfall statistics are generated by sam-
pling and spatially shifting (transposing) observed rain storms (Wright
et al., 2020). The framework can virtually extend the data set, allowing
for high detail frequency analysis (Wright et al., 2013), and when
coupled with hydrological models, flood frequency analysis (Wright
et al., 2014; Zhou et al., 2021).

The core concept of the SST framework is selecting a spatial extent,
henceforth known as transposition domain, in which the climatology
is considered/assumed to be homogeneous. In this domain, a rainfall
event will have an equal probability of occurring anywhere within the
domain, thus enabling one to transpose the rainfall stochastically in the
𝑥–𝑦 direction. The transposition domain for this study can be seen in
Fig. 1 and is assumed to be climatologically homogeneous according to
the findings in Andersen et al. (2022).

Wright et al. (2013) formulates a methodology in which radar
rainfall is catalogued by storm duration into storm catalogues and is
coupled with an annual storm occurrence model (Poisson Distribution),
allowing one to create a specified number of years of extreme rainfall
for extreme value statistics. Here, we adopt parts of this methodology,

Table 2
Seasonal distribution of the number of wet days in the radar catalogue and correspond-
ingly rain gauge with more than 3 mm rainfall in station no. 5694, from 2002 to 2019.
Numbers in parentheses indicate relative occurrence.

Season Winter Spring Summer Autumn

Radar catalogs 178(0.16) 199(0.18) 421(0.38) 306(0.27)
Gauge ≥ 3 mm 256(0.23) 215(0.19) 337(0.31) 297(0.27)

namely the storm catalogue generation, but we limit the extent to a
single storm duration. The radar dataset, presented in Section 2.2, is
thus catalogued into 24-hour catalogues and posteriorly separated into
seasons to match the NHMC presented in Section 3.2. For each day
noted to contain rain from the NHMC, we select, at random, a season
appropriate storm from the 24-hour radar catalogue ((2) on Fig. 2).
This leads to another assumption that storms on this time scale can be
sampled independently. Similar assumption was made for the CLIMACS
model (Thorndahl et al., 2017a) and evidence of this independence
has been shown in Thomassen et al. (2022). The distribution of the
number of storms per season is listed in Table 2 for the radar data storm
catalogue and the rain gauge data, respectively.

The winter season in the radar catalogue contains fewer wet days
compared to the gauge dataset, which could be a result of the more
stringent filtering of radar data during this season. This could be caused
by issues such as poor bias adjustment or an increase in noisy data
caused by solid precipitation. On the other hand, the radar dataset
records a higher number of rainy days in the summer season. This
discrepancy may be attributed to the comparison of spatial rainfall data
with a point-based rain gauge dataset. Summer months tend to be more
susceptible to localized convective storms with limited spatial coverage.
These storms may not be captured by a single rain gauge station, but
would be included in the radar dataset.

The methodology presented in Wright et al. (2013) has later been
compiled into the OpenSource python tool ‘‘RainyDay’’ (Wright et al.,
2017). We utilize RainyDay to estimate IDF curves for storm durations
ranging from 10 min to 24 h. We use the same approach and modifica-
tions as detailed in Andersen et al. (2022); where the top 500 storms,
according to the shape and size of the area of interest, are selected for
frequency analysis. The annual storm occurrence is fixed at 88 storms
per year.
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3.4. Evaluation metrics

To evaluate and compare the four different configurations of the
Markov Chains and to evaluate the CON-SST-RAIN’s ability to recreate
statistics similar to statistics of observed time series, we divide the
evaluation into two parts. First, we determine the statistical metrics
that characterize the temporal patterns of rainfall, and second, we
develop statistical metrics that reflect the spatial coherence.

The following statistical metrics are employed to characterize tem-
poral variability at point scale:

• Wet and dry spell lengths on a daily scale.
• Mean annual and seasonal precipitation.
• Low-frequency variability (year-to-year variation of seasonal and

monthly precipitation) calculated by the variance between the
different realizations.

• Extreme value statistics at rainfall durations ranging from 10 min
to 24 h and with return levels of 1 year to 10 years.

Wet and dry spell lengths are considered as the number of consec-
utive days with either rain or no rain. Whether a day is considered
wet or dry follows the same procedure of the derivation of tran-
sition probability distributions in the Markov Chain procedure (see
Section 3.2).

Extreme value statistics are represented as Intensity-Duration-
Frequency (IDF) curves for rainfall durations: 10, 60, 30, 180, 360,
720, and 1440 min and return levels of 1, 2, 5, and 10 years. The
frequency analysis is performed as a general Peaks-Over-Threshold
approach. We follow the recommendations from Gregersen et al. (2013)
and choose our threshold value to observe three exceedances annually
on average. The return levels are estimated using California plotting
position ranking (3).

𝑇 = 𝑁
𝑟

(3)

Where 𝑇 denotes the return level, 𝑁 is the total number of ob-
servation years, and 𝑟 is the rank of sorted rainfall intensities (in
descending order). While a median plotting position or Gringorten
formula (Gringorten, 1963) would be statistically more appropriate to
empirically estimate return periods; the other datasets utilized in this
study is based on the California plotting position, thus maintaining
comparability.

We also use the RainyDay software package (Wright et al., 2017),
with similar modifications as detailed in Andersen et al. (2022), to
derive IDF curves using the applied radar dataset for the same durations
and return levels.

The temporally dependent metrics are examined at point scale.
The climatology for the study area can be assumed reasonably ho-
mogeneous (Andersen et al., 2022). Consequently, the homogeneity
assumptions imply that the statistics will vary insignificantly on aver-
age at the catchment scale. The statistical metrics is derived from the
long-term gauges presented in Fig. 1 and covers the period of 6-01-1979
to 31-12-2020 (about 42 years in total). These metrics are compared to
a total of 100 realizations generated by CON-SST-RAIN covering the
same period.

The Following statistical metrics regarding spatial coherence are
investigated:

• Spatial correlation of daily rainfall.
• IDF curves at catchment scale.

Based on the short-term gauges (Fig. 1), we derive spatial correla-
tion functions at the daily time scale and compare them to correlation
functions estimated based on the individual pixels from the 100 re-
alizations of CON-SST-RAIN. Pairwise correlation of daily rainfall is
calculated by Pearson’s coefficient of correlation, 𝑝, (4) and is fitted

to a two-parameter exponential expression as a function of distance, 𝑑,
(5):

𝑝𝑖,𝑗 =
𝑐𝑜𝑣

(

𝑅𝑖, 𝑅𝑗
)

√

𝑣𝑎𝑟
(

𝑅𝑖
)

𝑣𝑎𝑟
(

𝑅𝑗
)

(4)

𝑝(𝑑) = exp
(

−𝑑𝛼

𝛽

)

(5)

𝑅𝑖 and 𝑅𝑗 corresponds to daily rainfall time series for a gauge/pixel
pair (i and j, respectively). 𝛼 and 𝛽 are coefficients used in the exponen-
tial fit. Müller-Thomy et al. (2018) shows that an intensity dependent
relation for the Pearson’s coefficient of correlation exists and thus
distinguishes between days above 4 mm and days below. We adopt
this approach however, slightly modified by choosing 3 mm as our
threshold to match the threshold used in selection of radar data. We
calculate correlation functions for two scenarios: continuous series (one
of the pairs can be zero) and simultaneous (𝑅𝑖 > 0 and 𝑅𝑗 > 0).

The rainfall generated by CON-SST-RAIN is converted to a catch-
ment-average time series from which we derive IDF curves using the
same approach as for the point scale IDF curves. Finally, we compare
these IDF’s to those obtained using the RainyDay method, similar to the
point scale, however, sampling from the area of interest.

4. Results

We generate in total 400 different realizations of CON-SST-RAIN,
100 for each of the different Markov Chain configurations detailed in
3.2. Fig. 4 shows examples of point time series from CON-SST-RAIN
and an observed time series as reference (top panel). The exemplified
series are four random selections from the pool of realizations based on
the updated second-order Markov chain.

Scale issues becomes clear on Fig. 4 by all peaks produced by
CON-SST-RAIN (bottom four panels) being underestimated relative to
the observed timeseries (top panel). This is further investigated in
Section 4.4.

4.1. Wet and dry spell lengths

An advantage of using stochastic rainfall generators over traditional
design storms is the possibility of retaining rainfall’s temporal conti-
nuity. The sequencing of both wet and dry days can be crucial for
hysteretic hydrological systems, e.g., systems depending on antecedent
soil moisture conditions or systems with detention storage (Nielsen
et al., 2019). Therefore, a continuous rainfall generator should be able
to adequately recreate wet and dry spells. Fig. 5 shows a QQ-plot of
observed (gauge 5755 from Fig. 1) and simulated (ensemble of 100
realizations of the pixel with the exact location as gauge 5755) wet/dry
spell lengths, for a 42 year period. The subplots (a–d) refer to the
different configurations of the Markov Chains.

All of the configurations of types of Markov chains show a general
agreement with the observed rain gauge data. Generally, all the Markov
chains fail in recreating drought periods of 60+ day; only parts of
the second-order stochastically updated chain model ensemble can
do so. A model developed by DMI (Thejll et al., 2022) for climate
projection of rainfall simulates the longest dry spell length at around
26 days (for the period of 1981–2010), suggesting that the 60+ dry
spell days either is an extreme case or caused by measurement er-
ror/malfunctions/downtime in the gauge data. If, for this reason, the
60-day quantile is discarded from the dataset, the general agreement
between gauge data and the Markov chains is more or less equal.
The stochastically updated Markov chains (column c and d in Fig. 5)
appears to perform slightly better, specifically for dry spell lengths,
in the upper percentile (except for the 60 days quantile), most likely
because the updating allows for more extreme drought seasons to occur.
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Fig. 4. Time series for rainfall intensity for gauge 5694 (top row) and four, random, CON-SST-RAIN realizations (for a single pixel corresponding to the location of gauge 5694).
The temporal resolution of the timeseries is 10 min.

Fig. 5. QQ-plot of observed and simulated dry (top row) and wet (bottom row) spell lengths for the different Markov chains (a: first order, b: second order, c: first-order
stochastically updated, d: second-order stochastically updated). The shaded area shows the total ensemble spread of 100 model realizations. The dashed line indicates the 1-to-1
line. The resolution of the QQ-plot is 1%.

4.2. Mean annual and seasonal precipitation

Since one of the main purposes of CON-SST-RAIN is to recre-
ate continuous rainfall time series, the annual mean precipitation

should be represented sufficiently while still capturing seasonal rain-
fall variability. For each of the 100 CON-SST-RAIN realizations, the
annual/seasonal averages are calculated over the length of the gen-
erated series and presented in Fig. 6 as boxplots, along with the
annual/seasonal averages based on the six long-term rain gauges (in
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Fig. 6. Point scale mean annual precipitation (ap) and seasonal precipitation (winter: spwi, spring: spsp, summer: spsu, autumn: spau) for: observed stations (blue, long-term rain
gauges from Fig. 1) and resampling realizations using the different types of Markov chains for sequential modelling for dry/wet days (orange: first order, green: second order, red:
first order stochastically updated and purple: second order stochastically updated). Error bars indicate the 95% confidence band for 100 realizations for each of the Markov Chains.
Error bars on the observed data depicts total range in rain gauge records with the cross indicating mean values across all included gauges. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Boxplots of inter-annual seasonal precipitation variance (spwi: winter, spsp: spring, spsu: summer, spau: autumn) for each of the investigated Markov Chain configurations.
The boxplots are based on 100 realizations of CON-SST-RAIN for each Markov Chain configuration. The blue lines show the inter-annual seasonal precipitation variance ranges
observed by the long-term rain gauge stations.

blue). The rain gauge averages are presented with minimum, mean,
and maximum values since the dataset only represent six values for the
annual and seasonal aggregations.

The Markov chain configurations perform similarly, with a tendency
to overestimate the annual precipitation compared to the observed
gauge data. Generally, the ensemble variabilities for the four config-
urations are within the station variability for the mean annual precipi-
tation. Furthermore, CON-SST-RAIN is able to capture the overall sea-
sonal variation, however, with an overestimation of spring and autumn
precipitation and a underestimation of summer precipitation relative to

the observed gauge data. Scale differences between radar and gauge
rainfall products most likely cause the underestimation of summer
rainfall. Summer rainfall consists primarily of short-duration, high
intensity, cloudbursts which in several studies (Thorndahl et al., 2019;
Schleiss et al., 2020) has shown more significant variance between
the two rainfall products, with radar data generally underestimating.
This is also visible from the bias listed in Table 1. The overestimation
of CON-SST-RAIN ensembles in the spring and autumn periods is less
than 8% on average. The differences might be explained by the nature
of low-intensity rainfall, which generally is poorly measured by the
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Fig. 8. IDF curves, for rainfall duration ranging from 10 min to 24 h, at point scale, derived from: CON-SST-RAIN (purple), WPC model (green), long term rain gauges (blue)
and RainyDay (black). The shaded area indicates: ensemble range for CON-SST-RAIN and RainyDay, total range of the six rain gauges applied and 95% confidence intervals of the
WPC model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

rain gauges. For the applied rain gauge network, a part of the data
processing is discarding individual events consisting of only one tip
(0.2 mm). The fraction of the total rainfall, which, for this reason, is
discarded in the rain gauge records, is unknown, but it is suspected to
be a significant portion of the annual precipitation which might explain
why CON-SST-RAIN overestimates relative to the observed gauge data.
On the other hand, the station variability in the seasonal averages also
varies within approx. +/− 5%. If more long-term gauges were available,
a larger range of the seasonal averages would probably show, and the
CON-SST-RAIN boxplots would overlap the rain gauge range values.

Generally, since differences in annual and seasonal averages are less
than +/− 10%, and due to the differences in spatial scales and data
quantity between CON-SST-RAIN ensamples and rain gauge data, we do
not consider this a hinder to continuing the evaluation of the proposed
framework.

4.3. Low-frequency variability

In addition to average yearly and seasonal accumulations, CON-
SST-RAIN’s ability to simulate inter-annual variability of seasonal and
monthly precipitation is essential for its applicability in hydrological
assessment studies. The boxplots in Fig. 7 show the ensemble vari-
ance of the year-to-year seasonal precipitation for each Markov Chain
configuration.

A large part of the variance in the CON-SST-RAIN ensemble can
most likely be credited to the stochastic nature of the method (e.g.
spatio-temporal sampling of rainfall events and variance in available
rainfall data, Table 2). Adding an additional level of randomness should
inevitably increase the variability. This is also evident in Fig. 7, when
comparing the results of traditional Markov Chains to the stochastically

updated ones. The idea behind having a new Markov Chain for each
simulated year is to increase the likelihood of having long chains of
days with or without rain, increased likelihood of drought seasons,
or periods of sustained rainfall. The stochastically updated Markov
approach does indeed increase the variability of all seasons (median
values on the box plot, Fig. 7) resulting in summer and winter variabil-
ity to be similar to the observed gauge values. However, for spring and
autumn, the updated Markov approach indicates a lower natural inter-
annual variation; therefore, the mean variances of these seasons are
slightly overestimated when comparing the observed data (blue cross,
Fig. 7) to the CON-SST-RAIN ensemble. In this comparison it is also
worth noticing that a higher variability is to be expected from a 100-
member ensemble compared to an ensemble of six observational rain
gauge series, and that some of the gauges however show comparable
variation to that of the CON-SST-RAIN values. Therefore, we acknowl-
edge that adding the updated Markov framework to CON-SST-RAIN
increases the inter-annual variability of seasonal precipitation to a level
similar to observed variation and choose the second-order stochasti-
cally updated Markov Chain as the preferred method of simulating
day-to-day sequences of rain/no rain in the rest of the study.

4.4. Extreme value statistics

We generate 42 years of synthetic areal rainfall using CON-SST-
RAIN with the second-order updated Markov chain scheme. We derive
Intensity-Duration-Frequency (IDF) curves at point (Fig. 8) and areal
scale (Fig. 9) using the partial duration series approach and California
ranking as explained in Section 3.4. The IDF curves show extreme
values statistics of rainfall at different rainfall durations (10 min to
24 h). We also include IDF curves obtained from the six long-term rain
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Fig. 9. IDF curves, for rainfall duration ranging from 10 min to 24 h, at catchment scale, derived from: CON-SST-RAIN (purple) and RainyDay, Andersen et al. (2022) (black).
The shaded area indicates total ensemble range. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

gauges each covering 42 years of recorded rainfall. IDF curves derived
using the Danish regional extreme value model (WPC), as detailed
in Gregersen et al. (2013) is included in the point-based analysis for
comparison. IDF curves generated by the SST framework, through
the RainyDay framework (Wright et al., 2017) with modifications as
detailed in Andersen et al. (2022), are also included for both point and
catchment scale.

At storm durations above three hours CON-SST-RAIN performs
equally to the other shown methods with only a slight overestima-
tion compared to the RainyDay and WPC IDF curves. However, the
difference is negligible and within uncertainty levels. At sub-three-
hour storm durations, CON-SST-RAIN and RainyDay SST IDF curves
underestimate relative to the gauge-based IDF’s. A similar phenomenon
has been observed in Peleg et al. (2013, 2018) and Andersen et al.
(2022). Specifically in Andersen et al. (2022), where extreme statistics
are derived directly from the radar dataset (same as utilized in this
study), using traditional approaches (Peak-Over-Threshold sampling
and fitting to a Generalized-Pareto distribution), still shows underes-
timation compared to gauge based statistics. Scale differences are to be
expected when comparing a radar pixel covering an area of 0.25 km2

against a rain gauge that only covers a few square centimeters. This is
also known as sub-pixel variability.

Fig. 9 compares area IDF’s derived through CON-SST-RAIN and
RainyDay. The IDF curves correspond to average area rainfall over the
catchment of 150 km2. Among the methods compared earlier, RainyDay
and CON-SST-RAIN are the only methods that consider the spatial
variability of rainfall, and therefore we do not compare to observed
rain gauge data nor WPC IDF-curves considering area IDF’s.

We note similar tendencies of significant discrepancies at short
rainfall durations and similar agreements at longer durations. Although
both sets of IDF curves are derived from the same base dataset, there

are still some discrepancies in data sampling and length of generated
rain series. CON-SST-RAIN is generated from a sampling of whole
days, whereas RainyDay (Andersen et al., 2022) has different storm
catalogues for different durations. Furthermore, CON-SST-RAIN is gen-
erated for a total period of 42 years, whereas RainyDay is generated
statistically as 1000-year series. For CON-SST-RAIN, this leads to a
larger variability as function of return period (as seen at the 10-year
return period in Fig. 9). As documented in Andersen et al. (2022)
and Wright et al. (2017) RainyDay tends to underestimate intensities
at short durations. Therefore, along with the conclusions of point scale
IDF (Fig. 8), we consider CON-SST-RAIN to provide more realistically
extreme areal statistics than RainyDay (Andersen et al., 2022).

4.5. Spatial correlation

Besides comparing extreme event statistics at point and aggregated
catchment scales, it is also relevant to examine how well CON-SST-
RAIN preserves the spatial variability of rainfall within the catchment.
We do this by calculating the spatial correlation of daily rainfall accu-
mulations as a function of distance and compare to the average spatial
correlation from observed rain gauge data. Fig. 10 shows the spatial
correlation (Pearson’s r) for both observed data (all gauges shown in
Fig. 1) and spatio-temporal rainfall generated by CON-SST-RAIN for
days with more and less than 3 mm rain, respectively. The continuous
data refers to correlations estimated, including points/pixels with zero-
value data, and the groups marked by ‘‘simultaneous’’ include only
positive data pairs.

For days with more than 3 mm rainfall CON-SST-RAIN shows com-
parable results to the observed gauge data with only a slightly higher
daily spatial correlation as function of distance. The difference can be
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Fig. 10. Daily spatial correlation for observed rain gauge data (blue line) and CON-SST-RAIN (purple line, shaded area indicates 95% confidences interval of the 100 CON-SST-RAIN
realizations). Blue dots indicates Persons correlations (4) values for each gauge-pair that is fitted to Eq. (5). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

sought in data quantity, but also the scale difference between point and
radar pixel.

A more significant difference between observed and CON-SST-RAIN
is noticed for the sub-3 mm values of spatial correlation, where CON-
SST-RAIN in this case shows less spatial correlation than the rain
gauge dataset. We speculate that the differences in data quantity or the
sampling and processing of the radar data can cause this discrepancy.
Proportionally the radar dataset contains fewer days with low rainfall
intensities than the rain gauge dataset due to the implementation
threshold criteria for valid bias adjustment. Furthermore, in the data
processing, it can be difficult to distinguish between very low intensity
and different kind of noise and clutter (that the overall filtering did
not catch). By applying a drizzle threshold we try to eliminate as much
of this noise as possible, but it appears that some is still present, by
the underestimation of spatial correlation for low intensity rainfall. The
rapid descending spatial correlation indicates a more random rainfall
field which can be explained by common radar noise.

The difference between the continuous and simultaneous, above
3 mm values, is most likely a product of our assumption that the given
Markov Chain is valid for the entire area. The stochastic transposition
does not take into account that some of the precipitation sites might
be dry. A naive approach of using day-to-day sequences of wet/dry
states from all the short-term gauges as a replacement of stochastic
sequence modelling with Markov Chain, instead of the entire CON-SST-
RAIN framework, was tested (but not presented in this study). The days
with rain are still simulated using the SST approach however, areas
with zero rainfall, from the derived sequence, are forced to zero values.
This approach does improve the spatial correlation however, without
applying the generated rainfall to any kind of model the consequence
of this approach can be difficult to determine.

5. Conclusion

This study presents a novel framework CON-SST-RAIN: a stochastic
rainfall generator specialized for generating continuous space–time
series for urban drainage design and planning. CON-SST-RAIN is based
on Markov Chains for day-to-day sequences of dry/wet days, and sub-
stitutes stochastically transposed storms from spatiotemporal weather
radar data on wet days. We present a method of stochastically updating
Markov chains for passing years to incorporate low-frequency variation
of inter-annual rainfall values better. CON-SST-RAIN is tested against
multi-year records of rain gauges both at point and catchment scale. We
show that, for the most part updating the Markov Chains by each pass-
ing year has negligible effects on mean annual/seasonal precipitation
and dry/wet spell durations. However, updating the Markov chains by
each passing year improves the inter-annual rainfall variation.

Extreme rain rates are well preserved in CON-SST-RAIN compared
to observed gauge data and to the original SST framework (Rainy-
Day, Andersen et al. (2022)) at both point and catchment scales. We
observe a better representation of sub-hourly extremes when using
CON-SST-RAIN compared to RainyDay. There are, however, still some
underestimation of short-duration extreme intensities comparing CON-
SST-RAIN and RainyDay outputs to rain gauge observations. This, is
not necessarily an error in the proposed framework, but related to
differences in scaling comparing point and pixel values as well as an
artifact of daily mean field bias adjustment of radar data. An added
benefit of CON-SST-RAIN over RainyDay is that all storm durations can
be represented by daily values and do not need to be subdivided into
duration-specific storm catalogs.

The spatial structure of the rainfall fields generated by CON-SST-
RAIN closely resembles the spatial structure observed by rain gauges
at a daily time scale. Low intensity rainfall is, however, less precisely
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represented in comparison with rain gauge data. This shown difference
might be caused by problems in the stochastic sampling of radar data
or the assumption of a single Markov chain being valid for the entire
area of interest. On the other hand, the differences might also be
caused by the fact that we are comparing two different datasets with
different quantities and scales and, therefore, should not expect to have
completely aligned values comparing point gauge data with gridded
radar data.

Overall, the suggested approach holds promising potential for pro-
ducing stochastic rainfall inputs for hydrological models that require
consideration of spatiotemporal rainfall variability to accurately simu-
late the hydrological response. The ability to generate ensembles can
be used to investigate uncertainties in the hydrological response due to
rainfall variability. Furthermore, in areas with no or short radar rainfall
series available (or other high-resolution space–time rain input), CON-
SST-RAIN can provide an alternative input to hydrological long-term
simulation modelling. By adjusting target parameters, the stochastic
framework can be applicable to climatological regions beyond the
area from which the data is originally observed or adapted to be
representative of future climate scenarios. The latter has been proposed
by Thorndahl et al. (2017a), Sørup et al. (2017, 2018), Thorndahl and
Andersen (2021) for point time series, but will most certainly also be
a future development for spatiotemporal rainfall series as an extension
of this study.
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