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Abstract Sensors in cyber-physical systems often cap-

ture interconnected processes and thus emit correlated

time series (CTS), the forecasting of which enables im-

portant applications. Recent deep learning based fore-

casting methods show strong capabilities at capturing

both the temporal dynamics of time series and the spa-

tial correlations among time series, thus achieving im-

pressive accuracy. In particular, automated CTS fore-

casting, where a deep learning architecture is configured

automatically, enables forecasting accuracy that sur-

passes what has been achieved by manual approaches.

However, automated CTS forecasting remains in its in-

fancy, as existing proposals are only able to find optimal

architectures for predefined hyperparameters and for

specific datasets and forecasting settings (e.g., short vs.

long term forecasting). These limitations hinder real-
world industrial application, where forecasting faces di-

verse datasets and forecasting settings.

We propose AutoCTS++, a zero-shot, joint search

framework, to efficiently configure effective CTS fore-

casting models (including both neural architectures and

hyperparameters), even when facing unseen datasets

and foreacsting settings. Specifically, we propose an arch-

itecture-hyperparameter joint search space by encoding

candidate architecture and accompanying hyperparam-

eters into a graph representation. We then introduce

a zero-shot Task-aware Architecture-Hyperparameter

Comparator (T-AHC) to rank architecture-hyperparam-
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eter pairs according to different tasks (i.e., datasets and

forecasting settings). We propose zero-shot means to

train T-AHC, enabling it to rank architecture-hyperpar-

ameter pairs given unseen datasets and forecasting set-

tings. A final forecasting model is then selected from

the top-ranked pairs. Extensive experiments involving

multiple benchmark datasets and forecasting settings

demonstrate that AutoCTS++ is able to efficiently de-

vise forecasting models for unseen datasets and fore-

casting settings that are capable of outperforming ex-

isting manually designed and automated models.

Keywords Correlated time series · Task-aware

architecture-hyperparameter comparator · Joint

search · Zero-shot

1 Introduction

Many systems, including societal infrastructures such

as transportation systems, electricity grids, and sewage

systems [6, 49, 52, 72], include cyber-physical compo-

nents that encompass multiple sensors that each emit

a time series, resulting in multiple time series that are

often correlated [7, 10, 32, 33, 46, 71, 79]. For example,

inductive-loop detectors in a vehicular transportation

system measure the time-varying traffic volume at dif-

ferent road locations, and measurements along the same

or nearby roads often correlate. The forecasting of fu-

ture values from correlated time series often has impor-

tant applications [5,22,51,68,76]. For example, accurate

forecasting of traffic volumes can facilitate the predic-

tion of congestion and near-future travel times, in turn

enabling, e.g., more effective vehicle routing [21,50,70].

The key to successful correlated time series fore-

casting is the ability to capture both the temporal de-

pendencies among historical values of each time series
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and the spatial correlations across different time se-

ries. Leveraging the powerful feature extraction capa-

bilities of deep learning models, different neural archi-

tectures, called ST-blocks, have been proposed to cap-

ture spatio-temporal (ST) dependencies to enable ac-

curate forecasting. Traditionally, human experts have

designed manually ST-blocks and have chosen accom-

panying hyperparameter settings. However, this is a

resource-intensive endeavor for which human expertise

is ill-suited.

A more recent approach is to automate the design of

effective ST-blocks [48,65]. Figure 1(a) outlines a typi-

cal automated framework. A search space, represented

as a supernet, contains a massive number of possible

ST-blocks, any subnet of which is a candidate ST-block.

Nodes in the supernet and subnets represent latent rep-

resentations, and the directed edges between them rep-

resent different operators (e.g., convolution, graph con-

volution, and Transformer). In a supernet, the trans-

formation from node hi to node hj is a weighted sum

of all candidate operators, while in a subnet only one

operator between each node pair is kept. The goal is to

learn the operator-associated weights {αi}, upon which

an optimal subnet is obtained by picking the operator

with the highest weight between every two nodes.

Although existing automated CTS forecasting meth-

ods achieve design automation and are capable of bet-

ter performance than manually designed models, they

suffer from two main limitations.

(1) Lack of support for joint architecture-and-

hyperparameter search. When training supernets,

existing automated CTS forecasting methods rely on

predefined hyperparameters, including architectural hy-

perparameters (e.g., the number of latent representa-

tions, i.e., nodes, in an ST-block and the size of a latent

representation) and training hyperparameters (e.g., the

dropout rate). Depending on the chosen hyperparame-

ter settings, the same architecture can yield markedly

different performance. In spite of this, existing solutions

rely on an expert to choose hyperparameters settings,

which may well lead to the choice of a suboptimal archi-

tecture and which renders the framework only “semi-

automated.” Alternatively, it is possible to combine a

hyperparameter optimization method (e.g., grid search

or Bayesian optimization) sequentially with an exist-

ing automated architecture search method [48, 65] to

achieve a two-step, automated approach. However, the

running time would be excessive as existing automated

architecture search needs to be performed each time

a hyperparameter set is sampled. Rather, an efficient,

joint architecture and hyperparameter search scheme is

called for.

(2) Lack of support for zero-shot search abil-

ity for unseen tasks. Existing automated CTS fore-

casting methods are often fully supervised and task-

specific—they search for an optimal forecasting model

for a given task, where a task is defined by a specific

dataset and a specific forecasting setting (e.g., taking

P historical time steps into account to forecast Q fu-

ture time steps). This fully-supervised approach hinders

application in real-world industrial settings, where fore-

casting must be made for diverse tasks, e.g., involving

many different datasets and forecasting settings with

many P and Q values. It is expensive and unattractive

to perform a new search from scratch whenever receiv-

ing a new task, as each search takes many (from a few

to hundreds) GPU hours. This calls for zero-shot search

approaches that are able to efficiently identify compet-

itive forecasting models for diverse tasks, including un-

seen datasets and forecasting settings.

To eliminate the above two limitations, we propose

AutoCTS++, a zero-shot, neural architecture and hy-

perparameter joint search framework. First, we design

a joint search space that contains a wide variety of

architecture-hyperparameter (arch-hyper) pairs, and th-

en solve the problem of finding the optimal arch-hyper

in this joint search space, thus addressing the first limi-

tation. For example, with existing supernet based meth-

ods, the number C of nodes in an ST-block must be

set before searching. Thus, the example in Figure 1(a)

can only search for ST-blocks with C = 4 nodes. In

contrast, our joint search space considers multiple val-

ues of C, e.g., {4, 5, 6, 7, 8} in Figure 1(b), which al-

lows searching for ST-blocks with different numbers of

nodes. The example shows two arch-hyper pairs, where

pair ah1 has C = 4 ST-blocks and pair ah2 has C = 6

ST-blocks.

Second, we propose a novel Task-aware Architec-

ture Hyperparameter Comparator (T-AHC) that is able

to rank candidate arch-hypers from the joint search

space for an unseen task, where a task is specified by

a dataset and a forecasting setting given by P and Q

values. Given a CTS forecasting task and two candidate

arch-hypers, T-AHC estimates a binary value, indicat-

ing which arch-hyper has a better accuracy for the task.

Thus, T-AHC is able to estimate a ranking of candidate

arch-hypers for the task, facilitating the selection of op-

timal arch-hypers as final forecasting models. To ensure

that T-AHC is able to return reliable rankings for un-

seen tasks, we pre-train T-AHC on a variety of tasks,

including multiple datasets and different values for P

and Q, with the aim to capture hidden relationships

between tasks and model performance. This enables

zero-shot joint search on unseen tasks, thus significantly

enhancing the efficiency and effectiveness of automated
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(b) The AutoCTS++ Framework

Fig. 1 Comparsion between the existing supernet-based framework and the proposed AutoCTS++ framework. A task includes
CTS dataset D and P and Q which are the input and output lengths. Hyperparameter C indicates the number of nodes in an
ST-block, H is the size of the hidden representations, and δ indicates whether to use dropout during training.

forecasting model design for unseen tasks. For example,

the supernet-based framework in Figure 1(a) can only

search for optimal ST-blocks for a specific task given by

dataset D and forecasting settings P = 12 and Q = 12.

In contrast, the framework in Figure 1(b) is pre-trained

on a number of datasets and different P and Q values,

which extracts the intrinsic characteristics of the tasks,

and searches for optimal ST-blocks based on it, thus

supporting zero-shot search for unseen tasks, e.g., for

an unseen dataset D and unseen P = 24 and Q = 24

as shown in Figure 1(b).

To the best of our knowledge, this is the first study

that enables zero-shot, joint search for architectures

and hyperparameters for correlated time series forecast-

ing. Specifically, we make the following contributions:

(1) We propose a novel search space for correlated time

series forecasting to facilitate joint search for archite-

ctures-and-hyperparameter settings.

(2) We propose T-AHC, a zero-shot Task-aware Archite-

cture-Hyperparameter Comparator to rank arch-hyper

candidates for unseen tasks, thereby improving search

efficiency for unseen tasks substantially.

(3) We report on extensive experiments covering mul-

tiple benchmark datasets and forecasting settings,

finding that AutoCTS++ is able to efficiently de-

vise high-quality CTS forecasting models for unseen

tasks, outperforming strong baselines.

A preliminary proposal, called AutoCTS+ [66], covers

part of the solution by proposing the joint search space

for neural architectures and hyperparameters that we

describe in Section 3.1. However, AutoCTS+ does not

support zero-shot joint search for unseen tasks. In this
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Table 1 Comparison of automated frameworks.

Search Space
Search Mechanism

Fully-Supervised Zero-Shot

Only Architectures
AutoCTS [65], AutoSTG [48],

AutoSTG+ [31]
/

Architectures
& Hyperparameters

AutoCTS+ [66] AutoCTS++

paper, we propose a zero-shot Task-aware Architecture-

Hyperparameter Comparator that is able to rank arch-

hypers for unseen tasks (cf. Section 3.2). This includes

(i) devising a task-aware architecture and hyperparam-

eter comparator (T-AHC) that is able to rank arch-

hyper pairs while taking forecasting tasks into account,

(ii) proposing a task setting enrichment strategy along

with a pre-training method for T-AHC, and (iii) report-

ing on extensive experiments on unseen tasks to offer

insight into the effectiveness and efficiency of T-AHC.

Table 1 summarizes the main differences between

the existing frameworks and AutoCTS++. First, no

existing frameworks support zero-shot search on un-

seen tasks. Second, the supernet based frameworks Au-

toCTS [65], AutoSTG [48], and AutoSTG+ [31] con-

sider only neural architectures, not hyperparameters.

Third, the proposed AutoCTS++ supports both joint

search and zero-shot search on unseen tasks, which fits

real-world application needs better.

Section 2 covers basic concepts and definitions. Sec-

tion 3 presents the design of AutoCTS++ and the pre-

training method for T-AHC. Section 4 reports on the

empirical study. Related work is covered in Section 5,

and Section 6 concludes.

2 Preliminaries

2.1 Problem Settings

Correlated Time Series (CTS). We denote a corre-

lated time series (CTS) by X ∈ RN×T×F , where N is

the number of time series, and each time series covers

T time steps and has an F -dimension feature vector for

each time step. The feature vectors in the i-th time se-

ries X(i) ∈ RT×F ⊂ X , 1 ≤ i ≤ N , are correlated with

previous feature vectors in the same time series as well

as with feature vectors in other time series. Therefore,

it is natural to model a CTS as a graph G = (V,E,A),

where vertex set V represents the set of time series,

edge set E represents correlation relationships between

time series, and adjacency matrix A ∈ RN×N captures

the strengths of the relationships between time series.

A is usually predefined based on the distances of the

sensors that generate the time series, or learned adap-

tively. Univariate and multivariate time series can be

considered as special cases of correlated time series:

when N = 1 and C = 1, a time series is univariate,

and when N = 1 and C > 1, a time series is multivari-

ate.

Correlated Time Series Forecasting. We consider

multi-step and single-step correlated time series fore-

casting, both of which have important real-world appli-

cations [3, 35, 55, 67]. Given the feature vectors of the

past P time steps of X , the goal of multi-step CTS fore-

casting is to predict the feature vectors of the Q future

time steps, with Q > 1; and the goal of single-step CTS

forecasting is to predict the vector at the Q-th future

time step, where Q ≥ 1. Formally, we define multi-step

CTS forecasting as follows:

(X̂t+P+1, X̂t+P+2, ..., X̂t+P+Q)

= F(Xt+1,Xt+2, . . . ,Xt+P ;G), (1)

and we define single-step CTS forecasting as follows:

X̂t+P+Q = F(Xt+1,Xt+2, . . . ,Xt+P ;G), (2)

where Xt ∈ R
N×F denotes the feature vectors of all

time series at time step t, X̂ represents the predicted

feature vectors, and F is a CTS forecasting model.

CTS Forecasting Task. A CTS forecasting task is

defined by a specific CTS dataset D and a specific fore-

casting setting with P and Q. We formalized a task as

follows:

T = (D, P,Q,M), (3)

where M indicates whether the CTS forecasting task is

single-step (i.e., Q-th step) or multi-step (i.e., the next

Q steps).

Problem Definition. The goal is to automatically

build an optimal ST-block F∗ from a predefined joint

architecture-hyperparameter search space S for task T
that minimizes the forecasting error on a validation

dataset Dval. The objective function is stated as fol-

lows:

F∗ = argminF∈S ErrorMetricT (F ,Dval) (4)

2.2 Neural Forecasting Models

As indicated in Figure 2, the common framework of

manually designed neural CTS forecasting models has

three components: an input module, an ST-backbone,

and an output module. The input and output modules

usually consist of one or two fully-connected layers that

encode an input time series and decode extracted spa-

tiotemporal features to forecasting values, respectively.

The ST-backbone is the core component of a CTS

forecasting model. It consists of B ST-blocks that can
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be connected using different topologies, with sequen-

tial stacking being a simple yet effective topology and

that we use in Figure 2. An ST-block captures the spa-

tial correlations between time series and the temporal

dependencies in individual time series. There are thus

two categories of operators in an ST-block, S-operators

(e.g., GCNs) and T-operators (e.g., Transformer), for

extracting spatial and temporal features, respectively.

The specific types of S/T-operators and their connec-

tions are critical to the success of a CTS forecasting

model.

Fig. 2 An example CTS forecasting model.

2.3 Existing Automated Methods

Since the input and output modules of neural CTS fore-

casting models are simple, typically consisting of one or

two fully-connected layers, and only involve a few de-

sign choices, such as the choice of the embedding di-

mension, existing automated CTS forecasting frame-

works [48, 65] focus on the design of the ST-blocks.

Specifically, automated frameworks typically start by

designing a search space that encompasses a wide vari-

ety of ST-block architectures. The search space is repre-

sented by a directed acyclic graph (DAG) (Figure 1(a)

left), dubbed a supernet, with C nodes and a number

of edges. Each node hi, 0 ≤ i ≤ C − 1, denotes a latent

representation. Each node pair (hi, hj), has |O| directed
edges from hi to hj , i < j, corresponding to |O| candi-
date S/T-operators, where O is a predefined candidate

operator set consisting of S/T-operators, such as CNNs,

GCNs, and Transformers.

The goal of existing automated frameworks is to ob-

tain ST-blocks and a consequent CTS forecasting model

by selecting operators and connections that minimize

validation errors. To achieve this, a vector α(i,j) ∈ R|O|

is introduced to weigh the edges between each node

pair (hi, hj). These vectors reflect the importance of the

edges and are to be learned during training. Then the

transformation from node hi to node hj is formulated

as a weighted sum of all edges, i.e., operators:

f (i,j) =
∑
o∈O

exp(α
(i,j)
o )∑

o′∈O exp(α
(i,j)
o′ )

o(hi), (5)

where α(i,j)
o is the weight of operator o ∈ O, and o(·)

represents the transform function of operator o. Then,

the latent representation of node hj is obtained by sum-

ming all the transformations from its predecessor nodes:

hj =
∑
i<j

f (i,j) (6)

This way, a supernet can be trained on a given task, i.e.,

a CTS forecasting dataset and a particular forecasting

setting with P and Q, using gradient descent to learn

both the neural operator parameters and architecture

parameter α. After training, an optimal ST-block is de-

rived by removing the unimportant edges from the su-

pernet, retaining only one edge between each node pair

and at most two incoming edges for each node (Fig-

ure 1(a) right).

For existing automated frameworks, hyperparame-

ters such as the number C of nodes in an ST-block need

to be predefined (e.g., C is set to 4 in Figure 1(a)). In

other words, existing frameworks do not support jointly

searching for architectures and hyperparameters. In ad-

dition, existing automated frameworks consume sub-

stantial memory since very large supernets must reside

in memory during training. Furthermore, existing au-

tomated frameworks start from scratch for each new

task, which is inefficient. We aim at enabling zero-shot

search that can efficiently identify competitive forecast-

ing models for new, unseen tasks.

3 Zero-shot Joint Search

Our framework enables zero-shot joint search for an op-

timal ST-block, i.e., an optimal combination of a neural

architecture and a set of accompanying hyperparame-

ters, for an unseen task. Figure 1(b) offers an overview

of the proposed automated CTS forecasting framework.

To support zero-shot joint search, we first design a joint

search space (Section 3.1) containing pertinent can-

didate architecture-and-hyperparameter pairs, each of

which is called an arch-hyper.

We then propose a novel search framework that lever-

ages a Task-aware Architecture-Hyperparameter

Comparator (T-AHC) (Section 3.2) to achieve rank-

ings of all arch-hypers in the joint search space for

a given task. Specifically, T-AHC takes the encodings

of a task and two candidate arch-hypers as input and

produces a binary label indicating which input arch-

hyper has a higher accuracy for the specific task. To

this end, we pre-train T-AHC with a large number of

labeled samples of the form (t, ah1, ah2, y) from diverse

tasks, where t denotes a task, ah1 and ah2 are two arch-

hypers, and y is a binary label indicating wehther ah1

is more accurate than ah2 at task t.

After obtaining the pre-trained T-AHC, we utilize

a heuristic search strategy (Section 3.3) to support a
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zero-shot search for optimal arch-hypers in the joint

search space for unseen tasks. Given an unseen task,

AutoCTS++ first generates a representation of the task

in an efficient manner, e.g., in a few minutes, then T-

AHC takes the task representation and any two arch-

hypers as input and outputs which arch-hyper is more

accurate under the task, thus efficiently generates a

ranking of candidate arch-hypers. Based on the ranking,

an optimal arch-hyper is selected as the final forecasting

model.

3.1 Joint Search Space

We focus on the automated design of ST-blocks that are

the core components of CTS forecasting models. The

joint search space considers two aspects of ST-blocks: 1)

the architecture, including operators and their connec-

tions, and 2) the hyperparameters, including architectu-

re-related structural hyperparameters (e.g., the hidden

dimension) and optimization-related training hyperpa-

rameters (e.g., the dropout rate). Next, we introduce

the search spaces of the architecture and hyperparam-

eters in turn, and then show how to combine these into

a joint search space. Note that AutoCTS++ adopts the

joint search space from AutoCTS+ [66].

3.1.1 Architecture Search Space

In an ST-block, S/T-operators extract spatial/temporal

features, and the connections between operators control

the information flow.

Candidate operators. By studying manually designed

CTS forecasting models and the search spaces of exist-

ing automated CTS forecasting frameworks, we identify

and include two compelling candidate T-operators. The

Gated Dilated Causal Convolution (GDCC) [48,65,68]

can effectively capture short-term temporal dependen-

cies. In contrast, the Informer (INF-T) [81], which is a

variant of the Transformer, excels at learning long-term

temporal dependencies.

We also identify and include two S-operators for

extracting two sorts of spatial features. The Diffusion

Graph Convolution Network (DGCN) [43], as demon-

strated in many popular CTS forecasting studies [48,65,

68], is effective at capturing static spatial correlations.

In addition, the Informer (INF-S) [81] is included due to

its strength at discovering dynamic spatial correlations.

We also include an “identity” operator to support

skip-connections between nodes. In this way, we obtain

a candidate operator set O composed of the above five

operators. The framework can easily accommodate ad-

ditional operators. Specifically, to add a new operator,

we first include the operator in the candidate opera-

tor set O. Then, we sample arch-hypers that include

the new operator and use them to generate additional

samples to retrain T-AHC. The samples collected be-

fore can be reused when retraining T-AHC, and T-AHC

training is quite efficient (Section 3.2.4).

Topological connections. After selecting the candi-

date operators, we consider the possible topological con-

nections among the operators within an ST-block. An

ST-block can be represented as a directed acyclic graph

(DAG) Gd (e.g., Figure 3 left) with C nodes, where

each node hi represents a feature representation and

each edge represents an operator Oi. We propose the

following topological connection rules to generate can-

didate ST-blocks: (1) There is at most one edge from

node hi to node hj , and no edge is allowed from node

hj to node hi, where i < j. This is to form the forward

flow of a neural network. (2) The operator of an edge

is selected from the chosen candidate operator set, O.

3.1.2 Hyperparameter Search Space

We consider two kinds of hyperparameters: structural

and training hyperparameters. Table 2 summarizes the

hyperparameters in the hyperparameter search space

and also lists possible values. The framework can easily

include additional hyperparameters as well as expanded

ranges of values for existing hyperparameters.

Table 2 Hyperparameter search space.

Hyperparameters Possible values
B (number of ST-blocks) {2, 4, 6}
C (number of nodes in an ST-block) {5, 7}
H (hidden dimension) {32, 48, 64}
I (output dimension) {64, 128, 256}
U (output mode) {0, 1}
δ (dropout) {0, 1}

Structural hyperparameters relate to the structure

of an ST-block, including the number B of ST-blocks

in a backbone, the number C of nodes in an ST-block,

the hidden dimension H of S/T-operators, the output

dimension I, and the output mode U of an ST-block.

Larger B, C, H, and I generally result in more ex-

pressive ST-blocks, but also yield models that are more

prone to overfitting on small datasets. The output mode

U is a binary value indicating which node in an ST-

block produces the output. We consider two alternative

modes: one takes the last node hC−1 as the output, like

AutoCTS [65], and the other takes the sum of all nodes

h1, h3, ..., hC−1 as the output, like GraphWaveNet [68].

Training hyperparameters include the dropout rate

δ, which can be used to alleviate overfitting when train-
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ing a deep CTS model. The value of δ can be 0 or

1, which means dropout is used or not used. A set of

chosen hyperparameter values from the hyperparame-

ter search space can be represented as a r-dimensional

vector (r = 6 in this paper). For example, in Table 2,

[2, 5, 32, 64, 0, 0] is a possible hyperparameter vector.

3.1.3 Encoding of the Joint Search Space

Having designed the architecture and hyperparameter

search spaces, we combine them to construct a joint

search space to support the search for an optimal arch-

hyper. Performing a naive combination is infeasible as

the two search spaces have different types of encodings

(i.e., DAGs vs. vectors). We therefore choose to design

the joint search space as a joint dual DAG. This encod-

ing of the joint search space is easy to explore due to

its efficient representation.

Fig. 3 Architecture DAG, Arch-hyper Graph, and its adja-
cency and feature matrix representations, where oi represents
the i-th operator in the candidate operator set O; the same
operator o1 is used in two different positions in the arch-
hyper.

We first convert the original DAG Gd of an architec-

ture (Figure 3 left) in the architecture search space into

its dual graph G∗
d (Figure 3 middle), where nodes rep-

resent operators and edges represent information flow.

This dual form facilitates learning of the representation

of an arch-hyper using graph neural networks. Then, we

add a new “Hyper” node that represents the hyperpa-

rameter setting of the architecture to the dual DAG

(Figure 3 middle). The “Hyper” node connects to all

other nodes. This way, we can use a single DAG Ga

(an arch-hyper graph) to represent a complete ST-block

containing both the candidate architecture and the hy-

perparameters, as shown in the middle of Figure 3.

We use an adjacency matrix Aa and a feature ma-

trix Fa to encode an arch-hyper graph Ga. We con-

sider a Ga with n + 1 nodes (n = 5 in Figure 3 mid-

dle), where n nodes represent operators and one node

represents the hyperparameter settings. An adjacency

matrix Aa ∈ R
(n+1)×(n+1) reflects the topology infor-

mation of Ga, where the binary value of an entry (i,

j) indicates whether there is an information flow be-

tween these two nodes. We also add self-connections to

all nodes. A feature matrix Fa ∈ R(n+1)×D is also in-

cluded that contains operator information of each node

in an arch-hyper graph. For the “Hyper” node, the orig-

inal feature is an r-dimensional vector from the hyper-

parameter search space. We first employ min-max nor-

malization to normalize the original feature of the “Hy-

per” node and then convert the normalized feature into

a D-dimensional embedding:

Fh = norm(Ho)Wc, (7)

where Ho ∈ R
r is the original feature vector of the

“Hyper” node, Wc ∈ Rr×D is a learnable matrix, and

Fh ∈ R
D is the embedding of the “Hyper” node. For

the other n nodes (i.e., the operator nodes), we first

embed each operator with an one-hot embedding and

then introduce a learnable matrix that converts the one-

hot embeddings of all operator nodes into an embedding

matrix. Formally,

Fe = HeWe, (8)

where He ∈ R
n×|O| and Fe ∈ R

n×D are the one-hot

embeddings and the transformed embedding matrix of

the n nodes, respectively; further, We ∈ R|O|×D is the

learnable matrix, and |O| is the number of candidate

operator types in the architecture search space (|O| = 4

in Figure 3).

The final feature matrix Fa ∈ R(n+1)×D is the con-

catenation of the embeddings of the “Hyper” node and

the operator nodes, i.e., Fa = concatenate(Fh, Fe). This

way, each arch-hyper in the joint search space can be

encoded as an adjacency matrix Aa and a feature ma-

trix Fa. The above learnable parametersWc andWe are

learned together with the model parameters of T-AHC.

3.2 Task-aware Architecture-Hyperparameter

Comparator

3.2.1 Overview

We propose a novel search framework to find the task-

specific optimal arch-hyper in the joint search space.

Specifically, we perform task-aware pairwise compar-

isons for arch-hypers in the joint search space, which is

achieved by a Task-aware Architecture-Hyperparameter

Comparator (T-AHC). Based on the results of pairwise

comparisons, we can obtain a performance ranking of

arch-hypers. The top-ranked arch-hyper is expected to

have the highest accuracy on the target task and is
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selected as the final CTS forecasting model. Unlike in

the supernet-based search framework, where a large su-

pernet that embeds all candidate models must reside in

memory, in the proposed search framework only T-AHC

needs to reside in memory during search, which renders

our framework more scalable.

To rank arch-hypers and to avoid evaluating all can-

didate pairs, many existing studies build an accuracy

estimator, which can be a neural network. The accu-

racy estimator needs to be trained using a large volume

of (ah, R(ah)) samples, where ah is an arch-hyper and

R(ah) is the validation accuracy of a fully trained ah.

This way, the accuracy of all candidate arch-hypers in

the search space can be estimated, and top-ranked arch-

hypers can be selected. However, it is computationally

expensive to collect a large amount of (ah, R(ah)) sam-

ples for training an accuracy estimator, since it involves

fully trainings of many ah to get their validation accu-

racy R(ah). Further, absolute accuracy is not necessary

to achieve the ranking of ah; rather, the relative com-

parison of two arch-hypers is sufficient to obtain their

ranking.

Given these considerations, we propose to use a com-

parator to achieve the accuracy relation of two candi-

date arch-hypers. Specifically, we first design an AHC

that takes the encodings of two arch-hypers ah1 and

ah2 as input and outputs a binary value y, indicat-

ing which arch-hyper may have higher validation ac-

curacy. Since the binary relation facilitates obtaining

a linear ordering, we can use the AHC to obtain the

predicted-accuracy based ranking of arch-hypers in the

search space. Given a measured (ah, R(ah)) pairs, we

can build a(a−1) training samples for AHC in the form

of (ah1, ah2, y) by pairing every two of (ah, R(ah))

pairs, where y is a binary value indicating which arch-

hyper has higher accuracy, thus alleviating the problem

of requiring a large amount of training samples.

One issue with AHC is that we need to re-collect

(ah, R(ah)) pairs for each target task to find the op-

timal arch-hyper specific to that task. This takes sub-

stantial GPU resources, making it impractical for use

in many industrial settings. To address this issue, we

propose to capture the similarity of different CTS fore-

casting tasks, where task similarity refers to the close-

ness of the arch-hyper performance rankings on differ-

ent tasks. Intuitively, an arch-hyper that performs well

on one task also performs well on similar tasks. There-

fore, we propose T-AHC that uses a task embedding

learning module to learn hidden representations of CTS

forecasting task, and similar tasks are encouraged to

have similar hidden representations. T-AHC is imple-

mented on the basis of AHC by taking the hidden rep-

resentation of the task as an additional input and out-

puts prediction for the current target task, which makes

AHC task-aware. In order to enable the proposed task

embedding learning module to measure the similarity

between different CTS forecasting tasks, we pre-train

T-AHC on a large number of CTS forecasting tasks to

enable the task embedding learning module to output

architectural performance ranking-related hidden rep-

resentations for any CTS forecasting task. This way,

when applied to an unseen task, we first extract the hid-

den representation using the proposed task embedding

learning module. Together with a pair of arch-hypers,

T-AHC is then able to perform a pairwise comparisons

on the tasks.

3.2.2 Task Embedding Learning Module

AutoCTS++ learns a low-dimensional embedding for

each CTS forecasting task, allowing the similarity of

different tasks to be captured in the latent space. To

develop a module that is specifically tailored to the

embedding of CTS forecasting tasks, we formulate two

main design objectives: (i) capable of efficiently encod-

ing both the forecasting settings, i.e., P and Q, and the

CTS datasets D into unified embeddings, and (ii) capa-

ble of learning relationships between forecasting tasks

and model performance ranking.

To achieve the first objective, we devise a task em-

bedding module to jointly encode a dataset D and fore-

casting setting P and Q. This means that, given the

same dataset D, but different values for P and Q, the

resulting embeddings should be different. To achieve

this goal, we split a CTS dataset D ∈ RN×T×F into a

set of multiple time series windows {Di} using a slid-

ing window of length S = P + Q. More specifically,
each time series window Di ∈ R

N×S×F , representing

N time series, where each time series has S = P + Q

time steps and each time step has F features. Based on

the above, to embed a forecasting task with D, P and

Q is equivalent to embed the set of time series windows

{Di}.
We choose to use TS2Vec [77] to provide generic em-

beddings of time series data. Given a time series win-

dow, TS2Vec performs contrastive learning in a hier-

archical manner over augmented context views of the

time series window and captures rich semantic informa-

tion of the time series window. More specifically, given

a time series window Di ∈ R
N×S×F , TS2Vec encodes

the features into an F ′-dimensional hidden space, as

shown below.

Ei = TS2Vec(Di), (9)

where Ei ∈ RN×S×F ′
. A simple multi-layer perceptron

can also embed time series into a hidden space. But
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this method ignores the semantic information inherent

in CTS datasets thus falling short in accuracy. We show

this in the ablation studies covered in Section 4.2.3.

Based on the above, time series forecasting tasks

are encoded into embeddings {Ei}. Tasks involving the

same dataset D but different forecasting settings, i.e.,

different P and Q values, have different time series win-

dows {Di}. Thus, we are able to generate different em-

beddings, which achieves the first objective where we

consider D, P , and Q together to jointly encode a CTS

forecasting task.

To achieve the second objective, if the arch-hyper

rankings of two CTS forecasting tasks are similar, the

two tasks should have similar embeddings. To this end,

we employ a two-stacked Set-Transformer to further en-

code the embeddings {Ei} returned by TS2Vec into a

vector. A Set-Transformer [38] is an attention-based

structure that is able to model complex interactions

among elements in a set. We employ a two stacked Set-

Transformer to learn ranking-aware representations for

CTS forecasting tasks. The two Set-Transformer lay-

ers, which we call IntraSetPool and InterSetPool, are

stacked attention-based blocks. Each of the two lay-

ers can be seen as a parameterized pooling operation.

Specifically, we first compute the mean over the N time

series for each time series window, as shown in Equa-

tion 10. Then, we use IntraSetPool to encode the em-

beddings of each time series window along the time di-

mension, as shown in Equation 11, whereas InterSet-

Pool aggregates all embeddings of the time series win-

dows to a vector, as shown in Equation 12. This proce-

dure is also shown in Figure 4.

{Êi} = Mean({Ei}) (10)

{Ẽi} = IntraSetPool({Êi}) (11)

E′ = InterSetPool({Ẽi}), (12)

where Êi ∈ RS×F ′
, Ẽi ∈ RF ′

1 , and E′ ∈ RF ′
2 . The F ′

1

and F ′
2 are the hidden dimensions resulting from using

the Set-Transformer. By utilizing the two-stacked Set-

Transformer, we are able to preserve and extract more

useful information compared to using other downsam-

pling methods. Note that the learnable parameters in

Set-Transformer are optimized end-to-end, which en-

ables Set-Transformer to generate architecture perform-

ance-aware task representations.

3.2.3 The Architecture of T-AHC

Figure 4 shows the proposed T-AHC. The input to T-

AHC is a tuple (ti, ah1, ah2), where ti is the preliminary

embedding of task Ti generated by TS2Vec, while each

of ah1 and ah2 is encoded by the adjacency matrix and

feature matrix of its joint graph, as described in Sec-

tion 3.1. Given the preliminary task embedding E, we

can obtain E2 encoded by the task embedding learn-

ing module mentioned above. Considering the powerful

ability of Graph Isomorphism Networks (GINs) [69] to

distinguish any two graphs, we leverage GINs to en-

code the arch-hyper as a compact continuous embed-

ding. Given an adjacency matrix Aa and the feature

matrix Fa, the corresponding GIN can be expressed re-

cursively as follows:

GIN (Aa, Fa) = H(Ln) (13)

H(k) = MLP (k)((1 + ϵ(k)) ·H(k−1) +AaH
(k−1)),

k = 1, 2, ..., Ln, (14)

where Ln is the number of GIN layers, H(0) = Fa, ϵ is a

trainable bias, and MLP is a multi-layer perceptron. To

simplify the representation of an arch-hyper, we use the

latent representation of the “Hyper” node from H(L) as

the representation of the entire arch-hyper, denoted as

la, since the “Hyper” node connects to all other nodes

in the arch-hyper graph.

We encode two input arch-hypers ah1 and ah2 as

la and l′a, respectively, using the same GIN and then

concatenate them in the feature dimension:

la = GIN (Aa, Fa), l
′
a = GIN (A′

a, F
′
a) (15)

La = concatenate(la, l
′
a). (16)

Then, we use two fully-connected (FC) layers to sep-

arately extract deeper information from task embed-
ding E′ and arch-hyper-pair embedding La and then

concatenate them in the feature dimension:

L′
a = FCL(La, wl) (17)

Ẽ′ = FCE(E
′, we) (18)

O = concatenate(L′
a, Ẽ

′), (19)

where wl and we are the parameter matrices of the fully-

connected layers FCL and FCE .

Finally, we feed O into a classifier that is composed

of a two-stacked fully-connected layer and a Sigmoid

function σ(·). We use 0.5 as the threshold to force the

output of the classifier to only be 0 (less than the thresh-

old) or 1 (larger than the threshold). Formally,

O′ = FCO(O,wo) (20)

output = 1(σ(FCO′(O′, wo′)) ≥ 0.5), (21)

where wo and wo′ are the parameter matrices of the

two-layer fully-connected layer, and 1(·) is an indicator
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Fig. 4 Task-aware Architecture-Hyperparameter Comparator.

function with 1(X) = 1 if X is true, and 1(X) = 0,

otherwise. We say that R(ah) ≥ R′(ah) holds if the

output of T-AHC is 1, and that R(ah) < R′(ah) holds

if the output of T-AHC is 0. We optimize Wc, We, and

the parameters of T-AHC using Binary Cross-Entropy

(BCE) loss.

3.2.4 Pre-training a T-AHC

Enriching Tasks. Pre-training a T-AHC to enable

it to generalize to return reliable arch-hyper rankings
across different CTS forecasting tasks requires a large

volume of training samples of the form (ti, ah1, ah2, y).

For a particular task Ti, we need to train and evalu-

ate both ah1 and ah2 for the task. We need to con-

sider sufficient tasks and collect sufficient training sam-

ples for each task to adequately pre-train a T-AHC.

This poses two challenges. First, although multiple cor-

related time series data sets exist, we may still lack

sufficient amounts of correlated time series. Second, for

each task, obtaining a sample (ti, ah1, ah2, y) requires

significant time, as we need train and evaluate ah1 and

ah2.

To address the first challenge, we propose to split

commonly used CTS datasets to generate a large num-

ber of CTS forecasting tasks such that they provide

sufficient samples to pre-train a T-AHC. In order to

ensure the quality of the subsets under specific task

settings, we adopt some guidelines. First, we take into

account the correlation between the lengths of P and

Q and the size of the CTS dataset. For instance, a

dataset with few time steps is not suitable for long-

term forecasting as neural networks are unable to ade-

quately capture the patterns with only a few samples.

Thus, such datasets should be associated with smaller

P and Q values. We consider the inherent temporal-

wise continuity and spatial-wise correlation present in

CTS datasets. Specifically, to keep the temporal-wise

information, we derive temporally continuous subsets

from the original CTS datasets. Second, we randomly

sample variables and reconstruct adjacency matrices for

the sampled variables, which helps to preserve spatial-

wise information. Figure 5 provides a visual illustration

of our approach.

To address the second challenge, we choose to use

the early-validation metric R′(·) [66] to approximate

the true label y with 1(R′(ah1) ≥ R′(ah2)):

R′ = ErrorMetric(F(ah)k,Dval), (22)

where F(ah)k is the CTS forecasting model under arch-

hyper ah with only k epochs of training. We find that

the early-validation metric can approximate the true

label well with k = 5 training epochs.

Selecting Shared Samples. After generating a

large number of CTS forecasting tasks, we collect 2L

samples of the form: (t, ah,R′(ah)) from each task, where

t is the preliminary representation generated by TS2Vec.

Considering that two arch-hypers may have different

performance rankings on two different tasks, depend-

ing on the similarity of the two tasks, we sample the

same L arch-hypers for all tasks to emphasize this point,

while additionally sampling L different arch-hypers for
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each task to increase the diversity of training samples.

Note that the L shared arch-hypers consist of relatively

easy knowledge. This is because T-AHC can focus on

the pairwise comparison results of the same arch-hyper

pairs on different tasks and can learn directly the sim-

ilarity of different tasks reflected in the L arch-hypers’

rankings.

However, the L randomly sampled arch-hypers con-

tain more challenging knowledge because the arch-hyper

pairs and tasks are completely different, making it hard

for T-AHC to capture the hidden relationships. More-

over, we hope that T-AHC has the generalization abil-

ity to generate a reliable ranking of all arch-hypers in

the joint search space on an unseen task. To facilitate

this learning process on all 2L samples, we employ a

data-level curriculum learning approach [4]. This ap-

proach enhances the training set by gradually adding

samples from the L random ones to the L shared ones.

As a result, the difficulty of the training increases over

time, enabling T-AHC to adapt adequately. In the ex-

periment, we offer evidence of the effectiveness of the L

shared samples (see the ablation studies Section 4.2.3).

To avoid overfitting, we also adopt the dynamic pairing

method used in recent studies [9, 19]. This method dy-

namically generates pairs in batches and shuffles them

in every epoch. The detailed training process is shown

in Algorithm 1.

3.3 Search Strategy

Once a pre-trained T-AHC is obtained, AutoCTS++

enables a zero-shot search for the optimal arch-hyper

for unseen tasks. TS2Vec is capable of generating a pre-

Algorithm 1 Pre-training Algorithm

Input: n tasks {T1, T2, · · · , Tn}, Ti = (Di, Pi, Qi), where
Di is the CTS dataset and Pi and Qi are the task settings,
joint search space Ω, T-AHC N
Output: pre-trained T-AHC N∗

1: Obtain shared samples S0 = {ah ∈ Ω}, |S0| = L
2: for i = 1, ..., n do
3: {Ei} = TS2Vec(Di, Pi, Qi)
4: Randomly sample Si = {ah ∈ Ω}, |Si| = L
5: Generate S′

zi
=

{({Ei}, ah,R′(ah))|ah ∈ S0}, |S′
zi
| = L

6: Generate Szi
=

{({Ei}, ah,R′(ah))|ah ∈ Si}, |Szi
| = L

7: end for
8: Initialize ∆ = 0
9: for t = 1, ..., kt do
10: for i = 1, ..., n do
11: S̃zi

= {s|s ∈ Szi
}, |S̃zi

| = ∆

12: Curriculum setting: C
(i)
t = S′

zi
∪ S̃zi

, |C(i)
t | = L+∆

13: Dynamically pairing: P
(i)
t =

{(E(i), ah1, ah2, y)|ah1, ah2 ∈ C
(i)
t }, |P (i)

t | = L+∆
14: end for

15: Pt =
n⋃

i=1

P
(i)
t

16: Train N with Pt

17: Increase ∆
18: end for
19: return pre-trained T-AHC N∗

liminary embedding of an unseen task efficiently. Specif-

ically, we remove the arch-hypers that do not contain

either spatial or temporal operators since existing stud-

ies [67,68] show that considering only temporal or spa-

tial dependencies yields poor forecasting performance.

Next, we adopt a heuristic approach, specifically an evo-

lutionary algorithm [23] based on genetic algorithm, to

find the best arch-hyper in the joint search space. We

first sample Ks arch-hypers, which are paired up to

produce Ks(Ks − 1)/2 comparison pairs of the form

(t, ah1, ah2). Then the descending ranking of the Ks

arch-hypers can be obtained easily based on the com-

parative performance determined by the pre-trained T-

AHC. Then, we select the top kp from the Ks arch-

hypers in descending order as the initial population.

Each arch-hyper has crossover and mutation probabil-

ities p1 and p2, respectively, when generating new off-

spring in each evolution step. The offspring are added

to the population, and the learned T-AHC is used to

compare arch-hypers in the population and to remove

inferior arch-hypers to maintain the population size at

kp. We then use the pre-trained T-AHC to heuristically

search and rank the top-K arch-hypers from the search

space. As the T-AHC does not guarantee transitivity,

we use a Round-Robin algorithm to identify the top-K

arch-hypers as the algorithm also does not rely on tran-

sitivity. More specifically, for each arch-hyper ah, we
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count the number of wins (i.e., ah having a larger accu-

racy) against each of the remaining arch-hypers. Then,

we choose the arch-hypers with the top-k largest num-

bers of wins. The process is outlined in Algorithm 2.

Algorithm 2 Zero-shot Search Algorithm

Input: joint search space Ω,pre-trained T-AHC N∗, task
T = (D, P,Q), where D is the target CTS dataset and P
and Q are the task settings
Output: optimal arch-hyper ah∗

1: Split D into Dtrain, Dval

2: {Ei} = TS2Vec(D, P,Q)
3: Heuristic search and rank ah ∈ Ω with the pre-trained

T-AHC: N∗({Ei}, ah1, ah2)
4: Train the top-K ah ∈ Ω on Dtrain

5: return The ah∗ that yields the highest validation accu-
racy on Dval

4 Experimental Study

We report on comprehensive experiments on seven CTS

datasets while using diverse forecasting settings. The

results offer evidence that the proposed framework suc-

cessfully eliminates the two main limitations of previ-

ous proposals, as intended. First, joint search facilitates

the identification of forecasting models with higher fore-

casting accuracy than does architecture-only search. Sec-

ond, zero-shot search enables efficient identification of

competitive forecasting models for unseen tasks, with a

latency of only a few minutes.

4.1 Experimental Settings

4.1.1 Tasks for pre-training and testing

To pre-train T-AHC, we select eleven benchmark data-

sets as source datasets, create subsets from these with

varying task settings based on the guidelines presented

in Section 3.2.4. This allows us to generate a variety of

source tasks to pre-train T-AHC. Then, we select seven

benchmark datasets with several forecasting settings as

target tasks to assess the ability of T-AHC to support

zero-shot search on unseen tasks. Below, we describe

the source and target tasks, including their datasets

and forecasting settings.

Source Tasks:

– PEMS03, PEMS04, PEMS07, and PEMS08 [56]: The-

se datasets record the traffic flow in four different

regions of California, and are collected from the Cal-

trans Performance Measurement System (PeMS).

– METR-LA [43]: This dataset provides statistics on

traffic speeds for a duration of four months. It in-

cludes data from 207 sensors located on the highways

of Los Angeles County.

– ETTh1, ETTh2, ETTm1, and ETTm2 [81]: These

datasets contain information on electric power de-

ployment, featuring 7 indicators.

– Solar-Energy [35]: This dataset contains records of

solar power production gathered from 137 PV plants

in the state of Alabama.

– ExchangeRate [35]: The dataset encompasses the daily

exchange rates of eight foreign countries.

We choose P -12/Q-12 and P -48/Q-48 as forecast-

ing settings, i.e, we consider only multi-step forecasting.

We derive 100 subsets from the source datasets based

on guidelines from Section 3.2.4, thus generating 200

source tasks to pre-train T-AHC.

Target Tasks:

– Electricity [35]: This dataset comprises electricity con-

sumption records obtained from 321 clients.

– PEMS-BAY [43]: This dataset includes data from 325

traffic sensors in the Bay Area of California over a

period of 6 months.

– PEMSD7(M) [75]: This dataset contains data from

228 traffic sensor stations in California’s state high-

way system.

– NYC-TAXI [73]: This dataset consists of taxicab rec-

ords. Collected in New York City that has been cat-

egorized into 266 virtual stations.

– NYC-BIKE [73]: This dataset includes bike orders

from New York City, which have been clustered into

250 virtual stations.

– Los-Loop [80]: This dataset collects traffic speed data

from 207 loop detectors along the highways of Los

Angeles County for a period of seven days.

– SZ-TAXI [80]: This dataset encompasses taxi tra-

jectory data from the Luohu District in Shenzhen,

China that spans 156 major roads.

To assess the generalization capability of the frame-

work, we create 28 unseen tasks by choosing four fore-

casting settings for each of the seven target datasets as

follows: P -12/Q-12, P -24/Q-24, P -48/Q-48 for multi-

step forecasting and P -168/Q-1 (3rd) for single-step

forecasting. We summarize the statistics and split ratios

of datasets in Table 3.

4.1.2 Evaluation metrics

When comparing the performance of different CTS fore-

casting models, we follow previous studies [3,43,67,68,

75] and use mean absolute error (MAE), root mean

squared error (RMSE), and mean absolute percentage
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Table 3 Dataset statistics. Split Ratio captures the train-
validation-test split. M and S refer to Multi- and Single- step
forecasting.

Dataset N T Split Ratio (M) Split Ratio (S)

PEMS-BAY 325 52,116 7:1:2 6:2:2
Electricity 321 26,304 7:1:2 6:2:2
PEMSD7(M) 228 12,671 6:2:2 6:2:2
NYC-TAXI 266 4,368 6:2:2 6:2:2
NYC-BIKE 250 4,368 6:2:2 6:2:2
Los-Loop 207 2,016 7:1:2 6:2:2
SZ-TAXI 156 2,976 7:1:2 6:2:2

error (MAPE) for estimating the accuracy of multi-

step forecasting. We use Root Relative Squared Error

(RRSE) and Empirical Correlation Coefficient (CORR)

for estimating the accuracy of single-step forecasting.

For MAE, RMSE, MAPE, and RRSE, smaller values

are better, while for CORR larger values are better.

4.1.3 Baselines

To enable fair comparisons in the zero-shot scenario,

we choose existing CTS forecasting models as base-

lines, including manually designed and auto-designed

ones. Specifically, we compare AutoCTS++ with five

competitive manually designed CTS forecasting mod-

els and three models designed by state-of-the-art au-

tomated methods. The results of the baselines are ob-

tained using the originally released source code.

• MTGNN: A multivariate time series forecasting model,

which employs mix-hop graph convolution and di-

lated inception convolution to form ST-blocks [67].

• AGCRN: An adaptive graph convolutional recurrent

network that employs 1D GCNs and GRUs to form

ST-blocks [3].

• PDFormer: A traffic flow forecasting model based

mainly on the Transformer structure [24].

• Autoformer: A transformer-based forecasting model

that incorporates time series decomposition into its

backbone and replaces attention with auto-correlation

[64].

• FEDformer: A transformer-based forecasting model

with the same backbone as Autoformer and a frequen-

cy-enhanced attention mechanism [82].

• AutoSTG+: A supernet-based automated CTS fore-

casting framework that employs DGCN and 1D con-

volution to build the search space and introduces

meta learning to learn the weights of neural opera-

tors [48]. We use the optimal model built on METR-

LA with P-12/Q-12.

• AutoCTS: A supernet-based automated CTS fore-

casting framework that focuses on selecting optimal

sets of neural operators to build search space [65].

We use the optimal model built on PEMS03 with

P-12/Q-12 from the case study in the original paper.

• AutoCTS+: A comparator-based automated CTS for-

eacasting framework, which supports joint search for

architectures and hyperparameters [66]. We use the

optimal model built on PEMS08 with P-48/Q-48 from

the case study in the original paper.

4.1.4 Implementation details

We have implemented means of pre-training T-AHC

and of training CTS forecasting models.

Setting up T-AHC. Since we allow ST-blocks to have

different numbers of nodes, the adjacency matrix Aa

may differ in sizes across arch-hypers. Thus, we pad

the adjacency matrices with zeros so that they are all

of size 14. We set the number of layers Ln of the GINs

to 4, with D = 128 hidden units in each layer. To pre-

train T-AHC, we use Adam [34] with a learning rate of

0.001 and a weight decay of 0.0005 as the optimizer. The

batch size is set to 64. Moreover, we set the representa-

tion dimension F of TS2Vec to 256. The hidden dimen-

sion F ′
1 and F ′

2 of Set-Transformer are set separately

to 256 and 128. We split subsets from source datasets

and configure different settings to create 200 tasks. We

collect about 10,000 arch-hypers from the tasks, gener-

ate pairs for each epoch dynamically and train T-AHC

for 100 epochs with an early stop patience of 5 epochs.

To reduce the cost of collecting arch-hypers, we use an

early-validation metric [66] and set the training epochs

k = 5. Due to the low cost of collecting arch-hypers and

the T-AHC’s high utilization of samples, the framework

can be generalized over the large joint search space with

an acceptable cost.

To make the evolutionary algorithm work well, we

set the crossover and mutation probabilities p1 and p2
to 0.8 and 0.2, respectively, and the population size

kp to 10. Lastly, we choose the top-3 arch-hypers from

the population. Being a neural network, the T-AHC

does not guarantee transitivity, meaning that highly ef-

ficient sorting algorithms cannot be utilized. But the in-

creased search time is uncritical because AutoCTS++

saves hundreds of GPU hours by supporting zero-shot

search. We also show that the search time can be con-

trolled within an acceptable scope to achieve acceptable

performance; see Section 4.2.4.

Setting up CTS forecasting models. We use MAE

as the training objective to train CTS forecasting mod-

els, and we use Adam with a learning rate of 0.001 and

a weight decay of 0.0001 as the optimizer. The batch

size is set to 64.

Reproducibility. We conduct all experiments on eight

Nvidia A800 GPUs. To support reproducibility, all source

code is released at:

https://github.com/decisionintelligence/AutoCTS++.

https://github.com/decisionintelligence/AutoCTS++
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Fig. 6 Two-dimensional visualization of the embeddings of tasks. Each point represents a specific task, composed of a subset
of a source dataset task settings. We use different source datasets and use circles and triangles to distinguish the forecasting
settings P -12/Q-12 and P -48/Q-48. The figure shows the similarities among tasks.

4.2 Experimental Results

4.2.1 Task similarity studies

In order to discern the relationships among tasks, we

randomly select three subsets from each source dataset

with two different forecasting settings: P -12/Q-12 and

P -48/Q-48. We then use the pre-trained T-AHC to en-

code the tasks and display them on a two-dimensional

plane (see Figure 6). Note that the similarity of tasks

is reflected in the ranking of arch-hypers. By leveraging

this knowledge, T-AHC is capable of effectively evalu-

ating task similarities by mapping them to different or

the same clusters. We summarize our main observations

as follows.

First, tasks with datasets from different domains of-

ten exhibit significant variations, indicated by the op-

timal models often changing across different domains.

While tasks consist of the same dataset but different P

and Q also differ. For example, with both P -12/Q-12

and P -48/Q-48 as forecasting settings, it is observed

that tasks related to Solar-Energy, PEMS, and ETT

belong to different clusters.

Second, the scale of a dataset affects the structures

of optimal models. For example, tasks related to Ex-

changeRate are similar to tasks related to ETT to some

extent because they both have few nodes. Their task

embeddings are also similar in Figure 6. When we con-

sider the performance of the shared arch-hypers on them,

we find that arch-hypers with fewer spatial operators

and more temporal operators perform better.

Third, the forecasting settings also matter. Obvi-

ously, the positions of tasks in Figure 6 with the two

forecasting settings with P -12/Q-12 and P -48/Q-48,

are quite dissimilar, which means that their high-dimen-

sional coordinates are separated widely. Another exam-

ple shows that tasks related to METR-LA are similar

to those related to PEMS under the P -48/Q-48 set-

ting but are dispersed into different clusters under the

P -12/Q-12 setting.

To assess whether the visualized embedding similar-

ity indeed reflects the true similarity between tasks, we

select task a (a subset from PEMS08 with P -12/Q-12),
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Table 4 Quantitative analysis of task similarities.

a and b a and c b and c
MAE Spear MAE Spear MAE Spear
0.0711 0.7522 0.2335 0.4038 0.1980 0.4927

task b (a subset from METR-LA with P -12/Q-12) and

task c (a subset from Solar-Energy with P -48/Q-48)

for a quantitative analysis. Specifically, we randomly

sample 200 arch-hypers from the joint search space and

train them on these three tasks. To quantify the simi-

larity, we report the MAE and Spearman’s rank corre-

lation coefficient (ρ) with the arch-hypers’ normalized

accuracy between each pair of tasks in Table 4. The re-

sults indicate that the same arch-hyper exhibits compa-

rable normalized accuracy between tasks a and b, while

displaying a significant variation in accuracy for task c.

This observation aligns with the pattern of embedding

similarity illustrated in Figure 6, where the embeddings

for tasks a and b are grouped closely together, in con-

trast to the embedding for task c, which is located at a

considerable distance from the others.

To sum up, we observe intrinsic correlations between

tasks, which are captured by the pre-trained T-AHC.

Furthermore, by building the map between task char-

acteristics and model rankings, AutoCTS++ is able to

exploit the task characteristics to facilitate a zero-shot

search for optimal arch-hypers for unseen tasks.

4.2.2 Performance comparison

Tables 5–8 report the performance of our framework

and the baselines on the seven unseen CTS forecast-

ing datasets for both multi-step and single-step fore-

casting. We train and test all the models five times

with different random seeds and present the results as

“mean±standard deviation.”

To assess the generalization capability of our frame-

work for different CTS forecasting tasks, we ensure that

the seven target CTS forecasting datasets are unseen

for the pre-trained T-AHC. Further, we configure three

different multi-step forecasting settings: P -12/Q-12, P -

24/Q-24, and P -48/Q-48, and one single-step forecast-

ing setting: P -168/Q-1 (3rd). Among these, P -12/Q-

12 and P -48/Q-48 were chosen when creating tasks for

pre-training, while P -24/Q-24 and P -168/Q-1 (3rd) are

new. For fair comparisons in the zero-shot scenario, we

use AutoSTG+, AutoCTS and AutoCTS+ to represent

three optimal models that are obtained on METR-LA

with P -12/Q-12, PEMS03 with P -12/Q-12 and PEMS08

with P -48/Q-48, respectively in past studies [65, 66].

Since the baselines do not manually tune hyperparam-

eters under the P -24/Q-24, P -48/Q-48, and P -168/Q-1

(3rd) settings, to enable fair comparisons, we conduct

grid-search for them to find the best hidden dimension

H and output dimension I (2 × 2 times), and we also

include the hyperparameter setting they use under the

P -12/Q-12 setting. Since we use the same experimental

settings, some of the results for MTGNN, AutoCTS,

and AutoCTS+ in Tables 5–8 are obtained from the

original papers. Note that PDFormer relies on a pre-

defined adjacency matrix to generate a Laplacian ma-

trix. As such a matrix is not available in the dataset

Electricity, we use the Identity Matrix as a substitute.

None of the remaining baselines and our framework re-

quire predefined adjacency matrices, as they employ

self-adaptive adjacency matrices to learn correlations

among time series.

We use bold and underline to highlight the best

and the second-best results, respectively. We offer the

following main observations.

First, AutoCTS++ most often achieves the best

forecasting accuracy acoss all datasets and P/Q set-

tings. In particular, it outperforms the manually and

automatically designed models across different tasks.

This is strong evidence of the effectiveness of Auto-

CTS++.

Second, AutoCTS++ achieves consistent accuracy

on seven datasets with P -12/Q-12, P -24/Q-24, P -48/Q-

48, and P -168/Q-1 (3rd) settings. For the baselines,

although we conduct grid-search and take much time

to find the best hyperparameters, this seldom yields

competitive arch-hypers. In contrast, the joint search

in AutoCTS++ can find high-performance arch-hypers

across different P/Q settings. These findings confirm

the importance of joint architecture-and-hyperparameter

search as enabled by AutoCTS++.

Third, the results on the P -12/Q-12 and P -48/Q-48

tasks are generated from unseen datasets, while the re-

sults on the P -24/Q-24 and P -168/Q-1 (3rd) tasks are

enabled by generalization. This is empirical evidence

that the proposed framework possesses the capability

of finding the most suitable combinations of architec-

tures and hyperparameter settings for different tasks,

indicating that the proposed pre-training method is ef-

fective.

We observe similar trends for single-step and multi-

step forecasting. Specifically, our framework achieves

the best performance in the majority of datasets and

forecasting settings, indicating that the zero-shot joint

search framework is successful.

4.2.3 Ablation studies

We conduct an ablation study to investigate the ef-

fectiveness of key components of the proposed zero-

shot joint search framework. We report results for all
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Table 5 Performance of P-12/Q-12 forecasting.

Dataset Metric AutoCTS++ AutoSTG+ AutoCTS AutoCTS+ MTGNN AGCRN PDFormer Autoformer FEDformer

MAE
1.566
±0.009

1.592
±0.008

1.900
±0.011

1.583
±0.010

1.940
±0.008

1.652
±0.009

1.742
±0.012

1.891
±0.013

1.848
±0.020

PEMS-BAY RMSE
3.466
±0.018

3.620
±0.018

4.350
±0.023

3.526
±0.015

4.490
±0.036

3.815
±0.021

3.920
±0.017

4.335
±0.026

4.248
±0.033

MAPE
3.484%
±0.023%

3.694%
±0.024%

4.510%
±0.032%

3.515%
±0.019%

4.530%
±0.040%

3.843%
±0.028%

3.947%
±0.019%

4.301%
±0.024%

4.196%
±0.039%

MAE
235.353
±0.641

278.914
±0.730

250.256
±0.695

241.536
±0.715

306.331
±0.829

611.08
±1.740

247.982
±0.642

267.915
±0.668

245.104
±0.574

Electricity RMSE
2036.145
±5.531

2291.012
±5.709

2244.362
±6.820

2088.037
±4.995

2468.959
±7.623

8288.991
±22.108

2178.527
±5.012

2301.015
±6.774

2095.128
±4.407

MAPE
16.476%
±0.390%

22.910%
±0.413%

18.045%
±0.620%

17.761%
±0.505%

24.381%
±0.617%

42.628%
±1.590%

16.864%
±0.525%

19.103%
±0.570%

16.994%
±0.360%

MAE
2.626
±0.016

2.655
±0.020

2.674
±0.013

2.701
±0.025

2.643
±0.024

2.697
±0.028

2.631
±0.015

2.648
±0.021

2.633
±0.029

PEMSD7M RMSE
5.194
±0.014

5.204
±0.019

5.295
±0.013

5.224
±0.020

5.217
±0.028

5.401
±0.034

5.261
±0.021

5.311
±0.011

5.220
±0.017

MAPE
6.394%
±0.028%

6.518%
±0.034%

6.692%
±0.033%

6.671%
±0.029%

6.523%
±0.028%

6.782%
±0.034%

6.482%
±0.024%

6.708%
±0.019%

6.510%
±0.030%

MAE
5.403
±0.022

5.671
±0.022

5.756
±0.026

5.536
±0.021

5.767
±0.018

5.708
±0.022

6.259
±0.031

6.355
±0.023

6.271
±0.034

NYC-TAXI RMSE
9.513
±0.048

10.125
±0.056

10.320
±0.043

9.792
±0.041

10.568
±0.048

14.974
±0.051

11.206
±0.064

15.705
±0.072

12.441
±0.033

MAPE
39.150

±0.371%
43.004

±0.322%
40.905

±0.350%
41.235

±0.373%
39.601%
±0.390%

40.327%
±0.357%

43.194%
±0.245%

46.141%
±0.377%

43.815%
±0.282%

MAE
1.978
±0.010

2.019
±0.007

2.037
±0.011

2.026
±0.008

1.997
±0.005

1.736
±0.013

2.068
±0.011

1.988
±0.012

2.019
±0.015

NYC-BIKE RMSE
2.954
±0.022

3.204
±0.027

3.114
±0.018

3.102
±0.015

3.035
±0.018

2.939
±0.008

3.175
±0.014

3.003
±0.016

3.112
±0.012

MAPE
51.326%
±0.405%

53.371%
±0.480%

53.059%
±0.397%

52.244%
±0.368%

51.437%
±0.455%

58.281%
±0.740%

53.861%
±0.671%

51.731%
±0.454%

52.435%
±0.623%

MAE
3.634
±0.003

3.655
±0.003

3.677
±0.002

3.672
±0.002

3.639
±0.004

7.214
±0.012

3.658
±0.003

3.648
±0.002

3.655
±0.003

Los-Loop RMSE
6.904
±0.015

7.112
±0.016

7.063
±0.012

7.069
±0.021

7.084
±0.015

14.782
±0.194

6.956
±0.013

6.974
±0.018

7.001
±0.019

MAPE
10.315%
±0.040%

10.695%
±0.037%

10.720%
±0.044%

10.609%
±0.035%

10.446%
±0.039%

32.641%
±0.041%

10.418%
±0.043%

10.552%
±0.048%

10.487%
±0.042%

SZ-TAXI
MAE

2.590
±0.007

3.008
±0.007

3.250
±0.010

3.254
±0.010

3.179
±0.009

3.019
±0.007

2.719
±0.015

2.733
±0.009

2.725
±0.007

RMSE
4.112
±0.017

4.237
±0.019

4.544
±0.017

4.557
±0.017

4.474
±0.015

4.229
±0.018

4.364
±0.022

4.301
±0.020

4.278
±0.014

datasets and settings in Tables 9–12. We again train

and test all the models five times with different ran-

dom seeds and present the results as “mean±standard

deviation.”

We compare our framework with three variants.

• w/o TS2Vec uses MLP to substitute TS2Vec and

generates preliminary embeddings of tasks.

• w/o Set-Transformer uses mean-pooling to aggre-

gate the preliminary embeddings generated by TS2-

Vec.

• w/o shared samples does not pre-train a T-AHC

with shared samples but only with random samples

from different tasks.

From Tables 9–12, we observe that: (1) the proposed

framework consistently outperforms all variants on all

evaluation metrics, indicating that each replaced com-

ponent is essential to the performance of the framework;

(2) w/o Set-Transformer is the worst, indicating that it

is necessary to apply this transformer-based structure

to extract and preserve the task information during pre-

training; (3) w/o shared samples is nearly the second

worst for most tasks, proving that shared samples pro-

vide more information and improve the performance of

T-AHC; and (4) w/o TS2Vec shows extremely poor per-

formance on some tasks, demonstrating that TS2Vec is

a more powerful and robust component for encoding

the tasks compared to a simple MLP.

4.2.4 Sample-limited performance study

Our framework supports zero-shot search on any un-

seen task by randomly sampling Ks arch-hypers from

the joint search space and utilizing the task representa-

tion to rank them for top-K arch-hypers. To assess the

performance of our framework in a arch-hyper sample-

limited scenario, we employ five variants for Ks. Note

that the main results for AutoCTS++ are produced

using Ks = 300, 000. We include the model searched

by AutoCTS+ and the manually-designed PDFormer

as additional baselines and perform comparisons on all

seven benchmark datasets with P -24/Q-24. We train

and test all the models five times with different ran-

dom seeds and report means and standard deviations.

We also report the search time in GPU minutes for
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Table 6 Performance of P-24/Q-24 forecasting.

Dataset Metric AutoCTS++ AutoSTG+ AutoCTS AutoCTS+ MTGNN AGCRN PDFormer Autoformer FEDformer

MAE
1.828
±0.009

1.923
±0.007

1.911
±0.012

1.836
±0.011

1.874
±0.009

2.039
±0.013

1.843
±0.012

1.879
±0.014

1.903
±0.016

PEMS-BAY RMSE
4.096
±0.010

4.600
±0.009

4.435
±0.010

4.147
±0.014

4.207
±0.014

4.622
±0.013

4.112
±0.008

4.218
±0.016

4.198
±0.13

MAPE
4.133%
±0.018%

4.981%
±0.016%

4.784%
±0.015%

4.236%
±0.013%

4.387%
±0.017%

4.977%
±0.015%

4.139%
±0.018%

4.281%
±0.019%

4.191%
±0.019%

MAE
184.031
±0.953

199.914
±0.715

204.333
±0.669

205.401
±0.801

195.063
±1.001

1718.216
±4.750

202.571
±0.685

218.910
±0.582

204.332
±0.703

Electricity RMSE
1537.341
±3.693

1635.016
±3.815

1681.030
±4.201

1784.313
±4.566

1595.157
±3.404

16364.798
±35.915

1724.646
±4.336

1891.122
±5.017

1754.101
±5.002

MAPE
14.532%
±0.280%

15.312%
±0.317%

15.790%
±0.320%

16.085%
±0.348%

14.854%
±0.314%

58.626%
±3.505%

16.004%
±0.290%

16.077%
±0.290%

15.118%
±0.304%

MAE
3.114
±0.025

3.233
±0.027

3.227
±0.025

3.191
±0.028

3.218
±0.022

8.823
±0.085

3.203
±0.021

3.198
±0.019

3.192
±0.028

PEMSD7M RMSE
6.134
±0.021

6.309
±0.022

6.171
±0.021

6.221
±0.020

6.247
±0.019

14.674
±0.018

6.193
±0.020

6.225
±0.023

6.218
±0.026

MAPE
7.911%
±0.032%

8.546%
±0.034%

8.328%
±0.032%

8.333%
±0.037%

8.262%
±0.034%

28.915%
±0.460%

8.242%
±0.038%

8.298%
±0.048%

8.267%
±0.054%

MAE
5.061
±0.020

5.541
±0.025

6.221
±0.021

5.902
±0.026

5.100
±0.022

6.072
±0.024

5.760
±0.024

5.289
±0.025

5.142
±0.024

NYC-TAXI RMSE
9.206
±0.042

10.011
±0.045

11.834
±0.039

11.106
±0.042

9.347
±0.044

16.772
±0.062

10.506
±0.036

9.877
±0.042

9.458
±0.038

MAPE
37.709%
±0.301%

38.910 %
±0.335%

45.452%
±0.490%

42.283%
±0.383%

35.852%
±0.390%

43.417%
±0.420%

43.709%
±0.431%

37.881%
±0.341%

37.714%
±0.387%

MAE
1.959
±0.008

2.091
±0.010

2.177
±0.012

2.088
±0.008

2.052
±0.007

1.745
±0.012

2.049
±0.008

1.980
±0.009

2.143
±0.011

NYC-BIKE RMSE
2.934
±0.014

3.241
±0.013

3.440
±0.014

3.232
±0.017

3.146
±0.020

2.941
±0.018

3.147
±0.022

3.000
±0.014

3.301
±0.018

MAPE
51.463%
±0.418%

52.989%
±0.445%

53.915%
±0.485%

53.913%
±0.422%

53.307%
±0.430%

59.724%
±0.504%

52.648%
±0.398%

52.671%
±0.446%

53.318%
±0.398%

MAE
3.877
±0.004

4.266
±0.006

4.179
±0.007

4.244
±0.008

4.146
±0.007

4.452
±0.006

4.120
±0.005

4.135
±0.010

4.126
±0.008

Los-Loop RMSE
7.513
±0.014

8.139
±0.013

7.775
±0.015

7.943
±0.019

7.845
±0.017

8.831
±0.016

7.927
±0.017

7.893
±0.018

7.790
±0.020

MAPE
11.576%
±0.039%

13.284%
±0.041%

12.857%
±0.040%

13.209%
±0.040%

12.609%
±0.37%

13.720%
±0.042%

12.736%
±0.043%

12.784%
±0.044%

12.709%
±0.035%

SZ-TAXI
MAE

2.615
±0.007

3.381
±0.011

3.271
±0.012

3.256
±0.011

3.215
±0.011

2.737
±0.009

3.237
±0.013

3.011
±0.015

2.987
±0.018

RMSE
4.152
±0.013

4.770
±0.013

4.559
±0.016

4.547
±0.014

4.528
±0.009

4.342
±0.010

4.542
±0.014

4.390
±0.012

4.388
±0.016

all variants. For the baselines, we report the time of

hyperparameter grid search. As shown in Table 13, a

performance bottleneck occurs when Ks increases from
300,000 to 600,000, causing the time consumption to

increase markedly. When Ks < 300,000, performance

gradually decreases and fails to compete with automatic-

ally- or manually-designed baselines. Generally consid-

ering time consumption and performance, we choose

Ks = 300,000 as the experimental setting in our study.

4.2.5 Efficiency study

By supporting zero-shot search for optimal arch-hypers

on unseen tasks, we save tens to hundreds of GPU hours

compared to the fully-supervised methods. Then we fo-

cus on the stability of the search efficiency by timing

the search process on different tasks.

Specifically, we report the search time (embedding

and ranking) and training time of our framework on

different tasks in Figure 7. The search process con-

sists of two phases: embedding the task and ranking

arch-hypers. Although the former is correlated with the

scale of the dataset, TS2Vec is capable of encoding a

large-scale CTS dataset in several minutes. To enable

fair comparisons, we fix the number of arch-hypers at

300,000 and report the time cost of the latter, finding

that it remains stable across different tasks. Although

the training time varies considerably across different

tasks, the framework consistently achieves minutes-level

search (i.e., embedding and ranking) time across differ-

ent tasks, with dataset sizes and forecasting settings

having little impact on search efficiency.

4.2.6 Case study

We show ten searched ST-blocks (arch-hypers) for dif-

ferent target datasets and settings in Figures 8 and 9. In

Figure 8, we see the optimal arch-hypers found for the

same dataset PEMS-BAY(Figures 8(a)–8(d)) change dr-

amatically across the forecasting settings. Not only do

the architectures change markedly but also do the set-

tings of hyperparameters such as the hidden dimension

H, the number of ST-blocks B, and the output mode

U , exemplifying how the framework is sensitive to the

forecasting settings and reacts positively to search for
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Table 7 Performance of P-48/Q-48 forecasting.

Dataset Metric AutoCTS++ AutoSTG+ AutoCTS AutoCTS+ MTGNN AGCRN PDFormer Autoformer FEDformer

MAE
2.057
±0.006

2.184
±0.005

2.155
±0.008

2.088
±0.007

2.198
±0.010

2.731
±0.006

2.064
±0.004

2.098
±0.003

2.114
±0.006

PEMS-BAY RMSE
4.331
±0.021

4.702
±0.019

4.694
±0.021

4.656
±0.022

4.610
±0.024

5.026
±0.018

4.392
±0.19

4.407
±0.20

4.399
±0.19

MAPE
4.920%
±0.026%

5.377%
±0.032%

4.939%
±0.0%

5.012%
±0.035%

5.211%
±0.036%

6.733%
±0.038%

4.928%
±0.029%

4.975%
±0.025%

4.959%
±0.026%

MAE
215.821
±0.680

229.435
±0.744

230.258
±0.601

235.367
±0.792

260.799
±0.848

881.452
±4.120

222.223
±0.698

227.015
±0.583

248.105
±0.714

Electricity RMSE
1839.744
±4.875

2218.553
±5.332

2220.038
±5.481

2293.589
±5.665

1906.649
±4.957

12051.841
±38.194

2055.565
±4.910

2191.190
±5.326

2301.014
±4.874

MAPE
16.681%
±0.382%

17.103%
±0.433%

16.761%
±0.458%

16.739%
±0.387%

18.906%
±0.397%

45.871%
±2.519%

17.633%
±0.421%

17.602%
±0.440%

18.510%
±0.525%

MAE
3.552
±0.023

3.592
±0.023

3.590
±0.025

3.587
±0.023

3.585
±0.019

3.606
±0.025

3.559
±0.023

3.660
±0.025

3.622
±0.023

PEMSD7M RMSE
6.801
±0.028

6.841
±0.030

6.836
±0.028

6.877
±0.028

6.921
±0.032

7.199
±0.035

6.814
±0.029

7.247
±0.030

7.149
±0.028

MAPE
9.190%
±0.044%

9.274%
±0.047%

9.281%
±0.043%

9.437%
±0.049%

9.353%
±0.047%

9.579%
±0.046%

9.201%
±0.046%

9.623%
±0.044%

9.585%
±0.046%

MAE
5.584
±0.026

5.988
±0.025

6.708
±0.030

5.622
±0.028

6.009
±0.029

6.586
±0.034

5.955
±0.027

5.972
±0.025

5.848
±0.024

NYC-TAXI RMSE
9.971
±0.044

11.334
±0.057

13.199
±0.065

10.174
±0.042

11.419
±0.046

18.049
±0.055

11.863
±0.042

12.301
±0.043

11.874
±0.041

MAPE
38.769%
±0.375%

45.943%
±0.401%

51.636%
±0.552%

42.154%
±0.405%

46.524%
±0.389%

49.629%
±0.539%

39.576%
±0.362%

47.290%
±0.485%

46.104%
±0.430%

MAE
2.073
±0.008

2.085
±0.006

2.141
±0.009

2.131
±0.007

2.097
±0.007

1.713
±0.008

2.096
±0.009

2.126
±0.010

2.112
±0.006

NYC-BIKE RMSE
3.227
±0.020

3.338
±0.023

3.373
±0.019

3.382
±0.023

3.263
±0.022

2.900
±0.018

3.308
±0.025

3.411
±0.026

3.282
±0.023

MAPE
52.110%
±0.408%

53.899%
±0.471%

54.047%
±0.486%

52.661%
±0.464%

53.631%
±0.470%

59.662%
±0.522%

52.672%
±0.405%

54.381%
±0.436%

52.890%
±0.462%

MAE
4.530
±0.006

4.630
±0.005

4.753
±0.006

4.953
±0.005

4.624
±0.008

8.962
±0.017

4.767
±0.006

4.886
±0.006

4.675
±0.005

Los-Loop RMSE
8.327
±0.022

8.557
±0.023

8.715
±0.020

9.116
±0.021

8.549
±0.022

14.956
±0.124

9.003
±0.025

9.056
±0.024

8.878
±0.022

MAPE
14.873%
±0.063%

17.328%
±0.075%

16.228%
±0.077%

17.473%
±0.082%

15.961%
±0.069%

34.184%
±0.231%

16.028%
±0.080%

16.153%
±0.0721%

16.028%
±0.0793%

SZ-TAXI
MAE

2.656
±0.008

3.275
±0.011

3.255
±0.009

3.253
±0.010

3.193
±0.011

2.980
±0.008

3.196
±0.010

3.103
±0.013

3.018
±0.011

RMSE
4.193
±0.015

4.639
±0.018

4.548
±0.016

4.540
±0.017

4.486
±0.019

4.397
±0.014

4.496
±0.015

4.508
±0.016

4.439
±0.016

Table 8 Performance of P-168/Q-1 (3rd) forecasting.

Dataset Metric AutoCTS++ AutoSTG+ AutoCTS AutoCTS+ MTGNN AGCRN PDFormer Autoformer FEDformer

PEMS-BAY
RRSE

0.2873
±0.0003

0.3095
±0.0004

0.2901
±0.0003

0.3207
±0.0004

0.2924
±0.0002

0.4719
±0.0004

0.2940
±0.0003

0.2984
±0.0003

0.2952
±0.0003

CORR
0.9308
±0.0006

0.9248
±0.0005

0.9275
±0.0005

0.9173
±0.0006

0.9262
±0.0005

0.8586
±0.0009

0.9348
±0.0006

0.9001
±0.0007

0.9281
±0.0007

Electricity
RRSE

0.0742
±0.0002

0.0760
±0.0003

0.0756
±0.0002

0.0744
±0.0003

0.0745
±0.0002

0.1033
±0.0003

0.0781
±0.0002

0.0752
±0.0002

0.0749
±0.0002

CORR
0.9477
±0.0005

0.9430
±0.0006

0.9434
±0.0005

0.9467
±0.0006

0.9474
±0.0008

0.8854
±0.0012

0.9273
±0.0008

0.9289
±0.0008

0.9470
±0.0007

PEMSD7M
RRSE

0.2861
±0.0004

0.2903
±0.0004

0.3154
±0.0005

0.3165
±0.0004

0.2981
±0.0003

0.5314
±0.0003

0.2884
±0.0004

0.2889
±0.0003

0.3017
±0.0004

CORR
0.9292
±0.0009

0.9238
±0.0008

0.9242
±0.0007

0.9234
±0.0008

0.9258
±0.0008

0.8186
±0.0007

0.9270
±0.0009

0.9267
±0.0010

0.9211
±0.0007

NYC-TAXI
RRSE

0.2138
±0.0004

0.2478
±0.0003

0.2504
±0.0004

0.2218
±0.0003

0.2273
±0.0004

0.2709
±0.0004

0.2624
±0.0004

0.2232
±0.0003

0.2248
±0.0003

CORR
0.8831
±0.0011

0.8498
±0.0012

0.8457
±0.0011

0.8696
±0.0010

0.8565
±0.0012

0.8473
±0.0009

0.8417
±0.0010

0.8675
±0.0011

0.8647
±0.0009

NYC-BIKE
RRSE

0.7461
±0.0015

0.7975
±0.0018

0.8910
±0.0025

0.7919
±0.0014

0.7783
±0.0015

0.8983
±0.0026

0.7531
±0.0014

0.7644
±0.0013

0.7582
±0.0015

CORR
0.7902
±0.0008

0.7583
±0.0008

0.7482
±0.0008

0.7568
±0.0010

0.7696
±0.0011

0.7534
±0.0010

0.7669
±0.0009

0.7662
±0.0010

0.7659
±0.0008

Los-Loop
RRSE

0.4183
±0.0006

0.4359
±0.0005

0.4311
±0.0006

0.4360
±0.0006

0.4392
±0.0006

1.7565
±0.0021

0.4493
±0.0007

0.4475
±0.0008

0.4381
±0.0006

CORR
0.8034
±0.0009

0.7784
±0.0008

0.7797
±0.0007

0.7702
±0.0008

0.7695
±0.0007

0.0203
±0.0038

0.7699
±0.0007

0.7648
±0.0008

0.7738
±0.0007

SZ-TAXI
RRSE

0.4038
±0.0008

0.4963
±0.0014

0.4815
±0.0015

0.4785
±0.0015

0.4878
±0.0013

1.2367
±0.0054

0.4892
±0.0017

0.5075
±0.0026

0.5484
±0.0031

CORR
0.3414
±0.0018

0.2138
±0.0016

0.2206
±0.0017

0.2200
±0.0015

0.2216
±0.0018

0.0345
±0.0016

0.2236
±0.0016

0.1984
±0.0015

0.1937
±0.0016
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Table 9 Ablation studies, P-12/Q-12 forecasting

Dataset Metric AutoCTS++ w/o TS2Vec w/o Set-Transformer w/o shared samples

PEMS-BAY
MAE 1.566 ± 0.009 1.592 ± 0.008 1.643 ± 0.009 1.593 ± 0.008
RMSE 3.466 ± 0.018 3.502 ± 0.018 3.684 ± 0.016 3.519 ± 0.017
MAPE 3.484% ± 0.023% 3.589% ± 0.022% 3.729% ± 0.024% 3.540% ± 0.021%

Electricity
MAE 235.353 ± 0.641 244.313 ± 0.638 242.416 ± 0.646 240.249 ± 0.690
RMSE 2036.145 ± 5.531 2139.332 ± 5.602 2105.234 ± 5.517 2119.144 ± 5.622
MAPE 16.476% ± 0.390% 18.544% ± 0.410% 18.341% ± 0.398% 16.906% ± 0.402%

PEMSD7M
MAE 2.626 ± 0.016 2.837 ± 0.020 3.203 ± 0.019 2.976 ± 0.018
RMSE 5.194 ± 0.014 5.443 ± 0.017 6.193 ± 0.017 5.815 ± 0.015
MAPE 6.394% ± 0.028% 6.887% ± 0.032% 8.242% ± 0.029% 7.234% ± 0.033%

NYC-TAXI
MAE 5.403 ± 0.022 5.786 ± 0.021 5.760 ± 0.024 5.511 ± 0.025
RMSE 9.513 ± 0.048 10.583 ± 0.052 10.506 ± 0.049 9.673 ± 0.051
MAPE 39.150% ± 0.371% 41.752% ± 0.385% 43.709% ± 0.381% 39.274% ± 0.379%

NYC-BIKE
MAE 1.978 ± 0.010 2.037 ± 0.009 2.006 ± 0.011 2.021 ± 0.011
RMSE 2.954 ± 0.022 3.141 ± 0.022 3.043 ± 0.023 3.082 ± 0.024
MAPE 51.326% ± 0.405% 51.563% ± 0.412% 52.065% ± 0.410% 52.884% ± 0.395%

Los-Loop
MAE 3.634 ± 0.003 3.845 ± 0.003 3.807 ± 0.002 3.690 ± 0.004
RMSE 6.904 ± 0.015 7.400 ± 0.014 7.431 ± 0.017 7.127 ± 0.013
MAPE 10.315% ± 0.040% 11.418% ± 0.048% 11.368% ± 0.047% 10.583% ± 0.043%

SZ-TAXI
MAE 2.590 ± 0.007 2.694 ± 0.006 2.967 ± 0.010 3.230 ± 0.013
RMSE 4.112 ± 0.017 4.254 ± 0.020 4.192 ± 0.023 4.522 ± 0.019

Table 10 Ablation studies, P-24/Q-24 forecasting

Dataset Metric AutoCTS++ w/o TS2Vec w/o Set-Transformer w/o shared samples

PEMS-BAY
MAE 1.828 ± 0.009 1.895 ± 0.011 2.011 ± 0.010 1.855 ± 0.012
RMSE 4.096 ± 0.010 4.439 ± 0.012 4.723 ± 0.011 4.202 ± 0.010
MAPE 4.133% ± 0.018% 4.563% ± 0.020% 4.831% ± 0.021% 4.403% ± 0.023%

Electricity
MAE 184.031 ± 0.953 207.774 ± 1.031 201.941 ± 0.982 197.947 ± 1.004
RMSE 1537.341 ± 3.693 1697.343 ± 3.852 1607.118 ± 3.740 1581.030 ± 3.923
MAPE 14.532% ± 0.280% 16.217% ± 0.332% 15.533% ± 0.312% 14.761% ± 0.294%

PEMSD7M
MAE 3.114 ± 0.025 3.237 ± 0.029 3.441 ± 0.033 3.528 ± 0.038
RMSE 6.134 ± 0.021 6.243 ± 0.025 6.503 ± 0.023 6.847 ± 0.026
MAPE 7.911% ± 0.032% 8.387% ± 0.035% 8.872% ± 0.037% 9.062% ± 0.038%

NYC-TAXI
MAE 5.061 ± 0.020 5.786 ± 0.028 6.259 ± 0.024 5.760 ± 0.025
RMSE 9.206 ± 0.042 10.583 ± 0.048 11.719 ± 0.045 10.506 ± 0.044
MAPE 37.709% ± 0.301% 41.750% ± 0.342% 45.026% ± 0.369% 43.709% ± 0.351%

NYC-BIKE
MAE 1.959 ± 0.008 2.094 ± 0.010 2.106 ± 0.011 2.058 ± 0.009
RMSE 2.934 ± 0.014 3.231 ± 0.015 3.231 ± 0.015 3.147 ± 0.016
MAPE 51.463% ± 0.418% 53.332% ± 0.435% 55.056% ± 0.426% 52.648% ± 0.452%

Los-Loop
MAE 3.877 ± 0.004 4.202 ± 0.005 5.181 ± 0.005 4.146 ± 0.006
RMSE 7.513 ± 0.014 7.940 ± 0.015 9.677 ± 0.016 8.187 ± 0.018
MAPE 11.576% ± 0.039% 13.144% ± 0.042% 16.405% ± 0.043% 13.945% ± 0.046%

SZ-TAXI
MAE 2.615 ± 0.007 2.981 ± 0.008 3.237 ± 0.007 2.852 ± 0.009
RMSE 4.152 ± 0.013 4.312 ± 0.012 4.542 ± 0.015 4.360 ± 0.014

an optimal arch-hyper for each specific setting. A com-

parison of Figures 8(a), 8(e), and 8(f) reveals that arch-

hypers found for different target datasets but with the

same forecasting settings mainly rely on the hidden

similarity between datasets. The optimal arch-hypers

found for PEMS-BAY and PEMSD7(M) are similar

w.r.t. topological connections and operators between

node pairs. This is because datasets contain traffic data

from similar physical-world settings (both about traffic

in California) so that models performing well on one

can adapt to the other. In contrast, there is a gap be-

tween Electricity and PEMS-BAY that are from differ-

ent domains and do not share the same well-performed

models; thus the optimal arch-hypers found for these

two datasets exhibit marked disparities. Observing the

examples in Figure 9, we also find that some datasets

with similarN and T in Table 3 (NYC-TAXI and NYC-

BIKE, Los-Loop and SZ-TAXI) also share similar well-

performed models so that the optimal arch-hypers found

for them are similar.

To sum up, we find that tasks with different intrinsic

characteristics call for different arch-hypers. The rele-

vant characteristics include different temporal and spa-

tial patterns in the datasets, different difficulities with

forecasting settings, different trends correlated with do-

mains, and different scales of CTS datasets such as the
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Table 11 Ablation studies, P-48/Q-48 forecasting

Dataset Metric AutoCTS++ w/o TS2Vec w/o Set-Transformer w/o shared samples

PEMS-BAY
MAE 2.057 ± 0.006 2.140 ± 0.007 2.157 ± 0.006 2.088 ± 0.007
RMSE 4.331 ± 0.021 4.707 ± 0.023 4.594 ± 0.024 4.656 ± 0.023
MAPE 4.920% ± 0.026% 4.968% ± 0.028% 5.171% ± 0.026% 5.012% ± 0.030%

Electricity
MAE 215.821 ± 0.680 225.128 ± 0.722 230.258 ± 0.690 222.223 ± 0.732
RMSE 1839.744 ± 4.875 2145.600 ± 5.023 2220.038 ± 5.115 2055.565 ± 5.012
MAPE 16.681% ± 0.382% 15.495% ± 0.442% 16.761% ± 0.412% 17.633% ± 0.402%

PEMSD7M
MAE 3.552 ± 0.023 3.575 ± 0.025 3.607 ± 0.028 3.562 ± 0.024
RMSE 6.801 ± 0.028 6.874 ± 0.030 6.885 ± 0.032 6.858 ± 0.029
MAPE 9.190% ± 0.044% 9.496% ± 0.049% 9.455% ± 0.052% 9.241% ± 0.046%

NYC-TAXI
MAE 5.584 ± 0.026 5.874 ± 0.029 6.646 ± 0.025 5.631 ± 0.032
RMSE 9.971 ± 0.044 11.183 ± 0.048 12.344 ± 0.052 10.111 ± 0.045
MAPE 38.769% ± 0.375% 40.793% ± 0.385% 52.708% ± 0.402% 39.571% ± 0.421%

NYC-BIKE
MAE 2.073 ± 0.008 2.154 ± 0.009 2.234 ± 0.011 2.129 ± 0.009
RMSE 3.227 ± 0.020 3.420 ± 0.020 3.392 ± 0.023 3.382 ± 0.021
MAPE 52.110% ± 0.408% 52.295% ± 0.502% 53.003% ± 0.452% 53.775% ± 0.438%

Los-Loop
MAE 4.530 ± 0.006 4.659 ± 0.008 5.051 ± 0.009 4.760 ± 0.005
RMSE 8.327 ± 0.022 8.566 ± 0.021 9.323 ± 0.025 8.736 ± 0.024
MAPE 14.873% ± 0.063% 15.499% ± 0.069% 17.440% ± 0.082% 16.177% ± 0.068%

SZ-TAXI
MAE 2.656 ± 0.008 2.710 ± 0.009 3.272 ± 0.010 2.891 ± 0.012
RMSE 4.193 ± 0.015 4.248 ± 0.017 4.564 ± 0.016 4.418 ± 0.017

Table 12 Ablation studies, P-168/Q-1 (3rd) forecasting

Dataset Metric AutoCTS++ w/o TS2Vec w/o Set-Transformer w/o shared samples

PEMS-BAY
RRSE 0.2873 ± 0.0003 0.2972 ± 0.0004 0.2953 ± 0.0003 0.3310 ± 0.0004
CORR 0.9308 ± 0.0006 0.9223 ± 0.0007 0.9256 ± 0.0006 0.9052 ± 0.0005

Electricity
RRSE 0.0742 ± 0.0002 0.0754 ± 0.0003 0.0890 ± 0.0003 0.0851 ± 0.0003
CORR 0.9477 ± 0.0005 0.9433 ± 0.0006 0.8710 ± 0.0006 0.9110 ± 0.0005

PEMSD7M
RRSE 0.2861 ± 0.0004 0.2913 ± 0.0005 0.3300 ± 0.0007 0.3310 ± 0.0005
CORR 0.9292 ± 0.0009 0.9234 ± 0.0012 0.8950 ± 0.0010 0.8980 ± 0.0008

NYC-TAXI
RRSE 0.2138 ± 0.0004 0.2216 ± 0.0005 0.2314 ± 0.0004 0.2390 ± 0.0006
CORR 0.8831 ± 0.0011 0.8760 ± 0.0013 0.8640 ± 0.0010 0.8620 ± 0.0011

NYC-BIKE
RRSE 0.7461 ± 0.0015 0.7541 ± 0.0018 0.7810 ± 0.0016 0.7520 ± 0.0017
CORR 0.7902 ± 0.0008 0.7790 ± 0.0009 0.7620 ± 0.0010 0.7810 ± 0.0010

Los-Loop
RRSE 0.4183 ± 0.0006 0.4312 ± 0.0008 0.4580 ± 0.0007 0.4520 ± 0.0007
CORR 0.8034 ± 0.0009 0.7820 ± 0.0011 0.7570 ± 0.0010 0.7600 ± 0.0009

SZ-TAXI
RRSE 0.4038 ± 0.0008 0.4510 ± 0.0008 0.4880 ± 0.0007 0.4910 ± 0.0008
CORR 0.3414 ± 0.0018 0.2200 ± 0.0020 0.1960 ± 0.0019 0.1910 ± 0.0021

numbers of time series and their lengths. The proposed

framework can successfully capture such task charac-

teristics and is capable of supporting a zero-shot search

for optimal models.

5 Related Work

5.1 Manual Model Design

Many manually designed models exist for the forecast-

ing of correlated time series [3,11–14,17,24,25,28,35,55,

59,60,67,68]. The biggest difference among these stud-

ies is that they design different ST-blocks, which de-

termines their ability to capture temporal and spatial

dependencies. Notably, Graph WaveNet [68] employs

Diffusion GCNs and gated dilated causal convolutions

to capture spatial and temporal dependencies, respec-

tively, and stacks the two operators sequentially to ob-

tain ST-blocks. AGCRN [3] employs enhanced Cheby-

shev GCNs and GRUs to capture spatial and tempo-

ral dependencies, respectively. MTGNN [67] uses mix-

hop graph convolution and dilated inception convolu-

tion to capture spatial and temporal dependencies, re-

spectively. SCNN [17] is an adaptive, interpretable, and

scalable neural network framework designed for mul-

tivariate time series forecasting by disentangling and

modeling structured components within the data. Trans-

fomer-based models such as Informer [81], Autoformer [64],

FEDformer [82], Triformer [11], and PDFormer [24] also

inform the papers’s proposal. Informer, Autoformer, and

FEDformer propose enhanced attention mechanism to

improve computational efficiency. Triformer uses path-

attention to model both spatial and temporal depen-

dencies. PDFormer proposes a mask mechanism to cap-

ture spatial dependencies. The architecture search space
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Fig. 7 Runtime of embedding, ranking, and training phases in GPU minutes for P -12/Q-12, P -24/Q-24, and P -48/Q-48
multi-step forecasting and P -168/Q-1 (3rd) single-step forecasting (S), where searching includes both the embedding and
ranking phases.

we propose leverages the advances achieved by these

manually designed models.

5.2 Automated Model Design

Recently, several automated frameworks have been pro-

posed for time series forecasting.

AutoAI-TS [53] provides an automated pipeline for

time series forecasting and is able to select the most ap-

propriate forecasting model from a set of existing fore-

casting models for a specific dataset and forecasting

setting. In contrast, the proposed AutoCTS++ frame-

work aims at automatically designing novel CTS fore-

casting models. AutoST [39] divides a city’s time series

into grids based on longitude and latitude, and forecasts

CTS data using grid-based images containing values for

each time step as input. This work is not applicable to

our problem because the CTS dataset we use lacks lat-

itude and longitude information, so grid-based images

cannot be constructed. AutoSTG [48], AutoSTG+ [31]

and AutoCTS [65] are supernet-based methods. Au-

toSTG and AutoSTG+ design a search space for CTS

forecasting and introduce meta-learning to learn the

weights of architectures. The AutoSTG+ does better

in modeling dynamical spatial correlations by means

of VQDG module. AutoCTS focuses on designing a

compact and effective search space for CTS forecast-

ing and achieves good accuracy on multiple benchmark

datasets. However, neither of theses proposals supports

joint search. AutoCTS+ [66] is the preliminary study

underlying AutoCTS++, and both share the same joint

search space. As shown in Table 1, AutoCTS+ supports

joint search but fails to support zero-shot search.

There is also a large body of studies aiming at au-

tomatically designing neural architectures for various

tasks [20,41,42,44,84]. BRP-NAS [19] and CTNAS [9]

perform pairwise architecture comparisons to explore

the search space to identify the best architecture. How-

ever, neither methods supports joint search for archi-

tectures and hyperparameters, and thus they fail to ad-

dress the first limitation. AutoHAS [18] and FBNetV3 [15]

aim to automatically search for the best combination

of architectures and hyperparameters. But these meth-

ods are supernet-based and are very inefficient. For ex-

ample, FBNetV3 spends more than 10K GPU hours

searching for the best arch-hyper, so it is unable to

overcome the second limitation.

Some early studies utilize the characteristics of tasks

mainly for transfer learning or Neural Architecture Sea-

rch. There are two main approaches for task represen-

tation learning. The first approach involves extracting

artificial or meta features from the dataset of a specific

task or using a pre-trained general model to encode the

entire dataset into a vector representation [29,37,40,54,
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Table 13 Sample-limited performance studies, P-24/Q-24 forecasting.

Dataset Metric Ks=600,000 Ks=300,000 Ks=150,000 Ks=75,000 Ks=37,500 AutoCTS+ PDFormer

MAE
1.825
±0.009

1.828
±0.009

1.838
±0.008

1.847
±0.010

1.868
±0.013

1.836
±0.011

1.843
±0.012

PEMS-BAY RMSE
4.086
±0.012

4.096
±0.010

4.122
±0.009

4.153
±0.011

4.195
±0.011

4.147
±0.014

4.112
±0.008

MAPE
4.120%
±0.015%

4.133%
±0.018%

4.150%
±0.022%

4.191%
±0.017%

4.257%
±0.013%

4.236%
±0.013%

4.139%
±0.018%

TIME 48.6 26.4 17.8 13.6 10.8 540.8 476.2

MAE
183.008
±0.874

184.031
±0.953

195.774
±1.263

207.958
±0.928

225.063
±2.210

205.401
±0.801

202.571
±0.685

Electricity RMSE
1524.825
±4.011

1537.341
±3.693

1635.147
±4.191

1767.509
±3.942

1807.854
±5.166

1784.313
±4.566

1724.646
±4.336

MAPE
14.472%
±0.352%

14.532%
±0.280%

15.356%
±0.296%

16.123%
±0.307%

17.013%
±0.427%

16.085%
±0.348%

16.004%
±0.290%

TIME 48.1 24.9 15.6 12.0 9.9 444.8 382.9

MAE
3.105
±0.026

3.114
±0.025

3.164
±0.027

3.206
±0.023

3.228
±0.021

3.191
±0.028

3.203
±0.021

PEMSD7M RMSE
6.037
±0.018

6.134
±0.021

6.176
±0.022

6.218
±0.020

6.245
±0.025

6.221
±0.020

6.193
±0.020

MAPE
7.891%
±0.026%

7.911%
±0.032%

8.179%
±0.036%

8.304%
±0.031%

8.423%
±0.029%

8.333%
±0.037%

8.242%
±0.038%

TIME 42.5 19.8 13.8 9.6 7.0 120.5 98.2

MAE
5.055
±0.018

5.061
±0.020

5.381
±0.022

5.608
±0.024

5.884
±0.024

5.902
±0.026

5.760
±0.024

NYC-TAXI RMSE
9.196
±0.038

9.206
±0.042

9.662
±0.039

10.312
±0.040

11.033
±0.043

11.106
±0.042

10.506
±0.036

MAPE
37.539%
±0.348%

37.709%
±0.301%

39.197%
±0.352%

41.647%
±0.352%

43.582%
±0.320%

42.283%
±0.383%

43.709%
±0.431%

TIME 37.8 16.4 11.9 8.7 6.3 100.0 75.9

MAE
1.955
±0.010

1.959
±0.008

2.053
±0.011

2.079
±0.009

2.103
±0.0013

2.088
±0.008

2.049
±0.008

NYC-BIKE RMSE
2.927
±0.011

2.934
±0.014

3.143
±0.018

3.184
±0.022

3.235
±0.023

3.232
±0.017

3.147
±0.022

MAPE
51.449%
±0.388%

51.463%
±0.418%

52.438%
±0.423%

52.975%
±0.441%

53.738%
±0.387%

53.913%
±0.422%

52.648%
±0.398%

TIME 38.5 16.9 12.4 9.2 6.8 92.6 69.8

MAE
3.871
±0.006

3.877
±0.004

3.985
±0.004

4.123
±0.006

4.269
±0.006

4.244
±0.008

4.120
±0.005

Los-Loop RMSE
7.466
±0.017

7.513
±0.014

7.785
±0.018

7.936
±0.017

7.987
±0.020

7.943
±0.019

7.927
±0.017

MAPE
11.498%
±0.041%

11.576%
±0.039%

12.196%
±0.040%

12.865%
±0.037%

13.114%
±0.040%

13.209%
±0.040%

12.736%
±0.043%

TIME 36.6 14.8 9.3 7.1 5.9 68.2 45.6

MAE
2.603
±0.008

2.615
±0.007

2.974
±0.009

3.240
±0.010

3.318
±0.012

3.256
±0.011

3.237
±0.013

SZ-TAXI RMSE
4.147
±0.011

4.152
±0.013

4.152
±0.013

4.287
±0.010

4.369
±0.012

4.539
±0.013

4.547
±0.014

4.342
±0.010

TIME 36.4 14.7 9.5 7.1 5.6 64.1 39.7

61,62,78]. The second approach involves training anchor

models or fine-tuning a general model for the task and

extracting gradient information from them to serve as

the task representation [1, 8, 30, 36, 58]. However, when

the domain shifts to CTS forecasting, these methods

face challenges in terms of feasibility and efficiency—the

first approach is designed for non-CTS datasets with

specific expert knowledge, while the second approach

takes unacceptably long time to train models for gra-

dient information, making them unsuitable in our set-

ting. Instead, we propose AutoCTS++ to encode CTS

forecasting tasks and overcome the second limitation.

Also, a line of recent studies has emerged that utilize

LLMs or Foundation Models for zero-shot time series

analysis [2, 26, 27, 83]. Studies based on LLMs [83] use

pre-trained backbones of LLMs and fine-tune input and

output layers to build a same-scale forecasting model.

Another LLM-based study [26] aligns time series data

with the word embedding space of LLMs and processes

forecasting tasks as NLP tasks. Other studies propose

time series foundation models [16,45,63] pre-trained on

massive time series datasets to support zero-shot anal-

ysis on unseen tasks. However, these large models, with

billions of parameters, require very substantial com-

putational resources and runtime, while AutoCTS++

leverages a lightweight T-AHC to build a relatively
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Fig. 8 Case Study of Searched ST-blocks on Different Target Datasets and P/Q Settings.

lightweight forecasting model that is tailed for a spe-

cific task. They are different technological routes.

To efficiently assess model performance for new tasks,

some early studies [47,57,74] propose methods of evalu-

ating pre-trained models in transfer learning. However,

LEEP [47] and NCE [57] can only evaluate classifica-

tion tasks with supervised pre-trained models, while

LogME [74] can evaluate models pre-trained without

categorical labels for different downstream tasks. All of

them evaluate a dozen pre-trained models by making

inference on the target task to extract some informa-

tion and calculating specially-designed ranking scores

for pre-trained models, so that the computational cost

increases with the number of pre-trained models and

the dataset sizes. In contrast, the proposed T-AHC

strategy decouples the procedures of embedding tasks

and ranking arch-hypers and utilizes the task represen-

tation to quickly evaluate a large number of models

from the joint search space for any target task. This

arrangement aligns better our needs.
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Fig. 9 Case Study of Searched ST-blocks on Different Target Datasets and P/Q Settings.

6 Conclusion

We present AutoCTS++, a zero-shot joint search strat-

egy to automatically configure high-performance ST-

blocks for CTS forecasting tasks. In particular, we first

design a joint search space containing massive arch-

hypers, each of which is a combination of an architec-

ture and a hyperparameter setting. Next, we propose

an T-AHC-based search strategy to explore the search

space to find the best arch-hyper for unseen tasks.

In addition, we propose a pre-training method to en-

able our model to learn the relationship between tasks

and model performance, allowing us to directly apply

T-AHC strategy to unseen tasks. Comprehensive exper-

iments on seven commonly used correlated time series

forecasting datasets offer detailed evidence of the effec-

tiveness and efficiency of the proposed framework.

Although the proposed framework performs efficiently

and effectively on real-world benchmark datasets, it

may miss some flexibility due to its manually-designed

joint search space. In future work, it is of interest to ex-

plore an automated strategy to build the search space

for any specific task. Another direction is to extend the

proposed T-AHC strategy to other domains such as

computer vision and natural language processing, ex-

ploiting the ability of the proposed joint search space,

i.e., the arch-hyper graph, to represent models used in

those domains.
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