Aalborg Universitet

Correction to: Packetized Predictive Control of Stochastic Systems over Bit-rate Limited Channels with Packet Loss

Quevedo, Daniel; Østergaard, Jan; Silva, Eduardo; Nesic, Dragan

Published in: I E E E Transactions on Automatic Control

DOI (link to publication from Publisher): 10.1109/TAC.2013.2241481

Publication date: 2013

Document Version Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA): Quevedo, D., Østergaard, J., Silva, E., & Nesic, D. (2013). Correction to: Packetized Predictive Control of Stochastic Systems over Bit-rate Limited Channels with Packet Loss. *I E E Transactions on Automatic Control*, 58(7), 1869 - 1872 . https://doi.org/10.1109/TAC.2013.2241481

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Correction to "Packetized Predictive Control of Stochastic Systems over Bit-Rate Limited Channels with Packet Loss"

Daniel E. Quevedo, *Member, IEEE, Jan Østergaard, Senior Member, IEEE,* Eduardo I. Silva, *Member, IEEE,* and Dragan Nešić, *Fellow, IEEE*

Abstract—We correct the results in Section V of the above mentioned manuscript.

In [1], we showed that a particular class of networked control system (NCS) with quantization, i.i.d. dropouts and disturbances can be described as a Markov jump linear system of the form

$$\theta_{k+1} = \bar{A}(d_k)\theta_k + \bar{B}(d_k)\nu_k,\tag{1}$$

where

$$\theta_k \triangleq \begin{bmatrix} x_k \\ b_{k-1} \end{bmatrix} \in \mathbb{R}^{n+N}, \quad \nu_k \triangleq \begin{bmatrix} w_k \\ n_k \end{bmatrix} \in \mathbb{R}^{m+N}$$

and $\{d_k\}_{k\in\mathbb{N}_0}$ is a Bernoulli dropout process, with

$$Prob(d_k = 1) = p \in (0, 1).$$

Throughout [1] we showed that properties of the NCS can be conveniently stated in terms of the expected system matrices

$$\mathcal{A}(p) = \mathbb{E}\{A(d_k)\} \\ \mathcal{B}(p) = \mathbb{E}\{\bar{B}(d_k)\} = \begin{bmatrix} \mathcal{B}_w & \mathcal{B}_n(p) \end{bmatrix}$$

and the matrix $\widetilde{\mathcal{A}} = \overline{A}(1) - \overline{A}(0)$. Unfortunately, Theorem 4 in Section V-A of [1] is incorrect. For white disturbances $\{w_k\}_{k \in \mathbb{N}_0}$, the statement should be as given below. Non-white $\{w_k\}_{k \in \mathbb{N}_0}$ can be accommodated by using standard state augmentation techniques; see, e.g., [2].

Theorem 4: Suppose that (1) is MSS and AWSS and that $\{w_k\}_{k\in\mathbb{N}_0}$ is white with $\sigma_w^2 = \operatorname{tr} R_w(0)$. Define

$$\mathcal{F}(z) \triangleq (zI - \mathcal{A}(p))^{-1}$$

$$\mathcal{C}(p) \triangleq (\sigma_w^2/m) \mathcal{B}_w \mathcal{B}_w^T + (\sigma_n^2/N)(1-p) \mathcal{E} \in \mathbb{R}^{(n+N) \times (n+N)},$$

(2)

where (see [1, Sec.2] for definitions)

$$\mathcal{E} \triangleq \frac{\mathcal{B}_n(p)\mathcal{B}_n(p)^T}{(1-p)^2} = \begin{bmatrix} B_1 e_1^T (\Psi^T \Psi)^{-1} e_1 B_1^T & B_1 e_1^T (\Psi^T \Psi)^{-1} \\ (\Psi^T \Psi)^{-1} e_1 B_1^T & (\Psi^T \Psi)^{-1} \end{bmatrix}.$$
(3)

Then, the spectral density of $\{\theta_k\}_{k \in \mathbb{N}_0}$ is given by

$$S_{\theta}(e^{j\omega}) = \mathcal{F}(e^{j\omega}) \left(p(1-p)\widetilde{\mathcal{A}}R_{\theta}(0)\widetilde{\mathcal{A}}^{T} + \mathcal{C}(p) \right) \mathcal{F}^{T}(e^{-j\omega}), \quad (4)$$

where $R_{\theta}(0)$ solves the following linear matrix equation:

$$R_{\theta}(0) = \mathcal{A}(p)R_{\theta}(0)\mathcal{A}(p)^{T} + p(1-p)\widetilde{\mathcal{A}}R_{\theta}(0)\widetilde{\mathcal{A}}^{T} + \mathcal{C}(p).$$
(5)

Daniel Quevedo is with the School of Electrical Engineering & Computer Science, The University of Newcastle, Callaghan, NSW 2308, Australia; e-mail: dquevedo@ieee.org. Jan Østergaard is with the Department of Electronic Systems, Aalborg University, Denmark; e-mail: janoe@ieee.org. Eduardo Silva is with the Departamento de Electrónica, Universidad Técnica Federico Santa María, Valparaíso, Chile; e-mail: eduardo.silva@usm.cl. Dragan Nešić is with the Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton, VIC 3010, Australia; Email: dnesic@unimelb.edu.au. This research was partially supported under Australian Research Council's Discovery Projects funding scheme (project number DP0988601) and the Danish Research Council for Technology and Production Sciences, grant no. 274-07-0383. E.I. Silva acknowledges the support received from CONICYT through grants Anillo ACT53 and Fondecyt 1110646.

Proof: See the appendix.

To further elucidate the situation, we note that (5) is linear and that its solution can be stated as the linear combination

$$R_{\theta}(0) = (\sigma_w^2/m) R_{\theta}^w(0) + (\sigma_n^2/N) R_{\theta}^n(0), \tag{6}$$

where $R^w_{\theta}(0)$ and $R^n_{\theta}(0)$ satisfy

$$R^{w}_{\theta}(0) = \mathcal{A}(p)R^{w}_{\theta}(0)\mathcal{A}(p)^{T} + p(1-p)\widetilde{\mathcal{A}}R^{w}_{\theta}(0)\widetilde{\mathcal{A}}^{T} + \mathcal{B}_{w}\mathcal{B}^{T}_{w}$$
$$R^{n}_{\theta}(0) = \mathcal{A}(p)R^{n}_{\theta}(0)\mathcal{A}(p)^{T} + p(1-p)\widetilde{\mathcal{A}}R^{n}_{\theta}(0)\widetilde{\mathcal{A}}^{T} + (1-p)\mathcal{E}.$$

Therefore, the distortion D defined by (52) in [1] is given by

$$D \triangleq \operatorname{tr}(\tilde{Q}R_{\theta}(0)) + \lambda [0 \quad e_1^T]R_{\theta}(0)[0 \quad e_1^T]^T$$

where \tilde{Q} is given in terms of the Kronecker product

$$\tilde{Q} \triangleq \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \otimes Q.$$

Thus, $D = \alpha \sigma_n^2 + \beta$, with

$$\begin{aligned} \alpha &= (1/N) \mathrm{tr}(\tilde{Q}R_{\theta}^{n}(0)) + (\lambda/N) [0 \quad e_{1}^{T}]R_{\theta}^{n}(0) [0 \quad e_{1}^{T}]^{T} \\ \beta &= (\sigma_{w}^{2}/m) \mathrm{tr}(\tilde{Q}R_{\theta}^{w}(0)) + (\lambda \sigma_{w}^{2}/m) [0 \quad e_{1}^{T}]R_{\theta}^{w}(0) [0 \quad e_{1}^{T}]^{T}. \end{aligned}$$

The above expressions replace Lemma 11 of [1].

To derive a noise-shaping model, (6) can be substituted into into (4) to provide

$$S_{\theta}(e^{j\omega}) = \mathcal{F}(e^{j\omega}) \big((\sigma_w^2/m) \mathcal{K}_w \mathcal{K}_w^T + (\sigma_n^2/N) \mathcal{K}_n \mathcal{K}_n^T \big) \mathcal{F}^T(e^{-j\omega}),$$

where \mathcal{K}_w and \mathcal{K}_n are obtained from the factorizations

$$\mathcal{K}_{w}\mathcal{K}_{w}^{T} = \mathcal{B}_{w}\mathcal{B}_{w}^{T} + p(1-p)\mathcal{A}R_{\theta}^{w}(0)\mathcal{A}^{T}$$
$$\mathcal{K}_{n}\mathcal{K}_{n}^{T} = (1-p)\big(\mathcal{E} + p\mathcal{A}R_{\theta}^{n}(0)\mathcal{A}^{T}\big).$$

If we define

$$\mathcal{H}(z) \triangleq \begin{bmatrix} I & 0 \end{bmatrix} \mathcal{F}(z),$$

then the above provides the noise-shaping model depicted in Fig. 2. The latter replaces Fig. 2 and Corollary 1 of [1].

Remark 1: We would like to emphasize that Theorem 4 can also be proven by adapting results in [3]–[5]. However, the noise shaping interpretation in Fig. 2 does not explicitly need an additional noise term to quantify second-order dropout effects, as opposed to what is done in [3]–[5].

The upper bound on the coding rate provided by Theorem 5 in [1] is also no longer correct, since it relied upon $R_{\theta}(0)$. The new Theorem 5 is provided below:

Theorem 5: For any $1 \leq N \in \mathbb{N}$, the minimum bit-rate R of \vec{u}_k satisfies:

$$R(D) \le \frac{1}{2} \log_2 \left(\det(I + (N/\sigma_n^2) R_{\xi}(0)) \right) + \frac{N}{2} \log_2 \left(\frac{\pi e}{6} \right) + 1,$$
(7)

where

$$R_{\xi}(0) = \begin{bmatrix} \Gamma & 0 \end{bmatrix} R_{\theta}(0) \begin{bmatrix} \Gamma & 0 \end{bmatrix}^{T}$$

Proof: Follows immediately from (73) in [1] by omitting the last step where $R_{\xi}(0)$ was written in terms of $R_{x}(0)$ and (50) was used.

Fig. 2. Noise-Shaping Model of the NCS

Note that, in view of (6), the bound in (7) provides

$$\lim_{\substack{\sigma_n^2 \to \infty}} R(D) \leq \frac{1}{2} \log_2 \left(\det(I + [\Gamma \quad 0] R_{\theta}^n(0) [\Gamma \quad 0]^T) \right) \\ + \frac{N}{2} \log_2 \left(\frac{\pi e}{6} \right) + 1,$$

expression, which is positively bounded away from zero and replaces (58) in [1].

Remark 2: By using results in [6, Sec.5], the covariance matrix $R_{\theta}(0)$ can be expressed explicitly in terms of Kronecker products and matrix inversions. Specifically, let

$$G \triangleq \mathcal{A}(p) \otimes \mathcal{A}(p)^T + p(1-p)\widetilde{\mathcal{A}} \otimes \widetilde{\mathcal{A}}^T$$

and let $c \in \mathbb{R}^{(n+N)^2}$ be the vectorized version of the matrix C(p) given in (2). Then, the vectorized version of $R_{\theta}(0)$ is simply given by $r = (I - G)^{-1}c$. Using this approach, it is straightforward to numerically evaluate the rate and distortion in (7).

We finalize this note by revisiting the NCS considered in Section V-C of [1]. Fig. 3 illustrates the rate and distortion trade-off for different horizon lengths and a fixed packet loss probability p = 0.0085. It may be noticed that the distortion can be reduced by using a longer horizon length in addition to increasing the bit-rate. Fig. 4 shows that when the packet-loss probability increases, it is necessary to use a larger horizon length to guarantee stability and thereby reduce the distortion.

REFERENCES

- D. E. Quevedo, J. Østergaard, and D. Nešić, "Packetized predictive control of stochastic systems over bit-rate limited channels with packet loss," *IEEE Trans. Automat. Contr.*, vol. 56, no. 12, pp. 2854–2868, Dec. 2011.
- [2] B. D. O. Anderson and J. Moore, *Optimal Filtering*. Englewood Cliffs, NJ: Prentice Hall, 1979.
- [3] Q. Ling and M. D. Lemmon, "Power spectral analysis of networked control systems with data dropouts," *IEEE Trans. Automat. Contr.*, vol. 49, no. 6, pp. 955–960, June 2004.
- [4] N. Elia, "Remote stabilization over fading channels," Syst. & Contr. Lett., pp. 237–249, 2005.
- [5] E. I. Silva and S. A. Pulgar, "Control of LTI plants over erasure channels," *Automatica*, vol. 47, pp. 1729–1736, 2011.
- [6] P. Lancaster, "Explicit solutions of linear matrix equations," SIAM Review, vol. 12, no. 4, pp. 544–566, Oct. 1970.
- [7] O. L. V. Costa, M. D. Fragoso, and R. P. Marques, Discrete-Time Markov Jump Linear Systems. London, U.K.: Springer-Verlag, 2005.
- [8] W. L. De Koning, "Infinite horizon optimal control of linear discrete time systems with stochastic parameters," *Automatica*, vol. 18, no. 4, pp. 443– 453, 1982.
- [9] T. Söderström, Discrete-Time Stochastic Systems. Prentice Hall, 1994.

Fig. 3. Bound on D(R) obtained from (7) for a fixed p = 0.0085 and different horizon lengths N = 1, 2, 3. The distortion is here expressed in the log-domain.

Fig. 4. Bound on D(R) obtained from (7) for different packet loss probabilities and different horizon lengths.

APPENDIX Proof of Theorem 4

Since $\{\nu_k\}_{k\in\mathbb{N}_0}$ is white and thus $\mathbb{E}\{\theta_k\nu_k^T\} = 0$, the system recursion (1) provides

$$\mathbb{E}\{\theta_{k+1}\theta_{k+1}^T\} = \mathbb{E}\{\bar{A}(d_k)\theta_k\theta_k^T\bar{A}(d_k)^T\} + \mathbb{E}\{\bar{B}(d_k)\nu_k\nu_k^T\bar{B}(d_k)^T\}.$$

Therefore, by conditioning on d_k and using the law of total expectation, we obtain:

$$\mathbb{E}\{\theta_{k+1}\theta_{k+1}^{T}\} = p\mathbb{E}\{\bar{A}(d_{k})\theta_{k}\theta_{k}^{T}\bar{A}(d_{k})^{T} \mid d_{k} = 1\} \\ + (1-p)\mathbb{E}\{\bar{A}(d_{k})\theta_{k}\theta_{k}^{T}\bar{A}(d_{k})^{T} \mid d_{k} = 0\} \\ + p\mathbb{E}\{\bar{B}(d_{k})\nu_{k}\nu_{k}^{T}\bar{B}(d_{k})^{T} \mid d_{k} = 1\} \\ + (1-p)\mathbb{E}\{\bar{B}(d_{k})\nu_{k}\nu_{k}^{T}\bar{B}(d_{k})^{T} \mid d_{k} = 0\} \\ = p\bar{A}(1)\mathbb{E}\{\theta_{k}\theta_{k}^{T}\}\bar{A}(1)^{T} + (1-p)\bar{A}(0)\mathbb{E}\{\theta_{k}\theta_{k}^{T}\}\bar{A}(0)^{T} \\ + p\bar{B}(1)R_{\nu}(0)\bar{B}(1)^{T} + (1-p)\bar{B}(0)R_{\nu}(0)\bar{B}(0)^{T},$$

where we have used the fact that $\{d_k\}_{k \in \mathbb{N}_0}$ is Bernoulli and ν_k and θ_k are independent of d_k . Direct algebraic manipulations allow us to

rewrite the above as

$$\mathbb{E}\{\theta_{k+1}\theta_{k+1}^{T}\} = \mathcal{A}(p)\mathbb{E}\{\theta_{k}\theta_{k}^{T}\}\mathcal{A}(p)^{T} + p(1-p)\widetilde{\mathcal{A}}\mathbb{E}\{\theta_{k}\theta_{k}^{T}\}\widetilde{\mathcal{A}}^{T} + \mathcal{C}(p).$$
(8)

In a similar way, one can derive that

$$\mathbb{E}\left\{\theta_{k+\ell+1}\theta_{k}^{T}\right\} = \mathbb{E}\left\{\left(\bar{A}(d_{k+\ell})\theta_{k+\ell} + \bar{B}(d_{k+\ell})\nu_{k+\ell}\theta_{k}^{T}\right\} \\
= \mathbb{E}\left\{\bar{A}(d_{k+\ell})\theta_{k+\ell}\theta_{k}^{T}\right\} + \mathbb{E}\left\{\bar{B}(d_{k+\ell})\nu_{k+\ell}\theta_{k}^{T}\right\} \\
= \mathcal{A}(p)\mathbb{E}\left\{\theta_{k+\ell}\theta_{k}^{T}\right\} + \mathcal{B}(p)\mathbb{E}\left\{\nu_{k+\ell}\theta_{k}^{T}\right\} \\
= \mathcal{A}(p)\mathbb{E}\left\{\theta_{k+\ell}\theta_{k}^{T}\right\}, \quad \forall \ell \in \mathbb{N}_{0},$$
(9)

since $\{\nu_k\}_{k \in \mathbb{N}_0}$ is white and θ_k and $\theta_{k+\ell}$ are independent of $d_{k+\ell}$ for non-negative values of ℓ . Equation (9) gives the explicit expression

$$\mathbb{E}\left\{\theta_{k+\ell}\theta_{k}^{T}\right\} = \mathcal{A}(p)^{\ell}\mathbb{E}\left\{\theta_{k}\theta_{k}^{T}\right\}, \quad \forall \ell \in \mathbb{N}_{0}.$$
 (10)

Since the system is AWSS, we have $\lim_{k\to\infty} \mathbb{E}\{\theta_{k+1}\theta_{k+1}^T\} = R_{\theta}(0)$, the stationary covariance matrix of $\{\theta_k\}_{k\in\mathbb{N}_0}$. By (8) and results in [7], [8], the latter is given by the solution to (5).

On the other hand, in steady state, (10) gives that the covariance function

$$R_{\theta}(\ell) = \mathcal{A}(p)^{\ell} R_{\theta}(0), \quad \forall \ell \in \mathbb{N}_0.$$
(11)

Consequently, the positive real part of the spectrum of $\{\theta_k\}_{k\in\mathbb{N}_0}$ is given by

$$S_{\theta}^{+}(z) = \frac{1}{2} R_{\theta}(0) + \sum_{\ell=1}^{\infty} R_{\theta}(\ell) z^{-\ell} = ((1/2)I + \mathcal{A}(p) (zI - \mathcal{A}(p))^{-1}) R_{\theta}(0),$$

where we have used the fact that, by assumption, (1) is MSS and AWSS, thus $\mathcal{A}(p)$ is Schur (see Lemma 4 in [1]) and the geometric

series

$$\sum_{n=0}^{\infty} \left(\mathcal{A}(p) z^{-1} \right)^n = \left(I - \mathcal{A}(p) z^{-1} \right)^{-1}.$$

Since $\{\theta_k\}_{k\in\mathbb{N}_0}$ is AWSS, its spectrum satisfies [9]

$$S_{\theta}(z) = S_{\theta}^{+}(z) + \left(S_{\theta}^{+}(z^{-1})\right)^{T}$$

= $R_{\theta}(0) + \mathcal{A}(p)\left(zI - \mathcal{A}(p)\right)^{-1}R_{\theta}(0)$
+ $R_{\theta}(0)\left(z^{-1}I - \mathcal{A}(p)\right)^{-T}\mathcal{A}(p)^{T}$

Therefore, we have

$$\begin{aligned} & (zI - \mathcal{A}(p))S_{\theta}(z)(z^{-1}I - \mathcal{A}(p))^{T} \\ &= (zI - \mathcal{A}(p))R_{\theta}(0)(z^{-1}I - \mathcal{A}(p))^{T} \\ &+ (zI - \mathcal{A}(p))\mathcal{A}(p)(zI - \mathcal{A}(p))^{-1}R_{\theta}(0)(z^{-1}I - \mathcal{A}(p))^{T} \\ &+ (zI - \mathcal{A}(p))R_{\theta}(0)(z^{-1}I - \mathcal{A}(p))^{-T}\mathcal{A}(p)^{T}(z^{-1}I - \mathcal{A}(p))^{T} \\ &= (zI - \mathcal{A}(p))R_{\theta}(0)(z^{-1}I - \mathcal{A}(p))^{T} \\ &+ \mathcal{A}(p)R_{\theta}(0)(z^{-1}I - \mathcal{A}(p))^{T} + (zI - \mathcal{A}(p))R_{\theta}(0)\mathcal{A}(p)^{T}, \\ \text{since } (zI - \mathcal{A}(p))\mathcal{A}(p)(zI - \mathcal{A}(p))^{-1} = \mathcal{A}(p). \text{ Thus,} \\ & \mathcal{F}^{-1}(z)S_{\theta}(z)\mathcal{F}^{-T}(z^{-1}) \\ &= (zR_{\theta}(0) - \mathcal{A}(p)R_{\theta}(0))(z^{-1}I - \mathcal{A}(p))^{T} + z^{-1}\mathcal{A}(p)R_{\theta}(0) \\ &- \mathcal{A}(p)R_{\theta}(0)\mathcal{A}(p)^{T} + zR_{\theta}(0)\mathcal{A}(p)^{T} - \mathcal{A}(p)R_{\theta}(0)\mathcal{A}(p)^{T} \\ &= R_{\theta}(0) - z^{-1}\mathcal{A}(p)R_{\theta}(0) - zR_{\theta}(0)\mathcal{A}(p)^{T} \\ &+ \mathcal{A}(p)R_{\theta}(0)\mathcal{A}(p)^{T} + z^{-1}\mathcal{A}(p)R_{\theta}(0) - \mathcal{A}(p)R_{\theta}(0)\mathcal{A}(p)^{T} \\ &+ zR_{\theta}(0)\mathcal{A}(p)^{T} - \mathcal{A}(p)R_{\theta}(0)\mathcal{A}(p)^{T} \\ &= R_{\theta}(0) - \mathcal{A}(p)R_{\theta}(0)\mathcal{A}(p)^{T}, \end{aligned}$$

and (5) establishes (4).