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Abstract

Over the past two decades, the Semantic Web has evolved significantly, pro-
viding access to a vast and interconnected Web of Data, often referred to as
Linked Open Data. Within this landscape, Knowledge Graphs (KGs) have
emerged as powerful embodiments of interconnected data and semantic re-
lationships, leveraging Semantic Web standards. KGs play a pivotal role in
various domains, offering practical realizations of the vision of the Web of
Data. However, as KGs continue to evolve, several key challenges have be-
come prominent: the quality of data within KGs, efficient data access mech-
anisms, and interoperability between different KG data models. This thesis
investigates and addresses these challenges, proposing techniques to improve
data quality, enable efficient data access, and enhance interoperability in KGs.

To enhance data quality within KGs we investigate the generation and
adoption of constraints on KGs in the form of validating shapes. We con-
duct an extensive community survey to gain insights into the current state of
the art. The survey findings underline the necessity of developing semi-
automatic methods for generating validating shapes, thus addressing the
need for tools for assessing and enhancing data quality in KGs. Building
on these results, we introduce Quality Shapes Extraction (QSE), an efficient
and scalable approach designed to extract quality shapes from very large
KGs. QSE significantly reduces extraction time and filters out invalid and
spurious shapes, contributing to enhancing data quality in KGs. Building
upon QSE, we extend the methodology to improve the quality of data in
KGs, considering factors such as completeness and accuracy. To do so, we
propose SHACTOR, a system tailored for extracting and analyzing shape
constraints and utilizing them to detect and correct erroneous and spurious
data in the KGs.

To address the data access challenge, we leverage validating shapes to op-
timize SPARQL query processing over KGs. We propose "shapes statistics"
for cardinality estimation during query planning, resulting in efficient query
optimization. We demonstrate the effectiveness of this approach on both syn-
thetic and real-world datasets, demonstrating its potential to improve query
performance in large KGs.
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Furthermore, we introduce S3PG, a novel approach aimed at enhancing
data interoperability of two popular data models for KGs: RDF and property
graphs. S3PG ensures lossless and monotonic transformation from RDF to
property graph, contributing to improving data interoperability in KGs by
enabling seamless data exchange between different KG data models.

In summary, this thesis contributes to advancing the state of the art in
data management for KG research by proposing novel methodologies and
techniques. It fosters the practical utilization of KGs in various domains,
including but not limited to information retrieval, data integration, and
knowledge discovery. The methodologies and tools developed and published
as research papers in the context of this thesis make valuable contributions
to ongoing efforts to enhance the quality, accessibility, and interoperabil-
ity of KGs, thereby paving the way for their extensive adoption and pro-
found impact across various industries, particularly in the realm of artificial
intelligence.



Resumé

I løbet af de sidste to årtier er det Semantiske Web blevet udviklet væsentligt
og har skabt adgang til et stort og sammenkoblet Web af Data, ofte omtalt
som Linked Open Data. Inden for dette er vidensgrafer opstået som kraft-
fulde inkarnationer af sammenkoblede data og semantiske relationer, der
udnytter standarder fra det Semantiske Web. Vidensgrafer spiller en afgø-
rende rolle i forskellige domæner og hvor visionen om et Web af Data bliver
realiseret. Ikke desto mindre, mens vidensgrafer fortsætter med at prolifere-
re, er flere nøgleudfordringer blevet prominente: kvaliteten af data inden for
vidensgrafer, effektive dataadgangsmekanismer og interoperabilitet mellem
forskellige datamodeller. Denne afhandling undersøger og løser disse udfor-
dringer og foreslår teknikker til at forbedre datakvaliteten, muliggøre effektiv
dataadgang og forbedre interoperabiliteten i vidensgrafer.

For at forbedre datakvaliteten inden for vidensgrafer undersøger vi ge-
nerering og adoption af begrænsninger på vidensgrafer i form af valideren-
de former. Vi gennemfører en omfattende fællesskabsundersøgelse for at få
indblik i state-of-the-art. Undersøgelsens resultater understreger nødvendig-
heden af at udvikle semi-automatiske metoder til at generere validerende
former, hvilket adresserer behovet for at forbedre datakvaliteten i vidensgra-
fer. På baggrund af disse resultater introducerer vi Quality Shapes Extraction
(QSE), en effektiv og skalerbar tilgang designet til at udtrække kvalitetsfor-
mer fra meget store vidensgrafer. QSE reducerer signifikant udtræknings-
processens tid og filtrerer ugyldige og forkerte former, hvilket bidrager til at
forbedre datakvaliteten i vidensgrafer. Ved at bygge på QSE udvider vi me-
todologien for yderligere at forbedre kvaliteten af data i vidensgrafer med
overvejelser som fuldstændighed og præcision. Til dette formål præsenterer
vi SHACTOR, et system skræddersyet til at udtrække og analysere formbe-
grænsninger og udnytte dem til at detektere og rette fejlagtige og forket data
i vidensgraferne.

For at imødekomme udfordringen med dataadgang udnytter vi valide-
rende former til at optimere behandlingen af SPARQL-forespørgsler i vi-
densgrafer. Vi foreslår "formstatistik"til estimering af kardinalitet under fo-
respørgselsplanlægning, hvilket resulterer i effektiv forespørgselsoptimering.
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Vi demonstrerer effektiviteten af denne tilgang på både syntetiske og virkeli-
ge datasæt og viser dens potentiale til at forbedre præstationen af forespørgs-
lerne i store vidensgrafer.

Derudover introducerer vi S3PG, en ny tilgang med det formål at for-
bedre datainteroperabiliteten mellem to populære datamodeller for videns-
grafer: RDF og egenskabsgraf. S3PG sikrer tabsløs og monoton transforma-
tion, hvilket bidrager til at forbedre datainteroperabiliteten i vidensgrafer ved
at muliggøre problemfri udveksling af data mellem forskellige vidensgraf-
datamodeller.

Denne afhandling bidrager dermed til at fremme state-of-the-art inden
for forskningen af vidensgrafer ved at løse disse udfordringer gennem nye
metoder og teknikker. Den fremmer den praktiske anvendelse af vidensgra-
fer i forskellige domæner, herunder, men ikke begrænset til, informationsud-
vinding, dataintegration og vidensopdagelse. De metoder og værktøjer, der
udvikles og offentliggøres som forskningsartikler i forbindelse med denne
afhandling, bidrager til igangværende bestræbelser på at forbedre kvaliteten,
tilgængeligheden og interoperabiliteten af vidensgrafer og baner dermed vej-
en for deres omfattende vedtagelse og dybtgående indvirkning på forskellige
industrier, især inden for kunstig intelligens.
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Thesis Summary
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Chapter 1

Introduction

This thesis details efforts to improve the quality and access of data in
knowledge graphs and make their underlying data models interoperable. This
thesis is written as a collection of scientific papers. First, Section 1 exam-
ines the problem at hand and the motivation of using shapes to improve
the quality, access, and interoperability of data in knowledge graphs. Then,
Section 2 describes the contributions of the thesis, followed by Section 3 de-
scribing the structure of the thesis summary.

1 Background and Motivation

Over the past two decades, the Semantic Web [13] has witnessed a pro-
found evolution by providing access to a vast and interconnected Web of
Data [43] often referred to as Linked Open Data (LOD) [39, 40]. The Semantic
Web has developed a range of standards, including the Resource Description
Framework (RDF) [24] as the standard data model, SPARQL [23] as the stan-
dard query language for RDF, and other standards to define the structure,
restrictions, and semantics of RDF data, such as RDFS [25], OWL [101], and
SHACL [51].

Within this rich landscape of the Semantic Web, the concept of a
Knowledge Graph (KG) [44] has emerged as a powerful embodiment of
interconnected data and semantic relationships. KGs are graph-structured
representations designed to capture the semantics relationships between en-
tities, used as versatile tools for symbolically representing and integrating
knowledge in a structured manner [71]. KGs leverage the standards estab-
lished by the Semantic Web and offer a practical realization of the vision for
the Web of Data [43]. KGs play a pivotal role in various domains by allowing
information to be stored and analyzed using the graph model [46, 63, 85].
They can be modeled as property graphs (PG) [28] or with the RDF data
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Chapter 1. Introduction

model. KGs modeled as PGs are often used mainly in applications, such as
social networks, recommendation systems, and fraud detection [16]. While
KGs modeled as RDF triples are often used in applications such as question
answering, semantic search, and reasoning [12].

There has been a rapid increase in the number of openly published KGs,
spanning diverse topics including life sciences (e.g., Bio2RDF [29]), general
knowledge (e.g., DBpedia [10] and Wikidata [96]), and government data (e.g.,
US Government LOD [42]). This exponential growth is evidenced by the LOD
Cloud [54], consisting of 1,314 distinct KGs and 16,308 interlinking connec-
tions. KGs are also a key component of modern businesses, providing struc-
tured data and factual knowledge that not only improve products but also
improve their intelligence [63]. Microsoft’s Bing KG, for example, contains
around 2 billion entities and 55 billion facts, while Google’s KG has 1 billion
entities and 70 billion facts, helping with searching and answering questions
by including general knowledge about the world. Meta, the home of the
world’s largest social graph, has approximately 50 million entities and 500
million facts, including details about music, movies, celebrities, and places
people are interested in [63].

As applications of KGs continue to evolve, three key issues have become
increasingly prominent: the quality of data within KGs, the ability to quickly ac-
cess data through efficient data access mechanisms, and the need for interoperability
between different types of KG data models. The first challenge involves ensuring
the accuracy, reliability, and consistency of the information stored in the KG.
The second challenge focuses on the efficient access of relevant data, empha-
sizing the importance of efficient query processing for real-time applications.
Lastly, the challenge of interoperability involves data exchange and integra-
tion between RDF and property graph data models of KGs, to facilitate the
exchange and use of information between these models. This thesis refers
to the aforementioned challenges as the (i) Data Quality Challenge (DQC), (ii)
Data Access Challenge (DAC), and (iii) Data Interoperability Challenge (DIC).

1. Data Quality Challenge (DQC). The DQC in RDF graphs arises from the
intricate and diverse nature of contributing data sources, presenting chal-
lenges such as: (i) data heterogeneity: RDF graphs aggregate data from var-
ious heterogeneous sources, each with its unique structure, format, and
quality standards. This integration, while flexible, introduces the risk
of inconsistencies and inaccuracies when merging data from disparate
sources. (ii) data evolution: RDF graph data evolve over time with ad-
ditions and updates, necessitating robust mechanisms for validation and
verification to manage ongoing data quality. (iii) schemaless nature: RDF’s
inherent schemaless quality provides flexibility but results in variations in
data representation, making it challenging to enforce uniform data quality
standards.
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Validating shapes such as SHACL (Shapes Constraint Language) [51] and
ShEx (Shape Expressions) [72], play a crucial role in addressing such data
quality issues in RDF graphs. These shape validation mechanisms pro-
vide a systematic approach for defining and verifying the structure and in-
tegrity of RDF data. SHACL became a W3C standard in 2017 and enables
the creation of shape definitions that articulate the expected structure and
constraints of RDF data. ShEx, on the other hand, offers a concise and
expressive language for specifying shapes, providing a flexible means of
evaluating RDF data against predefined criteria [51]. By employing vali-
dating shapes, practitioners can establish a set of rules and constraints that
data must adhere to, thereby enhancing the quality and reliability of in-
formation encapsulated in RDF graphs. These validation approaches help
identify and rectify data quality issues, ensure that data comply with ex-
pected standards, and contribute to a more reliable and accurate represen-
tation within RDF graphs.
Although RDF data validation has been made possible through the use of
validating shapes to improve the quality of the data, the current state of the
art has limitations when it comes to defining shapes for graphs [77]. For
instance, none of the existing approaches is able to extract shapes from very
large graphs, and, more importantly, they are not able to output shapes that
are of good quality [79].

2. Data Access Challenge (DAC). This challenge refers to the limitations as-
sociated with efficient access to RDF data, which is typically stored in the
form of a collection of triples (subject, predicate, and object) in triple stores.
SPARQL is a W3C-standardized query language for querying data from
RDF graphs. It uses triple patterns for graph matching and compares vari-
ables in these triple patterns with graph’s data during query evaluation.
The result of the evaluation process is then expressed as a set of mappings
that link a set of variables to nodes and edges in the graph. Furthermore,
it provides advanced operators such as FILTER, AND, OPTIONAL, and
UNION to create more complex queries. Optimizing SPARQL queries is
essential due to the complexity of processing them. SPARQL queries often
involve multiple triple patterns and complex filtering conditions, making
them vulnerable to performance issues. As KGs grow in size and com-
plexity, SPARQL queries with numerous joins can make accessing data
challenging in terms of time and space complexity.
Despite the progress made in improving the efficiency of querying triple-
stores, it is still a major challenge as the size of RDF graphs and the need
to query them in more intricate ways is constantly growing [3]. There
are numerous techniques to optimize SPARQL query processing; however,
a recent survey [3] on “RDF stores and SPARQL engines to query KGs”
points out that there are still unresolved issues to address in terms of query
dynamics, types, and volume.
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3. Data Interoperability Challenge (DIC). The term interoperability was in-
troduced in the area of information systems. It is defined as the ability
of two or more systems or components to exchange information and use
the information that has been exchanged [33]. In the context of data man-
agement, interoperability is concerned with the support of applications
that exchange and share information across the boundaries of existing
databases [20]. Providing interoperability between data models, systems,
and applications is a very concrete and pragmatic problem, which stems
from the need for reusing existing systems and programs for building new
applications [20]. Data and information interoperability are relevant to pro-
mote data exchange and integration [66], to have a common understanding
of the meanings of the data [41], to allow reuse and sharing of information
and knowledge [87], and to allow exploring the best features of different
approaches and systems [67].
The DIC in the context of KGs refers to the limitations encountered when
achieving interoperability between the RDF and the property graph data
models of KGs. There exist various approaches in the literature to enable
interoperability between RDF and PG data models of KGs [8]; however, the
most recent survey [28] in this direction concluded that no transformation
method supports data and schema transformations between both models,
preserving the capabilities of both.

Given the details of data quality, access, and interoperability challenges above,
this thesis investigates each of these challenges with the aim of building upon
the state of the art to improve data quality, access, and interoperability; thus
optimizing the utilization of KGs and Semantic Web standards. To accom-
plish this, the first step involves addressing the challenge of data quality in
KGs. This is achieved by conducting a state of the art and community survey
to analyze the generation and adoption of validating shapes (SHACL and
ShEx). The results of the survey showed the need to develop semi-automatic
methods that can help users generate shapes from large KGs. Following
the results of the survey, an efficient and scalable algorithm was proposed
to extract quality shapes from very large RDF graphs. To facilitate the use
of the proposed algorithm, a tool was developed to assist users in extract-
ing shapes and identifying and rectifying data quality issues such as spu-
riousness and erroneousness in large RDF graphs. Next, the challenge of
data access is addressed by utilizing validating shapes, specifically SHACL,
for SPARQL query optimization. Finally, the challenge of interoperability
is tackled through the proposal of a standardized schema-based RDF to PG
data model transformation approach.

As such, by building upon state of the art, the goal is to deliver robust
methodologies alongside efficient algorithms and advanced tools that can
improve the quality of KGs’ data while allowing users to efficiently access
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it and take full advantage of the PG data model by making RDF and PG
interoperable.

In the remainder of this section, an overview is provided of the contribu-
tions of the thesis as well as the structure of the thesis. Details on the state of
the art and the individual contributions are given in Sections 2-6.

2 Contributions of the Thesis

The primary contributions of this thesis include the development of novel
methodologies and tools aimed at enhancing the data quality, access, and
interoperability of KGs. For each of the aforementioned challenges, specific
objectives have been established. To address DQC, the objective is to improve
the data quality in KGs. Similarly, for DAC, the objective is to enhance query
processing in KGs. Lastly, to tackle DIC, the objective is to improve data inter-
operability in KGs. As this is a publications based thesis, Figure 1.1 has been
included to illustrate how each paper (A-E) contributes to achieving these
three objectives and the connections between the papers.

At first, Paper A [77] studies the generation and adoption of validating
shapes by carrying out a community survey to evaluate the requirements
of users (from industry and academia) who generate validating shapes such
as SHACL and ShEx. To do this, an extensive survey of existing tools for
extracting validating shapes and their features was conducted, followed by
a comparison of the survey results. Lastly, an examination of how existing

Improve Data Quality 
in Knowledge Graphs

Paper A

Paper B

Paper C

Paper D
Improve Query Processing

in Knowledge Graphs

Improve Data Interoperability 
in Knowledge Graphs

Paper E 

DQC

DAC

DIC

Objectives Research PapersChallenges

Fig. 1.1: Overview of challenges, objectives, and interconnections between research papers for
enhancing data quality, access, and interoperability in KGs.
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automatic shape extraction approaches work in practice on large real-world
KGs was carried out. The analysis revealed the need for developing semi-
automatic methods that can assist users in generating validating shapes for
large KGs.

Paper B [79] delves deeper into the extraction of validating shapes and
initially identifies the shortcomings of existing shapes extraction techniques,
such as being incapable of extracting shapes with all the constraints, not scalable,
and prone to generating spurious shapes. To address the limitations of exist-
ing approaches, this paper introduces Quality Shapes Extraction (QSE), an
efficient and scalable approach for extracting quality shapes from very large
KGs. Both exact and approximate variants of QSE are provided. This method
offers information about the quality of shape constraints by calculating their
confidence and support within a KG, enabling the identification of shapes
that are most informative and less likely to be affected by incomplete or in-
correct data. QSE was employed to extract SHACL shapes from large KGs
such as DBpedia [10] and Wikidata [96]. QSE provides a considerable de-
crease in extraction time, i.e., almost 12 times faster than existing methods.
Additionally, it filters out up to 93% of the invalid and spurious shapes,
leading to a decrease of up to two orders of magnitude in the number of
constraints presented to the user, e.g., in DBpedia, it reduced the number of
constraints on properties from 11,916 to 809.

In Paper C [80], a system called SHACTOR is developed to facilitate
the use of QSE [79]. SHACTOR is designed to improve the data quality
in very large KGs by extracting and analyzing validating shapes. Utilizing
standard shape extraction techniques often results in the generation of nu-
merous shapes, some of which may stem from erroneous data in the KG.
SHACTOR addresses this issue by using QSE to parse the given KG, com-
prising tens of millions of triples and thousands of classes. QSE offers an
efficient and scalable shape extraction algorithm that outputs SHACL shape
constraints annotated with statistical information, such as support and con-
fidence. This facilitates the identification of erroneous and missing triples
in the KG. SHACTOR uses such annotated shape constraints to help users
identify and rectify errors by automatically generating SPARQL queries on
the graph to pinpoint nodes and facts that cause incorrect shapes, allowing
for data corrections.

Validating shapes not only play a pivotal role in mitigating quality issues
in KGs but also extend their utility to various applications. Paper D [76] con-
tributes to the objective of improving query processing in KGs to deal with DAC
by making use of validating shapes. SPARQL query optimization involves
cardinality estimation and join ordering. The traditional methods for SPARQL
query optimization rely on global statistics over entire RDF graphs and thus
have limitations to accurately capture common correlations of RDF KGs. This
leads to erroneous estimations and suboptimal query execution plans, and it
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is computationally expensive to capture correlations in a fine-granular man-
ner. To mitigate this, Paper D introduced ‘shapes statistics’, an extension of
the SHACL that incorporates statistical information to capture correlations
between classes and properties. Then, these "shapes statistics" are used for
cardinality estimation during query planning for join ordering in an open-
source query engine. Lastly, the proposed query optimization method is
evaluated on synthetic and real-world datasets, and the results revealed that
the proposed approach is efficient in terms of both the pre-processing steps
to generate shape statistics and the cardinality estimation to optimize query
plans.

Paper E [75] significantly contributes to DIC by improving data interop-
erability in RDF KGs by leveraging validating shapes. This paper introduces
a novel approach Standardized SHACL Shapes-based PG Transformation (S3PG)
to enhance data interoperability, focusing specifically on the transformation
of KGs from the RDF data model to the property graph (PG) data model
using standardized schemas. S3PG employs SHACL for RDF data and PG-
Schema [6] for PGs. PG-Schema [6] is established as the most recent stan-
dard published in 2023 and serves as a foundational element in this transfor-
mation process. S3PG is a completely lossless and monotonic transformation
approach designed for the transformation of large RDF graphs. It preserves
the information and semantics throughout the transformation process. S3PG
was evaluated using DBpedia and a domain-specific KG representing clini-
cal trials. The quality of the transformed graphs was assessed by executing
various types of queries, the results indicated that S3PG always achieved a re-
markable 100% accuracy rate, surpassing existing techniques having accuracy
ranging from from 30% to 99%. Moreover, S3PG exhibits full monotonicity
when dealing with evolving graphs and demonstrates a significantly reduced
time requirement for incorporating changes compared to existing methods.
The findings show the efficacy and superiority of S3PG in ensuring accurate,
lossless, and efficient transformations in the context of RDF to PG conver-
sions, and thus contribute to the objective of improving data interoperability
in KGs.

3 Structure of the Thesis

The thesis has two parts. In Part I, Section 1 discusses the motivational as-
pects and fundamental contributions of the thesis. Section 2 discusses related
work for data quality, query optimization, and interoperability in KGs. Next,
the thesis provides a summary of each paper: Section 3 offers a comprehen-
sive summary of the survey results presented in Paper A. Section 4 provides
an overview of the proposed Quality Shapes Extraction (QSE) approach with
core contributions from Paper B. Section 5 summarizes the essential aspects
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of the SHACTOR system from Paper C to help users extract, analyze, and
clean validating shapes. Section 6, presents a summary of the proposed ap-
proach for optimizing SPARQL queries through SHACL shape statistics, as
detailed in Paper D. Lastly, Section 7 provides a summary of the S3PG ap-
proach, detailed in Paper E, which focuses on transforming RDF data mod-
els to PG data models using standardized schemas. Section 8 concludes the
Part I by offering a forward-looking perspective on potential future directions
stemming from the research work done in this thesis.

Part II of the thesis contains the full versions of all the papers, with the
layout adjusted to fit the thesis format. It is suggested to read them in chrono-
logical order as shown in Figure 1.1.
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Chapter 2

State of the Art

Knowledge Graphs (KGs) are modeled using Resource Description Frame-
work (RDF) [24] and Property Graphs (PGs) [44]. As repositories of informa-
tion continue to expand, KGs confront the escalating challenge of maintain-
ing high-quality data and undergoing thorough validation [72, 77] to ensure
their reliability in practical applications. In addition, KGs play a crucial role
in real-time applications, introducing further challenges associated with effi-
cient data access. The growing volume of data within KGs requires robust
solutions for seamless and timely access. Moreover, KGs are not restricted
only to the RDF data model; they are also represented using the PG data
model. This diversity underlines the need for interoperability between RDF
and PG data models, highlighting the importance of developing approaches
that facilitate smooth interactions between these data models.

In this section, the state-of-the-art approaches to each of these aspects are
analyzed, highlighting their advantages and shortcomings.

1 Data Quality in Knowledge Graphs

KGs data often originate from diverse sources, resulting in incomplete, du-
plicate, contradictory, or incorrect statements [44]. After initial creation and
enrichment, assessing the quality of the KG data becomes a crucial step.
Quality, in this context, pertains to fitness for purpose, determining the reli-
ability of the KG data for specific uses. The assessment encompasses various
dimensions and metrics, transitioning from traditional database quality con-
siderations to those specific to KGs [44]. The discussion includes qualitative
aspects captured by quality dimensions inspired by the framework presented
by Batini and Scannapieco [57]. These dimensions [44] are discussed below.

• Accuracy in a KG pertains to how well entities and relations, repre-
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sented by nodes and edges, faithfully represent real-world phenom-
ena. This dimension includes syntactic accuracy, semantic accuracy,
and timeliness.

• Coverage involves preventing the omission of domain-relevant ele-
ments to avoid incomplete query results, biased models, etc.
For example, one aspect of coverage is completeness, which evaluates
the presence of all the necessary information in a dataset. It com-
prises schema completeness, property completeness, population com-
pleteness, and linkability completeness. Measuring completeness is
challenging. It often requires comparing with standards or evaluating
recall from extraction methods based on complete sources.
Another aspect of coverage is representativeness, which involves assess-
ing high-level biases included or excluded in the KG.

• Coherency assesses how well a KG adheres to formal semantics and
schema-level constraints. It involves consistency, which ensures the ab-
sence of logical contradictions, and validity, which ensures the absence
of constraint violations, as captured by shape expressions.

Graph schemata are employed to define a high-level structure and/or seman-
tics that the graph must adhere to or should adhere to in order to guarantee
the correctness, coverage, consistency, and validity of data in graphs. Three
types of graph schemata are defined in the literature [44], namely, Semantic
Schema, Validating Schema, and Emergent Schema.

• Semantic schema allows for defining the meaning of high-level terms in
a graph, facilitating reasoning. RDF Schema (RDFS [25]) is a prominent
standard for this purpose, enabling the definition of sub-classes, sub-
properties, domains, and ranges, serialized as a graph.

• Validating schema is defined using shapes to enable data complete-
ness and validity. Shapes target nodes in a graph and specify con-
straints, supporting the restriction of values on properties. Shape Ex-
pressions (ShEx [72]) and Shapes Constraint Language (SHACL [51])
are two emerging shape languages for RDF graphs.

• Emergent schema is extracted as latent structures of graphs, often
known as a graph summary [19]. Latent structures in a data graph
can be automatically identified using frameworks like quotient graphs,
which partition nodes based on an equivalence relation while preserv-
ing structural properties [70].

The scope of this thesis covers the dimensions of coverage and coherency for
data quality assessment in KGs using validating schema. The following dis-
cusses the state-of-the-art related to validating schemas.
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1.1 Data Validation

Integrity constraints for KGs were initially formulated using the RDF schema
vocabulary [25] and subsequently with the OWL language [58, 59, 93]. The
SPARQL Inferencing Notation (SPIN) [50] emerged as an alternative later on.
SHACL [51], recognized as the next generation of SPIN, has been a W3C stan-
dard since 2017. Additionally, ShEx [73], although not standardized, serves as
a constraint language using regular bag expressions inspired by XML schema
languages and is employed in projects like WikiData [94]. While SHACL and
ShEx are not entirely equivalent [32], they share a fundamental concept. Both
enforce specific constraints on the combination of node types and predicates,
ensuring each node satisfies these constraints [30].

Shapes Extraction:

The prevalence of large-scale KGs has led to the development of vari-
ous applications to extract information related to their implicit or explicit
schemas [49]. In particular, when it comes to constructing or extracting
shapes, the goal is to generate a set of shapes from existing KG data. This pro-
cess is essential for validating schemas that guarantee the quality of a KG’s
data. The results of the survey [77] demonstrate a growing need among prac-
titioners for efficient methods to extract validating shapes from large existing
KGs. Table 2.1 categorizes existing approaches based on several technical
features, such as the ability to extract shapes from data or ontologies, the
automation of shape extraction, compatibility with shapes extraction from
a SPARQL triplestore, and the capability to extract SHACL, ShEx, or both
types of validating shapes. It is noteworthy that there are approaches for
extracting schemas from property graphs [52]. Nevertheless, their direct ap-
plicability to RDF KGs is restricted due to the intricate nature of RDF schema

Table 2.1: State-of-the-art to extract validating shapes (reproduced from [77])

Approach
Extracted from

Automatic Triplestore Type
data ontology

Shape Induction [56] ✔ ✗ ✔ ✔ SHACL, ShEx
SheXer [30] ✔ ✗ ✔ ✔ SHACL, ShEx
Spahiu et al. [88] ✔ ✗ ✔ ✔ SHACL
ShapeDesigner. [15] ✔ ✗ ✔ ✔ SHACL, ShEx
SHACLGEN [48] ✔ ✔ ✔ ✔ SHACL
TopBraid [95] ✔ ✔ ✔ ✔ SHACL
Pandit et al. [65] ✗ ✔ ✗ ✔ SHACL
Astrea [22] ✗ ✔ ✔ ✗ SHACL
SHACLearner [64] ✔ ✗ ✔ ✗ SHACL
Groz et al. [35] ✔ ✗ ✔ ✗ ShEx
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structures. Moreover, these techniques mainly concentrate on recognizing
sub-types based on node labels (which are not present in RDF data, as types
are nodes in the graph), and they lack a design specifically tailored to tackle
the issue of spuriousness in RDF KGs.

Shapes Validation:

After defining validating shapes, the subsequent step involves their utiliza-
tion for validating the RDF KGs. As of now, SHACL validation has been
seamlessly integrated into various mainstream tools and triplestores [98]. A
well-known example is RDF4J [81], a Java framework for RDF data manage-
ment, which now incorporates a SHACL validation engine. RDF4J is a core
component in several projects, notably the GraphDB [34] triplestore. Other
databases equipped with SHACL capabilities include AllegroGraph [4] by
Franz Inc, Apache Jena [47] by Apache, and Stardog [89] by Stardog Union
Inc. A comprehensive benchmark for comparing different SHACL implemen-
tations, along with results for four distinct databases, was proposed in [84].
Python users can avail themselves of a SHACL implementation through the
pySHACL [74] library. Pioneering the validation of recursive SHACL graphs,
SHACL2SPARQL [26] stands as one of the initial tools. Conversely, Trav-
SHACL [31] is a tool that implements a SHACL engine optimized for evalu-
ating core constraints expressed in language fragments [27]. Demonstrating
significantly faster validation times on these SHACL fragments, Trav-SHACL
outperformed the SHACL2SPARQL tool. Notably, MagicShapes [2] repre-
sents a recent approach for unrestricted SHACL validation.

1.2 Data Refinement

In addition to quality evaluation, various techniques are available for the re-
finement of KGs, specifically for (semi)automatic completion and correcting
them [69]. KG completion involves filling in missing edges and addressing
the inherent incompleteness of KGs, while KG correction focuses on identi-
fying and removing existing incorrect edges. Unlike the processes of creation
and enrichment, refinement typically enhances KG without extensive reliance
on external sources. These refinement methods, namely completion and correc-
tion, primarily target aspects of precision, coverage, and coherence. Although
other quality issues, such as succinctness, could be considered, completion
and correction tasks have dominated attention in KG refinement [69]. For
a more in-depth exploration of the state of the art in KG refinement, it is
recommended to read Paulheim’s survey [69].
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1.3 Summary

Given the current state of the art in assessing and refining data quality in
KGs, this thesis contributes to the dimensions of Coverage – completeness and
Coherency – validity. Specifically, a survey is conducted to analyze the adop-
tion of validating schemas in the community. Based on the survey results, an
approach called Quality Shapes Extraction (QSE) is proposed to extract vali-
dating schemas (in the form of SHACL) from very large KGs. In contrast to
existing approaches, QSE is efficient, scalable, and produces high-quality shape
constraints. QSE provides a notion of quality in shape constraints by comput-
ing the support and confidence of node and property shape constraints while
mining shapes from large RDF graphs. The extracted validation schema can
be used to validate very large KGs, thus contributing to the dimensions of
Coherency – validity. Building upon the proposed approach, a system has
been developed that not only facilitates the extraction of validating schema
but also assists users in identifying and rectifying data-related issues. Thus,
the proposed system contributes to the dimension of Coverage – completeness
and refinement. Detailed information on these contributions is provided in
Section 2.

2 Query Optimization in Knowledge Graphs

SPARQL [23] serves as the standard language for querying RDF KGs, sup-
porting relational algebraic operations like joins, projection, selection, union,
difference, etc. The introduction of features such as property paths in the lat-
est version, SPARQL 1.1, enables the matching of paths of arbitrary length in
RDF. The Web [13] hosts numerous popular SPARQL endpoints, processing
millions of queries per day [53, 83]. Engines designed to store, index, and
process SPARQL queries over RDF are commonly known as SPARQL en-
gines. According to [3], these engines are also considered RDF stores due to
their support for joins in SPARQL. RDF stores, or SPARQL engines, encom-
pass critical components such as data storage, indexing, and join processing,
which play an essential role in enhancing the performance of SPARQL en-
gines [3].

• Storage. Various engines adopt diverse structures (e.g., tables, graphs),
encodings (e.g., integer IDs, string compression), and storage media
(e.g., main memory, disk) for RDF data. The choice of storage depends
on factors such as data scale and supported query features [82].

• Indexing. RDF stores utilize indexes to perform search and query ex-
ecution. Different index types cater to distinct operations, presenting
varying time–space trade-offs.
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• Join Processing. Efficient join processing is fundamental for query
evaluation. It involves optimizing join ordering, which is crucial for
ensuring computational efficiency. Cardinality estimation is one of the
methods to optimize join ordering, in addition to that, recent innova-
tions include multi-way joins, worst-case optimal joins, and GPU-based
join processing.

To align with the scope of this thesis, the state of the art of join processing
in SPARQL query engines is discussed, with a particular focus on cardinality
estimation.

2.1 Join Processing and Cardinality Estimation

The study of cardinality estimation has been a focal point in the realm of re-
lational databases [68]. In the context of SPARQL queries, existing techniques
often adapt methodologies from the relational domain [45, 91], primarily fo-
cusing on specific query types [61]. Typically, these approaches construct var-
ious types of single or multidimensional synopses over databases to estimate
cardinalities [90]. However, algorithms designed for generating synopses for
unlabelled graphs are inapplicable to RDF graphs due to the labeled na-
ture of edges. Consequently, existing approaches for RDF summaries either
yield excessively large summaries [90], exhibit high computational complex-
ities, or fail to preserve the RDF schema during summary construction [90].
Therefore, the most promising approaches involve leveraging statistics de-
rived from edge-label frequencies.

In particular, RDF-3X [62] presents a method for cardinality estimation
relying on edge label frequencies, employing a histogram-based approach.
This method is extended by incorporating statistical information from Char-
acteristic Sets [61], which compute frequencies of sets of predicates sharing
the same subject to estimate cardinalities. While effective for star-shaped
queries, it suffers from significant underestimation in the general case due
to the independence assumption [68]. Attempts to address this limitation,
such as Characteristic Pairs [55], are constrained to supporting multi-chain
star queries. Additionally, extracting Characteristic Sets from large heteroge-
neous graphs proves computationally expensive. SumRDF [90], an approach
based on graph summarization, faces challenges handling large queries due
to prohibitive computation costs. Furthermore, constructing such summaries
over extensive RDF graphs is resource-intensive [68]. A recent benchmark,
G-CARE [68], thoroughly assessed the effectiveness of current methods for
estimating cardinality in subgraph matching scenarios. Results revealed that
approaches utilizing sampling and optimized for online aggregation demon-
strate superior performance compared to conventional cardinality estimation
methods specifically crafted for RDF graphs. This underlines the need for a
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more thorough investigation into appropriate cardinality estimation methods
for SPARQL query optimization.

In recent work, Shape Expressions (ShEx) [72] have been employed to re-
order triple patterns, facilitating SPARQL query optimization [1]. This opti-
mization estimates the order of execution for triple patterns based on heuris-
tic inferences regarding their selectivity. For example, if a shape definition
implies that every instructor has one or more courses, while every course has
exactly one instructor, the optimization infers that the cardinality of courses
is at least the same as that of instructors and likely larger. Notably, this opti-
mization procedure is not grounded in actual data.

2.2 Summary

In the context of improving join processing in SPARQL queries over RDF
KGs, this thesis introduces a novel contribution to improve join ordering. Our
approach focuses on proposing a new method for estimating cardinalities,
distinct from existing methodologies. Unlike conventional approaches that
rely on global statistics for cardinality estimation [37], this method leverages
fine-grained statistics derived from SHACL shapes. This allows us to achieve
more precise cardinality estimations for query planning. In contrast to the
practice of creating extensive and costly summaries and characteristic sets
on RDF graphs to estimate cardinalities, this approach involves the use of
SHACL shape constraints, which are as expressive as ShEx [72]. Compared
to alternative solutions, this method entails lightweight preprocessing and
preserves the structure of the original RDF graph and the SHACL validation
schema. Detailed information on these contributions is provided in Section 2.

3 Interoperability in Knowledge Graphs

In recent years, a great deal of effort has been devoted to exploring data
exchange and data integration. Nevertheless, there have been few attempts
to address the issue of interoperability between RDF and Property Graph
(PG) data models. In the following, the state of the art for transforming RDF
data models into PG data models and vice versa is discussed.

3.1 RDF Data Model to Property Graph Data Model

In the domain of graph data representation, the transformation of RDF data
models into PG data models has gained attention. Angles et al. [9] con-
tributed direct mappings for this conversion, encompassing both data and
schema aspects. Their work introduces schema-dependent and schema-
independent direct mappings for transformation, utilizing RDFS as the
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schema for KGs and a custom-defined schema for PGs. In particular, the
authors contend that the property graph data model subsumes the informa-
tion capacity of the RDF data model.

To address the limitations of SPARQL in the implementation of traversal
or analytics algorithms, G2GML [21] provides a mapping of RDF graphs to
PG. It introduces an exchangeable serialization format to enhance support for
different graph database management systems and ensure interoperability.
However, it also involves a redefined PG model. Despite these advances, the
process of transforming RDF data models into PG data models is not with-
out challenges. In particular, such transformations often result in incomplete
data [28]. Haihong et al. [38] proposed an approach specifically tailored for
the transformation of RDF to PGs in Hugegraph. The methodology addresses
challenges such as ensuring the uniqueness of nodes and supporting multi-
label and empty-label RDF graphs in single-label graph databases. However,
it is crucial to note that this approach is specific to Hugegraph and may not
be universally applicable. Furthermore, the authors caution that information
preservation is not guaranteed during the import process, as the system au-
tomatically identifies vertices and edges labels, omitting blank nodes along
with their related edges.

In a separate effort, rdf2neo [17] is introduced as a tool to populate Neo4j
databases from RDF datasets. This tool exemplifies its utility through real
use cases in agrigenomics, demonstrating how it can enhance opportunities
for knowledge sharing and interoperability.

3.2 Property Graph Data Model to RDF Data Model

Exploring the reverse transformation from PGs to KGs involves several no-
table works. PREC [18] facilitates the user-configured conversion of property
graphs to RDF graphs with a focus on more effective capture of semantic
content. In the broader landscape, some work proposes unified storage lay-
outs for RDF and PG data models [7, 102]. In [7], the authors advocate for
a unifying data model that supports graph formats such as RDF, RDF*, and
PGs. They introduce a flexible data model for graphs, with the aim of ac-
commodating these diverse features. However, it is essential to acknowledge
potential limitations in leveraging the individual capabilities of RDF and PG
models within such unified models.

3.3 Summary

In the context of achieving interoperability between RDF and PG data mod-
els, this thesis introduces a novel approach to transform RDF data models
into PG data models by utilizing standardized schemas for both data mod-
els. In contrast to existing methods, the proposed Standardized SHACL
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Shapes-based PG transformation technique (S3PG) incorporates the standard
SHACL schema for RDF graph data models and the PG-Schema (published
in 2023) [6] as the schema for PG data models. This schema fulfills funda-
mental requirements, including the definition of node and edge types, as
well as addressing advanced scenarios like expressing complex type hierar-
chies and integrity constraints. To the best of our knowledge, S3PG is the
only lossless approach for transforming RDF to PG data models, ensuring
the preservation of information, semantics, and monotonicity throughout the
transformation process.
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Chapter 3

Generation and Adoption of
Validating Shapes

This section gives an overview of Paper A [77].

1 Motivation and Problem Statement

As discussed in Section 1, the popularity of Knowledge Graphs (KGs) has
witnessed a significant surge over the past decade. However, these KGs,
mainly represented in RDF, often lack data due to the ever-changing nature
of human knowledge. Ensuring the accuracy of information within KGs is
crucial. Validation languages such as SHACL [51] and ShEx [72] play a vital
role in defining constraint rules (in the form of shapes, also referred to as
validating shapes) that data must follow. These rules help maintain data
quality and have applications in various areas like user interface design and
query optimization [43, 76]. Several tools [15, 22, 30, 48, 95] are available to
assist in creating these validation rules. However, manually defining rules
for large KGs can be daunting, while automatic methods may produce an
overwhelming number of rules that require careful validation.

To better understand user needs in shaping large KGs, in Paper A, we
conducted a comprehensive online survey involving both academic and in-
dustry professionals. The survey aimed to uncover common approaches used
in rule creation, identify challenges, and suggest future research directions in
automating rule generation and validation processes.
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2 Survey Methodology and Results

We conducted a comprehensive survey using Google Forms and shared it
within the Semantic Web and KG communities, targeting members from vari-
ous platforms and conferences. The survey, conducted anonymously between
November 2021 and January 2022, yielded thirty responses, with a break-
down showing 53% from Industry, 27% from Academia, and 20% from both
sectors. The survey delved into the methods employed for generating vali-
dating shapes within KGs. Results indicated that manual shape generation is
the most prevalent method, followed by the utilization of existing ontologies
and derivation from RDF graph instance data (as shown in Figure 3.1). More-
over, respondents reported a diverse array of tools and methodologies, with
TopBraid Composer [95] being utilized by 33% of respondents, Protégé [30]
by 20%, RDFShape [100] by 16.7%, SheXer by 10%, and text editors by 16.7%.

Further analysis revealed insights into the characteristics of the graphs
for which respondents generated shapes. A significant proportion of respon-
dents worked with graphs containing varying numbers of triples, classes,
and distinct properties. Interestingly, while a majority of respondents gener-
ated shapes for entire graphs, a substantial portion also focused on specific
portions, driven by various factors outlined in their responses.

In summary, the survey highlighted the prevalent use of manual shape
generation despite the diverse range of tools and methodologies available.
The results underscored the need for scalable tools to facilitate efficient shape
generation, especially for large and complex graphs.
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Fig. 3.1: Analysis on extraction of validating shapes (reproduced from Paper A [77]).
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3 Limitations and Opportunities

The section elaborates on the disparities observed between the current capa-
bilities of tools for shape extraction and the genuine requirements of users.
Despite the availability of automated tools, manual shape generation remains
prevalent among users, indicating a gap between tool capabilities and user
needs. This necessitates further research avenues for improving automated
shape extraction methods.

Existing approaches for shape extraction, as discussed in Section 1.1, vary
in their support for extracting validating shapes. Some tools focus solely on
ontology-based shape extraction, while others concentrate on instance data.
However, few tools offer support for both ontology and instance-based shape
extraction. These approaches often make assumptions that diverge from real-
world scenarios, such as presuming the completeness of ontologies or the
scalability of instance data processing [22, 30, 48].

To assess the actual capabilities of existing tools, we conducted exper-
iments on state-of-the-art tools like SheXer [30], ShapeDesigner [15], and
SHACLGEN [48]. These experiments were performed on datasets includ-
ing DBpedia [10], YAGO-4 [92], and a scaled version of LUBM [36]. The
results of these experiments revealed limitations in the scalability and reli-
ability of these tools. For instance, ShapeDesigner encountered difficulties
with datasets containing a few million triples, while SHACLGEN struggled
with datasets featuring hundreds of classes, requiring significant time for
shape extraction. Furthermore, the utility and reliability of shapes extracted
from instance data were examined. It was found that shapes extracted by
existing tools often lacked comprehensiveness and reliability, particularly for
non-literal predicate objects. Manual inspection of these shapes revealed in-
adequacies in capturing all necessary constraints, indicating reliability issues.
To address these concerns, efforts were made to extract missing shape con-
straints and assess their support within the graph. However, due to the in-
herent noise and incompleteness of KGs, automatically generated shapes and
constraints often lack reliability.

4 Conclusion

In Paper A, the limitations found in existing shape extraction approaches
align with the prevalence of manual shape generation among users, as indi-
cated by the community survey (Figure 3.1). This shows the need for fur-
ther research to assist users in generating useful validating shapes for exist-
ing large-scale KGs. Therefore, in the paper titled ‘Extraction of Validating
Shapes from very large Knowledge Graphs’ (Chapter 4), we introduce a scal-
able and quality shapes extraction approach to overcome this challenge and
provide automated support for shape generation in large-scale KGs.
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Chapter 4

Quality Shapes Extraction

This section gives an overview of Paper B [79].

1 Motivation and Problem Statement

Building upon the results of our community survey, we investigate the limi-
tations in existing approaches for extracting validating shapes and present a
solution to overcome these limitations. Specifically, when defining validating
shapes for a given KG, we can express that an entity of type Student requires
a name, a registration number, and should be enrolled in some courses; and that
these attributes should be of type string, integer, and Course, respectively – see
Figures 4.1a and 4.1b for an example KG and corresponding shapes. The ex-
isting automatic [22, 30, 48, 56] and semi-automatic [15, 65, 95] techniques1

to extract validating shapes suffer from three important limitations:

1. they are not able to produce complete shapes, e.g., they can identify
that a student should have a property of type takesCourse but they do
not extract the fact that the object should be of type Course;

2. the shapes they produce are easily affected by errors and inconsisten-
cies in the KG, e.g., if some departments, by mistake, are attached the
property hasAdvisor, a corresponding spurious shape is extracted; and

3. they do not scale to large KGs, e.g., they cannot process the full English
WikiData, and require days to process its subset.

Therefore, in Paper B, we present the first technique for efficient extraction of
validating shapes from very large existing KGs that also ensures robustness against
the effects of spuriousness. Spuriousness poses important challenges to auto-
matic shape extraction methods. For instance, in DBpedia [11], some entities

1Note: All these techniques are discussed in Chapter 2: State of the Art.
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: FullProfessor

: bob : Student

:Databases  : Course
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(a) An example RDF graph showing the academic connections between student Bob and full professor Alice.
Alice serves as Bob’s advisor, teaches a Databases course (taken by Bob), and is associated with the Computer
Science Faculty at University X. Additionally, Alice holds a doctoral degree from University Y and holds
leadership positions as head and chair of the department.

sh:FullProfessor
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≥ 1 docDegreeFrom

≥ 1 subOrgOf

≥ 1 teacherOf
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(b) A visual representation illustrating shape constraints for the RDF graph described above, applying con-
straints at both the class level (using Node Shapes) and the property level (using Property Shapes), including
cardinality constraints.

Fig. 4.1: An example RDF Graph and its Validating Shapes — (adapted from [79])

representing musical bands are wrongly assigned to the class dbo:City. As a
consequence, when shapes are extracted from its instance data using existing
approaches, the resulting node shape for dbo:City specifies that cities are al-
lowed optional properties like dbo:genre and dbo:formerBandMember. Hence,
due to the effect of spuriousness, existing approaches generate tens of thou-
sands of shapes (our experiments show that standard extraction processes
produce more than 2 million property shapes for WikiData [97]). Thus, do-
main experts cannot manually identify valid shapes. Therefore, to tackle
the issue of spuriousness, we study and formalize the problem of support-
based shapes extraction and propose the Quality Shapes Extraction (QSE)
approach as a solution to this problem. To tackle the issue of scalability, we
devise two efficient algorithms, QSE-Exact and QSE-Approximate. Hence,
QSE can filter out shapes affected by spurious or erroneous data based on robust and
easily understandable measures.
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2 Methodology

The standard model for encoding KGs is RDF (Resource Description Frame-
work) [24], where data is represented as triples denoting subject, predicate,
and object. An RDF graph consists of nodes and edges, with nodes rep-
resenting IRIs, blank nodes, or literals. Predicate IRIs are categorized into
predicates and classes, with the type predicate linking entities to their classes.

A validating shape schema represents integrity constraints over a KG,
describing constraints on node types and their properties. This schema is
defined as node shapes and property shapes in SHACL.

To analyze the reliability of extracted shapes, we introduce support and
confidence metrics for shape constraints. Support counts the number of enti-
ties satisfying a shape constraint, while confidence measures the proportion
of entities conforming to a constraint among all instances of the target class.

2.1 QSE-Exact

QSE-Exact aims to extract shapes from RDF graphs stored in files or triple-
stores. It involves four phases: entity extraction, entity constraints extraction,
support/confidence computation, and shapes extraction. The algorithm iter-
atively processes triples to extract entity and property information, compute
support and confidence, and generate shape constraints. In the file-based ap-
proach, QSE-Exact processes RDF graphs stored in files, extracting entities,
constraints, and shape information iteratively from the input file. It involves
parsing triples, extracting entity types, and computing support and confi-
dence for shape constraints. The query-based variant of QSE-Exact retrieves
entity and property information from triplestores using SPARQL queries. It
computes support and confidence for shape constraints using count queries,
enabling shape extraction from triplestores.

QSE-Exact assigns cardinality constraints to property shapes based on en-
tity confidence levels. Mandatory properties are inferred based on high confi-
dence, while incomplete KGs allow users to specify confidence thresholds for
adding constraints. The time complexity of QSE-Exact is linear with respect
to the size of the RDF graph and the number of shapes extracted, making it
not very suitable for large-scale KGs due to high memory consumption.

2.2 QSE-Approximate

QSE-Approximate is introduced as a solution to address the memory con-
sumption issue faced by QSE-Exact, particularly when dealing with large
KGs. The main novelty of QSE-Approximate lies in its utilization of dynamic
reservoir sampling, which allows for efficient extraction of validating shape
schemas while reducing memory requirements. QSE-Approximate operates
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by maintaining separate reservoirs for each distinct entity type in the KG.
These reservoirs dynamically adjust their sizes as new triples are processed,
ensuring that a representative sample of entities is retained while minimizing
memory consumption. The algorithm iterates over the RDF graph, parsing
triples and filtering them based on type declarations and property assertions.

During the entity extraction phase, entities are identified, and their corre-
sponding entity types are recorded. Each entity type maintains a reservoir,
and entities are added to the appropriate reservoir based on their type. When
a reservoir reaches its capacity limit, QSE-Approximate employs a dynamic
node replacement strategy to ensure that the reservoir contains a diverse set
of entities. This strategy involves selecting a random entity from the reser-
voir and replacing it with the current entity, taking into account the scope of
the node (i.e., the number of types associated with it). This approach ensures
that the reservoirs maintain a balanced representation of entity types while
efficiently utilizing available memory.

Once the sampling phase is complete, QSE-Approximate utilizes the sam-
pled data to estimate the actual support and confidence of shape constraints
for pruning based on the user’s provided thresholds for minimum support
and confidence.

3 Evaluation and Discussion

We evaluate the effectiveness of our proposed solutions in addressing spuri-
ousness within KGs and compare them with existing methods.

We selected a mix of synthetic and real-world datasets, including LUBM-
500 [36], DBpedia [11], YAGO-4 [92], and WikiData [97] (Wdt15 [99] and
Wdt21). All experiments were conducted using QSE algorithms implemented
in JAVA-11 on a machine with 16 cores and 256 GB RAM. The source code is
available on GitHub2, and the extracted SHACL shapes are published on Zen-
odo [78]. For comparison, we used SheXer [30]. We evaluated QSE based on
metrics such as running time, memory usage, and shape statistics. Through
these evaluations, we aimed to provide insights into the performance and
efficacy of our proposed solutions in addressing spuriousness in KGs.

Evaluation of QSE-Exact. We use QSE-Exact for shape extraction from
LUBM, DBpedia, YAGO-4, and WikiData. Statistics on the shapes extracted
using QSE-Exact (file-based) are presented in Table B.2 (in Paper B), cover-
ing Node Shapes (NS), Property Shapes (PS), and Property Shape constraints
(PSc). Initially, state-of-the-art approaches like SheXer, ShapeDesigner, and
SHACLGEN were considered for comparison with our approach. Due to
limitations in handling large KGs, only SheXer was suitable for comparison

2https://github.com/dkw-aau/qse
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against QSE. Table B.3 (in Paper B) shows the running time and memory con-
sumption for shape extraction using file-based (F) and query-based (Q) vari-
ants of SheXer, QSE-Exact, and QSE-Approximate. QSE-Exact outperforms
SheXer, being faster and more memory-efficient across all datasets. While
SheXer faces memory limitations and timeouts for some datasets, QSE-Exact
manages these challenges more effectively, timing out only for WikiData. To
mitigate spuriousness, we prune extracted shapes based on support and con-
fidence thresholds. Increasing these thresholds leads to higher percentages of
pruned PSc and PS. For example, with a confidence threshold >25% and sup-
port ≥ 1, QSE prunes 99% of PSc and PS in DBpedia and significant portions
in Wdt21.

Evaluation of QSE-Approximate. QSE-Approximate reduces memory de-
mands compared to QSE-Exact by allowing users to set sampling percent-
age (S%) and maximum reservoir size (τmax). It outperforms QSE-Exact and
SheXer in efficiency (see Table B.3 in Paper B). For instance, extracting shapes
from Wdt21, QSE-Approximate (with τmax = 1000 and S%=100%) was nearly
twice as fast and used one-tenth the memory of QSE-Exact, while SheXer
failed. Overall, QSE-Approximate addresses scalability issues in shape ex-
traction. QSE-Approximate’s output quality is evaluated on Wdt21 with var-
ied sampling percentage (S%) and max reservoir size τmax values while keep-
ing confidence and support thresholds constant. Results (shown in Table B.4
of Paper B) indicate that S%=10 and τmax up to 200 achieve 92% precision
for PS, requiring 16 GB RAM and 81 minutes. S%=50% and τmax = 5K on a
24 GB RAM machine yield 96% precision in 95 minutes. On a 32 GB RAM
machine, S%=100% and τmax = 5K result in 100% precision in 98 minutes.
Additionally, the impact of pruning on shapes extracted from Wdt21 using
QSE-Approximate is analyzed with different confidence and support val-
ues (Table B.5). With support ≥ 1 and confidence >25%, QSE-Approximate
achieves nearly all PS extracted by QSE-Exact for Wdt21, with 89% recall
and 100% precision, demonstrating minimal underestimation of support and
confidence.

Practical Implications of QSE. We assess QSE’s practicality by verifying the
accuracy of shapes extracted from DBpedia and their role in KG validation.
Using QSE with confidence >25% and support >100, we extracted shapes and
manually inspected 10 for correctness. The analysis showed 100% precision
in shape constraints, removing spurious ones. Validating these shapes with
a SHACL validator on DBpedia revealed 20,916 missing triples and 155 er-
roneous triples. This experiment highlights our technique’s ability to offer
users accurate shapes for efficiently identifying KG errors.
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4 Conclusion

In Paper B, we presented an automated method for extracting shapes, known
as Quality Shapes Extraction (QSE), to tackle the common problems of
scalability and spuriousness found in current methods. QSE offers both ex-
act and approximate solutions for efficient shape extraction on commodity
machines. By leveraging support and confidence metrics, data scientists can
prioritize shapes with high reliability, aiding in resolving data quality con-
cerns. Even with conservative pruning thresholds, QSE significantly reduces
the number of shapes, up to 93%, compared to trivial extraction methods.
These pruned shapes, lacking substantial support, are likely to be spurious.
Additionally, our study demonstrates that the approximate technique incurs
minimal loss in the quality and completeness of extracted shapes.

To better support data scientists in creating and validating shapes, as well
as assisting users responsible for maintaining data quality in KGs, paper
titled ‘SHACTOR: Improving the Quality of Large-Scale Knowledge Graphs
with Validating Shapes’ (Chapter 5) presents a system based on QSE. This
system enables users to automatically extract validating shapes, identify er-
rors, highlight missing data, and generate queries for error correction.
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Improving Data Quality
using Shapes

This section gives an overview of Paper C [80].

1 Motivation and Problem Statement

Quality Shapes Extraction (QSE) [79] extracts validating shapes from large
graphs on commodity machines, providing information about the reliabil-
ity of the extracted shape constraints using confidence and support metrics.
QSE identifies informative shapes while distinguishing those affected by in-
complete or incorrect data. Building upon the same motivation, in Paper C,
we demonstrate how shapes extracted with QSE, along with confidence and
support information, enable various data profiling and cleaning function-
alities beyond simple validation. We introduce SHACTOR (SHapes extrAC-
TOR), a tool that accelerates the KG cleaning process by automatically extract-
ing shapes, evaluating their quality, providing structural profiling informa-
tion, identifying errors, highlighting missing data, and generating SPARQL
queries to correct issues. SHACTOR leverages QSE to filter shapes by confi-
dence and support thresholds, highlighting spurious shapes and facilitating
interactive data cleaning and shape correction.

2 SHACTOR

SHACTOR provides a user-friendly interface for interacting with our QSE
algorithm [79], offering various additional functionalities. It utilizes QSE
(Paper B) to extract validating shapes from an RDF graph, enabling explo-
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ration and analysis. SHACTOR comprises three phases: (1) shape extraction
with support and confidence, (2) shape analysis, and (3) KG cleaning. Sup-
port measures entities conforming to a specific constraint, while confidence
quantifies the ratio of entities conforming to the total instances of the target
class. SHACTOR aims to enhance data quality in RDF graphs by assisting
users in generating high-quality validating shapes for analysis and correc-
tion, mitigating spuriousness effects in shape extraction.

Shapes Extraction and Analysis. SHACTOR parses RDF graphs to extract
entities and constraints, computes support and confidence for each con-
straint, and allows the selection of a custom subset of types for analysis. It
employs the QSE algorithm to produce shapes meeting specified thresholds,
enabling dynamic filtering and fine-tuning. Interactive visualization of shape
distribution and quality indicators aids in identifying noisy or incomplete
data. Moreover, SHACTOR generates SPARQL queries to retrieve entities
and triples violating given constraints, facilitating data inspection and iden-
tification of erroneous or missing information. Users can execute queries to
enhance KG quality by deleting erroneous triples or inserting missing data.

SHACTOR exemplifies its effectiveness in leveraging shapes annotated
with statistical data to expedite the KG cleaning process. We illustrate how
data scientists can utilize SHACTOR to automate shape extraction and assess
the quality of extracted shapes alongside their provenance. The demonstra-
tion begins by guiding participants through various extraction phases, uti-
lizing a full snapshot of DBpedia from 2021, comprising 52 million triples,
15 million literals, 5 million typed entities, 1.3 thousand properties, and 427
classes. Additionally, participants can analyze shapes from a full snapshot of
WikiData, containing over 1.9 billion triples.

Shapes Analysis. Users input support and confidence thresholds for anal-
ysis. SHACTOR applies these thresholds and presents an overview using
pie charts ( 1⃝ and 2⃝ in Figure 5.1), aiding users in selecting optimal thresh-
old values. Quality indicators for node shapes are displayed, and users can
explore individual shape constraints (e.g., :CityShape) and associated prop-
erty shapes ( 4⃝ in Figure 5.1). Property constraints below the thresholds are
highlighted, facilitating the identification of spurious shapes.

Finding Errors in the KG. SHACTOR assists in identifying spurious shape
constraints by highlighting constraints with low support or confidence. Users
can generate SPARQL queries to retrieve triples associated with these shapes
( 5⃝) and view retrieved triples ( 6⃝). Users can then take corrective actions,
such as deleting erroneous triples or modifying classifications.

Finding Missing Information in the KG. SHACTOR allows users to explore
property shapes, identifying object IRIs lacking types and entities missing
properties. Based on this analysis, SHACTOR suggests INSERT queries to

32



3. Conclusion

add missing information, such as adding values for specific properties to
entities missing them.
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Fig. 5.1: Sample Analysis of Shapes for DBpedia using SHACTOR GUI – (adapted from [80])

3 Conclusion

In paper C, we introduced SHACTOR, a system designed to facilitate end-to-
end profiling and cleaning of large-scale KGs by leveraging validating shapes
automatically extracted from the graph and enriched with statistical infor-
mation via our scalable QSE presented in paper ‘Extraction of Validating
Shapes from very large Knowledge Graphs’ (Chapter 4). Moreover, this demo
highlights the versatility and effectiveness of employing shapes as easily ex-
tractable and user-friendly tools for pinpointing and rectifying data quality
issues in existing KGs.
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Next, we discuss how shapes are used to enhance query optimization in
KGs as of paper ‘Optimizing SPARQL Queries using Shape Statistics’ (Chap-
ter 6) and achieve interoperability in KGs as of paper ‘Lossless Transforma-
tion of Knowledge Graphs to Property Graphs using Standardized Schemas’
(Chapter 7).
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Optimizing Query Processing
using Shapes

This section gives an overview of Paper D [76].

1 Motivation and Problem Statement

Validating shapes not only plays a pivotal role in mitigating quality issues
in KGs but also extends their utility to various applications. For instance,
when querying RDF KGs using SPARQL query language, existing query op-
timization approaches encounter challenges in finding efficient query plans.
We investigate the use of validating shapes to optimize query processing in
SPARQL query processing in Paper D. Existing approaches (discussed in Sec-
tion 2) to SPARQL query optimization rely on global statistics derived from
the entire RDF graph. However, these methods often fail to capture the inher-
ent correlations within RDF KGs accurately. Consequently, such limitations
can result in inaccurate estimations and suboptimal query execution plans.
Moreover, the computational overhead of capturing correlations at a fine-
grained level further intensifies these challenges.

To mitigate these issues, in Paper D, we introduce "shapes statistics" as an
extension of SHACL validating shapes. This approach allows to capture cor-
relations between classes and properties within KGs using shape constraints.
Leveraging shapes statistics, we improve cardinality estimation during query
planning, explicitly focusing on join ordering within an open-source query
engine. Our evaluation, conducted on synthetic and real-world datasets, un-
derscores the efficiency of our proposed methodology. Notably, our approach
streamlines the pre-processing steps necessary for generating shape statistics
and facilitates optimized cardinality estimation, leading to better query plans.
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2 Methodology

RDF graphs represent entities and relationships as triples <subjects, predicates,
objects>. An RDF graph consists of triples ⟨s, p, o⟩ where s and o can be
IRIs, blank nodes, or literals. SPARQL is a query language for RDF data. A
SPARQL query consists of triple patterns and conditions. Each triple pattern
can have concrete or variable elements. SHACL is a schema language for
RDF. A SHACL shapes graph defines constraints on RDF data using node
and property shapes.

In the context of SPARQL queries, the problem entails devising an optimal
plan to execute a given query Q by determining the most efficient order in
which to join its triple patterns. This optimization seeks to minimize the
overall execution cost of the query. To achieve this, it is necessary to estimate
the join cardinalities between pairs of triple patterns in Q, and subsequently
arrange them in the join order that minimizes the total execution cost. Thus,
the problem consists of two main tasks: first, estimating join cardinalities for
all pairs of triple patterns in Q, and second, optimizing the join order based
on these estimates to minimize the total execution cost.

Extending Shapes with Statistics. To improve join cardinality estimations,
we extend SHACL’s node and property shapes with detailed statistical in-
sights from the RDF graph. These statistics, termed shapes statistics include
total triple counts, minimum and maximum triple counts per instance, and
the number of distinct objects for property instances. Computed through
SPARQL queries, these statistics enhance the understanding of RDF data.
Additionally, we introduce global statistics by enriching VOID statistics with
precise RDF property insights, such as distinct subject and object counts.
While adaptable to OWL and RDF Schema, our focus remains on SHACL
shapes for their structured simplicity.

Estimating Triple Pattern Cardinality. Each SPARQL query involves joins
between multiple triple patterns, necessitating the estimation of matching
triples for each pattern. We utilize statistical insights from the extended
SHACL shapes graph to derive these estimates. By associating triple patterns
with their corresponding node or property shapes, statistical information like
sh:count and sh:distinctCount guides the estimation process. Formulas derived
from previous research [37] summarized in Table D.1 of Paper D aid in com-
puting the expected cardinality based on global statistics and shapes statistics.

Estimating Join Cardinality. Joins occur between two triple patterns sharing
a common variable, categorized as Subject-Subject (SS), Subject-Object (SO),
or Object-Object (OO) join. We estimate these join cardinalities using equa-
tions D.1, D.2, and D.3 in Paper D, incorporating distinct subject and object
counts, i.e., DSCi and DOCi from the triple patterns.
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Determining Join Order. Given an RDF graph and its statistics graphs, we
propose an algorithm to compute the optimal join ordering for a query Q.
Initially sorting triple patterns by their estimated cardinalities using global
statistics, we then refine this ordering by considering shapes statistics. The
algorithm iteratively selects triple patterns with the least estimated join car-
dinality, ultimately yielding an optimized join order. Tables D.2a and D.2b
in Paper D present join orderings computed using global and shapes statis-
tics, respectively, demonstrating the impact of statistical insights on query
optimization.

3 Evaluation and Discussion

We evaluated the performance of query plans generated by our algorithm
using both global and shape statistics, comparing them to plans from Apache
Jena ARQ and GraphDB query engines, as well as RDF cardinality estimation
methods including Characteristic Sets [61] and SumRDF [90]. Experiments
were conducted on a single machine running Ubuntu 18.04 with 16 cores
and 256GB RAM.

Datasets. We assessed query plan performance across different datasets
and sizes: LUBM [36], WatDiv [5], and YAGO-4 [92]. Specifically, we used
LUBM-500, two WatDiv variants (WATDIV-S with ~108.9 million triples and
WATDIV-L with 1 billion triples), and a YAGO-4 subset linked to English
Wikipedia articles.

Implementation. We introduced a Shapes Annotator to extend SHACL shapes
graphs with statistics. In cases where shapes are absent, existing shape ex-
traction methods (explained in Section 2) can be employed. We implemented
our join ordering algorithm in Java using Jena3, with the source code avail-
able on our website1.

Data Loading and Query Planning Time. We loaded all three datasets and
their corresponding SHACL shapes graphs into Jena TDB, employing our join
ordering algorithm to construct query plans utilizing global and shape statis-
tics. For Jena, we used its ARQ query engine to derive the plans. Datasets
were also loaded into GraphDB, utilizing its onto:explain feature to obtain
query plans. For the Characteristic Sets [61] approach, characteristic sets
were generated for each dataset, with Extended Characteristic Sets [55] used
to optimize non-star type queries. Generating characteristic sets for large
RDF graphs incurs significant computational overhead. For instance, it took
6.2 hours to generate sets for LUBM, 1.2 hours for WATDIV-S, and 8.2 hours
for YAGO-4. Similarly, for SumRDF [90], summaries were generated for each

1https://relweb.cs.aau.dk/rdfshapes/
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dataset, with their generation time varying based on size and heterogene-
ity. For example, it took 4.5 minutes to summarize LUBM, 14 minutes for
WATDIV-S, and 4.3 hours for YAGO-4. To ensure reasonable times, parame-
ters for the target summary size matched those in SumRDF [90]. For YAGO-4,
a target size of 100K was selected. Query planning time for all approaches
consistently remained below 20 milliseconds, with subsequent analysis fo-
cusing on cardinality estimation precision and query performance.

Query Classification. Queries were classified into complex, snowflake, and
star categories. LUBM offered 14 default queries with simple structures, from
which we selected five queries and supplemented additional queries for com-
plex, snowflake, and star patterns. The WatDiv benchmark consisted of three
complex, sever star, and five snowflake queries. Due to the lack of standard
queries or query logs for YAGO-4, we manually formulated 13 queries based
on complex, snowflake, and star queries graph patterns from the WatDiv
Benchmark, accessible on our website.

Query Runtime. For LUBM, query runtime analysis depicted that plans
proposed by the Shape Statistics approach outperformed Global Statistics
for queries with at least one type-defined triple pattern. GS plans were
competitive with those of GraphDB, Characteristic Sets, and SumRDF, with
Characteristic Sets demonstrating inadequacy for large snowflake queries.
Conversely, plans proposed by Jena often proved suboptimal and non-
deterministic due to its heuristics-based query optimizer. Similarly, query
runtime for YAGO-4 showed competitive performance of Shape Statistics
and Global Statistics plans against those of GraphDB, Characteristic Sets, and
SumRDF, with variations observed in snowflake queries.

4 Conclusion

In Paper D, we introduced a novel approach to improve cardinality estima-
tion for optimizing SPARQL queries in RDF KGs. Our methodology in-
cludes introducing shape statistics to capture RDF graph correlations, a novel
cardinality estimation technique, and an efficient join ordering algorithm.
Through extensive experimentation on synthetic and real-world datasets, we
have demonstrated the efficiency of our approach compared to two promi-
nent SPARQL query engines and two state-of-the-art RDF cardinality esti-
mation methods. The outcomes highlight the effectiveness of our method in
preprocessing for statistical analysis and estimating cardinality to optimize
query plans.
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Chapter 7

Improving Interoperability in
Knowledge Graphs using
Shapes

This section gives an overview of Paper E [75].

1 Motivation and Problem Statement

Validating shapes not only plays a pivotal role in mitigating quality issues
in KGs but also extends their utility to various applications. For instance,
existing approaches (as discussed in Section 3) result in data loss when trans-
forming KGs modeled as RDF data models to Property Graph (PG) data
models. Therefore, we investigate the use of validating shapes to enable loss-
less transformation from RDF to PG data models in Paper D.

Specifically, in Paper D, we introduce a novel approach to enhance data
interoperability, focusing specifically on the transformation of KGs from the
RDF data model to the PG data model using standardized schemas. The
proposed technique, Standardized SHACL Shapes-based PG Transformation
(S3PG), employs SHACL for RDF data and PG-Schema [6] for PGs. PG-
Schema [6] is established as the most recent standard published in 2023 and
serves as a foundational element in this transformation process. S3PG is
a completely lossless and monotonic transformation approach designed for
the transformation of large RDF graphs. It maintains the information and se-
mantics during the transformation process and consistently achieves a 100%
accuracy rate when compared to existing transformation methods.
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2 Methodology

As RDF and validating shapes have been explained earlier, we omit to define
them again. A property graph is a directed attributed multi-graph where
nodes and edges are labeled and have attributes [6]. It consists of sets of
labels, property names, property values, and records, where a record maps
keys to values. A property graph is a tuple containing sets of nodes and
edges, functions mapping edges to node pairs, nodes and edges to labels,
and nodes and edges to records [6].

PG-Schema [6] provides a standardized schema definition for property
graphs comprising PG-Types and PG-Keys. PG-Types define node and edge
types based on allowed label and content combinations. At the same time,
PG-Keys enforce constraints on typed data, including integrity constraints
such as keys, participation, and cardinality. PG-Schema supports inheritance
between types, allows intersections and unions for content types, and can
define abstract node types.

Schema and Data Transformation Problems. The problem of transforming
an RDF KG into the corresponding property graph is divided into two sub-
problems: schema transformation and data transformation. Given the shape
schema of an RDF graph, the schema transformation problem aims to generate
a corresponding PG-Schema. This involves creating a schema transformation
function that maps node and property shape constraints of shape schema
to PG-Types and PG-Keys in PG-Schema, ensuring that PG-Schema accu-
rately represents all constraints of PG-Schema. Data transformation involves
converting RDF graphs into PG while conforming to their schemas and the
transformation function. The objective is to produce a function that maps
graph nodes and edges to PG elements, ensuring the resulting PG conforms
to the PG schema.

Transformation properties. The literature identifies a set of desirable proper-
ties for data transformation [86], including information preservation, query
preservation, semantic preservation, and monotonicity. Information preserva-
tion ensures that the original information in the RDF graph can be recovered
from the transformed PG, facilitated by computable mappings. A transfor-
mation is deemed query preserving if any query over the source graph yields
the same result when evaluated over the transformed graph PG. This prop-
erty relies on the existence of equivalent SPARQL queries. Semantic preserva-
tion guarantees that equivalent constraints enforced on the source graph can
also be applied to the transformed target graph, ensuring that all constraints
of the shape schema are reflected in the resulting PG-Schema. Finally, mono-
tonicity ensures that when new data is added or deleted, adjustments are
made only to the corresponding data in the target graph without requiring
re-computation of the entire transformation [86].
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2.1 S3PG: Schema Transformation

While transforming SHACL shape schema to PG-Schema, S3PG schema
transformation function iterates through sh:core constraints and transform
all node and property shape constraints of a given shape schema to elements
in PG-Schema. Node shapes specify types (sh:targetClass or sh:node) and
properties (sh:property). For instance, in Figure 7.1, shape:Person defines a
:name property with data type string and cardinality [1,1], and shape:Student
inherits properties from shape:Person. These shapes are converted to node
types in PG-Schema as shown in Figure 7.2. Property shapes, defined by
sh:path, indicate paths, cardinality, and node kinds. Cardinality constraints
[min,max] are translated into PG-Schema based on the connected node type.
For example, a cardinality of [1,1] for a literal target results in a mandatory
property. Cardinalities influence the transformation process, e.g., [1,1] im-
plies a mandatory property. Non-literal properties are represented as edge
types between nodes in PG-Schema. Properties linking to multiple literal
values are transformed into node types for each data type. Properties with
multiple non-literal values become edge types capable of accepting various
node types. Properties accommodating both literal and non-literal targets are
handled by creating node types for non-literal types.

shape:Person
rdf:type sh:NodeShape;
sh:property

[ sh:path :name; 
sh:nodeKind sh:Literal ;
sh:datatype xsd:string;
sh:minCount 1;
sh:maxCount 1   ] .

sh:targetClass :Person.

shape:Student
rdf:type sh:NodeShape;
sh:property

[ sh:path :regNo; 
sh:nodeKind sh:Literal ;
sh:datatype xsd:string;
sh:minCount 1;
sh:maxCount 1   ] .

sh:targetClass :Student;
sh:node shape:Person.

( a ) Person node shape with :name property shape ( b )  Student Node Shape with :regNo property shape

Fig. 7.1: SHACL syntax for Person and Student – (adapted from Paper E)

(personType:  Person {name STRING})
(studentType: Student {regNo STRING}),
(studentType: studentType & personType).

( a ) Person Node type with name property ( b ) Student Node Type with regNo property and inheriting 
name property from Person Node Type

Fig. 7.2: PG-Schema syntax for Person and Student SHACL shapes defined in Figure 7.1 –
(adapted from Paper E)

The schema transformation method encodes single-value properties as
key-value pairs within nodes when possible to be memory efficient. How-
ever, this approach may not remain entirely schema monotone when schemas
evolve. To address this, our approach adopts a non-conservative model, en-
suring schema monotonicity by representing properties like :regNo of node
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shape shape:Student as edge types, even for simple key-value pairs. This
adaptation enables the PG-Schema to accommodate evolving schemas while
maintaining schema monotonicity.

2.2 S3PG: Data Transformation

After schema transformation, the next step is to address the graph data
transformation problem. S3PG offers two graph data transformation mod-
els: the parsimonious and the non-parsimonious. The key difference lies in how
single-value properties are modeled in the PG data model. In the parsimo-
nious model, properties are encoded as key-value attributes within nodes
whenever possible, leveraging PG modeling capabilities. Conversely, the
non-parsimonious model represents all property data as nodes, ensuring
adaptability to any structural changes in the source graph and preserving
the monotonic property of the transformation.

The transformation of an RDF graph into a property graph using PG-
Schema involves processing the triples in RDF graph and analyzing the types
of nodes involved. We propose a two-phase algorithm to solve this problem,
where entities are first extracted and transformed into nodes in PG, followed
by the parsing of property information to create edges and attributes. The
algorithm begins by extracting entities and their types from RDF graph and
then iterates over these entities to create PG nodes. In the second phase,
it processes triples from RDF graph, creates edges between nodes based on
the triples, and handles the transformation of property data into edges or
key-value pairs within nodes. The resulting PG can be stored in any file
format for loading into a graph database. S3PG ensures data transforma-
tion monotonicity by adapting its approach to handle literal properties con-
sistently with other properties. This ensures full monotonicity despite any
structural changes in the schema during data transformation.

The time complexity of S3PG’s data transformation algorithm depends on
the input graph size, the number of entities extracted, and the set of allowed
labels size in the target graph. Initialization and entity transformation take
linear time, while property transformation has a time complexity propor-
tional to the product of the input graph size and the label set size. Overall,
the time complexity is linear in the input size and the label set size.

3 Evaluation and Discussion

We compared the effectiveness and efficiency of S3PG with existing meth-
ods, using two versions of DBpedia [11] and the Bio2RDF [14] Clinical Trials
dataset. The datasets were chosen to explore scalability and domain-specific
aspects [11, 14]. Our experiments, conducted on a machine with 16 cores and
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256 GB RAM running Ubuntu 18.04, benchmarked S3PG against NeoSeman-
tics [60] and rdf2pg [9].

S3PG, implemented in JAVA-17, demonstrated superior performance in
schema and data conversion time, maximum memory usage, and graph load-
ing time. We also assessed the quality of transformed graphs by execut-
ing queries and verifying semantic preservation through integrity constraint
queries. Comparative analysis with NeoSemantics and rdf2pg revealed that
S3PG achieved better overall transformation and loading times while remain-
ing within memory limits. Notably, the graphs transformed by S3PG con-
tained more nodes and edges compared to the other methods, attributed to
its modeling approach for multi-type properties [11].

Quality Evaluation. We assessed the transformed PG data model’s quality
by querying the DBpedia2022 dataset using SPARQL queries converted into
Cypher for each method. S3PG utilized PG-Schema, NeoSemantics its setup,
and rdf2pg its schema-dependent model. Queries were categorized into four
groups based on node shape constraints. S3PG achieved 100% accuracy
for Single Type and multi-type homogeneous literal queries, outperforming
NeoSemantics and rdf2pg. All methods scored 100% for multi-type homo-
geneous non-literal queries. For multi-type heterogeneous queries, S3PG
consistently achieved 100% accuracy, surpassing NeoSemantics (90.48% to
99.99%) and rdf2pg (30.22% to 99.99%).

Effect on Query Runtime. We compared query runtime between RDF
and PG models transformed by S3PG, NeoSemantics, and rdf2pg on the
DBpedia2022 dataset. Experiments were conducted using GraphDB and
Neo4j as the respective DBMS. Results showed S3PG’s efficient performance
across various query types, especially in multi-type homogeneous queries.
For multi-type heterogeneous queries, S3PG outperforms NeoSemantics and
rdf2pg due to its optimized data representation. While SPARQL queries
on RDF models are effective, S3PG’s cypher queries exhibit superior perfor-
mance in multi-type heterogeneous queries. Ultimately, the choice between
SPARQL and Cypher depends on specific use cases and technical require-
ments.

Monotonicity Analysis. We demonstrated the monotonic behavior of S3PG,
which offers parsimonious and non-parsimonious transformation models.
Using snapshots of DBpedia from March 2022 (Dbp22march) and Decem-
ber 2022 (Dbp22dec), we compute ∆ to represent changes between the two
versions. The addition of 16.7M new triples and deletion of 5.9M triples
are observed. Additionally, 16.1M triples were updated. Transforming
Dbp22march using the parsimonious model took 34.0 minutes, and using
the non-parsimonious model took 31.83 minutes. Transforming Dbp22dec
from scratch with the parsimonious model took 34.25 minutes, approximately
7.59% longer than using the non-parsimonious model. Incorporating ∆ into
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Dbp22march using the non-parsimonious model took 9.97 minutes, resulting
in a time savings of 24.28 minutes compared to the parsimonious model,
representing a substantial 70.87% reduction in overall transformation time.

4 Conclusion

In Paper E, we introduced S3PG, a method for transforming RDF KGs into
property graphs, addressing interoperability challenges between the two
data models. S3PG utilizes SHACL for RDF and PG-Schema for property
graphs, ensuring schema compliance, lossless transformation, and mono-
tonicity. Evaluation using DBpedia 2022 and Bio2RDF clinical trial datasets
demonstrates S3PG’s superiority in efficiency compared to existing meth-
ods. Quality analysis confirms its reliability, achieving 100% accuracy across
various query types on DBpedia. Moreover, S3PG maintains monotonicity
when transforming evolving graphs, requiring minimal time to incorporate
updates.
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Chapter 8

Conclusions and Future Work

In conclusion, this thesis proposes novel methodologies to solve data quality,
data access, and data interoperability challenges in Knowledge Graphs (KGs).
The thesis consists of five research papers contributing towards the objective
of solving each of the above-mentioned challenges. Given below, we summa-
rize the contribution of each research paper.

• In Paper A [77], we study the generation and adoption of constraints
on KGs in the form of validating shapes by carrying out a community
survey. This paper contributes to the challenge of data quality as a step
towards improving data quality in KGs. We conducted an extensive
survey of the existing tools and methodologies for extracting validating
shapes (such as SHACL or ShEx) and their features and then compared
the results. We examined how existing automatic shape extraction ap-
proaches work on large real-world KGs. The analysis revealed the need
for developing semi-automatic methods that can assist users in generat-
ing validating shapes for large KGs and provide a notion for the quality
of data in the KGs.

• In Paper B [79], inspired by the results of the survey, we delve deeper
into the extraction of validating shapes in the state-of-the-art and iden-
tify the shortcomings of existing shapes extraction techniques. We iden-
tified that existing approaches are incapable of extracting complete shapes,
not scalable, and prone to generating spurious shapes. Therefore, to address
these limitations, we introduced Quality Shapes Extraction (QSE), an ef-
ficient scalable shapes extraction approach to extract quality shapes from
very large KGs. This paper contributes to the challenge of data quality
to improve the data quality in KGs. It evaluates the quality of shape
constraints by assessing their confidence and support within a KG, en-
abling the identification of highly informative shapes less susceptible to
incomplete or erroneous data. We used QSE to extract SHACL shapes
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from large KGs such as DBpedia and Wikidata. Results showed that
QSE significantly reduces extraction time, nearly 12 times faster than
existing methods. Moreover, it filters out approximately 93% of invalid
and spurious shapes, resulting in a reduction of up to two orders of
magnitude in the number of constraints presented to users. For exam-
ple, in DBpedia, it reduced the number of property constraints from
11,916 to 809.

• In Paper C [80], we developed a system called SHACTOR to facili-
tate the use of QSE [79] and improve the data quality in very large
KGs by extracting and analyzing validating shapes. Utilizing standard
shape extraction techniques often results in the generation of numer-
ous shapes, some of which may stem from erroneous data in the KG.
SHACTOR addresses this issue by using QSE to parse the given KG,
comprising tens of millions of triples and thousands of classes. QSE
offers an efficient and scalable shape extraction algorithm that outputs
SHACL shape constraints annotated with statistical information, such
as support and confidence. This facilitates the identification of erro-
neous and missing triples in the KG. SHACTOR uses such annotated
shape constraints to help users identify and rectify errors by automat-
ically generating SPARQL queries on the graph to pinpoint nodes and
facts that cause incorrect shapes, allowing for data corrections.

• In Paper D [76], we leveraged validating shapes to optimize SPARQL
query processing in KGs. This paper contributes to the objective of im-
proving query processing in knowledge graphs to deal with the data access
challenge. Query optimization involves cardinality estimation and join
ordering. We propose shapes statistics, as an extension of the validat-
ing shapes (SHACL) that incorporates statistical information to capture
correlations between classes and properties of RDF graphs. Then, we
use shapes statistics to estimate cardinality during query planning for
join ordering in an open-source query engine. We evaluated our query
optimization method on synthetic and real-world datasets, and the re-
sults revealed that our approach is efficient in terms of both the pre-
processing steps to generate shape statistics and the cardinality estima-
tion to optimize query plans in both synthetic and real-world large KGs.

• In Paper E [75], we leveraged validating shapes to improve interoper-
ability in KGs. This paper presents a novel approach, S3PG, aimed at
enhancing data interoperability in KGs by transforming RDF data mod-
els into Property Graph (PG) data models using standardized schemas.
S3PG utilizes SHACL for RDF data and PG-Schema for PGs, ensuring
lossless and monotonic transformation. Evaluation on DBpedia and
Clinical Trials KG revealed S3PG’s accuracy of 100%, outperforming
existing techniques with accuracies ranging from 30% to 99%. Addi-
tionally, S3PG demonstrates full monotonicity and reduced time re-
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quirements for incorporating changes, highlighting its effectiveness in
improving data interoperability in KGs.

Future Work

The popularity of KGs has surged in recent years, leading to an increasing
interest in initiatives such as approaches, methods, and technologies that en-
sure high data quality within these graphs. As the size of KGs expands
rapidly, optimizing query processing to enable efficient data access is criti-
cal. And, KGs are commonly modeled using either the RDF or the property
graph data model, requiring efforts to make them interoperable and facilitate
seamless exchange and integration of data.

In this thesis, we have presented methodologies as a step towards improv-
ing data quality, optimizing query processing, and enhancing data interop-
erability in KGs. However, our work also highlights some interesting and
important future research directions within these areas.

As noted in [79], there are certain limitations in our proposed approach
to shape extraction. Therefore, as part of our future work, we are extend-
ing the QSE algorithm to provide theoretical guarantees on pruning when
utilizing its approximate variant. Additionally, we are optimizing the QSE
query-based algorithm to enhance performance in shape extraction when the
graph source is a SPARQL endpoint. Moreover, there are several interesting
directions for further enhancing the QSE algorithm, e.g., an automated solu-
tion is required to learn optimal configurations for pruning thresholds and
sampling parameters for the approximate shape extraction process. Addi-
tionally, QSE can be adopted to design a technique that can learn constraints
from data to output quality shape constraints. Further, after defining shapes,
the next step is to make use of shapes to validate KG data. In this direction,
approaches need to be designed that efficiently validate KG data and pro-
vide validation reports that are both human and machine readable. This will
facilitate seamless integration into data management workflows and ensure
accurate data quality control at scale.

Optimizing SPARQL query processing has been a topic of interest for
decades. However, as highlighted in [76], there is a need for developing
query optimizers that can consider optimizing SPARQL query operators such
as OPTIONAL, FILTER, EXISTS/NOT EXISTS, UNION, and path queries.
Our proposed shape statistics-based query optimization approach can be ex-
tended to optimize these query operators.

Interoperability in KGs’ RDF and property graph data models has various
applications, such as data integration and exchange. Our proposed transfor-
mation approach (S3PG in Paper E) currently only supports the transforma-
tion of KGs modeled as RDF data models to PG data models. Reverse trans-
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formation requires separate treatment. Therefore, in the future, we plan to
propose an algorithm that can transform property graph data models to RDF
using PG-Schema and SHACL shapes. Additionally, an open question to
tackle for future work is how to extend the SHACL specification to the RDF*
data model and how to include it in the transformation algorithm of S3PG.
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Abstract

Knowledge Graphs (KGs) are widely used to represent heterogeneous domain
knowledge on the Web and within organizations. Various methods exist to man-
age KGs and ensure the quality of their data. Among these, the Shapes Constraint
Language (SHACL) and the Shapes Expression Language (ShEx) are the two state-
of-the-art languages to define validating shapes for KGs. Since the usage of these
constraint languages has recently increased, new needs arose. One such need is to
enable the efficient generation of these shapes. Yet, since these languages are rela-
tively new, we witness a lack of understanding of how they are effectively employed
for existing KGs. Therefore, in this work, we answer How validating shapes are
being generated and adopted? Our contribution is threefold. First, we conducted
a community survey to analyze the needs of users (both from industry and academia)
generating validating shapes. Then, we cross-referenced our results with an exten-
sive survey of the existing tools and their features. Finally, we investigated how
existing automatic shape extraction approaches work in practice on real, large KGs.
Our analysis shows the need for developing semi-automatic methods that
can help users generate shapes from large KGs.
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1. Introduction

1 Introduction

The popularity of Knowledge Graphs (KGs) has consistently grown in the
last decade due to the advent of public KGs, such as DBpedia [1], YAGO [24],
and WikiData [27] and their adoption among companies [14]. These KGs
(represented in RDF) are massive, diverse, and most importantly incomplete
due to the evolving nature of human knowledge. Given the importance of
KGs, it is paramount to ensure the quality of the information they represent.
Validating languages, i.e., the shapes constraints languages (SHACL [11] and
ShEx [17]) are used to ensure the data quality in KGs by defining integrity
constraints in the form of shapes, i.e., high-level structural constraints for
entities within a KG. While SHACL and ShEx differ at a syntactic level, they
both allow to specify a set of characterizing properties and attributes for
classes of entities that are expected to be hold within a KG [19]. For instance,
they both allow to specify that all entities of type “Student” need to have
“name” and “registration number” as properties, and be linked to at least
one “Course”. Shapes also specify data types for these properties, e.g., String,
Integer, or IRI. Shapes can also be used for purposes other than validation,
such as to design user interfaces [6, 29], or optimize query processing [19].

There exist various tools to help define validating shapes, either manu-
ally or semi-automatically, such as Astrea [3], TopBraid Composer [26], the
SHACLGEN [8] python library, ShapeDesigner [2] and SheXer [5] to semi-
automatically generate SHACL and ShEx from ontologies and KGs data, as
well as approaches to define shapes using profiling [13] and ontology design
patterns [16]. Naturally, when a KG contains hundreds of classes, each having many
attributes, manually specifying (post-hoc) the necessary shapes becomes a tedious and
unmanageable task. On the other hand, the approaches helping automatic gen-
eration of validating shapes produce a large number of shape constraints (for
nodes and properties) such that it becomes non-trivial to verify the validity
of the generated constraints.

To better understand the needs of users, both in industry and academia,
to generate shapes for large KGs, we conducted an online community survey
with a set of questions to learn how (and up to what extent) they generate and
use shapes. We used Google Forms to create an online survey1 and shared
it with researcher and practitioners across different communities, e.g., within
members of the W3C mailing list2, the Solid project3, the BlueBrainNexus4

project, the Bayer-Group COLID team5, and Slack channels6 for Knowledge

1https://forms.gle/93KFZH5vcGy7Et27A
2https://lists.w3.org/Archives/Public/semantic-web/
3https://gitter.im/solid/
4https://bluebrainnexus.io
5https://github.com/Bayer-Group/COLID-Documentation
6https://knowledgegraphconf.slack.com, https://iswc-conf.slack.com
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Graph and ISWC conferences. Additionally, we have contacted other related
Semantic Web communities developing various tools and approaches to deal
with validating shapes. When we asked users to participate in our survey,
they all manifested great interest in the results of this study. Hence, we
promised to re-share our findings with the community. This work is also a
way to keep up with that promise. Therefore, in the following we first report
our findings by analyzing the results obtained from our online community survey,
then we discuss the state of the art in validating shapes. Finally, we report on
some experimental results in actually using such tools. Our analysis highlights
a number of gaps when it comes to generating shapes automatically to validate
existing (possibly noisy or erroneous) KGs, thus we discuss a number of
future research directions based on our findings.

2 Community Survey

This section summarizes the questions and answers to our survey. The sur-
vey contained nine questions and received in total 30 answers. The survey
was conducted online, and the results were collected anonymously between
November 2021 and January 2022. Among the questions, we surveyed also
the area of occupation of the respondents, i.e., if they belong to Academia, In-
dustry, or both. Answers to this question showed that 53% of the respondents
are from Industry, 27% from Academia, and 20% from both (see Figure A.2a).
In the following, where relevant, we will report for each statistics, in paren-
thesis, the split of answers by respondents from academia, industry, or both
respectively.

Our main question asked "how the validating shapes were being generated"
in general. We provided three answer options and allowed the respondents
to also add a free text answer. Answers to this question are presented in
Figure A.1, where numbers in circles represent the number of participants.
The results show that most of the respondents (i.e., 26 - split 6/14/6) generate
shapes manually, while 13 respondents (split 5/5/3) generate shapes from ex-
isting ontologies and 7 respondents (split 1/4/2) generate shapes from RDF
graphs instance data, while only 1 respondent declared to use “RDF forms”.
The results overlap as it was a multi-choice question where respondents had
chosen more than one option.

We then asked which tools or methods the respondents used in practice and
provided a list of state-of-the-art tools and approaches that can help in gen-
erating shapes (see Table A.1) along with a free text answer option as well.
To our surprise, respondents use a very heterogeneous set of tools and
methods, with the most used being TopBraid Composer [26] used by 33%
(10) of respondents (split 1/7/2), Protégé was used by 20% (6) respondents
(split 3/3/0), RDFShape [28] by another 16.7% (5) respondents (split 2/1/2),
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Fig. A.1: Analysis on extraction of validating shapes

SheXer [5] was used by 10% (3) respondents (split 0/1/2), and text editors
are used by 16.7% (5) respondents (split 2/4/0). The rest of the tools are used
by 1 or 2 respondents on average. In addition to that, one of the respondents
mentioned that they generate shapes by applying custom rules via Python
scripts, another by using tabular formats (like Excel) to curate shapes manu-
ally. Lastly, one respondent commented: “I am looking for a suitable tool”.

We further asked a number of questions related to the characteristics
of the graphs for which the respondents were generating shapes. Results
showed that 38% of respondents generate shapes from RDF graphs contain-
ing up to 100K triples (split 4/5/1), 17% use graphs having 100K to 1 million
triples (split 0/5/0), and 45% use graphs containing more than 1 million
triples (split 4/6/3), see Figure A.2a and A.2b. The great majority 48% (14)
of KGs are described by ontologies containing between 10 and 1000 classes
and 10-50 distinct properties (see Figure A.2c and A.2d). While 32% (9) of
the respondents generate up to 10 shapes, 47% (13) generate between 10-100
shapes, and 14% (4) generate more than 100 shapes and in some cases even
more than 1000 shapes (see Figure A.2e).

In addition to that, 55% (16) of the respondents generate shapes for the
entire graph, and 43% (13) of them generate shapes for specific portions of
the graph (see Figure A.2f) due to various reasons (answers to our last ques-
tion). These reasons include (i) use case specific requirements to focus on
shapes targeting only the important classes of the graph (10%), (ii) interest
or requirement to get a specific maintained view of the data graph or subset
(30%), (ii) limitation of the known business rules to apply only to part of
the graph (10%), (iv) the scalability of existing methods to generate shapes is
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insufficient for very large graphs (10%), (v) the decision to generate shapes
progressively (such as for WikiData) to accommodate evolution through time
and change in requirements (30%), and (vi) the requirement of validating
only non-logical statements that cannot be validated using (already existing)
OWL constraints (15%).

The results show that most users work with fairly large graphs with tens or
hundreds of classes and thousands or millions of triples. Yet, most users still gen-
erate shapes manually; this way, they can generate only a handful of shapes
(not enough to cover the entire graph). Thus, there is also the need for tools
in supporting the scalable generation of shapes for very large graphs, which
should allow to extract shapes for only a specific portion of a KG. There-
fore, we conducted an extensive analysis of tools used to generate validating
shapes and present our findings in the next section to better understand the
capabilities offered by existing approaches when it comes to helping users
generate shapes more efficiently.

1 - 100K 1M - 100M 100K - 1M 100M+

(b) Size of the graph (# of triples)

Entire Graph Some Portions

(f) Scope of generated shapes

45%55%

38% 31% 17% 14%

Industry Academia Both

(a) Area of occupation

53% 27% 20%

(c) Size of the ontology (# of classes)

> 10 - 100 1 - 10 > 1000 > 100 - 1000

48% 21% 17% 14%

(d) Distinct # of properties in graph

> 10 - 50 > 50 - 100 1 - 10 > 1000 > 100 - 1000

50% 21% 14% 11% 4%

(e) Number of generated shapes

> 10 - 100 1 - 10 > 100 - 1000 > 1000

47% 32% 14% 7%

Fig. A.2: Survey Analysis: Answers to statistical questions

3 State of the art

Integrity constraints over KGs were initially defined using OWL [25]. Later
on, the SPARQL Inferencing Notation (SPIN) [10], a SPARQL-based rule
and constraint language was introduced to enforce constraints over KGs
using SPARQL queries. SHACL [11] is known as the next generation of
SPIN and has become a W3C recommended language in 2017. Similar to
SHACL, ShEx [18] is a constraint language built on regular bag expres-
sions inspired by schema languages for XML. Validating schemas have been
adopted for type and compliance checking [12, 20, 21], as well as purposes
other than validation as well. Specifically, for optimizing query process-
ing in KGs [19], building and automatically generating forms to populate
RDF datasets [6, 29], intelligent geoprocessing [7], and automatic detection of
metadata errors in clinical studies [9].

Shape Extraction: There has been recent development to derive validat-
ing shapes from existing KG instance data; various applications are created
to assist the process of shapes extraction, which can potentially be divided
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into two phases, i.e., preprocessing and shapes construction. The preprocess-
ing phase involves collecting information from the input dataset about classes
and their properties, which are then used in the shapes construction phase. The
preprocessing phase can be conducted in two alternative ways: query-based
and non-query-based. The query-based solutions involve loading the KG into
a triplestore able to answer SPARQL queries. The triplestore is then used
to access the information required for the shapes construction phase. SHA-
CLGEN [8], RDFShape [28], and ShapeDesigner [2] are query-based solutions
to generate SHACL or ShEx shapes from existing RDF data. Non-query-
based solutions, instead, parse RDF data stored as files on disk. SheXer [5]
is the only tool to generate ShEx shapes that supports both a triplestore and
RDF files as input. Spahiu et al. [22] proposed a solution based on a data
profiling tool called ABSTAT [23] to generate semantic profiles and transform
them into SHACL to improve the quality of the KGs. Mihindukulasooriya et
al. [13] proposed a KG data profiling-based RDF shape induction approach
by using predictive modeling to generate shapes. SHACLearner [15] is a
method to learn SHACL constraints based on Inverse Open Path rules (IOP)
rules. Astrea [3] is an ontology-based approach to extract SHACL from on-
tologies. Finally, RML2SHACL [4] also generates SHACL shapes but it re-
quires RML mappings. We have classified existing approaches in Table A.1
based on their features (expanded from a previous short survey [3]), i.e., sup-
port for shapes extraction from data or ontologies, support for automatic ex-
traction of shapes, support for shapes extraction from a SPARQL triplestore,
and whether they extract SHACL, ShEx, or both types of validating shapes.
Overall, as we show later, we note that shapes extracted by these methods are often
incomplete, i.e., they do not implement functionalities to generate all types of shape
constraints, e.g., they often do not produce sh:class and cardinality constraints.

Table A.1: State-of-the-art to extract validating shapes

Approach
Extracted from Auto-

matic
Triple-
store

Type
data ontology

Shape Induction [13] ✔ ✗ ✔ ✔ SHACL,ShEx
SheXer [5] ✔ ✗ ✔ ✔ SHACL,ShEx
Spahiu et al. [22] ✔ ✗ ✔ ✔ SHACL
ShapeDesigner. [2] ✔ ✗ ✔ ✔ SHACL,ShEx
SHACLGEN [8] ✔ ✔ ✔ ✔ SHACL
TopBraid [26] ✔ ✔ ✔ ✔ SHACL
Pandit et al. [16] ✗ ✔ ✗ ✔ SHACL
Astrea [3] ✗ ✔ ✔ ✗ SHACL
SHACLearner [15] ✔ ✗ ✔ ✗ SHACL
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4 Limitations and Opportunities

In light of the results presented above, this section highlights the existing
gaps between the capabilities of current tools and the real user needs. After
this analysis, we present a set of important research directions for automatic
shape extraction.

Among the existing approaches, some tools support extraction of validat-
ing shapes from ontologies only (such as Astrea [3]), others support extrac-
tion from instance data, and very few support automatic generation of vali-
dating shapes from both ontology and instance data (see Table A.1). Meth-
ods that generate shapes from ontologies assume the provided ontology to
be complete (i.e., providing complete coverage of the instances in the KG
and their properties) and of small size (they do not expect more than a few
hundred classes). Approaches that extract shapes from RDF instance data
assume that the KG is particularly small (in terms of the number of instances
and classes) or already available in a triplestore. When this is not the case,
they load it into an in-memory triplestore, which is problematic for large
graphs, as further discussed below. We believe these assumptions clash with
a number of real use cases. As a matter of fact, in the results of our survey,
we see that, despite the existence of tools and approaches to extract validat-
ing shapes automatically, most users are still generating shapes manually. To
understand this better, we ran some experiments to find out the real capa-
bilities of existing tools for automatically extracting shapes from RDF graphs. The
experiments are performed using state-of-the-art shapes extraction tools and
approaches such as SheXer [5], ShapeDesigner [2], and SHACLGEN [8]. All
experiments are performed on a machine with 24 cores and 256GB of RAM
using a 2021 dump of DBpedia [1], YAGO-4 [24], and a version of LUBM
scaled to 91M triples. More details on our experiments and datasets are
available online7. We tried similar experiments for WikiData [27] as well, but
the initial results show that existing methods are not able to handle its scale
( they exhausted all memory or did not manage to produce an output in sev-
eral days). Therefore, we highlight that more research is needed to design scalable
methods to extract validating shapes from large KGs.

Our first finding from these experiments is that some tools are capable of han-
dling only relatively small KGs. In particular ShapeDesigner [2] crashed with
datasets with a few millions triples, while SHACLGEN [8] is not suited to
extract shapes of datasets having hundreds of classes as it required days to
generate shapes for YAGO-4 (8,897 classes). Furthermore, we note that both
ShapeDesigner [2] and SHACLGEN [8] load the whole graph into a triple-
store to generate shapes. Yet, extracting shapes by querying a triplestore is

7 https://relweb.cs.aau.dk/validatingshapes/
Zenodo: https://doi.org/10.5281/zenodo.5958985
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particularly inefficient when extracting shapes for the entire graph. Com-
pared to parsing and analyzing a file, which can exploit optimized batch
processing over multiple scans of the data, extracting shapes when the KG is
in a triplestore requires to run queries for each target class to extract all nec-
essary information. When processing RDF files directly, SheXer [5] provides
better performance and was able to extract shapes from DBpedia consum-
ing a maximum of 18GB of RAM in 26 minutes (LUBM: 33GB RAM in 58
minutes, YAGO-4: 24GB RAM in 117 minutes).

Our second finding relates to the usefulness and reliability of the shapes extracted
from the instance data. Shapes are useful only if they are complete (containing
all the required constraints to validate the input graph) and reliable if they do
not contain constraints representing spurious data. Our analysis (via manual
inspection) of the shapes extracted by these tools revealed that none of the ap-
proaches extracts all the required constraints for property shapes; for instance, we
did not find any constraint for non-literal predicate objects (e.g., to indicate
that objects for “takes course” should be of type “Course”). Furthermore,
we saw that some property shapes were extracted because of the presence
of some nodes with spurious or erroneous predicates (e.g., a city mistaken
as a member of a musical band). To further investigate these issues, we im-
plemented a Java application7 to extract also the missing shape constraints
and report their support in the graph, e.g., how many entities were satisfying
a specific constraint. We found that generating automatically the complete set of
shapes would produce hundreds or thousands of node and property shapes each hav-
ing multiple constraints. Yet, since the source KGs are naturally noisy and
incomplete, those shapes and constraints are often unreliable. In particular, for
DBpedia, we extracted 426 node shapes and 11,916 property shapes, which
have 38,454 non-literal and 5,335 literal constraints. Similarly, for YAGO-4,
we extracted 8,897 node shapes and 76,765 property shapes, with a total of
315,413 non-literal and 50,708 literal constraints. We have published the ex-
tracted SHACL shapes on Zenodo7. Given the above numbers of extracted
constraints for DBpedia and YAGO-4, it is non-trivial to manually establish
the validity and the usefulness of thousands of automatically generated shape
constraints. The only existing approach in this direction is SheXer [5], which
supports filtering of shapes based on a “trustworthiness” score (even though
we found this score does not directly translate into how frequently a shape is
satisfied in a dataset, and thus it is hard to tune).

In conclusion, referring to the results of our community survey (Fig-
ure A.1), we see a connection between the limitations of existing shapes
extraction approaches in effectively supporting the real user needs and the
(for now) common practice of generating shapes manually. Since validating
shapes have become an essential tool to ensure the quality and completeness
of large KGs in many organizations, these results suggest that more research is
needed to help users generate useful validating shapes for existing large KGs, consid-
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ering both the scalability of the approach and the informativeness and utility
of the extracted shapes. This will help users curate and maintain high-quality
large-scale KGs.
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Abstract

Knowledge Graphs (KGs) represent heterogeneous domain knowledge on the Web and
within organizations. There exist shapes constraint languages to define validating
shapes to ensure the quality of the data in KGs. Existing techniques to extract
validating shapes often fail to extract complete shapes, are not scalable, and are prone
to produce spurious shapes. To address these shortcomings, we propose the Quality

Shapes Extraction (QSE) approach to extract validating shapes in very large
graphs, for which we devise both an exact and an approximate solution. QSE provides
information about the reliability of shape constraints by computing their confidence
and support within a KG and in doing so allows to identify shapes that are most
informative and less likely to be affected by incomplete or incorrect data. To the best
of our knowledge, QSE is the first approach to extract a complete set of validating
shapes from WikiData. Moreover, QSE provides a 12x reduction in extraction time
compared to existing approaches, while managing to filter out up to 93% of the
invalid and spurious shapes, resulting in a reduction of up to 2 orders of magnitude in
the number of constraints presented to the user, e.g., from 11,916 to 809 on DBpedia.
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1. Introduction

1 Introduction

Knowledge Graphs (KGs), stored as collections of triples of the
form ⟨subject, relation, object⟩ using the Resource Description Framework
(RDF) [10], are in widespread use both within companies [29, 43, 44] and
on the Web [46, 49]. Nonetheless, as KGs quickly accrue more data, practi-
cal applications impose further demands in terms of quality assessment and
validation [34, 38, 52]. Hence, shapes constraint languages, e.g., SHACL [23],
and ShEx [35], have been proposed to validate KGs by enforcing constraints
represented in the form of validating shapes. For instance, we can express that
an entity of type Student requires a name, a registration number, and should
be enrolled in some courses; and that these attributes should be of type string,
integer, and Course, respectively – see Figures B.1a and B.1b for an example
KG and corresponding shapes.

Often, validating shapes are manually specified by domain experts. Yet,
when trying to specify validating shapes for already-existing large-scale KGs,
data scientists are in need of tools that can speed up this process [38]. Thus,
various tools have been proposed to automatically [9, 12, 20, 26] or semi-
automatically [5, 32, 36] produce a set of validating shapes for a target KG.
Unfortunately, these methods suffer from 3 important limitations: (1) they
are not able to produce complete shapes, e.g., they can identify that a student
should have a property of type takesCourse but they do not extract the fact
that the object should be of type Course; (2) the shapes they produce are easily
affected by errors and inconsistencies in the KG, e.g., if some departments,
by mistake, are attached the property hasAdvisor, a corresponding spurious
shape is extracted; and (3) they do not scale to large KGs, e.g., they cannot
process the full English WikiData, and they take days to process a subset of it.
Therefore, in this work, we present the first techniques for efficient extraction of
validating shapes from very large existing KGs that also ensures robustness against
the effects of spuriousness.

Spuriousness poses important challenges to automatic shape extraction
methods. For instance, in DBpedia [4], some of the entities representing mu-
sical bands are wrongly assigned to the class dbo:City. As a consequence,

(a) RDF Graph (b) Validating Shapes

Fig. B.1: An example RDF Graph and Validating Shapes
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when shapes are extracted from its instance data using existing approaches,
the resulting node shape for dbo:City specifies that cities are allowed optional
properties like dbo:genre and dbo:formerBandMember. Hence, due to the ef-
fect of spuriousness, existing approaches generate tens of thousands of shapes
(our experiments show that standard extraction processes produce more than
2 million property shapes for WikiData [49]). Thus, it becomes unmanage-
able for domain experts to manually identify valid shapes. SheXer [12] is the
only existing approach that attempts to tackle this issue by filtering shapes
based on a “trustworthiness” score. Unfortunately, this score does not di-
rectly translate into how frequently a shape is satisfied in a dataset, so it is
still prone to generate spurious shapes, and it is also hard to tune. Further-
more, SheXer is not able to efficiently process large KGs.

Therefore, to tackle the issue of spuriousness, we study and formalize the
problem of support-based shapes extraction and propose the Quality Shapes

Extraction (QSE) approach as a solution to this problem. To tackle the
issue of scalability, we devise two efficient algorithms, QSE-Exact and QSE-
Approximate. Hence, QSE can filter out shapes affected by spurious or erroneous
data based on robust and easily understandable measures. QSE allows shapes ex-
traction both from KGs available as files as well as SPARQL endpoints. More-
over, our efficient approximation algorithm enables shape extraction even on
a commodity machine by sampling the KG entities via a dynamic multi-tiered
reservoir sampling technique.

We perform a thorough experimental evaluation using both synthetic
(LUBM [18]) and real (DBpedia [4], YAGO-4 [46], WikiData [49]) KGs demon-
strating the benefits of our approach. The shapes produced by our approach
are of high quality and instrumental for easily finding errors in real KGs. The
results show that QSE-Exact can extract shapes from the entire WikiData’s
2015 dump in 16 minutes and from 2021’s dump (1.9B triples) in 2.5 hours.
Similarly, QSE-Approximate can extract shapes from WikiData’s 2021 dump
in 90 minutes on a 32GB machine while still achieving 100% precision and
95% recall in the set of shapes produced. Hence, our sampling strategy is ac-
curate and efficient both when extracting shapes from a file as well as when
using an endpoint.

2 RDF Shapes and the QSE Problem

In the following, we first introduce the KG data model and the concepts of
validating shapes, their support, and confidence, then we define our focus:
the Quality Shapes Extraction problem.
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2.1 Preliminaries

The standard model for encoding KGs is the Resource Description Frame-
work (RDF [10]), which describes data as a set of ⟨s, p, o⟩ triples stating that a
subject s is in a relationship with an object o through predicate p. Therefore,
we define an RDF graph as follows:

Definition B.1 (RDF graph)
Given pairwise disjoint sets of IRIs I , blank nodes B, and literals L, an RDF
Graph G :⟨N, E⟩ is a graph with a finite set of nodes N⊂(I∪B∪L) and a finite
set of edges E⊂{⟨s, p, o⟩∈(I∪B)× I × (I∪B∪L)}.

Moreover, we distinguish two special subsets of the IRIs I : predicates P
and classes C. The set of predicates P⊂I is the subset of IRIs that appear in
the predicate position p in any ⟨s, p, o⟩∈G. Among predicates P , we identify
the type predicate a∈P , which corresponds to IRI rdf:type [51] or wdt:P31
WikiData [49], as the predicate that connects all entities that are instances of
a class to the node representing the class itself, i.e., their type. Thus, all the
IRIs that are classes in G form the subset C :{c∈I|∃s∈I s.t. ⟨s, a, c⟩∈G}.

Given a KG G, a set of validating shapes represents integrity constraints
in the form of a shape schema S over G. Since the shape schema describes
shapes associated with node types and their connections to other attributes
and node types, we can also visualize the shape schema S as a particular type
of graph (see Figures B.1a and B.1b). Therefore, in the following, we refer to
two concepts: the data graph G and the shape graph derived from S . The data
graph is the RDF graph G to be validated, while the shape graph consists of
constraints in the form of the shape schema S against which entities of the
data graph are validated. These constraints are defined using node and prop-
erty shapes. In the following, we adopt the previously defined syntax [42]
to refer to the set S according to the SHACL core constraint components [50].
Finally, while validating shapes can also be expressed in ShEx [34], our ap-
proach can be trivially extended to output ShEx directly, or it can exploit
existing SHACL to ShEx converters [53]. Thus, without loss of generality, we
focus on the current standard for SHACL shapes in the following.

Definition B.2 (Shape Schema)
A SHACL shape schema consists of a set of node shapes S , with ⟨s, τs, Φs⟩∈S ,
where s is the shape name, τs∈C is the target class, and Φs is a set of property
shapes of the form ϕs:⟨τp, Tp, Cp⟩, where τp∈P is called the target property,
Tp⊂I contains either an IRI defining a literal type, e.g., xsd:string, or a set of
IRIs – called class type constraint, and Cp is a pair (n, m) ∈ N× (N∪{∞}).
n≤m – called min and max cardinality constraints.

Therefore, given a node shape s∈S for the target class τs∈C, Φs defines which
properties each instance of τs can or should be associated with. For instance,
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the shape ⟨sh:Student, :Student, {ϕs1 , ϕs2}⟩ from Figure B.1b, contains a node
shape for target class :Student and enforces two property shapes ϕ1 and ϕ2.
The property shape ϕ1 has a target property τp= :name, a literal type con-
straint Tp= xsd:string, and the cardinality constraints Cp=(1, 1). Similarly,
the property shape ϕ2 has a target property τp=:takesCourse, a class type
constraint Tp= :Course, and the cardinality constraint Cp = (1, ∞).

When validating a graph G against a shape schema S having a node shape
⟨s, τs, Φs⟩∈S , we verify that each entity e∈G that is an instance of τs satisfies
all the constraints Φs. Note that we use the term entity and node interchange-
ably throughout the paper. Thus, we define the semantics of S as follows:

Definition B.3 (Validating Shape Semantics)
Given a node shape ⟨s, τs, Φs⟩∈S , a graph G, and an entity e s.t. ⟨e, a, τs⟩∈G,
we have that s validates e, and we write e|=Gϕ, if for every property shape
ϕs:⟨τp, Tp, Cp⟩∈Φs the following conditions hold:

• If Tp is a literal type constraint, then for every triple (e, τp, l) ∈ G, l is a
literal of type Tp.

• If Tp is a set of class type constraints Tp={t1, t2, ...tn}, then for every triple
(e, τp, o)∈G, it holds that ∀t∈Tp, o is an instance of t (or of a subclass of t)
and if ∃St∈S , o|=GSt.

• n ≤ |{(s, p, o) ∈ G : s = e ∧ p = τp}| ≤ m, where Cp=(n, m).

Here we study the case where G is given, and we want to extract the set of
validating shapes S that validates every class in C from G. This is the shapes
extraction problem. In this case, existing automatic approaches [38] assume
the graph to be correct, then iterate over all entities in it, and extract for each
entity e all necessary shapes that validate e. The union of all such shapes is
assumed to be the final schema S . This is useful when we want to validate
new data that will be added in the future to the KG so that it will conform
to the data already in the graph. Unfortunately, this approach will produce
spurious shapes. For instance, in Figure B.1, since :alice has both type Full
Professor and Chair, when parsing the triple (:alice, :headOf, :CS_Faculty), the
property shape headOf (the red dotted arrow in Figure B.1b) is assigned to
both node shapes, instead of assigning it to the Chair node shape only.

2.2 Shapes Support and Confidence

To contrast the effect of spuriousness, we want to exploit statistics on how
often properties are applied to entities of a given type. Therefore, we in-
troduce the notion of support and confidence for shape constraints to study
the reliability of extracted shapes. These concepts are inspired by the well-
known theory developed for the task of frequent patterns mining [19] and
the concept of MNI support for graph patterns [7]. The MNI support of a
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graph pattern is the minimum cardinality of the set of all nodes of G that are
mapped to a specific pattern node by some isomorphism across all the nodes of
the pattern. In our approach, a property shape corresponds to a node- and
edge-labeled graph pattern. Thus, given the shape s:⟨s, τs, Φs⟩∈S its support
is the number of entities that are of type τs, while the support of a property
shape ϕs:⟨τp, Tp, Cp⟩∈Φs is the cardinality of entities conforming to it.

Definition B.4 (Support of ϕs)
Given a shape ⟨s, τs, Φs⟩∈S with shape constraint ϕs:⟨τp, Tp, Cp⟩∈Φs, the sup-
port of ϕs is defined as the number of entities e satisfying ϕs, denoted as e|=ϕs,
hence:

supp(ϕs)=|{e∈I | e|=ϕs}| (B.1)

Finally, the confidence of a constraint ϕs measures the ratio between how
many entities conform to ϕs and the total number of entities that are instances
of the target class of the shape s.

Definition B.5 (Confidence of ϕs)
Given a shape ⟨s, τs, Φs⟩∈S having shape constraint ϕs:⟨τp, Tp, Cp⟩∈Φs, the
confidence of ϕs is defined as the proportion of entities for which e|=ϕs
among the entities that are instances of the target class τs of s∈S , hence:

conf(ϕs) =
supp(ϕs)

|{e|(e, type, τs) ∈ G}|
(B.2)

As it happens in the case of frequent pattern mining [19], when extract-
ing validating shapes, the support provides insights on how frequently a
constraint is matched in the graph, i.e., the number of entities e satisfying a
constraint ϕs. While similar to the task of itemset mining [6], the confidence
can tell us how strong is the association between a node type and a specific
constraint, i.e., the proportion of entities e satisfying a constraint ϕs among
all the entities that are instances of the node type τs of s∈S . For instance,
the confidence for property shape headOf (Figure B.1b) in our snapshot of
LUBM is 10% for the Full Professor node shape and 100% for Chair, which
indicates a strong association of the headOf property shape to latter and a
weak association to the former.

2.3 The Quality Shapes Extraction Problem

Given the need to extract shapes from a large existing graph G while limiting
the effect of spuriousness, we formally define the problem of extracting high-
quality shapes from KGs as follows:

Problem 1 (Quality Shapes Extraction)
Given an RDF graph G, a threshold ω for support, and ε for confidence, the
problem of quality shapes extraction over G is to find the set of shapes S
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such that for all node shapes ⟨s, τs, Φs⟩∈S it holds that supp(s)>ω and for
all property shapes ϕs:⟨τp, Tp, Cp⟩∈Φs, supp(ϕs)>ω and conf(ϕs)>ε.

In the following, we provide both, an exact and an approximate solution to
the problem of quality shape extraction.

3 QSE-Exact

Extracting shapes S from an RDF graph G requires processing its triples and
analyzing the types of nodes involved both as subjects and objects in those
triples. At a high level, we need to know for each entity all its types, these
will become node shapes, and then for each entity type, identify property
shapes, which requires, in turn, knowing the types of the objects as well.
Furthermore, we need to keep frequency counts to know how often a specific
property connects nodes of two given types compared to how many entities
exist of those types. In our solution, this is done in four steps: (1) entity ex-
traction, (2) entity constraints extraction, (3) support and Confidence computation,
and (4) shapes extraction. Here we first consider the case where the graph is
stored as a complete dump on a single file. Later, we also consider the case
for a graph stored within a triplestore [41] for which the KG is not available
as a file.

QSE-Exact (file-based). One of the most common ways to store an RDF
graph G on a file F is to represent it as a sequence of triples. Therefore, QSE
reads F line by line and processes it as a stream of ⟨s, p, o⟩ triples. Algorithm 1
and Figure B.2 present the four main steps of QSE to extract shapes for graph
G stored in F. In the entity extraction phase, the algorithm parses each ⟨s, p, o⟩
triple containing a type declaration (e.g., rdf:type or wdt:P31 – this can be
configured) and for each entity, it stores the set of its entity types and the
global count of their frequencies, i.e., the number of instances for each class
(Lines 4-8) in maps Ψetd (Entity-to-Data) and Ψcec (Class-to-Entity-Count),
respectively. For example, Figure B.2 (phase 1) presents two example entities
:bob and :alice (from the example graph of Figure B.1a) having entity types
:Student, :FullProfessor, and :Chair, respectively. Figure B.2 also presents the
structure of the Entity-to-Data Ψetd dictionary map to help understand the
captured entities and their information. In the second phase, i.e., entity con-
straints extraction, the algorithm performs a second pass over F (Lines 9-19)
to collect the constraints and the meta-data required to compute support and
confidence of each candidate property shape. Specifically, it parses all triples
except triples containing type declarations (which can be skipped now) to
obtain for each predicate the subject and object types from the map Ψetd that
was populated in the previous step. The type of a literal object is inferred
from the value, and for a non-literal object is obtained from Ψetd (Lines 11-
16). For example, Ψetd records that the types of :alice are :FullProfessor and
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:bob

[     ]

:alice

[       ,       ]

:name [ :String ]
:takesCourse [ :Course ]

:advisor [ :FullProfessor, :Chair ]

:docDegreeFrom [ :University ]

:teacherOf [ :Course ]

# 
# 

# 

# 

# 

:Student
:FullProfessor

:Chair

[     :name :String  ] , #  
[     :takesCourse :Course] , # 
[     :advisor :FullProfessor] , # 
[     :advisor :Chair ] , #
[  …   ] , #  

1 2 3

4

:alice [      ,     ] [:Course] , #:teacherOf
… 

SHACL (      ,        ,       )   
see Fig. 1b

#  : Count
Legend

ΨETD

Key Value
Dictionary

DRS  R1 R2 R3 Rn. . . . .
𝜏max0

[:bob, ….  ] [:alice, ….  ] [:alice, ….  ] [ei , …., en ]

Fig. B.2: Overview of the four phases of QSE: 1⃝ entity extraction, 2⃝ entity constraints extrac-
tion, 3⃝ support and confidence computation, and 4⃝ shapes extraction. QSE-Approximate uses
Dynamic Reservoir Sampling (DRS) in 1⃝.

:Chair. Then, the Entity-to-Property-Data map Ψetpd is updated to add the
candidate property constraints associated with each subject entity (Line 17).
Figure B.2 (phase 2) shows the meta-data captured for the properties of :bob
and :alice.

In the third phase, i.e., for support and confidence computation, the con-
straints’ information stored in maps (Ψetd, Ψcec) is used to compute sup-
port and confidence for specific constraints. The algorithm iterates over the
map Ψetd to get the inner map Ψetpd mapping entities to candidate property
shapes ϕs:⟨τp, Tp, Cp⟩∈Φs, and retrieves the type of each entity using types
information stored in Ψetd to build triplets of the form ⟨τe, τp, τpo ⟩ and com-
pute their support and confidence (Line 25). Figure B.2 (phase 3) highlights
some of these triplets for τe =:Student. The value of support and confidence
for each distinct triplet is incremented in each iteration and stored in ΨSupp

and ΨConf
maps. Additionally, a map ΨPTT (Property to Types) is populated

with distinct properties’ frequencies and their object types in order to, later
on, establish the corresponding min/max cardinality constraints (Line 26).

Finally, in the shapes extraction phase, the algorithm iterates over the val-
ues of the Ψctp map and defines the shape name of s, the shape’s target definition
τs, and the set of shape constraints ϕs for each candidate class (Lines 27-29).
The set of property shapes P for a given Node Shape are then extracted from
the map Map⟨Property, Set⟩ (Lines 30-36). An example shapes graph for
our running example is shown in Figure B.1. The Cp constraint can possibly
have three types of values: sh:Literal, sh:IRI, and sh:BlankNode. In the case of
literal types, the literal object types such as xsd:string, xsd:integer, or xsd:date
are used. However, in the case of non-literal object types, the constraint
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Algorithm 1 Shapes Extraction

Input: Graph G from File F, ω: min-support, ε: min-confidence
Output: Output: S⟨s, τs, Φs⟩

1: Edata ← {T: SetTypes , ΨETPD = Map⟨Iri, Pdata⟩}
2: Pdata ← {T′ : SetObjTypes , Count :Int}
3: Ψetd = Map⟨Iri, Edata⟩ , Ψcec = Map⟨Iri, Int⟩ , Ψctp = Map⟨Iri, Map⟨Iri, Set⟩⟩
4: for t ∈ G ∧ t.p = Type Predicate do ▷ 1⃝ Entity extraction
5: entity e : t.s ; entityType et = t.o ▷ s: subject, o: object
6: if e ̸∈ Ψetd then Ψetd.insert(e, ... ))
7: Ψetd.insert(e, Ψetd.get(e).T.add(et)) ▷ T : entity types
8: increment entity count for current et in Ψcec

9: for t ∈ G ∧ t.p != Type Predicate do ▷ 2⃝ Entity constraints extraction
10: SetObjTypes ← ∅ , SetTuple ← ∅ ▷ init a type and property to type tuple set
11: if object t.o is Literal then
12: SetObjTypes.add(getLiteralType(t.o))
13: SetTuple.add(new Tuple⟨ t.p, getLiteralType(t.o)⟩)
14: else ▷ for non-literal objects
15: for objtype ∈ Ψetd.get(t.o).T do
16: SetObjTypes.add(objtype) ; SetTuple.add(new Tuple⟨t.p, objtype⟩)
17: addPropertyConstraints(t.s, SetTuple, Ψetd)
18: for Iri ∈ Ψetd.get(t.s.T) do ▷ if t.s ∈ Ψetd

19: update Ψctp with class Iri, t.p, and object types using SetObjTypes

▷ 3⃝ Support and Confidence computation
20: ΨSupp

= Map⟨Tuple3, Int⟩ , ΨConf
= Map⟨Tuple3, Int⟩ , Ψptt

21: for (e, Edata) ∈ Ψetd do
22: for (T, ΨETPD) ∈ Edata do
23: for et ∈ T ∧ (p, po , c) ∈ Pdata do
24: χ← createTriplets(⟨τe, τp, τpo ⟩)
25: computeSupportAndConfidence ( ΨSupp

, χ, Ψcec)
26: computeMaxCardinality (ΨPTT, p , c)
27: for (class, Map⟨Property, SetObjTypes⟩) ∈ Ψctp do ▷ 4⃝ Shapes extraction
28: Φs ← ∅ ▷ Property shapes Φs = {ϕs1 , ϕs2 , ..., ϕsn} where ϕs :⟨τp, Tp, Cp⟩
29: s = class.buildShapeName() , τs = class
30: for (p, SetObjTypes) ∈ Map⟨Property, Set⟩ do ϕs.τp = p
31: p.ω = ΨSupp.get(p, SetObjTypes) , p.ε = ΨConf.get(p, SetObjTypes)
32: if p.ω > ω ∧ p.ε > ε then
33: build(sh:nodeKind, sh:maxCount, Ψptt)
34: ϕs.Cp.add(sh:minCount : 1) ▷ i f p.ε > ε′

35: Φs.add(ϕs)

36: S .add(s, τs, Φs) ▷ if s.ω > ω ∧ ϕs !∅

sh:class is used to declare the type of object to define the type of value for the
candidate property. It is possible to have more than one value for the sh:class
and sh:datatype constraints of a candidate property shape, e.g., to state that
a property can accept both integers and floats as values, in such cases, we
use sh:or constraint to encapsulate multiple values. A detailed explanation of
each phase is available in the extended version of the paper1.

1https://relweb.cs.aau.dk/qse/

80

https://relweb.cs.aau.dk/qse/


4. QSE-Approximate

QSE-Exact (query-based). To support shapes extraction from a triple-
store, we propose QSE-Exact query-based that uses a set of SPARQL
queries [40] to extract all the necessary information that we collect across
the four phases. In practice, we pose queries to extract all the distinct classes
C, then, for each class c∈C, its properties p∈P along with object types are ex-
tracted as triplets, and support is computed for each triplet by a count query.
This method is based on the standard procedure also implemented in other
existing, query-based tools [12, 20].

Cardinality Constraints. QSE supports assigning cardinality constraints
(sh:minCount and sh:maxCount) to Cp to each property shape constraint
ϕs:⟨τp, Tp, Cp⟩. Following the open-world assumption, all shape constraints
are initially assigned a minimum cardinality of 0, making them optional.
However, there are cases where we can infer that some properties are manda-
tory (i.e., should be assigned a min count of 1), and some other properties
should appear exactly once for each entity (i.e., should be assigned both a
min and a max count equal to 1). Trivially one can assign minimum cardinal-
ity 1 to property shapes having confidence 100%, i.e., for those cases in which
all entities have that property. In case of incomplete KGs, QSE allows users to
provide a different confidence threshold value for adding the min cardinality
constraints. To achieve this, we extend the fourth phase and add a min cardi-
nality constraint in property shapes on line 35 based on the min-confidence
provided by the user. QSE also keeps track of properties having maximum
cardinality equal to 1 in a second phase and assigns sh:maxCount=1 to those
property shapes in the fourth phase of shapes extraction.

Complexity Analysis. The time complexity of QSE-Exact (Algorithm 1)
is O(2·|F|+ |E|·|Φs|+ |S|·|Φs|). Where 2 ∗ |F| refers to the first and second
phases having to parse all the triples twice, E is the set of entities (i.e., the set
of distinct IRIs that appear as a subject for some triple), S is the set of Node
Shapes, and lastly, Φs represents a set of all property shape constraints, i.e.,
Φs = {ϕ1, ϕ2, ...., ϕn}. Therefore, our algorithm scales linearly in the number
of edges and nodes in the graph and in the size of the final set of shapes.

4 QSE-Approximate

QSE-Exact keeps type and property information for each entity in mem-
ory while extracting shapes. As a result, its memory requirements are pro-
hibitively large when dealing with large KGs. Therefore, we propose QSE-
Approximate to enable shape extraction from very large KGs with reduced
memory requirements. Our goal is to solve the scalability issue in shapes extrac-
tion approaches by using only the resources available to a commodity machine. QSE-
Approximate is based on a multi-tiered dynamic reservoir-sampling (DRS)
algorithm that we introduce. We maintain as many reservoirs as types in the
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graph, and we dynamically resize each reservoir as new triples are parsed.
Moreover, the replacement of nodes in the reservoir is performed based on
the number of node types across reservoirs. The resulting algorithm replaces
the first phase of QSE. After sampling, the information about the sampled
entities is used in the same way as before in the remaining phases of Al-
gorithm 1. Hence, we maintain information only for a small representative
sample of entities in memory but enough to detect all shapes.

Algorithm 2 receives as input a graph file F, sampling percentage
(Sampling%), and maximum size of the reservoir per class (τmax). After initial-
ization, triples t of F are parsed (Line 3) and filtered based on whether they
contain a type declaration. From these, we extract the entities to populate the
Entity-to-Data map Ψetd (Lines 4-24), while non-type triples are parsed on
Line 24 to keep count of distinct properties in the Property-Count map Ψpc.
For instance, :alice is an entity of type :FullProfessor and :Chair in Ψetd shown
in Figure B.2. QSE-Approximate maintains a reservoir for each distinct entity
type et, e.g., maintaining a distinct reservoir of entities of type :Student (R1),
:FullProfessor (R2), and :Chair (R3) shown in Figure B.2, using a map of sam-
pled entities per class (Ψsepc). The reservoir capacity map (Ψrcpc) stores the
current max capacities for the reservoir for each et. If et does not exist in
Ψsepc and Ψrcpc, i.e., if it has not a reservoir, one is created (lines 6-7). Then,
e is inserted in the reservoir for et (Lines 8-11), e.g., :alice is inserted into
both reservoirs R2 and R3 shown in Figure B.2. If the reservoir has reached
its current capacity limit, we may have to replace an entity in the reservoir
with the current one. Hence, neighbor-based dynamic reservoir sampling is
performed (Lines 13-18), i.e., a random number r is generated between zero
and the current number of type declarations read from F. If r falls within the
reservoir size, then a node in the reservoir is replaced with e. To select which
node to replace, we identify as n̂ the target node at index r, and with ⃗n and
n⃗ its neighbors at indexes r−1 and r+1, respectively. Among these, the node
having minimum scope (i.e., the minimum number of types that are known
at this point in time) is selected to be replaced by the current e (Line 17). Ad-
ditionally, the algorithm keeps track of actual Class-to-Entity-Count in Ψcec

(Line 19), i.e., the exact count of how many entities of each type we have
seen. Once the reservoir for et is updated, the sampling ratio for this type
is computed, i.e., the proportion of entities kept so far with type et over the
total number of entities of that type seen up to now. Given the current and
target sampling ratio (Sampling%) provided as input, the algorithm evaluates
whether to resize the reservoir for et, if it has not already reached the limit
τmax (Lines 21-23).

While performing shapes pruning using counts over sampled entities,
QSE-Approximate requires to estimate actual support ωϕ and confidence εϕ

of a property shape ϕ from the current values ω and ε computed from the
sampled data. Thus, it estimates with ωϕ=ωϕ/min(|P∗r |/|P|, |Tr|/|T|) the
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Algorithm 2 QSE-Approximate Reservoir Sampling

Input: Graph G from File F, maximum entity threshold τmax, Sampling%
Output: Ψetd , Ψcec

1: init maps Ψetd , Ψsepc, Ψrcpc , Ψcec, Ψpc

2: τmin = 1 (minimum entity threshold) ; lineCounter = 0
3: for t ∈ G do ▷ parse s,p,o of the triple t
4: if t.p = Type Predicate then
5: entity e : t.s ; entityType et = t.o ▷ s: subject, o: object
6: Ψsepc.putIfAbsent(et, [ ] ) ▷ if et ̸∈ Ψsepc

7: Ψrcpc.putIfAbsent(et, τmin) ▷ if et ̸∈ Ψrcpc

8: if | Ψsepc.get (et) | < Ψrcpc.get (et) then ▷ Add entity e in reservoir
9: if Ψetd.get(e).T is ∅ then Ψetd.insert(e, ... )) ▷ T : entity types

10: Ψetd.insert(e, Ψetd.get(e).T.add(t.o))
11: Ψsepc.get(et).insert(e)
12: else ▷ Replace random entity in reservoir with current entity e
13: r = generateRandomNumber(0, lineCounter)
14: if r < |Ψsepc.get(et) | then
15: ⃗n, n̂, n⃗ = Ψsepc.get(et).nodeAtIndex(r− 1, r, r + 1))
16: n = getNodeWithMinimumScope( ⃗n, n̂, n⃗)
17: replace node at index n with current e & et in Ψetd

18: Ψsepc.get(et).add (e)
19: increment entity count for current et in Ψcec

20: ▷ Resize reservoir
21: ratio = (Ψsepc.get(et).size()/Ψcec.get(et)) × 100
22: capacity = Sampling% × Ψsepc.get(et).size()
23: if capacity < τmax ∧ ratio ≤ Sampling% then Ψrcpc.insert(et , capacity)
24: else→ increment property count for current t.p in Ψpc

25: lineCounter++

effective support for a property shape ϕ, where ωϕ is the support computed
for ϕ in the current sample, P represents all triples in G having property τp,
P∗r represents triples having property τp across all entities in all reservoirs, T
represents all entities of type et in G, and Tr represents all entities of type et
in the reservoir. Similarly, the confidence εϕ of a property shape is estimated
by replacing denominator in eq. (B.2) with |Tr|.

QSE-Approximate (query-based). We apply the same sampling tech-
nique in the query-based shapes extraction approach where in Algorithm 2
entities and their meta-data are retrieved via SPARQL queries, resulting in
query-based QSE-Approximate.

Space Analysis. The space requirement of QSE-Approximate depends
on the values of target Sampling%, the maximum reservoir size τmax, and the
number of entity types |T| in G. In the worst case, it requires O(2·|T|·τmax),
therefore while G can contain hundreds of millions of entities, we can still
easily estimate how many distinct types are in the graph and select τmax to
fit the available memory.
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5 Evaluation

In the following, we evaluate our QSE solutions and their effectiveness in
tackling the problem of spuriousness along with a comparison to existing
state-of-the-art approaches.

Datasets. We selected a synthetic dataset, LUBM-500 [18], and three real-
world datasets: DBpedia [4] downloaded on 01.10.2020; YAGO-4 [46], for
which we use the subset containing instances from the English Wikipedia,
downloaded on 01.12.2020; and WikiData [49], in two variants, i.e., a dump
from 2015 [54] (Wdt15), used in the original evaluation of SheXer [12], and the
truthy dump from September 2021 (Wdt21) filtered by removing non-English
strings. Table B.1 provides a comparison of their contents.

Experimental Setup. We have implemented QSE algorithms in JAVA-
11. All experiments are performed on a single machine with Ubuntu 18.04,
having 16 cores and 256 GB RAM. We have used GraphDB [16] 9.9.0 to exper-
iment with query-based variants of QSE with a maximum memory usage limit
of 16 GB. The source code of QSE is available as open-source [37] along with
experimental settings and datasets. We have also published the extracted
SHACL shapes of all our datasets on Zenodo [39]. For SheXer, we cloned its
original code from GitHub and used the same settings as the original paper,
i.e., default tuned parameters for the sheXing process and customized tuned
parameters to output shapes equivalent to QSE.

Metrics. We measure the running time, and maximum memory usage (de-
fined using Java -Xmx) during QSE shapes extraction process, and Shape Statis-
tics of the output shapes.

QSE-Exact. We use QSE-Exact to extract shapes from LUBM (L), DBpedia
(D), YAGO-4 (Y), and WikiData (W). The statistics of the shapes extracted

Table B.1: Size and characteristics of the datasets

DBpedia LUBM YAGO-4 Wdt15 Wdt21

# of triples 52 M 91 M 210 M 290 M 1.926 B
# of objects 19 M 12 M 126 M 64 M 617 M
# of subjects 15 M 10 M 5 M 40 M 196 M
# of literals 15 M 5.5 M 111 M 40 M 904 M
# of instances 5 M 1 M 17 M 3 M 91 M
# of classes 427 22 8,902 13,227 82,693
# of properties 1,323 20 153 4,906 9,017

Size in GBs 6.6 15.66 28.59 42 234
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from these datasets using QSE-Exact (file-based) are shown in Table B.2. It
shows the count of Node Shapes (NS), Property Shapes (PS), and Property
Shape Constraints (PSc), i.e., literal and non-literal node types constraints.
We refer to these statistics as default shape statistics. We initially considered
SheXer [12], ShapeDesigner [5], and SHACLGEN [20] as state-of-the-art ap-
proaches [38] to compare against QSE. Among these, both ShapeDesigner
and SHACLGEN load the whole graph into a triplestore similar to our QSE-
Exact (query-based). Yet, their current implementations cannot handle large
KGs with more than a few million triples and do not manage to extract shapes
of KGs having more than some hundreds of classes. In our experiments, ei-
ther they crashed because they tried to load the graph into an in-memory
triplestore or required multiple hours to generate shapes for large KGs such
as YAGO-4 (with 8,897 classes). Therefore, in the following, we focus our
comparison on SheXer, which supports both the file-based and the query-
based methods. Table B.3 shows the running time and memory consump-
tion to extract shapes for all datasets using File (F) and Query-based (Q)
variants of SheXer, QSE-Exact, and QSE-Approximate. Among the file-based
approaches, QSE-Exact is 1 order of magnitude faster than SheXer for all
datasets. It consumes up to 50% less memory than SheXer to extract shapes
from D, L, Y, and Wdt15, whereas SheXer goes out of memory (OutM) for
Wdt21. Similarly, among the query-based approaches, QSE-Exact is 1 order
of magnitude faster and consumes less than 50% memory to extract shapes
from D, Y, L, and Wdt15. SheXer timed out (OutT – 24 hours) for Y and
Wdt21, while QSE-Exact timed out for Wdt21 only.

Taming spuriousness. To deal with the issue of spuriousness, we analyze
the shapes extracted and kept after pruning. QSE performs support-based
shapes extraction by producing only the shapes with support and confidence
greater than or equal to a threshold specified by the user. For instance, given
a minimum support threshold of 100 and minimum confidence value 25%,
for every PS, QSE prunes all the PSc that do not appear with at least 100
entities or if not at least for 25% of entities for that type. We remind that

Table B.2: Shapes Statistics using QSE-Exact.

NS PS Non-Literal PSc Literal PSc

COUNT COUNT/AVG COUNT/AVG COUNT/AVG

LUBM 23 164 / 7.1 323 / 3.0 57 /1.0
DBpedia 426 11,916 / 27.9 38,454 / 6.9 5,335 /1.0
YAGO-4 8,897 76,765 / 8.6 315,413 / 14.5 50,708 / 1.0

Wdt15 13,227 202,085 / 15.2 114,890 / 3.0 106,599 / 1.0
Wdt21 82,651 2,051,538 / 24.8 3,765,953 / 5.6 1,113,856 / 1.0
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Table B.3: Running Time (T) in minutes (m) and hours (h) along with Memory (M) consumption
in GB.

DBpedia LUBM YAGO-4 Wdt15 Wdt21
T M T M T M T M T M

F
SheXer 26 m 18 58 m 33 1.9 h 24 3.2 h 59 - OutM
QSE-Exact 3 m 16 8 m 16 23 m 16 16 m 50 2.5 h 235
QSE-Approx 1 m 10 2 m 10 13 m 10 13 m 16 1.3 h 32

Q
SheXer 9 h 65 15 h 140 OutT - 13 h 180 OutT -
QSE-Exact 34 m 16 47 m 16 2.4 h 16 1.2 h 16 OutT -
QSE-Approx 16 m 6 3 m 7 39 m 16 49 m 16 5.7 h 64

the pruning of PSc has a cascading effect that also affects the pruning of PS,
and the pruning of PS can, in turn, cause the pruning of NS. To study the
impact of various confidence and support thresholds on the number of PSc,
PS, and NS, we analyze the effect of pruning by specifying various values for
confidence and support. Figure B.3 shows the result of pruning PSc (B.3a,b),
PS and NS (B.3c,d) for confidence >(25, 50, 75,90)% and support (≥1,>100)
on DBpedia and Wdt21. Experimental results on LUBM, YAGO-4, and Wdt15
are comparable to the results presented for DBpedia and Wdt21, and are
reported in the extended version of the paper1. In general, as expected, the
results show that the higher we set the threshold for support and confidence,
the higher the percentage of PSc and PS to be pruned. Precisely, DBpedia
contains 11K PS, 38K non-literal, and 5K literal PSc (Table B.2), when QSE
performs pruning with confidence >25% and support ≥ 1, it prunes out 99%
PSc and PS (Figure B.3a,b). Similarly for Wdt21, QSE prunes 85% non-literal
and 97% literal constraints, and 66% PS for confidence >25% and support
≥1 (Figure B.3b). In comparison to the default shape statistics (Table B.2),
increasing confidence to >50%, 75%, and 90%, pruning resulted in a drastic

Table B.4: QSE-Approximate: Effect of Sampling% (S%) and reservoir size (τmax) on Precision
(P), Recall (R), and Relative Error (∆) with min. support 1 and confidence 25% on Wdt21

S% τmax
Property Shapes (PS) Time

(Min)
Mem
(GB)Real Sample P / R ∆

10%
20 698,825 470,562 1.00 / 0.61 228,263 81 16

200 698,825 497,035 0.92 / 0.65 201,790 81 16

50%
500 698,825 548,381 0.96 / 0.79 150,444 82 24

5000 698,825 605,785 0.96 / 0.83 93,040 95 24

100%
500 698,825 617,349 1.00 / 0.88 81,476 87 32

5000 698,825 645,810 1.00 / 0.92 53,015 98 32
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decrease in the number of PSc and PS. In DBpedia, the majority of non-
literal PSc are pruned out, and in Wdt21, the majority of literal constraints
are pruned out. Pruning of NS is lower compared to PS and PSc for all
combinations of support and confidence, showing that almost all types are
associated at least with some very common PSc, e.g., the fact to have a :name.

QSE-Approximate. The QSE-Approximate approach reduces the mem-
ory requirements of the exact approach by allowing users to specify the sam-
pling percentage ( Sampling%, S% for short) and maximum limit of the reservoir
size (τmax), i.e., the maximum number of entities to be sampled per class, to re-
duce the number of entities to keep in memory. Table B.3 shows that among
the file-based approaches, QSE-Approximate is the most efficient approach
compared to QSE-Exact and SheXer. For example, to extract shapes from
Wdt21, QSE-Approximate (with τmax = 1000 and S%=100%) required almost
half the time with 1 order of magnitude less memory than QSE-Exact, while
SheXer could not complete the computation. Similarly, among query-based ap-
proaches, QSE-Approximate proved to be the only approach to extract shapes
from the Wdt21 endpoint in 5.7 hours with 64 GB memory consumption.
In contrast, QSE-Exact and SheXer timed out (24 hours). Analogously to
Wdt21, QSE-Approximate remains 1 order of magnitude faster with 50% less
memory consumption than SheXer (for both query and file-based variants)
to extract shapes from D, L, Y, and Wdt15. Overall, these results show that
our proposals have solved scalability issues in shape extraction approaches
regardless of the type of input data source (file or endpoint). The choice of
using a query-based or file-based version depends on the given setting. For
instance, querying an endpoint to extract shapes can impose excessive stress
on a production DBMS serving other applications. On the other hand, the
file-based approach is less resource-intensive and can be used if the user can
afford the cost of dumping the graph into a file.

QSE Sampling Parameters. We further evaluate the quality of the output
of QSE-Approximate using multiple combinations of values for S% and τmax
on Wdt21 with a fixed confidence and support threshold. This analysis helps
the user to choose the best values for S% and τmax parameters given some
memory constraints. We show the results in Table B.4, where the values
shown in columns Real and Sampled are extracted by QSE-Exact and QSE-
Approximate, respectively. Here we skip listing values for NS as they are not
affected by the values of S%, τmax, confidence, and support. The results show
that S%=10 and τmax up to 200 provide a 92% precision for PS extracted using
QSE-Approximate and pruned with support ≥1 and confidence >25%. This
requires only 16 GB RAM and 81 minutes. If a machine up to 24 GB RAM
is available, then S%=50% and τmax=5K provide 96% precision with ∆ = 93K
in 95 minutes. Similarly, on a machine having 32 GB RAM, S%=100% and
τmax=5K provide 100% precision with ∆ = 53K in 98 minutes. The non-
perfect precision translates into some shapes being produced despite their
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Fig. B.3: QSE-Exact on DBpedia and Wdt21

support and confidence is slightly lower than required. We also see that,
for very small values of τmax we achieve a lower recall, meaning that some
shapes that should have been produced are instead wrongly pruned. We note
though that min support 1 and confidence 25% are still quite low values and
the shapes produced are thus more affected by spuriousness. Nonetheless,
on a standard commodity machine with 32GB we see we can easily achieve
perfect precision (100%) and very high recall (92%).

We further study the effect of pruning on shapes extracted from Wdt21
using QSE-Approximate with confidence >25% and >75% having support 1,
10, and 100 (shown in Table B.5). We see that with support ≥1 and confi-
dence >25%, QSE-approximate is able to get almost all the PS extracted by
QSE-Exact for Wdt21 (Figure B.3d) having 89% recall and 100% precision.
Additionally, upon increasing the support to 10 and 100, we notice a constant
recall of around 88-99% and a slight reduction in precision, i.e., 98% and 96%
with decreasing relative error (i.e., ∆). Similarly, we notice the same trend
with confidence=75%. Therefore, while we very rarely overestimate the sup-
port and confidence of the shapes produced, we underestimate some of these
values, although still in a few cases only.

Practical Implications of QSE. We show the practical utility of QSE by
evaluating the correctness of extracted shapes and their effect when used to
validate the KG. We extracted shapes from DBpedia using QSE with confi-
dence >25% and support >100. Then, we randomly selected 10 shapes and
manually inspected them to evaluate their correctness, i.e., whether these
shapes describe valid constraints. This allows us to measure precision and
recall based on the pruning parameters. The results of this analysis showed
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Table B.5: Output quality of QSE-Approximate on Wdt21 with S% = 100% and τmax = 500 as #
of real and sampled NS, PS, and corresponding Precision (P), Recall (R), and Relative Error ∆.

C
on

f

Su
pp Node Shapes (NS) Property Shapes (PS)

Real Sample P / R ∆ Real Sample P / R ∆

>
25

%

≥ 1 82,651 82,651 1.0 / 1.0 0 698,825 620,622 1.00 / 0.89 78,203
10 23,640 23,640 1.0 / 1.0 0 158,283 141,040 0.99 / 0.88 17,243
100 6,596 6,596 1.0 / 1.0 0 39,877 36,362 0.96 / 0.88 3,515

>
75

%

≥ 1 82,651 82,651 1.0 / 1.0 0 405,344 362,717 1.00 / 0.89 42,627
10 23,640 23,640 1.0 / 1.0 0 91,947 83,329 0.99 / 0.90 8,618
100 6,596 6,596 1.0 / 1.0 0 23,944 22,193 0.97 / 0.90 1,751

that QSE extracts shapes with 100% precision in terms of correct shapes con-
straints that should be part of the final set of shapes (qualified as quality
shapes) by removing spurious shape constraints. Further, we used these 10
shapes, extracted by QSE, to validate DBpedia using a SHACL validator and
found 20,916 missing triples and 155 erroneous triples. The detailed results
of this analysis are contained in the extended version1. Overall, this experi-
ment shows that by using our technique the user is provided with a refined
set of valid shapes that can effectively identify errors in the KG.

Constraints Coverage. Comparing the constraints supported by QSE
and existing approaches (i.e., SheXer [12], SHACLGEN [20], and Sha-
peDesigner [5]), we report that QSE is able to extract the widest range of
constraints (i.e., 15 out of 16 specific core constraints). Amongst those that
are usually not supported, we support sh:in, sh:Literal, sh:class, sh:not, and
sh:node. We currently do not support sh:inverse but we plan to support it in
the future. More details are available in the extended version of our paper1.

Optimal Pruning Thresholds. For each class in the KG, QSE computes
its frequency. Thus, this information can be used as a reference for the sup-
port and confidence thresholds. Further, QSE also supports the extraction of
shapes for specific classes only. Therefore, the user can make use of frequency
information and set class-specific pruning thresholds.

6 Related Work

KG Data Validation. Integrity constraints for KGs were initially de-
fined with the RDF schema vocabulary [11] and then with the OWL lan-
guage [27, 28, 47]. Later, the SPARQL Inferencing Notation (SPIN) [22] was
proposed. SHACL [23] (a W3C standard since 2017) is known as the next gen-
eration of SPIN. Similar to SHACL, ShEX [35] is a constraint language that
is built on regular bag expressions inspired by schema languages for XML.
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Table B.6: State-of-the-art to extract validating shapes [38]

Approach
Extracted from Auto-

matic
Triple-
store

Type
data ontology

Shape Induction [26] ✔ ✗ ✔ ✔ SHACL,ShEx
SheXer [12] ✔ ✗ ✔ ✔ SHACL,ShEx
Spahiu et al. [45] ✔ ✗ ✔ ✔ SHACL
ShapeDesigner. [5] ✔ ✗ ✔ ✔ SHACL,ShEx
SHACLGEN [20] ✔ ✔ ✔ ✔ SHACL
TopBraid [36] ✔ ✔ ✔ ✔ SHACL
Pandit et al. [32] ✗ ✔ ✗ ✔ SHACL
Astrea [9] ✗ ✔ ✔ ✗ SHACL
SHACLearner [30] ✔ ✗ ✔ ✗ SHACL
Groz et al. [17] ✔ ✗ ✔ ✗ ShEx

While ShEx is not a standard, it is used within the WikiData project [48].
Even though SHACL and ShEx are not completely equivalent [15], their core
mechanism revolves around the same concept of enforcing for each node to
satisfy specific constraints on the combination of its types and predicates [12].
In this work, we support the extraction of validating shapes that can be rep-
resented in both languages.

Shape Extraction. Given the abundance of large-scale KGs, various ap-
plications have been created to assist the process of extracting information
about its implicit or explicit schema [21]. Among these, shapes construction
or extraction approaches, i.e., to generate a set of shapes given information
from an existing KG, are used in order to obtain validating schema to ensure
the quality of a KG’s content. We have classified existing approaches in Ta-
ble B.6 based on their features, i.e., support for shapes extraction from data or
ontologies, support for automatic extraction of shapes, support for shapes ex-
traction from a SPARQL triplestore, and whether they extract SHACL, ShEx,
or both types of validating shapes. In our recent community survey [38] on
extraction and adoption of validating shapes, we show that there is a growing
need among practitioners for techniques for efficient extraction of validating shapes
from very large existing KGs. Note that there exist approaches for schema ex-
traction from property graphs as well [24]. Such approaches are not directly
applicable to RDF KGs since their schema is more complex, moreover they
focus on identifying sub-types based on node labels (which do not exist in
RDF data, since types are nodes in the graph), and finally are not designed
to handle the issue of spuriousness. Once shapes are extracted, they can be
used to validate KGs using validation approaches like MagicShapes [2] and
Trav-SHACL [13].

Rules, Patterns, and Summaries. There exist various approaches for
rule discovery in graphs [25]. These systems [1, 14, 31] derive rules from
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large KGs using structural information by exploring the frequently occurring
graph patterns. In contrast to validating shapes, rules are mainly used to
derive new facts from an incomplete KG or identify specific sets of wrong
connections. Frequent subgraph mining (FPM) approaches, instead, are de-
signed to find frequently recurring structures in a large graph. In FPM, the
occurrence of subgraphs (the number of times a subgraph appears) cannot be
taken as the support of subgraphs since it does not satisfy the non-monotonic
property [7]. The most practical measurement for measuring this support is,
instead, the minimum image-based support (MNI [7]). Our proposed def-
inition of support for shape constraints is inspired by the concept of MNI
support and its use in FPM [19]. Yet, different than FPM, we do not extract
patterns of arbitrary shape and size, thus we are able to provide better per-
formance guarantees as we solve a simpler problem. Finally, our approach is
also related to the techniques of graph summarization [8] and can be seen as
a special form of structural summarization [33]. Additionally, QSE provides
a scalable solution for understanding the content of large KGs (by extract-
ing their shapes) like ABSTAT-HD [3], which is based on exploring semantic
profiles of large KGs.

7 Conclusion

In this paper, we propose an automatic shape extraction approach that ad-
dresses the two common limitations in other existing techniques, i.e., scala-
bility and spuriousness. We addressed these limitations by introducing the
Quality Shapes Extraction (QSE) problem. We devised an exact and ap-
proximate solution for QSE to enable the efficient extraction of shapes on
commodity machines. Our method is based on the well-understood concepts
of support and confidence, hence it allows a data scientist to focus on the
shapes providing the highest reliability first when addressing issues of data
quality. By setting even low pruning thresholds, QSE can prune up to 93% of
the shapes that a trivial extraction would produce (i.e., a reduction of 2 orders
of magnitude), shapes that hence have little support from the data and are
thus likely spurious. Furthermore, we show that our approximate technique
introduces only negligible loss in the quality and completeness of the pro-
duced shapes. In the future, we will extend the scope of constraints covered
by QSE and a solution to automatically learn the optimal configurations for
pruning thresholds for QSE.
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Abstract

We demonstrate SHACTOR, a system for extracting and analyzing validating shapes
from very large Knowledge Graphs (KGs). Shapes represent a specific form of data
patterns, akin to schemas for entities. Standard shape extraction approaches are likely
to produce thousands of shapes, and some of those represent spurious constraints ex-
tracted due to the presence of erroneous data in the KG. Given a KG having tens
of millions of triples and thousands of classes, SHACTOR parses the KG using
our efficient and scalable shapes extraction algorithm and outputs SHACL shapes
constraints. The extracted shapes are further annotated with statistical information
regarding their support in the graph, which allows to identify both erroneous and
missing triples in the KG. Hence, SHACTOR can be used to extract, analyze, and
clean shape constraints from very large KGs. Furthermore, it enables the user to also
find and correct errors by automatically generating SPARQL queries over the graph
to retrieve nodes and facts that are the source of the spurious shapes and to intervene
by amending the data.
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1. Introduction

1 Introduction

Knowledge Graphs (KGs) are in widespread use both within companies
and on the Web [5, 9], thanks to their ability to represent a wide range
of information in different domains. DBpedia (dbpedia.org) and Wiki-
Data (wikidata.org) are examples of large public KGs, where data is stored
using the Resource Description Framework (RDF) [1], which by design al-
lows modeling data without a schema definition (unlike, for instance, the
relational model). In RDF, data is modeled as nodes representing entities
and data values, while edges represent relationships and attributes (see the
example in Figure C.1a).

Nonetheless, as more and more data is accrued within KGs, practical ap-
plications impose further demands regarding quality assessment and valida-
tion. To provide a way to validate the contents of a KG, shape constraint
languages, namely SHACL [4] and ShEx [6], have been proposed as ways
to define and enforce constraints using so-called validating shapes. Validat-
ing shapes allow to define a partial schema for the entities end relationships
contained in a KG and overcome some of the limitations of the RDF Schema
specification while being easier to use than OWL ontologies. Shapes can be
used to express that an entity of type Student needs to have a name, an advi-
sor, and should be enrolled in some courses; and that these attributes should
be instances of type string, FullProfessor, and Course, respectively (see Fig-
ure C.1b for a simplified depiction of some validating shapes describing the
relationships between some entity types). Thanks to their simplicity and ex-
pressivity, shape constraint languages have attracted increasing interest, and
SHACL became a W3C standard in 2017 [4].

Validating shapes have attracted substantial attention in the past few
years, and recently, we conducted a survey [7] to analyze the extraction and
adoption of validating shapes in industry and academia. Data scientists are
faced with the challenge to craft a set of validating shapes for already existing
KGs that they are working with and then use those to clean such datasets,
i.e., a post-hoc validation. Hence, we face the need to develop semi-automatic

(a) RDF Graph (b) Validating Shapes

Fig. C.1: An example RDF Graph and Validating Shapes

99

dbpedia.org
wikidata.org


Paper C.

methods to help users generate shapes for large existing KGs. These are usu-
ally the shape extraction approaches [2, 3]. Due to well-known issues in data
quality and the heterogeneity of existing KGs, spuriousness poses important
challenges to automatic shape extraction methods. For example, in DBpedia,
a few entities representing musical bands are wrongly assigned to dbo:City
class. As a consequence, when shapes are extracted from its instance data
using approaches that do not analyze the support of the shapes, the resulting
node shape for dbo:City specifies that cities are allowed to have dbo:genre and
dbo:formerBandMember properties. We call these spurious shapes.

Existing shape extraction approaches produce many spurious shapes
when dealing with erroneous triples or incomplete data [8]. Thus, extraction
approaches will generate tens of thousands of shape constraints due to the
effect of spuriousness. In these situations, it becomes unmanageable for domain
experts to manually analyze and clean the resulting validating shapes. Finally,
existing methods are not scalable, i.e., unable to extract shapes from very large
KGs (especially on commodity machines). Therefore, we proposed a solu-
tion called Quality Shapes Extraction (QSE) [8] to tackle both the limitations
of scalability and spuriousness in existing shapes extraction approaches. QSE
extracts validating shapes from very large graphs on a commodity machine
(it takes only 3 minutes on DBPedia with just 16 GB of RAM) and also pro-
vides information about the reliability of the extracted shape constraints by
computing their confidence and support. Hence, QSE identifies those shapes
that are the most informative and distinguishes those that are indeed affected
by incomplete or incorrect data.

Contributions. In this work, we show how the shapes extracted with QSE
in combination with the information about their confidence and support en-
able a wide range of data profiling and cleaning functionalities, beyond sim-
ple validation. We thus propose SHACTOR (for SHapes extrACTOR), a tool
that data scientists can use to speed up the end-to-end KG cleaning process by
(1) automatically extracting shapes, (2) helping to evaluate their quality, (3) pro-
viding important structural profiling information, and (4) allowing to find errors
and missing data in the given KG as well as correct such issues by automat-
ically generating and executing SPARQL queries. SHACTOR uses QSE [8] to
filter shapes by various confidence and support thresholds to identify reli-
able shapes. These shapes provide essential information on the structure and
content of the KG as well as on possible data quality issues. SHACTOR then
highlights the spurious shapes and automatically generates SPARQL queries
to extract the erroneous or incomplete data generating such shapes. The
system allows for removing the erroneous triples interactively and then cor-
recting the generated shapes. Thus, the tool will lead to a valid set of shapes,
which can be used to maintain the quality of the given KG in the future.

Demo Video and Source Code. The demonstration video and source
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Fig. C.2: SHACTOR Architecture

code of SHACTOR is available on our website and GitHub1.

2 SHACTOR

SHACTOR provides a graphical user interface for interacting with our QSE
algorithm [8] and provides a wide range of new functionalities. Given a KG
in RDF, SHACTOR uses QSE to extract a full set of validating shapes and then
allows the user to explore and analyze this output. Hence, SHACTOR con-
sists of three main phases, (1) shapes extraction with support and confidence,
(2) shapes analysis, and (3) KG cleaning. Figure C.2 shows SHACTOR’s ar-
chitecture.

Background and Problem. An RDF knowledge graph models enti-
ties and their relationships in the form of <subject, predicate, object> triples.
Given pairwise disjoint sets of IRIs I , blank nodes B, and literals L, an RDF
Graph G :⟨N, E⟩ is a graph with a finite set of nodes N⊂(I∪B∪L) and a
finite set of edges E⊂{⟨s, p, o⟩∈(I∪B) × I × (I∪B∪L)}. See a sample G
in Figure C.1a, where oval and rectangular shapes represent IRIs and literal
nodes, respectively. The standard query language for RDF data is SPARQL.
A SPARQL query Q consists of a set of triple patterns along the conditions
that have to be met in order for data in G to contribute to the result.

The SHACL shapes of G are defined as set of node shapes
S :{⟨s, τs, Φs⟩, ...}, where s is the shape name, τs∈C is the target class, and
Φs is a set of property shapes of the form ϕs:⟨τp, Tp, Cp⟩, where τp∈P is
called the target property, Tp⊂I contains either an IRI defining a literal
type, e.g., xsd:string, or a set of IRIs – called class type constraint, and Cp
is a pair (n, m) ∈ N × (N∪{∞}). n≤m – called min and max cardinality
constraints. For example, the node shape for :Student in G (Figure C.1a) is
{s:studentNodeShape, τs : Student, Φs:{ϕ:name, ϕ:takesCourse, ϕ:advisor}} where

1https://relweb.cs.aau.dk/qse/shactor/,
https://github.com/dkw-aau/demo-shactor
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property shape ϕ:name has constraints ⟨:name, xsd:string, (1, ∞)⟩, i.e., every
node of type Student should have at least one name of type string (see Fig-
ure C.1b).

In QSE, we introduced the notion of support and confidence for shape con-
straints to study the reliability of extracted shapes and tackle the issue of spu-
riousness. These concepts are inspired by the well-known theory developed
for the task of frequent pattern mining. The support ω of a constraint mea-
sures how many entities are conforming to a specific constraint ϕs:⟨τp, Tp, Cp⟩
∈ Φs of a shape ⟨s, τs, Φs⟩ ∈ S appearing in the data graph G. Similarly, the
confidence ε of a constraint ϕs measures the ratio between how many entities
conform to ϕs and the total number of entities that are instances of the target
class of the shape s.

Given the need to improve the quality of the data within an existing KG,
SHACTOR addresses the problem of helping users to produce high-quality validat-
ing shapes and use them to analyze and correct the data quality issues present in the
graph. Hence, to extract shapes from a large existing graph G while tackling
the effects of spuriousness and helping the user to analyze S and clean G, the
SHACTOR system takes a knowledge graph G, a threshold ω for support,
and ε for confidence and produces all shapes after distinguishing for which
subset of node shapes ⟨s, τs, Φs⟩∈S it holds that supp(s)>ω and for which
property shapes ϕs:⟨τp, Tp, Cp⟩∈Φs, supp(ϕs)>ω and conf(ϕs)>ε. Moreover,
for each Φs ∈ S , SHACTOR generates a SPARQL query Q to fetch either
triples that conform to some ϕs ∈ Φs or triples that fail to conform to it, al-
lowing to inspect specific data quality issues. Thus, SHACTOR is a system
that takes full advantage of existing standards in terms of data formats, query
languages, and validation constraints in the realm of KGs, while also ensur-
ing ease of use and scalability.

Shapes Extraction and Analysis. SHACTOR parses G (available as
SPARQL endpoint or from file) to extract entities and their constraints and
computes support and confidence for each constraint. To focus on the spe-
cific subset of the graph, it also allows selecting a custom subset of types in
the KG, where the user can select one or more classes to focus only on enti-
ties of the specific class, e.g., :Student or :FullProfessor class in Figure C.1a. In
the second step, it asks to input thresholds for support ω and confidence ε.
Given this information, it will use the QSE algorithm to parse G and produce
all shapes that satisfy the support and confidence thresholds while also pro-
ducing shape constraints that fail to meet these conditions (See for instance
1⃝ in Figure C.3). The data scientists can further dynamically filter the pro-

duced shapes by providing more restrictive values for ω and ε. They can
further fine-tune the pruning thresholds by using statistical information like
the frequency of each class. Note that while a spurious shape does not usu-
ally represent a valid constraint to be enforced, it usually signals the presence
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of erroneous data in the graph. Hence, on the one hand, SHACTOR provides
information w.r.t. the contents and structure of the KG, helping in identifying
a set of reliable validating shapes to be enforced, while, on the other hand,
by looking at the shapes with low support and confidence, it also helps in
understanding which portions of the data may be particularly problematic.
To the best of our knowledge, SHACTOR is the first tool that considers both support
and confidence to identify errors in a KG.

Therefore, to further inspect the shapes produced in this way, SHACTOR
implements several useful features. First, it displays interactive charts that
show which percentage of shapes are above and below each threshold (see
2⃝ in Figure C.3). Furthermore, in the list of node shapes, i.e., for each node

shape s in S , it shows the support ωs of s along with the quality of the data
behind each of them in terms of the number of property shapes specific for
that node shape (i.e., |Φs| of s) that are above the two thresholds ω and ε (see
3⃝ in Figure C.3). Node shapes with many property shapes with low support

and confidence signal the presence of noisy or incomplete data for entities of
that type.

Moreover, for each property shape ϕs∈Φs of a given node shape s∈S ,
it shows which predicate and type constraints it involves (the values of
⟨τp, Tp, Cp⟩) along with its specific support ωϕs and quality indicator of each
property shape ϕs computed by visually showing the confidence of the shape
and highlighting those property shapes whose confidence is below the user-
provided threshold (see 4⃝ in Figure C.3). These quality indicators and high-
lights based on support and confidence of each node shape and its property
shapes help the user find the spurious shape constraints in S .

Improving Data Quality. The result of validating a KG using validating
shapes is usually a validation report that lists all entities and triples that vio-
late the given set of constraints expressed by the shapes. Nonetheless, as we
have seen, when using an automatic shape extraction tool, the data scientist
needs to decide which subset of shapes to enforce among those extracted by
the tool. SHACTOR helps data scientists by automatically generating queries
to retrieve the entities and triples that caused a given shape to be extracted
from the data. In a sense, it allows to inspect the provenance of a shape. This
helps the user both in deciding which shapes to be used for validation as well
as to identify either erroneous triples or missing information when inspecting
spurious shapes.

Specifically, for a given node shape s∈S , SHACTOR can build SPARQL
queries for each property shape ϕs∈Φs using the property path τp, class type
constraint Tp of ϕs, and target class τs. Hence, given the node shape s with
property shapes Φs, SHACTOR automatically builds a SPARQL query to re-
trieve all the triples having property path τp and class type τs for a given
ϕs∈Φs, e.g., to inspect which entities of type dbo:City in DBpedia have the
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Fig. C.3: Portions of SHACTOR GUI showing a sample of the analysis of the shapes for DBpedia

genre attribute (see 5⃝ in Figure C.3). SHACTOR can then directly execute
the query and return the corresponding list of triples (see 6⃝ in Figure C.3).
Further, SHACTOR provides the option to generate the queries to delete se-
lected triples, thus allowing to automatically delete erroneous triples on the
spot, as well as to generate INSERT queries to amend the missing information
in the graph.

3 Demonstration Scenario

SHACTOR demonstrates the power and versatility of a tool that effectively
exploits the information carried by shapes extracted and annotated with sta-
tistical data. We show how data scientists can use SHACTOR to speed up the
process of KG cleaning by automatically extracting shapes and evaluating the
quality of extracted shapes along with their provenance. First, the demonstra-
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tion guides the participants through different extraction phases (not shown
in the figure). We use a full snapshot of DBpedia from 2021, which con-
tains 52 M triples, 15 M literals, 5 M typed entities, 1.3 K properties, and 427
classes. Moreover, participants will also be able to analyze shapes from a full
snapshot of WikiData (having more than 1.9 billion triples) that we have ex-
tracted in advance. SHACTOR can extract shapes on a commodity machine
also for WikiData [8], but while for DBpedia, it takes only a few minutes, for
WikiData, it takes too long for a live demonstration of the extraction.

Configuration. At first, we present various options to provide a KG as
input, e.g., the user can upload a KG file or point to a SPARQL endpoint.
The audience is also welcome to bring their own KG to be analyzed. Then, the
user selects the target sub-graph (from the list of extracted classes); after
that, SHACTOR starts the shapes extraction step and the user is directed to
the main analysis interface (Figure C.3). SHACTOR also supports uploading
already extracted shapes.

Shapes Analysis. The user provides support and confidence as pruning
thresholds to analyze the extracted shapes. Hence, SHACTOR applies the
input pruning thresholds and display an overview in the form of pie charts
(see 1⃝ and 2⃝ in Figure C.3). These charts show the portions of node and
property shapes that are below or above the provided pruning thresholds.
Furthermore, they help the user decide the optimal values for the pruning
thresholds. In our DBpedia example, we see the quality indicators for two
node shapes (shown in 3⃝ of Figure C.3). Then, we show an example node
shape called :CityShape having target class dbo:City and explore its property
shapes (shown in 4⃝ of Figure C.3). The list of shape constraints can be
sorted by increasing or decreasing support so that the user can select the
desired set of node or property shapes. The selected shapes can also be
downloaded before or after applying pruning thresholds to be used with a
shape validation tool.

Finding Errors in the KG. SHACTOR helps users find spurious shape
constraints by highlighting constraints having support or confidence less than
the provided input pruning thresholds. Consider a user exploring the prop-
erty shapes of :CityShape having the lowest support and confidence, the user
will find out the :genre property shape in the set of property shapes for
:CityShape with support of 3. SHACTOR, by default, highlights the prop-
erty constraints below the pruning thresholds in red color. Hence, this will
help the user easily find such spurious property shapes. This shape sig-
nals the presence of some erroneous triple. To improve the quality of data
in the KG, the user may wish to locate and remove the triples involved in
such a shape. Thus, with the click of a button, SHACTOR can generate
the SPARQL query from the interface for retrieving the triples involved in
the :genreCityShapeProperty (shown in 5⃝), and upon execution, the retrieved
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triples will be fetched from the KG and displayed on the interface (shown
in 6⃝). The list of retrieved triples will show the entities which are wrongly
classified, e.g., dbo:Heris is classified as dbo:City and dbo:Song. Now the user
can go through the list of triples and take appropriate action to improve the
quality of data in the KG. In particular, the user can select a subset of triples
they wish to delete, and SHACTOR will generate a corresponding DELETE
query. For instance, the triples assigning the wrong type to the entities dbr:Dn,
dbr:Heris, and dbr:agar.

Finding Missing information in the KG. SHACTOR allows the user
to explore the property shapes in a separate dashboard (not shown in Fig-
ure C.3). Here, for each property shape, it identifies also object IRIs that are
missing types as well as entities that are missing properties. Based on these,
SHACTOR suggests INSERT queries to add the missing information. For ex-
ample, it suggests to add a value for the dbo:capital property for those entities
of type dbo:country that are missing a capital.

4 CONCLUSION

In this demo paper, we present SHACTOR, a system to support end-to-end
profiling and cleaning of large-scale KGs using validating shapes automat-
ically extracted from the graph and annotated with statistical information
thanks to our scalable QSE algorithm. Further, this demo shows the versa-
tility and effectiveness of utilizing shapes as easy-to-extract and easy-to-use
tools to identify and correct data quality issues in existing KGs. While our
tool allows to analyze shapes in isolation, in the future, we plan to add a
feature to visualize the shapes-based schema graph to analyze the taxonomy
of the shapes.
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Abstract

With the growing popularity of storing data in native RDF, we witness more and
more diverse use cases with complex SPARQL queries. As a consequence, query
optimization – and in particular cardinality estimation and join ordering – becomes
even more crucial. Classical methods exploit global statistics covering the entire RDF
graph as a whole, which naturally fails to correctly capture correlations that are very
common in RDF datasets, which then leads to erroneous cardinality estimations and
suboptimal query execution plans. The alternative of trying to capture correlations
in a fine-granular manner, on the other hand, results in very costly preprocessing
steps to create these statistics. Hence, in this paper we propose shapes statistics,
which extend the recent SHACL standard with statistic information to capture the
correlation between classes and properties. Our extensive experiments on synthetic
and real data show that shapes statistics can be generated and managed with only
little overhead without disadvantages in query runtime while leading to noticeable
improvements in cardinality estimation.
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1. Introduction

1 Introduction

Driven by diverse movements, such as Linked Open Government Data, Open
Street Map, DBpedia [3], and YAGO [21], more and more data is being
published in RDF [7] capturing a multitude of diverse information. Along
with the growing popularity, increasingly complex queries formulated in
SPARQL [6] are being executed over such data to answer business and re-
search questions. Query logs of the public DBpedia SPARQL endpoint, for
instance, contain SPARQL queries with up to 10 joins [4] and analytic queries
in the biomedical field can involve more than 50 joins per query [9]. There-
fore, the need for high-performance SPARQL query processing is now more
pressing than ever.

Existing approaches for query optimization in RDF stores often adapt
techniques from relational databases modeling an RDF dataset as a single
large table with three column [5, 16] (one column for each of the compo-
nents of an RDF triple: subject, predicate, and object). Nevertheless, accurate
cardinality estimation is at the heart of any query optimizer that does not
rely on heuristics but instead uses a cost model to find the best query ex-
ecution plan for a given query. Cardinality estimation then relies on the
availability of statistics describing the characteristics of the data to estimate
the sizes of intermediate results produced while query execution. However,
general statistics typically result in highly imprecise estimations since they
are mostly gathered on the RDF graph as a whole, in contrast to the rela-
tional case where it is possible to create such statistics with higher precision
since data is separated into multiple tables [15]. Furthermore, assuming in-
dependence when joining parts of SPARQL queries (triple patterns) leads to
erroneous estimations [9] as co-occurrences of certain predicates are highly
correlated [19].

Hence, exploiting more fine-grained statistics capturing correlations
among RDF triples leads to more accurate join cardinality estimations [19].
However, creating such statistics comes at the price of a very time and
resource-intensive preprocessing step. On the other hand, the alternative
of online, query-dependent, sampling [20] results in overheads during query
optimization. Instead, what we propose in this paper is to better exploit
the information that is often provided along with an RDF dataset: SHACL
(Shapes Constraint Language) [14] constraints, which is a recent standard for
validating RDF datasets that are becoming more and more popular. SHACL
defines so-called shapes describing the relationships between entities of a
specific class, their properties, and their connections to other classes of enti-
ties. Although they are currently only used for validation purposes, we show
in this paper that by slightly extending them with basic statistics, they can
also be exploited for join cardinality estimation.
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In summary, this paper makes the following contributions. First, we ex-
tend the SHACL definition to capture statistical information to replace the
need for creating complex (and expensive) statistics over RDF datasets. To
the best of our knowledge, this is the first proposal of this kind. Second, we
introduce an algorithm to enhance SHACL shapes with statistical informa-
tion and to exploit these statistics for join cardinality estimation and query
optimization. Third, we study the impact of our approach using both syn-
thetic (LUBM [10], WatDiv [2]) and real (YAGO-4 [21]) datasets, demonstrat-
ing that shapes statistics can provide higher precision for query optimization
with only a little overhead.

This paper is structured as follows. While Sections 2 and 3 discuss related
work and introduce preliminaries, Section 4 formally defines the problem.
Section 5 then describes our proposed extension of the SHACL standards,
and Section 6 presents techniques to exploit the additional information for
cardinality estimation and query optimization. Section 7 discusses the results
of our extensive experimental study, and Section 8 concludes the paper with
an outlook to future work.

2 Related Work

Cardinality estimation has been studied extensively in the context of rela-
tional databases [20]. For SPARQL queries, existing techniques adapt rela-
tional approaches [13, 24] and focus mostly on specific type of queries [19].
Usually, these approaches construct different kinds of single or multidimen-
sional synopses over databases that can be used to estimate cardinalities [23].
While algorithms designed to generate synopsis for unlabelled graphs are
not applicable here (as the edges in RDF graphs are labeled), consequently
approaches to generate RDF summaries either produce very large sum-
maries [23], have very high computational complexities, or they are unable
to preserve the RDF schema while constructing the summaries [23]. There-
fore, the most promising approaches aim at using statistics computed directly
from edge label frequencies. In particular, RDF-3X proposes a histogram-
based technique for cardinality estimation based on edge label frequencies.
This technique was later extended by exploiting the statistical information of
Characteristic Sets [19], which compute frequencies of sets of predicates shar-
ing the same subject to estimate the cardinalities. This approach shows high
performance for star-shaped queries while it suffers from significant under-
estimation due to the independence assumption in the general case [20]. This
approach was extended as Characteristic Pairs [18] to overcome this limita-
tion, but it could only support multi-chain star queries. Moreover, extracting
Characteristic Sets from large heterogeneous graphs is computationally ex-
pensive. SumRDF [23] is another cardinality estimation approach based on
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a graph summarization. It fails to handle large queries due to a prohibitive
computation cost, and it is costly to construct such summaries over large RDF
graphs [20].

A recent benchmark, G-CARE [20], analyzed the performance of exist-
ing cardinality estimation techniques for subgraph matching. This analysis
revealed that the techniques based on sampling and designed for online ag-
gregation outperform the cardinality estimation techniques for RDF graphs.
This calls for a more in-depth study on how to perform cardinality estimation for
SPARQL query optimization appropriately.

In a recent work, Shape Expressions (ShEx) [22] have been used to reorder
triple patterns to enable SPARQL query optimization [1], i.e., it estimates an
order of execution for the triple patterns based on some heuristic inference
on which triples are more selective. For instance, if a shape definition says
that every instructor has one or more courses, but every course has exactly
one instructor, it infers that the cardinality of courses is at least the same as
the cardinality of instructors and probably larger. Hence, this optimization
procedure is not based on actual data.

Therefore, contrary to existing works, we aim at exploiting fine-grained
statistics based on shapes to produce more precise cardinality estimations for
query planning. This will allow us to overcome the limitations of existing
methods that only use the global-statistics [11]. To this end, instead of creat-
ing large expensive summaries and characteristic sets over the RDF graphs to
estimate the cardinalities, we exploit SHACL shapes constraints (which are
as expressive as ShEx [22]) and annotate the Node and Property Shapes with
the statistics of the input RDF graph. Compared to other solutions, it re-
quires a lightweight preprocessing and retains the structure of original RDF
and SHACL shapes graphs. Moreover, this allow us to study more closely the
effect of more fine-grained statistics, and more accurate cardinality estimation for the
task of SPARQL query optimization.

3 Preliminaries

RDF Graphs: RDF graphs model entities and their relationships in the form
of triples consisting of SPO <subjects, predicates, objects>. We present a sim-
plified example of an RDF graph G based on the LUBM [10] dataset in Fig-
ure D.1, where oval and rectangular shapes represent IRIs and literal nodes,
respectively. An RDF graph is formally defined as:

Definition D.1 (RDF Graph)
Given pairwise disjoint sets of IRIs I, blank nodes B, and literals L, an RDF
Graph G is a finite set of RDF triples ⟨s, p, o⟩ ∈ (I ∪ B)× I × (I ∪ B ∪ L).
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Fig. D.1: An RDF Graph G

Fig. D.2: Query Q and its Graph QG

SPARQL: SPARQL [6] is a standard query language for RDF. A SPARQL
query consists of a finite set of triple patterns (known as basic graph pattern,
BGP) and some conditions that have to be met in order for data to be selected
and returned from an RDF graph. Each SPO position in a triple pattern can
be concrete (i.e., bound) or a variable (i.e., unbound). The variable names in
a SPARQL query are prefixed by a ‘?’ symbol, e.g., ?X. To answer a BGP, we
require a mapping between variables to values in an RDF graph, all the resulting
triples existing in the RDF graph obtained by replacing the variables with
values are answers to the BGP. Figure D.2 shows an example SPARQL query
(Q) and its query graph QG on the graph of Figure D.1. A BGP is defined as:

Definition D.2 (BGP)
Given a set of IRIs I, literals L, and variables V, a BGP is defined as
T⊆(I∪L∪V)× (I∪V)× (I∪L∪V), whose elements are called triple patterns.

Shapes Graphs: Several schema languages have been proposed for RDF in
the past, where the most common are RDF Schema (RDFS1) and OWL [17].

1https://www.w3.org/TR/rdf-schema/
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RDFS is primarily used to infer implicit facts, and OWL is an extension
of RDF and RDFS to represent ontologies. The declarative Shapes Con-
straint Language (SHACL) [14] became a W3C standard recently. SHACL
schema provides high-level information about the structure and contents of
an RDF graph. It allows to define and validate structural constraints over
RDF graphs. SHACL models the data in two components: the data graph
and the shape graph. The data graph contains the actual data to be validated,
while the shape graph contains the constraints against which resources in the
data graph are validated. These constraints are modeled as node and property
shapes, which consist of attributes encoding the constraints. The node shapes
constraints are applicable on nodes that are instances of a specific type in the
data graph while the property shapes constraints are applicable to predicates
associated with nodes of specific types. We define a SHACL shapes graph as
follows:

Definition D.3 (SHACL Shapes Graph)
A SHACL shapes graph Gsh is an RDF graph describing a set of node shapes
S and a set of property shapes P, such that targetS : S 7→I and targetP : P 7→I
are injective functions mapping each node shape si∈S and each property
shape pi∈P to the IRI of a target class and a target predicate in G respectively,
and ϕ : S 7→2P is a surjective function assigning to each node shape si a subset
Pi⊆P of property shapes.

For example in Figure D.3, node shape constraints are applicable on node
ub:GraduateStudent and its property shapes constraints are applicable on
predicates like takesCourse, and advisor. This information is declared with
attributes sh: targetClass for node shapes and sh:path for property shapes.
Note that the attributes in the dark shaded boxes are part of our extension of
the SHACL definition, explained in Section 5.

The Shapes Expression (ShEx [22]) language also serves a similar purpose
as SHACL to validate RDF graphs. Nonetheless, the two formulations di-
verge mostly at the syntactic level [12], and our approach can be extended to
work using ShEx or other constraints languages as well without the loss of
generality.

4 Problem Formulation

Given an input query Q, a query optimizer has the goal to find a query plan
expected to answer Q in the minimum amount of time [15]. Constructing a
SPARQL query plan includes finding a join ordering between triple patterns
of its BGPs. In this paper, we focus on the join ordering of BGPs defined as
follows:
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Fig. D.3: SHACL Shapes Graph

Definition D.4 (Join Ordering)
Given a set of triple patterns T={tp1, tp2, ..., tpn} ⊆ (I∪L∪V) × (I∪V) ×
(I∪L∪V), the join order O for BGPs is defined as a total ordering O of T
so that for every ti, tj∈T either ti≺Otj or tj≺Oti.

To find an optimal plan, a query optimizer needs to explore the search
space of semantically equivalent join orders and choose the optimal (cheap-
est) plan according to some cost function. It is crucial to accurately esti-
mate the join cardinality between triple patterns of a given query to con-
struct a query plan with an efficient join ordering [9]. In line with the related
work [20], we neglect other cost factors and focus on join cardinality as the
most dominant cost factor to find a join ordering. We formally define the
problem of estimating join cardinalities as follows:

Problem 2 (Join Cardinality Estimation)
Given a set of triple patterns T={tp1, tp2, ..., tpn}, apply a cardinality esti-
mation function J̄ : T×T 7→ N such that for every pair of triple patterns
(tpi, tpj)∈T, J̄(tpi, tpj) ≈ |tpi⋊⋉tpj|.

We extend the above estimation problem also to the case of joining a triple
pattern with the intermediate results of prior join operations, e.g., to estimate
the total cardinality J̄((tpi⋊⋉tpj), tpk) ≈ |(tpi⋊⋉tpj)⋊⋉tpk|. Then, given such
estimates, an optimal query plan minimizes the total number of operations
to compute, i.e., the execution costs Cost(T,O) of the order O for the set T.
In practice, this total join cost is obtained by summing up the intermediate
cardinalities of each join operation in their respective join order. Hence, we
formalize the problem of join order optimization as follows:
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Problem 3 (Join Order Optimization)
Given a set of triple patterns T={tp1, tp2, ..., tpn} and a join cardinality esti-
mation function J̄, find the join order O obtained as arg minO Cost(T,O).

5 Extending SHACL with Statistics

To compute more accurate join cardinality estimations (Problem 2), we cap-
ture the correlations between RDF triples by extending SHACL’s node and
property shapes with fine-grained statistics of the RDF graph. We de-
note these statistics as shapes statistics. These include the total triple count
(sh:count), minimum (sh:minCount) and maximum (sh:maxCount) number of
triples for each instance, and the number of distinct objects for property in-
stantiations (sh:distinctCount). The attributes shown in the dark shaded boxes
in Figure D.3 are the annotated statistical attributes of their respective node
and property shapes. These statistics are computed by executing analytical
SPARQL queries over the RDF graph. For instance, to compute the num-
ber of instances of GraduateStudent in the dataset, i.e, the value of attribute
sh:count of node shape GraduateStudent, the annotator issues the SPARQL
query: SELECT COUNT(*) WHERE {?x a ub:GraduateStudent}.

Along with shapes statistics, we also define global statistics by extending
VOID2 statistics with more precise statistics of RDF properties, i.e., the dis-
tinct subject count (DSC) and distinct object count (DOC) of each property of
the RDF graph.

6 Query Planning

In this section, we present our approach to exploit global and shapes statis-
tics to obtain more accurate join cardinality estimates (Problem 2). These
estimates, in turn, are used for join order optimization (Problem 3).

6.1 Cardinality Estimation of Triple Patterns

A SPARQL query contains joins between multiple triple patterns. Hence, the
first step is to estimate how many triples match every triple pattern individu-
ally. We exploit the statistical information contained in the extended SHACL
shapes graph (Section 5) to obtain this estimate. Hence, for each triple pat-
tern, we obtain their corresponding node or property shapes using the values
of the sh:targetClass and sh:path attributes.

First, all triples of the type <?x, a, [Class]> (i.e., instances with rdf:type
[Class]) are mapped to the node shape having that class as the value of

2Vocabulary of Interlinked Datasets: https://www.w3.org/TR/void/
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the attribute sh:targetClass. Then, triples having variable ?x as a subject
are also assigned to that node shape. The triple predicate determines
instead its corresponding candidate property shapes, i.e., those with a
matching value for sh:path. For example, given triples tp1=<?x, rdf:type,
ub:GraduateStudent> and tp2=<?x, ub:name, ?n>, the subject ?x is assigned
to node shape:GraduateStudent, while the predicate in tp2 matches shape: name
(Figure D.3, top left and top right).

Once the candidate shapes for all the triple patterns are identified, their
statistical information combined with the distinct subject and object count
(DSC & DOC) from the global statistics are used in combination with the
formulas shown in Table D.1 to compute their expected cardinality. These
formulas, inspired by a previous work [11], cover all possible types of triple
patterns. The term cX in the formulas denotes the count of X in the RDF
graph; ctriples denotes the count of all triples and cobjects the count of all ob-
jects. Similarly, cXY represents the count of X having Y. This can be used,
for instance, to derive that there are ∼ 85K triples matching <?x, rdf:type,
ub:FullProfessor> (Table D.2a). While both global and shapes statistics can
be used to estimate the cardinality of triple patterns using these formulas,
they can lead to different estimated cardinalities. When the query does not
contain any type-defined triple, only global statistics are used.

Triple Pattern Cardinality Triple Pattern Cardinality

?s ?p obj
ctriples

cobjects
?s ?p ?o ctriples

subj ?p obj
ctriples

cdistSubj × cdistObj
subj ?p ?o

ctriples

cdistSubj

?s pred obj
cpred

cpredobj

?s pred ?o cpred

subj pred obj
cpred

cdistSubj × cdistObj
sub pred ?o

cpred

cpredsub

?s rdf:type obj centitiesrd f :typeobj
?s rdf:type ?o crd f :type

subj rdf:type obj 1 or 0 subj rdf:type ?o
crd f :type

crd f :typesub

Table D.1: Cardinality estimation of triple patterns

6.2 Cardinality Estimation of Joins

The join operation is performed on a common variable between two triple
patterns. We consider three possible types of joins between two triple pat-
terns based on the position of the common variable, namely: Subject-Subject
(SS), Subject-Object (SO), and Object-Object (OO). If there is no common vari-
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Triple Pattern (TP) DSC DOC ETP Card E⋊⋉ Card T⋊⋉ Card
1: ?A rd f :type :FullProfessor 85, 006 85, 006 85, 006
2: ?A :name ?N 10, 696, 541 1, 480 10, 696, 541 85, 006 85, 006
3: ?A :teacherO f ?C 359, 795 1, 079, 580 1, 079, 580 8, 579 255, 148
4: ?C :advisor ?A 2, 052, 228 299, 177 2, 052, 228 1, 646 2, 055, 430
5: ?X rd f :type :GraduateCourse 539, 467 539, 467 539, 467 822 1, 027, 909
6: ?X rd f :type :GraduateStudent 1, 259, 681 1, 259, 681 1, 259, 681 504 630, 419
7: ?X :degreeFrom ?U 1, 619, 476 1, 000 2, 337, 985 575 630, 419
8: ?Y :takesCourse ?C 5, 220, 814 1, 074, 409 14, 405, 077 7, 674 2, 964, 894
9: ?Y rd f :type :GraduateStudent 1, 259, 681 1, 259, 681 1, 259, 681 1, 851 2, 964, 894

∑ =106, 657 ∑ =10, 614, 119

(a) Join ordering using Global Statistics (Ogs)

Triple Pattern (TP) DSC DOC ETP Card E⋊⋉ Card T⋊⋉ Card
1: ?A rd f :type :FullProfessor 85, 006 85, 006 85, 006
2: ?A :name ?N 85, 006 10 85, 006 85, 006 85, 006
3: ?A :teacherO f ?C 85, 006 255148 255, 148 85, 006 255, 148
4: ?C rd f :type :GraduateCourse 539, 467 539, 467 539, 467 255, 148 255, 148
5: ?X :advisor ?A 2, 052, 228 299, 177 2, 052, 228 1, 750, 207 127, 523
6: ?X rd f :type :GraduateStudent 1, 259, 681 1, 259, 681 1, 259, 681 1, 074, 297 1, 027, 909
7: ?X :degreeFrom ?U 1, 259, 681 1, 000 1, 259, 681 659, 416 630, 419
8: ?Y :takesCourse ?C 5, 220, 814 1, 074, 409 5, 220, 814 8, 841, 082 2, 964, 894
9: ?Y rd f :type :GraduateStudent 1, 259, 681 1, 259, 681 1, 259, 681 2, 133, 181 2, 964, 894

∑ =14, 883, 343 ∑ =8, 310, 941

(b) Join ordering using Shapes Statistics (Oss)

Table D.2: This table shows the statistics (distinct subject count (DSC) and distinct object count
(DOC)) of each triple pattern, the estimated cardinality of each triple pattern (ETP), the estimated
join cardinality (E⋊⋉Card) and the true join cardinality (T⋊⋉Card) for the ordered triple patterns of
example query Q computed over LUBM dataset.

able between two triple patterns, the join will result in a Cartesian product.
Inspired by related work [8], we estimate the SS, SO, and OO join cardinali-
ties using the formulas stated in Equations D.1, D.2, and D.3. Note that DSCi
and DOCi in the formulas represent the distinct subject and object count of
triple pattern i respectively.

ĉard (tpi ⋊⋉SS tpj) =
cardi × cardj

max ( DSCi , DSCj)
(D.1)

ĉard (tpi ⋊⋉SO tpj) =
cardi × cardj

max ( DSCi , DOCj)
(D.2)

ĉard (tpi ⋊⋉OO tpj) =
cardi × cardj

max ( DOCi , DOCj)
(D.3)

6.3 Join Ordering

Given an RDF graph G, its shapes statistics graph (Gsh), and global statistics
graph (Ggs), we propose an algorithm to compute the join ordering for an
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Algorithm 3 Join Ordering
Input: Q, G, Gsh , Ggs
Output: Join order O of Q

1: p ← [] ; r ← [] ; ▷ p: processed, r: remaining
2: cost← 0 ; card← 0 ; queue← queue.init();
3: tps ← getTPs(Q) ;
4: tps△ ← getCandidateShapes(Q, G, Gsh, Ggs) ;
5: tps′ ← computeCardinalities(tps△) ; ▷ Table D.1
6: sort(asc, tps′.cardinality) ;
7: p.add(tps′0) ; r.addAll(tps′ − tps′0) ;
8: cost = tps′0.cardinality ;
9: queue.add(tps′0.index) ;

10: for tpi ∈ tps′ do ▷ i > 0
11: index = tpi .index ; costlocal = cost ;
12: queue′ = queue ;
13: while !queue′.isEmpty do
14: tpa = queue′.poll() ;
15: for tpb ∈ r do
16: c = 0 ;
17: if tpa ⋊⋉T tpb then ▷ T ∈ {SS, SO, OS, OO}
18: c = J̄(tpa, tpb) ; ▷ J̄ : T×T 7→N (Prob 2)
19: elsec = cp(tpa, tpb) ; ▷ Cartesian Product
20: if c < costlocal then
21: costlocal = c ; index = tpb.index ; card = c ;

22: cost+=costlocal ;

23: queue.add(index); p.add(tps′.get(index)) ;
24: r.remove(tps′.get(index)) ;

25: O ← queue.poll() ;

input query Q (Algorithm 3). In the first step, the triple patterns of Q are
sorted in ascending order of their estimated cardinalities using only global
statistics. The algorithm starts with the triple pattern having the least cardi-
nality and then estimates its join cardinality with the rest of the triple patterns
using the formulas from Section 6.2. The algorithm iterates over all the triple
patterns and chooses a triple pattern with the least estimated join cardinality
(size of intermediate result) given the triple already selected. This produces
a first join ordering based on global statistics. In the second step, shapes
statistics are taken into account, and both the estimated cardinalities and the
join ordering proposed in the first step are revised using these shapes spe-
cific fine-grained statistics. The algorithm also computes the cost of each
join ordering by adding the estimated join cardinalities in each iteration. Its
complexity is cubic to the number of triple patterns in the query, i.e., O(n3).

Given our example query Q, and the cardinalities of its triple patterns
T={tp1, tp2, ..., tp9} estimated with both global and shape statistics, Ta-
bles D.2a and D.2b show the join ordering computed only using global statis-
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tics (Ogs) and via shapes statistics (Oss), respectively. There is a significant
difference between the estimated and true join cardinalities and their final
total cost. The estimated join cardinalities for Oss are much closer to the
true cardinalities of the query than the estimates for Ogs with two exceptions
for tp5 and tp8 where shapes statistics largely overestimate their cardinalities
due to skewed distribution of data.

7 Experimental Evaluation

We investigated the performance of query plans proposed using our algo-
rithm (with global and shapes statistics) compared to the plans proposed
by two state-of-the-art query engines (Apache Jena ARQ3 and GraphDB4)
as well as two state-of-the-art RDF cardinality estimation approaches (Char-
acteristic Sets [19] and SumRDF [23]). All experiments are performed on a
single machine with Ubuntu 18.04, having 16 cores and 256GB RAM.
Datasets: We used LUBM [10], WatDiv [2], and YAGO-4 [21] to study various
query plans on different datasets and sizes (Table D.3). In particular, we used
LUBM-500, two variants of WatDiv datasets (WATDIV-S (Small) with ~108.9
M triples and WATDIV-L (Large) with 1 billion triples), and for YAGO-4 we
used the subset containing instances that have an English Wikipedia article.

LUBM WATDIV-S WATDIV-L YAGO-4
# of triples 91 M 108 M 1,092 M 210 M
# of distinct objects 12 M 9 M 92 M 126 M
# of distinct subjects 10 M 5 M 52 M 5 M
# of distinct RDF type triples 1 M 25 M 13 M 17 M
# of distinct RDF type objects 39 46 39 8,912

Table D.3: Size and characteristic of the datasets

Implementation: Nowadays, constraints languages are having widespread
application to validate RDF graphs [21]. We assume the availability of
SHACL shapes graph with the dataset and provide a Shapes Annotator to
extend it with statistics of the graph. For cases where they are not present,
the SHACLGEN5 library is commonly used to generate shapes graphs and
we also use it in our case (e.g., for YAGO-4). All shapes are then extended
with the required statistics using our Shapes Annotator (implemented in Java).
The SHACL shapes graph for LUBM, for instance, is 45 KB, and the size of
extended shapes is 68 KB. The time required to extend the SHACL shapes
depends on the number of its nodes and property shapes. The process of

3https://jena.apache.org/documentation/
4https://graphdb.ontotext.com
5https://pypi.org/project/shaclgen/
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extending LUBM shapes graph took 16 minutes, WATDIV-S took 8 minutes,
and for YAGO-4 (which consists of 8888 nodes and 80831 property shapes) it
took 62 minutes. We implemented our join ordering algorithm in Java using
Jena3. The source code is available on our website6.

We loaded all three datasets and their relevant SHACL shapes graphs
into Jena TDBs3. We used our join ordering algorithm to construct query
plans using global and shapes statistics. For Jena, we used its ARQ query
engine to obtain the query plans. For GraphDB, we loaded all datasets in
GraphDB and used its onto:explain feature to obtain the query plans. For
Characteristic Sets [19] approach, we generated characteristic sets of each
dataset and used Extended Characteristic Sets [18] to optimize query plans
for non-star type queries. Generating characteristic sets for large RDF graphs
is computationally expensive. For instance, it took 6.2 hours to generate
Characteristic Sets for LUBM, 1.2 hours for WATDIV-S, and 8.2 hours for
YAGO-4.

For SumRDF [23], we generated the summaries of each dataset and
adapted our join ordering algorithm to exploit their estimates. Similar to
Characteristic Sets, the generated summaries require a few GBs of mem-
ory and their generation time depends on the size and heterogeneity of the
dataset, e.g., it took 4.5 minutes to generate the summary for the LUBM, 14
minutes for WATDIV-S, and 4.3 hours for YAGO-4. We use the same size of
LUBM and WatDiv datasets as used in SumRDF [23]. Hence, we used the
same parameters to generate their summaries. It is suggested that a reason-
able default size for the target SumRDF’s summary should be in the order of
tens of thousands [23]. Therefore, for YAGO-4, to generate the summary in a
reasonable amount of time, we chose 100K as the target size of the summary.

All query plans obtained using these approaches are executed 10x in Jena
TDB and each query is interrupted after a timeout of 10 minutes. Since for
some approaches the order in which triples are stated in the query matters
we shuffle the triple patterns in the BGPs randomly in each iteration before
proceeding with query optimization. As the query planning time is always
less than 20 milliseconds for all approaches and queries, in the following
we focus on analyzing the precision of the cardinality estimation and the
resulting query performance.
Queries: We distinguish complex (C), snowflake (F), and star (S) queries.
LUBM provides 14 default queries that have relatively simple structures.
Therefore, we selected queries Q2, Q4, Q8, Q9, Q12 and then created a few
additional queries for each category C, F, and S. The WatDiv benchmark in-
cludes 3 C, 7 S, and 5 F queries. For YAGO-4 there are no available standard
queries or query logs available for benchmarking. Therefore, we have hand-
crafted 13 queries following the C, F, and S graph patterns from the WatDiv

6https://relweb.cs.aau.dk/rdfshapes/
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7. Experimental Evaluation

(a) Query runtime in LUBM

(b) Query runtime in YAGO-4

(c) q-error in LUBM

(d) q-error in YAGO-4

(e) Cost in LUBM

(f) Cost in YAGO-4

Fig. D.4: Query runtime, q-error, and cost analysis on LUBM and YAGO-4
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Benchmark. These queries are available on our website6.
Query Runtime: Due to space constraints, here we only report our find-
ings on LUBM and YAGO-4, results on WatDiv datasets are discussed in the
appendix of the extended version6. These experiments offer analogous in-
sights to those obtained from the other datasets. Figure D.4a shows the query
runtime analysis for query plans proposed using the SS approach (plans con-
structed by our join ordering algorithm using shapes statistics), GS approach (plans
constructed by our join ordering algorithm using global statistics), Jena, GraphDB
(GDB), Characteristic Sets (CS), and SumRDF on LUBM queries. The query
runtime shows that: (i) the plans proposed by the SS approach are more effi-
cient than those obtained with GS for queries having at least one type-defined
triple pattern, (ii) the plans proposed by the GS approach are competitive in
comparison to the plans of GDB, CS, and SumRDF, (iii) the CS approach is
not well suited for large snowflake queries (e.g., F1, F2 (timeout), & F5), and
(iv) the plans proposed by Jena are often suboptimal and non-deterministic
(shown in the size of the error bars) as it is based on a heuristics-based query
optimizer that takes into account the given order of triple patterns in the
input query.

Similarly, Figure D.4b shows the query runtime for queries on YAGO-4.
The query runtime for complex queries (C1, C2, C3) using SS and GS are com-
petitive to the plans proposed by GDB, CS, and SumRDF. Snowflake queries
provide interesting insights where each approach behaves differently for ev-
ery single query. For instance, CS could not find the optimal query plan for
queries F1, F3, F4, F5, and SS and GS could not find the most efficient query
plan for query F4 due to underestimation of the join cardinalities. How-
ever, GDB and SumRDF found almost optimal query plans for all snowflake
queries except F1 (GraphDB) and F4 (SumRDF). For star queries, almost all
approaches identify plans with comparable good performances. Similar to
LUBM, the plans proposed by Jena are rarely the most efficient.

In addition to query runtime, we also report the q-error, which is used to
measure the precision of the final query result cardinality estimates [19]. It
quantifies the ratio between the estimated (ĉ) and true result cardinality (c)
and is computed as the ratio max(max(1, c)/max(1, ĉ), max(1, ĉ)/max(1, c)).
Ideally, the lower the value of the q-error, the better the estimates are. We
analyze the q-error values for SS, GS, GDB, CS, and SumRDF. Figure D.4c
shows the q-error analysis for LUBM queries. For SS, 15 queries have q-errors
lower than 15, 8 queries have q-errors lowever than 250, and only 3 queries
have q-errors greater than 250. For GS, 14 queries have q-errors lowever than
15, 8 queries have q-errors lower than 250, and only 4 queries have q-errors
greater than 250. Overall, the q-errors for GS and SS are competitive to GDB
and CS with few exceptions. However, overall the q-error is very low for
SumRDF except queries Q9 and C5. Figure D.4d shows the q-error analysis
for YAGO-4. For GS and SS, 14 queries have q-errors lower than 15, 2 queries
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have q-errors lowever than 250, and only 4 queries have q-errors greater than
250. Similar to LUBM, the q-errors of GS and SS are competitive with GDB,
CS, and SumRDF with few exceptions.

Finally, Figure D.4e and D.4f present the analysis between actual and true
costs of query plans produced by SS and GS on the LUBM and YAGO-4
datasets. For LUBM, the cost estimated by SS is closer to the actual cost for
Q4, Q9, C0, C1, C5, F7, F8, and all star queries. However, for YAGO-4, the
cost estimated by SS is closer to the true cost for almost all queries except C2,
F4, and S4.
Summary: Our results showed that, with only a few exceptions, the query
plans proposed using SS and GS are competitive with the other tested ap-
proaches on both the synthetic and real data. Overall, the results revealed
that our approach is efficient for all examined types of SPARQL queries while
requiring only very little overhead to extend SHACL graphs with statistics,
which is more efficient and feasible than generating extensive summaries or
Characteristic Sets. On average, our approach finds the best query plans for
75% cases on both datasets. For the remaining cases, our approach proposes
query plans having an overhead from 14% to 30% on average query runtime
w.r.t. the best query plan. Our approach requires 2-4x less preprocessing
time, this implies 2 to 6 hours less preprocessing time in our experiments,
and 2 orders of magnitude less space.

8 Conclusion and Future Work

In this paper, we have presented an alternative approach to cardinality es-
timation for SPARQL query optimization. In particular, we have proposed
novel light-weight statistics to capture the correlation in RDF graphs, a car-
dinality estimation approach, and a join ordering algorithm. We have per-
formed extensive experiments on synthetic and real data to show our ap-
proach’s effectiveness against two SPARQL query engines and two state-of-
the-art RDF cardinality estimators. The results revealed that our approach
is efficient in terms of both the preprocessing steps to generate statistics and
the cardinality estimation to optimize query plans. Going forward, we plan
to integrate our approach with one of the state-of-the-art query engines and
enable the support of additional SPARQL query operators.
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