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A B S T R A C T

The ongoing digitalisation of the district heating sector, particularly the installation of smart heat meters
(SHMs), is generating data with unprecedented extent and temporal resolution. This data offers potential
insights into heat energy use at a large scale, supporting policymakers and district heating utility com-
panies in transforming the building sector. Clustering is crucial for representing this wealth of data in
human-understandable groups, necessitating consideration of seasonality.

Advancing current research in clustering SHM data, this work applies an established co-clustering
approach, FunLBM, considering seasonal variation without fixed season definitions. Furthermore, to enhance
the understanding of differentiating factors between clusters, the possibility to understand cluster memberships
based on 26 building characteristics was analysed using classification and variable selection methods.

Applying FunLBM on a large-scale hourly dataset from single-family houses revealed six well-separated
energy use clusters each distributed over six-temporal clusters, which are correlated with the exterior
temperature, yet not following fixed seasons. Variable selection and classification showed that building
characteristics describing the building with a high level of detail are insufficient to explain cluster membership
(Matthew’s correlation coefficient (MCC) ≈0.3).

By merging the energy use clusters based on profile and magnitude similarities, classification performance
significantly improved (MCC ≈0.5). In both cases, simple and readily available building characteristics yield
similar insights to detailed ones, emphasising their cost-effectiveness and practicality.
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Nomenclature

BBR Danish Building and Dwelling Register
BCs Building Characteristics
CV Cross-Validation
DH District Heating
DHW Domestic Hot Water
EPC Energy Performance Certificate
EU European Union
FunLBM Functional Latent Block Model
GCV Generalised Cross-Validation
GMM Gaussian Mixture Model
GVIF Generalised Variance Inflation Factor
ICL Integrated Information Likelihood Criterion
MCC Correlation Coefficient
MLRGL Multinomial Logistic Regression fitted using

Group Least Absolute Shrinkage and
Selection Operator (Group Lasso)

OOB error Out-Of-Bag error
RF Random Forest
SEM Smart Electricity Meter
SHM Smart Heat Meter
SH Space Heating
VIF Variance Inflation Factor
VSURF Variable Selection Using Random Forests

1. Introduction

In light of recent geopolitical changes and the resulting need to
reduce the European Union’s (EU) dependence on natural gas, District
Heating (DH) has come to the fore in some EU countries [1–3]. DH
can not only play an essential role in reducing the dependency on
natural gas, but also in the needed future reduction of CO2 emissions
if renewable and residual energy sources (waste and biomass) are
implemented [4]. However, to facilitate the required share of 100%
renewable energy, existing DH networks must undergo severe changes
to become low-temperature 4th generation DH networks [4]. Yet, to
enable such a transformation, the building stock must also transform,
as such networks must interact with low energy buildings [4], with a
low return temperature as the return temperature of buildings directly
influences the production efficiency and, consequently, the network ef-
ficiency. Networks relying on renewables and waste heat have thereby
a 6 to 7 times higher supply temperature cost gradient (cost per
MWh∕°C) compared to traditional networks [5]. However, nowadays,
nearly 75% of the EU’s building stock is energy inefficient [6]. In most
EU countries, half of the residential buildings were built before the first
thermal regulations (in 1970), while the renovation rate remains at low
1% to 2% per year [7], highlighting the challenges the building sector
must face to enable a fully decarbonised building stock by 2050 [6].
In-depth knowledge of the building stock is essential for facilitating its
transformation. This knowledge also empowers DH utility companies to
gain insights into both connected and prospective buildings/customers
on a smaller scale, thereby facilitating the development and operation
of efficient DH networks.

In ten EU countries, more than 20% of the residential sector’s
heating demand is covered by DH, with five countries having a share
of more than 50% [8]. At the same time, since the end of 2020, newly
installed heat meters must be Smart Heat Meters (SHMs) (remotely
readable meters), and from 2027 also previously installed heat meters
must be remotely readable [9]. This already nowadays available data
from SHMs opens the door for new data-driven methods to transform
both DH networks and the building stock.

1.1. State-of-the-art

Considering the need to gain more insight into the heat energy use
of buildings and the vast amount of data collected by SHMs, clustering
is an essential step to represent the available information in human
understandable representative groups. Clustering of SEM (like) data has
been investigated for several purposes: to identify typical consumption
patterns [10–15] and relate them to building and occupant character-
istics [16,17], to analyse peak consumption, to evaluate the potential
of peak load shifting [18], to identify abnormal operation [19].

Ma et al. [10] applied Partitioning Around Medoids clustering using
a dissimilarity measure based on the Pearson correlation coefficient to
cluster daily profiles from three years of hourly Space Heating (SH)
energy usage data from 19 educational buildings in Norway. As they
treated each daily profile individually, one building had profiles from
multiple clusters. Similarly, Gianniou et al. [17] employed k-means
clustering with KSC-distance to derive daily clusters from hourly data
of approximately 8300 single-family households in Denmark, spanning
varying durations (up to 81 months). They too considered each day in-
dependently, but analysed the temporal distribution of individual daily
clusters, observing the anticipated seasonal variations in consumption
densities alongside some deviations. Lumbreras et al. [20] utilised two
clustering methodologies: DBSCAN to identify energy usage outliers
based on the relationship with the outdoor temperature, followed by
k-means with Euclidean distance to categorise daily profiles. They ap-
plied this approach to one year of hourly SEM data from an apartment
building in Estonia. Their analysis also revealed that daily clusters
predominantly varied in accordance with seasonal patterns.

Calikus et al. [19] implemented k-shape clustering of z-score nor-
malised hourly SHM data from 1222 non-single-family buildings in
Sweden to identify demand clusters and unusual consumers (demand
profiles divergent from any recognised cluster), using four predeter-
mined seasons based on calendar dates. Similarly utilising four fixed
calendar date-based seasons, Johra et al. [15] utilised k-means cluster-
ing with Euclidean distance to derive daily profiles for approximately
1000 buildings in Denmark. Notably, they not only derived profiles
for energy use but also for return temperature and the difference
between supply and return temperature. Utilising three predefined sea-
sons, Yang et al. [18] employed hierarchical agglomerative clustering
with Ward’s minimum variance method and Euclidean distance within
their framework to assess peak load shifting potential, applied to z-score
normalised hourly data from 61 municipality buildings in Denmark.

Lu et al. [14] employed Gaussian Mixture Model (GMM) based
clustering as the initial step within a framework to predict heat load
patterns, with the aim to the identify temperature and occupancy-
related patterns within the data. They demonstrated their approach
using four months (equating to one heating season) of hourly data
collected from six commercial buildings in China. Tureczek et al. [12]
investigated various data transformation methods, feature extractions,
and wavelet transformations to incorporate autocorrelation information
when employing k-means clustering. They utilised one month of hourly
data from 49 DH network substations, illustrating that autocorrelation
features resulted in more distinguishable clusters, with both auto-
correlation features and wavelet transformation notably reducing the
upper bound runtime. Wang et al. [11] utilised GMM clustering to
group nearly one year of hourly data from 480 buildings in Sweden
with diverse usage patterns, leveraging three distinct feature types.
Each feature type enabled the identification of users or patterns with
different focal points, such as users contributing to the DH network
peak load, long-term variations, and usage patterns independent of
outdoor temperature.

Le Ray and Pinson [13], acknowledging the continuous stream-
like nature of SHM data, proposed an adaptive clustering algorithm
based on online k-means clustering utilising a dynamic time warping-
based distance. They demonstrated this methodology using one month
of hourly SHM data from 97 buildings in Denmark. Seasonality was
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Table 1
Overview of existing studies clustering SHM (like) data, and their approach in handling seasonal variation.

Clustering algorithm Buildings Handling of seasonality Ref.

Partitioning Around Medoids 19 educational Daily profile were treated individually [10]
k-means ≈8300 single-family Daily profile were treated individually and temporal distribution

was analysed
[17]

k-means 1 apartment building Daily profile were treated individually and temporal distribution
was analysed

[20]

k-shape ≈1200 non-single-family Four date based seasons [19]
k-means ≈1000 single-family Four date based seasons [15]
hierarchical agglomerative 61 municipalities Three date based seasons [18]
GMM 6 commercial Not considered [14]
k-means 6 commercial Not considered [12]
k-means 480 diverse use Not considered [11]
based on k-means online 97 buildings Smoothing coefficient controlling the transfer of information from

one time step to the next
[13]

k-means 139 residential Two clustering steps, first clustering season than buildings [16]

addressed through a smoothing coefficient controlling the transfer of
information from one time step to the next, with the assumption that
similar usage patterns grouped in clusters would exhibit consistent
dynamics over time. Noteworthy is the research conducted by do
Carmo and Christensen [16], aiming to achieve independence from
fixed seasons. They initially clustered the daily profiles of each building
into three groups (high, medium, low), representing different seasonal
characteristics, before clustering these groups across all buildings. Em-
ploying this approach with k-means clustering on the SH and Domestic
Hot Water (DHW) energy usage of 139 Danish dwellings equipped with
heat pumps, they revealed that the seasonal groups did not precisely
align with expected seasonal patterns.

From the existing works, an overview is presented in Table 1, it
can be concluded that the clustering of SHM data to establish daily
profiles has been extensively studied; however, certain limitations per-
sist. With the exception of do Carmo and Christensen [16], existing
approaches either do not account for seasonal variations, rely on fixed
season definitions derived from calendar dates, or treat daily profiles
separately. These limitations make the interpretation of results on
a large scale challenging and overlook the seasonal variation as a
feature in the clustering process. Furthermore, as traditional seasonal
patterns shift and dissolve in the face of climate change [21–23], the
manual, predefined definition of seasons becomes more difficult and
less reliable, emphasising the necessity of considering seasonal effects
without relying on predefined definitions.

Secondly, the utilisation of clusters to gain insights into the heat
energy use of the building stock requires the understanding of the
differentiating factors. In this context, the aforementioned study by Gi-
anniou et al. [17] incorporated two Building Characteristics (BCs):
building area and age, along with the number of registered adults,
the number of teenagers, and the number children. These factors were
analysed using logit regression models constructed for each of the five
daily energy use clusters, assessing the belonging of a building to a
particular cluster. The findings indicated the significance of building
area, age, and the number of teenagers. Moreover, it was suggested that
additional building characteristics, particularly socioeconomic factors
such as income and job type, should be investigated further. Simi-
larly, the previously mentioned work by do Carmo and Christensen
[16] employed logistic regression to examine the influence of building
and socioeconomic parameters on the two identified heat energy use
clusters. Their analysis encompassed eleven BCs and four household
characteristics, revealing the significance of BCs such as building area,
age, and the SH distribution system for medium and low energy use
seasons. However, it was noted that the limited availability of house-
hold and building characteristics constrained the generalisation of their
analysis.

From this, it can be said that in-depth analyses of, at large-scale,
available BCs in relation to obtained clusters to gain more insight into,
e.g., the cause for different energy use patterns, have been limited in
terms of number of studied BCs [16,17]. Thus, it remains unknown if

more or other BCs, than the studied ones, would give more insight into,
e.g., the cause for different energy use patterns or which BCs are overall
important.

Finally, it is anticipated that inspiration can also be drawn from
the well-established field of SEM research, as summarised in Wang
et al. [24], and more specifically for electricity use profiles in Kang
et al. [25]. Nonetheless, differences exist between SEM and SHM data.
The most notable distinctions include the higher reporting frequency
of SEMs, typically 15min or less for most EU countries [26], compared
to the commonly reported 1 h intervals for SHMs. Additionally, SHM
data are frequently rounded down to integer kWh values [27,28],
meaning that, for example, any value between 1.0 kWh and 1.9 kWh is
transmitted as 1.0 kWh. For characteristics influencing daily profiles it is
expected that the different driving factors (assuming electricity is solely
used for appliances) reduce the applicability of SEM data research to
SHM data.

1.2. Contribution

This work establishes a novel workflow to overcome the in Sec-
tion 1.1 highlighted limitations in the area of clustering SHM data and
understanding the differentiating factors for these clusters. First, repre-
sentative daily heat energy use curves without fixed season definitions
are derived. Thereafter, the derived energy use clusters are analysed in
relation to both high-level BCs and BCs describing a building at a high
level of detail. Thereby, the aim is to identify the most important/useful
BCs and secondly to understand the difference in buildings between
clusters based on the identified BCs. The focus is set on communicating
the differences between the energy use clusters in a way that allows
for layman level communication of the findings to decision-makers and
non-experts. Furthermore, it is analysed if not yet to the DH network-
connected buildings can be classified into the established clusters based
on the selected most important BCs. The suitability of the whole process
is demonstrated on a large-scale dataset of two years of hourly data
from 4798 SHMs installed in single-family houses in Aalborg Munic-
ipality, Denmark. This analysis aims to gain more knowledge of the
demand side in the DH networks and connected buildings. The derived
significant BCs can guide stakeholders such as DH utility companies
or public entities in collecting such data if such information is yet
unavailable. The contributions can be summarised as:

• Clustering of smart heat meter data taking into account seasonal-
ity without relying on fixed season definitions.

• Analysis of heat energy use clusters in relation to building char-
acteristics at an unprecedented scale and level of detail.

• Identifying which building characteristics are useful to explain the
difference between the heat energy use clusters.

• Evaluating whether classification can be used to predict building
energy use clusters based on building characteristics.
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Fig. 1. Overview of the proposed method.

The paper is organised as follows: Section 2 describes each step of
the proposed method in detail, before in Section 3 the used SHM data
and BCs are outlined. In Section 4, the results of the case study are
presented before the results are discussed, and conclusions are drawn
in Section 5.

2. Method

For better clarity, each step is outlined separately. First, for the
energy use clustering and after that for the variable selection and
classification before the analysis of cluster characteristics. An overview
of the proposed method is given in Fig. 1.

2.1. Energy use clustering

The first step intents to derive representative energy use curves from
the SHM data. The task of deriving representative energy use curves
can generally be seen as time-series clustering, of which exhaustive
overviews are given in Warren Liao [29] and Aghabozorgi et al. [30],
and for functional data in Zhang and Parnell [31]. As mentioned in
Section 1.1, most studies related to clustering SHM data to establish
daily load profiles rely either on fixed season definitions by date or
do not account for seasonal variation and only the work by do Carmo
and Christensen [16] has considered it by performing two consecutive
clustering steps. In the domain of clustering SEM data Bouveyron et al.
[32] has identified this problem of clustering the customer’s electricity
use while considering the season variation as a co-clustering problem
of individuals (customers) and a feature (time). While mainly focused
on the mathematical development of their method (a functional latent
block model), they could demonstrate the applicability of their method
by clustering the residuals of a regression of the energy use against
the outdoor temperature, from about two years of half-hourly SEM
data from 1481 households in France. Following the same principle
idea, Divina et al. [33] developed a different co-clustering approach
(Sequential Multi-Objective Bi-clustering) to identify groups of build-
ings that behave similarly during a time period, which they applied to
15min resolution electricity data of five university buildings in Spain.

2.1.1. Used co-clustering method
This work aims to establish representative daily energy use profiles

without relying on a fixed season definition. While the approach of do
Carmo and Christensen [16] is appealing because it allows using any
clustering algorithm, it has the drawback that the information about the
season length for each building is lost, i.e., if buildings have a similar
energy use profile for each energy use level (low, medium, high) but the
length of each energy use level differs significantly this information is
lost. Consequently, the co-clustering approach developed by Bouveyron
et al. [32] and implemented in the R [34] package FunLBM [35] is
used for this work. It was chosen over the one by Divina et al. [33]
due to the available implementation. This approach, as mentioned,
allows to cluster customers (the individual buildings) while taking the

days of observation, the seasonality, as a feature into account. The
approach assumes that the data can be summarised in a few exhaustive
co-cluster. Hence, it is assumed that all data belongs to any of the found
cluster. The obtained clusters follow a checkerboard like structure,
i.e. the season pattern is identical for all energy use clusters. From a
mathematical perspective, the algorithm is an extension of the latent
block model [36] to functional data using a model-based approach,
which assumes that functional principal components of the curves are
block specific. From this also, the name FunLBM (Functional Latent
Block Model) is derived, which is used from here on. For a more
detailed explanation of the algorithm, the interested reader is referred
to Bouveyron et al. [32]. To select the most suitable model, so the
optimal number of both customer and time cluster, the Integrated infor-
mation Likelihood Criterion (ICL) (also referred to as Integrated Completed
Likelihood, or Integrated Classification Likelihood) was used, whereby
the highest ICL value indicates the most suitable model [32]. Thus, a
grid search must be performed to find the optimal number of cluster.
FunLBM transforms the discrete energy use data into functional data
using basis expansions based on Fourier or Spline basis. Given the
expected periodic nature of the data, as in Bouveyron et al. [32], and as
recommended by Ramsay and Silverman [37], Fourier basis functions
are seen as a more appropriate choice for SHM data. The number of
basis functions, which the user must supply to FunLBM, influences the
degree of smoothing and thus the resulting cluster. The number of basis
functions is a problem of bias/variance trade-off (excluding random or
ignorable variation in the data while keeping important one), and one
common approach to solve this is to use Generalised Cross-Validation
(GCV) [37] as a criterion. This approach was also chosen for this work.
The overall outcome of this step are representative mean energy use
curves and co-cluster.

2.2. Variable selection and classification

The aim of this second step is to understand why buildings fall into
their respective energy use cluster and to classify yet not to the DH
network connected buildings based on their BCs into energy clusters.
Based on the current research (Section 1.1), two key research gaps
were identified. The first is that, until now, only limited BCs have been
used which limits the general validity of the found significant BCs as
a parameter can become insignificant if other (better) information is
available to the model. However, at the same time it is expected that
if many BCs are available, at least some are redundant. Thus, variable
selection to minimise noise and obtain the simplest model possible [38]
is seen as a necessary step. In addition, a reduction in the number of
BCs required for the model can also be seen as a reduction in costs,
as the collection of additional and more detailed BCs is associated
with considerable costs if it is to be done at the city or country level.
Consequently, a simpler model can also be seen as easier and cheaper
to implement, and thus more applicable for ‘‘real world’’ applications.
The second gap is that the potential of multiclass classification has not
been explored, i.e., can a building based on BCs be classified into one
of the found energy use clusters.
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2.2.1. Used classification and variable selection methods
The first approach used to address both aims is a Multinomial Logis-

tic Regression fitted using group least absolute shrinkage and selection
operator (Group Lasso) [39] (MLRGL). This can be seen as an extension
of the current research, which used logistic or logit regression. Lasso in
general is an established regularisation and feature selection approach
which was also applied in recent research in the context of sensitivity
analysis in the building sector to identify significant parameters [40–
42]. The benefit of group lasso [43] is that it allows grouping variables
together, which is beneficial for e.g. categorical variables, which have
to be encoded with dummy variables, as it prevents that one level of a
categorical variable while another level is not included. As categorical
BCs are not expected to have many levels, sparse grouped lasso [44],
which allows to group predictors but also that predictors within a group
are not included, was not considered. As MLRGL requires to select the
penalty coefficient lambda (𝜆), nested Cross-Validation (CV) with five
outer and ten inner folds is used for model selection and assessment.
For the assessment, the Matthews Correlation Coefficient (MCC) is used,
which was shown to be superior over e.g. the accuracy, particularly
for unbalanced classes [45,46]. The MCC can be interpreted analogue
to the Pearson correlation coefficient, ranging from −1 to 1, with 1
being perfect agreement and −1 total disagreement. BCs are scaled as
recommended by Gelman [47], by subtracting the mean and dividing
by two standard deviations for continuous BCs and centering binary
BCs. For this work the MLRGL as implemented in the R package msgl
package [48] was used.

The second used approach is variable selection based on Random
Forests (RFs), proposed by Genuer et al. [49] and implemented in the
R package VSURF (Variable Selection Using Random Forests) [50,51]
(this name will be also used in the remainder of this paper to refer
to this method). VSURF is a two step procedure which is subsequently
simplified outlined (for a detailed explanation, the interested reader is
referred to the aforementioned references):

1. threshold: In this step variables are ranked based on their permu-
tation-based importance and variables with small importance are
excluded.

2. The second step consists of two sub-steps:

• interpretation: a nested collection of RF models is con-
structed, starting with one that includes only the most
important variable (based on the threshold step) to one that
includes all variables retained from the first step and the
most accurate is kept based on the Out-Of-Bag (OOB) error.

• prediction: The, by importance sorted, variables (based on
the interpretation step) are sequentially added under the
restriction that the variable must decreases the OOB er-
ror significantly. The variables of the last model, i.e, the
model, where introducing the next variable does not de-
crease the OOB error significantly.

VSURF was shown to identify a smaller subset of important vari-
ables compared to lasso [52] and to be the generally best performing
RF variable selection technique for classification [53]. To reduce the
risk of bias, VSURF is used within outer five-fold CV. It is to be noted
that the MCC could not be easily implemented within VSURF and
consequently the OOB error is used as a criterion within the variable
selection procedure, while the MCC is used to evaluate the performance
on the test data. As VSURF does not perform any hyperparameter
optimisation based on the chosen BCs, a RF model is constructed and
its hyperparameters are tuned using the automated tuning strategy
tuneRanger [54] with MCC as the optimisation criterion and within an
outer five-fold CV. The term VSURF + optimised RF is used to refer to
this approach from here on.

2.3. Analysis of cluster characteristics

From the above derived models MLRGL and VSURF + optimised
RF, it is not necessarily straightforward to understand why buildings
fall into their respective clusters. One could for example analyse the
coefficients of MLRGL. However, this requires statistical knowledge and
experience, which might not be available at, e.g., DH utility companies.
Thus a more graphical visualisation is preferred in this work. For the
results of MLRGL, a nomogram as proposed by Zhang and Kattan [55]
could be used.

For VSURF + optimised RF, respectively the optimised RF only
(as VSURF is only used for variable selection), one can visualise the
individual decision trees of the RF, which are well-known to be suitable
for visual data analysis [56–58]. As the RF in its used implementation
cannot be directly visualised, it was decided to build a separate decision
tree for visualisation. As the purpose this step is not generalised predic-
tion no splitting into training and test data is performed and over fitting
to the data at hand is deliberately taken into account. Decision trees,
as implemented in the R package rpart [59] in combination with the
dedicated visualisation package rpart.plot [60] were used.

3. Data description

The data used in this work is a subset of the extensive dataset of
smart meter data, and BCs described in and published by Schaffer et al.
[28]. This dataset consists of processed hourly data from about 35 000
SHMs and 11 000 smart water meters installed mainly in residential
buildings in Aalborg Municipality, Denmark, with varying lengths and,
where available, accompanying BCs. This dataset has been used re-
cently by Schaffer et al. [61] who developed a method to disaggregate
to the total energy into SH and DHW. For this work, only SHM data
of single-family houses for which data are available for 2020 and 2021
were selected from this dataset. Further, only buildings/SHMs where
all accompanying BCs are available were considered. Based on this,
SHM data of 4798 single-family houses with a total of about 8.418 × 107

hours were selected. It is to be noted that the BCs originating from the
Energy Performance Certificates (EPCs) reports were recomputed using
the in Schaffer et al. [28] described procedure with the change that the
validity period was set to 2020 and 2021 only, which allowed retrieving
more valid data. In the following, a short overview of the data is given.
A more extensive description is given in Schaffer et al. [28].

For this work, only the energy use data from SHM is considered. The
energy use data is the hourly aggregated energy use for SH and DHW.
The energy use data is transmitted as cumulative kilowatt-hour values,
which are rounded down to the next integer, which is the common
resolution for such data [28]. To mitigate this problem not the original
data but the energy use data processed by the by Schaffer et al. [62]
developed approach called SPMS is used, which is also available in
the dataset. SPMS uses a moving average smoothing combined with
a ruleset and scaling approach. Thereby, SPMS obeys the cumulative
trend of the data on a daily basis, i.e., every day accumulates to the
same amount as the unprocessed data. The data obtained from the
dataset was normalised by the buildings total area to accommodate the
well known influence of the building size on the heat energy use while
still allowing to incorporate the energy use intensity. In the remainder
of the paper, the term energy use always refers to the with SPMS
processed and by the area normalised energy use data. Fig. 2 shows
an overview of the daily energy use of all 4798 buildings, grouped per
week.

For each of the selected buildings, BCs from two sources in Denmark
are available. The first source is the Danish Building and Dwelling Reg-
ister (BBR) [63], which is a publicly accessible database which the Dan-
ish Customs and Tax Administration operates. It contains statistical/
high-level information about every Building in Denmark to a unit level,
i.e., an apartment for a multifamily house or the whole house for a
single-family house, and the building owner must provide some of the
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Fig. 2. Distribution of daily energy use of all 4798 buildings, grouped per week. To ease the visualisation data outside the range 𝑄1 − 1.5 × 𝐼𝑄𝑅 to 𝑄3 + 1.5 × 𝐼𝑄𝑅, where 𝑄1 and
𝑄3 are firsts and third quartile and 𝐼𝑄𝑅 is the interquartile range are not shown.

information. The information in the dataset originating from the BBR
includes, e.g., the unit size, the number of rooms and the unit use.
The second source from which data is available is the input data for
EPCs. This data is not fully publicly available and contains detailed
information about a building down to a component level, e.g., u-value,
total solar transmittance, orientation, and size of a window. In Schaffer
et al. [28], the data was summarised from this component level, so
every building has the same features. For the remainder of the paper
the BCs originating from the BBR and the EPCs are always analysed
once separately and once combined. Thus, three different situations are
considered:

• BBR only
• EPC only
• BBR + EPC

3.1. Building characteristic data treatment

In total, 86 BCs are available in the dataset developed by Schaffer
et al. [28]. As for the selected 4798 single-family houses, the BBR data
unit level is identical to the building level. Thus, the first step of the pro-
cessing was to select only non-redundant variables, whereby unit-level
variables were preferred over building-level variables. Consequently,
seven BBR-based BCs were dropped. In the second processing step, only
BCs were kept if they clearly varied within the selected buildings. After
this step only one building had one missing BC (rent status), which was
imputed with the most frequent value. The last step had two aims, on
the one hand, to reduce collinearity between parameters assessed using
the Pearson correlation coefficient and, on the other hand, to simplify
BCs and incorporate possible known interaction between parameters.
Additionally, where appropriate BCs were, as the used energy use,
normalised by the total building area. An overview of all resulting
26 BCs (ten originating from the BBR data, 16 from the EPCs) is
given in Table 2. The Pearson correlation coefficient matrix of these
BCs is shown in Fig. A.17 in Appendix A. From this, it can be seen
that a correlation exists for some BCs, particularly in relation to the
representative year. Therefore, as next step an analysis of possible
multicollinearity was conducted.

Fig. 3. For the degrees of freedom of the coefficients adjusted GVIF of all BCs.

3.1.1. Analysis of multicollinearity of building characteristic
As mentioned above in Section 3.1, some of the used BCs are

partially correlated (Fig. A.17). To further analyse this and identify
possible multicollinearity, the Generalised Variance Inflation Factor
(GVIF) [64], an extension of the Variance Inflation Factor (VIF) for cat-
egorical variables was used. Further, as suggested by Fox and Monette
[64], to make the GVIF comparable across dimensions, the degrees of
freedom of the coefficients were taken into account: 𝐺𝑉 𝐼𝐹 (1∕(2×𝐷𝐹 )).
Additionally, to make the result comparable with the VIF, the result
was squared:

(

𝐺𝑉 𝐼𝐹 (1∕(2×𝐷𝐹 )))2. Fig. 3 shows the result of this analysis
considering all BCs. Given that no value exceeds five a commonly used
rule of thumb, each BC is assessed to be not multicollinear with the
remaining BCs.

4. Results

4.1. Co-clustering

The first step in the co-clustering process is to determine the optimal
number of basis functions as a variance-bias trade-off based on the GCV.
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Table 2
Used BCs based on the database described in Schaffer et al. [28]. If the levels of categorical BCs were changed the new levels are highlighted
in italic while the original ones as stated in Schaffer et al. [28] are written in parentheses.

BC name BC description
Co

m
bi

ne
d

BB
R

developed_area_ratio Developed area divided by the total building area
ext_wall_mat_code Exterior wall cladding material simplified to five levels: brick(0), concrete(2,3,6),

wood(4,5), others
no_bathroom Number of bathrooms
no_floor Number of floors
no_room Number of rooms
no_toilet Number of toilets
renovation_code Binary variable indicating if the building was renovated (TRUE) or not (FALSE)
rent_status_code Indicating if the building is rented (rented) or used by the owner (self_use) or not

used (not_used)
representative_year If the building was renovated the renovation year, otherwise the construction year
roof_mat_code Roof material cladding summarised to seven levels: not_stated(0), built_up(1),

roofing_felt(2), fiber_cement(3,10), cement_tile(4), tile(5), metal(6), others

EP
C

dhw_average_consumption Total Domestic hot water demand - building area normalised
dhw_pipes Total heat losses through DHW pipes - building area normalised
dhw_tank_heat_loss Total heat losses from domestic hot water tanks - area normalised
has_heat_pump_code Binary variable indicating if a building has a heat pump (TRUE) or not ( FALSE)
heat_capacity Simplified heat capacity of the building per unit gross area
heating_pipes Total heat losses through heating pipes - building area normalised
heating_temp_diff Calculate temperature difference between supply and return temperature of the heat

distribution system
skylight_solar Total pseudo solar factor of skylights - building area normalised
thermal_bridge_total Total heat losses through thermal bridges - building area normalised
total_transmission Total heat losses through opaque and transparent building envelope - building area

normalised
vent_mech_winter Total equivalent mechanical ventilation in winter - building area normalised
vent_nat_winter Total equivalent natural ventilation in winter - building area normalised
window_solar_east Total pseudo solar factor of windows facing east - building area normalised
window_solar_north Total pseudo solar factor of windows facing north - building area normalised
window_solar_south Total pseudo solar factor of windows facing south - building area normalised
window_solar_west Total pseudo solar factor of windows facing west - building area normalised

Fig. 4. Generalised cross-validation for different number of Fourier basis functions.

The results (Fig. 4) show that seven basis functions give the lowest GCV
with an apparent decrease in GCV compared to 5 basis functions. This
is therefore considered to be the optimal choice for transforming the
discrete energy use data into functional data.

As the next step, the optimal number of clusters had to be deter-
mined for energy use and time. Therefore, a grid search was performed
over 2 to 9 time clusters and 2 to 12 energy use clusters. One cluster
for time or energy use cannot be used as the algorithm requires at least
two clusters. For each combination, convergence, defined as the change
of the loglikelihood between the current and the current minus ten
iterations of smaller than 1 × 10−5, was ensured. As shown in Fig. 5, the
ICL has its maximum at six energy use and six time clusters. Thus, this
was chosen as the optimal result for all further analyses. Further, it can
be seen that this is, at the same time, the result with the most partitions
where a solution could be found without a cluster being empty, and
consequently, FunLBM failing.

Fig. 5. ICL of the different combinations of energy use and time clusters. Failed
combinations are due to at least one empty cluster.

As the second step of the clustering results analyses, the six time
clusters were analysed to understand how they relate to known seasonal
variations of the exterior conditions. As the naming of the clusters is
arbitrary, the cluster names were chosen to represent the season pattern
to ease the understanding. In Fig. 6a, the distribution of the time
clusters is shown. Considering only the time clusters, a principle pattern
is visible. T1 and T2 seem to be clusters of the winter season, T3 and T4
and partly T5 of the transitional season, and T6 is clearly in the summer
season, but a clear reason for this distinction is missing. However,
considering the daily exterior temperature of the closest public weather
stations for the two years (Fig. 6b), a clear correlation between the
external temperature and the time clusters becomes evident. A clear
example of this correlation can be seen when comparing January 2020
and 2021. January 2021 was considerably colder than January 2020
and is thus, in another time cluster. However, one can see that the
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Fig. 6. (a) Distribution of time clusters for the selected two years. (b) Daily mean exterior temperature at the SHM location (c) daily mean exterior temperature per time cluster.

few warmer days in January 2021, which have a similar mean exterior
temperature to January 2020, are assigned to the same time cluster
as January 2020. Thus, the results capture variations of even a single
day well. The mean temperature per cluster was computed to confirm
further this correlation between daily mean exterior temperatures and
time clusters (Fig. 6c). From this, it is visible that most clusters have
a distinct mean exterior temperature and that the temperature change
between clusters is not uniform. However, for some clusters e.g., T3
and T4 the difference in median daily external temperature is small,
indicating that exterior temperature alone does not sharply separate the
time clusters. Further analyses against the mean global radiation (not
shown), which is also correlated to the external temperature (Pearson
correlation coefficient = 0.567), revealed no additional information.
It was further analysed if restrictions due to COVID-19 had sufficient
influence to lead to different seasonal clusters. Comparing, e.g., the last

week of January 2021, where measures such as strongly recommended
working from home were in place [65], to December 2021, where no
restrictions were imposed, no apparent difference can be seen. Thus,
it seems that restrictions due to COVID-19 had not an influence which
would ‘‘break’’ the seasonal pattern. Nevertheless, further analyses are
necessary to identify possible minor impacts. Additionally, as no social-
economic information is available for the used buildings, the job type
of the occupants is also unknown and, thus, to which degree they were
affected by COVID-19 restrictions. Overall, these results indicate that
clustering based on a fixed season definition, e.g., based on a fixed
date, does not lead to optimal clusters and thus, does not capture the
season variation of the data correctly. At the same time, the results
show the method’s capability to capture seasonal variations even on
daily granularity without relying on prior knowledge.

With the season variation analysed, as the next step, the obtained
cluster mean curves for the different energy clusters were analysed.
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Fig. 7. Average energy use curves as estimated by FunLBM.

Fig. 7 shows the average energy use curves as estimated by FunLBM
for the six energy use clusters and their seasonal variation sorted based
on the mean daily external temperature of the time clusters. As for the
time clusters, the naming of the clusters was chosen to ease any further
analysis. First, the seasonal trend in energy use is visible, and as ex-
pected, the energy use decreases with increasing external temperature.
Between the energy use clusters (E1–E6), clear differences in magnitude
and shape but also similarities are visible. Overall, for all clusters, two
peaks, one larger one in the morning around 8am and one smaller
one in the afternoon around 8pm, are visible. Clusters E5 and E6 have
different profiles compared to the remaining four clusters (E1–E4), with
a more pronounced peak with a different shape in the morning. The
four other clusters (E1–E4) mainly differentiate in the magnitude of
the energy use. For time cluster T6, the energy use clusters show little
to no variation, and the clearly visible peaks in the colder periods seem
to diminish. Assuming that DHW mainly causes the peaks, one can
explain this by the fact that in this period (mainly June and August), the
occupant behaviour is not as regular due to, e.g., holidays and thus, the
peaks are overall stronger evened out, when considering all buildings.
This hypothesis also agrees with the cluster sizes (Fig. 8), as E1 is
by the smallest cluster, has thus, a minor equating effect and has the
most pronounced pattern in T1. Further, recent research clearly shows
that the energy for DHW decreases when the exterior air temperature
increases, as the cold water temperature increases and additionally,
the user’s comfort temperature likely decreases, reducing the needed
energy for DHW [66–68]. Overall it can be said that the energy use

magnitude seems to be the main differentiating criteria between the
energy use clusters, with only E5 and E6 showing different patterns.

In terms of the cluster sizes (Fig. 8), it can be said that besides the
fact mentioned above, that E1 is significantly smaller than the other
clusters (about one-third in size), the energy use clusters are relatively
balanced. For the time clusters, all clusters but the summer cluster (T6)
are fairly equal in size.

4.2. Variable selection and classification

With the energy clusters established, the next step was to perform
variable selection and build the respective MLRGL and VSURF + opti-
mised RF models. Therefore, first the BCs’ variation across energy use
clusters was visually analysed. After that, the results of the two used
variable selection and classification techniques, MLRGL and VSURF +
optimised RF, are presented.

4.2.1. Distribution analysis of building characteristic
Fig. 9 shows the distribution of three selected BCs. The distributions

of the remaining BCs are provided in the supplementary material.
For the representative year (Fig. 9a), it can be seen that the most
significant difference is shown for cluster E6 followed by E5, which
both include the largest share of new or renovated buildings. These
two energy clusters also showed a different daily pattern (Fig. 7) from
the other four energy clusters. This suggests that the pattern of energy
use observed for these two clusters is more likely to be seen in new or
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Fig. 8. Cluster proportions for energy use and time clusters.

refurbished buildings. For clusters E2 to E4, only a slight variation can
be seen, with E4 including slightly more newer or renovated buildings
while E2 has more buildings from the 1950s. E1 clearly includes the
most old buildings, which corresponds well to the high energy use. For
the second shown BC, the total transmission losses (Fig. 9b), a similar
pattern as before can be seen. E6 is the most distinct cluster, and E5
shows a distribution between E2 to E4 and E6. For E1 and partly for
E2, the influence of the old buildings is visible, showing the highest
transmission losses. Between E3 and E4, hardly any difference is visible.
The trend observed for these three BCs also holds for all the other BCs.
It can therefore be said that, overall, E6 and, to a lesser extent, E5
and E1 show the most significant difference, while E2 to E4 show only
slight variation between them. For the number of bathrooms (Fig. 9c),
which were normalised for the cluster size, it is to be highlighted
that a few buildings have zero bathrooms. It is assumed that this is
due to incorrect data, but this cannot be determined with certainty,
highlighting the also in Schaffer et al. [28] mentioned uncertainty in
the BCs. E6 shows the most significant difference in distribution for the
number of bathrooms, being the only cluster with more buildings with
two than one bathroom, followed by E5, which has about equally many
buildings with one and two bathrooms. Other than that, no clear trend
can be seen.

4.2.2. Multinomial logistic regression with group lasso penalty
The MCC of the best MLRGL model on the test data of each of the

five folds of the outer CV loop (Table 3) for all three tested situations
(only BCs originating from BBR, from EPC and all BCs combined) is
low with little variation between both the outer CV and the different
sets of BCs. Consequently, including more detailed BCs does not seem
to increase the MCC significantly, which means that nearly the same
classification performance can be achieved with high-level statistical
information than with in-depth detailed information about the build-
ing. Further, the average number of BCs (excluding the intercept) with
non-zero coefficients shows that for the BCs originating from the BBR,
only one BC was included, while only a few were excluded for the other
two BC sets. The detailed breakdown of the variable selection of each
of the five-folds of the CV (Fig. B.18 in Appendix B) shows that the
variable selection between the folds shows some variation for the BCs
originating from the EPC and the combined set particularly for Fold1
while it was constant for the BCs from the BBR only. Thus indicating a
sensitivity to the used subset of data.

A normalised confusion matrix (Fig. 10) averaged over all five outer
CVs was used to analyse the performance in more detail. From this it
can be first seen that the BBR BCs differ significantly from the other
two sets. There only two clusters E3 and E6 are predicted correctly,
but therefore with a high accuracy, while none of the other clusters is
predicted correctly. The other two BCs sets (EPC and combined) show

Table 3
Mean MCC of the best MLRGL model on the test
dataset of the five fold of the outer CV loop. Mean
number of BCs (excluding the intercept) with non-zero
coefficients averaged over the five folds.

Dataset Mean Mean
MCC no. of BCs

BBR 0.258 1.0
EPC 0.308 13.8
Combined 0.308 21.6

a more even and to each other more similar pattern. For these two BCs
sets, particularly E3 and to a lesser extend E6 are less often predicted
correctly, therefore the other clusters show a more favourable pattern.
Energy use clusters E6, which also showed the most distinct distribution
(Section 4.2.1), has overall the best performance. Surprisingly E5 and
E1, which both showed some difference in the BCs compared to the
other energy use clusters, are the most difficult to predict correctly.
From this, it can be concluded that some energy use clusters seem more
directly related to specific BCs than others, where unknown parameters
have a more significant influence. Consequently, the used BCs, which
can be seen as extensive, are insufficient to correctly classify buildings
in the found energy use clusters with MLRGL.

As the last step, it was analysed how the MCC changes over the
number of included BCs. To reduce computational cost and as only
small differences between the MCC on the test data and the MCC from
the inner CV were observed, the MCC based on the inner CV was used
for this analysis. Fig. 11 shows that a simpler model can be obtained for
the EPC and the combined BCs while decreasing the MCC only minorly.
Based on this an alternative definition of the best model, as the simplest
model with an MCC higher than the best model minus one standard
deviation based on the inner CV was tested. However, the results lead
then to similar results as seen for the BBR BCs (Fig. 10), so clusters
E3 and E6 were predicted correctly more frequently while the other
clusters were predicted correct significantly less frequent. As this is
not seen as a desirable his was not further investigated. Furthermore,
additional investigations showed that if more BCs for the BBR set are
included, a similar confusion matrix as for the other two sets can be
obtained with only a minor decrease in MCC. Thus highlighting that a
more complex model is necessary for MLRGL to achieve an more even
performance across all energy use clusters.

4.2.3. VSURF and optimised random forest
First, the MCC of VSURF on test data of the five folds of the outer

CV was analysed for both sub-steps (interpretation and prediction) of
the second step (Table 4). These results show that the achieved MCC
differs only minimally from the one obtained from MLRGL and that the
difference between the two steps is only minor (particularly considering
the overall low MCC). Further focusing on the mean number of BCs
used, a significant difference is visible between the interpretation and
prediction steps. The prediction step includes significantly fewer BCs for
data originating from BBR and the combined data with only a marginal
reduction in mean MCC for the combined data while the MCC for BBR
increases even slightly. It is to be highlighted that the combined BCs
have a lower MCC for the prediction step than the BCs from the EPCs
and BBR alone, which is counterintuitive. It is assumed that this is due
to increased noise and redundant information in BCs originating from
BBR and EPCs which increases the variance. Both steps include fewer
BCs than MLRGL for BCs from EPC and the combined set. Based on
these results, it was decided to use selected BCs from the predictor step
of VSURF for further analysis.

Analysing the selected BCs of the predictor step in more detail
(Fig. 12), it can be seen that for the BBR BCs, the selection is consistent
across all five outer folds and only the representative year and the
information if the building was renovated or not is used. For the
EPC BCs, variation can be seen for the natural ventilation in winter,
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Fig. 9. Distribution of selected variables across the energy use clusters - (a) representative year, (b) transmission losses, (c) number of bathrooms (Table 2). The distribution of
the number of bathrooms was normalised by the cluster size.

Fig. 10. Normalised confusion matrix averaged over the best model of MLRGL of each
fold of the outer CV.

which is included three out of five times, while the total transmission
losses and the temperature difference of the heating system are always
included. For the combined BCs, the total transmission losses and
the representative year are always used, while the heating system’s
natural ventilation and temperature difference alternate. These results
show that the information about the construction and renovation year
already leads to a nearly as high MCC as detailed information about
a building’s heating system or ventilation use. However, given the low
MCC, it is questionable whether these BCs would be included if the nec-
essary unknown information to predict the energy use clusters correctly

Fig. 11. MCC of MLRGL for each of the five outer CV folds as a function of the number
of BCs with non-zero coefficient.

Table 4
Mean MCC and mean number of BC for VSURF for the sub-steps
interpretation and prediction based on the outer CV loop.

Dataset Mean Mean
MCC no. of BCs

Interpretation
BBR 0.268 5.8
EPC 0.302 2.6
Combined 0.305 15.6

Prediction
BBR 0.276 2.0
EPC 0.303 2.6
Combined 0.279 3.0
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Fig. 12. By the predictor step of VSURF selected BCs.

Fig. 13. Normalised confusion matrix averaged over the best model of the RF of each
fold of the outer CV.

were available. Nevertheless, for the hyperparameter-optimised RF, all
at BCs were considered (two for BBR, three for EPC and four for the
combined data).

The results of the tuned RF are only marginally better than the
ones obtained from VSURF, with MCCs of 0.277, 0.313 and 0.318 for
BCs from BBR, EPC, and the combined data. The main difference is
that the increase by about 0.04 for the combined BCs, which now as
expected lead to a slightly better result than only using information
from EPCs. Again, a normalised confusion matrix is used for a more
detailed analysis of the results (Fig. 13). Overall, the same trends for
MLRGL for the BCs based on EPC and the combined set are visible. E5
and E1 are the most challenging energy-use clusters to predict, while E6
is most often predicted correctly. The main difference can be observed
for the BCs from the BBR. Here with the additional information if a
building is renovated more even performance across the clusters is
while the MCC is higher then the one from MLRGL. Thus, these results
indicated that using overall fewer BCs this approach performs overall
better than MLRGL.

Table 5
Mean MCC and mean number of BC for VSURF for the sub-
steps interpretation and prediction based on the outer CV loop
– based on the merged clusters.

Dataset Mean Mean
MCC no. of BCs

Interpretation
BBR 0.438 5.0
EPC 0.495 10.8
Combined 0.514 19.6

Prediction
BBR 0.421 1.6
EPC 0.484 3.0
Combined 0.473 3.2

4.3. Reduced cluster analysis

Based on the results of the conducted analyses, it was decided to
merge some of the energy use clusters based on expert knowledge to
analyse whether this would lead to higher classification performance
and consequently to a better understanding of the different energy use
clusters. This simplification was done as it is expected that even if
artificially simplified, the obtained information can still be valuable to
stakeholders such as utility companies with no comparable possibilities
at the moment. Based on similarities in their daily profiles in shape,
magnitude and variations across time clusters, the clusters were merged
as follows:

• E12: merged cluster E1 and E2
• E34: merged cluster E3 and E4
• E56: merged cluster E5 and E6

As the approach of VSURF combined with the optimised RF showed
more promising results than MLRGL, overall fewer BCs used at com-
parable to superior performance, only this approach was used for the
simplified clusters.

Firstly, the performance of VSURF is analysed (Table 5), which
shows, as expected, a significant increase in MCC which is now in the
range of 0.42 to 0.51. Again the MCC changes only minorly between
the interpretation and prediction steps. However, more BCs are selected
on average in the interpretation step compared to the non-simplified
clusters. Nevertheless, in the prediction step, there is again an apparent
reduction. Consequently, it was decided to use, as for the non-simplified
clusters, the result of the prediction step for further analysis.

The detailed analysis of the selected BCs (Fig. 14) shows for the BCs
from the BBR that the representative year is chosen for each of the five
folds, while the renovation code is now only selected two out of five
times. Additionally, the roof material code was selected once, which
was never selected for the not simplified clusters. For the BCs from the
EPCs, the natural ventilation in winter is now chosen every time, while
it was only selected three times for the not simplified clusters. The
total transmission losses and the heating system temperature difference
are again used in every fold. For the combined BCs, the representative
year and the total transmission losses were again chosen for each fold.
However, not a single time the heating temperature difference was
selected, which was selected two times before. Additionally, once the
number of rooms was included, which was never considered before.
From these results, it is concluded that overall some variation to the
not simplified clusters is visible no significant changes are observed.
For the hyperparameter-optimised RF, the representative year and the
renovation code were used for the BCs from the BBR. For the EPC-based
BCs, all three selected BCs are used, and for the combined BCs, all but
the number of rooms are considered.

The results of the tuned RF are again only marginally better than the
ones obtained from VSURF, with MCCs of 0.437, 0.499 and 0.501 for BCs
from BBR, EPC, and the combined data. Again, a normalised confusion
matrix is used for a more detailed analysis of the results (Fig. 15). Form
this it can be seen that now cluster E34 is the one most frequently
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Fig. 14. By the predictor step of VSURF selected BCs based on the simplified clusters.

Fig. 15. Normalised confusion matrix averaged over the best model of the RF of each
fold of the outer CV for the simplified clusters.

predicted correctly while E12 and E56 are predicted about equally
often correctly. Thereby, both E12 and E56 are mainly mispredicted
as E34. Overall the results show that this artificial simplification of the
energy use clusters could be one option to increase the classification
performance.

4.4. Visualisation of cluster characteristics

Based on the above-presented results, it was decided to focus only
on the simplified clusters, given the low MCC obtained for the not
simplified clusters. Furthermore, based on the superior performance
of VSURF in combination with the optimised RF, the clusters were
only explored based on partition trees. In the following, exemplary the
results for the BCs based on the BBR are shown. The results for the
BCs based on EPC and combined data are shown in the supplementary
materials

Fig. 16 shows the resulting decision tree. The number under each
cluster number indicates the number of correct classifications vs the

number of node observations. From this, one can see that cluster E12
are mainly buildings till the beginning of the 1960s, independent of
their renovation status. Cluster E34 are mainly buildings built or reno-
vated from the beginning of the 1960s till 2002 or renovated till 2014.
Cluster E56 are buildings built after 2009 or renovated after 2014.
However, one must remember that the MCC of the shown classification
tree is only 0.45 (accuracy = 0.64) for the data also used for constructing
it (the training data). Consequently, this means that still a significant
number of buildings is misclassified and thus do not follow the shown
‘‘rules’’ of the decision tree.

5. Discussion & conclusion

This work has established co-clusters of SHM data from 4798 single-
family houses, utilising two years of data. The six identified time
clusters highlight the limitations of using date-based season definitions,
particularly when considering longer data periods. The optimisation of
six time clusters, based on the ICL used for model/cluster selection,
suggests a need to reconsider assumptions regarding the use of four
or three seasons in previous research [15,18,19]. Additionally, results
from the two-year period indicate considerable variations between the
years, such as the warmer winter of 2020 compared to 2021 leading
to different energy use intensities. This confirms the argument that
with traditional seasonal patterns shifting and dissolving in the face
of climate change [21–23] predefined seasons can incorrectly capture
seasons.

The six found energy use clusters varied mainly in magnitude,
and only two different profile shapes were observed. Further, the
results seem to confirm that energy for DHW usage decreases with
increasing external temperature. However, further investigations of
energy use separated into SH and DHW, which is not readily available
from commercial SHM data, are needed to confirm this. Overall, the
clustering results showed that the chosen clustering method FunLBM
leads to distinct energy use clusters and captures temporal variation
well offering possible new insights compared to traditional clustering
methods.

Limitations regarding the used co-clustering include that the use of
basis expansions leads to smoothing of the data, which can result in
inaccurate representations if the daily profiles are highly volatile. Ad-
ditionally, it is suspected that the overall smoothing reduces the peaks
caused by DHW, potentially altering the profile shapes. Furthermore,
since the clustering is exhaustive, all data must be assigned to a cluster.
As no detection of abnormal or atypical operation was performed, this
means that buildings with unusual daily profiles are still assigned to
clusters, potentially increasing noise in the data. It is expected that this
issue can be mitigated in the future by applying methods capable of
detecting such abnormal use patterns.

Finally, it is anticipated that the same clustering approach can pro-
vide insights into different research and application-oriented questions,
either by using other available data from SHM meters, such as instan-
taneous supply and return temperature readings, or by preprocessing
data differently, for example, by applying z-score normalisation to focus
more on the shape rather than the magnitude of the profile.

The two used classification and variable techniques to identify
important BCS and to analyse whether BCs can be used to predict
energy clusters for buildings showed a comparable low MCC in the
range of 0.25 to 0.31 across all three tested BCs subsets. MLRGL showed
an overall lower performance and tendency to predict only clusters E3
and E6 correctly if few BCs were used. VSURF lead to a more consistent
performance across the energy use clusters and a higher MCC while
considering only a few BCs. For both approaches, it is to be highlighted
that the BCs from the EPC, which describe a building with a high level
of detail, lead only to a minor improvement of the MCC: Thus, these
results clearly indicate that BCs, even in the used level of detail, are
insufficient to predict the energy use cluster of a building correctly.
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Fig. 16. Pruned decision tree for the simplified energy use clusters using only the representative year (year) and renovation code (renovated).

Fig. A.17. Pearson correlation coefficient of the combined BCs originating from BBR and EPC data.
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Fig. B.18. Detailed results of the variable selection of the best model of MLRGL of
each fold of the outer CV including the intercept.

Consequently, they are also insufficient to understand why a building
is in a particular energy use cluster with high certainty.

The approach to merge energy clusters based on domain knowl-
edge aimed to increase the understanding of the driving differences
between the clusters. This showed improvements in the MCC (0.44 to
0.50). However, overall, the same building characteristics (BCs) were
selected for the non-simplified clusters. This confirms that using only
the representative year and information about whether a building was
renovated leads to nearly the same MCC as detailed information about
a building. These results affirm those from the non-simplified clusters,
more, or respectively different, information is needed to understand
why a building is in a specific energy use cluster. Further, it can be
concluded that overall the VSURF + optimised RF approach shows
superior performance and more robust results and is thus seen as more
suited if the presented approach is used by, e.g. utility companies

In terms of limitations, it must be considered that the sample of
buildings used in this study is highly homogeneous, consisting only
of single-family houses from one city in Denmark, known for its high
income parity. Therefore, the obtained results may not be generalis-
able, and other BCs could become more important if different samples
were considered. Additionally, the uncertainty in the used BCs, as
highlighted by Schaffer et al. [28], could introduce noise, potentially
reducing the performance of the classification methods used. Overall
further research is needed to determine the additional information
required to understand the determining factors for the energy clus-
ters. However, based on previous research [69–71], it is hypothesised

that occupant practices, such as heating system usage, daily routines,
heating setpoints, and possible building faults, could have a significant
influence.

Overall these results, despite their limitations, can be of high value
for stakeholders such as DH utility companies, which at the moment
have no comparable possibility. The proposed method allows to easily
obtain daily energy use clusters and offers the possibility to gain insight
into the difference between the buildings in the energy use clusters
with okay performance if the clusters were simplified (MCC ≈0.5).
Furthermore, the approach does not rely on expert knowledge and is
thus expected to be well suited for stakeholders commonly involved in
the DH network. Additionally, for policymakers, the proposed workflow
offers the opportunity to gain insights into the building stock, poten-
tially supporting tailored policies to increase the decarbonisation of the
building stock. For the research community, the results emphasise the
importance of reconsidering traditional season definitions. Moreover,
they highlight that, beyond available detailed building characteristics,
understanding cluster membership is limited, indicating the need for
future research to explore this further.

All used code is available at: https://github.com/markus-schaffer/
co-clustering.
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