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A B S T R A C T   

The Vehicle Routing Problem (VRP) represents a thoroughly investigated domain within operations research, 
yielding substantial cost savings in global transportation. The fundamental objective of the VRP is to determine 
the optimal route plan that minimizes the overall distance traveled. This study employs VRP to address the 
challenge of distributing fresh agricultural products within retail chains. It introduces an integrated bi-objective 
VRP model that concurrently optimizes resource allocation, order scheduling, and route planning. The proposed 
model incorporates two objective functions with the goals of minimizing total distribution costs and ensuring 
timely product deliveries to retail outlets. Real-world characteristics are integrated to enhance practical appli-
cability. All solution algorithms and the developed VRP model undergo testing using data from one of Sri Lanka’s 
largest retail chains. Numerical experiments showcase the efficiency of the proposed algorithm in solving real- 
world VRP problems. Moreover, the proposed VRP model achieves a 19% reduction in daily distribution 
costs, including a 24% saving in fuel costs. This not only provides financial benefits but also contributes to the 
reduction of the carbon footprint of retail chains. The model ensures on-time deliveries to 95% of retail outlets, 
which is crucial for maintaining the quality of fresh food. The findings of this study underscore the significant 
cost savings, enhanced sustainability, and improved quality associated with the efficient distribution of fresh 
agricultural products within retail chains.   

1. Introduction 

The Vehicle Routing Problem (VRP) is a particularly important 
problem due to its many practical applications in transportation, logis-
tics, and supply chain management (Braekers et al., 2016). The VRP is a 
complex problem introduced by Dantzig and Ramser (1959) as a “truck 
dispatching problem” in 1959 and has since evolved to become one of 
the most widely studied applications (Braekers et al., 2016; Perera & 
Perera, 2022; Thibbotuwawa et al., 2020; Sitek et al., 2021). The initial 
VRP model developed by Dantzig and Ramser (1959) attempted to find 
optimal routes for a homogeneous fleet of trucks from the central depot 
to gas stations. Optimization packages based on solving the VRP have 
achieved substantial cost savings in global transportation (Utama et al., 
2020). 

Different VRP extensions have been applied to solve interesting ap-
plications such as unmanned aerial vehicle routing (Thibbotuwawa 

et al., 2020; Thibbotuwawa et al., 2019), electric vehicle routing (Çalık 
et al., 2021), and green vehicle routing with the emission factor 
(Moghdani et al., 2021), expanding the scope of optimization in diverse 
domains. This paper intends to focus on the extended VRP for perishable 
goods distribution (VRPFPG). Perishable products, including fresh 
agricultural products, dairy, meat, and pharmaceutical products, have a 
short shelf life and should be delivered before their quality degrades. 
Therefore, the VRPFPG deviates from the traditional VRP, and it’s 
crucial to tackle the additional operational complexities together with 
optimizing routes, giving due attention to time sensitivity, handling 
constraints, and quality assurance and compliance (Utama et al., 2020). 

On the other hand, food security is cited as one of the most serious 
threats to achieving the United Nations Sustainable Development Goals 
(SDGs) (Krishnan et al., 2020; Pannila et al., 2022). Nevertheless, a 
significant 33 % of the world’s agricultural produce goes to waste as 
Post-Harvest Waste (PHW) (Surucu-Balci & Tuna, 2021; Jayalath & 
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Perera, 2021). Especially, fresh agricultural products must be delivered 
before they degrade (Zulvia et al., 2020). The complexity is exacerbated 
by the fact that retail shops cannot keep extra stock for fresh agricultural 
products due to their perishability, and they thus need to be delivered 
frequently (Zulvia et al., 2020). This implies the need to optimize 
transport and distribution processes in agricultural supply chains. 
Furthermore, reducing distribution costs in agricultural supply chains 
can lead to lower fuel consumption, helping to reduce the carbon foot-
print of agricultural distribution networks. The overall environmental 
impact can be reduced by optimizing transport and distribution pro-
cesses while ensuring efficient and sustainable delivery of fresh agri-
cultural products. 

In this research, the VRP was formulated in terms of optimizing the 
distribution of fresh vegetables in retail chains. There has been a 
considerable increase in the demand for commodities as the world’s 
population grows (He & Haasis, 2019). Within retail chains, there has 
been a significant rise in urban freight volumes (He & Haasis, 2019; 
Mancini & Gansterer, 2022). Estimates project a 36 % increase in the 
number of delivery vehicles over the next decade (Gutierrez-Franco 
et al., 2021). These trends pose numerous problems to urban traffic 
management, threatening the effectiveness of urban distribution sys-
tems (Gutierrez-Franco et al., 2021). 

This paper emphasizes the importance of practically oriented VRP 
models by addressing real-world challenges and providing practical 
solutions to optimize operations and improve performance. The goal is 
to bridge the existing gap by combining numerous real-world features 
connected with fresh agricultural product distribution in retail chains. 
The following is how the paper is structured: Section 2 examines existing 
VRPFPG models and their approaches to solution in detail. Section 3 
describes the proposed model’s mathematical formulation. Section 4 
summarizes the details of the applied solution algorithms, while in 
section 5, you will find information about the case study. Section 6 then 
presents the outcomes of numerical experiments, including a compari-
son of different solution approaches and the performance of the sug-
gested model. Finally, Section 7 provides concluding observations and 
suggests prospective future study avenues. 

2. Literature review 

Mathematically, the VRP is represented as a directed graph G (V, A), 
where V = {0,1,2, n} is a set of predefined vertices, and A = {(i, j): i,j ∈
N} represents a set of arcs connecting any two vertices (Clarke & Wright, 
1964; Huang & Lin, 2015). The depot is represented by vertex i = 0, 
while the other vertices represent customer locations. VRP models are 
primarily formulated to minimize travel distance or time. This literature 
review discusses scientific works related to VRPFPG models, with the 
aim of identifying gaps between theoretical models and real-world ap-
plications. The rationale for extensively reviewing VRPFPG models lies 
in recognizing agricultural products as a distinct sub-category within the 
perishable goods domain. By leveraging insights from existing VRP 
studies on perishable goods, this study aims to extract valuable meth-
odologies and strategies applicable to the unique challenges posed by 
the distribution of fresh agricultural products, ensuring a comprehensive 
foundation for the proposed model. Identifying and addressing the gap 
between theoretical models and real-world applications of vehicle 
routing is crucial for ensuring the robustness of logistics systems. 
Bridging this divide allows for more accurate representation and adap-
tation of models to the complexities of practical logistics operations, 
enhancing their effectiveness and contributing to the overall resilience 
and efficiency of logistics systems (Ezaki et al., 2022; Nanayakkara et al., 
2022; Thibbotuwawa et al., 2023). 

2.1. Problem characteristics 

The majority of the reviewed research primarily concentrates on 
single-depot close-VRP models, with only a minority delving into 

intermediate depots (Nadhori and Ahsan, 2019; Tirkolaee et al., 2020). 
Moreover, the majority of these studies operate under the assumption of 
uniform vehicle capacities (Sitek & Wikarek, 2014), and only a handful 
consider fleets of vehicles with different capacities (Nadhori and Ahsan, 
2019; Tirkolaee et al., 2020). This means that there are only a limited 
number of papers that investigate the use of multi-compartment vehicles 
and the handling of multiple products (Chen & Shi, 2019). 

Interestingly, time windows are incorporated in the majority of the 
reviewed VRPFPG papers. Three types of time window structures are 
included: hard (Nadhori & Ahsan, 2019), soft (Zulvia et al., 2020), and 
mixed (Rashidi Komijan & Delavari, 2017). Service providers must meet 
the hard time windows and if the service provider fails to meet this 
requirement, they must drop that customer to keep the solutions feasible 
(Patidar et al., 2019). Amorim and Almada-Lobo, (2014) compare two 
distribution scenarios with narrow and wide hard time structures. It is 
highlighted that distribution costs are high for the narrow hard time 
window structure. In a soft time window structure, it is feasible to 
violate the time window constraint with a penalty cost (Zulvia et al., 
2020). Mixed time windows are a combination of soft and hard time 
windows. In all the reviewed papers, the time windows had been 
imposed by the customers. None of the papers reviewed in the study 
consider the time windows imposed by the distribution center due to the 
limitations of the loading bays. Moreover, all the studies that incorpo-
rate time windows tend to use onsite service time (loading/unloading 
time) as an input in their models. 

Most of the VRPFPG studies develop optimization models as deter-
ministic models. Only a few researchers focus on developing stochastic 
models, including stochastic travel times and service demands (Zulvia 
et al., 2020; Rong & Sha, 2014). Moreover, no reviewed article in the 
study uses real-time data. Usually, travel times are varied based on the 
time of day due to congestion (Zulvia et al., 2020). Hence, considering 
time-dependent travel times guarantees the real-world applicability of 
the VRP models (Zulvia et al., 2020). Time-dependent travel time can be 
obtained using the average speeds of a considered road network based 
on varying congestion levels (Zulvia et al., 2020; Sung & Nielsen, 2020). 
Problem characteristics such as pick-up delivery and multiple product 
delivery are rarely explored in the existing literature (Abraham et al., 
2012; Galarcio Noguera et al., 2018). Moreover, the findings highlight 
that most reviewed papers use synthetic data to test the models and 
rarely focus on using real-world case studies. 

Most existing VRPFPG models include real-life characteristics either 
individually or in combination with a limited set of other factors. The 
literature review highlights those certain real-world aspects, such as 
multiple distribution centers, diverse vehicle fleets, multiple product 
deliveries, and actual driving distances, have rarely been integrated into 
the current VRPFPG literature. Additionally, there is a notable lack of 
emphasis on the development of integrated VRP models. This study aims 
to address this gap by concurrently incorporating various real-life 
complexities, aligning with the prevailing trend in this research area, 
and supported by advancements in computational power (Utama et al., 
2020). 

2.2. Objective functions driving VRPFPG models 

As shown in Fig. 1, the most common objective function used in 
single-objective VRPFPG models is to minimize the cost of distribution 
(Utama et al., 2020). Depending on the focus of the studies, various cost 
components were taken into consideration. Most studies include trans-
portation costs as a component of distribution costs (Tirkolaee et al., 
2020; Yao et al., 2019), and these typically comprise the fuel and fixed 
costs associated with the vehicles (Meneghetti et al., 2019). Addition-
ally, a few studies incorporated various penalty costs, including those 
related to time window violations and freshness conditions (Taylor 
et al., 2013; Agustina et al., 2014). 

Temperature-controlled vehicles transport perishable goods such as 
pharmaceuticals, meat, and dairy products. As a consequence, 
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refrigeration costs were included as part of the distribution expenses 
(Meneghetti et al., 2019). Additionally, some researchers include pro-
duction and order scheduling costs as a component of distribution costs 
since the VRP models integrate production or order scheduling sub- 
models (Seyedhosseini & Ghoreyshi, 2014; Lacomme et al., 2018). 
Very few considered different objectives other than minimizing the total 
cost of distribution among single-objective models reviewed in this 
study (Tirkolaee et al., 2020; Meneghetti et al., 2019). 

Many logistics problems are multi-objective since there are various 
factors to be considered simultaneously (Montoya-torres et al., 2015). 
Most of the time, those multiple factors conflict with one another 
(Montoya-torres et al., 2015). Therefore, considering those factors 
simultaneously is critical for minimizing the difference between theo-
retical models and complexities present in real-world applications 
(Montoya-torres et al., 2015). As illustrated in Fig. 2, the majority of 
multiple-objective models focus on optimizing distribution costs and the 
freshness of the products (Amorim & Almada-Lobo, 2014; Khalili- 
Damghani et al., 2015; Wang et al., 2016; Rahbari et al., 2019; Fatemi 
Ghomi & Asgarian, 2019). Amorim and Almada-Lobo (2014) studied the 
trade-off between different distribution scenarios and the cost associated 
with the freshness states. 

Several multiple-objective models focus on incorporating environ-
mental costs incurred during the distribution process. The environ-
mental costs include the cost of carbon and greenhouse gas emissions 
(Govindan et al., 2014; Sahraeian & Esmaeili, 2018). Other factors that 
have been considered in multiple-objective models are minimizing 
travel distance (Buelvas et al., 2018), fuel consumption (Navazi et al., 
2019), customer waiting time (Esmaili & Sahraeian, 2017), weighted 
deterioration ratio (Lu & Wang, 2018), and damage cost (Lu & Wang, 

2018; Buelvas et al., 2018; Zulvia et al., 2020), as well as maximizing 
customer satisfaction (Gong & Fu, 2010; Navazi et al., 2019; Zulvia 
et al., 2020) and balancing the load (Kuo & Nugroho, 2017). 

2.3. Solution approaches 

Diverse solution methods are employed to address different exten-
sions of the VRP (Braekers et al., 2016). Fig. 3 distinguishes these 
methods as exact, heuristic, metaheuristic, and hybrid approaches 
(Braekers et al., 2016). The metaheuristic method is the most widely 
used solution approach among the reviewed VRPFPG papers. Compared 
to metaheuristic algorithms, heuristic algorithms are problem-specific, 
and applicability is therefore limited (Braekers et al., 2016). Exact 
methods can find optimal solutions for NP-hard (non-deterministic 
polynomial-time hardness) problems, but only when the problem size is 
small (Braekers et al., 2016). In addressing real-world applications of a 
vehicle routing model using exact methods, there exists a trade-off be-
tween the precision of the solution and the computational time required 
(Wang & Li, 2022). Therefore, only a minimal number of VRPFPG 
research studies apply exact methods to solve the problems (Utama 
et al., 2020). Using a single VRP solution method may prove inadequate 
due to factors like local minima, suboptimal outcomes, and excessive 
computation time (Moghdani et al., 2021). To overcome limitations, 
researchers combine two solution approaches, creating hybrid tech-
niques that include metaheuristic-exact, metaheuristic-heuristic, and 
metaheuristic-metaheuristic methods, all aimed at achieving superior 
results (Moghdani et al., 2021). 

Fig. 1. Objective functions of single-objective VRPFPG models.  

Fig. 2. Objective functions of multiple-objective VRPFPG models.  
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2.4. Gap analysis 

Based on the literature review, it appears that there is a scarcity of 
research devoted to addressing multi-objective VRPFPG models. It is 
emphasized that many logistics problems are multi-objective by nature 
and need to consider multiple factors simultaneously. Therefore, further 
research is required to consider numerous case-sensitive objectives in 
VRPFPG (Montoya-torres et al., 2015). 

RQ1: How can a bi-objective VRPFPG model be formulated with 
more realistic assumptions and industry-relevant constraints to improve 
its practical application? 

Researchers frequently employ problem-specific solution methods 
for VRP, which may not readily translate to other problem variations. 
Additional research is needed to conduct a comprehensive assessment of 
various metaheuristic methods’ performance in solving diverse VRP 
extensions (Braekers et al., 2016). 

RQ 2: What is the effectiveness of various metaheuristic methods in 
solving the proposed bi-objective VRPFPG model, and how do they compare 
in terms of solution quality and computational time? 

Existing VRPFPG models lack comprehensive consideration of real- 
world complexities such as multiple distribution centers, heteroge-
neous vehicle fleets, diverse product deliveries, and actual driving dis-
tances. Recent trends indicate a growing effort among researchers to 
address these gaps, leveraging improved computational power. How-
ever, integrated VRP models remain an underexplored area in the cur-
rent literature (Utama et al., 2020). 

RQ 3: How applicable is the proposed bi-objective VRPFPG model to real- 
world applications, and what are the practical limitations and challenges that 
need to be considered in its implementation? 

3. Model formulation 

The research identified the decision variables, objective functions, 
and constraints specific to the application of delivering agricultural 
products in a retail chain. Both the literature review and the unstruc-
tured interviews conducted with industry experts were used to define 

the problem and to get a clear understanding of the goal that needs to be 
optimized. The proposed model is a combination of CVRP (Capacitated 
VRP) (Fernando et al., 2022a), VRPSTW (VRP with Soft Time Windows, 
i.e., soft time windows with upper bounds) (Ma et al., 2017), MDVRP 
(Multi-depot VRP) (Fernando et al., 2022a), HFVRP (Heterogenous Fleet 
VRP) (Fernando et al., 2022a; Fernando et al., 2022c), Asymmetric Costs 
VRP (ACVRP) (Fernando et al., 2022b), and MOVRP (Multi-objective 
VRP) (Zulvia et al., 2020; Schneider & Nurre, 2019). Fig. 4 depicts a 
high-level overview of the model. The model’s overall goal is to reduce 
the costs associated with retail chain distribution. Since agricultural 
products are delivered very frequently in retail chains, it is critical to 
keep operating costs at a minimum (Zulvia et al., 2020). Furthermore, 
the model reduces penalty costs caused by late deliveries. The con-
straints were defined based on real-world assumptions and classified 
into three categories, namely resource constraints, service constraints, 
and operational constraints (Yi et al., 2021). 

3.1. Assumptions 

The assumptions listed below were used to develop the proposed 
optimization model. When defining the assumptions, emphasis was 
placed on ensuring the model’s real-world applicability, as well as the 
ability to solve a large-scale problem. 

I. Commencing from a central distribution center, each truck ini-
tiates the delivery process by transporting goods to designated 
retail outlets and then returning to its original starting point.  

II. The demand for each product at every retail outlet is determined 
prior to dispatching the trucks. 

III. In this distribution system, the policy does not allow split de-
liveries, meaning that each retail outlet is exclusively serviced by 
a single truck. 

IV. The truck capacities in this system are characterized by deter-
ministic and heterogeneous values, measured in terms of vege-
table crates. 

Fig. 3. Comparison of different types of solution methods (Fernando et al., 2022b).  
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V. Truck speeds between retail chain network nodes are determin-
istic and do not vary with the time of day. 

3.2. Notations 

Table 1 contains the sets, parameters, and decision variables used in 
the model formulation. 

3.3. Objective functions 

The model’s primary goal is to reduce the overall cost of transporting 
goods within the retail chain distribution. In pursuit of this goal, the first 
term of the model’s objective function represents the fixed costs asso-
ciated with truck dispatching, which include expenses such as labor and 
truck maintenance. Hence, the model aims to minimize the required 
number of trucks for distribution while optimizing the utilization of each 
truck’s capacity. The objective function’s second term is concerned with 
fuel costs. The proposed model provides guidance for selecting more 
cost-effective routes by minimizing fuel consumption in the retail chain 
distribution. 

Minimize
∑

k∊k
Fk +

∑

(i,j)∈A

∑

k∈k
ckxk

ijdij (1) 

The second objective of the model minimizes stockout situations that 
occur due to late deliveries of products. In retail chains, fresh agricul-
tural products are delivered daily. Moreover, limited stocks are kept in 
retail outlets to avoid wastage due to perishability. It is therefore 
important to deliver fresh agricultural products to retail outlets during 

the required time window. This objective has defined a penalty for late 
deliveries. The model aims to meet the requested time schedules to 
minimize these penalty costs. 

Minimize
∑

j∈R
Pj(tk

j ) (2)  

3.4. Constraints 

Constraint (1) guarantees that each retail outlet is attended to by a 
single truck, eliminating the possibility of split deliveries. Split de-
liveries, involving dividing the goods among multiple trucks, lead to 
increased transportation expenses. By upholding this constraint, the 
model promotes efficient and cost-effective distribution by averting 
unnecessary delivery fragmentation. 
∑

k∈K

∑

i∈Nj∕=i

xk
ij = 1for∀j ∈ R (1) 

Constraint (2) mandates that every truck commences its route from a 
specified distribution center and also necessitates that all trucks 
conclude their routes at that very same distribution center following 
their service at the designated retail outlets. 
∑

k∈K

∑

i∈Dj∕=i

xk
ij =

∑

k∈K

∑

i∈Dj∕=i

xk
jifor∀j ∈ R (2) 

Originally, vegetable quantities supplied to each retail outlet were 
measured in kilograms. However, each product is transported using 
vegetable crates. Therefore, it is more convenient to use vegetable crates 

Fig. 4. Model overview.  

W.M. Fernando et al.                                                                                                                                                                                                                          



Cleaner Logistics and Supply Chain 10 (2024) 100137

6

as the unit of measurement. Equation 3 ensures this unit conversion. 
Here, the parameter (rp) was defined for this purpose. 

q̃p
j = qp

j /rpfor∀p ∈ P (3) 

Constraint (4) ensures that the total quantity delivered to each retail 
outlet aligns with the sum of its specific product quantities. 

qj =
∑

p∊P
q̃p

j for∀j ∈ R (4) 

Constraint (5) ensures that the cumulative supply quantity up to the 
jth outlet equals the sum of the supply quantity up to the previous retail 
outlet and the quantity supplied to the jth outlet. 

Uk
i + qj = Uk

j for∀xk
ij = 1&i, j ∈ R&k ∈ K (5) 

Constraint (6) guarantees that the total quantity transported by the 
kth truck remains within its capacity limit. Given the model’s inclusion of 
a fleet with varying truck capacities, this constraint accounts for each 
truck’s capacity individually. 

Uk
j ≤ Qk∀j ∈ R&k ∈ K (6) 

Constraint (7) elaborates how arrival time for the jth retail outlet is 
calculated. It is calculated by adding the travel time (tk

ij) to the departure 
time of the ith outlet (tk

i + STi). 

tk
j = tk

i + STi + tk
ijfor∀xk

ij = 1&i, j ∈ R (7) 

Constraint (8) ensures delivery of products to retail outlets before the 
requested time. The model applies the soft time window with a penalty 

cost. Here, Pj

(
tk
j

)
represents the penalty cost if truck k does not meet the 

time window imposed by the retail outlet j. Specifically, the model needs 

to minimize stockout situations due to late deliveries. Therefore, the 
model has applied soft time windows with an upper bound to determine 
the penalty cost incurred due to late deliveries. The upper bound is 
represented by ej, and the products must be delivered before that time to 
avoid the penalty cost. This constraint is linked to objective (2), and it 
guides the reduction of late deliveries. 

Pj(tk
j ) =

⎧
⎨

⎩

0; tk
j ≤ ej

p*
(

tk
j − ej

)
; tk

j > ej
(8) 

Constraint (9) is introduced to eliminate sub-tours in the routing plan 
for the retail distribution chain. 

tk
j = tk

i + STi + tk
ijfor∀xk

ij = 1&i, j ∈ R (9) 

Constraint (10) imposes a maximum trip length for each truck. 
Trucks can thus provide services to a limited number of retail outlets 
while adhering to the maximum trip length (dmax). Furthermore, this 
constraint eliminates impractical trip lengths and manages working 
shifts of drivers. 
∑

(i,j)∈A

xk
ijdij ≤ dmaxfor∀xij = 1&k ∈ K&d ∈ D (10) 

Constraint (11) represents the limited number of loading bays in 
distribution centers. Accordingly, only a limited number of trucks can be 
loaded in distribution centers at any given time. 

Yd
t = cd∀d ∈ D (11)  

4. Solution methods 

In this research, the primary focus lies on solving a real-world dis-
tribution problem rather than developing a completely novel solution 
approach for addressing a variant of the VRP. By considering the pros 
and cons of each solution category (Fig. 2), a hybrid solution approach 
was selected to solve this real-world distribution problem. Researchers 
typically hybridize heuristic and metaheuristic methods to achieve 
better results (Moghdani et al., 2021). This research employs a two- 
phase solution approach using heuristic and metaheuristic methods for 
each phase respectively. Here, the heuristic approach was used to obtain 
the initial feasible solutions for the proposed model. Thenceforth, the 
metaheuristic approach is applied to improve the quality (Fernando 
et al., 2022b). 

4.1. Initial solution method 

As previously stated, using a heuristic technique proved helpful in 
producing Initial Basic Feasible Solutions (IBFS). This heuristic method 
is important for reducing the requirement for excessive iterations 
throughout the enhancement process (Amaliah et al., 2020). This study 
employs the Clarke and Wright (CW) algorithm for vehicle routing 
scheduling (Fernando et al., 2022b). The CW algorithm comprises two 
versions: sequential and parallel (Fernando et al., 2022b). In practice, 
the parallel version of the CW algorithm performs better (Fernando 
et al., 2022b). Hence, the choice was made to utilize the parallel version 
of the CW algorithm to obtain the IBFS. 

4.2. Iterative improvement of IBFS 

Metaheuristics are widely used in VRP research because of their 
ability to produce better solutions in less time. To improve IBFS attained 
by CW algorithm, this study employs three metaheuristic approaches: 
Guided Local Search (GLS), Simulated Annealing (SA), and Tabu Search 
(TS). These metaheuristics improve IBFS by utilizing iterative neigh-
borhood search techniques, which include a route-based two-opt pro-
cedure and three inter-route procedures: relocate, exchange, and cross. 

Table 1 
Notations used in the model.  

Sets Descriptions 

D {d|d = 1,2,⋯,n}; Set of distribution centers 
R {r|r = 1,2,⋯,n}; Set of retail outlets 
N N ∈ D ∪ R; Set of nodes 
K {k|k = 1,2,⋯,n}; Set of truck fleet 
P {p|p = 1,2,⋯,n}; Set of products 
A {(i, j) : i, j ∈ N}; Set of arcs 
Parameters Descriptions 
nd Number of distribution centers 
nk Number of trucks 
nc Number of retail outlets 
dij Driving distance of arc (i,j) ∈ A 
tkij Driving time of kth truck for an arc (i,j)∈ A 
vij The traffic flow speed of (i,j)∈ A 
qp

j Quantity delivered to retail outlet j from product p in kilos 
rp Number of kilos per vegetable crate for product p 
q̃p

j Quantity delivered to retail outlet j of product p in crates 
qj Total quantity delivered to retail outlet j (no of crates) 
Qk The capacity (no of crates) of truck k 
Uk

j Cumulative quantity delivered by kth truck at retail outlet j 
STi Average service time at retail outlet i 
tkj Time kth truck visit retail outlet j 
tki Time kth truck visit retail outlet i 
ej Upper bound of soft time windows 
p Penalty cost 
Fk Fixed cost 
ck Fuel cost per km 
Pj(tk

j ) Penalty cost for violating time windows 
dmax Maximum trip length 
Yd

t Number of trucks can be loaded in distribution center d at a given time 
t 

cd Loading-bay capacity in distribution center d 
φ Large number 
Decision variables 

xk
ij =

{
1, Ifkthtruckisusedforarc(i, j)

0,Otherwise  
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Local search methods, which are noted for their efficiency and 
simplicity, are effective even in large-scale issues, providing reasonably 
excellent solutions quickly. Such local search algorithms are especially 
useful for VRPs that demand practical, near-real-time solutions (Kilby 
et al., 2002; Arostegui et al., 2006; Glover, 1986). 

4.2.1. Guided local search 
Guided Local Search (GLS) is a metaheuristic that employs an 

augmented cost function, as illustrated below, to incorporate memory 
and direct the local search process. 

g(x) = f (x)+ λ
∑

i
(Ii(x)*pi) (1) 

The augmented cost function, denoted as g(x), supplements the 
original objective function f(x) in GLS. This technique penalizes aspects 
related to previously encountered local minima, directing the search 
toward improved solutions. In the formula, li (x) represents a binary 
decision variable, assuming a value of 1 when the current solution re-
sembles past findings, with pi denoting associated penalties. The 
method’s search process is influenced by a penalty factor (λ) dictating 
diversification or intensification; higher λ values encourage exploration, 
while lower ones favor focused search. Importantly, the penalty term 
undergoes iterative adjustments until nearing an optimal solution (Kilby 
et al., 2002). 

4.2.2. Simulated annealing 
Simulated Annealing (SA) is a metaheuristic that applies a probabi-

listic approach to obtain a near-optimal solution in the process of local 
search. The SA algorithms’ basic concept is to determine whether a 
given neighbor xtest (candidate solution) in the neighborhood Nx should 
be accepted or not. The acceptance probability P evolves and becomes 
lower and lower so that at the start of the algorithm a large portion of the 
search space can be reached, and the probability gradually but steadily 
converges toward zero. Thereby, the algorithm reaches the final 
neighborhood. Here, the system is said to be moving toward lower en-
ergy states (Arostegui et al., 2006). 

4.2.3. Tabu search 
Tabu Search (TS) is a memory-based metaheuristic that evaluates 

neighboring solutions until they reach the global optimal. This tech-
nique uses memory structures to store recently evaluated candidate 
solutions. The candidates stored in these structures are not eligible for 
further candidate generation and are thus considered “Tabu” by the 
algorithm. By utilizing these memory structures, the technique trades 
space for time, thereby speeding up the search for the best solution 
(Glover, 1986). 

5. Case study 

This case study is based on data acquired from one of Sri Lanka’s 
leading retail chains, which includes a variety of data categories such as 
location, demand, fleet, and operations. The location data includes retail 
outlet and distribution center locations, with a total of 247 retail outlets 
and two distribution sites included in model testing. The proposed 
model’s major input is distance matrix developed from location data and 
computed using real driving distances between network nodes in the 
retail chain. The results of (Fernando et al., 2022a) shown that the VRP 
models fall short in optimizing routes when relying on Euclidean dis-
tances, as they do not account for the actual road network geometry. 
Additionally, assuming symmetric VRP may not align with real-world 
complexities. Hence, it is recommended to use real driving distances, 
as suggested in prior research for real-world VRP applications. In this 
case study, real-world driving distances were incorporated using the 
OSRM (Open-Source Routing Machine) API, emphasizing the signifi-
cance of accurate road network data for improving the model’s practi-
cality and effectiveness (Fernando et al., 2021). 

The proposed model incorporates multiple product deliveries in the 
retail distribution network. The research collected demand data for 32 
types of vegetables. Demand data were collected for all 247 retail outlets 
and initially measured in kilograms. In this case study, fresh agricultural 
products are transported using vegetable crates to minimize wastage. 
Therefore, demands were estimated in terms of crates since it is 
convenient to apply to the model. In this case parameter (rp) (number of 
kilos per vegetable crate for product p) was defined and estimated for all 
product types using an unstructured expert interview and it is indicated 
in Fig. 5. This parameter was used to make the required unit changes. In 
conclusion, this case study and its associated model were methodically 
built with a primary focus on applying best practices for the delivery of 
fresh agricultural products. We streamlined the distribution network by 
gathering demand data for 32 vegetable types from 247 retail outlets 
and translating it into crate-based measures. 

Fleet data includes information about 55 trucks used in the selected 
retail chain. The carrying capacities of each truck were measured in 
terms of vegetable crates that each truck could transport. In addition, the 
costs associated with the truck fleet were obtained through unstructured 
interviews with experts. Additionally, operational data such as loading 
bay capacities, the average time taken for loading at distribution cen-
ters, requested time windows, and service times at retail outlets were 
collected. 

6. Results and discussion 

6.1. Details of the computational experiment 

This research carried out two types of computational experiments; 
they are highlighted in Fig. 6. In the first type, we investigated various 
solution techniques for solving the proposed VRP model. Under the 
second type, the proposed VRP model was tested concerning various 
model outputs. All computational experiments were performed on a 
computer equipped with a Core i5, 5200U processor running at 
2.40–2.42 GHz, and 8 GB RAM in Windows 10 Home 64 bit. OR-Tools 
version 7.2 (Laurent and Vincent, 2022) and Python version 3.9.6 in 
Visual Studio Code version 1.60 were used to develop the algorithms. 
Furthermore, all the metaheuristic methods (GLS, SA, TS) were imple-
mented with the default search parameters set by OR-Tools version 7.2. 

We defined ten problem instances for these numerical experiments, 
as shown in Table 2. Zulvia et al. (2020) defined problem instances with 
the number of customers served changing for each problem instance. 
The research defined problem instances based on the problem’s size. The 
number of retail outlets was used to define problem sizes. Further, 
objective value (cumulative route length) and computation time were 
selected as KPIs to compare the selected solution techniques. 

6.2. Experiment results: Solution methods 

Fig. 7 depicts the results of the proposed VRP model’s solution using 
three metaheuristics for one of the problem instances. The goal of this 
experiment is to see how three metaheuristics are performed when the 
number of iterations is changed. Further, this experiment was carried 
out using the largest problem instance of the selected case study (250), 
as it is the hardest to solve computationally. Up to 250 iterations, all 
three methods performed nearly equally, according to the results. 
Furthermore, a significant improvement in IFBS can be observed up to 
250 iterations. When the number of iterations exceeds 250, the objective 
values of the SA method tend to remain constant. 

Furthermore, the results show that GLS outperforms SA and TS in 
solving the proposed VRP model with the default search parameters set 
by OR-Tools version 7.2. In comparison to the SA and TS, GLS improved 
solutions by 4 % and 2.3 %, respectively. Further, GLS improved IFBS by 
19 % when solving the model for the selected case study. Kilby et al. 
(2002) also show that GLS outperforms TS in solving Solomon’s in-
stances which are not real. Current research shows the performance of 
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GLS in solving a real-world case study. 
Fig. 8 depicts a comparison of the computation time for the three 

metaheuristic methods. It shows that GLS converges in less computation 
time than the other two methods. The performance of the TS and SA 
algorithms do not monotonically increase as a function of iterations for a 
few occasions due to the stochastic nature of the algorithms. The 
randomization inherent in TS and SA can lead to variations in the quality 
of solutions obtained at different iterations, resulting in non-monotonic 
behavior. GLS saves computation time by 60 % and 73.7 % respectively 
when solving the proposed model for the selected case study in com-
parison to SA and TS. According to the results, GLS significantly reduces 
computation time when compared to the other two metaheuristic 

methods. This implies that GLS is very effective when solving real-world 
problems with many nodes. 

As presented earlier, current research compared three meta-
heuristics: GLS, SA, and TS in terms of the objective value and the 
computation time with the default search parameters set by OR-Tools 
version 7.2. According to the summary, in terms of the objective 
value, GLS outperformed the other two metaheuristics by a small margin 
(2–4 %). Nevertheless, GLS achieved a significant reduction in compu-
tation time (60–74 %) when solving the proposed model. The results 
demonstrate the efficiency of GLS in improving the IFBS as a meta-
heuristic method concerning the proposed model and the case study. 

Fig. 5. Estimate product-wise demand in terms of vegetable crates.  

Fig. 6. Conceptual framework for the numerical experiments.  
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6.3. Experiment results: Model 

This section is intended to test the proposed VRP model’s real-world 
applicability. To assess the model’s performance, all input data were 
derived from the real-world case study. Moreover, all the model outputs 
were tested to determine the model’s effectiveness. 

First, the model output was compared to the current operation 
practices of the selected retail chain. The current operation practice 
involves using a Transport Management System (TMS) along with 
manual adjustments to plan the distribution network. Hence, all the 
problem instances were solved using the current practice and the pro-
posed model. As highlighted in Fig. 8, total distribution cost was used as 
the KPI to carry out this comparison. The comparison results obtained 
through this experiment are illustrated in Fig. 9. As per the results, the 
proposed model has gained significant cost savings against the current 
operational practice. For the largest problem instance (250 outlets), this 
model achieved a 19 % saving in daily distribution costs. Moreover, the 
size of the search space grows exponentially with the problem size. As 
the problem size becomes larger, the number of feasible solutions in-
creases exponentially, making it harder to explore the entire space 
thoroughly. Therefore, the cost saving is relatively low for larger prob-
lem instances. The proposed model has resulted in both fuel cost savings 
and fixed savings, as demonstrated in Table 2. The implementation of 
the proposed model resulted in substantial cost savings in fuel costs, 
contributing to a notable reduction in the carbon footprint of the 
selected retail chain. 

The VRP model proposed in this research can assist retail outlets’ 
order allocation with multiple products. This numerical experiment 

Table 2 
Fuel cost and fixed cost savings realized through the proposed model.  

No of 
outlets 

Fixed cost component of daily 
distribution cost (LKR) 

Fuel cost component of daily 
distribution cost (LKR) 

Current 
practice 

Proposed 
model 

Cost 
saving 

Current 
practice 

Proposed 
model 

Cost 
saving 

25 36,000 36,000 0 % 249,750 180,400 28 % 
50 60,000 60,000 0 % 367,420 202,510 45 % 
75 78,000 78,000 0 % 521,390 225,860 57 % 
100 114,000 114,000 0 % 605,340 239,090 61 % 
125 150,000 150,000 0 % 657,630 285,030 57 % 
150 186,000 180,000 3 % 639,450 303,200 53 % 
175 222,000 216,000 3 % 761,050 417,290 45 % 
200 258,000 246,000 5 % 764,360 483,390 37 % 
225 294,000 276,000 6 % 871,840 561,630 36 % 
250 330,000 306,000 7 % 923,070 704,290 24 %  

Fig. 7. Comparison of metaheuristic methods in terms of objective value.  

Fig. 8. Comparison of metaheuristic methods in terms of computation time.  
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using realistic real-world data aims to investigate the effectiveness of 
allocating multiple products to heterogeneous truck fleets. As explained 
previously, the selected case study distributes vegetable products using 
plastic crates along this retail chain. Table 3 highlights the truck ca-
pacity utilization achieved using the proposed model in retail outlet 
order allocation for all problem instances. As the number of outlets in-
crease, the average truck capacity utilization generally improves, with a 
relatively low standard deviation, indicating effective allocation of re-
sources and efficient routing. Further, the average truck capacity utili-
zation is 98 % for the largest problem instance, which exceeds the 
current average truck capacity utilization (83 %) for the selected retail 
chain. Therefore, the results provide evidence for the effectiveness of 
retail outlet order allocation of the proposed model while meeting the 
required standards for transporting fresh agricultural produce. 

Table 4 provides details about the optimal route plan generated 
using the proposed VRP model. It includes details about the allocation of 
distribution centers and loading bays, route plan (sequence of retail 
outlets served in each route), the number of outlets supplied by each 
truck, truckload, the distance of the route, truck dispatching time, and 
the expected arrival time at the last retail outlet. These results show how 
the model effectively allocates trucks to limited loading bays (LB) ac-
cording to their route length. The model dispatched the trucks that 
served long-distance delivery routes first. Therefore, the model effec-
tively schedules the limited number of loading bays. 

The second objective of the proposed model aims to serve retail 
outlets before the requested service time. As a practice, the selected 
retail chain targets to supply vegetable products to retail outlets before 
4p.m. to meet peak customer demand. Therefore, the model tracks the 
expected arrival time to the last retail outlet to identify delivery routes 
with late deliveries. As highlighted in Table 4, there are seven delivery 
routes with late deliveries (truck numbers 1, 38, 39, 40, 41, 42, 43). The 

results highlight that 86 % of delivery routes (43 of 50) served their 
retail outlets before the requested time. 

Table 5 provides further details about the delivery routes with late 
deliveries. Only 5 % (13 of 247) of the retail outlets receive their orders 
after the requested time. Therefore, results show that 95 % of retail 
outlets receive their order on time. Thereby, the model has successfully 
achieved the second objective. Delivering fresh agricultural products on 
time helps ensure freshness (Utama et al., 2020). Moreover, it helps to 
minimize the stockout costs of retail outlets (Utama et al., 2020). In this 
study, incorporating time guarantees as an objective function in the 
model, rather than using them as traditional parameters, has signifi-
cantly contributed to the successful achievement of on-time deliveries 
(Fotouhi & Miller-Hooks, 2023). 

7. Conclusion 

Current VRP research focuses on investigating solution methods and 
little attention is paid to their practical implications. Practically moti-
vated VRP models are extremely important as they address real-world 
issues and provide practical solutions that can help optimize opera-
tions and improve performance. This study aimed to bridge this gap by 
integrating multiple real-world attributes related to the distribution of 
fresh agricultural products within retail chains. Retail chains distribute 
fresh agricultural produce frequently (daily on most occasions) to 
maintain freshness. Therefore, planning this daily distribution manually 
is time-consuming and difficult. The proposed VRP model can be suc-
cessfully implemented in the real world for integrated planning (i.e., 
loading bay allocation, order allocation) and route optimization. Nu-
merical experiments show that the proposed model realized significant 
savings in daily distribution costs while ensuring the timely delivery of 
fresh agricultural products to retail outlets. Furthermore, the significant 
savings achieved in fuel costs not only result in financial benefits but 
also contribute to reducing the carbon footprint. The proposed VRP 
model is efficient as an operational planning tool since it requires less 
time to obtain the optimal distribution plan. The research compared 
three metaheuristic methods (GLS, SA, and TS) for obtaining near- 
optimal solutions for the proposed optimization model. The numerical 
experiment showed that GLS outperformed the other two metaheuristic 
methods in terms of the quality of the solutions and computation time. 

This research incorporated a real road network to develop the pro-
posed routing model. The measurement of travel time between nodes 
was conducted using the actual road network. However, this research 
did not consider the dynamic travel times which change according to the 
congestion experienced during the travel time. Therefore, future 

Fig. 9. Benchmark the proposed model against the current practice in the retail chain.  

Table 3 
Truck capacity utilization realized through the proposed model.  

No of outlets Mean truck capacity utilization Standard deviation 

25 77 % 31 % 
50 91 % 13 % 
75 85 % 22 % 
100 91 % 19 % 
125 96 % 10 % 
150 94 % 11 % 
175 96 % 7 % 
200 97 % 5 % 
225 96 % 6 % 
250 98 % 3 %  
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Table 4 
Model output.  

Truck no
Distribution 

center & loading 
bay

Route plan
No of 
retail 

outlets

Truck 
load (No 
of crates)

Distance (Km)
Truck 

dispatch
time

Expected 
arrival 
time to 

last
outlet
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research could extend this model with dynamic travel times, improving 
its real-world applicability even further. Additionally, upcoming studies 
ought to focus on promoting the utilization of electric vehicles for 
transporting agricultural products within urban retail chains, with a 
particular emphasis on addressing environmental impacts (Helgeson & 
Peter, 2020; Stamadianos et al., 2023). The proposed VRP model is 
concerned with distributing fresh agricultural products in retail chains. 
The second objective function in the optimization model focuses on 
ensuring the freshness of products by addressing the timely delivery of 
goods. Further, the research could include the perishability factor of 
fresh agricultural products. Thereby, the model can further minimize 
and track the post-harvest wastage that occurs in the distribution pro-
cess. Despite these limitations, the research has important implications 
for the fresh produce industry and for future research on VRP. The 
proposed VRP model can be adapted to other contexts and industries and 
can serve as a basis for further refinement and innovation in solving 
more complex problems in the future. Overall, this research offers a 
practical solution to an important problem and opens up new avenues 
for research in the field of VRP. Moreover, by incorporating real-world 
characteristics and comparing different metaheuristic methods, this 
research contributes to the field of logistics and supply chain manage-
ment and provides insights into how to solve complex problems in 
practice. 

CRediT authorship contribution statement 

W. Madushan Fernando: Conceptualization, Methodology, Soft-
ware, Validation, Formal analysis, Investigation, Data curation, Writing 
– original draft, Visualization, Project administration. Amila Thibbo-
tuwawa: Conceptualization, Resources, Funding acquisition, Method-
ology, Project administration, Writing – review & editing, Supervision. 
H. Niles Perera: Funding acquisition, Supervision, Validation, Re-
sources, Project administration, Writing – review & editing. Peter 
Nielsen: Funding acquisition, Supervision, Writing – review & editing. 
Deniz Kenan Kilic: Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgment 

The funding for this study was provided by the Senate Research 
Committee at the University of Moratuwa, Sri Lanka, under Grant ID 
SRC/LT/2020/20 and SRC/LT/2021/22. 

References 

Abraham, A.K., Cherian Jos, B., Mangalathu, G.S., 2012. The pickup and delivery vehicle 
routing problem for perishable goods in air-cargo industry. Int. J. Emerg. 2 (12), 
790–794. 

Agustina, D., Lee, C.K.M., Piplani, R., 2014. Vehicle scheduling and routing at a cross 
docking center for food supply chains. Int. J. Prod. Econ. 152, 29–41. https://doi. 
org/10.1016/j.ijpe.2014.01.002. 

Amaliah, B., Fatichah, C., Suryani, E., 2020. A new heuristic method of finding the initial 
basic feasible solution to solve the transportation problem. J. King Saud Univ. - 
Comput. Inf. https://doi.org/10.1016/j.jksuci.2020.07.007. 

Amorim, P., Almada-Lobo, B., 2014. The impact of food perishability issues in the vehicle 
routing problem. Comput Ind Eng. 67 (1), 223–233. https://doi.org/10.1016/j. 
cie.2013.11.006. 

Arostegui, M.A., Kadipasaoglu, S.N., Khumawala, B.M., 2006. An empirical comparison 
of Tabu Search, Simulated Annealing, and Genetic Algorithms for facilities location 
problems. Int. J. Prod. Econ. 103, 742–754. https://doi.org/10.1016/j. 
ijpe.2005.08.010. 

Braekers, K., Ramaekers, K., Nieuwenhuyse, I.V., 2016. The vehicle routing problem: 
State of the art classification and review. Comput Ind Eng. 99, 300–313. https://doi. 
org/10.1016/j.cie.2015.12.007. 
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